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In this paper the first order shielding approximation

is used to calculate/off-diagonal matrix elements of the dipple
moment operator for helium. The transitions considered are

the 2'S--2'"P and the 1'S--2'P transitions. When compared

with Pekeris' accurate theoretical values, the results calculated
here are in error by about 5 per cent for the 2'S--2'P transition

and by about 15 per cent for the 1'S--2'P transition.
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I. Introduction

In this paper the \first order shielding approximation'fis used

to calculate gff-diagongl matrix elements of the dipole moment

N it

|

1.
cend

operator for heliP &2 It has been shown that by using an interchange
theorem, ther§;1ues of off-diagonal matrix elements of one-particle
operators can be calculated exactly through first order in the
perturbation.

Let W be the operator, and let the Hamiltonian be the sum of

an unperturbed Hamiltonian and a perturbation,

H=Ho+ AV | (1)

Then if M 1is used to denote the matrix element of the operator, W,

between the state p, denoted by gé; , and the state q , denoted

by %é%} s

M = <21;P , W ?_{5%) , @

the value of M through first order in )\ , as given by the

interchange theorem is

0) ) 1D
M= MENKE>?, (V-0 %, ")
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The functions ?&;; > and @%Y(") are eigenfunctions of the

¥

unper turbed Hamiltonian, Ho 5
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and the wave functions are chosen to be real so that M 1is also
. fo ()%} . .
real. The functions 2};‘ 21 and Z}I‘ )1 are solutions of first

order perturbation differential equations,

Hy- 9N WP = Wy + @y %
P

and

€0,0) ) (0,0 (0,0)

v ) o)
(Ho-€) %7 = -Wy, "+ M7 g™ @

(0,0)

(0,0)
where € p ’

and 6;%’

to the p and g states respectively. If the differential

are eigenvalues of Ho corresponding

equations, Eqs. (7) and (8), are solved, the integrals in Eq. (3)

can then be performed tc determine M.



II. Methods of Solving the Differential Equations.

The differential equations involved in this work can all be

expressed in the form

(-% \72——;— - €)U(n,8) = hixe) e ™" .

The solution and inhomogeneity can be expanded in terms of Legendre
polynomials,

Un,8) = w, (1) E)Q (cos ©) (10)

0

T8

and
Q
hn,0) = z hy(r) B (cos &) , v

which results in an ordinary differential equation for each
amplitude, LLR , in Eq. (}0). To satisfy boundary conditions
the solutions of the homogeneous differential equations, those
for which ’\1 is zero, must be either the radial parfs of simple
hydrogenic functions or zerc. The inhomogeneous differential

equations involved can all be expressed in the form,

['ZL ‘“2‘/7'31"‘,5: e -6] W (k) = hy (1) €7, a2



For the purpose of making a pcwer series zolution more easily

&
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obtainable the left hand side of this equation is transformed to
the standard Kummer form cf the confluent hypergeometric differential

equation. This results in a two-term recursior relation for the

[72]

coefficients in the power series zclutiom, whereas if the differential
equation had been treated in the form ¢f Eg. {12), & power series
solution would involve a threes-term recursion relation for the
coefficients. 1In addition, the homogeneous solutions of the
transformed equation, the Kummer functions, are available in the

. . n o 4
literature even if € 1is nct a hydrogenic eigenvalue. In order

to carry out this transformaticn, the independent and dependent

variables are transformed as follows:

!
"= ZZe X (13)

~-X
P

2
w, = X" e Y (%) . as

Then Eq. 12 is transformed to the differential equation

Xy + 204220y Ut Fog )y

(15)
g ol
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the homogeneous part of which is in the Kummer form.

The general solution of this differential edquation will contain
two arbitrary coefficients, each of which multiplies one solution
of the homcgeneous equation. 1In any specific case which follows,
at least one of these coefficients is determined by boundary
conditions placed upon the solution cf Eq. (9). The other may
remain arbitrary, in which case its value has no effect on the

value of the matrix element, M.

III. The 2'S - 2'P Tramsition.

To calculate the @Effﬁiéggnal matrix element -of the total
dipole moment operator for this transition, between a 'S state
and a 'P state, it is only necessary to know the off-diagonal
matrix element of the 2z-component of the dipole moment operator
between the states in question. The matrix element will be
calculated to first order using the perturbation method described
in the introduction. For this purpose the following definitions

5
are made:

— _ . (16)
W = z,+ z, = R,cose, + r,Ccos e,

(17)

\y = L 452 |, 3-z .8




(o, 0)

¥, =y2“’2“(15(1)25(2)+2518(2)) <19

»

(0,0) _

ZJ% ‘412_—_(13(1)2&(2)+ZPZ(1)18(2)) ;(20)

(0,0) _
6 = cus) +€as) = — 5 3" ©

0,0 5
6; "= €s) +€@2p = —§ 3°

(22)

0,0 . .
Here QPJ’ )belongs to a degenerate set, but since the operator
in question is the z-component of the dipole moment operator, the
only non-vanishing contribution to the matrix element will come
. R . 6 . (0)
from that function selected im Eq. (20}. Irn addition, M , as

defined by Eq. (4), can be calculated with the unperturbed wave

functions for this transition (Eqs. (13) and (20) and has the value

()
M = “% .2

With these definitions the differential equations which must be

solved (Eqs. (7) and (8}) become




_1_ 2 1 § (o,
-7V —;vzz .y —%‘6(15) —8(28)) 2}&,0 D

= ~(n,cos e, + Ntz COS ez)é—- (15(1)2p, (2) +2p,(1) 152))
-2 & (1sc1)25(2) +25(1) 15(2)

’ (24)
and

1 i 5_ 5 (0, 1)
(-2 v -2% % —7 "€(1S)-€@2p)) Yy

= —(/'(p cose, + h,Cos 92)171-‘2‘% (13(1)25(2_) +25(1)1S(2)>
—%1/% (13(1)2992(2) +2p,(1) 18(2)} . (25)

Each of these equations can be partially separated. A The solution of

Eq. (24) can be written

0,1 _

¥p —V‘% (a(1)2p,(2) + b(1)15@2) (26)
+2p, 1))+ 1s(1) b))

where a(l) is a solution of the differential equation,

1 3
("? vt "R €(15)) o (1) = —-hn,cos g, 1s(1) , @D
and b(l) is a solution of the differential equation,

(‘%V.z”,% -€@2s)) b(1)=-n,cos 6,2 p,(1) —ﬁg— 25(1) . (28)

The differential equations are solved by the method outlined in
section II to give the following sciutions:

QW= lst)-——1 /z,e'§h'(2+ $K,)cos e, (29)

Z(5m)? ;




and

b(1)=625(1)+2?—1; (n? Y. ) e *

R 6
(30)
+Y 2p, (1) + by (R)R (cos @) ,
where & , @ , and Y  are arbitrary constants.
The solution of Eq. (25) can be written
(o,1) 1
Y= g (o 2s@ +cw 15)
(31)

+2s(1) a(2)+ 15(1)C(2))

I

where a(l) is given by Eq. (29), and c(l) is a solution of the

differential equation

C2V-E-e@P)cw=rcos 6,25 - 2p, (1), (3

which is
3 _Sn
$2 3 2
c)= n23(1)+§‘-2p2(1)+4{2; rR>e * cos e, , 9

where 72 and g' are arbitrary constants.

The value of M, as given by Eq. (3) can now be calculated with

(0,1
the functions,'@&:b”) and ) ’ , just determined, the value
of M(O) given by Eq. (23), and with )\\/ given by Eq. (18). 1In

carrying out the integration it is seen that b2(r in Eq. (30)

1
does not affect the value of M, and that the values assigned to the

arbitrary constants in all of the functions also are immaterial.

The result of the integration is an expression for M as a function



of §' , the scale factor,

3
Y A

If ;- is set equal to the nuclear charge, 2, the value of M is

. M(2) = -2.26196464 (35)

A better value for M is obtained by using the shielding
approximation, that is, by setting é' equal to that value

which makes all first-order corrections equal to zero. That value

of ; is
S = 0.98404715 (36)

and the corresponding value of M(%‘ ) = - is

M = -3.0486344 ‘ . (37)

These results can be compared with a value obtained from Pekeris'
. 7 .
accurate calculations of the oscillator strength and the energies

8
of the states,

JM| = 2.915956 (38)

The value without scaling calculated here differs from this by
about 22 per cent and the value with scaling differs by about 4.6

per cent,
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o
Cohen and Dalgarno  have discussed the 2'S--2'P transition
with the Hartree-Fock function. Using the shielding approximation

they obtained the value,

M o= ~3,326 (39)

[y

IV. The 1IS~-21P Transition

For this transition; as in the case of the 213,_21P transition,
the off-diagonal matrix element of the z-component of the dipole
moment operator will be calculated. TFor this purpose all quantities
involved are defined the same as they were in Sect. IIT (Eqs. (16)

through (22)) with the following exceptions:

%"= 150 13(2) . 40)

(o, 0)

€ = ZEUS) = —_ (41)

. . . 0 .
In this case, the zeroth-order matrix element, M( ), as defined

by Eq. (4), has the value

M(o)= 28
35 \Z; . (42)

Consequently, the differential equations which must be solved

(Eqs. (7) and (8)) are

1 1 5
(zv-2v% “% -7, —2€U9)) 24, ’

=—(n,c0s 8, + 1,C05 8, ) 7= (1512 p,(2) + 2 p, (D 15(2))
8

+ 32% 1s)1s@) ,

(43)




and

0,1)
(-vr-%vi-3 -% —cas-eap) ¥,

= —(I‘(,COS e, + k,cos e,_) 1s 1s¢2)

8
* 3§§ '7321(13(1)ZPZ(2')+ZPZ(1) 15(2)) . (44)

Eq. (43) can be partially separated by writing the solution in

the form
€0,I1)

¥p V‘é——(%(l) 2p, @) +twls@

(45)
*Zp, (g @+Iswt@) i

where g(1l) is a solution of the differential equation,

(2 lz é ) ? )9/(1)——11 cos ©,15 1) ,

and t(l) is a solution of the differential equation,

i

("2_ VZ-E —8(15))'6(1)" ~R,C0S 6, sz(1)+ 15 (1). @

§

The solution of Eq. (46) is

8

COS e' ,(48)

_ 2

where a = -2.14875649194, and the other coefficients in the

(=0

11

. . . , , 9 .
power series are given by a simple recursion relation. The solution

of Eq. (47) is



1 @
tQ) =
3'251/27( é% Z 2§h>

+t, (1) Blcose,) (49

where tz(rl) contributes nothing to the vziue of the matrix element

bO is arbitrary, and the other coefficients in the power series are

given by a two-term recursion relation.
Eq. (44) can be partially separated by writing the soclution in

the form

o, I)
?’Jb‘ (W(i) 1s@ +1s(hw(2) s (50)

where w(l) 1is a solution of the differential equation,

(——— ————e(ZP)>W(i ""\[—'/(,COS 6, 13(1)""' § sz(l) (51)

It follows that

2 ?_f_u @ ;
w =oa2swrZ2 ne X ) ¢ (Sn) cose, |, ¥
(=0

where ©O( 1is an arbitrary constant, % is arbitrary, and the other
coefficients in the power series are given by a recursion relation.

The value of M, as given by Eq. (3), can now be calculated

with the functions, Za}'(o") and 'leafo’ v , just determined, the

value of M(O) given by Eq. (42), with A\V given by Eq. (18), with
(1,0) 1,0 0)

GP) and G%' given by Egs. (5) and (6), and with 'Z‘J(’o) and ©,

¥

12



given by Eqs. (40) and (20). The integrations are carried out by
summing over the contributions of the separate terms in the power

series solutions. The result of the integration is an expression

for M as a function of § s the scale factor
8
2% o.163270218 . 2° (5-2 (53)
M p—1 5 - 2 + 2 °
3°3 Y 3

If ;' is set equal to the nuclear charge, 2, the value of M is

M(2) = 0.4859314165 . (54)
A slightly worse value for M is obtained by setting g’ equal to
that value which makes all first-order corrections equal to zero.

That value of é' is

é' = 2.154979152 s (55)
28
and the corresponding value of M( é‘ ) = —— s
°g
3
M = 0.488866883 . (56)

These results can be compared with the value obtained from Pekeris'

calculations,10

| M| = 0.420776 . (BN

13
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The value without scaling calculated here differs by about 15 per cent
and the value with scaling differs by sbout 16 per cent; Thus if no
mistake was made in the integraticn or other work related to the
1'S--2'P transition, one must conciude that scaling does not always

bring about an improvement.
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