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ABSTRACT
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Statistical Models of Cumulative Damage. A cumulative

damage theory dealing with the failure of specimens in
fatigue is presented. The damage is treated as a random
variable, and the average damage is related to the irrevers-
ible work input to the specimen. The theory is compared to
other theories of fatigue failure. Recommendations for

&

further work are presented.
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INTRODUCTION

This report represents an attempt on the part of
Midwest Applied Science Corp. of West Lafayette, Indiana,
to set forth a theoretical basis upon which one may develop
a cumulative damage theory that is associated with the work
input into a material specimen. The motivation for the
theory is to take into account at once
variability that is inherent in fatigue tests, the changing
material properties and to accouﬁt for random as well as
pure sinusoidal load inputs. It may appear to be a some-
what over-ambitious task to attempt a theory incorporating
all of these factors. However, a vefy straight forward
phenomenological approach yields the cornerstone needed to
accomplish all of these points above. This cornerstone is
the irreversible work input into the specimen as measured
by the area of the stress strain hysteresis lopp. This
phenomenon has only relatively recently come back into
favor in the study of the material properties of metals.

It has, for example, already provided the basis for unifica-
tion of many phenomena studied by materials properties re-

searchers in dislocation theory, etc. The irreversible



work concept has also begun to permeate the fatigue and
cumulative damage literature as seen in some recent papers,
(Gatts [1], Feltner and Morrow {1l]). However, we feel that
the present report constitutes the first attempt to system~
atize a unification of the various statistical aspects of
cumulative damage based upon this work input. The statis-
tical properties of the present formulation are based upon
the fact that cumulative damage may be viewed as a contin-
uous birth process. That is, in the simplified case of a
pure sinusoidal input, each cycle of the input stress func-
tion or load yields a non-negative accumulation of damage.
This damage is considered to be a random variable
representing a random amount of birth or population growth.
Assuming that there is a fixed upper limit of damage beyond
which the specimen is said to fail, the basic question is;
When does the total damage, or total population, first ex-
ceed this given value of the upper limit of accumulated
damage? Furthermore, what is the average damage at any
given time? Thus, the birth process concept underlies any
cumulative damage theory. Statistically speaking, the prob-
lem of determining the first time for which the total damage
exceeds any given level is referred to as the first passage

time problem or, perhaps, it might be referred to as the first




passage cycle problem when referring to load cycles. 1In
any case it is this point that was first recognized inde-
pendently by Parzen (Parzen [1l]) and Bogdahoff and Kozin
(Bogdanoff and Kozin [11).

Parzen was interested in the cumulative damage of a
material specimen according to a level orossing model.
However, he introduced the very clever idea of applying
renewal ideas to the failure problem. Bogdanoff and Kozin
were essentially interested in the failure of any "brittle"
system. That is, given a state variable of the system,
the system is said to have failed if the state variable
passes outside of a giQen region having started within the
region. Actually the formulation of Bogdanoff and Kozin is
sufficiently general to include every dynamical situation
since no restriction was placed upon the'nature of the state
variable. Therefore, when the state variable is the cum-
ulative damage, then the first passage above the upper total
damage limit constitutes a "brittle" failure. The question
is; What is the mechanism of failure?, or from the engineering
point of view, What is a suitable phenomenological indication
of the mechanism of failure? Since the time of Palmgren
(Palmgren [1]) and more recently the work of Miner (Miner (1}),

the stress alone has been the indication via the so-called



Palmgren—-Miner hypothesig. Based upon the Palmgren-Miner
hypothesis, many inconsistancies have been witnessed.

For example, upon subjecting a specimen to two
different stress levels yields a non-commutativity in the
accumulated damage that cannot be accounted for by the
Falmgren-Miner hypothesis. There have been a number of
attempts to try to derive analytical devices to do away
with this problem such as non-linear laws or the work of
Freudenthal and Heller (Freudenthal and Heller [1]) using
a modified linear accumulation hypothesis. However, such
modifications of the Palmgren-Miner hypothesis in general
are unrealistic and contain the basic faults that are con-
tained in the hypothesis itself. Various attempts have
been made to understand the nature of fatigue life of a
specimen under random loadings. A very recent work along
these lines is the paper of Leybold and Naumann (Leybold
and Naumann (1l]), in which a very interesting study was made
of the relative failure times predicted from computed sta-
tistics (e.g. number of peaks, magnitude of absolute max-
ima and minima, etc.) as compared with the failure time
under the actual load function, where the time is taken as
unity. Their results are, indeed, most interesting and their

work clearly represents one of the first sound studies of the




failure phenomenon under random loading. However, as the
authors themselves state, their work does not yield any
underlying analytical basis upon which to predict the re-
sults for other environments.

In fact it is conceivable that their results may
change from sample to sample, thus not giving useful infor-
mation for the random case. Our feeling here is that only
average damage or failure properties can make sense in the
random case, since we can never know with probability one
what the properties of the materials are and hence never
know the damage per cycle accumulated by the specimen or
even its distributional .properties. Hence, we shall prob-
ably have to accept the fact that moments will be the
best information we can obtain.

In this report, we shall first present a review of
various statistical theories of cumulative damage and
state their valid points as well as their weaknesses. We
shall then present our approach to the problem and analyze
a few examples. We shall terminate this report with a com-
parison of the approach presented and the theories described
in the review. We shall, furthermore, make suggestions for

future experimental research work that is urgently required



in order to provide the necessary data concerning hysteresis
loop areas that are included as basic quantities in our

formulas.




CHAPTER II

A REVIEW OF SOME PERTINENT STATISTICAL THEORIES
oF
CUMULATIVE DAMAGE

Those theories of cumulative damage in which prob-
abilities and statistics have played a basic role can be
roughly broken into two categories: Theories in which
damage itself either implicitly or explicitly has been
considered to be a random variable, and theories in which
damage has been presumed deterministic but the input or
stress history is assumed random. In only one case
(Parzen (1)) has the random damage and random input prob-
lems been simultaneously modeled. In almost all theories,
except for a few, (Freudenthal and Heller [1], Gatts [1])
the changing material properties have not been taken into
account. Furthermore, a large number of the theories,
especially those with deterministic damage and random
inputs are merely variations of the Palmgren-Miner approach.
In the present section we shall consider first models for
which the damage is implicitly or explicitly assumed to be

a random variable.



The underlying idea for all such models is that a
material is subjected to successive load applications of a
sinusoidal nature at a fixed stress amplitude s. One then
studies the number, N(s), of load applications at this
stress level that are required to produce "failure" of the
specimen. It is a well known fact, frequently observed
(Gumbel [1]), that the number of stress applications required
to produce fatigue failure is a random variable. That is,
for any given collection of apparently identical specimens
of the same material it is observed that the number of load
cycles required to produce fatigue failure varies in an
'unpredictable way from specimen to specimen. Furthermore,
such sta£istica1 spread as has been observed is too great
to explain away by mere experimental procedure. Indeed,
high quality controlled experiments still yield a spread
wide enough to conclude that this is a physical phenomenon
that is being observed. Hence, one must consider the
inherent variation in the number of cycles to failure, as
Gumbel puts it, "....the very essence of the problem". As
a result various models of materials have been proposed in
order to attempt to predict a theoretical distribution
function for the number of cycles to failure, N(s), at a

given stress level s.




That is, these models have been constructed to determine

the failure distribution.

2.1) Py (n) = Prob {N{s) ¢ n},

or, equivalently, the survival function ,

2.2) Ls(n) =1 - Ps(n) = Prob {N(s) > n}.

Several models have been proposed in the past and we

wish to describe a few of them along with their assumptions

(Murphy (11).

A.) The Log-Normal Distribution

The Probability density in this case is

- exp [%%z—(log x - u)j X 30
dap (x) xa/2x o
2.3) p(x) = T = .

o X <0.

A random variable X is log-normal if and only if log X

is normally distributed with mean u and variance o2.
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In such a case, one finds the statistics to be (Parzen [11)..

2

mode - e ~ ¢
. u
median o e
2.4) )
+
mean — e 1/2 o
+ g2 2
e2¥ T 97 (77 -1).

variance —

The model yielding the log-normal distribution for the
number of cycles to failure at a given stress level s is
based upon the model of proportional effects first advanced

by Kapteyn in 1903.

Let D4 (S) seveys Dn (s) be a Sequence of random variables
that represent the amount of damage accumulated at each suc-
cessive load application'at stress level s. The basic
postulate is that the damage at the nEE load application is

related to its predecessor as

2.5) D (s) - D,.;(s) = enDn_l(s)

where e is the random effect due to the nEE load applica-

tion and {ei} is a sequence of independent random variables.

It follows immediately from 2.5) that
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2.6) D (s) = (1+¢€) D _,(s) = (lL+c¢e)...(1+c¢,) Do.

Hence, the logarithm of Dn(s) is the sum of a large
number of independent terms for n large. 1If the assumption
is made that the independent random variables are distributed
in such a manner that the central limit theorem applies, this
will imply that log Dn(s) is approximately normal for n' large.

Hence, Dn(s) is approximately log-normal for n Laige.
: I

It may then be argued (Freudenthal and Gumbel [1]) that

from 2.5) and the fact that ¢  is independent of Do-1(8),

n
it follows that the rate of increase of the average total
damage‘is proportional to the'average total damage. Further-
more, the number of cycles‘to yield a given damage will be
approximately 1inversely proportional to this rate of change

of damage, and hence approximately 1nverseiy proportional

" to the total damage;. That is,

1
2.7) ND(S) = EETEY p

where ND(s) is the number of cycles required to yield

the total damage of magnitude bN(s).
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However, _
1 1 ,

2.8) log MO = -log D_.(s) ,
[DN s N .

hence log ND(s)bis approximately normal, that is, ND(s) is
log-normal for any D. Therefore, assuming a fixed level of
damage for failure, it follows that the number of cycles to

failure N(s) is log-normal.

We may point out here that since {e¢;} is a sequence of
independent random variables, it follows that {Di(s)} is a
Markov chain implying all the features of the Markov property
for the sequence of random variables. In particular tﬁe
distfibution desired is the so-called steady state or ergodic

distribution, which is log-normal for the equation 2.5).

However, it is difficult tc justify the very particular

form 2.5) out of the general possiblities given by
2.9) D (s) = A(D__;(s)) + ¢, B, _;(s),

which in general will yield distributions different from the

log-normal.
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B.) Extreme Value Distribution-First Asymptotic Form.
The probability distribution in this case is
2.10) _P('x) = 1 - exp {-exp (— x;—‘i)}, - ® < X <

T

and the probability density function is given as
2.11) p(x):i’iﬁl exp{("'“ -exp(&.—")} - m < x<

The parameter ranges are ue(-«,=), Belo,=). A
random variable distributed according to the extreme value

distribution above possesses the statistics (Parzen {1])

mode - u
2.12) median - u+ (?36657) B8
mean - u + (.57722) g

¥
/6

variance -~ 8

The physical assumptions leading to such an extreme
value distribution may be stated briefly in the foilowing
fashion (Mufphy (1]). Let us suppose that the matefial is
made up of fibers or very thin rods. Furthermore, suppose
that damage to this material is equivalent to the snapping

of fibers in the bundle. The properties of the fibers are
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assumed to be independent of one another and each distinct
fiber can withstand a nﬁmber, N(s), of load applications at
stress level s to the entire bundle. The number N(s) is a
random variable distributed according to the distribution
Fs(n).’ That is,

~

2.13) Prob {N(s) < n} = Fs(n).

One postulates that the system fails when all fibers
have failed. The question becomes, "What is the survival
function?" That is, what is the probability that the material
survives n cycles at stress level.s. This is just the §:ob-
ability that after n cycles there is at least one fiber in
tact. This is essentially a strongest link theory. If there
are M fibers in the bundle, then this probability is simply

given as
'2.14) 1 - (F (1Y,

The associated density function is

M
n S
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which is merely the probability density for an extreme
value in a collection of M independent samples from a
given distribution. Under a wide set of conditions
(Gumbel [2], Gnedenko [1]), the limiting distribution of

[Ps(n)ln as M+ e is of the form 2.10).

C.) Extreme Value Distribution - Weibull Distribution

The probability distribution in this case is

l - exp [: ( = :] b S N -
2.16) P(x) = v °)

0 X < g

where ¢, v > o.

The probability density is given as

Yo [)]

2.17) p(x) = dp(x) V=g v—e

T4
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A random variable distributed according to 2.16) pos-

sesses the statistics
[‘ 1 l/K
mode - e + (v-¢) - =

median - € + (v-¢) (log 2) 1/x
2.18)J

mean - € + (v=¢) T (l + %-)
I

(\).-5)2 [r(l - %—) - r2 (1 + %)],

L_variance

where r (y) is the Gama function. For, e, v fixed, the
mode, median, and mean all approach v as x + », Therefore, v
is usually considered the parameter of location of the Wei-

bull distribution.

Physical assumptions leading to the above distribu-

tion may be briefly stated in the following fashion (Murphy [1]).

We assume the material and statistical properties to hold
in exactly the same fashion as assumed in the previous case.
We only change the postulate for failure. We shall.assume
that the system fails if only one fiber fails. This‘is
tantamount to saying that the material is qnly as strong as
its weakest link. The probability that none of the fibers

has failed in n applications of the load at stress level s




is given by

2.19) (1 -r 1",

where Ps(n) was defined in the previous case and M

is the number of fibers making up the material.

‘The density function for survival is therefore

2.200 £ (m) = - [1-F (@t D)

an

Again, under a wide set of conditions given in the
references cited above, 1 - [1 -~ Fs(n)]M will approach the

Weibull distribuytion 2.16), as M + =,

The three failure distributions above constitute the
most commonly used distributions in the study of failure
under load applications at a given stress level. There are
arguments both for and against the models used above along
with the distributions derived from them. Before we state
such pros and cons it will bg beneficial to discuss the very

useful concept of the hazard function (Parzen [2}).
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We define u(xb referred to as the hazard function, to

be the conditional failure density function. Thus,

2.21) p(x)dx = Prob {failure for te (x, x + dx)| no failure

for te (to, x)}.

From the definition of conditional probabilities,-one has
. I
Prob {failure for te (x, x + dx)| no failure for te (to, x)}
x Prob {no failure for te (to, x)}

2.22)

Prob {failure for te (x, x + dx), no failure for te (to, x)}

Prob { failure for te (x, x + dx)}.

The last equality follows since failure for te (x, x + dx)

implies no failure for te (to, X).

Therefore, from 2.22) assuming a failure distribution

F(x), we have

2.23) px)dx [1-FP(x)] = f(x)dx.
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Therefore, u(x), the hazard function,is given as

2.24)  u(x) "'1—1-5'1(5%)?7 ]

If F(e) = o, we easily solve 2.24) to yield

2.25) F(x) = l-exp| - Jx u(y)dy . X > E.
c 4

From 2.25), one may derive the failure distribution if
the hazard function, that is the conditional rate of failure,
i3 kacwn. Hence, on the basis of assumptions of the hazard
function, fgilure laws can be derived. For example, we may
suppose that the hazard rate is a constant u. Thus, by the
definition of hazard as a conditional probability density we
have a stationary chance failure independent of the past.

A simple application of 2.25) for this case yields the well-
known exponential failure function commonly used in reliabil-

ity studies.
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It is of interest to determine the_hazard functions
associated with the three failure probabilities derived

above. They may be found to be

A.) Log=Normal Distribution

1 exp [- L (logx -u){]
(x) = wv2w 202
K - . X > o.
dy R — exp | - L (log vy - u) 2
yo/2nw 252
X

B.) Extreme Value Distribution - First Asymptotic Form
exp [—E—;‘E], - ® < X < o,

C.) Extreme Value Distribution - Weibull Distribytion

u(ixg) =

W]

p(X) = cx (X-e)x-l r x>1, x> ¢,
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Based upon a physical picture that describes fatigue
as a process of progressive damage terminated by actual
failure, it follows that the risk function shall be an
increasing function of x, or of N, the number of cycles
sustained by the material. That is, if a phenomenon such as
coaxing is not prevalent, we should expect the larger the
number of load applications that a given specimen survives,
the greater should be the probability of failure on the
very next cycle. This property is possessed by the risk
functions associated with the extreme value distributions
B.), C.) as may easily be seen. However, the risk function
for the Log-normal distribution possesses a very slow
asymptotic approach to zero after a reasonable sharp rise
to a maximum value. On the basis of the risk function
Freudenthal (Freudenthal |1)) strongly rules out the Log-
normal distribution by the theoretical arguments put forth
by Freudenthal. However, he points out that these argu-
ments do not invalidate the use of the Log-Normal distribution
as an approximation to the failure density for purposes
other than extrapolation, gspecially for the 5% - Y5% range.
Freudenthal concurs with Corten's statements on this point.
Indeed Weibull has shown that one cannot distinguish between

the Extreme Value distributions and the Log-Normal distribu-
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tion in the 5% - 95% range.

In the same paper Freudenthal presents an argument in
favor of the Weibull distribution, assuming that one does
not expect faiLure below some initial finite number of
load applications and the monotone non-decreasing properties
required of the risk function. He puts forth the argument
that the simplest such risk function is a power function,
and hence is lead to the Weibull distribution. It is
interesting to note that Freudenthal has been studying
statistical models of fatigue since 1946 (Freudenthal ([2]).
However, it is our opinion thét in many of the arguments
presented the physical picture seems to be secondary to
arithmetical simplicity. In fact, the arguments appear
arithmetical rather than physical. We certainly agree that
tractability is important for applications, however it
should aid the theoretical development and not lead it.
Concerning the models presented above we agree with the
comments of Epstein (Epstein [1]), who essentially states
that any theoretical argument that leaves out the history
of the stress function and neglects the fact that each time
a material is cycled its properties change, implying a
non-stationarity of the distribution of the fiber strengths,

leaves out the fundamental physical phenomenon of fatigue
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failure. Such is the case with the "static" theories
presented above, as well as almost all models posed so far.

We shall now turn to a model which in our opinion
is the most significatn statistical model yet posed that is
physically based upon the Palmgren-Miner motivated stress
exceedence principles. Statistically this model, due to
Parzen (Parzen [l]), offers an approach that is sure to
yield important results in the future. Unfortunately, as
far as we know, the model is not too well known in the
general cumulative damage literature.

Parzen assumes that damage is a non-negative random
variable associated with the application of a load at stress
level s, referred to as D(s). For the J’.-f:l'—l application, he
assumes the damage done to be represented as Di(s). His
basic assumption is that the damage done at each successive
application is independent of any other application, and
furthermore the successive damages at each application are
identically distributed. Thus, {Di(s)}, for fixed parameter
s, is a sequence of independent identically distributed
random variables. Again, since the foundation of the idea
of cumulative damage is that damage is additive, it is

assumed that the total damage accrued after N-stress appli-
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cations to be given by the sum

2.26) Dy(s) + D,(s) + - - - + D (s)

of non-negative, independent identically distributed
random variables. Now let us assume that the material
specimen can only withstand a given amount of damage, D,
before it is said to have failed. Let N,(s) be the

number of cycles to failufe of a specimen of strength D

at stress level s.
Obviously, ND(S) is the smallest integer N for which

2.27) Dl(s) + - == Dbg)(s) > B.

Thus, we see that we are looking here at a simple first

passage situation.

Parzen's basic contribution here is to recognize that
his assumptions lead to a model of cumulative damage that

is a stationary renewal counting process, (Smith [1j).
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If one defines,

F (D) = Prob {D(s) < D}
2.28)

M (D) = E {Ny(s)},

where E { } is the expectation operator, it follows
that FS(D), MS(D) are related through the “renewal

equation”, (Parzen [2]),

2.29) M_(®) = F () + gjus(p-m aF_ (D).

Theoretically speaking, in order to determine the prob-
ability distribution of the damage random variable for a
single load application, one would only require a knowledge
of the expected numbers of cycles to the various damage
levels and not the pfobability distributions of the cycles
to failure. However, this is only of theo;etical interest
and of no practical ;ignificance. But, on the bther hand,
it follows from the basic limit theorems of Renewal Theory,
(smith [1]), that



im E (Ng(s)) _ .
P+ = [SY ' E {D(s

2.30)
lim Var {Np(s)} var {D(s)}
P> R2 (E (D(s)} 3 ,

which is of iméortant practical significance, for these
formulas yield the method by which one may obtain the
mean and variance of the damage on any given cycle and
hence, because of the assumed independence, 2.30) will
also yield the mean and variance aftér any given numbér
of load applications. This is all given in terms of a
readily accessible experimentally determinable statistic,
namely, the average number of cycles éo failure. Hence,

for large D, 2.30) yields

E {D(s) . 1
® E {N (s)} g

D(s) _ Var {NE¥S)}
3
(E {NS(S) })

2.31)

Var

where Eé§L represents the proportion of damage on a

given cycle..
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It is important to note that Parzen's approach can
take into account the complex load environments that a
specimen may be subjected to, again by assuming the sta-
tistical independence of the damages produced by the various
load applications. Further, it is assumed that all appli=
cations of the same stress amplitude , s, possess the same
distributional propertiés and hence the same expected
valves as determined by 2.31). ' Thus, suppose in a given
history of stress loads the levels <, g  ar

1 == °N
a total of M cycles. Let these be M(si) cycles of load

o
th

N
~AMInAd Iwn
C A T L3 wind &

level s;. Hence,
2.32) M= M(3,) + - - -+ M(s,).
For any given random environment, the variables {M(si)}

are also random variables. For a given stress level S;r of

which there are M(si) cycles, we set

1
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It easily follws that

E {DM(si)} = E {M(si)} E {P(Si)}

2.34
Var {DM(si)} = E {M(si)} Var {D(si)} + Var {M(si)} (E {D(si)})zf}
For the total damage, D, we find
E{D} =t E {M(s;)} E {D(hi)}
2.35) :
Var {D} = I [E {M(si)} Var {D(si)}]+ Var{? M(si) E {D(si)}}.
i . 1

Therefore, from the stated assumption and the renewal -

theory limits 2.30), we have for large B,

(={3} -

0 var (Nx(s;)) M(s) .
Var {‘5} = D EWME)) e YYD ETgs))

E {M(sj)}
E .{NB(Si”

™~

2.36)
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Clearly one must know the statistics of the environ-
ment in order to determine the required mean values. How-
ever, such data is available in many cases such as in tur-
bulent gust load data, various vibrational environments
encountered from acoustical noice sources, etc.

Commenting upon Parzen's approach, we feel that is is
the most significant statistical model yet posed in the
theory of fatigue failure. Furthermore, his model allows
one to directly obtain, through experiment, the quantities
of interest in‘éractical applications, that is, the mean
and variance of the damage, without requiring assumptions
concerning the nature of the distribution of the number of
cycles to failure. It is fair to say that Parzen's approach
possesses some weaknesses. The assumption of identical dis-
tribution for a damage of load level s independent of when the
ioad occurs in the stress history as well as basing damage
upon stress exceedence are the main weaknesses. However
these weaknesses are shared by almost all theories so far
presented of fatigue damage. Hence, Parzen's approach is
certainlyxno worse, physically speaking, than those approaches
put forward by experts in the field. In the case of a single
amplitude, independence and identical distributions are prob-

ably not the poorest of assumptions. But, when various
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stress amplitudes are present, these assumptions are
already known to be incorrect, especially the assump-
tion related to identical distributions.

The models discussed above have been models based
upon the damage as a random variable. We wish now to dis-
cuss some results in cases for which the damage is a
deterministic variable such as in the classical Palmgren-
Miner approach, and in the very interesting approach of
Gatts, but for which the complex stress histories have
been studied.

Probably one of the most well known works along these
lines was accomblished by Miles (Miles [1]). His work has
peen the subject of many subsequent in?estigations in the
applied mechanics field. Using the Palmgren-Miner hypothe-
sis, Miles determined the average damage when the stress

history was the response of a single degree of freedom

oscillation subjected to a Gaussian excitation and for which

a
1 L]
Therefore, the randomness of the damage here is entirely due

the S8-N diagram for the material is of the form NS® = s

to the statistical properties of the environmment. We shall
present here a recent derivation of Miles' result (Crandall,

Mark, Khabbaz [11).
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The total damage is assumed to be a function of time,
and for large values of time T, the total damage D (T) is
represented as the sum of incremental damages accrued during
incremental time intervals. Thus, let the interval [o, T]
be divided into M equal sub-intervals. Let the damage d;

be associated with the i-tit—1 sub-interval. Hence,

D= z d.
i=o0 1
2.37M
M-1 o
E {D} = i:o E {di} = (M-1) E {do}.

The last equality holds from the assumed stationarity
of the stress history and hence from the stationarity of
the damage. Ordinarily, in the Palmgren-Miner hypothesis, -

the damage di is given as —%— . a constant factor (the
i

inverse of the number of cycles to failure at stress level
si) as given by the assumed S-N diagram. However, Crandall
et al find it more convenient to look at half cycles and

; 1
gf;te the damage d; = fﬁ;—

This is simply an analytical aid and has no physical sig-

as the damage per half cycle.

nificance. For narrow band stationary Gaussian processes

it is well known that the expected frequency w of the
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process may be associated with the zero crossings (Rice [1])

and is given as

f: w2G(w)dw

2.38) w 2= o .
j G(w)duw

where G(w) is the power spectral density function of
the assumed stationary Gaussian process. Using the assump-
t

tion of the narrow band. Gaussian process, as represented by

a sinusoidal function of frequency w, and varying stress

[¢]

levels, the authors write the stress amplitude as

2.39) s = —iil—

o

where s is the slope of the zero crossing.

Hence, N may be obtained from ; through the assumed
S-N relation. Now dividing [o, T] into small intervals of
length At, it follows that only for those sub-intervals for
which there is an axis crossing, will there be damage. Thus,
upon applying the now classical technique of Rice, the
authors obtain the expected damage for an interval of length

At to be given by
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f e
. l . -

E{Q =| = ds | p(s, s)as + ds | p(s, 9

- o o -SAt

2.40) 1

1 L] L ] [ ]
At , .
- Is] p(o, s)ds

_ L

t

Since s is Gaussian, it follows that

2.41) p(o, 8) = —*— exp [ - s? 1 .
o ' 2x 20§2

Applying 2.39) to the S-N relation yields.

v - (B5)"




2.44) E {D(T)} = 2—% T

Substituting 2.41), 2.42) into 2.40) gives

- ae Yo ./Z?é_“( 2)
2.43) E{do}-AtZW g;->rl+2 .

Now inserting 2.43) into 2.37), letting M become

large and At become small (MAt = T), Miles' result

1
a
a
r(& + 5:)

o %)

°s
S1
is obtained.

Upon making further assumptions, the authors proceed
to study the variance of the damage and apply their results
to various special cases. 'Physically speaking the work
suffers from the same faults cited above concerning the
Palmgren-Miner hypoﬁhesis and "static" material properties.
However, it does point out a few of the analytical problems
involved with the introduction of random stress histories.
These problems are mainly concerned with the axis crossing
apd extreme value properties of the stress history. These

problems are among the most difficult and at the same time

the most important to be encountered in physical applications
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of stochastic models. The use of the narrow band assump-
tion in order to obtain an "average frequency" from which
the maximum amplitude may be obtained from the slope at the
axis crossing has been the only physical approach used so
far. This leads mainly to random amplitude variations in
the successive cyc;es and leaves the field wide open for
the study of arbitrary stress input spectra. On this point
we mention again the work carried on by Leybold and Naumann
(Leybold and Naumann[l]), who have been actively engaged

in the determination of the pertinent statistics of various
random stress functions. These statistics are concerned
with extreme value and axis crossing statistics. It is
just this type of information that will certainly become of
increasingly greater importance in the future analysis of
fatique properties under random loadings.

In all of examples of fatigue models cited above not
one has taken into consideration the fundamental character-
istic of a material specimen. That is, the fact that the
physical properties are changing as the specimen undergoes
stressing. Such properties cannot be fully determined by
stress exceedences alone. This very fact, in our opinion,
rules out any theory that is based upon stress exceedence

alone. However in the work of Freudenthal and Heller, cited
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previously, an attempt to incorporate materxrial properties
implicitly was made via a modified Palmgren-Miner rule.

The Palmgren-Miner hypothesis states that failure occurs

when,
n 1
2.45) z p. N T =1 ,
i=1 * 8
i
where Sir eoes Sn are the stress amplitudes present,

Ns- is the required number of cycles for failure at
i
stress amplitude sjr N is the total number of cycles,

and P; is the proportion of cycles at ampli tude Sj-

Freudenthal and Heller replace 2.45) by

n
2.46) z

where {mi} is a sequence of "stress interaction" factors
that depend upon all the other amplitudes and number of
cycles present at each amplitude, és well as the order
of appearance. At present there appears to be no phys-

ical basis for determining such factors other than
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laboratory experiments for a great variety of input
stress functions. Although, Frcudenthal and Heller,
correctly, try to introduce the fact that there is |
interaction by attempting to account for it, we feel
that their approach still misses the heart of the
matter. In our opinion, their approach is in one

sense too naive by merely trying to modify the Palmgren-
Miner hypothesis and in another sense too complex since
their interaction factors have no physical basis and
thus a new set of factors would have to be determined
for every conceivable situation. This results in a
lack of physical and engineering interest since few
general statements can be made. DBut we must not over-
look the fact that their approach is among the first
attempts to construct a more realistic fatigue failure
theory.

The approach that is, perhaps, more in line with what
is occurring in the cycling of a material is due to Gatts
(Gatts [1]). His approach is not only one of the first
attempts to base fatigue failure on the more realistic
stress~strain relations, accounting for changing material
properties, but it is the first to use strength as the fun-

damental quantity and the stress-strain hysteresis loop as
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the phenomenological basis.

Gatts postulates that the damage due to a given stress
history should be measured by the reduction of the two
strengths, namely the endurance limit and the failure stress.
Furthermore, no damage occurs until the stress ampliiude
exceeds the endurance limit and failure will not occur
until the applied stress at least equals fhe failure stress.
tie writes the functional relationship describing his pos-

tulates as

ds_(n)
2.47) f
—d-n—— = =k D(S(n), Se(n)) ’
where n 1is the number of cycles, S(n) is the applied
stress,se(n) is the endurance limit, Sf(n) is the
failure stress, k > o, and
2.48) D (S, se) = o for S « Se'

The eqgu@ation 2.47) must be solved according to the

bbdundary conditions

2.49) _
n =N, Sf(N) = S(N).
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With this basis, Gatts has put forth a very general
approach. In;fact, his approach is so general that a num-
ber of further assumptions are required in order that
specific results may be obtained. The important question
is the nature of the essential and, always, unknown function
D. For it is this function that analytically expresses the
mechanism of failure. Gatts makes a phenomenological
hypothesis upon the irreversible work put into the material
as given by the shaded portion of the stress-strain hyster-

esis loop shown in the Figure 1.

FIGURE 1
STRESS~-STRAIN HYSTERESIS LOOP
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Assuming the hysteresis loop to be made up of straight
lines, the area of the shaded portion is'proportional to

(S-Se)z. Hence, 2.47) becomes

_k' [S(n) - Se(n)]2 s > 8

2.50) dS¢(n)

o) ’ otherwise.

Further hypothesis must be made since 2.50) includes
two unknown functions Se' Sf. Gatts then proposes the

doubtful hypothesis that Se:Sf is constant, obtairing

2
as_(n) -K [Ss(n) - Se(n)]
e e
2.51) I =

o otherwise.

After analyzing the equation 2.51), he then assumes
a random function for S(n) (Gatts [2]). However, in this
case it is not too clear what his results will be. Gatts
formally takes averages and then integrates the equation
2.50). However, with his apparent assumptions of the inde-
pendence of S(n) and Se(n) at each instant the differential

equation cannot be integrated formally. 1Indeed, in this
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case it is best to revert back to the variable n as an
integral variable (the number of cycles)Aand use a differ-
ence equation; Therefore, let us assume that at each cycle
the amplitudes are identically distributed between zero and
some maximum possible amplitude A, Qith distribution P(s).
Furthermore, we assume that the amplitudes are independently
distributed for distinct cycles. We desire to obtain the
expected change in the endurance limit during the n + 1555
cycle. The correct results, up to a point, are presented

below. To proceed further one must make specific assump-

tions on P(s), as we shall see.
The difference equation is
(5,(m) -K [Sta+1) -s 1%, sm+) > s ()

2.52) Se(n +1) =4

L“Se(n) S(n +1) < Se(n) .
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From elementary probability (Feller [1l])) if events
B, C satisfy BNC = o and Prob (B} + Prob {C} =1, it
follows that for any random variable Y,
2.53) E {y} = E {¥|B} Prob {B} + E {Y|C} Prob {C}.
Therefore, 2.52) yields
2.54) E {Se(n +l)|Se(n)} = E {Se(n + l)lse(n), S(n + 1)

> S,(n)} Prob {s(n +1) > Se(n)} + E {s_ (n +l)|Se(n),

S(n +1) € S_(n)} Prob {S(n +1) s'se(n)}

=S_(n) - KE {[S(n + 1) - s_(n)1%]s_(n),

S;(n + 1) > Se(n)} Prob {S(n +1) > 5_(n)}

A

_ _ - 2

= Se(n) K ‘S [s Se(n)] dpr(s).
Se(n)
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Hence, finally

A

2.55) E{S,(n+ 1)} =E {s_(n)} - KE { (s - s_(m1? ar(s)},

Se (n)

which i3 quite different from the results obtained by
Gatts. As is easily seen, we cannot proceed further with
2.5§) without a specific functign P(s). However, this in
no way discredits Gatts Easic fatigue thecry. Indeed his
basic approach is very interesting and certainly has merit.
His attempt to base a cumulative damage theory upon the
changing material properties is truly a step in.the right
direction. His theory is quite general and many hypotheses
must be made. This is soméwhat of a disadvantage since
one would like to make as féw assumptions on the nature of
the damage mechanism as is possible. The major lack in
his theory is that the inherent variability of fatigue
damage has not been accounted for, as he states in his
discussion (Gatts [2]). Furthermore, his assumption of

constant sezsf is seriously éttacked in the discussions of

his paper.
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We now conclude this brief summary of pertinent models
that have been proposed. The various approaches, as we
have seen, have possessed good points and bad points. This
1s probably true of most theories that one can construct,
and is no less true for the theory to be presented in the
following section. However, in the development to follow
we {eel we have the most realistic theory yet proposed.
In addition, the theory is one for which relatively straight
forward laboratory experiments can provide the required

quantities incorporated in the analytical development.




- 45 -

CHAPTER III

A STOCHASTIC THEORY OF FAILURE

BASED UPON THE STRESS-STRAIN HYSTERESIS LOOP

A.) The General Theory of Failure

The general theory of failure of any system, whether
it is a material specimen, a complex missile or communica-
tions system, an economic system, etc. may be given a
rather straight forward mathematical formulation. We may
let X(t) = [xl(t), -—, xn(t)] represent the general
state vector of the system as a function of the generalized
"age" parameter t. The age parameter may represent the
time or it may represent other measures such as the number
of on-off operations, the amount of time above some pre-
determined value or the number of sinusoidal cycles at a
given stress level, etc. We shall further let l}t[X] denote
the failure functional. That is J}t[X] denotes the failure

state of the system at age t, depending upon the entire

history of the general state vector X over the entire age
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interval, [o,t]. 1In the most general situation the func-
tional Z}ilx]' as a function of the age parameter t, will
perform a one-dimensional random walk in the LQE[-],t) - plane.
We assume furthermore that there is a predetermined positive
function F(t) that defines the failure criterion. It is

then said that the system, with general state vector X,

fails at the first age for which the failure function _9£[x]
passes outside the region bounded by + F(t) having initially
started within the region. This situation is demonstrated

in Figure 2.
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As shown in the figﬁre, the system fails at age t'. We
may mention here that since F(t) is a known curve, never
zero, we may divide f}il‘] by F(t), and replace the curves
+ F(t) in Figure'I, by horizontal lines at +l. 1In the
following notation we shall assume this division  has taken

place.

In the most general pract%cal setting, the system and
its environment are not explicitly known and can at best be
given as stochastic processes. It follows that the problem
- of greatest interest, whose solution would yield most of the

desired failure imformation, is the determination of
3.1) Prob sup (x]
o g tcst T

The expression 3.l) represents the probability that the

< 1),

system is still operational at age t, never having failed
prior to t. This problem is related to the first passage
problem of stochastic processes, and is basic to any failure

formulation, (Bogdanoff and Kozin [1}).
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We wish to specialize the general formulation some-
what. In particular, let us consider the case that the
failure of a system is due to an aging process. That is,
instead of assuming that1}£DU undergoes a general one
dimensional random walk with increasing age, we assume that
it is a monotone non-decreasing random function cf the
age t. Physically such an assumption represents an accum-
ulation of non-negative :andom quantities with increasing
age. In view of this situationz it follows that

}ftm

3.2) Prob < 1} = Prob {#.[X] < 1},

sup
o & 1t <t

simply because of the non-decreasing property ofjft[x].
The complicated first passage problem has its simplest form
in this case. Fortunately, the theory of cumulative damage

just fits this situation.

The mathematical formulations given by 3.1) or 3.2)
are well defined. However, an even more difficult‘thSical
problem remains. The explicit form of the failure func-

tionalEFt[x] depending upon the properties of the system

remains unknown, especially in the case of material properties.

Knowledge of this functional is tantamount to knowing the
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underlying physical failure mechanism. If, as in the

case of a large scale missile system, one requires only
that the generalized positions and momentum variables be
within some required range, then the failure functional

can be derived from straight forward input-output relations
for dynamical systems. Thus, the failure functional,
although quite complex, can easily be defined. Of course,
determining 3.1) even for this case is a very difficult
problem that in general will require many hours of com-
puter studies. On the other hand, failure due to the aging
of physical properties is a problem of a much greater mag-
nitude of complexity. Indeed there appears to be no means
at present by which we can analytically express the phys-
ical aging due to the accumulation of damage gquantities,
using the observable states of a system. This happens to
be true whether the system is mechanical, electrical or
biological. 1In lieu of having an explicit failure functional
we must seek a phenomenological means by which we may
measure an aging effect through appropriately chosen, ex-
perimentally observable, physical quantities. At the same
time we must account for our basic ignorance of the failure
functional. But even this is quite difficult and has not

been accomplished to any satisfactory degree heretofore.
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The extreme value, the Palmgren-Miner and the Parzen
approaches all neglect the fact that the material is under-
going internal changes, and the Gatts approach assumes a
distinct failure functional. In our opinion, all of these
approaches miss the heart of the problem in one way or
another. 1Indeed, it is because the problem is so diffi-
cult that such an enormous amount of literature has been
written on the subject.

The problem as we see it is two-fold. We must assume
a damage variable that is a function of the age through
a readily observed statistic and then have a method of
deriving statistical qu#ntities necessary to make predic-
tions of the fatigue state of the material specimen. Here-
tofore, the observations have been concerned mainly with
the numbers of cycles to failure at given stress levels,
neglecting the strains that the material is undergoing.
Only relatively recently has the idea of the strain that
the material undergoes become seriously considered, espec-
ially due to the success of Wood's theory (W. A. Wood [1]).
Even more recent is the consideration of the stress-strain
hysteresis loop in fatigue studies (Feltner and Morrow [11],
Gatts [l1], Kawamoto and Koibuchi [1l]). This latter con-

cept we discuss further in the next paragraph.
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B.) The Stress-Strain Hysteresis Loop

In the early work of Gough and Haigh performed in the
1920's (Gough (1], Haigh [1]), studies were made of the
changes‘bf mechanical properties occuring during fatigue tests
in metals. 'The changes of the mechanical properties were
observed through the energy dissipated in the specimen during
the test. One method of observing the eﬁergy dissjpated in

the specimen is through studie's of the stress-strain hysteresis

loop as given in Figure 3.

sTressA
O'Jb B
1
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FIGURE. 3

STRESS-STRAIN HYSTERESIS LOOP .
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The kinematical process producing this loop is as
follows: As the stress is increased from zero to the

elastic limit o the material will traverse the curve

e’
along the linear portion from o to A. If the stress is
reduced to zero before reaching Og e then the material will
retrace its path along the line segment back to the origin.
However, if the stress is increased past Oo to a
level o, then the material will continue along the plastic
portion of the stress-strain curve AB. We notice that the
total strain involved is the projection OB' on the strain
axis. Upon decreasing the stress to zero, the material
does not retrace the curve BAO, but travels back along the
line BC which is parallel to OA. The segment OC is referred
to as the plastic strain. If the stress is increased again
from zero to o after the material has reached state C, then
the path of the material will be along the elastic line
segment CB. If the stress is decreased from zero to -o
and released back to zero, then the lower half of the loop
CDO of Figure 3 will be traced to form the closed stress
strain hysteresis loop whose area represents the irreversible
work put into the material for the gntire symetric stress of

range (-0, o). The area of the half loop OABC represents

the irreversible work put into the material for the stress
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range (o, o). Assuming that the strain rates are not too
high the half loop OABC shown in Figure 3 will be gener-

ated by each of the stress functions in Figure 4.

STRESSA - STRESS)
o+ ' o +
: o+
O'| -

= -

AGE AGE
(a) (b)
'FIGURE 4

- STRESS FUNCTIONS
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We mention at this point that the property just des-
cribed makes the hysteresis loop the most significant
observable feature of the material when it is subjected to
a random stress function. We also mention that since real
materials do not possess an exact straight line OA as
shown in Figure 2, the actual hysteresis loop generated by
the stress function in Figure 4(b) is shown in Figure 5

(Kawamoto and Koibuchi [1]).

——
STRAIN

FIGURE 5
ACTUAL HYSTERESIS LOOP



- 56 -

However, the more nearly linear the elastic portion of
the stress-strain curve is, the smaller is the area of the
small interior loop, and will in general be neglected rela-
tive to the entire area of the half loop.

In studies.of the aging process of a material during
cyclic constant amplitude fatigue testing, beginning with
the fundamental work of the 1920's, it has been well estab-
lished that the stress-strain hysteresis loop undergoes
three periods of evolution until final failure takes place.
These periods are referred to as Stage I, Stage II and Stage
III. They are characterized by the nature of the changes
in the areas of the hysteresis loops. Stage I is mainly
prevalent in softer materials and is characterized by a
decrease in the loop areas for successive cycles. This is
a hardening period and lasts for a relatively few number of
cycles as compared to the entire fatigue life of the material.
In the case of hardened materials this period may only last
a few hundred cycles, and in general is less than 1000 cycles.

Stage II, on the other hand, occupies the major portion
of the fatigue test and it is this stage that we are mainly
concerned with in the present work. It is this stage that

appears to be related to the formation of slip bands associated
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with the damage process, and hence the cumulative damage
concept as well. Stage II is characterized by a gradual
increase in the hysteresis loop areas from the minimum area
attained in Stage I. The rate of increase of the loop areas
depend upon the magnitude of the stress level, and it is

a monotone increasing function of the stress level. Further-
more, the areas remain constant for stresses near the endur-
ance limit. (Kawamoto and Koibuchi (1], Feltner and Morrow [11],
Thompson and Wadsworth [1}]).

Stage III is of a much shorter duration, perhaps even
shorter than Stage I. It is characterized by an extremely
high growth rate of‘the hysteresis loop areas just prior to
actual fracture of the specimen. Stage III is physically
associated with the final stages of the propagation of sur-
face fatigue cracks and is of no intérest to us, since when
cracks appear the specimen is usually considered to have
failed.

It is an accepted fact that the work done on. a speci-
men is converted into an energy that finally fractures
the specimen. 1In fact, a number of researchers (e.g.
Enomoto [1], Hanstock [1]) have advanced the postulate that

the total amount of irreversible work per unit volume
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required to caﬁse fatigue failure is constant.

This is based upon the fact that not all of the irre-
versible work in a given cycle is converted into fatigue
energy, but some unknown portion of it that will cause
slip bands to form and internal bands to weaken. The other
portion may be lost as heat to the surrounding medium.

The fact that work is the essence of the problem was even
stated by Miner in his now famous paper (Miner [1]). His
basic error is that he considered the total work done on the
material, rather than the work absorbed by the material.

It is this point that led Miner to consider the stress ampli-
tude as basic in the formation of his damage accumulation
hypothesis.

If we postulate that the irreversible loop energy
is the significant phenomenological observation, then the
question becomes simply: "How do we incorporate it into
a cumulative damage theory?" Gatts incorporated the ,
irreversible work into his theory by assuming a specific
damage relation in teérms of the weakening of the ultimate
failure strength and the endurance limit strength of the
material. Hence, Gatts essentially assumed a specific

failure functional l}£. As we have stated in the previous
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section, ;91

shall postulate certain average properties to hold and let

can never be explicitly given. Therefore, we

actual values be derived only through experimentally ob-
served statistics.

The fundamental idea upon which we will base the theory
to be developed in the following paragraphs is that the
total area enclosed within the hysteresis loop, or half
loop (Crandall, Mark and Khabbaz [1]), in the complex stress
function case, is a measure of the damage done to the
material. Furthermore, this measure is a random quantity
whose distribution must remain unknown, but whose mean
value may be determined thfough experiment. Larger areas will
be presumed to be associated with larger damage quantities,
as a result of the fact that failure appears to occur at a
constant amount of irreversible work input associated with
the plastic strain energy.

On the basis of relating damage to the area of the
hysteresis loop, a reversible physical pictqre presents
itself. Under pure sinusoidal cycling, the increase in
area of the hysteresis loop during Stage II may be viewed
as a weakening of the material to the same input as the

damage is accumulated. In other words, successive cycles
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of a fixed stress amplitude have greater and greater damaging
effects. Furthermore, the fact that larger stress amplitudes
should produce a greater damaging effect is reflected in the
fact that the increase in the loop area occurs at a higher
rate. Also, stress near the endurance limit possessing
almost zero rates of change of hysteresis loop areas imply
their much smaller damaging effect. One would expect that
the Palmgren-Miner hypothesis would be most accurate in the
endurance limit range of stresses. We shall see in Section

E that the change of hysteresis loop areas explains the
inaccurancies observed in applying the Palmgren-Miner
hypothesis when subjecting a material to two different

stress levels.

In the next section, we shall make the above statements

precise.
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C.) Postulates For A Cumulative Damage Theory

The entire theory to follow is set forth in the six
postulates below concerning the damage variable D and

the hysteresis loop area A.

Postulate I - Randomness
Damage, denoted by D, is a non-negative random

variable.

Postulate II -~ Damage Function
The damége random variable, D, associated with an
hysteresis loop (or half loop in the complex stress
functior. case) of area A, is assumed to be a ran-

dom function of A.

That is

Postulate IITI -~ Independence

The random variables D(Al), D(Az), --- associated
with successive loops (or half loops in the complex
stress function case) of areas Al' AZ' --~ are

assumed to be independent random variables.



- 62 -

Postulate IV - Failure Criterion

We assume that there is a value D> o, depending
only upon the material, such that when the total
accumulated damage reaches this value, the material

is said to have failed.

Postulate V - Proportionality Factors

The expected values E (P(Al)}, E {D(Az)} of the

damage for hysteresis loops of areas Al, A, shall

satisfy the relation

E {D(a; (o))} Aj(o,)
3.3) z =
E {D{A, (0,))} A, (o,)
where a > o 1s the exponent in the ep-N diagram
for the given material. That is, o 1is defined by
.4 N = Ke_ & ,
3.4) (cp) ep

where N is the average number of cycles to failure

at constant plastic strain ¢
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Postulate VI - Load Interaction

The effect of a load of stress level o on any
given cycle is to increase the hysteresis loop
‘areas on all future load applications by an (experi-
mentally determined) factor associated with o

and independent of all past or future stress levels.
Furthermore, the effect of two loads of level o

on subsequent hysteresis loops is independent of
whether the loads are on contiguous cycles or

separated by cycles of other loads.*

We shall now present a short discussion' describing

the postulates set forth above.

Postulate I sets forth our intention to develop a
stochastic theory of cumulative damage. This assumption
reflects the universally accepted fact that there is an
inherent variability in the fatigue phenomenon or, equiva-
lently, it acknowleﬁges our ignorance of the basic damaging

mechanism and the fundamental failure functional ;;;.

° n-1

An(on) = Al(on) ‘ ! y(ci) , where y(oi) is defined in
i=1

3.17).
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Postulate II is the;basic departure from the majority
of cumulative damage approaches, for it immediately assumes
damage to be related to the fundamental phenomenon of
irreversible work input into the material rather than the
usual stress exceedence. Thus, we bring in the non-station-
arity or aging process that the material actually undergoes
during the evolution of fatigue, particularly regarding the
Stage II development of the hysteresis loops.

Postulate III is difficult to condem or defend on any
observational basis. It essentially states that the amount
of .irreversible work that goes into damage on any given
cycle is independent of the amount of irreversible work that
goes into damage on any other cycle. This independence has
been a part of all of the stochastic theories so far.
Furthermore, it is required to make the renewal theory ideas
go through in the analysis. Our feeling on this matter is
that the age-dependence or non-statibnarity is the most sig-
nificant aspect here. Since we have taken age into account
in our theory, we do not feel that independence is a serious

assumption.
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Postulate IV is our failure criterion and corresponds
to the function F(t) discussed in Section III A. This is
a postulate used by many researchers. Furthermore, experi-
mental evidence appears to lend credance to a fixed upper
limit of work input or total damage as we have discussed
above in Section III B.

Postulate V may at first appear quite specific in its
form. However, there is a reasonable direct argument that
leads us to this choice. The fact that larger loop areas
should imply larger damage variables on the average, as
we have seen, is the result of actual experimental inves-
tigations. However, the question is how to incorporate
this fact into a theory. Our approach to answering this
question is via the ep—N curve that is rapidly becoming
as important as the S-N diagram in cumulative damage 1lit-
erature. Let us consider the case in which the stress
amplitude is near the endurance limit so that the Stage II
increase in areas of the hysteresis loops is so small
that we may be allowed to neglect the change in area with-
out significant error as has been observed (Kawamoto and
Tanaka [1], Feltner and Morrow [1]). In that case since
the hysteresis loop areas are constant, then the expected

values of the damage are constant, so well as the plastic
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strain £ for successive cycles. It follows, for

pl
example, from Parzen's theory described in Chapter II that

for a stress level o¢ near the endurance limit, we have

1 : _ 1
3.5) E INblePST - E TNﬁh)T

_ ‘L:L?; .
where A(c) 1is the constant area of the ge>hysteresis

loops required for failure at constant stress o , and by

our assumption, constant plastic strain €

Now we must reflect upon the fact that any empirical
diagram such as the S-N diagram or the ep—N diagram is an
average relation. That is, the curve represents the
average number of cycles to failure for a given stress o
or a given plastic strain Ep' Hence, physically, we must
identify N(ep) in the sp-N diagram with E {N (ep)} in
formula 3.5). Therefore, let us consider two stress levels
0y, 05 that are close to the endurance limit so that the
histexesis loops do not vary. Therefore, epl, €p2 also
are assumed to remain constant. It follows from 3.4) and

3.5) that
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E {D(A,)} E {No(e_,)} N(e_,) e .\
1 _ £'"p2 _ 2" 1
3.6) E (DA A'ZH - E {Na(splﬂ TN €p1 - <E§ *

Consider a simplified hysteresis loop, in the shape

of a parallelogram, as shown in the Figure 6.

STRESS A

€ —
~ €p ™ STRAIN

FIGURE 6
SIMPLIFIED HYSTERESIS LOOP



The area of the loop in Figure 6 is simply given by

ep(c + oe), where ¢ (o - oe) coté.

p
Now in the case that 9yr 9y are close to O it
follows that the areas of the hysteresis loops satisfy

3.79) 5£ . epl (ol + ce) _ (cl - oe) (ol + oe) =°l - qi
A, €52 (o, + 0,) (o, - CI) (o, + 0

e) %92 7 9%

to the first order in small quantities 0y = Ogr 0Oy = O

Hence, we have the approximate equality

E{D(Al)} X Ay

ETD(AZ'H - A_2 ,

3.8)

which we postulate as an equality throughout the range of

loading of the material.

Postulate VI is somewhat of a different nature than
the other postulates, in that we are here assuming'a par-
ticular type of aging to take place. We are motivaééd by
the observed fact that the presence of interspersed stresses
of levels greater than the remaining stress levels cause a

large increase on the subsequent accumulation of damage even
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at lower stress levels. Their effect upon the future ﬁust
be accounted for by assuming a proportionately greater
amount of expected damage for all future cycles at any
stress level. Furthermore, since stresses of different
amplitudes cause distinctly different internal structural
changes to a material, the change in areas of the hysteresis
loop must be dependent upon the past. This last point
also motivates our assumption that two cycles of the same
stress have the same effect on subsequent cycles independent
by other cycles. We must also point out that whereas
Postulate III assumes independence of the damage variables
themselves, Postulate VI assumes dependence of their average
values, through the sequence of stresses that occur, as we
shall see in the next section.

Upon applying the six postulates above to a combination
of physical and statistical arguments we shall develop a
stochastic theory of cumulative damage. We shall at first
consider the simple sinusoidal input of constant amplitude,
then the input consisting of two blocks of sinusoidal cycles
at distinct constant amplitudes. We will finally study
the random situation. 1In every case we shall be interested

in the average damage at any given ége. The age parameter
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will always be generated by the number of cycles of sinu-
soidal stress inputs or by the number of axis crossings
~for complex random loading functions. Time will be brought

into the picture only through the above age measures.

D.) Pure Sinusoidal Input

Let a material specimen be subjected to a pure sinu-
soidal stress function of load amplitude o. The areas of
the successive hysteresis loops generated by this stress
function will be denoted by Al(o), Az(c), «+s, and the
associated random damage quantities will be denoted by
D@l(o_)), D@z (o)), .v~s++ Hence, the damage after N

cycles is given by the sum of the independent random variables

3.9)

e 2

L D<§i(02>.

i

The number of ¢ycles to failure at stress level o¢ is
a random variable which we denote by N (o), and by our
failure criterion, Postulate IV, it is defined as the smal-

lest integer M for which
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3.10) T D(a; () >¥.
i=1

It therefore follows that, at failure,

Nﬁ(o)

3.11) I D(a; () =D +s

where § i3 a non-na2gative random residual.

We may take the expected values of each side of 3.11)
to yield, recalling © is a constant depending upon the -
material,

Nﬁgo)
3.12) E g D(Ai(o)> =R+ E {8).

i=1l

Recalling that NE#G) is a random variable, it follows

from Postulate III and Postulate V that

3.13).  E{ :  0Q@;()] =E (D@, ()}
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However, the proof of 3.13) required the use of Mar-
tingale Theory of stochastic processes. We shall present

the proof in the appendix.

Upon applying the result of 3.13) to 3.12) and dividing

by the non-negative gquantity IS , Wwe obtain

D(a, (o) (6) /A (0)\°
3.14) Ed —2 E rN? T ) =1+ L8
3] 11=1 1197, R

We must now study the quantity E%%l on the right hand

side of equation 3.14), as® becomes large. As a general
mathematical question, this is beyond the scope of the pres-
ent work. It is theoretically difficult and has been answered
in only a relatively few number of cases in renewal theory
(smith [l]). Fortunately for us we have a rather well defined
physical situation at hand that we may fall back upon. The
fundamental physical feature of the effect of cyclic loading
in producing fatigue failure is that the total damage accum-
ulated consists of a large number of small contributions,

one contribution from each cycle. Hence, nu one cycle is

the predominant cause 6f failure, and the damage accumulated
on each cycle is a very small percentage of the overall

damage produced at fatigue failure. Therefore, although we
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cannot state rigorously that Eégl approaches zero almost

surely as P approaches infinity, we certainly can say that
E%;l < < 1; being of the order of tenths or even hundredths
of a per cent. This is unquestionably outside the range of

engineering significance, hence we may neglect this gquantity

to yield the final formula,

(? (o)) 1
3.15) =
{ { pé (Ai(o) uz_
= o
o - .

Equation 3.15) is the basic equation of the erntire
theory. It is through this equation that we may empirically
determine the average damage per cycle in the laboratory by
observing the areas of theAhysteresis loops, and recording
the number of cycles to failure for a collection of specimens.
Then statistical ave;aging may be applied to produce the
quantity on the left hand side of the equation 3.15). We
wish to stress the fact that we have not assumed any func-
tional forms for the actual damage quantities themselves or
their distributions other than Postulate V, which relates
average damage to hysteresis loop areas. But as we have
already shown Postulate V itself is the result of actual

empirical observations.
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It is important to‘mention at this time that many
investigators (Feltner and Morrow [l], Thompson and
Wadsworth (1], Duce (1], Enomoto [l], Kawamoto and Koibuchi [1})
have found that simple exponential formulas fit the empirical
date concerning the nature of the change in areas of the
hysteresis loop for successive cycles at a constant stress

amplitude. 1Indeed for Stage II, the formula

3.16) Ai+1(o) = Y(o)Ai(O),

where vy(¢) > 1 and is an increasing function of 7 appears
to fit the data quite well prior to Stage III,’when a sharp
upward turn in the rate of change of areas takes place for
the few cycles before actﬁal fracture. Furthermore, for

o = g, it follows that y(c) = 1 for practical purposes.

On the basis of formula 3.16), the formula 3.15) becomes

A, (o) a Nefo) |
3.17) ( ) E - [y® (o))" =1 ,
1 - vy%(o)

where again y(c) and Nﬁf“’ are expérimentally observable

guantities.
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On the basis of our theory and formula 3.17), it follows

that after N cycles at stress level o , the expected value
D, (o)
of the accumulated damage E -%s—- is given as

Dy (0 D(A (o)) a N
3.18) 1 - [I (o)}
1 - v (o) .

As we have already discussed in section A, the failure

criterion function, in our case'the constant ® , can always
be absorbed so that the failure criterion becomes in our

case the first exceedence of unity. Hence in the foilowing
sections we shall drop the explicit use of the .limit damagg

29, and let D represent the per cent of damage to failure,

E.) Two Amplitude Level Sinusoidal Input

The major motivation for our approach to the problem
of cumulative damage has been to try to develop a rational
means of accounting for the damage, in the éresence of com-
plex load histories, on the material, as well as take into
account the aging of the material. It is a well established
fact that the commonly used Palmgrén—Miner hypothesis does

not fit a rather consistent set of observations. An exper-
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iment that shows the hypothesis to be inaccurate is to run
a sample of specimens for n, cycles at stress level o¢; for
which the avetage life to failure would be N1 cycles, and

then run the specimens to failure for n, cycles, at stress

level 62 for which the average life to failure is N,
n n
cycles. The Palmgren-Miner hypothesis should yield Nl + NE
1l 2
approximately equal to unity. However, it is invariably

found that the value this quantity attains depends upon the

. 1
relative magnitudes of gy and gye

In particular, for un-notched specimens,

n ny
a) — + = > 1 for o, <
Nl N2 1 2
3.19
n n
1 2
b) ﬁ; + ﬁ; < 1 for 0, > 9,

We shall show in this section that the theory presented
in this report, in fact, predicts this non-commutativity of
the application of cycles of two different stress levels.
We shall demonstrate this by example. In general, actual

numerical values would have to be obtained.
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In order to consider the problem we must first determine
the so-called interaction effects of the presence of dif-
ferent stress levels. Therefore, let us consider the expected
value of damage accumulated after N cycles of various stress
amplitudes Oys Ops —=4 Op. We shall denote this damage
(in fact, per cent of failure) by E {D(N)}. 1In order to
determine this we must determine the expected value of damage

which occurs on the n + 1553 éycle of stress level o_,.,.

ira
By Postulate VI, using the empirically determined area factors
defined in 3.16), we have the damage on the n + 1Est cycle

given as, -
a a
3.200  y*(op)--ov¥ o) E (D(a (o ))),

where 'al...., o, are the first n stress levels to have
been applied. They may or may not be distinct. The quantiﬁy
E {w(Ai(cn+1))} is the empirically determined quantity

defined by our basic equation 3.15) for the stress level On+l”

Thus, we must have from our theory and 3.20)

3.21) B (DG} = I ([v“(al)---y"(oi_l)) E{D(Al(ai))) .
1

i=
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Let us consider now two stress levels ¢, g, where

o = o, and "0 > 6. Thus, we have y(o) =1, vy(o) > 1.

We shall first apply n cyéles of stress level ? to
the specimen, and theh apply cycles of stress level o until
failure. We shall denote the number of cycles to failure as
predicted by our theory by n and the number of cycles as

predicted by the Plamgren-Miner theory by n'.
By the Palmgren-Miner Theory we must have

3.22) + Il = 1,
N _

Zd”l

where N, N are the average number of cycles to failure for

stress levels o, 0 respectively, that is
3.23) N = E{Nﬁ(a) }, N = E{Nix/(o) }e

However, by our theory, the expected damage accumulated

on the first n cycles is given by 3.21) as

+ tv“(‘o'n“'l}

320 2@ @)} {1+1%@ +

=n E(D@,(3)} =

o
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since the hysteresis loop areas remain constant and there-~

fore yield the same expected value of damage on each cycle.

It follows from 3.21) and 3.23) that the number of cycles,

n, to failure at stress level ¢ is determined from

3.25) + VGEY (1 %) + + [v* (@) 1771 B @, ()} = 1.

zdﬁl

But, since y(o) is unity and E{D(hl(o))} is given by

our basic formula 3.15), then 3.24 becomes

e Lty + vt 4 %™t

N<(o) -
pol .

E z [v% (o) 1371
i=1

[y* ()" -1 -1
) Nnl(o)
E {[v*(a)1"R'Y9}y 1 .

3.26)

2l {3l

- +

CAET
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But from 3.22) and 3.25) it follows that the predicted

n' from the Palmgren-Miner hypothesis satisfies

n' _ L¥a)? 1
N E([y* (@)1 D) -1 -

3.27)

We may now apply Jensen's inequality that states that if

f(y) is a continous convex function, then

3.28) f(E{y}) < E{£f(y)},

for any random variable Y.

Therefore, we have from 3.28), since 7°N is convex for

y > 1,

3-29) E{[va(oﬂlNB(a)} R [y"(onf%“‘s“’”-l ) [Y“(:)]N -1 .
Hence, from equations 3.27) and 3.29) we have

3.30) AL o D™ o1 14 y%0) # ee 4 [y"’(a)gl‘_‘;l P

[YQ(O)IN -1 1 +v%(g) + <o+ + [y¥ ()]

for v%(o) > 1.
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The last inequality obtains since setting y®(c) = 1 + €,
€ > o0,
n(n-1) 2
3.31) 1 - (1 +€)n = ne + 2! € + =
* N N(N-1) 2
l - (1 +E) t«E + —2!——- € 4+ e ee
n-1 {n-1) (n-2) 2
n 1+ 71T ¢ * 31 e F e . D
N N- {N-1) (N-2)} 2 N |,
1l + 37 € + T g 4+ e

for n < N.

‘But, the inequality 3.30) along with 3.22) imply

o |

3.32) > l'

zdﬁl
+
4

which agrees with the abserved physical phenomenon.

If we reverse the order to first apply E cycles of stress
o, then cycle the material specimen to failure at the stress
level 0o, we are led, by the same considerations as above, to

the inequality
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3.33) 1« 2+ O(o® =1

E‘ .

z

We cannot go any further with the inequality 3.33) with-
out specific numbers, especially for y(a). However it is

certainly possible that 3.33) holds and yet we have

=BT

3.34)

We shall now look at the random input case.

F.) Random Stress Functions

We now have sufficient material with which to present
the case of the random stress input. 1In o;der to illustrate
the ideas involved,'we shall first treat the situation of
pure sinusoidal cycles of random amplitudes, without con-
sidering the time factor involved. Therefore, we shall
assume that the material is subjected to a random sequence
of sinusoidal cycles of amplitudes Oyr Ooreners oﬁ,...

which are irdependent identically distributed continous

random variables with common distribution P(ag).
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As given by our postulates and through equation 3.20)
we find th&t.the expected damage accumulated on the n-t-r—1
cycles is given, recalling that the oi's are random

variables which are independently distributed, by

3.35) a{y“(al) LI SN CIY E{D(Al(an)>ial,-..anl}

) n-=l
= E{D(A,(e_ N} T T  Elv*a.)}.
& i LI | p §

i=]

Because the random variables involved are assumed to be

identically distributed, it follows that

#) E{D(Al(a))} = ;JqE{D(Al(a)) |o}dP(o) = d
3.36)

' b)  E{y%(0)} = fv“(o)dp(a)

i

y o

Hence it follows that the expected value of the damagé
after N cycles is simply éiven by

_ . N
3.37) d +yd + yzd + e ¢ yN-ld =qi=

- Y .
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It is most interesting to note that the independence of
the stresses allows the expected damage to be independent
of the order in which the stresses have occurred. Indeed
the formula reflects that the average damage accumulates as
though it is due to some equivalent stress possessing an
initial damage d, with a rate of increase- given by vy.
What occurs in the general random stress input as a function
of time is much more complicated than the example above
as we shall now see.

Let us consider a random §rocess with a sample function

as shown in Figure 7.
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As we have discussed in Section B, if the strain rates
are not too great, the only significant statistics of the
sample stress function in Figufe 7 are the zero crossings
Zyr Zos eesy and the absolute extremes between zero crossings
Ml' Mz, e, These are the points that will determine
the hysteresis half loops, for which we shall associate half
the average damage -as accumulated for the full loop at.the

same stress level.

Hence, it follows that at any fixed time t, thefe will
be a random number N(t) of axis crossings or.half loops
which have formed.‘ Furthermore, the areas of these half
loops will depend upon the sequence of abéolute extremes
that have occured up to time t. Let us make these statements

precise.

We shall assume the areas of the successive hysteresis
half loops for a given time t, to be denoted by Al' Az, e,

AN(t)' with the expected total damage given as

338 e{EO@D NI} & ceeeeeee + B BDA ) IN@IH
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However, the areas involved depehd upon the previous
amplitude values M, ., Mz, -+, that are present. We can

represent this dependence explicitly as

3.39) E{E{D(Al)lul, N(t) }} + E {E{D(Az)lul, M,, N(t)}}

‘+ ""‘" + E[E{D(AN(t))IMI' le *tt, MN(t)' N(t) }} M

From our above analysis, it follows that 3.39) may be

expressed as

3.40) e{Ema o) e} + 2{v o) BOG M) |1y N
escecse o ce-y® -
+ -+ EYvy (Ml) Y (MN(t)--l) B{D(Al (MN(t))) I

Mll **%y un(t)l N(t) }} . :
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If we represent the joint density function for the
extreme values Ml' e, Mi and the number of axis cross-

ings N(t) at time ¢t, by Pt(°1’ eee, 0.3 N), it follows

that the iEr—1 average may be written :s
3.41) E{y“(Ml)“'y“(Mi_l) E{D(Al(Mi))lMl,"', M, N(t)}
= e Yy oy oy loy ) EID(A;(0,)) ]
i-fol
cl,"',qi,N(t)}dPt(ol---,oi;N?.
We add that the terms
3.42) E{D(Al(oii)lal, "t 0y, N(t)} = E{D(Al(oi))loi}

are the quantities determined from actual experimental
observations through formula 3.15). The new analytical
complications have been brought forth through the intro-

duction of the joint density function P We cannot

to




- 89 -

continue any further at this level of generality because of
this complexity. Indeed, we begin to lose insight to the
original problem. We may say, however, that it is the type
of information required to evaluate the expectations 3.41)
that we need to carry on further for arbitrary random inputs,
especially for actual environmental situations.

It is of interest to note that in the work of Nauman
and Leybold this information is being studied.

We shall carry on our discussion in this section with
an example of a type of random stress function that can be
constructed in the 1ab6ratory and for which the analysis
may be completely carried out, but for which Qe still have
a good deal of generality in the distributions involved.

We assume that the absolute extremes between axis crossings
are independent, identically distributed continuous random
variables, and also that the intervals between axis cross-
ings are independent and identically distributed with
distribution function F(t). However, we should not under-
estimate the generality of this example, for if the noise

is Gaussian with a short correlation time, or if the process
is strongly Markov, so that at a zero crossing'the future is
independent of the past, the above independence assumption

is not far from the truth.
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We denote the total damage accumulated at time T by D({T).
Then our problem is to determine E{D(T)}, which we may
write from the assumption of independence and from our above

considerations as,

 (N(T) o . '
3.43) E(D(T)} = E{E I (M) ooy M _)) E{D(Al(Ml))lMi}[N(T)
i=

N(T)

= E iil @{y"(M)J)i'l E{D<A1(M))}.b

Using the same notation as given in 3.36), we finally

obtain from 3.43),

« _ N
3.44) E{D(T)} = E h{:—,—} d.

Again, because of the fact that the stress strain hysteresis

locp depends only upon the absolute extremes obtained, and

not on the other features of the curve as long as the. strain
rate is not too high, we obtain the same formula as’ for the
sinusoidal case except for the presence of the expectation
operétion; This expectation has been 5rought in due to the

fact that the time has now entered into the picture. 1In
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order to complete the explicit analysis of the problem, we
must compute the expectation E[yN(T)}, where N(T) 1is the
number of axis crossing or intervals to time T. But, this
is a straight forward renewal equation proﬁlem, as we now
show. The lengths of the intervals between axis crossings
are independent identically distributed non-negative random
variables, and thus we are interested in the random number

N(T)  required to just surpass' T. We analyse this in the

following fashion.

Let 131 be the length of the first interval between the

first two successive zeros, then

3.45) G(T) = E{YN(T)} = E{E{YN(T)ITI - 1}}

= ‘1’ E{YN(T)ITI = t}3F(<).

waever, by the usual argument (Parzen {2]), we obtain

: l1if +t > T
3.46) E{y“mlrl =1} =

y (YN Ty if o o<1
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Thus, using 3.46) in eguation 3.45) yields the convolu-

tion integral equation

® T
3.47) G(T) = g dr(t) +YX. G(T-1)dF (1),
T o

T

= 1 - F(T) + ¥ g G(T-1)dF (7).
o

The integral equation 3.47) may be easily solved by
LaPlace transform techniques, since F(1) is presumed

known. Explicit cases may easily be solved.

We shall terminate the discussion of the random input
:+ this time. Other explicit cases of practical interest

await further computer sutdies in order ta.obtain the

necessary statistics. However, once this is accomplished

the random environment problem can be attacked through the

approach put forth in this report.




APPENDIX TO CHAPTER III

Martingales and The Proof of Equality 3.13)

The proof of equality 3.13) does not follow from elemen-
tary considerations because of the fact that Nﬁﬁa) is a
random variable conditioned by the previous damage magnitudes.

If Ng(o) was indépendeht of these magnitudes, the equality

probability theory. As this is not the case, we require
other means to establish the formula. Fortunately for us,
the tools required can be found in the theory of martingales
(Doob [1]). The treatise of Doob will be our reference,

particularly Chapter VII, theorem 2.1 and Section 10.
A discrete martingale is defined to be a stochastic

process {xn, n » 1} for which E{[xnl} <=, n 31 and

A.l) x, = E{xn+1|xl,°--, x } with probability one for

any n > 1.
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We note that from A.l) it follows that

A.2) E{x } = E{xn} = E{xl}.

n+l

If the equality sign in A.l is replaced by "s", then

the process is referred to as a semi-martingale.

Let us consider the case that the process, martingale
or semi-martingale, is stopped at some optional stopping
time depending upon-observations of the previous values of
the process. What is the nature of the new process? To
be precise, suppose' m(w) represents the random stopping

time, let us consider the new process{:xn, n 3 %}, defined by

< m(w)

u xj(m) ’ j

A.3) xj(u) =

X(w) ’ j > m(w) ,
m{w)

where m(w) = u is a condition only on the past values of

the variables up to the u--t:‘-ll stage.
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This is exactly the situation we find ourselves with
in cumulative damage. For, since total accumulated damage,
which is the sum of non-negative independent random quan-
tities, is terminated when the total damage first surp~sses
s@, we see that we have a stopped process. This random
stopping time or age, as we choose to.call it, is dependent
only upon the previous values of the accumulated random

damage quantities.

The result we require is a part of Theorem 2.1 in

Doob's treatise, given as follows

Theorem - Sﬁppose that the martingale {xn, n > 1}

u
is transformed into the process {:xn, n 3 i}‘ urnder optional
, 3

u

stopping. Then the X - process is a martingale and, further-

more,

a .
A.4) E{xn} = E{x}, n3 1.

For the proof, we refer to Doob's treatise.
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Now let us consider the mutually independent non-

negative random variables Dyr Dy, °°- each satisfying

A.5) E{Di} =a;, E{Dl} > o,

where ai are known non-negative constants.

We let Ns(w) ‘be the first value m for which

| I— s e e oo e
A.6) D' = D, + D, + +Dm>B.

We wish to determine E{(D'} in terms of the expected

values E{Di}' ig Nggw).

We form the new sequence of random variables D(n) defined as

n n n
A.7) D(n) = (D, - E{D.}) = ¢t D. - E{D,} I a. .
j=1 3 J j=1 J 1 j=1 ]

It can be easily shown that if Y 1’ Yz, *++ are mutually
independent random variables, then the necessary and suf-

ficient condition for the X, - process defined by
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n
A.B) x = z Y' 14
R =y 1

to be a martingale, is that E{ Yi} = o for all

But, this is the rase for D(n), since

a9 sfo - a{oj}} = E(D,} - E(D,} =

Therefore the D(n) - process is a martingale.

Hence, by the theorem, the stopped process (stopped by

u

the condition A.6), 9D(n), n > ]}, is a martingale satisfying

u
A.10) E{D(n)} = E{D(1)} = 0o for n 3 1.

u
Hence,‘[h" D(NBB— = 0.

Thus,
A.11l) {;)(Np}al-: E{D} P a.
=1 j=1
eop 24P a

J=1 %3 j=1
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Therefore, we obtain

N? .
A.12) E D. = E{D,} E
=1 3 .

as was to be provead.

d.

Il ~gp
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CHAPTER IV

DISCUSSION AND RECOMMENDATIONS

We have presented in this Report the first step in
developing a stochastic theory of cumulative damage based
on the irreversible work put into the material.

The distinctions between our theory and others proposed
may easily be eStablished. In our theory, damage is a non-
stationary random function of the irreversible work input
for which the average damage per cycle may be empirically
established. Parzen's theory is a stationary random function
of the stress exceedences for which the damage per cycle may
be established. The Freudenthal-Heller theory is a modified
Palmgren-Miner deterministic theory in which non-stationarity
is introduced empirically through observed interaction effects.
We, on the other hand, introduce a mechanism.for determining
the interaction effects. Gatts' theory is a non-stationary
deterministic thecry based upon the hysteresis loops area for

which the damage (or reduction in strength) is assumed to be
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a given function. Note that in our theory we never assume the
value of damage, but only allow its average to be determined
experimentally.

The basic feature of the entire theory proposed here is
that all quantities may be physically observed. That is, the
hysteresis loop areas, the number of ﬁycles to failure, and
the rates of changes for the hysteresis loop areas at different
stress levels.

One definite weakness is that we cannot predict the vari-
ance of the damage since there does not appear to be any natural
method to relate the ratios of variances to the associated
hysteresis loop areas in the same fashion as we have been able
to for the means. This is one problem that must be loocked at
in the future development of this approach. This will depend
upon uncovering a natural physical property associated with
second moments, in the same way that the S-N, ep-N curves
are associated with first moments.

In order to illustrate the utility of the above theory in
predicting fatigue life, let us consider a simple deterministic
example. Let there be' n  applications of stress amplitude o
followed by n applications of stress amplitude o(<0).

Equations 3.17) and 3.18) yield the result
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E{l - {+° (?)lNa(a)} Eﬁ-[va(o)]Nn(a)}

fl - I @17 } + DleEn” ﬁ-h“(on"} - 1

Graphically this formula represents a curve of the type illustrated

in Figure 8. The coordinates of a point on this curve represent

FIGURE 8

FAILURE LOCUS FOR A PARTICULAR SEQUENCE
OF TWO STRESS LEVELS
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the number of applications of stress at level o¢ (abscissa)
and the number of applications at level o (ordinate) required
to produce failure.

For other sequences of these two levels of stress applica-
tion or with more than two levels of stress application,
Equations 3.17) and 3.18) may be manipulated to yield a similar--
but more complex--result.

In this first stage of the development of the present
approach, we have presented the foundation and certain ana-
lytical consequences. There now remains the task of testing
the theory in the laboratory to determine its effectiveness.
However, since the study of fatigue in terms of hysteresis
loops is relatively recent, there is not sufficient information
to allow conclusions to be made immediately. The major pro-
grams of experimentation that must be accomplished as we see
it are (a) The determination of the factors of increase of
hysteresis loop areas as a function of the stress levels for
pure sinusoidal cycling, (b) The determination of the average
damage accumulated through our Equation 3.15) and (c¢) The
study of the nature of the hysteresis loop area changes under
varying inputs to determine the change in the loop geometry

and loop areas due to interactions and relating these to the

present theory.
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We wish to conclude this section by stating that there
are certain weaknesses in our theory, as one must expect in
any phenomenological approach. However, it is our sincere
conviction that this theory does constitute a step in the
right direction. We hope that it can, in time, be developed
into a practical and useful approach. It cannot be over-

stated that the next step is the laboratory.
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