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ABSTRACT 

. Y  

Statistical M o d e l s  of Cumulative Damage. A cumulative 

damage theory dea l ing  w i t h  the f a i l u r e  of specimens i n  

f a t i g u e  is presented. The damage is treated as a random 

ri' (7< 

v a r i a b l e ,  and the average damage i s  r e l a t e d  t o  t he  i r r e v e r s -  

i b l e  work inpu t  t o  the specimen. The theory is compared t o  

o t h e r  theories of f a t i g u e  failure. Recommendations for  

f u r t h e r  work are presented. 



- 1 -  

INTRODUCTION 

This report represents an attempt on the part of 

I4idwest Applied Science C o r p .  of West Lafayette, Indiana, 

to set forth a theoretical basis upon which one may develop 

a cumulative damage theory that is associated with the work 

input into a material specimen. The motivation for the 

theory is to take into account a+ enrei the  s t ~ t i s t i c ~ 1  

variability that is inherent in fatigue tests, the changing 

material properties and to account for random as well as 

pure sinusoidal load inputs. 

what over-ambitious task to attempt a theory incorporating 

all of these factors, However, a very straight forward 

phenomenological approach yields the cornerstone needed to 

accomplish a l l  of these points above. This cornerstone is 

the irreversible work input into the specimen as measured 

by the area of the stress strain hysteresis loop. 

phenomenon has only relatively recently come back into 

favor in the study of the material properties of metals. 

It has, for example, already provided the basis for unifica- 

tion of many phenomena studied by materials properties re- 

searchers in dislocation theory, etc. The irreversible 

It may appear to be a some- 

This 
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work concept has  a lso begun t o  permeate t h e  f a t i g u e  and 

cumulative damage l i t e ra ture  as seen i n  some recen t  papers ,  

(Gat t s  1 1 1 ,  F e l t n e r  and Morrow i l l ) .  However, w e  f e e l  t h a t  

t h e  present  r e p o r t  c o n s t i t u t e s  t he  f i r s t  a t tempt  t o  system- 

a t i z e  a un i f i ca t ion  of t he  var ious s t a t i s t i c a l  a spec t s  of 

cumulative damage based upon t h i s  work input .  The s ta t i s -  

t i c a l  p rope r t i e s  of t h e  present  formulation are based upon 

t h e  f a c t  t h a t  cumulative damage may be viewed as a cont in-  

uous b i r t h  process.  That i s ,  i n  t h e  s impl i f i ed  case of a 

pure s inusoida l  input ,  each cyc le  of t h e  i n p u t  stress func- 

t i o n  or load y i e l d s  a non-negative accumulation of damage. 

T h i s  damage i s  considered t o  be a random v a r i a b l e  

represent ing a random amount of b i r t h  or population growth. 

Assuming t h a t  t h e r e  i s  a f ixed  upper l i m i t  of damage beyond 

which t h e  specimen i s  s a i d  t o  f a i l ,  t h e  basic q u e s t i o n ' i s ;  

When does t h e  t o t a l  damage, or  t o t a l  populat ion,  f i r s t  ex- 

ceed t h i s  given value of t h e  upper l i m i t  of accumulated 

damage? Furthermore, what  i s  t h e  average damage a t  any 

given time? Thus, t h e  b i r t h  process concept unde r l i e s  any 

cumulative damage theory.  S t a t i s t i c a l l y  speaking, t h e  prob- 

l e m  of determining t h e  f i r s t  t i m e  f o r  which t h e  t o t a l  damage 

exceeds any given l e v e l  i s  r e f e r r e d  t o  as t h e  f i r s t  passage 

t i m e  problem o r ,  perhaps,  it might be r e f e r r e d  t o  a s  t h e  f i r s t  
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passage cycle problem when r e f e r r i n g  t o  load cyc les .  

any case it is t h i s  p o i n t  t h a t  w a s  first recognized inde- 

pendently by Parzen (Parzen [l]) and Bogdanoff and Kozin 

I n  

(Bogdanoff and Kozin [l] 1 .  

Parzen w a s  i n t e r e s t e d  i n  t h e  cumulative damage of a 

material specimen according t o  a leve3 aziossing model. 

H o w e v e r ,  he introduced t h e  very clever idea of applying 

renewal ideas to t h e  f a i l u r e  problem. 

w e r e  e s s e n t i a l l y  i n t e r e s t e d  i n  the failure of any "brittle" 

Bogdanoff and Kozin 

system. That is, given a state variable of the system, 

the system is 'said to  have f a i l e d  if t h e  state variable 

passes  o u t s i d e  of a given region having s t a r t e d  wi th in  t h e  

region. Actual ly  the  formulation of Bogdanoff and Kozin is 

s u f f i c i e n t l y  genera l  t o  include every dynamical s i t u a t i o n  

s i n c e  no r e s t r i c t i o n  w a s  placed upon t h e  na tu re  of t h e  state 

va r i ab le .  Therefore,  when the state v a r i a b l e  i s  t h e  cum- 

u l a t i v e  damage, then the first  passage above t h e  upper t o t a l  

damage l i m i t  c o n s t i t u t e s  a " b r i t t l e "  f a i l u r e .  The ques t ion  

is: What is t h e  mechanism of f a i l u r e ? ,  or from t h e  engineer ing 

p o i n t  of view, What is  a s u i t a b l e  phenomenological i n d i c a t i o n  

of the mechanism of f a i l u r e ?  Since t h e  t ime of Palmgren 

(Palmgren [l] 1 and more r ecen t ly  t h e  work of Miner (Miner [l] 1 

t h e  stress alone has been the  i n d i c a t i o n  v i a  t h e  so-cal led 
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Palmgren-Miner hypothesis. Based upon the Palmgren-Miner 

hypothesis, many inconsistancies have been witnessed. 

For example, upon subjecting a specimen to two 

different stress levels yields a non-commutativity in the 

ziccumulated damage that cannot be accounted for by the 

Pahgren-Miner hypothesis. There have been a number of 

attempts to try to derive analytical devices to do away 

with this problem such as non-linear laws or the work of 

E'reudenthal and Heller (Freudenthal and Heller [l] ) using 

a modified linear accumulation hypothesis. However, such 

modifications of the Palmgren-Miner hypothesis in general 

are unrealistic and contain the basic faults that are con- 

tained in the hypothesis itself. Various attempts have 

been made to understand the nature of fatigue life of a 

specimen under random loadings. A very recent work along 

these lines is the paper of Leybold and Naumann(Leybo1d 

and Naumann[l]), in which a very interesting study was made 

of the relative failure times predicted from computed sta- 

tistics (e.g. number of peaks, magnitude of absolute max- 

ima and minima, etc.) as compared with the failure time 

under the actual load function, where the time is taken as 

imity. Their results are, incieed, most interesting and their 

work clearly represents one of the first sound studies of the 
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f a i l u r e  phenomenon under randam loading. However, as t h e  

au thors  themselves s t a t e ,  their work does n o t  y i e l d  any 

underlying a n a l y t i c a l  basis upon which t o  p r e d i c t  t h e  re- 

s u l t s  for o t h e r  environments, 

I n  fact it is conceivable t h a t  t h e i r  r e s u l t s  may 

change from sample t o  sample,  thus  not giv ing  u s e f u l  i n fo r -  

mation for  t h e  random case. Our f e e l i n g  here  i s  that only 

average damage or f a i l u r e  p r o p e r t i e s  can make sense i n  the  

random case, s i n c e  w e  can never know with p r o b a b i l i t y  one 

what t h e  p r o p e r t i e s  of t he  materials are and hence never 

know t h e  damage p e r  cyc le  accumulated by the  specimen o r  

even its d i s t r i b u t i o n a l - p r o p e r t i e s .  

ab ly  have t o  accept  the fact  t h a t  moments w i l l  be t h e  

best information w e  can obtain.  

Hence, w e  s h a l l  prob- 

I n  this r e p o r t ,  w e  sha l l  f i r s t  p re sen t  a review of 

various s t a t i s t i c a l  t heo r i e s  of cumulative damage and 

state t h e i r  valid p o i n t s  as w e l l  as t h e i r  weaknesses. W e  

sha l l  then p resen t  our approach t o  t h e  problem and analyze 

a f e w  examples, 

par i son  of the approach presented and t h e  theories described 

i n  the  review. W e  shal l ,  furthermore,  make suggest ions f o r  

f u t u r e  experimental  research w o r k  k h a t  i s  urgent ly  requi red  

W e  s h a l l  terminate t h i s  r e p o r t  w i t h  a com- 
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in order to provide the necessary data concerning hysteresis 

loop areas that are included as basic quantities in our 

formulas . 
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CHAPTER I1 

A REVIEW OF SOME PERTINENT STATISTICAL THEORIES 

CUMULATIVE DAMAGE 

Those t h e o r i e s  of cumulative damage i n  which prob- 

abi l i t ies  and s ta t i s t ics  have played a basic role can be 

roughly broken i n t o  two categories:  Theories i n  which 

damage i t s e l f  either i m p l i c i t l y  o r  e x p l i c i t l y  has been 

considered t o  be a random v a r i a b l e ,  and t h e o r i e s  i n  which 

damage has been presumed de te rmin i s t i c  b u t  t h e  i n p u t  or 

stress h i s t o r y  is  assumed random. I n  only one case 

(Parzen 111 ) has the  random damage and random inpu t  prob- 

l e m s  been simultaneously modeled. 

except  f o r  a few, (Freudenthal and H e l l e r  111, G a t t s  [l]) 

t h e  changing material p rope r t i e s  have n o t  been taken i n t o  

account. Furthermore, a l a rge  number of the t h e o r i e s ,  

I n  almost a l l  theories, 

e s p e c i a l l y  those with de t e rmin i s t i c  damage and random 

inpu t s  are merely va r i a t ions  of t h e  Palmgren-Miner approach. 

I n  the p resen t  s e c t i o n  we  shall consider  f i r s t  m o d e l s  for 

which the  damage is  i m p l i c i t l y  or e x p l i c i t l y  assumed to be 

a random va r i ab le .  
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The underlying idea for all such models is that a 

material is subjected to successive load applications of a 

sinusoidal nature at a fixed stress amplitude s. One then 

studies the number, N ( s ) ,  of load applications at this 

stress level that are required to produce "failure" of the 

specimen. It is a well known fact, frequently observed 

(Gumbel I l l ) ,  that the number of stress applications required 

to produce fatigue failure is a random variable. That is, 

for any given collection of apparently identical specimens 

of the same material it is observed that the number of load 

cycles required to produce fatigue failure varies in an 

unpredictable way from specimen to specimen. Furthermore, 

such statistical spread as has been observed is too great 

to explain away by mere experimental procedure. Indeed, 

high quality controlled experiments still yield a spread 

wide enough to conclude that this is a physical phenomenon 

that is being observed. Hence, one must consider the 

inherent variation in the number of cycles to failure, as 

Gumbel puts it, "....the very essence of the problem". As 

a result various models of materials have been proposed in 

order to attempt to predict a theoretical distribution 

function for the number of cycles to failure, N ( s )  , at a 
given stress level s. 
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That is, these models have been constructed to determine 

the failure distribution. 

2.1) Ps (n) = Prob { N ( s )  \< n), 

or, equivalently, the survival function 

2.2) Ls(n) = 1 - Ps(n) = Frob { N ( s )  > n). 

Several models have been pkoposed in the past and we 

wish to describe a few of them along with their assumptions 

(Murphy [lJ)* 

, 

A* 1 The Log -Normal Distribution 

The Probability density in this case is 
1 exp p(l-J - .,y >,o 

x u 6  

0 x <o. 

dP(x) 2.3) P(X) * ‘7 

A rand- variable X is log-normal if and only.if log X 

is normally distributed with mean u and variance u2. 



- 1 0  - 

In  such a case, one f i n d s  the  statist ics t o  be (Parzen [l)). . 

\ median c e’ 

’ + 1/2  u2 e 2 * 4 ) <  mean c 

The model y i e ld ing  the log-normal d i s t r i b u t i o n  for t h e  

number of cycles t o  f a i l u r e  a t  a given stress level  

based upon the  model of p r o p o r t i o n a l  effects first advanced 

s is 

by Kapteyn i n  1903. 

L e t  D1 (s),..., D (s) be a sequence of random variables 
n 

t h a t  represent  t h e  amount of damage accumulated a t  each suc- 

cessive load app l i ca t ion  a t  stress l e v e l  8 .  The basic 

p o s t u l a t e  i s  t h a t  t h e  damage a t  t h e  n- load applicatioB i s  

related t o  its predecessor as 

t h  

t h  
where cn  is t h e  random effect due t o  the n- load appl ica-  

t i o n  and { c i )  is a sequence of independent random variables. 

I t  follows immediately from 2.5) t h a t  
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Hence, the logarithm of D n ( s )  is the  sum of a large 

number of independent terms fo r  n large. 

is made that the independent random variables are d is t r ibu ted  

i n  such a manner that the central  limit theorem applies, this 

w i l l  imply t h a t  log D n ( s )  i s  approximately. normal for  n large. 

Hence, Dn(s) is approximately log-normal for n large. 

If the assumption 

I 

It may then be argued (Freudeathal and G u m b e l  ti]) that 

from 2.5) and the fac t  that en i s  =dependent of Dn - l(s), 
it follows that uie ra te -of  increase of the average t o t a l  

damage is  proportional t o  the average t o t a l  damage. 

more, the  number of cycles to  yield a given damage will be 

approximately 

of damage, and hence approximately inverseiy proportional 

t o  the t o t a l  damage. 

Further- 

inversely proportional t o  this r a t e  of change 

That  is, 

where N,,(s)  is the nr;lmbbr of cycles required t o  y i e ld  

the t o t a l  damage of magnitude D N ( s ) .  
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However, 
r 1  

hence log ND(s) is  approximately normal, t h a t  i s ,  N D ( s )  i s  

log-normal for  any D. Therefore, assuming a f ixed  l e v e l  of 

damage fo r  f a i l u r e ,  it follows t h a t  the number of cyc les  t o  

f a i l u r e  N ( s )  is log-normal. 

We may poin t  o u t  here  t h a t  s ince  { e i )  is  a sequence of 

independent random va r i ab le s ,  it follows t h a t  I D i ( s )  1 is  a 

Markov chain implying a11 t h e  f e a t u r e s  of t he  .Markov property 

f o r  t h e  sequence of random var iab les .  In p a r t i c u l a r  t h e  

d i s t r i b u t i o n  des i red  is t h e  so-called steady s ta te  o r  ergodic  

d i s t r i b u t i o n ,  which is log-normal f o r  t h e  equation 2.5). 

However, it i s  d i f f i c u l t  CG j u s t i f y  the  very p a r t i c u l a r  

form 2.5) ou t  of t h e  general  p o s s i b l i t i e s  given by 

which i n  general  w i l l  y i e l d  d i s t r i b u t i o n s  d i f f e r e n t  from the  

log-normal . 
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B.) Extreme Value Distribution-First Asymptotic Form. 

The probability distribution in this case is 

1 

and the probability density function is given as 

The parameter ranges are v c  (-*,-), BE [ O  ,=) . A 

random variable distributed according to the extreme value 

distribution above possesses the statistics (Parzen (1) ) 

- v  
- u + ( -36657) 6 

- v + ( .57722)  0 

2-12) 
mean 

The physical assumptions leading to such an extreme 

value distribution may be stated briefly in the following 

fashion (Murphy [l) 1 Let us suppose that the material is 

made up of fibers or very thin rods., Furthermore, suppose 

that damage to this material is equivalent to the snapping 

of fibers in the bundle. The properties of the fibers are . 
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assumed t o  be independent of one another  and each d i s t i n c t  

f i b e r  can withstand a number, N(s) ,of  load app l i ca t ions  a t  

stress l eve l  s t o  t h e  e n t i r e  bundle. The number N ( s )  is  a 

random variable d i s t r i b u t e d  according t o  t h e  d i s t r i b u t i o n  

Fs(n) . That is, 

One pos tu la tes  t h a t  t h e  system f a i l s  when a l l  f i b e r s  

have failed. The quest ion becomes, "What i s  t h e  su rv iva l  

function?" T h a t  is, what is  the  p r o b a b i l i t y  t h a t  t he  material 

surv ives  n cyc les  a t  stress l e v e l  s. This is j u s t  t h e  prob- 

a b i l i t y  t h a t  a f t e r  n 

t a c t .  This i s  e s s e n t i a l l y  a s t ronges t  l i n k  theory.  I f  t h e r e  

are fibers i n  the  bundle, then t h i s  p robab i l i t y  i s  simply 

given as 

. 

cycles  t h e r e  is a t  least  one f i b e r  i n  

M 

The associated dens i ty  funct ion is  

dn I 
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which is merely the probability density for an extreme 

value in a collection of M independent samples from a 

given distribution. 

(Gumbe1 121, Gnedenko [l])# the limiting distribution of 

[F,(n)]' as M * - is of the form 2.10). 

Under a wide set of conditions 

c. ) Extreme Value Distribution, - Weibull .Distribution 
The probability distribution in this case is 
- 

where u, v > 0 .  

The probability density is given as 
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A random variable d i s t r i b u t e d  according to 2.16) pos- 

sesses the  s t a t i s t i c s  

median - 6 + (V'E)  (log 2) I/* 

mean 

where r (y)  i s  the  Gama  function. For, E; v f ixed ,  t h e  

mode,median,and mean a l l  approach v as K * -. Therefore,  v 

is  usual ly  considered t h e  parameter of l oca t ion  of t h e  W e i -  

b u l l  d i s t r i b u t i o n .  

Physical assumptions leading t o  t h e  above d i s t r i b u -  

t i o n  may be b r i e f l y  s t a t e d  i n  t he  following fashion (Murphy [ l]) .  

W e  assume t h e  material and s ta t i s t ica l  p rope r t i e s  t o  hold 

i n  exac t ly  t h e  same fashion as assumed i n  t h e  previous case. 

W e  only change t h e  pos tu l a t e  f o r  f a i l u r e .  W e  shal l  assume 

t h a t  t h e  system f a i l s  i f  only one f iber f a i l s .  T h i s  i s  

tantamount t o  saying t h a t  the  ma te r i a l  i s  only a s  s t rong  as 

i ts  weakes t  l ink .  

has failed i n  n app l i ca t ions  of t h e  load a t  stress l e v e l  s 

The p robab i l i t y  t h a t  none of t h e  f i b e r s  
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is given by 

where Fs(n) w a s  defined in t he  previous case and M 

is the number of fibers making up the material. 

The density function for survival is therefore 

Again, under a w i d e  set of conditions given in the 

references cited above, 1 - [I - FS(n)lM w i l l  approach the 

Weibull dis t r ibut ion 2.16) 8 as M + 0. 

The three fa i lu re  dis t r ibut ions above const i tute  the 

most commonly used dis t r ibut ions i n  the study of failure 

under load applications a t  a given stress level.  There are 

arguments both for and against the m o d e l s  used above along 

with the dis t r ibut ions derived from them. Before we state 

such pros and cons it w i l l  be beneficial  t o  discuss the very 

useful concept of the hazard function (Parzen [ 2 ] ) .  
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We define p(x$ referred to as the hazard function, to 

be the conditional failure density function. Thus, 

2.21) r ( x ) d x  = Prob {failure for tc (x, x + dx) I no failure 
for tc (to, XI). 

From the definition of conditional ptobabilities, one has 

I 

Prob {failure for tc (x, x + dx) I no failure for tc (to, x) ) 

x Prob {no failure for tc (to, x ) )  

2.22) 

= Prob {failure for tc (x,  x + d x )  , no failure for t c  (to, x)  

= Prob { failure for tc (x, x + dx) 1 .  

The last equality follows since failure for tc  (x,  x + dx) 
implies no failure for tc (to, XI. 

Therefore, from 2.22) assuming a failure distribution 

F(x) , w e  have 
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2-25 ]  F(x)  = 1-exp 

Therefore, v (XI, the hazard function, i s  given as 

- 5: uly)dy)  , x ’ E. 

If P ( c )  = 0 ,  we e a s i l y  so lve  2-24 ]  t o  y i e l d  

L J 

From 2.25) ,  one may der ive the  f a i l u r e  d i s t r i b u t i o n  i f  

the hazard func t ion ,  that i s  the condi t iona l  r a t e  of f a i l u r e ,  

i; knr;wn. Hence, on the basis of assumptions of the hazard 

func t ion ,  failure l a w s  can be derived,  

suppose that the hazard r a t e  is a cons tan t  v .  

d e f i n i t i o n  of hazard as a condi t ional  p robab i l i t y  dens i ty  w e  

have a s t a t i o n a r y  chance f a i l u r e  independent of the past, 

A simple app l i ca t ion  of 2 - 2 5 ]  for this case y i e l d s  the w e l l -  

known exponent ia l  failure function commonly used i n  reliabil- 

i t y  s tud ie s ,  

For example, w e  may 

Thus, by the 
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It is of interest to determine the hazard functions 

associated with the three failure probabilities derived 

above. They may be found to be 

A. ) Log-Normal Distribution 

1 exp 1- 2 (logx -v)2] 
W E  202  

P(X) = , X ’  0. 

exp [- L (log y - v) 1 
y u  J Z n  2 0 2  

B.) Extreme Value Distribution - First Asymptotic Form 

r 1 

C.) Extreme Value Distribution - Weibull Distribution 

V ( X )  - C K  ( x - c ) K - l  f K > l f X > C .  
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Based upon a physical picture that describes fatigue 

as a process of progressive damage terminated by actual 

failure, it follows that the risk function shall be an 

increasing function of x, or of N, the number of cycles 

sustained by the material. 

coaxing is not prevalent, we should expect the larger the 

number of load applications that a given specimen survives, 

the greater should be the probability of failure on the 

very next cycle. 

fuastiosis associated w i t h  the extreme value distributions 

B.), C.) as may easily be seen. However, the risk function 

for the Log-normal distribution possesses a very slow 

asymptotic approach to zero after a reasonable sharp rise 

to a maximum value. On the basis of the risk function 

That is, if a phenomenon such as 

This property is possessed by the risk 

Freudenthal (Freudenthal 111) strongly rules out the Log-  

normal distribution by the theoretical arguments put forth 

by Freudenthal. 

ments do not invalidate the use of the Log-Normal distribution 

as an approximation to the failure density for purposes 

other than extrapolation, especially for the 5% - 95% range. 
Freudenthal concurs with Corten's statements on this point. 

Indeed Weibull has shown that one Cannot distinguish between 

the Extreme Value distributions and the Log-Noma1 distribu- 

However, he points out that these argu- 
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tion in the 5% - 95% range. 

In the same paper Freudenthal presents an argument in 

favor of the Weibull distribution, assuming that one does 

not expect failure below some initial finite number of 

load applications and the monotone non-decreasing properties 

required of the risk function. He puts forth the argument 

that the simplest such risk function is a power function, 

and hence is lead to the Weibull distribution. It is 

interesting to note that Freudenthal has been studying 

statistical models of fatigue since 1946 (Freudenthal ( 2 1 ) .  

However, it is our opinion that in many of the arguments 

presented the physical picture seems to be secondary to 

arithmetical simplicity. In fact, the arguments appear 

arithmetical rather than physical. We certainly agree that 

tractability is important for applications, however it 

should aid the theoretical development and not lead it. 

Concerning the models presented above we agree with the 

comments of Epstein (Epstein [l]), who essentially states 

that any theoretical argument that leaves out the history 

of the stress function and neglects the fact that each time 

a material is cycled its properties change, implying a 

non-stationarity of the distribution of the fiber strengths, 

leaves out the fundamental physical phenomenon of fatigue 
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failure. Such is the case with the "static" theories 

presented above, as well as almost all models posed so far. 

We shall now turn to a model which in our opinion 

is the most significatn statistical model yet posed that is 

physically based upon the Palmgren-Miner motivated stress 

exceedence principles. Statistically this model, due to 

Parzen (Parzen [ll), offers an approach that is sure to 

yield important results in the future. Unfortunately, as 

far as we know, the model is not too well known in the 

general cumulative damage literature, 

Parzen assumes that damage is a non-negative random 

variahle associated with the application of a load at stress 

level s, referred to as D(s). For the i- application, he 

assumes the damage done to be represented as Di(s) , 

basic assumption is that the damage done at each successive 

application is independent of any other application, and 

furthermore the successive damages at each application are 

identically distributed. 

s, is a sequence of independent identically distributed 

random variables. Again, s,ince the foundation of the idea 

of cumulative damage is that damage is additive, it is 

assumed that the total damage accrued after N-stress appli- 

th 

His 

Thus, {Di(s) I ,  for fixed parameter 
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cations to be given by the sum 

of non-negative, independent identically distributed 

random variables. Now let us assume that the material 

specimen can only withstand a given amount of damage, D, 

before it is said to have failed. Let ND(s) be the 

number of cycles to failure of a specimen of strength D 

at stress level s. 

Obviously, ND(S) is the smallest integer N for which 

.? % i s )  ' 8* 
2.27)  D1(S) + - - - 

Thus, we see that we are looking here at a simple first 

passage situation. 

Parzen's basic contribution here is to recognize that 

his assumptions lead to a model of cumulative damage that 

is a stationary renewal counting process, (Smith [I]) . 
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If one de f ines ,  

where E 3 is the expectat ion opera tor ,  it follows 

t h a t  FS (D)  

equation" , (Parzen (21 1 ,  

Ms(D) are related through the "renewal 

Theore t ica l ly  speaking, i n  order to determine the  prob- 

a b i l i t y  d i s t r i b u t i o n  of t he  damage random va r i ab le  for a 

s i n g l e  load app l i ca t ion ,  one would o n l y  r equ i r e  a knowledge 

of the expected numbers of cyc le s  t o  the var ious  damage 

l e v e l s  and no t  the probab i l i t y  d i s t r i b u t i o n s  of the cyc le s  

t o  failure,  However, this is only of theoretical i n t e r e s t  

and of no p r a c t i c a l  s ign i f icance ,  But, on t he  other hand, 

'it follows froso the bas i c  k h i t  theorems of Renewal Theory, 

111) , that 
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2.30) i 

which i s  of important p r a c t i c a l  s ign i f i cance ,  f o r  these 

formulas y i e l d  t h e  method by which one may obta in  the 

mean and var iance of t h e  damage on any given cyc le  and 

hence, because of the assumed independence, 2.30) w i l l  

a l s o  y i e l d  the  mean and var iance a f t e r  any given number 

of load appl ica t ions .  

r ead i ly  accessible experimentally determinable s ta t i s t ic ,  

namely, t h e  average number of cyc les  t o  f a i l u r e .  

f o r  la rge  D, 2.30) y i e l d s  

T h i s  is  a l l  given i n  terms of a 

Hence, 

D ( s )  represents  t h e  proportion of damage on a where P 
given cycle.  
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It is important to note that Parzen's approach can 

take into account the complex load environments that a 

spec- may be subjected to, again by assuming the sta- 

tistical independence of the damages produced by the various 

load applications. Further, it is assumed,that all appli- 

cations of the same stress amplitude , s# possess the same 
distributional properties and hence the sabne expected 

valves as determined by 2.31). 'Thus, suppose in a given 

history of stress loads the l eveta  Q- 

a total of M cycles. 

level si. Hence, 

Q avn Frrr-nA ;n 
' -N --- ----- -*. -1 - - 

Let these be H(si) cycles of load 

2-32) M 31 M(si) + - - - + M(sN) . 

For any given random environment, the variables CM(si)I 

are also random variables. 

which there are M(si) Cycles, we set 

F o r  a given stress level si, of 
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I t  e a s i l y  follws t h a t  

For t h e  total  damage, D ,  w e  ' f i n d  

Therefore,  from t h e  s t a t e d  assumption and t h e  renewal 

theory l i m i t s  2.30), w e  have for l a r g e  B ,  
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C l e a r l y  one must know t h e  s ta t is t ics  of t h e  environ- 

ment i n  order  t o  determine t h e  requi red  mean values .  How- 

ever, such d a t a  is ava i l ab le  i n  many cases such as i n  t u r -  

bu len t  g u s t  load d a t a ,  var ious v i b r a t i o n a l  environments 

encountered from acous t i ca l  noice sources, etc. 

Commenting upon Parzen's approach, w e  f e e l  t h a t  i s  is  

the m o s t  s i g n i f i c a n t  s ta t is t ical  model y e t  posed i n  the 

theory of f a t i g u e  f a i l u r e .  Furthermore, h i s  model allows 

one t o  d i r e c t l y  obta in ,  through experiment, t h e  q u a n t i t i e s  

of i n t e r e s t  i n  p r a c t i c a l  app l i ca t ions ,  that  is, the mean 

and var iance of t h e  damage, without  r equ i r ing  assumptions 

concerning the na ture  of the d i s t r i b u t i o n  of the  number of 

cyc le s  t o  f a i l u r e .  I t  is  f a i r  t o  say t h a t  Parzen 's  approach 

possesses s o m e  weaknesses. The assumption of i d e n t i c a l  d i s -  

t r i b u t i o n  f o r  a damage of load l e v e l  s independent of when t h e  

ioad occurs i n  the stress h i s t o r y  as w e l l  as basing damage 

upon stress exceedence a r e  t h e  main weaknesses. However 

these weaknesses are shared by almost a l l  theories so f a r  

presented of f a t i g u e  damage. Hence, Parzen's approach is  

c e r t a i n l y  no worse, phys ica l ly  speaking, than those approaches 

put  forward by expe r t s  i n  t h e  f i e l d .  I n  t h e  case of a s i n g l e  

amplitude, independence and i d e n t i c a l  d i s t r i b u t i o n s  are prob- 

ably not  t h e  poorest  of assumptions. But, when var ious  
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stress amplitudes are present, these assumptions are 

already known to be incorrect, especially the assump- 

tion related to identical distributions. 

The models 2iscussed above have been models b a z e d  

upon the damage as a random variable. We wish now to dis- 

cuss some results in cases for which the damage is a 

deterministic variable such as in the classical Palmgren- 

Miner approach, and in the very interesting approach of 

Gatts, but for which the complex stress histories have 

been studied. 

Probably one of the most well known works along these 

Si2es was accomplished by Miles (Miles [ll ) . His work has 

been the subject of many subsequent investigations in the 

applied mechanics field. Using the Palmgren-Miner hypothe- 

sis, Miles determined the average damage when the stress 

history was the response of a single degree of freedom 

oscillation subjected to a Gaussian excitation and for which 

the S-Eu' diagram for the material is of the form NSa = S1 . 
Therefore, the randomness of the damage here is entirely due 

a 

to the statistical properties of the environment. We shall 

p r e s e n t  here a recent derivation of Miles' result (Crandall, 

Mark, KhabSaz [ 11 ) . 
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The total damage’is assumed to be a function of time, 

and for large values of time T, the total damage D (T) is 

represented as the sum of incremental damages accrued during 

incremental t h e  intervals. Thus, let the interval ( 0 ,  TI 

be divided into M equal sub-intervals. 
th be associated with the i- sub-interval. Hence, 

Let the damage di 

The last equality holds from the assumed stationarity 

of the stress history and hence from the stationarity of 

the damage. Ordinarily, in the Palmgren-Miner hypothesis, 

the damage di is given as - 
*i 

inverse of the number of cycles to failure at stress level 

, a constant factor (the 1 

Si) as given by the assumed S-N diagram. 

et a1 find it more convenient to look at half cycles and 

write the damage di = 2 ~ i  
This is simply an analytical aid and has no physical sig- 

However,. Crandall 

as the damage per half cycle. 1 

nificance. For narrow band stationary Gaussian processes 

it is well known that the expected frequency w 0  of the. 
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process may be associated with the zero crossings (Rice [l]) 

and is given as 

J -m w2G(w)dw 
2.38) w o 2  = c 

where G(w) is the power spectral density function of 

the assumed stationary Gaussian process. Using the assump- 

tion of the narrow band.Gaussian process, as represented by 

a sinusoidal function of frequency w o  and varying stress 

levels, the authors write the stress amplitude as 

I 

2.39) s = 

where s is the slope of the zero crossing. 

Hence, N may be obtained from s through the assumed 

S-N relation. Now dividing (0, TI into small intervals of 

length At, it follows that only for those sub-intervals for 

which there is an axis crossing, will there be damage. 

upon applying the now classical technique of Rice, the 

authors obtain the expected damage for an interval of length 

At to be given by 

Thus, 
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2.41)  

2 .42)  

Since s is Gaussian, it follows that 

. . 
I .  1 S2 p(0 ,  s) = -- exp r - 

t 3 - K  2a; 2 

Applying 2.39) 

1 
t -  

1 
ZN 2 

to the S-N r e l a t i o n  y i e l d s .  

(*)= . 
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Subs t i t u t ing  2 . 4 1 )  2 . 4 2 )  i n t o  2 . 4 0 )  g ives  

Now i n s e r t i n g  2.43) i n t o  2.371, l e t t i n g  M become 

l a r g e  and A t  become s m a l l  ( M A t  = T ) ,  X i l e s '  r e s u l t  
I 

i s  obtained. 

Upon making f u r t h e r  assumptions, t h e  au thors  proceed 

t o  study t h e  var iance of t h e  damage and apply t h e i r  r e s u l t s  

t o  var ious  s p e c i a l  cases. Phys ica l ly  speaking t h e  work 

s u f f e r s  from t h e  same f a u l t s  c i t e d  above concerning t h e  

Palmgren-Miner hypothesis and "s ta t ic"  material p rope r t i e s .  

However, it does p o i n t  o u t  a few of t h e  a n a l y t i c a l  problems 

involved with t h e  in t roduc t ion  of random stress h i s t o r i e s .  

These problems are mainly concerned wi th  t h e  axis  c ross ing  

and extreme value p r o p e r t i e s  of t h e  stress h i s t o r y .  These 

problems are among t h e  m o s t  d i f f i c u l t  and a t  the  same t i m e  

t h e  m o s t  important t o  be encountered i n  phys ica l  app l i ca t ions  
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of s t o c h a s t i c  models. The use of t he  narrow band assump- 

t i o n  i n  order t o  ob ta in  an "average frequency" from which 

t h e  maximum amplitude may be obtained from t h e  s lope  a t  t h e  

axis cross ing  has been the  only phys ica l  approach used so 

far. This leads mainly t o  random amplitude v a r i a t i o n s  i n  

t h e  successive cyc les  and leaves t h e  f i e l d  w i d e  open f o r  

t h e  s tudy of a r b i t r a r y  stress i n p u t  spec t r a .  On t h i s  p o i n t  

w e  mention again the work carried on by Leybold and Naumann 

(Leybold and Naumann[ll), who have been a c t i v e l y  engaged 

i n  the determination of the p e r t i n e n t  statist ics of var ious  

random stress funct ions ,  These statistics are .concerned 

with extreme value and axis c ros s ing  statist ics.  

j u s t  t h i s  type of information tha t  w i l l  c e r t a i n l y  become of 

inc reas ing ly  g r e a t e r  importance i n  the f u t u r e  a n a l y s i s  of 

f a t i g u e  p rope r t i e s  under random loadings,  

I t  is 

I n  a l l  of examples of f a t i g u e  m o d e l s  cited above n o t  

one has taken i n t o  considerat ion t h e  fundamental charac te r -  

i s t i c  of a material specimen. That  is, t h e  f a c t  t h a t  t h e  

phys ica l  p r o p e r t i e s  are changing as t h e  specimen undergoes 

s t r e s s i n g .  

stress exceedences alone. T h i s  very f a c t ,  i n  our  opinion,  

r u l e s  o u t  any theory t h a t  is based'upon stress exceedence 

alone. However i n  the work of Freudenthal and H e l l e r ,  cited 

Such propert ies-  cannot be f u l l y  determined by 
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t t o  incorpor  

i m p l i c i t l y  w a s  made v i a  a modified 

t e  material  p r o p e r t i e s  

Palmgren-Miner r u l e .  

The Palmgren-Miner hypothesis s ta tes  t h a t  f a i l u r e  occurs  

when 

n 1 
A 2.45) c P i  N -  = 1  , 
i N S  i= 1 

where si? ..., S 

N is t he  requi red  number of cyc le s  f o r  f a i l u r e  a t  

stress amplitude si, N is  t h e  t o t a l  number of cyc le s ,  

and pi 

are t h e  stress amplitudes p re sen t ,  n 

*i 

is t h e  proport ion of cyc le s  a t  amplitude si. 

Freudenthal and Heller rep lace  2 . 4 5 )  by 

2 . 4 6 )  n c pi N(>- 1 I 

i=l 

where { t u i )  is  a sequence of "stress i n t e r a c t i o n "  f a c t o r s  

t h a t  depend upon a l l  t h e  o t h e r  amplitudes and number of 

cyc le s  present  a t  each amplitude? as w e l l  as t h e  order  

of appearance. 

i ca l  basis  for determining such factors  o t h e r  than 

A t  p resent  there appears t o  be no phys- 
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l abora tory  experiments for a g r e a t  v a r i e t y  of i n p u t  

stress funct ions.  Although, Freudenthal and H e l l e r ,  

c o r r e c t l y ,  t r y  t o  introduce t h e  fac t  that t h e r e  is 

i n t e r a c t i o n  by attempting to  account for it, we feel 

that  their approach s t i l l  misses t h e  h e a r t  of the 

matter. I n  our opinion, t h e i r  approach is i n  one 

sense too naive by merely t r y i n g  t o  modify t h e  Palmgren- 

Miner hypothesis and i n  another sense too complex s i n c e  

their i n t e r a c t i o n  factors have no phys ica l  basis and 

thus  a new s e t  or' factors would have t o  be determined 

for  every conceivable s i t u a t i o n .  This r e s u l t s  i n  a 

lack of phys ica l  and engineering i n t e r e s t  s i n c e  f e w  

genera l  s ta tements  can be made. B u t  w e  must n o t  over- 

look t h e  f a c t  t h a t  t h e i r  approach is among t h e  first 

at tempts  t o  cons t ruc t  a more real is t ic  f a t i g u e  f a i l u r e  

theory.  

The approach t h a t  is, perhaps, more i n  l i n e  w i t h  what  

is occurr ing i n  t he  cycling of a ma te r i a l  is due t o  G a t t s  

( G a t t s  [ l]).  H i s  approach is n o t  only one of t h e  first 

at tempts  t o  base fa t igue  f a i l u r e  on t h e  more realist ic 

s t r e s s - s t r a i n  r e l a t i o n s ,  accounting for  changing material 

p rope r t i e s ,  but  it is the f i r s t  t o  'use s t r e n g t h  as t h e  fun- 

damental quan t i ty  and the  s t r e s s - s t r a i n  h y s t e r e s i s  loop as 
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t h e  phenomenological b a s i s .  

G a t t s  p o s t u l a t e s  t h a t  t h e  damage due t o  a given stress 

h i s t o r y  should be measured by the  reduct ion of t h e  t w o  

s t r eng ths ,  namely t h e  endurance l i m i t  and t h e  f a i l u r e  stress. 

Furthermore, no damage occurs u n t i l  t h e  stress amplikude 

exceeds t h e  endurance l i m i t  and f a i l u r e  w i l l  no t  occur 

u n t i l  t h e  appl ied  stress a t  least  equals  t h e  f a i l u r e  stress. 

he w r i t e s  t h e  func t iona l  r e l a t i o n s h i p  descr ib ing  h i s  pos- 

t u l a t e s  as 

where n i s  t h e  number of cyc le s ,  S (n )  i s  t h e  appl ied  

stress, S (n)  is t h e  endurance l i m i t ,  S f ( n )  is  t h e  

f a i l u r e  stress, k > 0 ,  and 
e 

2 . 4 8 )  

The eqtiation 2 .47 )  must be solved according to the 

baundary condi t ions 

n = 0 ,  se - - e e l o  
2 . 4 9 )  

( - n = ~ ,  Sf (N) = S ( N )  . 
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With t h i s  basis, Gatts has put  f o r t h  a very genera l  

approach. 

ber of f u r t h e r  assumptions are requi red  i n  order tha t  

specific r e s u l t s  may be obtained. 

is t h e  na tu re  of the essential and, always, unknown funct ion  

D. 

mechanism of f a i l u r e .  

hypothesis upon the irreversible work p u t  i n t o  the material 

as given by t h e  shaded port ion of t h e  s t r e s s - s t r a i n  hyster-  

esis i m p  shown i n  the Figure I. 

I n  fact, h i s  approach is so genera l  t h a t  a num- 

The important ques t ion  

For- it is this function t h a t  a n a l y t i c a l l y  expresses the 

G a t t s  makes a phenopenological 

“t 
I I 

€ 

FIGURE 1 
STRESS-STRAIN HYSTERESIS LOOP 
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Assuming the  h y s t e r e s i s  loop t o  be made up of s t r a i g h t  

l i n e s ,  the  area of t h e  shaded por t ion  i s  propor t iona l  t o  

(S-Se) . Hence, 2.47) becomes ’ 
2 

2 . 5 0 )  

s ’ se 

otherwise.  

Further hypothesis must be made s i n c e  2.50) inc ludes  

t w o  unknown funct ions  Se, S f .  

doubt fu l  hypothesis t h a t  Se:Sf 

G a t t s  then proposes t h e  

is  cons tan t ,  obtair.ing 

L o  otherwise.  

A f t e r  analyzing t h e  equation 2-51], he then assumes 

a random funct ion for S (n )  ( G a t t s  [ 2 ] ) .  However, i n  t h i s  

case it is  n o t  too clear what h i s  r e s u l t s  w i l l  be. G a t t s  

formally takes averages and then i n t e g r a t e s  t h e  equat ion 

2.50). However, w i t h  h i s  apparent assumptions of t h e  inde- 

pendence of S(n) and Se(n) a t  each i n s t a n t  t h e  d i f f e r e n t i a l  

equat ion cannot be i n t e g r a t e d  formally. Indeed, i n  t h i s  
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case it is best t o  r e v e r t  back to the v a r i a b l e  n as an 

i n t e g r a l  va r i ab le  (the number of cycles) and use a d i f f e r -  

ence equation. Therefore, l e t  us assume t h a t  a t  each cycle 

the amplitudes are i d e n t i c a l l y  d i s t r i b u t e d  between zero and 

some maximum poss ib l e  ampl i tude  A, w i t h  d i s t r i b u t i o n  P ( s )  . 
F u r t h e n o r e ,  w e  assume that the amplitudes are independently 

d i s t r i b u t e d  f o r  d i s t i n c t  cycles.  W e  desire t o  ob ta in  the 

expected change i n  the endurance l i m i t  dur ing t h e  n + 1- rst 

cycle.  The correct r e s u l t s ,  up t o  a po in t ,  are presented 

b e l o w .  To proceed fu the r  one must make specific assump- 

t i o n s  on P ( s )  as w e  shall see. 

The d i f f e rence  equation is 

I 
i 
I 

I 
i 
I 

i 
i 

i 
I 
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From elementary probability (Feller [l] ) if events 

B, C satisfy B A C  = o and Prob (B) + Prob CC) = 1, it 

follows that for any random variable Y ,  

2.53) E { y }  = E { Y l b )  Prob (B) + E {YIC) Prob {C). 

Therefore, 2.52) yields 

= Se(n) - K [S - Se(n)12 dP(s). 
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Hence, f i n a l l y  

2-55}  E (Se(n - K E {  

which is q u i t e  d i f f e r e n t  from t h e  r e s u l t s  obtained by 

G a t t s ,  As is  e a s i l y  seen, w e  cannot proceed f u r t h e r  w i t h  

2-55 )  without a s p e c i f i c  functiyn P ( s )  . H o w e v e r ,  t h i s  in 

no w a y  discredits Gatts has ic  f2ti';ze the=,--,.. T-d--d L J b U S S U  L J -  

basic approach is very i n t e r e s t i n g  and c e r t a i n l y  has  m e r i t .  

H i s  attempt t o  base a cumulative damage theory upon the  

changing material p rope r t i e s  i s  t r u l y  a s t e p  i n  t h e  r i g h t  

d i r e c t i o n .  

must be made, T h i s  is somewhat of a disadvantage s i n c e  

H i s  theory is q u i t e  genera l  and many hypotheses 

one would l i k e  t o  make as few assumptions on t h e  na tu re  of 

t h e  damage mechanism as is possible ,  

h i s  theory is that t h e  inherent  v a r i a b i l i t y  of f a t i g u e  

damage has not  been accounted f o r ,  as he states i n  h i s  

d i scuss ion  (Gatts (21 1 Furthermore, h i s  assumption of 

constant Se:Sf is s e r i o u s l y  a t tacked  i n  the discuss ions  of 

h i s  paper. 

The major lack i n  

a 
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We now conclude this brief summary of pert,nent models 

that have been proposed. 

have seen, have possessed good points and bad points. This 

is probably true of most theories that one can construct, 

and is no less true for the theory to be presented in the 

following section. However, in the development to follow 

we :eel we have the most realistic theory yet proposed. 

In addition, the theory is one for which relatively straight 

forward laboratory experiments can provide the required 

quantities incorporated in the analytical development. 

The various approaches, .as we 



- 4 5  - . 

CHAPTER I11 

A STOCHASTIC THEORY OF FAILURE 

BASED UPON THE STRESS-STRAIN HYSTERESIS LOOP 

A.) The General Theory of Fa i lu re  - 

I - .  

The genera l  theory of f a i l u r e  of any system, whether 

it i s  a material specimen, a complex missile o r  communica- 

t i o n s  system, an economic system, etc. may be given a 

rather s t r a i g h t  forward mathematical formulation. 

l e t  X ( t )  z [xl (t) , --- , x n ( t )  I 

state vec tor  of the  system as a func t ion  of t h e  general ized 

"age" parameter t. T h e  age parameter may r ep resen t  t h e  

We may 

rep resen t  the gene ra l  

t i m e  or it may represent  o ther  measures such as t h e  number 

of on-off opera t ions ,  the amount of time above some pre- 

determined value or the number of s inuso ida l  cycles a t  a 

given stress l e v e l ,  etc. 

the  f a i l u r e  func t iona l .  That is 3 [XI denotes t h e  f a i l u r e  

state of t h e  system a t  age t, depending upon the  e n t i r e  

h i s t o r y  of t h e  genera l  s ta te  vec to r  X over the  e n t i r e  age 

We,shall f u r t h e r  l e t  3 t [ x ]  denote 

t 
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i n t e r v a l ,  [ o , t ] .  I n  t h e  m o s t  gene ra l  s i t u a t i o n  t h e  func- 

t i o n a l  3 ; [ X ] ,  as a func t ion  of t h e  age parameter 

perform a one-dimensional random walk i n  the  

:.le assume furthermore t h a t  there i s  a predetermined p o s i t i v e  

func t ion  F ( t )  t h a t  de f ines  t h e  f a i l u r e  c r i t e r i o n .  I t  i s  

then said t h a t  t h e  system, w i t h  gene ra l  s ta te  vec to r  X, 

f a i l s  a t  the f i r s t  age for  which t h e  f a i l u r e  func t ion  3 t [ x ]  

passes  outs ide  the  reg ion  bounded by + F ( t )  having i n i t i a l l y  

started w i t h i n  t h e  region. T h i s  s i t u a t i o n  i s  demonstrated 

i n  Figure 2. 

t, w i l l  

Gt[ = ]  ,t) - plane.  

- 



v) 
v) w 
t- 
v) 

a 

5" 

5 

a 
U 

Y - 
N 



- 48  - 

As shown i n  t h e  f igu re ,  t h e  sys t em f a i l s  a t  age t ' .  W e  

may mention here t h a t  s ince  F( t . )  i s  a known curve,  never 

zero, w e  may d iv ide  pt[* J 

- + F ( t )  i n  Figure I ,  by hor izonta l  l i n e s  a t  +1. - In  t h e  

following notat ion w e  s h a l l  assume t h i s  d i v i s i o n  

place.  

by F ( t )  , and replace t h e  curves 

has taken 

I n  the  most general  p r a c t i c a l  s e t t i n g ,  t h e  system and 
I 

i t s  environment are not  e x p l i c i t l y  known and can a t  best be 

given as s tochas t i c  processes.  It  follows t h a t  the  problem 

. of greatest i n t e r e s t ,  whose so lu t ion  would y i e l d  m o s t  of t he  

desired f a i l u r e  imformation, i s  t h e  determination of 

The expression 3.1) represents  t h e  p robab i l i t y  t h a t  the  

system is  s t i l l  opera t iona l  a t  age t ,  never having f a i l e d  

p r i o r  t o  t. T h i s  problem is  related t o  t h e  f i r s t  passage 

problem of s t o c h a s t i c  processes,  and is  basic t o  any f a i l u r e  

formulation, (Bogdanoff and Kozin [l] ) . 
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sup 
0 6 T < t  

W e  w i s h  t o  s p e c i a l i z e  t h e  genera l  formulation some- 

what. I n  p a r t i c u l a r ,  let  us consider the case t h a t  t he  

f a i l u r e  of a system is due to  an aging process ,  

i n s t e a d  of assuming t h a t 4 m  

dimensional randam walk w i t h  increas ing  age, w e  assurne t h a t  

it is a monotone non-decreasing random funct ion  of She 

age t. Phys ica l ly  such an assumption r ep resen t s  an accum- 

u l a t i o n  of non-negative random q u a n t i t i e s  w i t h  increas ing  

age. I n  view of t h i s  s i t u a t i o n ,  it follows that  

That is ,  

undergoes a genera l  one 

I 

YT[a 11 = Prob {gtCx] 11, 

simply because of t h e  non-decreasing property of gt [XI , 
The complicated first passage problem has i ts  s imples t  form 

i n  this case. Fortunately,  t he  theory of cumulative damage 

j u s t  fits t h i s  s i t u a t i o n .  

The mathematical formulations given by 3.1) or 3.2) 

are w e l l  defined. H o w e v e r ,  an even more d i f f i c u l t  phys ica l  

problem remains. The e x p l i c i t  form of t h e  f a i l u r e  func- 

t i o n a l  gt [ X I  

remains unknown,,especially i n  the case of material properties. 

depending upon t h e  p r o p e r t i e s  of the system 

Knowledge of t h i s  func t iona l  is  tantamount t o  knowing the  
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underlying physical failure mechanism. If, as in the 

case of a large scale missile system, one requires only 

that the generalized positions and momentum variables be 

within some required range, then the failure functional 

can be derived from straight forward input-output relations 

for dynamical systems. Thus, the failure functional, 

although quite complex, can easily be defined. Of course, 

determining 3.1) even for this case is a very difficult 

problem that in general will require many hours of com- 

puter studies. On the other hand, failure due to the aging 

of physical properties is a problem of a much greater mag- 

nitude of complexity. Indeed there appears to be no means 

at present by which we can analytically express the phys- 

ical aging due to the accumulation of damage quantities, 

using the observable states of a system. This happens to 

be true whether the system is mechanical, electrical or 

biological. In lieu of having an explicit failure functional 

we must seek a phenomenological means by which we may 

measure an aging effect through appropriately chosen, ex- 

perimentally observable, physical quantities. At the same 

time we must account for our basic ignorance of the failure 

functional. But even this is quite difficult and has not 

been accomplished to any satisfactory degree heretofore. 
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The extreme value,  t h e  Palmgren-Miner and t h e  Parzen 

approaches a l l  neglec t  t h e  fact  t h a t  the material is  under- 

going i n t e r n a l  changes, and t h e  G a t t s  approach assumes a 

d i s t i n c t  failure func t iona l .  I n  our  opinion, a l l  of these 

approaches miss t h e  h e a r t  of t h e  problem i n  one way or  

another.  Indeed, it is  because t h e  problem is  so d i f f i -  

c u l t  t h a t  such an enormous amount of literature has been 

w r i t t e n  on t h e  subject. 

The problem as w e  see it is  two-fold. We must assume 

a damage v a r i a b l e  t h a t  is a func t ion  of the age through 

a r e a d i l y  obse&ed s t a t i s t i c  and then have a method of 

de r iv ing  s ta t i s t ica l  q u a n t i t i e s  necessary t o  m a k e  predic- 

t i o n s  of t h e  f a t i g u e  s ta te  of the material  specimen. 

tofore, t h e  observat ions have been concerned mainly w i t h  

t h e  numbers of cycles  t o  f a i l u r e  a t  given stress levels ,  

neglec t ing  t h e  s t r a i n s  that t h e  material i s  undergoing. 

Only r e l a t i v e l y  r ecen t ly  has t h e  idea of t h e  s t r a i n  t h a t  

t h e  material undergoes become s e r i o u s l y  considered, espec- 

i a l l y  due t o  the success  of Wood's theory (W. A- Wood 111)  

Even more r ecen t  is t h e  considerat ion of the s t r e s s - s t r a i n  

h y s t e r e s i s  loop i n  f a t i g u e  s t u d i e s  (Pe l tne r  and M o r r o w  [l] , 

G a t t s  [l] , Kawamoto and Koibuchi [ l l )  . This l a t te r  con- 

cept w e  6 i scuss  f u r t h e r  i n  t h e  next  paragraph. 

H e r e -  
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B.) The St ress -St ra in  Hys teres i s  Loop 

I n  t h e  e a r l y  work of Gough and Haigh performed i n  t h e  

1920's (Gough [l], Haigh [l]), s t u d i e s  w e r e  made of t h e  

changes 'of mechanical p r o p e r t i e s  occuring during f a t i g u e  tests 

i n  metals. .The  changes of t h e  mechanical p r o p e r t i e s  w e r e  

observed through the  energy d i s s i p a t e d  i n  t h e  specimen during 

t h e  test. One method of observing t h e  energy dissipated i n  

t h e  specimen is through studie 's  of the s t r e s s - s t r d n  h y s t e r e s i s  

loop as given i n  Figure 3. 

STRESS1 

FIGURE 3 
STRESS-STRAIN HYSTERESIS LOOP.  
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The kinematical  process producing this loop is as 

follows: As the stress is increased from zero  t o  t h e  

e l a s t i c  l i m i t  ue, t h e  mater ia l  w i l l  t r a v e r s e  t h e  curve 

along the  l i n e a r  por t ion  from o t o  A. If the stress is 

reduced t o  zero before  reaching ue, then t h e  material w i l l  

retrace its pa th  along t h e  l i n e  segment back t o  the  o r i g i n .  

However, i f  the stress is increased p a s t  ue t o  a 

l e v e l  u, then the  material w i l l  continue along the p l a s t i c  

por t ion  of the stress-strain curve AB. We n o t i c e  t h a t  the 

t o t a l  s t r a i n  involved is  the p ro jec t ion  OB' on t h e  s t r a i n  

ax i s .  Upon decreasing the stress to zero,  t h e  m a t e r i a l  

does not  r e t r a c e  the curve- BAO, b u t  t r a v e l s  back along the  

l i n e  BC which is p a r a l l e l  t o  OA. The segment OC is referred 

t o  as the  p l a s t i c  s t r a i n .  If the stress is  increased again 

from zero t o  u a f t e r  t he  mater ia l  has reached s ta te  C, then 

the path of the material w i l l  be along t h e  e l a s t i c  l i n e  

segment CB. I f  t h e  s t r e s s  is decreased from zero t o  -u 

and released back to zero,  then the l o w e r  ha l f  of t h e  loop 

CDO of Figure 3 w i l l  be t raced  t o  form t h e  c losed  stress 

s t r a i n  hys te res i s  loop whose'area r ep resen t s  t h e  i r r e v e r s i b l e  

work put  i n t o  the  material f o r  t he  e n t i r e  symetric stress of 

range (-u, u). T h e  a rea  of t h e  ha l f  loop OABC r ep resen t s  

t he  i r r e v e r s i b l e  work put  into t h e  ma te r i a l  f o r  t h e  stress 
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range ( 0 ,  u). Assuming that the s tra in  rates  are not too 

high the half loop OABC shown i n  Figure 3 w i l l  be gener- 

ated by each of the stress functions i n  Figure 4 .  

STRESS! 
STRESS! 

FIGURE 4 
' STRESS FUNCTIONS 
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We mention at this point that the property just des- 

cribed makes the hysteresis loop the most significant 

observable feature of the material when it is subjected to 

a random stress function. We also mention that since real 

materials do not possess an exact straight line OA as 

shown in Figure 2, the actual hysteresis loop generated by 

the stress function in Figure 4(b)  is shown in Figure 5 

(Kawamoto and Koibuchi [l] ) . 

STRESS 

/@- 

STRAIN 

FIGURE S 

ACTUAL HYSTERESIS LOOP 
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However, the more nearly linear the elastic portion of 

the stress-strain curve is, the smaller is the area of the 

small interior loop, and will in general be neglected rela- 

tive to the entire area of the half loop. 

In studies of the aging process of a material during 

cyclic constant amplitude fatigue testing, beginning with 

the fundamental work of the 1920's, it has been well estab- 

lished that the stress-strain hysteresis loop undergoes 

three periods of evolution until final failure takes place. 

These periods are referred to as Stage I, Stage I1 and Stage 

111. They are characterized by the nature of the changes 

in the areas of the hysteresis loops. Stage I is mainly 

prevalent in softer materials and is characterized by a 

decrease in the loop areas for successive cycles. This is 

a hardening period and lasts for a relatively few number of 

cycles as compared to the entire fatigue life of the material. 

In the case of hardened materials this period may only last 

a few hundred cycles, and in general is less than 1000 cycles. 

Stage 11, on the other hand, occupies the major portion 

of the fatigue test and it is this stage that we are mainly 

concerned with in the present work. 

appears to be related to the formation of slip bands associated 

It is this stage that 
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with the damage process, and hence the cumulative damage 

concept as well. 

increase in the hysteresis loop areas from the minimum area 

Stage I1 is characterized by a gradual 

attained in Stage I. The rate of increase of the loop areas 

depend upon the magnitude of the stress level, and it is 

a monotone increasing function of the stress level. Further- 

more, the areas remain constant for stresses near the endur- 

I 

* 

ance limit. (Kawamoto and Koibuchi (11, Feltner and Morrow [ll , 
Thompson and Wadsworth [I]). 

Stage I11 is of a much shorter duration, perhaps even 

It is characterized by an extremely shorter than Stage I. 

high growth rate of the hysteresis loop areas just prior to . 

actual fracture of the specimen. 

associated with the final stages of the propagation of sur- 

face fatigue cracks and is of no interest to us, since when 

cracks appear the specimen is usually considered to have 

failed. 

Stage I11 is physically 

It is an accepted fact that the work done on a speci- 

men is converted into an energy that finally fractures 

the specimen. In fact, a number of researchers (e.g. 

Enomoto (11, Hanstock (11) have advanced the postulate that 

the total amount of irreversible work per unit volume 
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required to cause fatigue failure is constant. 

This is based upon the fact that not all of the irre- 

versible work in a given cycle is converted into fatigue 

energy, but some unknown portion of it that will cause 

s l i p  bands to form and internal bands to weaken. 

portion may be lost as heat to the surrounding medium. 

The fact that work is the essence of the problem was even 

stated by Miner in his now famous paper (Miner [l]). His 

basic error is that he considered the total work done on the 

material, rather than the work absorbed by the material. 

It is this point that led Miner to consider the stress ampli- 

tude as basic in the formation of his damage accumulation 

hypothesis. 

The other 

If we postulate that the irreversible loop energy 

i s  the significant phenomenological observation, then the 

question becomes simply: "HOW do we incorporate it into 

a cuvulative damage theory?" Gatts incorporated the, 

irreversible work into his theory by assuming a specific 

damage relation in terms of the weakening of the ultimate 

failure strength and the endurance limit strength of the 

material. Hence, Gatts essentially assumed a specific 

failure functional ><. As we have stated in the previous 
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s e c t i o n ,  3, can never be e x p l i c i t l y  given. Therefore, w e  

s h a l l  pos tu l a t e  c e r t a i n  average p r o p e r t i e s  t o  hold and l e t  

a c t u a l  values  be der ived only through experimental ly  ob- 

served statistics. 

The fundamental idea upon which w e  w i l l  base the  theory 

to  be developed i n  t h e  following paragraphs is t h a t  t h e  

t o t a l  area enclosed wi th in  the h y s t e r e s i s  loop, or h a l f  

loop (Crandall ,  Mark and Khabbaz 111) , i n  t h e  complex stress 

func t ion  case, is a measure of t h e  damage done t o  t h e  

material. Furthermore, t h i s  measure is a random q u a n t i t y  

whose d i s t r i b u t i o n  must remain unknown, b u t  whose mean 

va lue  may be determined through experiment. 

be presumed t o  be assoc ia ted  w i t h  larger damage q u a n t i t i e s ,  

as a r e s u l t  of t h e  f a c t  that  failure appears t o  occur a t  a 

cons tan t  amount of i r r e v e r s i b l e  work i n p u t  assoc ia ted  w i t h  

t h e  p l a s t i c  s t r a i n  energy. 

Larger areas w i l l  

On t h e  basis of r e l a t i n g  damage t o  t h e  area of t h e  

h y s t e r e s i s  loop, a r e v e r s i b l e  phys ica l  p i c t u r e  p re sen t s  

i t s e l f .  Under pure s inuso ida l  cyc l ing ,  t h e  i n c r e a s e  i n  

area of the  h y s t e r e s i s  loop %taring Stage I1 may be viewed 

as a weakening of t h e  ma te r i a l  t o  t h e  same inpu t  as t h e  

damage is accumulated. I n  o the r  words, success ive  cyc le s  
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of a fixed stress amplitude have greater and greater damaging 

effects. Furthermore, the fact that larger stress amplitudes 

should produce a greater damaging effect is reflected in the 

fact that the increase in the loop area occurs at a higher 

rate. Also, stress near the endurance limit possessing 

almost zero rates of change of hysteresis loop areas imply 

their much smaller damaging effect. One would expect that 

the Palmgren-Miner hypothesis would be most accurate in the 

endurance limit range of stresses. We shall see in Section 

E that the change of hysteresis loop areas explains the 

inaccurancies observed in applying the Palmgren-Miner - 

hypothesis when subjecting a material to two different 

stress levels. 

In the next section, we shall make the above statements 

precise. 
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C . )  Postulates For A Cumulative Damage Theory - -  

The entire theory to follow is set forth in the six 

postulates below concerning the damage variable D and 

the hysteresis loop area A. 

Postulate I - Randomness 

Damage, denoted by D, is a non-negative random 

variable . 

Postulate 11 - Damage Function 

The damage random variable, D, associated with an 

hysteresis loop (or half loop in the complex stress 

functioxi case) of area A, is assumed to be a ran- 

dom function of A. 

That is 

Postulate 111 - Independence 

The random variables D(A1), D(A2) 8 --- associated 
with successive loops (or half loops in the complex 

stress function case) of areas A18 A2,  --- are 
assumed to be independent random variables. 
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Postu la te  IV - F a i i u r e  C r i t e r i o n  

W e  assume t h a t  t h e r e  i s  a value > 0 ,  depending 

only upon t h e  m a t e r i a l ,  such t h a t  when t h e  t o t a l  

accumulated damage reaches t h i s  va lue ,  t h e  material  

i s  sa id  t o  have f a i l e d .  

Pos tu l a t e  V - Propor t iona l i t y  Fac tors  

The expected values  of t h e  

damage f o r  h y s t e r e s i s  loops of areas A1, A2 s h a l l  

s a t i s f y  t h e  r e l a t i o n  

E {?(A1) 1 ,  E 1 3 ( A 2 )  1 

3 . 3 )  

i 

3 . 4 )  

where a > o is  t h e  exponent i n  t h e  E -N diagram 

for  t h e  given material. That i s ,  a is  def ined by 
P 

where N i s  t h e  average number of cyc les  t o  f a i l u r e  

at constant  p l a s t i c  s t r a i n  E 
PI 
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Postulate VI - Load Interaction 

The effect of a load of stress level u on any 

given cycle is to increase the hysteresis loop 

areas on all future load applications by an (experi- 

mentally determined) factor associated with u 

and independent of all past or future stress levels. 

~urthermore, the effect of two loads of level u 

on subsequent hysteresiq loops is independent of 

whether the loads are on contiguous cycles or 

separated by cycles of other loads,* 

We shall now present a short discussion.describing 

the postulates set forth above, 

Postulate I sets forth our intention to develop a 

stochastic theory of cumulative damage. This assumption 

reflects the universally accepted fact that there is an 

inherent variability in the fatigue phenomenon or, equiva- 

lently, it acknowledges our ignorance of the basic damaging 

mechanism and the fundamental failure functional gt, 

n-1 
Antun) = A 1 n  (u 1 r[ y ( o i )  . ,  where y ( u i )  is defined in 

i=l 
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Postulate I1 is the basic departure from the majority 

of cumulative damage approaches, for it immediately assumes 

damage to be related to the fundamental phenomenon of 

irreversible work input into the material rather than the 

usual stress exceedence. Thus, we bring in the non-station- 

arity or aging process that the material actually undergoes 

during the evolution of fatigue, particularly regarding the 

Stage I1 development of the hysteresis loops. 

Postulate I11 is difficult to condem or defend on any 

observational basis. It essentially states that the amount 

of irreversible work that goes into damage on any given 

cycle is independent of the amount of irreversible work that 

goes into damage on any other cycle. This independence has 

been a part of all of the stochastic theories so far. 

Furthermore, it is required to make the renewal theory ideas 

go through in the analysis. Our feeling on this matter is 

that the age-dependence or non-stationarity is the most sig- 

nificant aspect here. Since we have taken age into account 

in our theory, we do not feel that independence is a serious 

as sump t ion. 
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p o s t u l a t e  I V  i s  our  f a i l u r e  c r i t e r i o n  and corresponds 

t o  the  funct ion F ( t )  discussed i n  Sec t ion  111 A, T h i s  i s  

a p o s t u l a t e  used by many researchers. Furthermore, experi-  

mental evidence appears t o  lend credance t o  a f i x e d  upper 

l i m i t  of work i n p u t  o r  to ta l  damage as we  have discussed 

above i n  Sect ion I11 B. 

Pos tu la t e  V may a t  first appear q u i t e  s p e c i f i c  i n  i t s  

form. EIowever, t h e r e  is  a reasonable direct argument t h a t  

leads us to t h i s  choice. 

should imply larger damage va r i ab le s  on t h e  average, as 

w e  have seen, is t h e  r e s u l t  of a c t u a l  experimental  inves- 

t i g a t i o n s ,  H o w e v e r ,  the quest ion is how t o  inco rpora t e  

this f a c t  i n t o  a theory.  

ques t ion  is  v i a  t h e  E -N curve t h a t  is r a p i d l y  becoming 

a s  important as t h e  S-N diagram i n  cumulative damage lit- 

e r a t u r e .  L e t  us consider t he  case i n  which t h e  stress 

amplitude is near  t h e  endurance l i m i t  so t h a t  t h e  Stage I1 

increase  i n  areas of t h e  h y s t e r e s i s  loops is so s m a l l  

The fac t  t h a t  l a r g e r  loop areas 

Our approach t o  answering t h i s  

P 

t h a t  w e  may be allowed t o  neglec t  t h e  change i n  area w i t h -  

o u t  s i g n i f i c a n t  error as has-been observed (Xawamoto  and 

Tanaka 11) , Feltner and M o r r o w  111) I n  t h a t  case s i n c e  

the  h y s t e r e s i s  loop areas are cons tan t ,  then t h e  expected 

values  of the damage are constant ,  so w e l l  as t h e  p l a s t i c  



- 66 - 

f o r  successive cycles .  I t  fo l lows ,  f o r  s t r a i n  E: 

example, from Parzen 's  theory descr ibed i n  Chapter I1 t h a t  

f o r  a stress l e v e l  a near  t h e  endurance l i m i t ,  w e  have 

P' 

3 . 5 )  

where A ( a )  is the cons tan t  area of t h e  NBhysteresis  

loops required f o r  f a i l u r e  a t  cons tan t  stress u , and by 

our  assumption, cons tan t  p l a s t i c  s t r a i n  E 
P. 

Now w e  must reflect  upon t h e  f a c t  t h a t  any empir ica l  

diagram such as t h e  S-N diagram o r  t h e  E -N diagram i s  an 

average r e l a t i o n .  That i s ,  t h e  curve r ep resen t s  t h e  

average number of cyc les  t o  f a i l u r e  f o r  a given stress 

Hence, phys i ca l ly ,  w e  must o r  a given p l a s t i c  s t r a i n  

i d e n t i f y  N ( c P )  i n  t h e  E: -N diagram with E ( N  ( E  ) I  i n  

formula 3 .5 ) .  Therefore,  l e t  us cons ider  t w o  stress levels 

P 

u 

P. 
E 

P ' P  

al, a 2  t h a t  are close t o  t h e  endurance l i m i t  so t h a t  t h e  

h y s t e r e s i s  loops do n o t  vary. Therefore,  cPl, E. p2 a l so  

are assumed t o  remain cons tan t .  I t  follows from 3 . 4 )  and 

3 . 5 )  t h a t  
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3.6) 

Consider a simplified hysteresis loop, in the shape 

of a parallelogram, as shown in the Figure 6. 

STRESS 

FIGURE 6 

SIMPLIFIED HYSTERESIS LOOP 
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The area of the loop in Figure 6 is simply given by 

E ( a  + ue) ‘ P where E =  P - ue) cote. 

Now in the case that u l t  u2 are close to ue, it 

follows that the areas of the hysteresis loops satisfy 

I 

to the first order in small quantities u1 - u e’ u 2 - u  e . 

Hence, we have the approximate equality , 

L 

which we postulate as an equality throughout the range of 

loading of the material. 

Postulate VI is somewhat of a different nature than 

the other postulates, in that we are here assuming a par- 

ticular type of aging to take place. We are motivated by 

the observed fact that the presence of interspersed stresses 

of levels greater than the remaining stress levels cause a 

large increase on the subsequent accumulation of damage even 
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a t  l o w e r  stress l e v e l s .  Their effect upon the f u t u r e  must 

be accounted f o r  by assuming a propor t iona te ly  greater 

amount of expected damage f o r  a l l  f u t u r e  cycles a t  any 

stress level. Furthermore, s i n c e  stresses of d i f f e r e n t  

amplitudes cause d i s t i n c t l y  d i f f e r e n t  i n t e r n a l  s t r u c t u r a l  

changes t o  a material, the change i n  areas of the  h y s t e r e s i s  

loop must be dependent upon the pas t .  This l a s t  p o i n t  

a lso motivates our assumption t h a t  t w o  cyc le s  of t h e  same 

stress have the  same e f f e c t  on subsequent cycles independent 

by other cycles .  W e  must also p o i n t  o u t  t h a t  whereas 

Pos tu l a t e  I11 assumes independence of t h e  damage variables 

themselves, Pos tu l a t e  VI assumes dependence of t h e i r  average 

va lues ,  through the sequence of stresses t h a t . o c c u r ,  as we 

s h a l l  see i n  t h e  next  sect ion.  

Upon applying t h e  s ix  pos tu l a t e s  above t o  a combination 

of phys ica l  and s t a t i s t i ca l  arguments we  s h a l l  develop a 

s t o c h a s t i c  theory of cumulative damage. W e  s h a l l  a t  f i r s t  

consider  the  s i m p l e  s inusoida l  i n p u t  of cons tan t  amplitude,  

then the inpu t  cons i s t ing  of t w o  blocks of s inuso ida l  cyc les  

a t  d i s t i n c t  cons tan t  amplitudes. 

t h e  random s i t u a t i o n .  

i n  t h e  average damage a t  any given age. 

W e  w i l l  f i n a l l y  s tudy 

I n  every case,we s h a l l  be i n t e r e s t e d  

The age parameter 
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will always be generated by the number of cycles of sinu- 

soidal stress inputs or by the number of axis crossings 

for complex random loading functions. Time will be brought 

into the picture only through the above age measures. 

D.) Pure Sinusoidal Input 

Let a material specimen be subjected to a pure sinu- 

soidal stress function of load amplitude u .  The areas of 

the successive hysteresis loops generated by this stress 

function will be denoted by A1(u), A 2 ( u )  , ..., and the 
associated random damage quantities will be denoted by 

D & ( u ) ) ,  D ( A 2 ( u ) ) ,  ..-.. Hence, the damage after N 

cycles is given by the sum of the independent random variables 

N 

i-1 
3.9) z ~(~~(01). 

The numtjer of cycles to failureat stress level u is 

a random variable which we denote by N ( u ) ,  and by our 

faxlure criterion, Postulate IV, it is defined as the smal- 

lest integer M for which 
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M 

i=1 
3.10) z D(A~(o)) >E. 

It therefore follows that, at failure, 

where 6 is a non-nzgative rangom residual. 

We may take the expected values of each side of 3.11) 

to yield, recalling is a constant depending.upon- the - 
material, 

Recalling that ND(U) is a random variable, it follows 

from Postulate I11 and Postulate V that 
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However, t h e  proof of 3.13) required t h e  use of Mar- 

W e  s h a l l  present  t i n g a l e  Theory of s t o c h a s t i c  processes.  

t h e  proof i n  t h e  appendix. 

Upon applying t h e  r e s u l t  of 3.13) t o  3.12)  and dividing 

by t h e  non-negative quan t i ty  , w e  obta in  

E{6’ on t h e  r i g h t  hand -F We must  now study the  quan t i ty  

side of equation 3-14], a s B  becomes la rge .  AS a genera l  

mathematical quest ion,  t h i s  is  beyond t h e  scope of t h e  pres- 

e n t  work. 

i n  only a r e l a t i v e l y  f e w  number of cases i n  renewal theory 

(Smith [l]). 

physical  s i t u a t i o n  a t  hand t h a t  w e  may f a l l  back upon. 

fundamental physical  f e a t u r e  of t h e  e f f e c t  of c y c l i c  loading 

i n  producing f a t i g u e  f a i l u r e  i s  t h a t  t h e  t o t a l  damage accum- 

u la t ed  consists of a l a r g e  number of s m a l l  con t r ibu t ions ,  

one cont r ibu t ion  from each cycle.  Hence, nu one cyc le  i s  

I t  is t h e o r e t i c a l l y  d i f f i c u l t  and has been answered 

Fortunately f o r  us w e  have a r a t h e r  w e l l  defined 

The 

t h e  predominant cause of f a i l u r e ,  and t h e  damage accumulated 

on each cycle i s  a very small  percentage of t h e  o v e r a l l  

damage produced a t  f a t igue  f a i l u r e .  Therefore,  although w e  
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E'a' approaches zero almost P cannot state r igorous ly  t h a t  

s u r e l y  as s approaches i n f i n i t y ,  we  c e r t a i n l y  can say t h a t  

E'a' < 1, being of the order  of t e n t h s  o r  even hundredths 

of a per cent. 
P 

This is unquestionably ou t s ide  t h e  range of 

engineer ing significance, hence w e  may neglec t  t h i s  quan t i ty  

t o  y i e l d  t h e  f i n a l  formula, 

3.15) P 

J 

. 

Equation 3.15) is t h e  b a s i c  equat ion of the e r , t i r e  

theory. 

determine the average damage per cyc le  i n  t h e  labora tory  by 

observing t h e  areas of t h e  h y s t e r e s i s  loops,  and recording 

t h e  number of cyc les  t o  f a i l u r e  for a c o l l e c t i o n  of specimens. 

Then s ta t is t ical  averaging may be appl ied  t o  produce t h e  

q u a n t i t y  on t h e  l e f t  hand side of t h e  equation 3.15). 

w i s h  t o  stress t h e  fact t h a t  w e  have no t  assumed any func- 

t i o n a l  forms f o r  t h e  actual. damage q u a n t i t i e s  themselves or  

t h e i r  d i s t r i b u t i o n s  other than Pos tu l a t e  V, which relates 

average damage t o  hys t e re s i s  loop areas. But as w e  have 

a l ready  shown Pos tu la t e  V i t s e l f  is the  r e s u l t  of a c t u a l  

empir ica l  observations.  

It is through t h i s  equation t h a t  we  may empir ica l ly  

W e  
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I 

It is important t o  mention a t  t h i s  t i m e  t h a t  many 

inves t iga to r s  (Fe l tner  and Morrow [l] I Thompson and 

Wadsworth [l] , Duce (11  , Enomoto [l] , K a w a m o t o  and Koibuchi 111 ) 

have found t h a t  simple exponential  formulas fit  t h e  empir ica l  

date concerning the  na ture  of t h e  change i n  areas of t h e  

hys t e re s i s  loop f o r  successive cycles  a t  a cons tan t  stress 

amplitude. Indeed f o r  Stage 11, t h e  formula 

where y ( u )  > 1 and is  an increas ing  funct ion of 3 appears 

t o  f i t  the  data q u i t e  w e l l  p r i o r  t o  Stage 111, when a sharp 

upward turn  i n  t h e  rate of change of a reas  takes p lace  f o r  

t h e  f e w  cycles before a c t u a l  f r ac tu re .  Furthermore, f o r  

u = ue, i t  follows t h a t  y ( u )  = 1 f o r  p r a c t i c a l  purposes. 

On t h e  b a s i s  of formula 3.16) , t h e  formula 3.15) becomes 

where again y ( 0 )  and N d u )  are experimentally observable 

q u a n t i t i e s .  
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On the basis of our theory and formula 3-17], it follows 

that after N cycles at stress level u , the expected value 
of the accumulated damage E r G , ]  is given as 

As we have already discussed in section A, the failure 

crlterion function, in our case' the constant p , can always 
be absorbed so that the failure criterion becomes in our 

case the first exceedence of unity, Hence in the following 

sections we shall drop the explicit use of the.limit damage . 

B, and let D represent the per cent of damage to failure, 

E.) E Amplitude Level Sinusoidal Input 

The major motivation for our approach to the problem 

of cumulative damage has been to try to develop a rational 

means of accounting for the damage, in the presence of com- 

plex load histories, on thematerial, as well as take into 

account the aging of the material. It is a well established 

fact that the commonly used Palmgren-Miner hypothesis does 

not fit a rather consistent set of observations. An exper- 
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iment that shows the hypothesis to be inaccurate is to run 

a sample of specimens for nl cycles at stress level 0 1  for 

which the average life to failure would be 

then run the specimens to failure for 

N1 cycles, and 

cycles, at stress n2 
level u q  for which the average life to failure is X2 

L 

"1 + "2 
5 9  

cycles. The Palmgren-Miner hypothesis should yield 

approximately equal to unity. 

found that the value this quantity attains depends upon the 

However, it is invariably 

relative magnitudes of u1 and' u2. 

In particular, for un-notched specimens, 

i 

We shall show in this section that the theory presented 

in this report, in fact, predicts this non-commutativity of 

the application of cycles of two different stress levels. 

W e  shall demonstrate this by example. In general, actual 

numerical values would have to be obtained. 
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I n  order t o  consider the problem w e  must f i r s t  determine 

t h e  so-called i n t e r a c t i o n  e f f e c t s  of the presence of d i f -  

f e r e n t  stress l eve l s .  Therefore, l e t  us consider  the expected 

value of damage accumulated a f t e r  N cycles of var ious stress 

amplitudes ul, u2, -- , on. W e  s h a l l  denote t h i s  damage 

( i n  fact, p e r  cen t  of f a i l u r e )  by E { D ( N )  1. I n  order to 

determine t h i s  we  must determine t h e  expected value of damage 

whi'ch ~ c m r s  on the n + 1- &le of stress level o-.,. 

By Pos tu la t e  VI, using the empir ica l ly  determined area f a c t o r s  

def ined i n  3.16) we have the  damage on t h e  n + 1- rst cyc le  

given as, 

rst 
LIT& 

where ul,.. ., u are the f i r s t  n stress l e v e l s  t o  have n 
been applied.  

E I3 (Al(un+l)) 1 

defined by our basic equation 3-15) f o r  the stress level 

They may or may no t  be d i s t i n c t .  The quan t i ty  

is the empir ica l ly  determined quan t i ty  

Thus, w e  must have from our  theory and 3.20) 
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- 
L e t  us consider  now t w o  stress levels u, u, where 

- - 
u = u and u > u. Thus, we have y ( Q )  = 1, Y ( U )  > 1. e 

- 
W e  s h a l l  f i r s t  apply n cyc les  of stress level u t o  

t h e  specimen, and then apply cyc les  of  stress level u u n t i l  

f a i l u r e .  W e  s h a l l  denote t h e  number of cyc les  t o  f a i l u r e  as 

predic ted  by our  theory by 

predic ted  by t h e  Plamgren-Miner theory by 

n and t h e  number of cyc le s  as 

n ’ .  

By t h e  Palmgren-Miner Theory w e  must have 

- 
where N ,  N a r e  t h e  average number of cyc les  t o  f a i l u r e  f o r  - 
stress l e v e l s  a, a r e spec t ive ly ,  t h a t  is  

However, by ou r  theory,  t h e  expected damage accumulated 
- 

on t h e  f i r s t  n cyc le s  is given by 3.21) as 
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.. 
s ince  t h e  h y s t e r e s i s  loop areas remain cons tan t  and there-  

fore y i e l d  t h e  same expected value of damage on each cycle. 

It follows f r o m  3.21) and 3.23) t h a t  t h e  number of cycles, 

n,  t o  failure a t  stress l e v e l  u is  determined from 

But, s ince  y is  uni ty  and E{S(Al(a)) 1 i s  given by 

our b a s i c  formula 3.151, then 3.24 becomes 

J 

. 
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But from 3.22) and 3.251 it follows t h a t  t h e  pred ic ted  

n '  f r o m  t h e  Palmgren-Miner hypothesis satisfies 

W e  may now apply Jensen 's  i nequa l i ty  t h a t  states t h a t  i f  

f ( y )  is  a continous convex funct ion,  then 

3.28) 

for  any random va r i ab le  Y. 

is  convex f o r  a N  Therefore, w e  have from 3-28], s ince  y 

Y ' 1, 

. . 
3.29) 

Hence, from equat ions 3.27) and 3.29) w e  have 
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The last inequality o b t a i n s  since s e t t i n g  y a ( o )  = 1 + E ,  

E ' 0 ,  

3.31) 
n (n-1) nE + -7 c 2  + - 0 -  

E 2  + - * a  

- = - 1 - (1 +e)"  
N N - 1 )  

N E  + N 1 - (1 +e)  

n-1 !z-l)  (n -2 ) .  2 E + 0 . -  n l + T E +  3 1  n 
N 

< -  - a  

x ,  E *  + 0 - 0  

N- N - 1 )  ( N-2) 
2! 3! 1 + 1  E +  

for n < N. 

But, the inequality 3.30) along with 3.22)  imply 

- 
n n 
R N 

3.32) - + - > > ,  

which agrees with the observed physical phenomenon. 

- 
Lf we reverse the order to first apply n cycles of stress 

u, then cycle the material specimen to failure at the stress 

level 

the inequality 

;?, we are led, by the's- considerations as above, to 
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- 
n-1 
N '  

- 
+ [y,a(u)ln - - 1 < -  N 3 . 3 3 )  

We cannot go any further with the inequality 3.33) with- 

out specific numbers, especially for y(a). However it is 

certahly possible that 3.33) holds and yet we have 

- - + - < l o  n n - 
N N 3.34) 

We shall now look at the random input case. 

F.) Random Stress Functions 

We now have sufficient material with which to present 

the case of the random stress input. In order to illustrate 

the ideas involved, we shall first treat the situation of 

pure sinusoidal cycles of random amplitudes, without con- 

sidering the time factor involved. 

assume that the material is subjected to a random sequence 

of sinusoidal cycles of amplitudes ul, u2, ..., n'-*' 
which are iddependent identically distributed continous 

random variables with common distribution P ( u ) .  

Therefore, we shall 

0 '  
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As giwen by our postulates and through equation 3.20) 

we find that.the expected damage accumulated on the n- th 

cycles is given, recal l ing that the ai’s are random 

variables which are independently dis t r ibuted,  by 

Because the random variables involved are  assumed to be 

ident ical ly  distributed, i t  follows that 

Hence it follows that the expected value of the damage 

after N cycles is simply given by 

3.37) 
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It is most interesting to note that the independence of 

the stresses allows the expected damage to be independent 

of the order in which the stresses have occurred. Indeed 

the formula reflects that the average damage accumulates as 

though it is due to some equivalent stress possessing an 

initial damage d, with a rate of increase-given by y. 

What occurs in the general random stress input as a function 

of time is much more complicated than the example above 

as we shall now see. 

Let us consider a random process with a sample function 

as shown in Figure 7. 
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As we have discussed i n  Sect ion B, i f  the  s t r a i n  r a t e s  

are n o t  too g r e a t ,  the  only s i g n i f i c a n t  s t a t i s t i c s  of t h e  

sample stress funct ion i n  Figure 7 are the  zero c ross ings  

zl, z2, and t h e  absolute extremes between zero c ross ings  

M i ,  M 2 r  . e .  , These are the  po in t s  t h a t  w i l l  determine 

t h e  hysteresis half  loops,  for  which w e  s h a l l  a s s o c i a t e  ha l f  

t h e  average damage a s  accumulated f o r  t h e ' f u l l  loop a t  t h e  

same stress l e v e l ,  

Hence, i t  follows t h a t  a t  any f ixed  t i m e  t ,  there w i l l  

be a random number N ( t )  of a x i s  c ross ings  or .  half  loops 

w h i c h  have formed, Furthermore, t h e  areas of these ha l f  

loops w i l l  depend upon t h e  sequence of absolu te  extremes 

t h a t  have occured up t o  t i m e  t. L e t  us make these s ta tements  

precise. 

W e  s h a l l  assume t h e  areas of t h e  successive h y s t e r e s i s  

... half  loops f o r  a given t i m e  t ,  t o  be denoted by AI, A 2 ,  f 

with the expected t o t a l  damage given as AN(t) ' 
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However, the areas involved depend upon the previous 

amplitude values M1, M2, * * * ,  that  are present. W e  can 

represent this dependence e x p l i c i t l y  as 

From our above analysis,  it follows that 3 .39 )  may be 

expressed as 
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If we represent the joint density function for the 

, Mi and the number of axis cross- extreme values M1, ... 
ings N(t) at time t, by Pt(ul, --., ui; N), it follows 

that the i- th average may be written as 

We add that the terms 

are the quantities determined from actual experimental 

observations through formula 3.15) . The new analytical 

complications have been brought forth through the intro- 

duction of the joint density function Pt. We cannot 
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continue any further at this level of generality because of 

this complexity. Indeed, we begin to lose insight to the 

original problem, We may say, however, that it is the type 

of information required to evaluate the expectations 3.41) 

that we need to carry on further for arbitrary random inputs, 

especially for actual environmental situations. 

It is of interest to note that in the work of Nauman 

and Leybold this information is being studied. 

We shall carry on our discussion in this section with 

an example of a type of random stress function that can be 

constructed in the laboratory and for which .the analysis 

may be completely carried out, but for which we still have 

a good deal of generality in the distributions involved. 

We assume that the absolute extremes between axis crossings 

are independent, identically distributed continuous random 

variables, and also that the intervals between axis cross- 

ings are independent and identically distributed with 

distribution function F(t). However, we should not under- 

estimate the generality of this example, for if the noise 

is Gaussian with a short correlation time, or if the process 

is strongly Markov, so that at a zero crossing the future is 

independent of the past, the above independence assumption 

is not far from the truth, 
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We denote the total damage accumulated at time T by D (T) . 
Then our problem is to determine 

write from the assumption of independence and from our above 

considerations as, 

EID (T) I ,  which we may 

Using.the same notation as given in 3 .361 ,  we finally 

obtain from 3.431, 

Again, because of the fact that the stress strain hysteresis 

loclp depends only upon the absolute extremes obtained, and 

not on the other features of the curve as long as khe strain 

rate is not too high, w e  obtain the same formula as'for the 

sinusoidal case except for the presence of the expectation 

operation. 

fact that the time has now entered into the picture. 

This expectation has been brought in due to the 

In 
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order t o  complete the e x p l i c i t  ana lys i s  of the problem, w e  

must compute the expectat ion E { y  N(T)), where N(T) is  the 

number of axis cross ing  or i n t e r v a l s  t o  t i m e  

is a st raight  forward renewal equation problem, as w e  now 

show. 

a r e  independent i d e n t i c a l l y  d i s t r i b u t e d  non-negative random 

v a r i a b l e s ,  and thus  w e  are i n t e r e s t e d  i n  t h e  random number 

N ( T )  required t o  j u s t  surpass’ T. W e  analyse t h i s  i n  the 

following fashion . 

T. But, this 

The lengths  of the i n t e r v a l s  between axis cross ings  

L e t  z1 be the length  of the first i n t e r v a l  between the 

first two successive zeros, then 

However, by the usual  argument (Parzen [ 2 1 ) ,  we o b t a i n  
r 
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Thus, using 3 . 4 6 )  i n  q u a t i o n  3 . 4 5 )  y i e l d s  t h e  convolu- 

t i o n  i n t e g r a l  equation 

= 1 - F ( T )  + y [ G (T-T) dF (TI.. 

The i n t e g r a l  equation 3 .47 )  may be e a s i l y  solved by 

Laplace transform techniques,  s ince  F ( T )  is presumed 

known. Expl i c i t  cases may e a s i l y  be solved. 

W e  s h a l l  terminate  t h e  discussion of t h e  random inpu t  

O t h e r  e x p l i c i t  cases of p r a c t i c a l  i n t e r e s t  st t h i s  t i m e .  

await  f u r t h e r  computer s u t d i e s  i n  order  ta obta in  the 

necessary s t a t i s t i c s .  

t he  random environment problem can be at tacked through t h e  

However, once t h i s  is  accomplished 

approach put  f o r t h  i n  t h i s  repor t .  
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APPENDIX TO CHAPTER 111 

Martingales and The Proof of Equal i ty  3.13) - - -- 
The proof of e q u a l i t y  3.13) does not  follow from elemen- 

tary cons idera t ions  because of the fact that NB(u) is a 

random v a r i a b l e  conditioned by the  previous damage magnitudes. 

If Nm(o) w a s  independent of bhese magnitudes, the e q u a l i t y  

would follow f r o m  the most elementary cnnciderati~ns af 

p r o b a b i l i t y  theory. 

other means to establish the formula. Fortunately f o r  us, 

As this is no t  t h e  case, w e  r e q u i r e  

the tools required can be found i n  t h e  theory of mart ingales  

(Doob (11 1 .  

b a r t i c u l a r l y  Chapter VII, theorem 2.1 and Sect ion 10. 

The treatise of Doob w i l l  be our re ference ,  

A discrete mart ingale  is defined t o  be a stochastic 

process  {xn, n lj f o r  which E{lx,ll e -, n 3 1 and 

A. 1) xn - E { X ~ + ~ ~ X , , , * - -  , xn3 

any n > 1. 

with p r o b a b i l i t y  one for 



A.2) 
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We note that from A.1)  it follows that 

If the equality sign in A.l is replaced by "g", then 

the process is referred to as a semi-martingale. 

Let us consider the case that the process, martingale 

or semi-martingale, is stopped at some optional stopping 

time depending upon observations of the previous values of 

the process. 

be precise , suppose m ( w )  represents the random stopping 

time, let us consider the new process 

What is the nature of the new process? To 

3 11, defined by 

where m(w) - v is.a condition only on the past values of 

the variables up to the v- stage. th 
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This is  exac t ly  t h e  s i t u a t i o n  w e  f i nd  ourselves  w i t h  

i n  cumulative damage. For, s ince  t o t a l  accumulated danage, 

which is the sum of non-negative independent random quan- 

tities, is terminated when the to ta l  damage f i r s t  surpi=sses 

p,  
stopping t i m e  or age, as w e  choose t o  ca l l  it, is  dependent 

we  see t h a t  w e  have a stopped process.  This random 

only upon the previous values of t h e  accumulated random 

damage q u a n t i t i e s  . 
The r e s u l t  we r e q u i r e  is a p a r t  of Theorem 2 .1  i n  

Doob's treatise, given as follows 

Theorem - Suppose t h a t  t h e  martingale {xn, n 3 1) 

is transformed i n t o  the process { :n, n 5 1 1  wder op t iona l  

stopping. 

more, 

I U 
Then t h e  xn - process is  a mart ingale  and, f u r t h e r -  

A.4) = E{xl), n 3 1. E xn 

For the proof, we refer to Doob's treatise. 
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Now l e t  us consider  the  mutually independent non- 

negat ive random variables D1, D Z t  0 . .  each s a t i s f y i n g  

A. 5 )  

where a a r e  known non-negative constants .  

E{DiI = ai, E{D1) > 0 ,  

i 

W e  l e t  N ( w )  , b e  the  first value m for  which a 

A. 6 )  

W e  wish t o  determine E{D'.) i n  terms of t h e  expected 

values  E { D , I ,  i N ( w ) .  
1 b 

W e  form the  new sequence of random variables D(n) def ined as 

n n 

Z D j  
- E{DII Z a .  

jp1 J 

n 
A. 7 )  D(n) = Z ( D j  - E I D j I )  = 

j-1 j=l  

It can be e a s i l y  shown that if Y 1t Y 2 c  0 . .  a m  mutually 

independent random var i ab le s ,  then the necessary and suf- 

f i c i e n t  condition for  t h e  X n  - process def ined by 
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n 

to be a martingale, is that E{Yi) = o for a l l  i. 

But, t h i s  is the case for  D(n) , since 

Therefore the D(n) - process is a martingale, 

Hence, by the theorem, the stopped process (stopped by 

the condition A. 6)  , 

A. 10) $(n$ = E ( D ( 1 ) )  = o for  n 3 1. 

Thus, 



A. 12) 

Therefore, we obtain 

,c"P j-1 DJ 
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= E{D1) 8 

as was t o  be proved. 
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CHAPTER IV 

DISCUSSION AND RECOMMENDATIONS 

We have presented in this Report the first step in 

developing a stochastic theory of cumulative damage based 

on the irreversible work put into the material. 

The distinctions between our theory and others proposed 

may easily be e'stablished. 

stationary random function of the irreversible work input 

for which the average damage per cycle may be empirically 

established. 

of the stress exceedences for which the damage per cycle may 

be established. The Freudenthal-Heller theory is a modified 

Palmgren-Miner deterministic theory in which non-stationarity 

is introduced empirically through observed interaction effects. 

We, on the other hand, introduce a mechanism for determining 

the interaction effects. 

deterministic theory based upon the hysteresis loops area for 

which the damage (or reduction in strength) is assumed to be 

In our theory, damage is a non- 

Parzen's theory is a stationary random function 

Gatts' theory is a non-stationary 
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a given function. 

value of damage, bu t  only a l l o w  i t s  average t o  be determined 

experimentally.  

Note t h a t  i n  our  theory w e  never assume t h e  

The bas ic  f e a t u r e  of the  e n t i r e  theory proposed here  is  

t h a t  a l l  q u a n t i t i e s  may be phys ica l ly  observed. That i s ,  t h e  

h y s t e r e s i s  loop areas, t h e  number of cyc les  t o  f a i l u r e ,  and 

t h e  r a t e s  of changes f o r  t he  h y s t e r e s i s  loop areas a t  d i f f e r e n t  

stress l eve l s .  

One d e f i n i t e  weakness i s  t h a t  w e  cannot p r e d i c t  t h e  v a r i -  

ance of the damage since- t he re  does no t  appear t o  be any n a t u r a l  

method t o  r e l a t e  t h e  r a t i o s  of var iances  t o  t h e  assoc ia ted  

h y s t e r e s i s  loop areas i n  the  same fashion a s  w e  have been a b l e  

t o  for  t h e  means. T h i s  i s  one problem t h a t  must be looked a t  

i n  t h e  fu tu re  development of t h i s  approach. This w i l l  depend 

upon uncovering a n a t u r a l  physical  property associated with 

second moments, i n  t h e  same way t h a t  t h e  S - N ,  E -N curves 

a r e  assoc ia ted  with f i r s t  moments. 
P 

I n  order t o  i l l u s t r a t e  t h e  u t i l i t y  of t h e  above theory i n  

p red ic t ing  f a t i g u e  l i f e ,  l e t  us consider  a simple de t e rmin i s t i c  

example. L e t  t h e r e  be n app l i ca t ions  of stress amplitude u 

followed by n app l i ca t ions  of stress amplitude o ( < F ) .  

Equations 3.17) and 3.18) y i e l d  t h e  r e s u l t  

- - 
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Graphically this formula represents a curve of the type illustrated 

in Figure 8. 
I 

The coordinates of a point on this curve represent 

- n 

Fi 

*O 

FIGURE 8 
FAILURE LOCUS FOR A PARTICULAR SEQUENCE 

OF TWO STRESS LEVELS 
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the number of applications of stress at level (I (abscissa) 

and the number of applications at level u (ordinate) required 

to produce failure. 

For other sequences of these two levels of stress applica- 

tion or with more than two levels of stress application, 

Equations 3.17) and 3.18) may be manipulated to yield a similar-- 

but more complex--result. 

In this first stage of the development of the present 

approach, we have presented the foundation and certain ana- 

lytical consequences. There now remains the task of testing 

the theory in the laboratory to determine its effectiveness. 

However, since the study of fatigue in terms of hysteresis 

loops is relatively recent, there is not sufficient information 

to allow conclusions to be made immediately. The major pro- 

grams of experimentation that muse be accomplished as we see 

it are (a) The determination of the factors of increase of 

hysteresis loop areas as a function of the stress levels for 

pure sinusoidal cycling, (b) The determination of the average 

damage accumulated through our Equation 3.15) and (c) The 

study of the nature of the hysteresis loop area changes under 

varying inputs to determine the change in the loop geometry 

and loop areas due to interactions and relating these to the 

present theory. 



- 103 - 

We wish t o  conclude t h i s  s e c t i o n  by s t a t i n g  t h a t  there 

are c e r t a i n  weaknesses i n  our theory,  as one must expect i n  

any phenomenological approach. However, it is our s i n c e r e  

convic t ion  t h a t  t h i s  theory does c o n s t i t u t e  a s t e p  i n  t h e  

r i g h t  d i r e c t i o n .  

i n t o  a p r a c t i c a l  and use fu l  approach. 

s t a t e d  t h a t  t h e  next  s t e p  is t h e  labora tory .  

W e  hope t h a t  it can, i n  time, be developed 

I t  cannot be over- 
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