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ON THE INVERSE  OPTrPilAL CONTROL PROBLEM 
IN MANUAL CONTROL SYSTEMS~ 

R. W. Obermayer and F. A. Muckler 
The  Bunker-Ram0 Corporation 

Canoga Park,  California 

SUMMARY 

Optimal control   theory i s  b r i e f l y  reviewed wi th   par t icu lar  emphasis on 
the  inverse  problem  of finding  the  conditions  under which a given  system i s  
optimum. A spec i f i c  method f o r  computing the  optimal  performance  weighting 
coe f f i c i en t s  i s  developed.  Vhile  the  data  are  inconclusive,  application of 
this   technique  to  some of  the  mathematical models  of  manual control  systems 
e x i s t i n g   i n   t h e   l i t e r a t u r e   r e v e a l  some in t r ac t ab i l i t y   w i th   t heo ry ,   bu t   w i th  
the  suggest ion  that  some observed  trends  in  the data are   cons is ten t   wi th  a 
hypothesis  of  optimalizing human operator  behavior. Some impl ica t ions   to  
manual control   theory and experimental methodology are   der ived.  

INTRODUCTION 

Within  recent  years  developments i n  modern control   theory have given 
new ins igh t s   i n to  many tenacious  control problems. I n  p a r t i c u l a r ,  modern 
optimal  control  theory has made inroads  into  the problems  of control  synthe- 
s i s ,  allowing  the  determination  of a cont ro l  l a w  which will optimize on  some 
predetermined basis. 

With regard  to  manual cont ro l  problems  and  theory,   the  abil i ty  to 
synthesize  optimal  control  requirements  gives a specif icat ion  of   the  funct ions 
for  optimal performance  which may be  a l located between man and  machine, new 
and d i f f e ren t   d i sp l ay  and control   tasks   are   suggested,   the   insights   into  the 
manual control  tasks  provided  suggest more comprehensive  performance  measure- 
ment,  and theore t ica l   impl ica t ions   a re  made with  regard  to   appropriate  mathe- 
mat ical  models  and s t r a t e g i e s   e f f e c t i v e   t o   t h e   c o n t r o l   t a s k   ( c f .  Obermayer 
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and  Muckler, 1964). Another  option  provided by modern  optimal  control  theory 
is to work  the  optimization  problem  backwards:  assume  that  a  given  control  is 
optimum  and  attempt  to  compute  the  manner  in  which  it may be  optimum. 

The  latter  approach,  that of the  inverse  optimal  control  problem, is the 
topic of this  report.  Based on  the  assumption  that  the  human  operator  attempts 
to  optirilize  during  manual  control,  it  is  believed  that  applications of the 
inverse  optimal  control  techniques  may  shed  some  light on  the.strategies  and 
techniques  employed. In the  following,  therefore,  the  inverse  optimal  control 
problem,  and  conditions  necessary  for  optimality,  are  explored  and  a  technique 
developed  to  compute  the  nature  of  a  performance  index  which  is  optimized by 
human  control  functions.  Some  of  the  mathematical  models  existing in the 
literature  are  used  to  compute  the  nature  of  performance  indices  optimized,  and 
the  results  provide  the  basis  for  critical  discussion of manual  control  theory 
and  experimental  methodology. 

THE INVERSE OPTIMAL CONTROL PROBIEM 

Much  of  modern  optimal  control  theory  takes  as  its  starting  point  that 
an  index  of  performance  is  specified so that  optimality  can  be  defined as 
minimizing  tne  given  performance  index.  Herein  lies  a  fundamental  problem, 
since  quite  frequently -- if  not  always -- defining  what one-means by  optimal 
performance  is  very  difficult.  Given  a  method  for  achieving  rapid  solutions, 
such  as  the  Automatic  Synthesis Program (Yalman  and  Englar, 1363) which  pro- 
vides  the  optimal  control l a w  and  transient  response  once  certain  performance 
index  matrices  are  specified, a number  of  system  designers  have  used  a  cut-and- 
try  procedure,  trying  different  performance  indices  until  something  judged 
"good"  results.  As  Reynolds  and  Rynaski (1963) report,  "Thus  the  performance 
icdex is used  as a performance  index -- that  is, we choose  elements  of  the H 
and 9. matrices  to  mini.mize  what we would  like to minimize  from  physical  con- 
siderations -- and  it  is  used as a 'cut-and-try'  parameter.  The  real  criterion 
of  performance is judgment  applied  duri.ng  the  'cut-and-try'  procedure."  In 
short, an  obligation  is  transferred  to  the  system  engineer to mathematically 
define  optimality,  an  obligation  he  can  only  imperfectly  fulfill. 

Further, t!?e required  form  for  the  performance  index  is  that  of  a  scalar, 
a  one-dimensional  entity  (Zadeh, 1958; Zadeh, 1963). This  hardly  seems  appro- 
priate  to  express  the  usual  complex  multi-facetted  descriptions  of  performance 
related  to  even  quite  simple  systems. It is  therefore  argued  that  the  choice 
of the  performance  index  to  be  optimized is arbitrary  and  subjective,  and  that 
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it may be  point less   to   devote   too much e f f o r t  t o  f inding a control  law which 
i s  t h e   b e s t   i n  some narrow, individual is t ic   sense.2 

All th i s   sugges t s   t ha t  it may be  worthwhile t o  change  methodology. Instead 
of   asking  for   the  control  law corresponding  to a given  performance  index, it 
may be better t o  seek   the   per formance   c r i te r ia   for  which a given  control law 
is -opt imal .  This problem  has come tobe   ca l l ed   t he   i nve r se   op t ima l   con t ro l  
problem; it i s  analogous t o  t he   o lde r  problem  of  the  inverse  problem  of  the 
calculus  of  variations.  

Conditions  for  Optimality 

The scope  of  the  inverse  optimal  control  problem  requires some r e s t r i c t i o n  
t o   a v o i d t r i v i a l c a s e s .  For example, it i s  poss ib l e   t o   de f ine  loss functions 
under  which  any control  system may be  opt imal ;   in   par t icular   through  the 
proper  choice  of l o s s  functions as unstable  system may be  termed "optimum". 
Therefore, i f  we are   to   seek  out   the  ways a given system may be optimal, it 
w i l l  be expedi t ious  to   exclude  def ini t ions of opt imal i ty  which  would be 
universally  considered  undesirable  or  impractical   by  control  engineers.  

For the  purpose  of  narrowing  the  allowable  definitions of optimality,  
three  control  system  attr ibutes  should be considered:   control labi l i ty ,  
observabi l i ty ,  and s tab i l i ty .   S tab i l i ty ,   o f   course ,  i s  a long-recognized 
desirable  system  property  and i s  general ly   the f irst  system  consideration; 
c o n t r o l l a b i l i t y  and obse rvab i l i t y   a r e   p rope r t i e s   f i r s t . de f ined   by  Kalman (1960) 
and  which are  required as necessary  conditions  for  the  proof  of a number of 
c r i t i c a l   c o n t r o l  system  theorems. 

Controllabil i tJ .  The l i t e r a tu re   d i s t i ngu i shes  between  various  types  of 
c o n t r o l l a b i l i t y ,  and o f f e r s  a number of   convenient   t es t s   for   cont ro l lab i l i ty  
(Kreindler and  Sarachik, 1964; Weiss and Kalman, 1964; Stubberud, 1963; Ho, 
1962). However, for   p resent   puqoses ,  it w i l l  s u f f i c e   t o   d e f i n e  a p l an t  as 
completely  controllable i f  f o r  any  given i n i t i a l   s t a t e  a cont ro l   input   ex is t s  
which w i l l  t r ans fe r   t he   p l an t   t o   any   o the r   f i na l   s t a t e   i n  a f in i t e   l eng th   o f  
time . 

A simple example of  an uncontrol lable   plant  i s  shown i n  Figure 1. It may 
be  seen  that   in  state  space  the  plant  can  only be control led  a long  the  l ine 

a b i l i t y   i n   t h i s   c a s e  may not   be   c r i t i c& i f  one is  on ly   i n t e re s t ed   i n   t he  
x1 = 5. Kreindler and Sarachik (1964) point  out that  the   l ack  of cont ro l l -  

~ 

In  a recent  paper  by Kalman (1964) the  above objections  are  pointed  out,  
but from a s c i e n t i f i c   p o i n t  of  view, study  of  the  inverse  optimal  control 
problem is considered  of  value  since: "We might  thereby  discover  general 
properties  shared  by a l l  optimal  control laws. We might be ab le   t o   s epa ra t e  
control  laws which are optimal i n  any  sense". 
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controllability  of  the  output,  and  distinguish  between  state-controllability 
and  output-controllability.  These  are  independent  properties  with  neither 
implying  the  other. A s  a  further  example,  the  given  figure  would  demonstrate 
output-uncontrollability if  the  output  were  defined as the  difference  between 
x and x2; in  this  case  no  output  variation  of  any  kind  would  be  possible. 1 

HO (1962) gives  necessary  and  sufficient  conditions  for  controllability 
which  are  helpf’ul  in  gleaning  some  insight  into  the  meaning  of  controllability. 

Figure 1. Plant  Not  Completely  Controllable 

Restricting  attention  to  single-input  time-invariant  linear  systems,  he  points 
out  that  controllability  is  independent of coordir.ate  transformations, allow- 
ing  consideration  of  the  Jordan  Canontcal  Form of the linear  system  (Flgure 2). 
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Figure 2. Jordan  Canonical form and canonical  block  diagram of a dynamical system 



Peferring  to  the  block  diagram  (Figure 2) , condition 1 points   out   that  if f o r  
,example, A = a s i tua t ion   l i ke   t he   p rev ious  examples of uncont ro l lab i l i ty  
would r e s u d ,  and i f  condition 2 i s  not   sa t i s f ied   then  we have simpky l o s t  
d i r ec t   o r   i nd i r ec t   con t ro l   o f  one o r  more integrators .  

Observability. The concept of observabi l i ty  is associated  with  the 
measureabi l i ty   of   the   s ta te   of   the   plant .   In   general ,   our  knowledge of  the 
s t a t e  of a system i s  based on observations  of  the  output,  and i f  a l l  state 
var iables   affect   the   output  ( i .e .  there  i s  no motion i n   s t a t e  space  which 
leaves  the  output  unaffected)  the  output is completely  observable.  Similarly, 
i f  control  feedback i s  affected  by any  change i n  system  s ta te ,   the   control  law 
may be  called  completely  observable. 

Incomplete  observabili ty  implies  that   current and p a s t   s t a t e s  may be 
only known s t a t i s t i c a l l y ,  and occurs  as a result  of  inaccurate  measuring 
tnstruments o r  r e s t r i c t ed   access   t o  measuring  points. 

Obscrvabili ty is therefore   an  ideal  and  can  never  be  attained  in  prac- 
t i c e .  To the   ex ten t   tha t   p robabi l i ty   d i s t r ibu t ions  of pas t  and p resen t   s t a t e s  
can  be constructed,   optimal  control may be  possible   with  par t ia l   observabi l i ty  
(c f . ,   F loren t in ,  1962) as one may combine sequential   observations and decisions 
according to Wald's s ta t i s t ica l   dec is ion   theory .   Os tens ib ly   inaccurac ies  of 
measurement may be compensated  through  such  procedures,  but  the t o t a l  ignorance 
of some system s t a t e s  i s  bound t o  be more ser ious.  If the  control  l a w  i s  not 
completely  observable,,  degenerate  cases  of  optimal  control may r e s u l t .  

S t a b i l i t y .  A very   bas i c   a t t r i bu te  of a control  system i s  the  concept 
s t a b i l i t y :   I f   t h e  system i s  perturbed  from i t s  equ i l ib r ium,   a l l   r e su l t i ng  
motions will remain i n  a small neighborhood  of  the  equilibrium  point. A more 
ref ined form of t h i s  motion i s  asymptot ic   s tabi l i ty  which requi res   tha t   the  
r e su l t i ng  motion  converge to   the   equi l ibr ium  poin t .   Clear ly ,   i f  a control  
system  had  neither of  t h e s e   a t t r i b u t e s   ( i . e .  was unstable),  the  system  motions 
wou1.d  become increasingly  large and  hence disastrous.  

A most powerful  tool  for  the  determination  of  system  stability i s  pro- 
vided by the  second method of Lyapunov (LaSalle and Lefschetz, 1961). Stabi l -  
i t y  can be verified  without  solving  the  system  equations if one can f ind  a 
su i tab le  Lyapunev function. V (x)  i s  a Lyapunov function i f  V (x)  i s  pos i t ive  
d e f i n i t e  ;3  i f  V (x) is  negat ive  def ini te  one may asser t   that   the   equi l ibr ium 
point i s  asymptotically  stable.  

' A scalar   funct ion V (x)  i s  said t o  be   pos i t ive   def in i te  i f  V (0) = 0, 
and V (x)#O for x # 0. If -V (x) i s  pos. d e f i n i t e ,  V (x) i s  then   s a id   t o  
be negat ive  def ini te .  
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Lyapunov s t a b i l i t y   t h e o r y  i s  o f   i n t e re s t   i n   cons ide r ing   t he   r e l a t ion  
between  optimal  control  systems  and  stable  control  systems,  since  the  perfor- 
mance index  defining  optimal  control my be a Lyapunov function. Under the  
condition  that  the  performance  index is  a Lyapunov function it i s  guaranteed 
tha t   the   op t imal   cont ro l  w i l l  be  asymptotically  stable.  If the  performance 
index  for  a free, l inear ,   s ta t ionary  system is  defined as the  integrated  err01 
c r i t e r ion :  . 

v ( 4  = J- P ( 4  d t  

such  that  V (x) i s  f i n i t e   i n  a neighborhood  of  the  origin, and p (x) i s  posi- 
t i ve   de f in i t e ,   t hen  V (x)  i s  a Lyapunov function and the   o r ig in  i s  as asymp- 
to t i ca l ly   s t ab le   equ i l ib r ium  po in t  (Kalman, 1960). 

Constraints on the  inverse  optimal  control problem. It may be  seen  from 
the  preceding  that  i f  one uses a def in i t i on  of  optimality which insists on 
complete con t ro l l ab i l i t y ,  complete  observabili ty,   and  asysmptotic  stabil i ty 
there  i s  l i t t l e  danger   of   label l ing  t r ivial  and degenerate  cases as optimal. 

To fur ther   concent ra te   a t ten t ion  on a c l a s s  of  problems  of  great  inter- 
es t   in   cont ro l   engineer ing ,  it w i l l  be wel l   to   fol low  the  lead  of  Kalman 
(1964) who makes the  following  assumptions: (1) The plant  i s  described by 
l inear   d i f fe ren t ia l   equa t ions   wi th   cons tan t   coef f ic ien ts ,  ( 2 )  the  control  l a w  
i s  l i n e a r  and constant,  (3) a l l  s ta te   var iables   are   direct ly   measureable ,  (4 )  
quadratic  performance  indices  are  used, and (5 )  there  i s  only one control  
var iable .  

Under the above f tve  conditions,  and the  additional  conditions  of (6) 
complete  observability.  and (7) complete con t ro l l ab i l i t y ,  Kalman (1964) shows 
that   the   opt imal   control  l a w  must be  s table ,  and fu r the r ,  a control  l a w  i s  
optimal i f  and only if  component variations  in  the  forward  loop  are  diminished 
by the  addition  of  feedback. 

It i s  evident  that  systems  which  are  termed  optimal in   the  context   of  
these  seven  requirements  are  elements  of a s e t  which would be  termed excel lent  
by control  system  engineers. It i s  bel ieved  therefore   that   these  are   reason-  
ab le   cons t ra in ts  on the  concept  of  optimality  for  the  scope  of  constant  coef- 
f i c i e n t   l i n e a r  systems  indicated,  and  such  linear  systems which do no t   s a t i s fy  
these  conditions will be  branded  inoptimal.  These  seven  requirements  shall  be 
assumed i n  t h i s  paper. . 

The above assumptions  and  conditions  are  very  restrictive,  excluding 
many in t e re s t ing  problems,  but  wfortunately  currect  theory  does  not  allow 
one to   consider  more sophisticated  cases.  Certainly  performance  indices  other 
than  quadratic forms are   o f   in te res t .  The condition  of  complete  obser- 
vab i l i t y ,   w i th  al.1 state  variables  measurable,  i s  a p r a c t i c a l  problem since 
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this  frequent ly- implies   the measurement of many high-order  derivatives.  If 
some control   var iables   cannot   be measured direct ly ,   opt imal   control   theory 
requires  that the missing  state  variables  be  estimated from the  known ones. 
This may be done using Wiener f i l t e r ing   techniques  and r e su l t s   i n   t he   i nc lu -  
s ion of dynamical  elements as par t   of   the   control ler .  

With r ega rd   t o  the restriction  of  quadratic  performance  indices,  it 
should  be  pointed  out  that i f  a quadratic  performance  index is minimized  by a 
particular  control,  performance  indices  of  other  forms may a l so  be  minimized. 
For  example, Sherman (1958) showed that  wi th  Gaussian  signals , and some non- 
gaussian  signals,  that  a Wiener predictor  satisf 'ying a mean square  error 
c r i t e r i o n   a l s o  satisfied any  even'monotonically  increasing  error  cri teria.  
Brown (1962) extended  these  results  to  asymmetric non-mean-square e r ro r  
c r i t e r i a ,  as wel l  as to  the  case  of  nonstationary  Gaussian  inputs.  

Applicat ion  to  Manual Control Systems 

Much has  been said about  the human control ler   tending  to   perform  in  an 
"optimal"  fashion ?md i n  an  adaptive manner ( i  .e. , perform  optimally i n  a 
number of different  control  environments).  For  example, McRuer and  Krendel 
(1957) comment, "Although we would be hard put   to   spec i fy   the   p rec ise  optimum 
toward which the   subjec t   s t r ives  , we can  asser t  that the human operator is  
both "adaptive"  (within a re la t ive ly   f ixed   form) ,  and "optimalizing"  ( to some 
i n t e r n a l   c r i t e r i o n ) .   I n   f a c t   t h e  human operator i s  the  very  prototype  of  an 
adaptive,  optimdizlng  servo  system." 

It i s  i n t e r e s t i n g   t o  pose  the  question: If the human operator i s  per- 
forming  optimally, what performance c r i t e r i a   a r e   t h e  basis f o r  h i s  op t i -  
mization?  In terms of the  inverse  optimal  control  problem, t h i s  i s  equivalent 
t o  s t a t i n g :  Given a manual control  system,  under what performance c r i t e r i a  i s  
it opt imal?  

W'hile extcrxive  considerations have  been  given to   opt imal  manual control  
systems  (e .s. , Birmingham and Taylor 1954 j Frost ,  1962) , l i t t l e  study has 
been  given t o  the mode of human operator  optimization. 

Roig's  investigation. One approach t o  the study of human optimalizing 
behavior i s  t o  compare human performance i n  a given task against  a device 
which i s  optimal  in some known manner. Roig (1962) used t h i s  approach i n  com- 
paring t h e  performance  of a h m m  operator  against  a l inear   cont ro l le r  which 
minimized rms e r ro r .  The t a s k  was one-dimension  compensatory  tracking, w i t h  
two types of stochastic  nongaussian  inputs,  and w i t h  controlled  element dy- 
namics of approximately a r a t e   con t ro l  w i t h  large  delay.. The opt imal   l inear  
cont ro l  was known f o r  various amounts of constraint  on the  control ler   output .  
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In  comparison  to  these  it  appeared  that  the  human  operator  performed  about  as 
well  as  a  highly  constrained  optimal  linear  controller.  However,  while  the 
results  were  suggestive,  no  definitive  conclusions  could  be  made  about  the 
mode  of  human  optimalizing  behavior.. In particular  while  similarities 
between  human  and  optimal  controller  overall  performance  were  noted,  differ- 
ences  were  apparent  in  the  time  history  records. 

Leonard's  study.  Another  approach  to  the  study  of  optimalizing  behavior 
is  to  vary  the  parameters of a  mathematical  description  of  the  human  operator 
to  determine  if  other  combinations  of  parameters  could  produce  superior  per- 
formance.  Using  a  brute  force  computer  technique , Leonard (1960) evaluated 
two  cases  of  human  operator  mathematical  models  against  a  minimum  mean  square 
error  criterion.  One  case  was  the  mathematical  models  fitted  by  Elkind  using 
rectangular  spectra  of  various  cut-off  frequencies  and  no  controlled  element 
dynamics,  ,and  the  other  case  was  the  mathematical  model  fitted  by  the  Franklin 
Institute  using  the  dynamics  of  the F-80 aircraft  in  simulated  tail-chase 
conditions.  In  each  case  the  parameters  of  the  math  model  were  varied  and 
the  mean  square  error  score was computed  until  the  minimum  mean  square  error 
condition  was  found.  In  comparing  against  the  published  experimental  results 
a  similarity  was  noted  between  experimental  and  calculated  scores  except  for 
the  model  corresponding  to  aileron  control  of  the F-80, however,  it  was 
observed  that  the  subject's  technique  in  this  task  was  to  use  loose  control of 
the  ailerons  and  to  stress  pitch  control.  Leonard  concluded  that  "the  trained 
human  often  adopts  dynamics  that  nearly  minimize  the  mean  square  tracking 
error  (subject  to  the  human's  inherent  limitations) . I '  

Potential  for  gaining  insight  into  human  behavior.  Instructions  aside, 
it  may  be  observed  that  the  subjects  of  tracking  experimentation  bring  with 
them  a  set  of  strategies  and  techniques  which  they  apply  to  the  task.  In 
some  cases  these  may  be  highly  individualistic  traits,  in  other  cases,  there 
may be  a  small  number  of  techniques  being  employed  by  different  subjects.  It 
is  possible  that  there  are  different  methods  of  achieving  the  same  goals,  but 
on  the  other  hand,  different  strategies  may  indicate  attempts  at  achieving 
different goals. If it were  possible  to  compute  the  performance  indices 
optimized  in a given  manual  cont'rol  system, it may  then  be  possible  to  make 
some  inferences  about  the  task  and  the  strategies  employed.  Clearly  infor- 
mation  of  this sort is essential  to  an  understanding  of  the  manual  control 
task  and  the  related  human  operator  behavior.  It  is  this  that  makes  attrac- 
tive  the  potential  modern  optimal  control  theory  offers  for  direct  solution 
of the  inverse  control  problem. 

Use  of  math  models.  In  order  to  apply  existing  modern  control  theory 
to  manual  control,  it  is  necessary to have  a  complete  mathematical  description 
of  the  manual  control  system.  Fortunately,  some  mathematical  description  of 
manual  control  exist,  known  variously  as  human  transfer  functions,  describing 

10 



functions,  and  mimicks. O f  course,  the  other  portions  of  the  control  system 
are usually  mathematically  described.  Taking  the  available  data  for mathe- 
mat ical  human operator  models, one may form a mathematical  description  of a 
manual control  system in   p rec i se ly   t he  same form as might  be  applied t o  some 
automatic  control  system.  Available  tools  of  the  inverse  optimal.contro1 
problem,might,   therefore,   be  applied  to t h i s  s i t ua t ion  as well as any other.  

While some elegant and complex  models  have been  developed  incorporating 
nonlinear  aspects  of human response,  the  only models f o r  which a s ign i f i can t  
amount of data ex i s t s   a r e   i n   t e rms  of l inear   d i f fe ren t ia l   equa t ions  wi th  con- 
s t an t   coe f f i c i en t s .  The following  form by McRuer andKrendel'(1957) i s  by far 

t h e  most tes ted :  

= Kpe l + T L S  
(1 + Tn S) ( I  + TI S) 

It w i l l  be  noted that  t h i s  model contains a pure  time  delay,  presumably t o  
account for the  reaction  t ime  lag of the  human operator. The form shown i s  
s implif ied,  more frequently  than  not,  by  reducing  the number of  constants  in 
the  numerator or the  number of  terms i n  the  denominator  whenever  these  terms 
are  not deemed necessary t o  obtain a good f i t  t o   t h e   o r i g i n a l  human operator 
responses. A va r i a t ion  of t he   l i nea r  model used by Adams (1963) is:  

The m a t h e h t i c a l  models  of t he  human opera tor   a re   o rd inar i ly   e i ther  
measured w i t h  no system  dynamics a t  a l l ,  or w i t h  simple  linear  dynamics. 
Except f o r  the tine-delay  term,  then,  the  composite  system  of  system dynamics 
and human operator model i s  describable as a simple  linear  system.  In 
addi t ion,   the  mcdels  of the  human operator  are measured wi th  the  operator  only 
displayed error information;  in  such a case,   the  human operator i s  presumed 
t o  be responding to   the   ins tan taneous   e r ror  and  without knowledge of the   fu ture  
nature  of  the  forcing  function  input. This s i t u a t i o n  i s  similar t o  t h a t  de- 
fi.ned as "regulator"   control  where control  i s  app l i ed   t o   nu l l i fy  t h e  immediate 
input;  and without t h e  qua l i f i ca t ions   fo r  "servomechanism'l control ,  where 
control  i s  appl ied   to  match the  system  output t o  some desired  t ime-history 
( e  .g. , t h a t  of a pursued  target) .  

A Technique for   Calculat ion 

Kalman's l inear   so lu t ion .  While modern control   theory is  deeply  in- 
volved w i t h  nonlinear  techniques, it s t i l l  remains that nonlinear  techniques 
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are not   easi ly   general ized and that the most powerful,  general  statements  can 
be made with l inear  systems. It i s  not   surpr i s ing   then   tha t  Kalman's 
solut ion  for   opt imal   l inear   systems i s  qu i t e   ea s i ly   s t a t ed   and  is very  specif ic  
about  the  nature  of  the  optimal  control law f o r  a l i n e a r  system. 

Kalman's so lu t ion   appl ies   to   l inear   sys tems of any  order (wi th  possibly 
t ime-variable  coefficients) where the performance  index is expressed i n  
terms of  quadratic forms (quadrat ic  loss  functions).  With a quadratic form, 
t h e  terms are weighted  cross-products  and  squares of the  s ta te   var iables;   e .g . :  

Expressed in   mat r ix   no ta t ion  the system  equations  and  the  performance  index 
take the following form: 

X = A ( t )  X + G ( t )  u 

J = -$ X (t,) S X (tf) + T [XTQx + UT R 4 d t  

Here, x i s  the s t a t e   vec to r ,  u the  control   vector ,  J the s c a l a r  performance 
index,  and  the  others  are  matrices  of  constants  (possibly  t ime-variable).  
Kalman requires  thematrices S, Q, R t o  be symmetric, R must  have  an inverse,  
'and the quant i ty   in   b racke ts  must be   pos i t ive   def in i te .  The performance  index 
i s  composed of the weighting  of the state a t  terminal time ( tf) ,  the time- 
h i s t o r y  of the  s ta te   var iables   during  the  intermediate   t ra jectory,  and the  
t ime-history  of  the  use  of  control;  the relative  weighting  of  each  of  these 
f ac to r s  i s  determined  by the matrices,  S,  Q and R respect ively.  

- 

For any  system  of t h i s  quite  general  form, Kalman asserts that  the 
optimal  control l a w  i s  a l inear  feedback  of the s t a t e   vec to r .  

u = ( -R-~G~P)x 

12 



Here  the  matrix P(t) satisfies a matrix  Riccati  differential  equation: . 
P = PGR G P -PA -A P -Q -1 T T 

P (t,) = s 
Inverting  Kalman's  technique.  There  are a number  of  characteristics of, 

the  manual  control  tasks  for  which  mathematical  models  are  available,  which 
permit  working  Kalman's  technique  backwards. 

1. The human  operators  are  tracking  continuously  throughout  an  experi- 
mental  trial  without  giving  any  particular  consideration  for  conditions  ter- 
minating  the  trial.  They  are  not  trying  to  achieve  any  particular  state  at 
the  end of the  trial  (at  least  they  are  given  no  instructions  to  this  effect). 
This  .permits  matrix S to  be  set  to  zero. 

2. The  control  law is specified  as a constant  relation  (since  the  human 
operator  model  has  constant  coefficients) : U = -KX. Under  these  conditions, 
the  result  is  given  by  the  steady  state,solution  of  the  Riccati  matrix  differ- 
ential  equation.  Under  this  condition P = 0. 

Kalman's  solution,  in  the  form  shown  here,  is  only  applicable  if  the 
manual  control  task  corresponds  to  the  regulator  problem.  An  explicit  non- 
trivial  result  for  the  servomechanism  problem  is  not  currently  possible. 

With  the  above  provisions,  one  is  left  with  only  the  task  of  solving  for 
performance  matrices R v d  Q, and  the  Ricatti  differential  equations  becomes 
an  algebraic  equation (P = 0). For a given  constant  control  system,  the  con- 
trol  law  is  known;  if  the  feedback  gains  are  inserted  in  the  above  equations 
one  may  then  solve a system of simultaneous  algebraic  equations  for  the un- 
known  elements  of  the  performance  matrices.  The  details of this  calculation 
procedure  are  given  in  the  Appendix;  however  it  should  be  pointed  out  here 
that  it  is  not  possible  to  write a sufficient  number  of  equations  to  solve 
for  all  unknown  elements o f  the  performance  matrices.  It  is  necessary  to 
normalize  with  respect  to  the  weighting  on  the  control  input ( R  = I), and 
even  then  is  only  possible  to  solve  for n elements  of  the Q matrix  (where n 
is  the  order of the  total  system).  In  txe  following  this  means  that  the Q 
matrix  weighting  the  state  variables  takes  on  the  following  form: 

Q =  

Qnn 



I 

While o ther   var ia t ions  may be  reasonable,   this  selection  weights  only  the 
squares of the s t a t e   va r i ab le s ,  assuming no weighting  of  cross-products of the  
state va r i ab le s   ( i . e .  , no requirement that the  state var iab les   a re   cor re la ted) .  

An example. While the  calculation  procedure i s  explained fully i n   t h e  
Appendix, the  following example w i l l  serve  to  suggest the  general  procedure and 
t o   p o i n t  up the  assumptions  involved  in  applying  the  technique. 

One of  the  simpler models  used to   descr ibe  human tracking  behavior i s  
the  following: 

3 (Pilot   response) 

E (Displayed  system  error) 
- - 

K1 - s  T 
T1 + 1 e 

To apply  the  calculat ion 
t h a t  t h i s  port ion of  the 
of the human operator t o  

procedure  the  lag  term, e , i s  ignored, assuming 
response i s  inadvertent and  not a p a r t  of an attempt 
track  in  an  optimal  fashion. 

- S T  

1. For position  control  tracking  (no  system  dynamics)  the  following 
block  diagram  results : 

Input 

v Kl 
TIS + 1 

Figure 3. Manual Control System block  diwram 

2. Equivalently,   this  diagram may be shown i n  two parts ( a f t e r   u t i l i z i n g  
block  diagram  algebra),  corresponding t o  the  l lcontrol ' l  and t o  t h e  "p lan t" .  



Plant  

1 

S+A 

Control U X 
'LI 

~ 

K = K 1 / q  A = l / r ,  

Figure 4 .  Manipulation  of Manual Control System 
block diagram 

For z hi.gher  order  system, a part ia l   f ract ion  expansion i s  found,  allowing a 
similar block diagram  with a number of f i r s t -o rde r   sys t ems   i n   pa ra l l e l .  

3 .  Here, t h e  system  equations  are: 

where A = -a; G = 1 

The cont ro l  l a w  i s  a constant   re la t ion:  

u = -Io( 

Also, from K a l m a n '  s r e s u l t  : 
-1 T U = -R G Px; here R = R - l  = 1; G = G = 1 T 

. . u = -PX; P = 1: 

I- 



4. 
P = 0) 

P =  

5. 
weighting 

& =  

- - 

These  results may be  substituted  in  the  Ri-ccati  equation  (setting 

O = PG(R G P) -PA -A P - Q -1 T T 

0=8+Ka+Ka-& 
One may then  solve for the  only  remaining  variable,  the  performance 
Q: 
K (K+2a) 

In  this  case  it  may  be  seen  that  constant Q corresponds  approxi.mately  (for  K 
> > 2 )  to  a  constant  gain-bandwidth  criterion. If the  human  operator  were  to 
track  with  a  consistent  basis  for  optimization, we would  then  expect  that 
mathematical  models  corresponding  to  consistent  optimalizing  behavior  would 
yield a constant  gain-bzndwidth  product.  This  is  precisely  the  observation 
made  by  Zlkind  and  Forgie (1959) for  mathematical  models  with  a  variety of 
rectzngular  input  spectra. 

1 

A number of assumptions  must  be  made  in  order to apply  this  technique  to 
the  calculation  of  optimal  performance  indices  using  existing  human  operator 
models. For convenience  these  may  be  listed  as  follows: 

1. Only  quadratic  performance  indices  are  considered. 

2 .  R = 1, i.e.,  the  results  are  normalized  with  respect  to  the  weighting 
of the  use  of  control. 

3. The  off-diagonal  terms of the  quadratic  performance  matrix  are  all 
zero. 

4. The mathematical  model of human  trackTng  must  be  linear,  the  delay 
term is  ignored:  and a partial-fraction  expansion  must  exist  (i.e.  no  multiple 
roots, a condition  imposed by the  requirement  for  complete  controllability). 

5. Control  is  defined  in  terms  of  the  optimal  regulator  problem. 
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A  COMPUTER  INVESTIGATION 

Procedure 

To  rnvestigate  the  suitability  of  inverse  optimal  control  techniques  to 
the  study  of  human  tracking  behavior,  the  inverse  technique  suggested  by 
Kalman's  solution was programmed for,a high-speed  digital  computer.  The  basic 
approach  was  to  use  existing  mathematical  descriptions  of  the  human  operator 
to  achieve  a  mathematical  description of a given  total  manual  control  system; 
through  digital  computer  computation an optimal  performance  index  correspond- 
ing  to  each  manual  control  system  was  derived.  The  form  of  the  performance 
index  thus  achieved  was  the  performance  index  which  would  be  minimized by the 
given  manual  control  system. 

The  technique  outlined  in  the  previous  section  produces  two  compu- 
tational  problems:  first, for  a  given  control  system,  a  system  of  simultaneous 
linear  algebraic  equations  must be set  up,  and  then  the  system  of  equations 
must  be  solved  for  the  coefficients  of  the l o s s  functions.  Correspondingly  two 
basic  programs  were  written  in  the  FORTRAN  computing  language,  with  slight 
changes  necessary  for  different  system  dynamics.  The  linear'algebraic  equation 
solved  is  (see  Appendix) : 

0 = PGK -PA  -A P - T qT T  T 

Here, P and q are  the  solutions  of  the  Riccati  equations  and  the  loss  function 
coefficients,  respectively,  and  the  remaining  terms  of  the  above  equations 
are  constants  determined by the  system  parameters.  The  solution  then  is  in 
terms  of  the  symmetrical  nxn P matrix  and  the  diagonal  nxn q matrix;  for  present 
purposes  the P matrix  is  of no direct  interest.  The  first  digital  computer 
program  then  consisted  of  the  straightforward  task  of  calculating  the  constants 
of  the  above  set  of  linear  equations,  and  the  second  program  was  a  routine  for 
computing  the  matrix  inverse  and  solving  simultaneous  linear  algebraic  equations. 

The  data  were  taken  from  McRuer  and  Krendel (1957) (also  in  Senders, 1959, 
pp 3-4) and  Adams (1963) . However,  in  each  case  it  was  not  possible  to  use  the 
data  exactly  as  presented.  In  the  case of the  McRuer-Krendel  data  (i.e.  Russell, 
Franklin  Institute  and  Elkind  data) a pure  time  delay  is  included  in  the  human 
operator  model  (an  exponential  term  in  Laplace  transform  notation).  The  time 
delay  term  is  not  consistent  with  the  finite  state  model  assumed  by  the  inverse 
optimal  computational  technique.  The  lag  term  was  therefore  ignored  for  com- 
puter  computation  (another  approach  would  be  to  use  a  Pad6  approximation  for 
the  lag  term). 

In  the  case of Adams'  data,  the  model  incorporates  equal  roots  in  the 
denominator  which  yields  an  ambiguous  partial  fraction  expansion  and  which 



corr'esponds t o  a p lan t  which is  not  completely  controllable. The course  of 
action  taken  here was t o  approximate Adams' model with a control lable  form 
wi th   d i s t i nc t   roo t s .  The computer was s e t  up using Adams' parameters,  but 
instead of using  the  double  root 5, d i s t i n c t   r o o t s  of a + d were used; a 
number of rum were made w i t h  decreasing d u n t i l  d = 0.051 t o  assure t h a t  the 
solut ions were  well-behaved.  In a l l  cases  a well-behaved  convergence w a s  
observed  with  variation  occurring  only  in  the  high  order  significant  digits.  

Results 

The r e s u l t s  of t h e   d i g i t a l  computer so lu t ions   a re  shown i n  Tables 1, 2 
and 3. The  number of s t a t e   va r i ab le s  and  hence  the  order of Q depends upon 
the order of t he  t o t a l  man-ma hine  system (human operator  dynamical model + 
controlled  element  dynamics). 8 

It w i l l  be noted  in  some cases Q contains  negative  terms, and there  i s  
l i t t l e  consist.ency i n  these  data .  

Coments 

Small-sample results.  Before  any  extensive  discussion  based on the  
resul ts   presented  here ,  it should   be   po in ted   ou t   tha t   re la t ive ly   l i t t l e  data 
are  presented  here. Very few data   points   are   avai lable  f o r  each  condition, 
and only  the data of a few total   subjects   are   considered - generally  only one 
subject  for  each  condition. There i s  t h e n   l i t t l e  one can  say  about  trends, o r  
lack  of   t rends,  and about  apparent  variabil i ty.  This investi-gation i s  qui te  
exploratory. 

The transfer  function  data  used  here  are  derived by severa l   inves t i -  
gators .  A t ransfer   funct ion form was adopted by each  investigator which i n  
h i s  judgment produced a good f i t  to   the   empir ica l  data, It would  be under- 
standable i f  d i f fe rences   in  form  of f i t t ed   func t ions  and procedures  varied w i t h  
invest igator .  

Inopt imal   resul ts .  A number of  the manual control  system  conditions 
considered  lead t o  a calculation  of  negative  performance  hdices. Si.nce t h i s  
indicates  a weighting of s ta te   var iab les  errors so t h a t  increased  error i s  
taken  as  something  desirable, one might therefore  conclude t h a t  these manual 
control  systems  represent  inoptimal  conditions. However, there   are   var ious 
poss ib le   in tc rpre ta t ions .  

4 

system  dynamics of f i r s t ,  second and t h i r d  order ,   respect ively.  
Therefore, Q = (Ul) , or  Q = (Q11 & 2 2 ) ,  or Q = (Q11 Q22 (23-3) , f o r  t o t a l  
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TABLE 1 

POSITION CONTROL: FIRST ORDER SYSTEM ELKIND'S DATA 

" . .~ 

corn. 
R .96 

R2.4 
F1  
F2 
F3 
B 1  
B2 
B3 
B4 
B5 
B6 
B9 
B10 

.. . 

~ 1 . 6  

" 

__ __ 

K 
" ~- 

2.113 
.9333 
.7079 

3 *350 
17.78' 
44.67 
2.818 
1.189 
0.8912 
0.9660 
3.589 
7.674 
1.047 ""_ 

_ _ ~ _  
U T *  

3.65 
3.77 
1.885 
1.13 
0.314 
0.1885 
4.78 
5 .O3 

12.6 
12.6 

12.6 

1.88 
1.00 

2.82 
". 

TABLE 2 

SECOND AND THIRD ORDER SYSTEMS 

1.5 
4.55 

11.0 

1.885 
6.22 

12 .3  
30.3 
17.8 
6.28 

25 
14  
. .  . ~- 

Q11 

T . X  
3.9 
2 

+ 3.5049 
+ 3053.6 
+ 8467.2 

Q 

38.9 
115 7 

6.82 
22.9 

346. 

311. 

409. 
456. 

74.3 

96.1 

71.0 
74.1 

507. -"" 

I 
Q22 Q33 

" . 

+ ' 168.96 
+ 153.45 
+ 19.250 
" 

- 44 .Ob0 

- 257.60 

- 452.60 
- 111.14 

- 146.80 

- 589.60 

- " . 
+ 9.0045 
+ 6158.1 - 109.2 
-I- 2680.0 - 04.000 
" -~ . . 



TABU 3 
2/s DYNAMICS-ADAM'S DATA 

L' 1 

32.2 
23.1 
8.61 
10.22 
14.02 
24.6 
16.0 
5.93 

2.27 
3 .O3 
1.492 
2.324 
0.571 
2.324 
1.492 
2.70 

A=B 

4.54 
5.0 
3 003 
3.45 
2.0 
3.45 
3.03 
4.0 

Q11 

+5345 7 
+4902.5 
+ 165.26 
+ 564.69 
+ 64.151 
+3269.8 
+ 570.31 
+ 256.86 t . . ~- 

Q22 

+lo3 7.1 
+ 288.88 
+ 76.564 
+ 20.004 
+ 244.70 
+ 401.90 
+ 260.52 
- 31.226 I . . . . . . . . . . - 

Q33 

-64.401 
-46 203 
-17.220 
- 20.441 
-28.040 
-49.201 
-32.000 
-11.860 

Perhaps  the  clearest  statement  of  the  troublesome  results  is  to  say  that 
the  calculation  procedure  used  here was unable in some  cases  to  point  up  the 
manner  in  which  certain  systems  are  optimal.  Some  restrictions are  placed  on 
the  nature of optimal  systems  which may be  at  variance  with  the  manual  control 
systems. For example,  the  performance  index  is  assumed  to  be  a  quadratic  form 
since  this was consistent  with  existing  theoretical  developments,  but a system 
which  optimized  on  the  absolute  value  of  system  error  may  appear  inoptimal  in 
the  light of these  assumptions. 

Additional  sta.te  variables.  The  required  number  of  state  variables f o r  
system  description  is  equal  to  the  order  of  the  total  dynamical  system.  It 
will  be  noted  thak  the  manual  control  systems  yielding  negative  results  in- 
corporate  feedback  of  less  than  all  state  variables  (determined  by  the  number 
of  constants  in  the  numerator  of  the  transfer  function) .5 These  systems do not 
satisfy  Kalman's  requirement  for  complete  observability,  and  represent  systems 
in -..rhich  control  is  not  based on the  full  state  vector.  By  Kalman's  definition, 
such  systems  are  inoptimal. 

There  are  two  possibilities  where  such  systems  may  be  optimal,  even  by 
Ihlman's  criteria: (1) the  dynamical  portion of the  transfer  function may in- 
clude a prediction  of  the  seemingly  missing  state  variables, or (2) the 

Since  u = Kx and R = [l] , X QX + u Ru = X QX+X IC K X = X (Q+K K)X. 
\hen the  negative  elements  of Q correspond to the  zero  elemer,ts  of  K 
(unobserved  states),  there is question of the  positive  definiteness of the  per- 
formance  index,  and  hence  asymptotic  stability  is  not  assured  by  Lyapunov's 
theorem. 
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prec is ion   of   t ransfer   func t ion  measurement was insuf f ic ien t   to   de te rmine  human 
operator   response  to  a l l  s ta te   var iables   ( i .e . ,   h igh-order   der ivat ives   of  
system  error).  O f  course, both explanations may simultaneously  hold. 

With r ega rd   t o   t he  f irst  possible  explanation, a quote 'from Kalman (1964) 
should  suffice:  "These assumptions are of   course  highly  res t r ic t ive.  One 
obtains a hierarchy  of  problems  depending  on  the number of   control   var iables  
and the  number of state var iab les  which  can  be  measured d i r ec t ly .  

"If a l l  s ta te   var iab les   can  be measured, the  optimal  controller  does  not 
contain  dynamical  elements  because  the best cont ro l ' ac t ion  a t  any in s t an t  de- 
pends  only  on  the  value  of  the  state  variables at that  in s t an t .  But i f  some 
control   var iables   cannot  be measured d i r e c t l y  -- which  happens  very  often i n  
practical   pmblems -- optimal  control  theory  requires  that   the  missing  state 
var iab les  be estimated  from  the known ones  using Wiener f i l t e r ing   techniques .  
The Wiener f i l t e r  will contain  dynamical  elements  which  are to be regarded as 
a part. of the   cont ro l le r . "  

The technique for calculating optimal  performance  indices  used i n  t h i s   i nves t i -  
gat ion makes no allowance f o r  Wiener predict ion  of   missing  s ta te   var iables ,  
nor i s  it apparent a t  t h i s  t ine how t h i s  could  be  accomplished. 

The o the r   poss ib i l i t y  i s  tha t   t he  human operators d i d  depend on high- 
order   s ta te   var iab les  f o r  cont ro l ,   bu t   tha t  t h i s  was not  apparent i n  deriving 
a f i t  t o  hi.s  responses. To demonstrate t h i s ,  an  additional-   state  variable was 
considered f o r  one t r m s f e r  functj,on (see  Table 4) .  The weighting of the 
add i t iona l   s t a t e   va r i ab le   i n   t he   con t ro l  law was varied  unt i l   an  opt imal   per-  
formance  index ( in   the   sense  of the  assumed form)  could  be  calculated. I n  the  
case shoi,m, a moderate  weighting of the  missing  state  variable  could  yield  the 
desired  result   without  changing  other  transfer  function  constants.  If the 
a l te red   t ransfer   func t ion  form  were  used i n   f i t t i n g  t o  the  empir ical  data, a l l  
constants would change, wi th  possibly  even a smaller  weighting  to  the  high- 
order   s ta te   var iable   suff ic ing.  

TABTiE 4 
ADDITION OF NFN STATE VARIABLES 

K Q22 &11 l / T L  1/TN l/TI 

53 *09 2.01 505.1 4.40 1.885 .22 
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DISCUSSION 

Inverse  Optimal  Control  Theory  and  Mathematical Models of 
t he  Human Operator 

. . . .  . ~ ~.~ . 

"he inverse  optimal  control  theory i s  aimed a t  determining  the manner i n  
which a given  control  system i s  bes t .  To the   ex ten t   t ha t   t he re  i s  ins ight   in to  
the   goa ls   appl ied   to   the  manual cont ro l   t ask ,   be t te r   descr ip t ions  of manual 
control  behavior w i l l  r e s u l t .  

In  a more abstract   sense,   the   theory  of   the  inverse   opt imal   control   prob-  
lem allows a s e t  of numbers t o  be  assigned t o  a given  tracking t r i a l  -- the 
coeff ic ients   of   the  loss functions which are  optimized.  Other  sets  of numbers 
can  be  assigned t o   t h e  same t racking t r ia ls  which  correspond t o   t h e   c o e f f i c i e n t s  
of  mathematical models which f i t   t h e  data. These s e t s  of numbers a re   t ransfor -  
mations  of  each  other, and to   the   ex ten t   tha t   the   t ransformat ions   a re  1:1, they 
a r e  a l l  equivalent.  However, in   genera l ,   the   d i f fe r ing  models a re   no t   en t i re ly  
equivalent  to  each  other, and the loss functions  optimized may correspond t o  
many variations  of  the measured  models.  That i s ,  t he   d i f f e r ing  models may f i t  
the data i n  d i f f e ren t  ways and in   differ ing  degrees ,  and it i s  possible t h a t  a 
variety  of model coef f ic ien ts  may correspond t o  optimization on the  basis  of 
the   sane   c r i te r ia  i n  a variety  of  different  circumstances.  

A s  .an  example, it nas been  observed  that  the human operator may adapt 
so that the measured l i n e a r  model of  his  performance i s  d i f fe ren t   wi th   d i f -  
ferent  controlled  element dynamics  and gains. 'It i s  reasonable  to  hypothesize 
that   over  a range of circumstances he may be  attempting t o  optimize  perfor- 
mance on the  same basis, necess i ta t ing  t h a t  h is '  behavior, and the  corresponding 
l i nea r  model,  be d i f f e ren t .  It i s  therefore   poss ib le   tha t  a practice  of 
correlating  mathematical models to   the  condi t ions  under  which they  represent 
optimal  performmce may form a basis   for   consol idat ing a range  of  models  repre- 
senting similar behavior.  Although  the  evidence is  not  conclusive,  Elkind's 
r e s u l t  t h a t  over a var ie ty  of  conditions  performance  tended to  maintain  an 
approximately-constant  gain-bandwidth  product, i s  an  encouraging  sign of con- 
s t a n t  optimalizing  behavior. 

- 

b%r,ual Control  Experimental  Nethodology 

While it mr,y be argued that d i f f e rences   i n  human operator  response  under 
different   condi t ions may indicate  optimalizing  behavior,  it may a l so  be  argued 
tha t   d i f fe rences  i n  human operator  response,   particularly between subjects  
eiven  the same task ,  o r  sudden  changes i n  a specif ic   subject ' s   response,  may 
represent  optimalizing  behavior,   but  with  different  bases  for  optimization. 

22 



For  the most par t ,   there  i s  l i t t l e  r eason   t o  suppose t h a t   e x i s t i n g  data 
are   representat ive of consistent  optimalizing  behavior,  since we do very l i t t l e  
to   cons t r a in   t he   sub jec t ' s  basis for  optimization. The ins t ruc t ions   genera l ly  
imply some vague minimization  of  error, but as we have seen  to  adequately 
specify  optimal  performance means indicat ing a weighting  of  the  use  of  control, 
t he   e r ro r  and appropr ia te   der iva t ives ,   i . e . ,   the   cont ro l  and some complete set 
of state var iables .  The appropriate method f o r  conveying  the  desired  opti- 
mization  process i s  obscure; however, it is  c l ea r  that  u n t i l  our experimental 
methodology i s  improved, we w i l l  be   col lect ing data from var ious   d i f fe ren t  
subjects  doing  various  different  tasks a t  t h e i r  own whimsy. 

The Tractability  of  Mathematical Models t o  Theory 

It is  of   course  essent ia l  as a f irst  requirement  that   the  input and out- 
put  of a given model accurately match the  measured  time h i s to r i e s .  The abil i ty 
t o  match the  given data i s  limited by the  precision  of measurement,  and, 
therefore ,   wi thin  the bounds  of measurement accuracy some equivocation must 
ex is t   wi th   regard   to   the  model  form  and the  magnitude  of model coef f ic ien ts .  
It i s  also  qui te   reasonable ,  i f  one cannot  detect   the  difference a t  the  input 
and output of two models, one more complex than  the  other,   to  use  the  simpler 
model. However, it i s  apparent from t h i s  study t h a t  one value  of  these models 
i s  t o  permit   theoret ical   analyses ,  and that these  analyses may be hampered i f  
the  model form i s  inappropriate.  We may ask  whether  the  time  lag  included  in 
many models i s  e n t i r e l y   j u s t i f i a b l e ,  whether a model must incorporate  equal 
roo ts ,  or i f  the  feedback  of  higher  order  state  variables  cannot be included 
based on our maximum measurement Zapabi l i ty .  Thus, it i s  des i r ab le   t ha t   i n  
addi t ion t o  providing a good f i t  t o   empi r i ca l   r e su l t s ,  t h a t  the form  of the 
model be  consistent w i t h  theoretical  requirements.  (Another example of t h i s  
requirement, i s  tha t   t ransfer   func t ions   f i t t ed   to   par t ia l   f requency   response  
data, may require  modification t o  provide  stable  response). 

Model Goodness-of-fit 

It i s  c l ea r  that even i f  we r e s t r i c t   a t t en t ion   t o   t he   accu racy  of  re- 
producing  the  original  input-output  t ime  histories,   that  a good f i t  should  be 
sought a t  severa l   l eve ls .   I f   the   concept   o f   s ta te  i s  a t  a l l  reasonable, it 
should be apparent   that  a number of  aspects of performance must  be specif ied 
to   completely  descr ibe a given  system. If a given model of human operator con- 
t r o l  i s  of  higher  order  than  the f irst  degree,   then  requiring  only a f i t  t o  
the  error   s ignal ,   such as a m i n i m  mean squared  error f i t ,  i s  ignoring many 
c r i t i c a l   a s p e c t s  of  control  behavior. While many methods  have theo re t i ca l  
foundations which require  a given  type f i t ,  the  eff icacy  of   the model should  be 
checked by comparison  against   higher  order  state  variables.  



Calculation of t h e  Bases f o r  Optimal  Performance 

The technique  for  calculating  optimal loss coef f ic ien ts   used   in   th i s  
s tudy  requires   that   the   control   system  be  l inear ,   that   control  i s  based on a 
feedback of the   en t i r e   s t a t e   va r i ab le ,   t ha t  performance i s  optimized on the  
basis of quadrat ic  loss functions and  assumes a regulator   control .   Further ,  
as presented  here, it i s  only  possible  to  calculate  the  diagonal  terms  of  the 
weighting  matrix.  Clearly a more general  technique would  be des i r ab le   t o  de- 
limit t h e   f u l l  range  of  nontrivial  performance  indices  which a given  control 
system mzy optimize. The only  virtue  of  the  present  technique i s  that it may 
def ine   in  a t  l e a s t  one way a given  system i s  optimum, and in the  case of manual 
control  system  theory t h i s  may prove  invaluable.   Further  testing w i t h  a n  ex- 
tensive  base of data  i s  required t o  evaluate  the  .worth of t h i s  and other fez- 
sible  techniques.  
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APPENDIX 

CALCULATION OF OPTIMAL LOSS FUNCTION COEFFICIENTS 

1. Given the   l i nea r  system 

c1 (s  + c2) ... X 

(S+A) (S+Bl  . . . 

2. Through  the  partial-fraction  expansion, 

c1 (s  + c 2 )  ... K1 K2 
(S+A) (S+B) . . . S+A S+B - - + - + ... create  the  equivalent block  diagram: - 

U - 1 
S+B 
- 



3. Here the  state  variables, Y, are apparent, and there  exists a relation- 
ship X = TY. 

Y =  

, I  

y1 

y2 

. 

yrl 

X =  

" 

x1 

x2 

. 

X n . -  
4. From the   las t  block  diagram,  we  may  write  directly 

Y =  

- 
y1 

y2 

'n 

= AY + GU 

U =  

-N 

I .  

y1 

y2 

'n 
. I  

+ 

. -  
1 

1 

1 
I -  

U 
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5. Since U = -R G PY if t he   con t ro l  is optimum, and U = -KY: K = R G P -1 T -1 T 

6. With P = 0 ,  the Riccati   equation becomes 

0 = PGR G P -PA -A P -Q -1 T T 

and subs t i t u t ing  K = R G P -1 T 

0 = PGK  -PA -A P -Q T 

7. In t h i s  equation, Q corresponds t o   t h e  Y state variables  and the  per-  
f ormance index 

J = $1' (YTQY + 3) dt  
0 

we wish to   so lve   fo r  q of the  performance  index: 

J = L  2 ST (XTqX + 3) d t  
0 

but  since X = TY . 
X qX = (TY) q (TY) = Y (T qT) Y = Y QY T T T T  T 

.* .  Q = T qT T 

8. It remains t o  solve  the  simultaneous  l inear  equations,  

0 = PGK -PA -A P -T qT T T  

f o r  the loss coef f ic ien ts  q. 

L 
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