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INTRODUCTION

This report will present the results of a years study in the area
of the application of the Liapunov direct method to flight control systems.
The primary intent at the initiation of this study was to collect a set
or practical applications of the direct method and to prepare a table of
appropriate "V" functions suitable for general classes of problems.
Unfortunately this aim was not realized and is probably incapable of being
realized for many years to come. The number of control problems solved
by the direct method and documented in the literature are very few. Instead
one finds a wealth of material on procedure for general constructions and
the inter-relations between the second method and many of the theoretical
areas of modern research such as optimal control theory, stochastic control,
the theory of functional equations, etc.

The major body of thls report 1s devoted to a presentation without
proofs of the main concepts of the direct method. Chapter I introduces
the required matrix and background, and introduces the major transformations
by which vector systems may be put into the standard state vector form for
subsequent analysis. Chapter TI is devoted to the definitions of stability
and the second method of Liapunov. In Chapter IIT is presented the main
methods for the construction of Liapunov functions. This presentation is
by no means complete but the procedures presented are representative of the
major approaches. Chapter IV is devoted to the classical problem of Lur'e.
In Chapter V, a discussion of ILagrange stablility 1s given along with a con-
struction procedure for locating boumds on limit sets. 1In Chapter VI the
results of the preceding sections are recast in a form applicable to dis-
crete systems. In Chapter VII an attempt is made to inter-relate the second
method to some of the concepts of optimal and adaptive control theory.

iii



It is hoped that this presentation will bring to a larger audience
some insight into the importance and general usefulness of the point of
view as represented by the second method. It i1s felt that only by the
efforts of a large segment of the practicing engineers in the control
field will new results leading to practical synthesis procedures be de-

veloped.
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CHAPTER I

NOTATION AND FRELIMINARY CONCEPTS

In this chapter we will review some properties of matrices and
vectors and state witho{rt proof the maln results needed for an under-
standing of the remaining text. Since the state vectors concept plays
such an important role in much of modern control theory, this will be
defined and methods of transforming differential equations and block
diagrams into the state vector notation will be explained and 1llustrated
by examples.

A. Vectors and Matrices: The capital letters X, Y, Z, will be
used to represent variable column matrices or vectors, while smsll letters
will represent scalars. Subscripts will indicate components. Thus

The capital letters F, G, H will be used to represent vector functions,
while small letters will be used for scalar functions. Thus

£i(xp, %50 oees X))

F(X) = fa(xl, Xpy' eees xn) .

fn(xl, Xy sees xn)



The capital letters A, B, C, P, Q, R will be used to represent matrices,
while small letters with double subscripts will represent the elements of

a matrix.

Amatrix A is an m + n array of elements written as

A= (aiJ) = 8, 85 ee- 8y
8.21 8.22 cee 8211
aml am2 LN ] amn

where the first subscript indicates the row position of the element while
the second subscript indicates the column position. The numbers m and
n give the row and column dimensions. If A is square, that is, the row
dimension is the same as the column dimension, then we refer to the dimen-
sion of A as this number. Otherwise we say that A 1is of dimension m
by n.

Two matrices A and B are sald to be equal if

aiJ =biJ

for al1 1 and Jj. BEqualilty can only be defined for matrices of the same
dimension.

Addition. The sum or difference of two matrices written as
A+B=C
is defined by

13 1J 13

Matrix addition satisfies the following



A+ (B+¢c)=(A+B)+cC (associativity)

A+B=2B+A, (commutativity)

[

Scalar multiplication: The product of a matrix A = (a.i J) by a
scalar A 1s a matrix B = (biJ) defined as

bij'—')"aij for all 1 and J.

Scalar multiplication satisfies the followlng properties

M = A\
Xlsz = l.lAlz = XaxlA

AMA + B) = \A +2AB

().1 + >.2)A =2MA + 1A

Matrix multiplication: Iet A = (ai J) be a matrix with dimension
m by n and let B = (bij) be a matrix with dimension p by q. If
q =m, then the matrices A, B are sald to be conformable in the order BA.

If A, B are conformable in the order AB, the product C = (cij) of
AB is defined

AB =C
n

c Za .
k=1 ikka

[

1)

The matrix C obtained from this multiplication is of dimension
m by q. If A, B are conformable in the order BA, then the product
BA 1is given by

m

where D 18 a matrix of dimension p by n. The dimension of C 1is in
general not the same as the dimension of D. Thus matrix multiplication is



i8 not commutative except in special cases. Matrix multiplication satisfies

A(BC) = (AB)C (associative)
A(B + C) = AB + AC
(B+C)A=RBA+CA,
If A is a square matrix we may define powers of A,
AA = A2

AAA = A(AA) = (AA)A = AAZ = A%A = A,

Powers of A commute

Transposition: Associated with each matrix A i1is another matrix
called the transpose of A and written as AT. The transpose 1s obtained
by interchanging the rows and columns of A, Thus if A i1san m by n
matrix, then AT is an n by mw matrix. The transpose satisfies the

following propertles

(a +B)T = AT + gF
(apc)T = cTBAT
ahHT - A

Determinants: Associated with each square matrix is a scalar called
the determinant of A and written as |A]. The determinant has the follow-

ing properties

T
la] = a7

laec| = |a| [8] c|

if JA| =0, A 1is said to be singular,



Special matrices: There are a number of particular square matrices
which we now define. A matrix A = (aiJ) is sald to be diagonal and
written as diag(xi) ir

8,4=0 1 £
a =Xi 1=Jo

Diagonal matrices commute with each other, thus

diag(r,) dleg(ny) = dlag p; dlag(h;) = atag(u;),)

(atag 1,)" = dteg(ry).

If all the elements of a diagonal matrix are equal to one, then it is
called an identity matrix and written as I. The identity matrix has

the following property.

for A arbltrary.

If A 1s nonsirgular, there exists a unique matrix called the in-
verse of A and written as A™T. The inverse has the following proper-

ties
Al oml ot
(asc) ™t = ¢l iat
()L - (aY)T
e %



A matrix A 1is saild to be symmetrical if

A = AT,

A matrix A is said to be skew symmetric if
A= ~A".

Any arbitrary matrix A can be decomposed Into the sum of a
symmetric and a skew symmetric matrix

A+AT)+(A-AT)
5 5 )

A=

Characteristic equation: To each square matrix A 1is associated

a8 scalar equation called the characteristic equation and given by

|A -az] =P (A) = (-1 - alxn'l + ..+ (=)0 a) = oO.

The roots xi of this equation are called the characteristic roots or
eigenvalues of A. If all the elgenvalues of A have negative real part,
then A 1is said to be stable. To each eigenvalue xi there corresponds

a vector Qi called the eigenvector which has the followlng property

(A - MTI)Q =0.
If the xi's of a matrix A are distinct then the corresponding eigen-
vectors are linearly independent and the matrix Q, called the modal matrix,

whose columns are the eigenvectors has the property

Q7HAQ = atag(,).



Differentiation of matrices? Given any matrix or vector X whose

elements depend upon & parameter T, then the derivative of X with
respect to T 1is defined as

ax _ 1
dt dt ¢
a
dt
n
T

The derivative of a product obeys the normal chain law but order of the

products must be maintained. Thus

d dA dB dac
E(ABC)=E'F—(BC)+AEEC+AB<11‘
Since
A-l _ A—lM-l
we have
=1 -1 -1
dA dA -1 -1 dA -1, dA
T car M TA T g tA AR
aa~t . 1aa -1
= 2 d———T + A .d_‘t'- A
-1 dA -1
= - A a_—r' A e



Quadratic forms: The scalar

n n

T
X&X= X I x,x.9
1=1 31 TN

is called a quadratic form. Without any loss in generality we may always
assume that the matrix Q 1s symmetric since if Q is not symmetric, then

Q=R +P
where R 1s symmetric and P 1is skew symmetric. It follows then

XX = X(R + P)X = X'RX + XTPX.

But since P 1is skew symmetric

XTPX = 0

Norms: Assoclated with every vector X 1is a scalar called the norm
of X and written as [|X|]|. A norm must satisfy the following postulates

1) |l >0 for all X #0
11) [l =0 X=0
111)  Ix + Y| = x|} + fivjl

iv) Iax] = Ia] Ix » & scalar.

Some specific norms which may be used are the following

@ Il - B2 - [ 58

(2 Ixll == x|
() I

1]

max |x, |.
i i



The first of the above norms is the standard concept of length of a
vector. If we examine the space given by the inequality

Xl = 1

then (1) gives the interior of the sphere of radius 1
(2) gives a tetrahedron inscriber inside the unit sphere.

(3) gives the cube which circumscribes the unit sphere with its edges
parallel to the ccordinate axes.

B. State Vector Representation: Throughout this work we will be

concerned with the properties of systems of differential equations. We
will always assume that the system under study takes the form

(1-1) X = F(X, t)

where X 1s an n-vector and F 1s a vector function of the vector X
and the scalar t. The system(I-l) 1s equivalent to the set of scalar

equations
%, = fl(xl, Xoy veey X t)
%, = (X X5 eees X5 %)
x = fn(xl, Xoy eees Xy t).

If F 1s autonomous, then system (I-1) takes the form
(1-2) X = F(X).

If F is linear in X, then we obtain the form



(1-3) X = A(%)X + G(%)

where A I1s an n by n constant matrix and G is ann by 1 vector
function of time. If G(t) is identically zero then the system is said
to be homogeneous and (I-3) takes the form

(1-1) X = A(%)X.

If F is linear, autonomous and homogeneous we obtaln the simple form

(1-5) X = Ax.

Every system of differential equations may be transformed into this re-
presentation by a suitable change of variables.

Example 1.
y+ 4y + 3y =0.
let
X =Y and X5 = y
then
il =¥ = X,
%, = ¥ = =3y - by = - 3% - I,

or we obtain

,<.
4

- 10 =



with X and A glven by

xl 0] 1
X = A =
12 "5 -]4
N/ ¥
Example 2.
y-y=0
X+3% +x =2y -y.
Iet
X, =X, x2=5z, X5 = ¥y X =
Then we have
xl=x=x2
x2=x=—-x—3x+2y—y-_—-xl-5x2
x3=y=xh
xh=y=y=x3.
n matrix notation this becomes
X = A
where
Xl 0 1 0]
b 4 -1 -3 -1
x: 2 A:
X3 0 0 0
xu 0 0 1

- 1]l -

-x, +2x



Example 3,

¥+ (1-x)%+x=0.

As before with X, = x and X, = X we obtaln the representation

X = F(X)

X = F(X) = .
2
(xl - l)x2 - x

In general there will te more than one way in which a system can be repre-
cented as a vector differential equation. In the previous example we could

have made the transformation

As a first step in the reduction of a system of differential equations

into the state vector form, one often encounters an equation of the form

(n) (n-1) _ 4 (1) (n-1
x +ax +...+tax=>by + by ) + ... + by

- 12 -



where by the notation x(n) is meant the nﬁh derivative of x. In

this representation the coefficients a and bi may depend explicitly
upon the independent variable t. This system with some effort may be

placed into the form

A(t)X + c(t)y

>
n

DY(t)X+ ry

E]
I

providing the coefficients a.i(t) and bi(t) are sufficiently often
differentiable. This transformation may be achieved by the following

procedure

e
]

1 =% + cl(t)y

e
]

o x3 + ca(t)y

X 1 =x,+ cn_l(t)y

e
]

- a.n(t)xl - za!.n_l(t)x2 - .ee = al(t)xn(t) + cn(t)y

Xy + r(t)y

where the coefficilents ci(t) are to be determined by substitution into
the original scalar differential equation. In this transformation observe
that A(T) bhas the form

0 1 0 o .... 0
0 0 1 0 .... 0
0 0 0 i .... 0

A(T) =




The elements of the vector C(t) must be determined. To illustrate this

procedure conslder the following example,

Example k4.

X+ al(‘b % + a.a(t)x = bo(t)y + bl(t)j' + bi(t)y.

We have that this system takes the form

= A(t)x + c(t)y

>4

x =x; + r(t)y

where

Thus we have

x =% + r(t)y

e

=X, + cl(t Yy

e

= = ay%, - 8%, + c2(t )Y.

Solving the first of these for Xy and differentiating we have

xl=x-ry

51

x-fy-ry=x2+cly.

Now solving for X5 and differentiating we obtaln

- 14 -



X, =% - (r + cl)y -ry

%
2

X - (¢ + cl)y - (2t + ¢ )y -1y = -a.x, - 8X, + ¢y

thus we have
X - (r+ e )y = (aF + ¢))¥ - ry = o(x = ry) - al(i -(r+c))y-r))+ c Y-

Collecting terms we obtain

x +ak+ax=ry+ (er + c, + alr)y +(r+& +ar+al(r+ c,) + c2))y.

Equating the above coefficients on the right to the original equation we
obtain

r=b°(t)
2f +c) +ar = bl(t)
T4+ +ar+ +c, =b,(t
r+& +a,r+ar+ac, te, = b(t).

Thus we have the solutions

r = bo(t)
e} = by(t) - a.lbo(t) - 2b_(t)
ey = by(t) - ay(by - 20, - ab) - ay(b)) + by - by + &b,

In many cases, engineering problems appear in terms of a block dia-
gram where each block of this representation gives a relationship between
the input and output in terms of their Laplace transforms. Thus a typical

block has the form

- 15 -



y(8) P(s) Jx(e)
Q(s)

where P(s)/Q(s) 1s a rational polynomial in s where the numerator order
i1s equal to or less than the order of the denominator. Thus it is suffi-
clent to show the transformation of such a block into the state vector
representation. We will assume that P(s) and Q(s) have the form

n-l

. .n
Q(s) = s +a8 +...+a

1

P(s) = bosn + b8 ...+ b -

1

Since the transfer function of the block diagram representation is given
by

x(s) Pis
y(s) = Q(s
then we have
Q(s)x(s) = P(s)y(s).

If s 41is given the interpretation of the operators %{ this equation
becomes ldentical to what we obtained before, namely

(n) (n-1) _p () (n-1)
X +alx + ... +a.nx_b°y +bly + ... +'bny.

Thus the preceeding method gives directly the desired representation.

Example 5. Consider the following system

- 16 -



- 8 !l 10 l 5, a2 + 28 + I 5 Jt 1
|s + 10 l 52 + 38 + 1 8

] Lo

In transfer notation we have

8_21

) B2

5 _ sc+2s+l
6c 8- + 38 + 1
5c -10

8 s + 10

Representing these in terms of differential equations we have

o
+

W
Qfe
+
o
i

8§ + 25 + L%
C Cc (o]
& + 105 = - 106.

[ed (o]

*1 =%
X, =5
= xl.

For the second we have

- 17 =




i3=x1+-8c

ih=—x3-5xu+65c
5 =x, +5_.
[«

]
For the third equation we obtain

x5=-10x5-109
5 =x

c 5°

Combining these we have

X, =%,
Xy = %y + X5
J'c5 =+x - X5
ih— - Xz —5xl'_+6x5
X5 = = le5 - lel
or
X = AX,
where
Xy "0 1 0 0
X, 0 0 1 0
X = x5 A= 0 0 0 1
X), 0] o -1 -3
X5 10 0 0 0

- 18 -
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For systems represented by a block diagram, there is an alternate
way of obtaining a state vector representation which has many advantages
providing the denominator has no repeated roots. The advantage of this
procedure is that the matrix A can be obtained directly as a diagonal
matrix. Consider the block diagram of transfer function

2.xe) . —20)

(s -2

)
4=1 1

where xi's are the roots of q(s). If none of these are repeated, then
we know that we can represent this in a partial fraction form. Thus

x__2(8) _5_ “
Y s - Ay) 8 - Ay
i=1
where the cy are the residues given by
sy P(A)
ey = lim (S—Xi)qs =m).

s—-rxi

With this representation we have the following diagram.

If we define the equations for each block we have

- 19 -



xl=x1xl+y
x2=>.2x2 + Yy
xn = xnxn +y

X, e x, +... +ec.x
nn

X =C%L T %

or

>4
i

= dlag(h,)X = Iy

= CTX

®
1

where the vector 1 1is a vector with ones

in every element.

Example 6. As an example of this procedure consider the system

\ 4

% N.L o 10 6% + 25 + 4 1 8
s + 10 2 4 35 + 2 s(s+4)
This system can be represented by the form
6 2

10(s"+25+4)

v

2]
i
@ S N. L {—T (s+10) (st2) (s+1) (8) (s+4)

Therefore we have

[o4

6 10(s°+25+4) 1

02 ch

mLﬂo

[
3
o = [5+10) (c42) (s+1) (574)(5) ~ 5+10 548 s+ 5%

-20-



where

17
‘2 " s iilfa
c3 ) 8 iil:l
E 5 iil:h
c5 = Bl_i_:no

10(32+25+1+) = /56
(s+2)(s+1)(8+4)(8)
10(82+2si~g) - 5/u
(s+10) (s+1) (s+4)(8)
10(32-!25+h) - 10/9
(s+10) (s+2) (s+4)(s)
10(sP4284h)  _ iy
(s+10)(s+2) (s+h4)(8)
10(52+es+h) Y
(s+10) (s+4) (s+2) (s+1)

Thus the above system has the form

-1
|

Q
H

C. Scalar Functions:

= diag(xi)x + 1g

cTx

F(GE)

In most of the applications of the direct

method of Liapunov we will need to consider certain scalar functions and
In this section we will bring together these

some of thelr properties.

properties with examples to illustrate them.

-2l -



Def. 1. We say that the scalar function V(x) = V(x,, Xgy eees x ) is
definite for ||X|| <k, if for all choices of X with [[X[| <Xk, 1t assures
values on one sign only and vanishes only when |[|X|| = O.

Def. 2. We say that the function V(X) = V(xl, Xpy evey X ) is semi-

— n

definite for ||X}] <Xk, if for all choices of X with |X]] <k 1t assumes
values of one sign, but it may vanish for values of X other than |X|| = O.

Def. 3. We say that the function V(X) = V(xl, Xpy eees xn) is indefinite
1f 1t is neither definite nor semidefinite.

Example 7.

2 2
V(xl, x2) = x] + X,

V 1is positive definite for all valwes of X.

Example 8.
2 2
V(xl, xa) =x7 + x5 - xi
V 1is positive definite for all X with Jjx]| < 1.
Example 9.

V(xg, x,) = (%, - x,)°

1]
»

0 whenever x

]

Y 1s positive semidefinite since V 1 5

Example 10.

2 2
V(xl, Xy xj) = x] + X,

V. is positive semidefinite since V = O whenever Xy =X, = 0 and x5
is arbitrary.

- 22 =



v(x, t) = u(x).

Example 12.

viX, t) = 1+ ¢t°

V 1s positive semi-definite for t 2 O but not definite Bince V

approaches zero for large t.

Example 13.
v(x, t) = (x?_ + xg)(l + I—i—t)-
V 1is positive definite.
Example 1k.
V = x?_ + txg.

V 1is positive definite for t >0 but it does not have an infinitesimal
small upper bound.

Example 15.

V 1is positive semidefinite and it does possess an infinitesimal upper
bound.

Example 16.

V = (x?. + xg)(l + sin°%).



Faxnm Ra x n-m
Ywn=

T

R x m Sh-m x n-m

where P 18 positive definite, then Q 1s positive definite providing the
n-m by n-m matrix

T =8 ~ RPIR

i1s positive definite.

If A 1is stable then corresponding to any given positive definite
matrix P, there exists a positive definite matrix Q such that

ATQ+QA=—P.

When V depends explicitly upon the scalay time, then the defini-
tions of definiteness must be modified.

Def. 4. The scalar function V(X, t) 1s positive definite for [|X|| <k,
if there exists a positive definite function W(X) such that

v(x, t) >wW(x) for [[x]] <k

v(0, t) = 0.

Def. 5. The scalar function V(X, t) admits an infinitesimal small upper
bound if there exists a positive definite function U(X) such that

-24



Example 11.

2 2 2
V(xl, e xj) =x; +x, - X3

V 1is indefinite since in every neighborhood of |[|x|| = 0, it assumes

values which are negative and values which are positive.

Example 12,
xl R
V(xl, xa) = Io f(s)ds + x;

where we are given xlf(xl) >0, V 1is positive definite.

In many applications we must consider a scalar function V of the

form
v = xax

where Q 1s a symmetric matrix. This quadratic form is positive definite
if the associated matrix Q 1s positive definite. A symmetric matrix Q
is positive definite if the following relations are satisfied.

9, 93 9 %o Y3 @
Q.. >0 >0 >0 ... (Q) >0.
11 By 9o I3

91 %2 933

In some cases the computation to determine the definiteness of Q can be
simplified if part of the &bove inequalities are known to be satisfied.
Thus consider the matrix Q which is partitioned as follows

- 25 -



V is positive definite and it possesses an infinitesimal upper bound.
In fact V has the bounds

2).

2, .2 2
+x5 <V <2(x1+x2

X, T %

- 26 -



CHAPTER II

STABILITY AND THE DIRECT METHOD OF LIAPUNOV

The object of all stability criteria is to determine the stability
of a system of differential equations without knowledge of the form of the
solutions. 1In general 1t 1s not sufficient to know merely the existence
or nonexistence of stability, but it is required to have some reasonable
estimate of the size of the region of stability. For linear systems this
poses no problem since if stability exists, it is global, whereas for non-
linear systems stability 1s a local property.

In this section we will clarify the various types of stability and
introduce the direct or so-called second method of Liapunov. This approach
will be 1llustrated by some elementary examples.

A, Stability: Throughout this work we will be concerned with the
stability of an equilibrium point of the system of differential equations

(11-1) X =F(X, t).

By an equilibrium point we mean those particular values of

such that

F(Xe, t) = 0.

It is assumed that the equilibrium point under discussion has been trans-
formed to the origin. Therefore

- 27 =



F(0, t) = 0

and X = 0 1s a solution of (II-1). It is further assumed that
F(x,t) is sufficiently smooth to ensure the existence of a unlque solution.

Definition 1. The solution, X =0, 1is said to be stable if given any
€ >0 and t_, there exists a 8(e, t ) >0 such that for llx(to)ll >3
implies that

lx(t)| <e forail t 2t .

Definition 2. The solution, X = 0, 1s said to be asymptotically stable
if 1) it is stable and 2) if

lim |Ix& )] - 0.

- o

Definitlion 3. The solution, X = 0, 1s said to be unstable if given an

€ >0, then for any & regardless of how small, "X(to)" < 5 implies
"X(t)" > € eventually, If & can be chosen independent of to, then the
stabllity 1is said to be uniform.

To illustrate these definitions, consider a pendulum at rest. If
the pendulum is initially at rest and then it is disturbed slightly, it
will oscillate about its rest position. If the iniltial displacement is
small, then the amplitude of oscillation will be small. The equilibrium
position 1s said to be stable. If a small amount of damping is present,
not only will the amplitude of oscillation be small, but in time it will
damp to zero. The equilibrium position is said to be asymptotically stable.
Now consider the inverted pendulum at rest. Regardless of how small an
initial displacement is given, the pendulum will move far from the rest
position. In this case the rest position 1s unstable.

- 28 -



When the system is linear and autonomous, then (II-1) takes the

form

(1Iz-2) X = AX.

The only equilibrium points of this equation 1s X = Q0. The question of
stability can be answered in terms of the roots of the characteristic

equation

|A -2a1] = 0.

If all these roots have negative real part, then the origin is asympto-
tically stable. If any roots have positive real part or if any roots are
repeated with zero real part, then the system is unstable. Thus, to deter-
mine the stability of a linear autonomous system, one needs only to deter-
mine the nature of the real part of all characteristic roots. The roots

themselves do not need to be determined.

Various methods have been developed to determine the stablility of
linear systems. One of the easiest of such methods to apply is the Routh-
Hurwitz criteria. This criteria examines an array formed from the cceffi-
clents of the characteristic equation. The number of changes of sign of
the first column of this array is equal to the number of roots with positive
real part. This array may be determined by the followlng procedure. Iet
the characteristic equation be glven as

1y

n n-
(1x-3) A+ an .o +a =0.

Consider the array defined as
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1 &, 8, ac e o e
a as 8 a.7 . e e e
bl b2 b3 b

¢y ¢, e

4

where the elements bi, Cy» di’ etc., are formed as follows

a,
2441
b, =a, -=%, b, =28 -5,...,b=a. - —_—
1 2 a) 2 b a; 1 24 a,
. - alb2 . . albé . N a.l'b1 +1
- - 7 = - 'y ey = - ——
1°% by 2% ") 1~ %141 b
b,c b.c b,c
d) =Db, - i 2, dp = by - i y eeey Qg =Dy, - lci+l
1 1 1
e, =¢ cld2 e, =¢C -—-Ezcl e, =¢ -cldiﬂ'
1~ "2 7 dy > F2 7 73 dy LR e e 5 | d;

Example 1. Consider the characteristic equation

X3+12+lﬂ,+50 (7\,+3)(x-1+31)(x_1_3i)=0.

The Routh array becomes

1 & 0
1 30 0
26 0 0
30 0 0
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Thus there are two changes of sign and there exist two roots with positive

real part.

Since criteria for the stability of linear systems are easy to apply,
one naturally desires to apply the same procedures when a nonlinear system
is encountered. This often leads to a& ruthless linearization of the system
equations. The problem then becomes: under what conditions does the stability
of the nonlinear approximation represent the stability of the nonlinear system?

This question may be answered by the following.

Consider the nonlinear autonomous system
(TI-4) X = F(X)
where F(X) has the representation
F(X) = &X + 6(X)

with
1lim ﬁ%ll -0
X-0

and A given by

%

) .
J X=0

A = a =
( 1)  ox
System (II-4) thus may be approximated locally by

(1I-2) X = AX.

Theorem 1: If all of the eligenvalues of A have negative real part, then
the origin of (II-%) is asymptotically stable.
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Theorem 2: If any eigenvalue of A has positive real part, then the origin
of (II-4) is unstable. Thus the stability of the linear approximation
carries over to the nonlinear system providing the linear system is asympto-
tically stable or unstable. In the case where the linear system is only
stable, no conclusion can be obtained about the nonlinear system. When this
occurs the stabllity is determined by the higher order terms.

Example 2. Consider the nonlinear system

X +ax + x + x2 = 0.

In state notation this takes the form

X = x2
2
- hxl - xl - ax

e
N
1]

5
This system possesses two equilibrium points

N @ . .

of of, 0 1
& 3%,

A = = .
of, of, b -2x, -a
& o,

At the equilibrium position Xl, the linear approximation becomes
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For a >0, b>0, this equilibrium position is asymptotically stable.

For the equilibrium position X2, the linear approximation becomes

xl=x2

e
g
K

2 1

For a >0, b >0 at least one root has positive real part and this

equilibrium position is unstable.

Example 2. Consider the motion of a rotating projectile given by the

equations
Q cosp - 20f sinp + af = b siny

]

B+ ('12 sinp cosp - aX cosp = b sinf cosa.

If we make the usual transformations

Xy =0 x2=d: X3 By x)‘_=B

we obtaln the state vector representation

X = 7(X)

where F takes the form
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X

2
- b sin xq + 2x2xh sin xj - axh
cos
*3
Xy
b 8in x, cos x, - x2 sin x_ cos x3 + ax2 cos x3

3 1 2 3

The origin represents an equilibrium point. The matrix A for the linear
approximation takes the form

0 1 o 0

b 0 0 -a
A= .

0 0 0 1

0 a b 0

The characteristic equation for this system is

xl‘ + (a.2 - 2b)x2 +1° =0

with the four roots given by

N _+Jiﬁ-2b)+aJa2—hb
1 -1 2

For a2 - kb <0, at least two roots have positive real parts and thus the
equllibrium position is unstable. If 32 - 4b 2 0, all four roots are

imaginary, thus the linear system is stable, but we obtain no information
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as to the stabllity of the nonlinear system. This result is still useful
since if we desire stability of the above system it is necessary that

az-thOQ

This result is not sufficient for stability though. We will return to
this example later and determine conditions sufficient for stability.

B. The Direct Method of Liapunov: The preceeding procedure
suffers from two main disadvaentages: (1) it is restricted to functions
F(X) which are analytic and (2) even when it gives the stability, this
result is local. We must turn to other procedures in order to obtain an

estimate of the size of the region of asymptotic stability. If the linear
approximation has one or more roots with zero real part, then the question

of stability must be answered by examining the nonlinear terms of the equa-
tion.

The only tool which is sufficiently powerful to enable one to treat
existing nonlinearities is the Liapunov Second or Direct Method. The term
metbhod is actually a misnomer since no method as such really exists. In
actuality the set of theorems which make up the direct method are existence
theorems and they offer an approach or point of view rather than a precise
method. To illustrate this approach consider the following example.

Example 3: ILet a system be described by the equations

s 2 2

X, =x, = axl(xl + x2)

X . = =X -a_x(xz-xa)
2 1 2Y1 27°

The linear approximation has eigenvalues which are imaginary. Thus no in-
formation is given as to the stability of the nonlinear system. Iet us
consider the distance from the origin to an arbitrary point on a solution
and differentiate this distance.

- 35 -




2 2
r(x;, x,) = x; +x;

r(xl, xa) = 2x,%, + 2x%,

2 2 2, .2
2xy [xy - axy (x] + x5) ] + 2050~ %) - axy(x] + x3)]

2
- 2a(xi + x2) = = 2ar.

Thus integrating i from some initial to to t we obtain

t t 2 22
£or e [ cead o) - nlg(6), 100) - (e xp(t))
(e} o}

or finally we have
o2 22
wxy(4), x5(0)) = xlxy (%), x(6)) = 28 [ (x) + xp) et
o

Observe that if a >0, then r(xl(t), xa(t)) is a steadily decreasing
function and must go to zero as t 1ncreases without bound. Thus the solu-
tion that starts at the point X(to) must return to the origin and we have
asymptotic stability. If a <0, the converse is true and the solutions
grow without bound and we have instablility. If a =0 r remalns constant
and we have stability.

The curves given by the equation
r(xl, x2) =k

represent circles in the (xl, x2) plane. The fact that the directional
derivative %‘f- evaluated along the solution of the system were negative,
implied that the solutions must cross the curve r = k from outside to

inside. Instead of circles we could have considéred any other nonintersecting
family of closed curves surrounding the origin.
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The Direct Method of Liapunov embodies this point of view in in-
vestigating the stability of nonlinear systems. It formalizes the above
intuitions and geometric approach into a set of theorems. The method
depends upon a scalar function or "y" function which represent a con-
tracting family of closed surfaces surrounding the origin and such that
its derivative possesses desired properties. These theorems are as

follows.

Theorem 3. If there exists a function V(xl, x
definite while its total derivative given by

03 eees xn,t) which is

n
av ov v VT y ov _ . VII‘ ov
- I A SRR A AR RS

is semidefinite of opposite sign, then the equilibrium solution X = 0
is stable.

Theorem 4. If there exists a fumction V(X, t) which is definite while
its total derivatives

T_Ty v - Rx, t)

is definite of the opposite sign, then the solution X = 0 1is asymptoti-
cally stable.

If the function V(X, t) used in the two above theorems in addition
possesses an infinitesimal upper bound, then the obtalned stabllity is uni-

form.

Theorem 5. If there exists a function V(X, t) which is indefinite while
its derivative
av _ ov
E=§‘-E'+VYT-F(X,t)

is definite, then the solution X = 0 is unstable,
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The above theorems have stated conditions upon a scalar function
V(X) which are sufficient to determine the stability. In actuality
these theorems are also necessary, that is, for example if we are given

& system

(rI-i) X = F(x, t) F(o, t) =0

which is asymptotically stable, then there exist a V(X, t) which satis=-
fies the conditions given by Theorem 4. Unfortunately this does not aid

us in the determination of an appropriate V <function. For any given
problem there is not a unique V <function, dbut in many cases one can
obtain many choices of V each of which will give more or less informa=-
tion. What one really desires is a "V" function which gives the strongest
kind of stability in the largest possible space. Unfortunately this is
demanding quite a lot, and we must settle for much less. For some problems

a complete answer can only be determined from several constructlons.

In general "V" functions which insure stability are easier to con-
struct than those which insure asymptotic stability. A natural choice for
a "V" function would be the total energy of the system. To illustrate
this consider the mechanical system with a nonlinear spring.

Example 4.

m§+a.i+k(x-}-%)=0.

As a choice of & "V" function consider the sum of the kinetic energy given

by

1
K.E, = me
and the potential energy stored in the spring

x u; x2 xh
P.E. = fok(u - g—)du = k(—é- - EE)
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then V is given by

2
. l .2 k 2
v(x, x) = 5 mx + 53X (1 -;-—2-).

VY 1is positive definite providing |x| <JJ_2. Differentiating we have

v

3
mk(x) + kk(x - %)

©

mi[-ﬁ-i-?,—i(x-—gnmz(x-"—%)

.2
= - ax

which is negative semidefinite. Thus we have that the rest position is
stable for all X such that V(X)=C is contained in the region [lx|| s J12.

V = ¢ represents a closed curve for

Cég.

Thus we have stability for all x and X such that

1 .2 k 2 x2 1.4
2 a 5%(0) +§x(o)(1_—l-§’l) s 2%

For values of ¢ greater than this, V does not represent closed curves.

This is illustrated in Figure 1. %
7

Xl={a
v7!%
— > X
%j

Fig. 1.
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The results obtained from this construction are not exceptional.
Due to the presence of the damping term we would expect to have asymptotic
stability. Another choice of V could be sought which would give this
stronger type of stability, but this proves to be unnecessary. IaSalle
has given an extension of Theorem 4 which permits these stronger results
to be obtained directly. This extension is based upon an examination of
the set of values for which V vanishes. This set may be divided into
two subsets, the first of which are transition points, that is, the solu-

1

tions Just pass through these points, and the invariant points. The latter
subset has the property that any solution or initial condition that enters
or starts in this set remains there for a1l t. 1In practical cases it is
hoped that the invariant set consists only of the equilibrium position under
investigation. This 1s the case in the preceeding example.

i=-a&20

Thus V = 0 whenever %x =0 and x is arbitrary. If the point
(0, ») 1is a transition point, then V is only momentarily zero and becomes
negative. For ﬁ to remain zero that i must remain zero but this implies
that x 1s & constant x = ¢. If these values are placed in the original
differential equation we obtain

3
k(c-%—):O

or

c=0 xv6 -v6.
Thus the invariant set consists of three point only. For the set x and

X given by
v(x, %) <g-]-‘-



x = 0 1s the only invariant subset, thus we conclude that the origin is
asymptotically stable.

The formal statement of the appropriate extension theorem is as
follows.

Theorem 6. Assume that there exists a "V" function for the system (II-3)
which is positive definite and such that its derivative 1s negative semi-
definite. Iet S be the set such that X is in 8 if V(X) = 0. ILet
SI be the invariant subset of S, then all solutions of (II-}) approach
SI'

For linear systems the determination of stability by the direct
method must gilven identical results as any of the procedures in common usage.

Consider the linear system (II-2)

As a Iiapunov function we wlll consider a generalization of the energy namely
a quadratic form in the state varlables. Thus consider V as

(II-5) v = QX

where Q is positive definite. V 1s given by

«
It

Tax + XTQx
xTATox + XTQAX
XL[ATq + Qalx.

(1x-6)

It is desired that Vv dbe negative definite so we assume ﬁ takes the form

(II-7) V= - X

- 41 -



where P 1s positive definite. This requires a solution to the equation

(11-8) AfQ+qa--p

for a matrix Q which is positive definite. We have stated before that
such a solutlion can always be determlned providing the matrix A is
stable. If P 1s chosen as the identity matrix this relation becomes

811 81 97 %o 97 %2 1 %12 -1 0
+ —
812 B 3, 922 Qo 93 851 8o 0 -1
This become equivalent to the system of equations
2all 2&21 0 a5 -1
(11-9) &, a), +ay, 8,9 1, = 0
0 2&12 2a22 4,5 -1

In order to have a solution for the elements of Q it 15 necessary
and sufficient for the three by three determinant of the coefficient matrix
to be nonvanishing. This gives the requirement

O a22)(alla22 - a,8,1) # 0.

Under the assumption this condition is satisfied, the matrix Q may be
determined.
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2 2
(11-10) -2(|a| + a, + aal) 2(a11921 + a12a22)
1
Q= wraTAT s 2
2(a.lla21 + a12a22) —2(8.12 +ap, + |A])

where we have defined

tr A= (a;; +a,,)

Al = ayq8,, - ay58,.

For Q to be positive definite we require the Hurwitz conditions to be
satisfied, thus

>0 > 0.

2
91%5 = 9o 93

The first of these conditions implies
2 2
(a7 +85,)" + (8, - 8y)

5 >0
2(tr A)° |A|

which implies that

|A] >o.

If this condition 1s used in the second inequality we obtain

2 2
- (IAI +8.22 +8.21) >0
2 tr A |A]

To satisfy this we must require
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tr A <OQ.

Thus for a two dimensional system the application of the direct method
gives rise to the two condlitions on the elements of the matrix A to in-
sure asymptotic stability, namely

50 <0

(1x-11)

21712

For this simple problem it would appear that the amount of computa-
tion required was excesslve as compared to the usual linear procedures. In
general this 1s true, but the alm in this example was to indicate the large
amount of freédom one has in using this method. In a later section the
procedure used above will be used as a starting point for the analysis of
nonlinear systems.
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CHAPTER IIX

CONSTRUCTION OF LIAPUNOV FUNCTIONS

The theorems which form the basis of the dlrect method are in the _
nature of existence theorems in that they give conditions for stability
based upon the properties of the scalar "V" functions, but they do not
indicate how such functions are to be constructed. This limitation has
prompted many investigators to develop general methods of construction.
For some problems it was observed that a suitable choice of a Liapunov
function was given by the total energy or momentum of the system. This
consideration has led to a construction from the integrals of motion
if some of these can be determined. Other investigators have started
with the quadratic form which is the basis for linear systems and general-
ized this to quadratic forms in which the elements of the matrix are
assumed to be functions of the state variables.

In most cases these general procedures of construction still re-
quire considerable ingenuity and as such have not been developed to the
point that they may be considered as an algorithm which leads directly
to the determination of the stability. Two such general construction
procedures approach this state of development namely the Zu.bov2 con-
struction and the construction due to Ingwersonj, both of which can be
Implemented upon a digital computer. Unfortunately all such procedures
suffer from one basic limitation, namely, the inability to determine
whether the result of the construction process possesses the deslired dew

finiteness properties.

This limitation forces the problem of construction of Liapumov
functions to be divided into two problems. These problems are (l) deter-
mine if a given homogeneous function of degree 2n is definite, and (2)
assuming that problem (1) is solved construct a suitable Liapunov function.
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For some particular function solutions to problem 1 can be determined but

no general results are available,

A, Construction from the Integrals of Motion. For many problems
primarily of a gyroscopic nature "V" functions can be constructed from

a consideration of one or more of the integrals of motion. Such V func=-
tions actually represent solution curves and as such their derivations
vanish identically. Thus one only obtains stabllity. To 1llustrate this
procedure consider the motion of a wehicle rotating about its center of

mass.

Example 1. Assuming principle axes the equations of a rotating vehicle
with no applied torques become

ID (Iz - Iy)rq =0
Iyt; + (:tx - Iz)pr =0
= 00

It + (I, - I,)pq
This system possesses the four equilibriun positions
€, = (o, 0, 0) €y = (Po: 0, 0) 65 = (0, 9 0) e)_,, = (0, O, I’o)'

To investigate their stability we will assume that the inertlas are ordered

as follows

I > Iy > ;x'
This implies
I - I -1 I -1I
Z = A . S
Ix =y > Iz = c5 > ;y = =c, with c3, Cos

ey positive.
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The stabllity of € is somewhat trivial and may be determined by con-
sidering a Liapunov function of the form

2 2 2
Lyp *I 9 +I r
v= 2 .

Then i becomes

\7

I, vb + Iyqé + I rt

p[(Iy - I,)ryl + al(z, - I )pr] + r[Iy -I,lpq

]

- - - 1=
pqr[Iy Iz + Iz Ix + ;x Iy' 0.

Thus the equilibrium position (0, O, 0) is stable. We now investigate
the equllibrium position 62.
the equilibrium position to the origin by means of the following

To facilitate this investigation we transfer

il = - clxzx3
i2 = clex3 + czpox3
i3 = - c5xlx2 - c3p0x2.

Iet us divide the second and third of the above equations by the first to
obtain

F2__ 2 22 5%
dxy ¢y ¢ %5
dx c, X c P
.&_2:_2 142 9
1 %1 *s ¢ *3

Integrating these two equations we obtain
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2 2

CyXy ¥ oXy * 2e,0.x) = K
2 2

clx3 - <:5xl - 2C3Poxl = k_‘|

ILet us define the two scalar functions Vo and Vl as

2 2

Vo = clx2 + c2xl + 2c2pox_.L
2 2

1 = ©1%3 = C3%p = 2C3P X;-

Neither Vo nor V
such that

| are Liapunov functions but both Vo and Vl are

Therefore it follows that any fumction V = kovo + klvl also has the pro-
av

perty that % = 0. Conslder as a Iiapunov function
c c
-2 2 Y - c.x2 2 _
g1t Vo= o5 T X5 = Vo

This is only semi-definite since it vanishes for X, = :A:3 =0 amd xq
arbitrary. To complete the construction we need a dependence upon xl.
To achieve this let us add v‘g to V,. Thus
2 2 2 2 2
= + .
v CaXp * CXz * (clx2 + ¢ Xy 2c2p°xl)

Now V 1is positive definite and its derivative vV is identically zero.
Thus the equilibrium position 62 is stable. If the same procedure is
applied to € 4 it i1s also found to be stable. To investigate c3 we
once again transfer the equilibrium position to the origin. This gives
the system
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| BN

:':l = - clx2x3 - clqox3
Xy = e X)Xy
:':3 = - c3xlx2 - c3qox5.

Examining the linear approximation, we have one eigenvalue with
positive real part. Therefore this equilibrium is unstable. Thus we
conclude that rotations about the axes of maximum and minimum moments of

inertia are stable whereas rotations about the axis of intermediate inertia

is unstable.

We now wish to return to the problem discussed in Example 2 of the

the preceding section. The equations of motion are

X =X

2
. —bsinxl+2x2xh_ sinx5-a.xh
- cos
2 x3
x3 = xh
. 2
xl; = Db sin x3 cos xl - x2 sin x5 cos x3 + a.x2 cos x5.

We had obtalned as a result of the linear analysis that for stability it 1s
necessary that

8.2—th0-

We now assume this inequality 1s satisfled. If the equation for J‘:a is multi.

plied by coszx and the equation for x), is multiplied by x), and the

X
32
results added together, to give

. 2 . 2
= + d
x2x2 cos x3 + xhxh b cos x5 sin xlx2 'bxll_ sin x5 cos x:L + xaxh 8in x3 cos x3
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Now if equations for :':l and :’c5 are substituted into the above we
obtain

. 2 2 . . . .
xex2 cos x3 - x2 sin x3 cos x3x3 + xhxl+ = b cos :1'3 sin xlx2 + b sin x3 cos xlx}

or xa x2
d 2 2 4 d
3T {cos X3 3 + —2—} = -~ 3T {b cos X5 cos xl}.

Thus we have one integral of motion given by

2 2
V-f&+igcosax + b cos X, cos X
o- 2772 3 08 X3 CO8 X,.

For a Liapunov function consider

V=Vo-b-

With this choice of V we have {r =0. If V 1is positive definite then
we would have stability, but for V +to be positive definite we must have
b<0. If b=-4d, then V becomes

-+

ol o
' »
hV] VI ]

cosax3 + df1 - cos x5 cos xl].

For the norm of x small V 1s dominated by the first terms in the series
expansion of the trigometric functions. Thus it behaves like

2
44484
5 B 2 Td3

and is positive definite. Thus for b > a2 the equilibrium position is
2
unstable, for b < 0, the equilibrium is stable and for 0 <b <a~ we
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have no information. By constructing another integral of motion the region
of stability could possibly be improved.

B. Construction by Extension of Quadratic Form. The most useful
approach to the construction of a Liapunov function is to use a quadratic

form in a&ll or in some of the state variables. If the nonlinearities are
odd functions of thelr argument at least in a neighborhood of the equili-
brium position, then their integrals become additional choices for the
construction of a Iiaspunov function. This procedure was used in Example
(II-4), and will be discussed in more detall when the problem of Lur'e is

encountered.

The advantage of a quadratic form is obvious when one considers &

mmad Yoo

are replaced by

- T 2 -~ -

linear system sinc

finding positive definite solutions of the syste

B
[}
Py s

algebraic equations
(III-1) ATQ + QA = - P.

If the matrix P 1s specified, then the elements of the matrix Q can
be determined as a solution of a system of algebralc equations whose
coefficients are the elements of the matrix A. For a second order system
with P = I, this was computed (II-10) in the previous section. For
various choices of P +the matrix @ could be tabulated for arbltrary
choices of A. The amount of work of course would be prohibitive unless
the form of A was sultably restricted.

Stariing from thils point of view, several apparent options are

available. For the nonlinear autonomous system
(111-2) X = F(X)

one could assume that F can be written in the form F(X) = A(X)X where
A(Y) 1is a matrix whose elements depend upon the state. (III-2) would then

take the form
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(III-3) X = F(X) = A(X)X.

Consider as & V function the quadratic form

(III-4) V= qux.

Its derivative becomes for Q constant
¥ = XC[AT(X)q + QA(X)IX.
Equating the matrices

(III-5) AT(X)Q + QA(X) = - P.

Q could be determined, but unfortunately its elements are not constant
but depend upon the vector X. This causes a revision in the form of V.
If Q 1s Initially assumed to depend upon the state vector then ﬁ takes

the form

(III-6) ¥ = X°[ATQ + QA + &Ix

with the resulting equation

(II1-7) AT(x)Q(X) + Q(X)A(X) + &(X) = - P

to be solved for the elements of Q. With various restrictions upon the
matrix Q and restrictions as to the type of the nonlinear function F,
L
J

various approaches analogous to this have been proposed by Szeg8 Ku and

Puris. In the above treatment it must be observed that in obtaining
equation (III-3) the matrix A(X) is not unique.
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The most fruitful of the approaches based upon the extension of
the quadratic form is due to Ingwerson3 whose method will be described
in more detail. Instead of starting with a variable matrix Q(X) and
obtaining equation (III-7) to solve one can observe that for Q a con-

stant the elements qu are given by

oz2v

gy = 6?;5{.1’

The natural question to ask 1s the followling: Could one start with a
matrix Q(X) which is a solution to the equation

(III-8) AT(X)Q(x) + Q(X)A(X) = - P(X)

and then integrate the resulting matrix, Q, twice to obtain a scalar V
function? For the matrix Q to be the second derivative of a scalar V,
the elements of Q must satiefy two relations, namely

(1rI9) da dq
(v) s—x-]i:l=&-3-l5 3 k £1.

In general a matrix R satisfying an equation of the form (III-8) will
always have property (a) but in general it will not satisfy the condition (b).
If the elements of Q are formed fram the matrix R by the following

relation

(QiJ = riJ(o, eooy 0, eo ey xi, 0 scey XJ, 0, scey 0)

then Q will always satisfy both relations (&) and (b). Observe that each
element qi‘1 only depends upon the two components of X namely xg and

X

Jo
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With Q now determined and satisfylng the conditions (III-9), it
may be integrated to give the gradient vectors VYV.

X
(111-10) VYV =[ Qix
0

where each component ‘\‘/Vi of YV 18 defined as

X
AVA p qu dx
i =10 1373 .
TII-11 x X2 n
( ) = fol Qy,9%; * fo Q 0%, + ... fo Y, %,

Once YV 18 obtained both V and \.I can be determined. If the ori-
ginal system is in the form (III-2), then V ‘s given by:

(III-12) V= YVFEX).

In order to obtain V one must integrate <V along some path to the
point X. In general such line integrals depend upon the path of inte=
gration. To have this integral to be independent of the path it is suffi-
client that the matrix of partial derivatives of the vector <yV have a
vanishing skew symmetric part. In three dimensional space, this is equi-
valent to the vanishing of the curl of V. From our construction of
Q, it represents this matrix of partials and 1s symmetric. Thus YV
can be integrated independently of the path. This gives for V +the equa~

tion
(IT1-13) V= [ yVax
[o

where ¢ 1is any path connecting the origin to the point X. A convenient
path to use is to integrate along paths parallel to the coordinate axis.
For this path the integral for V becomes
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(xl,0,0,...,O) (xl,xa,o,...,O) X
v=/ \'/ledxl + f TVE o+ .+ fo Vvﬁ'dxn.
(III-14)

In this development we have not indicated how the matrix A, which
is used in equation (ITI-8) is obtained. Ingwerson does not represent the
vector F(X) as A(X)X, instead he starts with the original equation
(III-2) and differentiates to obtain

F(X)

e
]

A(X)X,

where A(X) 1s the matrix defined as

of,
(111-15) A(X) = (aid(x) = g;;)-

To facilitate the computation F 1is assumed to be & vector of the form
T
(111-16) F o= (x2, X559 eees Xp f(xl, Xps eeey xn))

which 1s the form obtained from the vector representation of a single scalar
equation of degree n. Thus A will be in the so-called coumpanion form.

In the construction of & V by this approach, it is not necessary
to demand that the matrix P from equation (III-8) be positive definite,
but it is sufficient for P to be semi-definite and then apply laSalle's

extension.
At the completion of this construction, the determination of the
assoclated stability st1ll depends upon V being positive definite. In

general V will be complicated and thus the testing for definiteness 1is
very difficult. If the matrix P is chosen such that V 4is definite, then
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complete information will be determined since if V 18 indefinite, then
by Theorem II-5 instabllity would result.

Before attacking a sample problem it is worthwhile tabulating the
steps in the above construction. We assume a system if for (III-2) given

X = F(X).

Step 1. Determine the matrix
afi
A= (aij =&
J
Step 2. Choose & matrix P which 1s elither definite or semi-definite.

Step 3. Construct a matrix R such that

Step 4. Construct a matrix Q where Q 1is obtained from R by setting
in each element riJ all variables to zero except Xy and xJ.

Step 5. Construct </V by integrating Q
x

[aax = ( 2100 ax)
V= QX = (Y, = % q, dx.).
0 1 430 4

J

Step 6. Construct V by performing the line integral of <JV

xl,O,...,O xl,xa,O, esey O
V= fo Yvax, + fo TV ax, + eee
X12Xpy eeey X
fo TV ax .
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Step 7. Determine if V is definite or indefinite. If P was chosen

to be semi-definite and V is indefinite no information is obtained and
steps 2 through 7 must be repeated. If P 18 definite or if P was semi-
definite with V definite the solution is complete.

Example 2. As an example consider the construction of a ILiapunov function
for a phase-locked communication loop. The describing equations are given

by

x+ (a+bcos x)x + k sinx = 0.

In vector notation this becomes

b4 - k 8in x

- L - (a + b cos xl)x2

Step 1. The matrix A is

-k cos x; + b sin x;x, - (a + b cos xl)

Step 2. If b <a then for P consider the matrix

0 2(a + b cos xl)

P 1s positive semi-definite.




Step 3. The matrix R for this choice of P 18

k cos xy - bzx2 sin xy 0
0 1

Step 4. The desired matrix Q is

k cos xl 0

=

0

Step 5. Integrating Q we obtain for v

x

1
J k cos x,dx, k sin x,
0
VA = .
xzdx
Io 2 *2

Step 6. Integrating YV we obtain for V

1 *2
V = f k gin xldxl + f xzd.xa
0] 0
x5
=k(1-cosxl) +5.

Thus for ||X|] <7 V is positive definite. V is given by A2 Al F(x)

(x sin xy x2) X,

xg(a + Db cos x,)
-k sin x; - xa(a + b cos xl)
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for b<a ﬁ is negative semi-~definite. Thus we can conclude that the
origin is stable. Applying the extension due to IaSalle we have

V=0 for x2=0 and xy arbitrary

-1
and x, arbitrary x; =cos = - a/b
for b <a the second set does not exist. For x, = 0, the system equa<

5 =
tlions imply that x, = ¢ vwhere ¢ 1s given by

1

terior to the set [[X|| <m the
thus we conclude the phase-~lock system 1s asymptotically stable for all
x, and x_, interior to the curve V =c¢ where ¢ 1is chosen such that

1 2
V 1is inscribed in the curve [x}| <.

H

An alternate construction procedure called the variable gradient
method has been proposed by Gibson and Schultz6. This procedure is in
many ways analogous to the one above. Its main departure is in that it
does not start with the matrix Q and integrate twice, but rather it
starts with the vector YV. If VV 1is assumed to be known, then both
Y and V are given In terms of it.

YVF(X)

) vadx.
L

(III-17) v

(111-18) v

In the approach advocated by the above two authors, an arbitrary form for
7V is assumed. With many free positions V 1s formed from the assumed
form of <7V. YV 1s then constrained to be at least semi-definite. This
constraint fixes some of the free parameters in V. Conditions of
symmetry on the Jacobian matrix of Y7V are enforced to insure that 9V
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18 the gradient of a scalar. These symmetry restrictions give E(g—'l-‘)-
constraints on the elements of YV. The remaining free parameters are
chosen to satisfy these constraints. In practice one 1s forced to iterate
between these last two steps. Once these constraints are satisfied V
may be obtained in the same manner as for the Ingwerson method with the
resulting problem of the determination of the definiteness of V. Before
we try to make comparison between this procedure and the previous one we

wish to consider an example.

Example 3. Consider the system given by

Pe
]
el

e
]
M
R

k>0 r >0,

For V we assume the form

ay3(x9)%; + a3,(x), x5)%,
vy

a5 (%), X5)%) X,

where as yet a and are arbitrary functions to be determined.

110 %127 ®21
In terms of YV we can solve for V +to obtain

¥ = VVEEX)
) 2 2 2 2
= - Tay Xy +xp(a, - kX)) +xgXp(ayy - Kayx) - rxg).

We now wish to choose some of the functions a.i 3 so that V is at least

negative semi-definite. This can be achleved if we make the following hold
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a) ra,, ¥ 0
b) &, - k550
2

2
c) a9 - ka,.x7 - x5 = 0.
Condition b 1s satisfied providing

a,=k -c with ¢ >0 but arbitrary.
With this choice of a,, Wwe can now impose the symmetry conditions upon
the Jacoblan matrix. This condition requires

%2 (a5(xy, x5)%5) = %El(aal(xl’ X5)%;)
kx- -¢ =8 + x aaZl
1 21 ¥ *1 &

Solving this equation we obtain

3
R
3

a5y (%), x3)%; = 1

or >
1

Applying condition (3 we have the requirement that a.. > 0. To satisfy this

21
we would require c¢ = 0. Thus the only choice remaining is for ¢ = O.

The third condition requires

With these cholces we have for SV the vector
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vv

Integrating we obtain for VY
6 L

X X X
271 1 172
V=k E+r—H+k5+

l\)“l\)

HE )

X

15 [ + 3x,)%] + ¢

e

which is positive definite. V becomes

. k _h

V==-1r 5 x4
which is negative semi-definite. The invariant set consists only of the
origin. Since V represents closed curves for all ||X]|, then the con-
clusion 1s that this system 1s asymptotically stable throughout the whole
finite plane.

The primary difference in the varlable gradient procedure and the
modified Liapunov construction appears to be in the procedure for obtain-
ing VYV. Ingwerson's procedure glves immediately a choice for V'V
based upon a selection of the matrix P, whereas the variable gradient
procedure requires considerable ingenuity to epply. It has been the author's
experience on many sample problems that comparable results were obtalned
with the two methods. If a choice was to be made it would have to be based

upon the ease of construction. The Ingwerson procedure has one solid
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advantage, namely it could be formalized sufficiently to be placed upon

a computer.

C. Non-Quadratic Constructions: Numerous other procedures have

been advocated for the construction of Liapunov functions which are not
based upon any starting quadratic form. It is recognized that the variable
gradient procedure i1s not based upon properties of quadratic forms, but

due to 1ts similarity to the construction dwe to Ingwerson it was classified

in the same section.

The most general process for a Llapunov function construction is the
one proposed by Zubova. This procedure has been discussed 1in considerable
detail by Margolis and Vogt7. Szeg88 has also proposed a similar procedure.

Basically the Zubov construction is based upon examining the partial
differential equation for Vv and obtaining solutions to this equation in
terms of a power series expansion. Thils restricts the construction to non-
linear functions which are analytic. The utility of the Zubov construction
does not lie in the determination of the stability or instability of a
system, but rather in obtaining the complete domain of stabllity. The pro-

cedure for construction is as follows. We assume a system of the form

(I1I-2)

X = F(X).
If we have a ILiapunov function V(X) its derivative is glven by

If the equilibrium of (IITI-2) is asymptotically stable then we know there
exists a V function such that {r takes the form

(III-19) ¥ = IVFE) = - W(X)
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where W(X) is positive definite. Zubov assumes W(X) to be of the

form
(II1-20) (1) wX) =uvxX)[1 -v]
(III-21) (2) W(X) = U(X)[1 + FFI[1 - V]

where U(X) 1is assumed to be & positive definite quadratic form. Thus
the problem of constructing a Liapunov function is equivalent to solving
the partial differential equation

(I1II-22) vt . F(X) = u(X)[1 - V]
or
(1II-23) gV - F(X) = U(X)[1 + FFI{1 - V]

This partial differential equation can be solved in terms of an infinite
series of functions which are homogeneous. Thus V 18 assumed to take

the form

[ <] [- ]
(TII-24) V. (X) = SV (Xy, Xop eeey X_)
k=2 k k=2 kV'L? T2 n

where the functions vk(x) are homogeneous of degree k, that is
(III-25) Vk(b(l, sz, seoey Mn) = XkV(xl, x2, ceey xs)o

Every flrst partial derlvative of a homogeneous function of degree k 1is
homogeneous of degree k-1. Under the assumption that F 1s analytic,
then F has an expansion of the form

oo

F= X Fi(x)
=1
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where each of the vector functions are homogeneous of degree 1. If these
two series are substituted into the equation (III-20),

(1II-26) VT[ ka(x)){ ;Fi(x)} = U(x)[1 - ;vk(x)].
k=2 1=1 k =2

If the homogeneous forms of the same degree appearing on each side of
equation (III-26) are equated one obtains the set of equations

VV,F; = u(x)
VgF, + TVgE =0
(III-27) TNy + V3P, + HgFs = - UV,

OVFY + TV Fo + et ‘Wgrk..l = - UX)Vy

This system may be solved recursively to give each term in V in terms of
the previous terms. Each homogeneous term of degree k 1in the expansion
of YV has the form
i. 1 i
1 "2 n
V =}:8- » ey ,x ) esey X
k 11, iy 1 %2 n
where the summation is over all combinationg of the indices with the sum of
the indices equal to k. As an example for a second order system

4 22 y
Vy =% t %1"{"2 * Ay Xy al}"l’% * 85 Xoe

For large order system (third or higher) the work in such a solution would
be prohibltive.
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As was stated previously, the main advantage of the Zubov construc-
tion 18 that the whole region of asymptotic stability is given. If X
is a point which belongs to the region of asymptotic stabillity, then
V(X) 2 1. Thus the boundary of the region of asymptotic stability is given
by V(X) = 1. To illustrate this method consider the following.

Example k.
J'cl = =% +X, +xl(x]2_ +x§)
J'ta = -x; -x,+ xa(xi + xg).
Thus F=Fl+1i'3 where
/- %) + %, x) + x5
ne Sl Bl 3T xix, + 3 '

For the function U(X) consider

U(X) = 2(x5 + xg).

Observe that the origln 1is asymptotically stable, since the characteristic

roots

-1-2 1 2
=A"+2AA+2=(A-1+1)(A-1=1)
-1 =1=2)

have negative real part. Therefore the Zubov construction is applicable.

For V we assume a serles of homogeneous form

V=72+V5+..- +vno



The components of V may be determined from the recursive relations

IVoF

|
]
(=4

T _
Vg aFp + eee \_/vng-l = Wy o

4
+
)

Observe that the first of the above relations is identical to finding a
matrix @ such that

ATQ-I-QA:,-P

where @ 1s the matrix of V2, A 1is-given by Fl=Ax and P 1is the

matrix of the quadratic form U(X). Thus the first equation requires

(2qllxl + 2q12x2)(-xl + x2) + (2t_:‘l2xl + 2q22x2)(-xl-x2) = = 2(x§ + xg),

from which we obtain

2 2

In the second of the above equations vaFl + vvﬂz‘"pa =0 we are
given F2 = 0 ‘therefore W;:Fl =0 or V3 = 0. For the next term in
the recursive relation we have
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VVF, + YRy = W
Vh must have the form
Yy = auo"); * a}l"i"z + apxoxs + 8y xx) + aouxlz"
Therefore this relation gives

(haho)?l + 3831"1"2 + 2a22xlx2 + a]2x2)(- X, + x2) + (2x ) (+ x{ + xgxl)

+ (19.51xl + 2a 2x + 3a13xlx§ o)\‘xg)(- x, - xa) + (2x2(x2x§ + ;%)

h+hxx2+2xh

= 2%, 1% 2°

Equating coefficients of the same powers we obtain the algebraic relation-
ships

The solution to the above by inspection since they are homogeneous equations
is am=831=a _8'5’01&"0' Thus Vu 0. It follows that all

texrms Vi are zero for i > 4 also. Thus

2

2
v(X) = x) + x5.

The complete region of asymptotic stability is given by
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V= Xi + xg = 1.

The Zubov construction in the last example led to a closed form for
Y. In general this will not be the case so that one has a finite number
of terms in a series representation for V. It is nown that V will gilve
the complete region of asymptotic stabillity, but the natural question to
ask is to what extent can the region of asymptotic stabillity be approxi-
mated by an approximation to the V function? The answer 1s in the affirma-
tive since if (V)k is the approximation up to terms of degree X, let
@ be the minimum value of (v)k over the set X where (w'r)k = 0. Then
the set glven by (V)k = a 1s contained in the domain of asymptotic stabi-
1lity.

The Zubov construction plays an important role in the theory of
optimal control. This relation will be given in more detall in a later
section, but to illustrate the interrelation consider the Zubov partial
differential equation

(III-22) V=U"v-F-=-uxI-v.
Dividing through by (1 - V) and multiplying by 4t we obtain

(1x1-28) %‘-Iv = - U(X)dt.

Integrating both sides to obtain

v(T) T
(111-29) - In(l -V) ) + - ft U(X)dt.

Vet

If we make the transformation In(l - V) = W (III-29) becomes

T
(11I-30) w(t)) - W(T) = - ft u(x)at.

o
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In the conventional representation we have

t
(I1I-31) Ww(T) = w(t ) + jt u(X)at
o

which resembles the form for most performance criteria in optimal control
problems.

Numerous other procedures for the construction of Liapunov functions
have been proposed. Most of these lack the generality of the three methods
thus far discussed. One such method due to Infante and Clark?, although
regtricted to second order systems gives an interesting geometrical inter-
pretation of the Iiapunov function. The method consists in modifying the
system of equations until it becomes an exact differential equation, thus

gilving an integral of motion. The conditions for exactness coupled with
the requirement that the cross product of the original velocity vector with

the modified system, insure that trajectorles enter the reglons given by the
solution of the modified equation.

A useful construction for low order systems has been proposed by
Reiss and Geisslo which 1s based upon using the differential equation and
performing an integration by parts until one arrives at a definite form.

This construction often gives useful insight even when the system 1s of
high order. This method 1s much easier to illustrate with an example than to

explain.

Example 5. Conslider the system

e e
i [}

e
|

= - f(xa)x5 - 2X, = X4

As a tentative cholce of V consider the semi-definite form

V=
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Then integrating we have

J vat

- fxgdt

<}
|

i xjn'cadt =~ xgdxy = = X%, + / x2:'(3dt

- xgx,y = f X E(xp)x86 - 2 [ x32t - f xxdt

- X5X, - / x‘,af(xe)d.x2 -2 [ xdx; - faxld.xl
x

1
- X5X, - f xaf(xz)d.xa -2 f x0x, - =5

Iet us now examine the integral
J x %) = %%, - J %% 4t = x.x, - 1) xlx3dt
but from the last equation we have

- Xy = ]7[5 + f(xa)x5 + 2x,.

Therefore
J x 8% = xx, + / x5(>':5 + 15‘():2)x3 + 2x2)dt
2

x
XX, + —g- + xg +f x§ f(xa)dt.

1

Substituting this back into the expression for V we heve
2

1 2 .2 2
V= - X%, =5 - / x2f(x§3xa - &x) - X5 - 2x, - 2 J xjf(xa)dt.

Now define the variable W as
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2
W=vV+2 [ xor(x,)dt = - x S e -x® -2 - [ x(x,)ix
= 3t \Xo - I X1 = *3 2 ot \Xp)dx,

X
2
- -5 [ + 1" - oy tml” - [ (20xp) - Dy

Thus for f(xz) > %, W is negative definite

dw av 2
T @’ 2x3 £(x

5)

- x§ + ax§ £(x,) = x§[2f(x2) - 1]

and for f(xa) >3 W is positive semi-definite. Thus the origin is stable.

2}
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CHAPTER IV

THE FROBIEM OF ILUR'E

The application of the ILiapunov second method has had its most
success in the treatment of the classical problem due to Lur'e. To date
this bhas been the only general problem that has been solved. Fortunately
many practical problems from the area of control and guidance may be formu-
lated in its form. The equations representing this classical problem are
of the form

AY + BS

..40
]

(v-1) 7
o =CX-1rbd

where Y 1is an n-vector, & and ¢ are scalars although these problems
may be generalized to the case where they are vectors. To complete the
specification of the equations, a relation must be given between the vari-
ables ¢ and b&. This relation is generally given in one of the two forms

(1) 5 = £(0) (indirect control)

(2) & = (o) r = 0 (direct control).

[}

In general the nonlinearity f(o) 1s assumed to possess one of the follow-
ing restrictions

(a) of(c) >0 £f(0) =0

(v) kloa s of (o) = k202 £(0) = 0

(e) fa £f(t)at >0 for all o.
0

If the variable & is eliminated, the system (IV-l) takes the more

familiar form
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Pqe
[}

AX + Bf(o)

(1v-2) cTx

Q
]

for the problem of direct control, and

AX + Bf(o)

>4
[}

(V-3) = C'X - r£(o)

Qe
I

for the problem of indirect control. This last representation 1s obtained
by making the transformation

Y = AX + BS.

The problem of direct control may always be put into the form of the pro-
blem of indirect control by differentiating the equation for ¢. This

glves
§ =CT% = CTAX + CTBE(q).

Thus the problem takes the form

X = AX + Bf(o)
(1v-4) T

§ =CX - rf(o)
where C{ = CTA and r = - CTB.

In the original treatment of this problem Lur'e assumed that the

problem was in the canonical form

X

diag (xi)x + 1 £(o)

(Iv-5)

& = X - r£(o)
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for the problem of indirect control and in the canonical form

X

diag (xi)x +1 £(o)

(Iv-6)
o = Cox

for the problem of direct comtrol. The vector 1 1s a vector all of

whose elements are unity.

Observe that any block diagram with a single nonlinear galn element
with no repeated open loop roots may be placed into the Lur'e canonical
form. This will be 1llustrated by an example later. The problem posed by
Lur'e was to find conditions on the vector C'T and the scalar r +to in-
sure asymptotic stability throughout the whole plane. To determine this
it is first necessary to determine the equilibrium points of the above
system. For the problem of indirect control we have the system

X = AX + BS
(Iv-7) 8 = £(a)
0 = §IX - 6.

Thus the equilibrium points are glven by the solutions to

0

AX + BB

(1v-8)

¢TX - r® = 0.

]

In order for the origin to be the only equilibrium point the deter-
minant of the coefficient of the above must be nonvanishing, that is,

(Iv-9) o # 0.
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For the non-critical case, that is for A to be stable which implies A
is nonsingular, this becomes equivalent to the relationship

(1Iv-10) r + cTA™ i # 0.

Observe that this relation was also required to insure that the transforma-
tion to the form (IV-3) was permissible. For the problem of direct control
the equilibrium points are given by the solutions of the equation

(1v-11) X + B{CX) = O.

Lur'e in his construction of a Liapunov function assumes that the
elgenvalues Ay all have negative real part. The critical case, that 1s,
with one or more elgenvalues having zero real part requires special treat-
ment. In the subsequent treatment we will in addition assume all eigen-
values to be real. This is done primarily to simplify the discussion. In

addition we place the restriction on £(g) due to IaSallela, namely

o
lin [ £(g)do - .
g->» 0

For the problem of indirect control, Lur'e considered a Liapunov

function of the form

n n n qa,c, x
_ 2 1 %% 1%
(Iv-12) V= Zax - I I 553

o
+ [ f£(s)ds
i=1 1=1 j=1 1 J 0

where it is required that the numbers ai are positive and the numbers
a; are arbitrary. The derivative of V takes the form

n n n n

. 2
V= Z2,ax, - & Iaouaxx,+ I 2axf(qg)
P O N NCR A  SI R

n n ai(l‘i
-2 £x, £ =2 £(o) + 3% ec,x, £(a) - rfo(a).
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Observe that the terms

n
z 2hiaix§ i8 negative definite
1=1

2
-ZZ (:t:'_cz'jxix.j = - (= aixi) is negative semi-definite

- rfa(o) is negative providing r > 0.

Collecting terms we have

2
. n a
(Iv-13) t-zaraxd-(zq x,)2 + 12‘.1)( [e, +2a, -2 & i_+>1.1 1 2(a)
- l'fa(q)o

Thus all terms of i are elther negative definite or semi-definite except
for the coefficient of f(g) which is indefinite. If this term can be
chosen to be ldentically zero, then ﬁ is negative definite. This glves
the requirement

na

-2 5 L4 ]1=

(Tv-1k) % x, [c + 2a
3=1 My

i
But this can only be satisfied if the system of n equations

(Iv-15) c, +2a, -2 g ziai =0 1=12, ..., n.
=1 M
Thus the problem has been reduced to the algebraic problem of choosing the
quantities ay to be real such that the system (IV-15) is satisfied.
The set of equations (IV-15) are called by Lur'e the set of resolving equa-
tions.
If in the equation for V given by (IV-13) the quantity



2Vr £(0)z o X,

is added and substracted then equation (IV-13) takes the modified form

(Iv-16) V=2 2>.ia1xi - (2 ayx; +Jr f(d))2

n n aa
+ Ex e, + 2a, +2+r a, % l_.%% 12(0)
=1 F M

and the resolving equations become

J. aia
(Iv-17) c, +2a, +2Nra, -22).1_&3

=0 1=l,2, soey n.

In practice the quantities 15:.:L are dropped from the resolving equations

since they may be chosen arbitrarily small. This gives the two forms which

are used in practice.

o
(Iv-18) 20) B gt = oy 1=212 ..., n
17
or
x
(IV-19) 2(11[2 '_J— - J-r 1= ci i=1%2 ..., n.
Ay +xJ

The solution of these equations for real ay is sufficient for asymptotic
stability. If f£(g) 1s such that of(g) >0 then the region of asymptotic
stabllity becomes the whole space. To illustrate Lur'e's solution for

the problem of indirect control consider the following:

Example 1. Choose the parameter r to guarantee asymptotic stabllity for

all nonlinearities such that of(g) > O, where the system is given by the
block diagram
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! S+8

S$S+2 > ) S S+1

This system takes the canonical form

X = -x (o)
%, = - 2x, + £(0)
¢ =-Tx; +6x, - rf(a).

Applying the canonical equations (IV-14) we obtain

I
-

(1) a§+§ala2+2al~rr

(2) %ala2+£2+2a2~fr=-6.

For asymptotic stabllity we require real solutions for o and a, of
these two equations. If equation (2) is subtracted from (1) and if 1/2

of (2) is added to (1) we obtain
2

(3) aﬁ-?-ge-+2~fr(al-a2)=13
2
() a§+a1a2+a-—i+2(al+?%)~fr=k.

Observe that equation (3) is a hyperbola while equation (4) is the pair of
straight lines

(5) a1+§2=: Ni + 1 - 4T,
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If equation (5) is solved for @, and this result substituted into equa-
tion (3) we obtain :

(6) -E+(2J-r_-l; J—T-i-_r)az+9=

a, and consequently X will always be real providing the discrimenant
of equation (6) 1s positive

(2 + NETF) -9 >0

or —_—
5r-5_-l_-1+~/)+r+r2>0.

Since by hypothesis r > 0 we must have
J1 2
5r = 5> 4Nhr + r°.

An approximate solution is given by r = 15. Thus for all r > 13, the
origin is asymptotically stable.

For a solution of the problem of direct control Lur'e considered a
V function which is identical to (IV-7) but without the integral term.

n n aaX,x
(Iv-20) V-zax - = = ;azjl .
i=1 i=1 J=1 "1 J*

Differentiating V, V has the form

. 2
V=22 )‘1“1"1

(v-21) -2 B Xy 2 A3 £(a).

121 1 a1 M

-z aiadx x +2¢% a.ixif(o)
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If of(c) is added and subtracted to (IV-2l) and the terms regrouped,
then i becomes

a 1"

. 2 2 iy
(Iv-22) V=2ZMax - (2ax)" -of(c) +2 x1[2ai - 25 "1*7“3 +el.

For asymptotic stabllity we require the set of resolving equations

(Iv-18) 25 ——:% =cy

1=l,2, ceey n

which are the same as the first form for the problem of indirect control.
In general it appears that better results are obtained for a problem of
indirect control then for the corresponding representation as a problem

of direct control.

Example 2. Consider the system given by

J.(l=—2xl+f(0')
X, = = 3x, + £(0)
2':3=-5x3+f(d)

1 + 2
6—3xl—x2 ij.

The Lur'e canonical equations become from equation (IV-18)

2

a
M priemties -3
(2) S 30 a1
) Tyt o 5o - - 5
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For asymptotic stability we require real solutions for the quanti-
ties ap, a,, and 0z If equation (1) is multiplied by 2, equation (2)
is multiplied by 3 and equation (3) is multiplied by 5 and the results

sumnmed we obtaln
a2+a2+a2+2a + + = =1
17 %2 %3 10 + 2005 + 20,05 =

or
2
(%) @, +a, +a3) =-1

this immediately demonstrates that there exlist no real solutions. There-
fore we have ascertained no information as to the stability. Iet us now
recast this problem into the form of an indirect cantrol. The equations

take the form

X, = - 2x; + £(a)
%, = - 3x, + £(0)
X5 = - 5x5 + £(0)
5=-8x +3x - Bx 40 2.

Observe that the term r in this example 1s zero. Applying the ILur'e re-
solving equation we obtain

2
a 2 2
Ftiom o =5
1 2
2 oo, + Fap o = -3
2 1 1 2 10
7 0% T | %%t 5=
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The values
_ 10 = -2
a, = 3 03 = 12 03 =%

satisfy the above equations. Therefore we conclude that the origin ie
asymptotically stable.

The problem of indirect control has been independently recast into
a general matrix formulation independently by ILefschetz and thubovich;u.
This representation has an advantage in that it does not require a canonical
representation. Consider the system (IV-3)
X = AX + Bf(o)
(w-3) . T
o =CX-rt(a).

"

As a Liapunov function consider the quadratic form plus integral

g

V = QX + [ £(s)as.

0

V takes the form
¥ = XT[ATQ + QAIX + £(0)Blax + X2QB (o) + CX (o) - r£°(a).
Since A is stable by hypothesis, we have for any positive P
A*Q+QA=-P.

Define the vector D as

T
e+

- 83 -




Then V becomes
(Iv-23) V = - X'PX + D'X £(g) + XD £(c) ~ r£2(a).

If a new state vector Yo = (XT f(g)) 1s defined, then V takes the
simple form

(Iv-24) ¥ = - YRY

where R 18 the matrix

For asymptotic stability we require R to be positive definite. Since
P 18 already positive definite this gives as a condition the scalar equa-
tion

(IVv-25) r -Dpp > 0.

Comparing the construction due to ILur'e with that of Lefschetz, many
differences become apparent. The Iefschetz construction gives a single
scalar equation (IV-25) sufficient for the determination of stability, where-
a8 the Lur'e construction requires a solution of a system of n nonlinear
algebraic equations (IV-18) or (IV-19). On the other hand, by the Iefschetz
construction, one must choose a suitable matrix P, &ll such choices do not
lead to a solution since for some, inequality (IV-25) may not be satisfied.
Ideally one would like to choose P to meximize (IV~25), but this would in
all probability require much more effort then the solution of Lur'e resolving
equations. Thus the simplification of the Iefschetz conditions may in many
cases be an i1llusion. One would expect for the same choice of Liapunov
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Punctions that the ILefschetz comstruction would lead to a larger domain
of stability. This is indeed the case as we will see when it is applied
to Example 1. The Lefschetz comstruction also generalizes naturally to

more than one nonlinearity.

Example 1 - continued. We now wish to analyze this construction by means
of the lefschetz construction. The system equations were

e
It

- x, + £(o)

e
i

= - 2x, + £(a)
- Tx; + 6x2 - r£{o).

Qe
1]

For the matrix P, we will choose the diagonal matrix

with ).1 positive. The matrix Q becomes
-1 0\ /91 %2 Q1 e -1 0 -~ 0
+ =
0 2]\ % % Qo %2 o -2 ° R
—2QJ_1 "5Q12 -Xl 0
‘3Q12 —,"‘Q33 0 "'12
or
Mooy,
2
Q= a |
o F



The vector D- = (BTQ + Cg-) becomes

o A =3 M 12

D =( ) 3 N )'

Thus for asymptotic stability we require

1 A +3
A -3 a+12 [ TR ° L
r - ( > 0.
2 N 0 1 )‘2 + 12
)’2 N
This gives the condition
2
(A - 3)2 (., +12)
r > + rs .
lml 16M,

To minimize the right hand side subJject to the constraint that ),l >0
and 2‘2 >0 glve

M =3 (by inspection)

xz = 12.
Thus we have asymptotic stability for r > 3. By the Lur'e construction
we obtalned asymptotic stability for r > 13.

The chief disadvantage of the Lur'e and Iefschetz construction is
that they reject many practical systems which may be stable. This rejection
comes about for two reasons: (1) the matrix A may be unstable or (2) the
system may be unstable for systems with galns which are too large. Another
disadvantage to these constructions i1s that 1n many design cases, the range
of parameters obtained to insure stabillty are unrealistic. This 1s due
primarily to the requirement of asymptotic stabllity for arbitrary nonlinearity.
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For a specific nonlinearity one would expect improved results, but there
is no way of taking advantage of this knowledge in the above constructions.

To bypass the first of the two objections consider the problem of
direct control (IV-2)

X = AX + Bf(g)
(7-2) .
c=CX

where it 1s assumed that A 1s not stable. For this system to be stable
it will be necessary to restrict f£(g) more than was originally specified
for the Lur'e problem. This restriction will be of the form
(Iv-26) X 6° < of(a) < k,o°

1 ko -
To obtain these restrictions assume the f(o) 1s of the form

(TIv-2er) (o) = ky0 + g(o)

with og(o) > 0. If (IV-27) is substituted into (IV-2) to give

X = (A +x3")X + Bg(0) = 4X + (o)
(Iv-28) .
g=CX
where kl 18 chosen large enough to insure that Al = A + leCT is

stable. We now transform (IV-28) into a problem of indirect control by
differentiation to obtain

A X + Bg(o)
= cTx

- ¢TAx + CTBg(g) - ko + XC°X

Q M-
i

(1Iv-29)

Qe
|



where we have added and subtracted kg = kCLX to both sides. Consider
a Liapunov function of the Iefschetz type '

(1v-30) V = Xex + ]':g(s)ds

7 = X[A7Q + QA IX + g(a)B'X + X"QB g(a)

+ g(0)(c*AX + C"B &(0)) - kog(a) + g(o)kCX.

If we add and subtract k3g2(a) to V and collect terms we obtain
ct Te
V= - XBX + g(o) [B'Q + 5= ! kC]x+xT[Q.B+-{‘-1—-+kclg()
(Iv-31)

+ &(a)Ic"B - k51 + g(a)[- ko + Xse(0)],

where as before we have A{Q +QA, = - P. If we define

7 T

C + kC
o' = [BQ + —il—-a——-]
Y = X' g(o)]

then V takes the form

(IV-32) V= - Y'Y + g(0) [~ ko + kyg(0)]

where S 1s the matrix

D k; -CB

For
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(Iv-35) Xy - ¢cB=r>0

(IV-36) r +Dpp >0

we have asymptotic stability for all g(g) such that
x 2
(zv-37) og(o) <E5 .

In terms of our original system this requires

(1Iv-38) k102 < £(g) < (kl + Es)aa.

Once again it must be observed that these are only sufficient condi-
tions for asymptotlc stability. For a given problem of order higher than
the second the computational work to check for any specific choice of P
becomes large. Even after this i1s flnished one has no assurance that the
particular cholce of P gives useful results. Various attempts have been
made to develop optimum cholces of the matrix P for the lefschetz pro-
blem. Partial results have been obtalned by Moroza.nl5 .

For many practical design problems, the broad generality of the
stabllity conditions for such arbltrary nonlinearities does not Justify
the complex computations. For such systems one often has a known non-
linearity and what 1s required is assurance of stabllity throughout a region
glven by the perturbations of the nonlinearity about a nominal value,

Quick answers can be obtained to questions of this type by much simpler
means. If the nonlinearity is replaced by its nominal value, then the
system is linear and there exists a quadratic form Lispunov function with
negative definite derlvative. If the nonlinearity is permitted to vary a
small amount about its nominal value, then Vv will vary by a corresponding
amount. Thus the magnitude of the variation of the nonlinearity can be
determined such that ﬁ remains negative definite. To illustrate this

approach consider the following:
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Example 3.

e

£(x)) + 8%,

857%1 T 8%,

e

Assume that f(xl) = &)%)
represent the initial slope of f(xl).

81191 * 840Y;

a, + 8,57,

2191

+ k(xl) where

a does not necessarily

11
Consider the auxilary linear system

For this linear system consider the Liapunov function

Y'QY

v

with

e

In this linear system we now vary the coefficient
The value of V will change due to this variation and its new

a'll + 3.
value 1is

ov

¥

VemW+

If B remains small, then V will remain negative.

true for

-kl<5<k2

Now if the deviation from the nominal

-YTPY=-W.

8‘1,1 to the value

Assume that this is

K, >0, k,>0.

k(x;) 1s such that
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k(xl)

- k1 < k2

then V = ngx is a Liapunov for the nonlinear system with negative

definite derivative

V=—W+k(xl)?svi

Thus the origin is asymptotically stable for all nonlinearities f(xl)
such that

(all - kl)xl s f(x;) = a)y + kx,.

To determine the numbers kl and k2, one must examine the expression

2
- XTPX + 25(qllxl + gy % 2)

Obviously the solution will depend upon the cholce of P, but for any
P some selection of ® will be obtained. Iet us assume that P = 2k21,

then we require

d 2 2 2.2
V= 2xl(6qll - X)) + 28q, X X, - 2kx,

to be negative definite. Thus 1t is sufficlent for

- tqy, >0
2 s%als
¥P - eq);) > 72

If this last inequality becomes an equality we have solving for & in

2 2 L
12 + hk qllﬁ -4k" =0
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2

oK 2 2
8=~ 5~ [+ay; * \Jag;* 95,
5

Thus & must be in the interval

2 2
ok 2 2 oK 2 2
-5 Qo ¢+ \}qu Q] =285 - 55 oy - \Jagy * 9l

) %5

New results pertaining to the Iur'e problem have been obtalned using

frequency response methods. These results were first reported by Popovl6

with extenslons due to Kalmanl7 and Rekasiusls. These results consist

in giving conditions upon the existence of a Iiapunov function of the type
assumed by Imr'’e. It is felt that these results should lead to near
optimum cholces of the matrix P 1n such constructions, but as yet such

constructions have not been obtained.

Theorem IV-l. Consider the system
. T.
X = AX -~ B£(CX)

with

A 1s assumed to be stable and the system is assumed completely controllable
and observable, that is

B, AB, ..., P are linearly independent

T o A1
C, AC, ..., (A") C are linearly independent.

Then there exlsts a ILiapunov functlion of the form

V=XaX+g £ (0)a
0
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V= XTQX + B faf(o)dc
0

with

UVX 50 forall X

e
l

if and only if the followlng conditions are satisfied: there exist two

real constants o and B such that

R
IV

0 a+ || >0

and

(o - ps)ct(sT -~ )18

g(s)

is such that real part of & >0 1implies real part of g(s) Z O.

A problem related to that of ILur'e which has recelved ‘considerable
19

attention 1s the problem of Aizerman™”. This problem is a sort of converse
of the problem of Lur'e and may be stated as follows. Consider the system

given by (IV-2)

AX + Bf(8)

(v-2) .
o =CX.

Sde
]

Assure that the solution X = 0 1s asymptotically stable for

f(o) = ko with X, <k <k,.

The question arises, is the solution of (IV-2) stable for all f(g) such
that

2
ke° < of(a) <k
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Aizerman conjectured that this was true. Unfortunately numerous counter-
examples have been found. Counterexamples and additional restrictions
sufficient for the validity of the conjJecture have been given by

Cartwrighteo, Muftizl, Bergen and Williamsza.
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CHAPTER V

BOUNDEDNESS AND TIME VARYING SYSTEMS

A. lagrange Stabllity and Boundedness. The problems considered

in the previous sections have been primarily concerned with the deter-
mination of the stability of an equilibrium position. In such problems

one assumed that the only disturbance was an initial impulse which corres-
ponded to an initial state near the equilibrium and the objective was to
determine the extent of this reglon of stability. By such methods many
systems would be rejected as beilng unstable but, from an engineering point
of view, instabllity can be tolerated if the solutions do not grow too
large. TFor example, in many control systems it is known that given designs
willl result in small limit cycles or similar types of behavior. This is
especially true for many space vehicle control systems. In such systems
there 1s a requirement to be able to obtain limits or bounds on the ampli-
tude of these 1limit cycles. For problems of higher dimension on encounters
so-called limit sets; that is, surfaces in a high dimenslonal space which
all solutions approach. If the solutions close on such surfaces, limit
cycles result, but in general the geometric structure of such solutions is

extremely complicated.

A second area in which the previous treatment is inadequate is in
the treatment of systems which are being continuously excited. Under such
constantly eacting perturbations the question naturally arises as to the
effect on the stability of the equilibrium. For stable linear systems it
is known that if the disturbances are small, the response willl also be
small. One would expect for nonlinear systems that if the system 1is
asymptotically stable then small disturbances should produce bounded out-

puts.
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The concept of boundedness or Lagrange stability as it is referred
to by IaSalleZ® was systematically treated by means of the direct method
of Liapunov by Yoshizawaau’ 25. As with the concept of stability, many kinds
of boundedness can be defined. Only some of the specific definitions will
be given here. In what follows the mathematical model of the systems under

discussion will take the form

(v-1) X = F(X, t)
or for the autonomous case
(Vv-2) X = F(X).

Definition 1. The system (V-l) is said to be bounded if for any a > o,
and t  there exists a positive mumber p(a, t ) such that if leoll <a
then

fIx(t, x to)" <p for t =t

O’
Definition 2. The system (V-1) is said to be ultimately bounded for the

bound B if for any a >0 and to there exists positive numbers B
and T(q, t,) such that if l[x(to)u <o then

Ix(t, x_, t )M <B for t >t + T

If in definition 1, the quantity B can be chosen independent of to,

then the system (V-1) is said to be uniformly bounded. If T in defini-
tion 2 can be chosen independent of t_, then (v-1) is said to be uniform-
ultimately bounded.

For linear homogeneous systems, the concept of stability of the
origin and the concept of boundedness are equivalent. If the function
F(X, t) in (V-1) 1s periodic in +t, then ultimate boundedness implies
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uniform ultimate boundedness. Thus for system (V-2) these concepts are
equivalent.

The two main theorems relating the concept of boundedness to
ILiapunov functions are as follows:

Theorem V-1: ILet 0* be the region defined by 0 st s », [X|] > r.
If there exists a function V(X, t) which is positive definite in the
reglon 0%, while its derivative

(v-3) Hoov-r+

is negative semi-definite in the interior of 0¥, then the solutions of
(V-1) are uniformly bounded.

Theorem V-2; If there exists a Liapunov function V(X, t) which is posi-
tive definite in 0%, while its derivative (v-3) is negative definite in
the interior of Q%, then the solutions of (V-1) are uniformly ultimately

bounded.

Observe that the above two theorems reduce to the theorems on stabl-
lity and asymptotic stabllity if r in the definition of the set o*
is set equal to zero.
Example 1. Consider the system
x + £(x, %)% + g(x) = W(t)
where we assume
(1) £(x, x) >0 for all x and X

(@) k(x) = f:s(s)ds >0

(3) lim Xk(x) o=
X 3o

(%) f"o’ [W(t)|at < e
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Consider as a Liapunov function

N

t
V(x, %, t) = %5 + X(x) - [ |W(s)]as.
0

For the norm of x sufficient large we have that V 1s positive definite.
The derivative of V Dbecomres

V = fx + kg(x) - [W(t)|

x[- x£(x, %) - g(x) + W(t)] + xg(s) - |w(t)]

- £(x, :‘:)5:2 - [w(t)] + w(t)x

- |w(t)| - x[e(x, x)x - Ww(t)]1.

Thus for the norm of x sufficiently large, Vv 1s negative semi-definite
and all solutions are uniformly bounded. If in the above example W(t)
was ldentically zero, then the equilibrium position is stable,

Example 2, Consider the autonomous system
X = AX + G(X)

where the nonlinearity is of a saturation type that is [|G(X)]] < K for
all X. If A 1is assumed to be stable, then a Liapunov function is

glven by

V= XX
vwhere V 1is glven by

= X [ATQ + QAlX + 2X7Qa(X)

<
I

- XTPX + 2XTQa(X).
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For any cholce of P positive definite it 1s obvious that Vv is negative
semi~definite for the |[|X|| sufficiently large. Thus all solutions are
bounded. In particular if A 1is diagonal and P 1s the identity matrix

then

. x,8, (x)
V=qr2+2 ili

p

and an estimate of the bound is given by

r =—nK__
min ]xil

The main practical application of the concept of Lagrange stability
is to couple it with the concept of instability to obtain bounds on limit
sets or limit cycle behavior. If for a system described by (V-2), the
origin is unstable and the region of instability is given by |[|x|| £ ry,
while at the same time all solutions are ultimately bounded by |[iX|| = r,
ry < T, then all solutions must enter the region defined by these two
spheres 1, < ||IX]] <r,. Therefore a limit set or cycle must exist in this
reglon. 1In practice it is required to obtain a better estimate of this
limit set than the one given by ry and T, thus one desires a procedure

to construct a Liapunov function to do this.

A construction procedure due to Szegah meets these requirements for
certain restricted forms of the system (V-2) Szegd 's construction is based
on obtaining a Iiapunov function which is positive definite while its deri-
vative is indefinite on a closed curve. The function V 1s constrained

to have the form
(V-}) ¥ = u(x)w(e(x))

where U, W, and 6 have the following properties
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(1) u(X) 1is at least semi-definite and nonvanishing on any solutions
of (V=2).

(2) W(s) 1is of opposite signs for 8 positive and negative. Thus
W(0) = 0 and sign W(-s8) 1is different from sign W(s).

(3) 'The function 6(X) = O represents a closed surface about the
origin,

If U(X) is positive and W(-s8) 18 negative, then this construc-
tion would indicate that the equilibrium position of (V-2) is asymptotically
stable with an estimate of the reglon of stabllity given by the set of X
such that V(X) = C 1is inscribed interior to the surface 6(X) = 0. If
W(-s) 1s positive, then the conclusion is that the origin is unstable,
while all solutions are bounded. If we indicate by Vi the surface
V, = C; inscribed by the surface 8(X) = 0, and by V, the surface
V, = C, vwhich circumscribes the surface 6(X) = 0, +thus all solutions must

o
approach a limit set Q where Q 1s in the region between Vo and Vi.

To construct a "V" function which has this property consider
system (V-2) in the restricted form

(v-5) X = A(X)X

where 1t is assumed that each element a.ij(x) is at most a polynomial in
the components of X. As a Iiapunov function choose V to be of the form

(V-6) v = Xq(X)X

with

Q = (qu(X) = qu(O, cees 0, X5, 0, ooy Xy 0, «esy 0)).

Thus each element qu of Q only depends upon the components xXg and
xJ. of X. The derivative of V is
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ﬁ=xT[ATQ+QA+g%]X

v-7)
( =xF [ATR + RTA]X

where R 18 not symmetric in general. The elements ry 3 of R can be
defined in terms of the elements qu’ This relation is given as

(v-8) Ty =4t E 511
35 Yy 1.1"1&—-\1
i

with € 13 given by

1y °
(Vv-9)

D=

It is desired to constrain V¥ to be of the form (V-4)

v = ux)w(e(x))

where U 1s required to be at least positive semi-definite. For U we
may assume the quadratic form U(X) = X'SX. The function o(X) = 0 must
represent a closed curve, thus a reasonable choice for 6(X) is

o(x) = X'P(X)X - k

with P(X) positive definite. For W(S) 1t is sufficient to choose an
odd function such as W(S) =S8 or W(S) = S3, etc. For the first of these

choices we have

¥ = X°[ATR + RTA]X= X'SX[XTP(X)X = k]
(v-10)

XL [SXCP(X) - SkIX.
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. Xy Odyq 4,
qll 2 5551 90 + x1 5xl
R(X) = .
g +x 95 L2 )
127 %2 3x, Qbo 73 3%,
T P
The matrix AR + RA becomes
_2q. - 2 995 ( +_1_Bq11_ Xp 9%
12 2 5%, 91 77 Sx; " %2272 5,
2 Ny
T T + e (1x7) (9 557
AR +RA= 2
x. oq X, aqaa

9q
1 991y 12 >
(a3 * 5 &, "2 T2 (2q; y*2x) &, + e(1x3)

C 3q
+ 6(1—15)((112"12 &‘;2‘2‘) (2(122 + xa 5';2—2-)]

We now wish to specify the right hand side of equation {V-11), namely the
terms SXXTP(X) - Sk. Since we wish S to be semi-definite, let it be the

matrix

@
1]

while as yet we will keep P arbitrary.
Py (%), x5) Py o2y %5)
P = .

Pyo(xys %) Byp(x%5)

Thus the matrix SXX'P(X) - Sk becomes
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To satisfy these conditions, we wish to chose the elements of qu such
that

(v-11) AR + RTA = SXX'P(X) - Sk.

In the solution of the above equation a number of difficulties should
be observed. The matrix form on the left hand side is symmetric while the
left hand side is not symmetric in general. Thus equation (V-11l) is an
equation only in the symmetric part of the left hand side. The other obser-
vation to be made is that when one obtains a variable matrix representation
for a scalar function, this representation is not unique. Obviously the
above construction is difficult for high order systems. To 1llustrate its
application consider the following application to Van der Pol's equations.

Example 3.
X, = x,
X, = =Xq te€x, = exgx
2 1 2 1ra°
The matrix A(X) thus has the fom
0 1
A = .
-1 e(l -x
Iet Q(X) Dbe the matrix
931 (x;) 9y5(%75 %5)
Q(x) = .
q12(xl’ X5) q22(x2)

The matrix R takes the form



2 2
+ -
X1Pyq F XX P1p - kK XyP, F X XoPsp

SXXTP(X) - 8k = .

Equating the matrix A'R + RA to the symmetric part of SXXT(P(S) = Sk
we obtain the three equations

%2 - F2 5x, T P T rfie T
x. oa X, O
1 2 9
9, * 3 & 22 X, +e(l -x])(agp + 2 ) =
x2 X.X
1 1%
2 Pipt 3 P
12 04,5,
2q,, + 2% 5o te (1 -x)(29y, tx, ) =0

The solutions of the above equations become extremely difficult unless
some simplifying assumptions are made. One such assumption is that 4o
is independent of Xy and Xye With this assumption the last of the
above equations can be solved for 95 to gilve

g';l (xlqlz) + € q22(1 - xi) =0
x

X930 = € qaz("';' -x;) + €

where the constant of integration ¢ may depend upon X5e If C 1s chosen
to be zero we have
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£
9p = € Ip(5 - 1).

If this is used in the first of the above equations we have

2
=203y = X)Pyy * XXPy, = K
or
2
* 2
k-2c¢ q_ze(-—3 -1) = xlpu(xl, xa) + x1x2p12(xl’ X5).

This last equatlion requires a dependence of Py and p,, upon X, such
that the right hand side 1s independent of X5e If we assume that Py = 0
and Py depends only upon Xqs jthis first equation is consistent with
the last. Applying these restrictions to the second equation we must have

Pos = 0, and solving for q;, we obtain
xh
2 1 2 2
91 =9 = €9l - F+5x - 1)
with

The assumptions we have made upon the parameters have been too restrictive.
We obtained a function 6(X) which does not represent a closed curve for
0(X) = 0. The V and V thus obtalned are

° 2 2 2
V_B-exlB-xl]
2
_€ 6 2 2% 2y .2 2 2
V—9x1-3€xl+(l+e)x1+3erzx2-2€xlx2+x2.
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The matrix A(X) is positive definite so that we have obtained boundedness.
Rather than reworking the original equations under less restrictive assumpe-
tions we can choose ¥V of the same form as obtained but keep free parameters
ag coefficlents. This approach gives

6 y 2 3 2
vV = a.2xl - alxl + a.oxl + 2bc>xlx2 - 21)lxlx2 + x2.

Differentiating we obtain for V the expression

. 2
V= (28, - 2 - 2)xyx, + (26 - 2b))x5 + (6a, - 2b_e O,

3 2.2 4 2
+ (aboe - ka, + 2b,€ );clx2 + (6bo - 2)xlx2 - 2b x, + 2b;x7.
We now choose the parameters so that the first three terms vanish, Thus

a-——g- b, = € a°=1+e

and \.7 becomes
. 2 2 2 2
V = xyl2e + (6bo - 2)::‘2 - 2b x + (2b°€ - hal + 2e )xlx2].

In order for the quantity inside the brackets to represent a closed curve

we must have

2
2
6‘b°-2<0 and —2(6bo-2)'bo—(b°e-2al+e) > 0.

Thus O < bo < -3]; The second inequality can be satisfied for
- X 2 -k
a; = 2['bot-: + ¢ ]’ b, =7 0 = x = 2. With these choices we have
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. 2
V=xilax - (2 - K)x, - 3 %71

Thus ’v' vanishes on the ellipse given by

2 2
x, + (2 - K03 = 2

Vi

and i is positive semi-~definite inside and negative semi-definite out-
side this ellipse. ¥V is given by

2 2k e & k _ 6 2 3 2
V=(e"+1)x; ~(g+e) 5 +1g€x +Tgxx, - 2 xx, +x,.

For k=g and € =1
x6 <2
1 4 2 1 2
V=——12-§xl+&zl+xlx2(—2-2)+x2

and 1s positive definite for all X. Thus the limit set or cycle nust be
in the region between the curves given by V o = % which circumscribes
the circle of radlus 2 and Vi = ¢, vwhich is inscribed inside the circle

i
of radius 2.

A concept closely related to the concept of boundedness is the con-
cept of total stability or stability under constantly acting disturbances.
This concept may be defined as follows,

Consider the system
(v-1) X = F(X, t)

and the perturbed system

(v-12) X = F(X, t) +6(X, t)
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‘where it is assumed F(0, t) = O.

Definition 3. The solution X = 0 of (V-1) is said to be stable under
constantly acting perturbatlons 1f for every € > 0 +there exists two con-
stants 5,(c) and ®,(c) such thet 1f [X(t )| <&, and [a(x, t)| <3,
then [|x(t)]] <€ for all t =z X

The main results on the theory of total stabllity are contained in
26

a theorem due to Malkin™.
Theorem 35: If the solution X = 0 of (V-l) is uniformly asymptotically
stable, then it 1s stable under constantly acting forces.

Since for autonomous systems asymptotic stability implies uniform
asymptotic stability then asymptotic stability implies total stability.
As yet no results have appeared to give estimates of how large the region
of total stability i1s and 1ts relation to the region of asymptotic stabil-
1ity.

B. Non-Autonomous Systems. The problem of constructlng Lliapunoy

functions for non-autonomous systems remains one of the main undeveloped
areas, Some procedures have been advocated for linear systems by Szeg827,
Roitenberg28 and others, but even here the useable results are few unless
one is restricted to second order systems. The main reason for this is
probably the tremendous complexity of such systems. Even for linear
systems, familar procedures break down and Intuition can lead one astray.

In the design of control systems for boost vehicles the design:
engineer is confronted with the time varying system representing the per=
turbations about a nominal trajectory. The design of such systems in
general is not based on the time varying nature, but rather the problem
is assumed to be stopped at some point on the trajectory. The perturba-
tion equations become constent coefficient equations and familar linear
stationary procedures are used. In some cases &a single design 1s valid
throughout the whole control regime, while in other certain parameters
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representing gains and time constants are programmed as a function of
time. These time varying values are obtained by smoothing throughout
the set of discrete values obtained from the constant coefficient
analysis.

In all of such procedures the design engineer i1s reasoning as
follows: Consider the time varying closed loop system

(V-13) X = A(t)X.

If all the eigenvalues Lk(t) of the matrix A(t) always have negative
real parts, then the solutions of (V-13) are asymptotically stable.
Unfortunately the above reasoning is fallaclous since a simple counter-
example due to Zubov> will show that solutions of (V-13) may be unstable
even though the eigenvalues of A are negative and constant.

Example 4. Consider the system

n'cl -(1+9 cos®@ - 12 sin 6t cos 6t)xl + (12 cosZ6t + 9 sin 6t cos 6'!:)::2

% - (12 1026t - 9 cos 6t sin 6t)x,) -~ (L +9 sin6t + 12 sin 6t cos 6t)x-
*2 1 c

The characteristic equation of the above is
|A(t) - az] =22 +1m +10=0
with the two eigenvalues 7“1 = =10, xa = =]. Thus asymptotic stability

would appear to be insured. The fundamental matrix of solutions of this

system has for its elements the expressions

@y = 5 cos 6t(e%" + ™) + £ sin 6t (262" - 22™1%)
Py = 51- sin 66(4e®t + e717%) 4+ S—‘-’g—@ (2e%% - 2¢™1)
By = = 5]-‘- sin 6t(e2t + %-13b) + '(&53"—6‘1;' (232t - 2e13t)
Bp = 51- cos 6t(ke® 4+ e71%) 4 %- sin 6t(et > - 2¢2%),
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Thus all solutions diverge with time. In fact not only does negative
eigenvalues fail to insure stability but positive elgenvalues do not
insure instability. The logical question that immediate arises is:

i1f the approach used in the past is invalid , why has it worked so welll
Unfortunately it 1s difficult to bulld a strong case agalnst success.

It would appear intultively that if the time varlation of the system

is sufficiently slow, then the stabllity can be determined by consider-
ing the eigenvalues of the system. Here Iintultion is correct. The
formal statement of such a result duwe to Rosenbrock29 is as follows.

Theorem 4: Consider the system (V-13)

X = A(t)X

where for all t Z t_ every element a'i:]<t) of A(t) 1is differentiable
and satisfies ]a.1 J(t)l s a. Let all eigenvalues of .A(T) be such that
Real(A(A) = -~ € < 0. Then there exists some & >0 such that if

|§%-i-1| $ 5, then the equilibrium position X = 0 1is asymptotically
stable.

In this theorem, which 1s an existence theorem, no method of deter-
mining the sultable bounds upon & are given. When the system (V-15)
is in ccmpanion form with non-repeated elgenvalues, then some bounds can
be determined upon the elements of A(T). Since for this form of A(X),
the elements are ildentical to the coefficients of the characteristic equa-
tion, these bounds may be transfered to sultable bounds on the eigenvalues

of A. For an expression for such bounds see Rosenbrockeg.

Since for a linear autonomous system a suitable Liapunov function
i3 given by a quodratic form, it 1is loglcal to start from this point.
Therefore consider the quadratic form

vV = XQx.
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Its derivative beconmes
V = T [AT(6)Q + QA(t)IX.

We desire V to be negative definite to insure stability. For the auto-
nomous case glven any positive definite matrix P we could always obtain
solutions Q +to the equation

(V-1%) ATlg+qa=-pP

providing A was stable. This procedure can also be used for a time
varying case. Thus for any P, Q 1s glven by

Q= f: eAT(t)uP(t)eA(t)udu

providing the integral converges. Unfortunately Q 1n such a deter-
mination will not be constant. An alternative approach is given by
applying the Hurwicz criteria to the matrix ATQ + QA to obtain suffi-
clent conditions to insure stability.

Example 5. Consider the linear system

Xl =12

p = = 2%, =3%; + f(t)xz.

e
|

Iet Y bYe the quadratic form XTQX where

5/ 1/
14 1/%

then V 1is given by
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where

1 - £(t) /4
- 2(t)/ 1 -£(t)/2
For V to be negative definite, we require

1-2(¢)/2>0

l-f(t)/2>-fi—-gi)-.

The first inequality requires

£(t) <2 for all t

while the second gives

- 41+ N2) <£(t) < ¥WV2 - 1).

Results which are slightly better than those obtained by the method
above were given by Zubova. His results are as follows: Iet V be the

quadratic fom

¥ = XQ(t)xX.

Then V 1is given by

¥ = XIATq + qA + QX = P ()X,
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let xi(t) and xn(t) be the smallest and largest eigenvalue
of P(t). Iet ul(t) and p.n(t) be the smallest and largest eigen-
value of Q(t). The solutions of (V-13) are such that

t xl(s)
t + a—;(s-)
X?@Q) (t,) ;;§E§Z e ° s XT(6)X(t) £ X(t,)
(v-15) . Kn(ﬂ) .
w,(t,) d o &, (8)
xT(to)x(to)“z__Gg_ e

where al and 02 are defined as

(v-16) @ = % [(1 - sgn(r )y + (1 +sgn 2]
(v-17) a, = % [(1+sennduy +(1 -sgnrul.

If the right hand side of (V-15) is bounded, then X = O is stable., If
the right hand side approaches zero as t —» », +then we have asymptotic
stability.

In particular if Q(t) is chosen as the identity matrix, and then
P(t) = AT + A or twice the symmetric part of A. Then (V-15) takes the
form t \]
J to"l(s)d“ ftoxn(s)ds
(V-18) X (t,)X(t, e = X (6)X(t) 5 X (6_)X(t_)e .

These results are stronger than those given by applying the Hurewicz criteria
since the Hurewlcz determinants may oscillate in sign with time. Thus no
conclusion can be reached, while in many such cases (V-15) or (V-18) will
still give useful results.
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Example 6. Consider the system of example 5
X1 =%
Xy = = 2%) = 3%y + f(t)xz.
If we use the same function V, +then the matrix
-1 £(t)/4
£(t)/% 1 - £(t)/2

The eigenvalues of P arxe

xl,2=-1+§,si°l(1iiz).

xn =-1+ (1 +.f2) féf'_). (L + sgn £(t)) + (1 iJ-z)f(t) (1- 82E £(t)

It £(t) satisfies the inequality

%

for all t.
1 +42

£(t) <

Then the largest elgenvalue of P is negative and we have asymptotic stabi-
1lity. £(t) can exceed this value without destroylng the asymptotic stabi-
1lity providing we have

® u
fo £(s)ds < T t.
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If the matrix A(t) is diagonal, then the stability is determined almost
by inspection. This has led many to consider the problem of performing
a suitable transformation. Thus 1f we have the system

X = A(t)x
and we make the transformation X = Q(t)Y then we obtain
(v-19) D + &(T)Y = A(T)Q(T)Y
or by premultiplying by Q-l(t) we obtain

(v=20) Y= M - 7Ry

This Just seems to transform the main difficulty to the problem of finding

sultable transformation.

For the nonlinear time varying system, the state of the art for
the construction of Liapunov functions is for all intents non-existent.
For specific problems "V" functions have been obtained but other than
attempts to bound the time varying coefficlents by constants and analyzing
the resulting autonomous system, no general procedures are avallable.
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CHAFTER VI

DISCRETE SYSTEMS

The transformation of the concepts of stability for differential
equations may be carried over directly to systems oxr difference equations
with 1ittle modification for autonomous systems. Thus we consider as a
model the set of difference equations

(vi-1) X(tyyq) = F(X(t,)).

Often we will use the notation

(vi-2) X4y = F(X,)

for (VI-1). We will assume that X = 0 18 sn equilibrium point. The
numbers tk represent discrete values of time. The difference tk 41 - tk
18 assured to be a constant for all Xk wunless otherwlse specified.

Definition VI-1l. The solution X = 0 1s stable if given any € >0 and
a t_ there exists a 3(e, t ) such that for llx(to)n < & implies that
]lx(tk) | <e for all B, >t

Definition VI-2. The solution X = o 1is said to be asymptotically stable

if X =0 1s stable and lim |x(t )]} - 0.
ko

From the statexzent of the theoremsof ILiapunov for the stability of
continuous systems, the appropriate theorems for discrete systems follows
imradiately. These will be stated with the analog of LaSalle?s extension.

Theorem VI-1l: If there exists a function V(Xk) which is positive definite,
such that the difference
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Theorem VI-~l: If there exists a function V(Xk) which 18 positive de-
finite, such that the difference

Av(x) = V(X)) - V(x) = V(F(X,)) - V(X,)
is negative semi-definite, then the solution X = 0 is stable.

Theorem VI-2: If there exists a function V(Xk) which 18 positive definite
such that the difference

AVE) = V(X ) - V() = V(F(X)) - V(X))

is negative definite or negative semi-definite with \/V not vanishing
identically on any solution sequence Xk, then the solution X =0 1is
asymptotically stable.

The discrete system expressed by equation (VI-1l) 1s a reasonable
model for many sampled data or digital control systems. Unfortunately
such problems when encountered are in terms of block-diagrams or mixed
systems of continuous differential equations and discrete algebraic equa-
tions. Thus one needs transformations to place such systems into the
discrete notation. A typical sampled-dats system may have the block dia-

gram representation

£ SAMPLE o* _ (%) P(s) £o
H:La _ Q(s)

Prom previous developments we have the describing equations for the above
system
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X = AX + BF(o*)
X - rF(a*)

e (t,) =€ (%) b St S by,

m
[+
(1

%

The first step in the transformation to discrete form is to obtain a dis-
crete representation for the first of the above two equations. To facili-
tate this consider the linear continuous system

(YI"B) i = AX + BU.

Its solution is given by

t
(VI-) X(t) = 0(t, t)X(t,) + [ @(t, s)H(s)as.
to
In the above solution let + = tk+l and to = tk.
tk+1
x(tk‘l'l) = Q(tk.,.ll tk)X(tk) + ft ‘p(tk.'.l} S)BU(S)dB'
X k

In the interval ¢, =t <t we will assume that U is constant. Then

k k+1°
U may be taken outside of the above integral to give
Tree1
(vI-5) Xy = Wbyyys )X + S . (tyyys 8)481B0,.
k

The matrix ¢ used in the above representation is called the transitlon
ratrix and it satisfies the following relations.
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(VI-6) o(t, S) = ¢ (s, t)
(VI"T) ¢(tl s)tb(s, r) = ‘b(t: r)

(vi-8) o(t, t) = I.
If the matrix A in (VI-3) is constant that &(t, 8) 1s defined as
A(t-s8) A2 2 A” n
o(t, 8) = e =I+A(t-s)+§-,-(t-s) + e +E,-(t-s) + e .

Thus for constant A (VI-5) takes the form

t
A(t, . <t) K+l At -8)
k+1" 'k +1
(VI-9) Xy = © x, + [f e ds 180, .

Ty
If the sampling periocd tk+1 - tk =T is constant and if A 1s nonsingular
(VI-9) takes the form

eﬂxk + j': eA(T - B)d.ts BU,

(vi-10) > Y

(vI-11) eM'xk + A'l(eAT - I)BUk.

From the above it becomes apparent to transform a sampled data system into
discrete form it is necessary to obtain a solution to the associated
differential equations. For linear systems these solutlons are relatively
eagy to obtain. Consider the sampled system

Exa.mgle VI-l.
w € SAMPLE e” vt L | £,
+ " 2 >
T o | 5
as+|
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The sample hold unit replaces the continuous function
wise continuous function e%* defined as

ex(t) = e(ty) ty St St .

Thus the system has the representation

x o 1 Xy 0
. = + [+
X5 0 O X, 1
e=(-1-) [x} . u(t).
X2
At
The matrix e is glven by
2
eAt - I + A. + :"—T + oo
1 © 0O t 0O O 0
+ + ees T
o 1 o 0 o O 0

L
[

il
(=]
P
+
g\“
o

or £inally we have
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x (b)) + mx,(t,) +1§ o(t,)

%) (byeq) =
Xp(byyy) = Xp(ty) + To(ty)
U(tk) = F[u(tk) - xl(tk) = axa(tk)]'

If the differential equations describling the continuous part of the
above system, were nonlinear then the transformation to discrete form is
ruch more difficult. In general only an approximation to the true discrete
equation can be obtalned since one can not in general solve the nonlinear
equations. Most often such transformations are obtained by approximating
the equations by a set of difference equations. Thus

(VI-12) 52 x(:kﬂ)—‘tx (ty)

x(byyp) = 2x(hy ) + x(ty)

(vI-13) X = 1)
k+1 k

For fixed T = (tkﬂ. - tk) the nonlinear system
2

:.:-+2x:'c+sinx=U(tk)
takes the approximate form
x(6, ) = 2x(t, ) + x(b.) + 2B (6, ) [x(t, . ) - x(t,)] + T° sin x(t, )
k2 k+1 k k k+1 k k

- Pu(t,).

If the state variable x, = x(tk) s x2(tk) = x(tk+l) are used the system
takes the form
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Xy (byyy) = %p(ty)

x2(tk+1) = -x,(t,) - 7 sin x,(t,) + 2x2(tk)

- 2Tx§(tk)x2(tk) + 2mf(tk) + tzu(tk).

If the original system was first transformed into the state vector repre-

sentation

¥y =x 1 = Yp
¥, = % ¥, = - 2y°y, - sin y, + U(t,)
2 2 172 1 Ty

then these equations take the discrete fom

Yolboyy) = ¥o(ty) = 2T¥5(4 )7, (6,) = T sin v (5) + T (&)

The construction of Liapunov functions for discrete systems follows
analogously from the corresponding constructions for continuous systems.
Some constructions which are valid for discrete systems are not valid for
continuous systems. The simplest of such functlons is the norm of the
vector. Consider the system (VI-2) with V chosen as the norm

(VI-1k) v = x Ml

The difference

o -t
)1 - I, X

AV
(vI-15)
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If for some nomm, [[F(X)|| < |[X[| then F is said to be a contraction.

If F is a comtraction it is obvious that A V a8 given by (VI-15) is
negative, thus the system (VI-2) is asymptotically stable. The diffi-
culty lies in determining a sultable norm for which it can be shown that

F 18 a contraction. Some of the more commonly used norms are the following

n
]IXHT = = ¢ Ixil ¢, positive
i=1
llxlls = mix ey |x1| c, positive
Il = (xTax) V2 Q positive definite.

To 1llustrate how these may be applied consider the system (VI-2) in the
special form

(v1-16) Xag = O = AT, -
As a Iiapunov function consider

(VI-1) ¥ = Il = max oy by (i) -
The difference

AV = 5 ey by ()| - e oy bxy (8|

n
= °1|J§l“u"al - 5 ey by (g0

Iet us examine the first term in this last equation

0

n n
b
mi.x c, |z aidx,jl S max ¢, J-fllai'j”le = mix z - laichJliI

1 3=1 %3

A

c
i
Smax % — |a,.| * maxec X |.
T C LRt
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Thus A(xk)x(k) is a contraction if

0

p
z - 18 < .
s 2 gt faygl Il < Il

For this to be a contraction it is sufficient for

n ¢
(VI-18) max £ - lag ;X ) 1 <1 foranl x
1 3-1 %y

and if (VI-18) is satisfied (VI-16) is asymptotically stable. The only
requirement on the numbers c 1 is that they be positive.

This construction bhas given conditions on the rows of the matrix A
sufficient to ensure asymptotic stability. Similar conditions on the
column vectors of A can be obtained by considering

(VI"19) V= "x"T =Z ci Ixi(tk) I‘
In terms of (VI-16) the difference becomes

Av

n n
L oc lx, (t, )] - = e |x, (t)]
1=1 1741 k+l 11 1™1V'k

n
zc|>:a -zclx(t)l
1=1 1341 121 1

Exanining the first of the above terms

n | n | n n | | ' n n e | e .|
Zc,| Za = 2 Zc,la,)lx= = = = ]a, ]e.lx
i=1 1 J=1 153 1=1 j=1 1 i"' J J=1 1=1 €3 1377373

(max = 2L a,) Z elx,]
L (max X — |a L oc.ix,|.
3 1=1%3 177 4 3T
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For F to be a contraction we require

¢4

MB

(VI-20) max
i

Example VI-2. As an application of the above construction consider the

system
Xy (b)) = 33,(8) = S x,(8) + 2 2(x(8))
X (tyyg) = - %xl(tk) + % x,(t) = 2 £0xy(ty))-

For this system the matrix A(X) takes the form

1 2,2 £
> 5 5 %5
A= 1 ®
2 2 _3 f£x)
3 10 X,

For F to be a contraction it is sufficient to conslder the column vectors
for arbitrary positive cy- This gives the two inequalities

c
1 2 1
5+ 1 -3 <2

N3

]- % +2 5 | + l% .2 5—.| <1.

2
5 X, 10 X,
The first inequality is satisfied for

c2 < 2cl.
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c
with L <} the secomd inequality is satisfied for

14
¢y 2
£(xp) 19
0<-—x—-—<—3.
2
For all f(xa) satisfying this condition, the above system is asymptoti-

cally stable.

In the treatment of the stability of differential equations, it was
found to be useful to have a construction for the linear problem since
this became the basis for other constructions. This is equally true for
the treatment of discrete systems. Consider the linear system

(vi-21) X = AX,.

k+1
As a Iiapunov function consider for V
2 T
v = [xllg = %.9%,-
The difference becomes

AV

X1y - XXy
X AQUAX, - XX,
X EATaA - QX = - X [PIX,.

(Vi-22)

As in the continuous case the question arises, i1s it possible for any given
positive definite matrix P to construct a definite matrix Q such that

(VI-23) ATQA - @ = - P?

The answer is in the affirmative by considering the following: Define Q(n)
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Q(n) = % (aT) PAR.

Then
n n+l n n
ATQ(m)A - q(n) = = (&%) pa™t . x(@T) AR
k=0 k=0
n+l

If all elgenvalues of A are less than unity in absolute value then

1im Q(n) = Q
n—o
with
ATQA - q = - P.

In continuous systems one often approaches the problem of stability
by examining either the linear part to determine the local behavior and
then extending the analysis by means of the Zubov construction to obtain
more complete results as to the region of asymptotic stability. Similar
procedureScan be applied to discrete systems since the Zubov construction

is applicable. Thus consider the system (VI-2)
(VIi-2) X, = F(X)-

The analogue of the partial differential equation to be solved is the
difference equation-

(VI-24) AV(E) = V(X)) - V(%) = - W) (1 - v(x,)).
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The principal results relating to the solution of (VI-25) and its rela-
tionship to the region of asymptotic stabllity is given by O'Shea.30 and
may be summarized in the theorems that follow.

Theorem VI-3: If the linear approximation of (VI-2) is asymptotically
stable, then for any positive definite quadratic form W(Xk) , equation
(VI-24) has a solution v(xk) defined for all X in the domain of
asymptotic stability.

The solution V 18 given by the converging infinite product

(VI-25) V(x) = 1 - —* .

T (1 +WEX))

n=¥k
n=x

This may be obtained by dividing both sides of (VI-24k) by - (1 - v(xk))
and adding 1 to both sides

V(X)) - V(%)
tr 1({11- v(xg)st = 3y

or
1-v(X, ;)
(VI-26) m}%’fL =1+ W(X,)-

If we take the logarithm of both sides and sum k=m to k=m -1 we
obtain

mn m-Ha
k:z_: In(l - v(xkﬂ) - In(1 - v(x.k)) = kz In(1 + W(X,)

or
min

In(l - V(X 4 00q)) - In(1 - V(X)) = 1: In(1 + W(X,)).
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Since by hypothesis V(X ) +0 as n increases to =, we obtain

(vx-27) - In(1 - v(xm)) = ; In(1 + w(xk)
k=m

or finally

(VI-25) v(x) =1 - "(1_3?(3(‘;)'

The bound of the region of asymptotic stability is given by V(X.k) <1.
If for a given value of X, we have V(Xk) <1, this does not imply that

Xk 18 in the region of asymptotic stability. This point is clarified by

the following
Theorem VI-%: If O s V(Xk) <1 18 in a simply connected region containing

the origin, then any X 1n this region belongs to the domain of asymptotie
stability and V = 1 1is the boundary of this domain.

If F(X) in equation (VI-2) is an analytic function, then a solution
of (VI-24) may be obtained in terms of a Taylor series which converges in
some domain about the equilibrium. The main disadvantage of this approach
is that it 1s difficult to obtain the general term of the serles so that
its region of convergence may be determined. Both of these procedures suffer
from the disadvantage that rarely does a closed form expression for V¥V re=

sult from these constructions.

Example VI-3. (O 1Shea™® ).

Xy (byyy) = xlzl(tk) = xg(tk)
xo(tyyy) = 223 (4)%, (%)
Let
V(xk) = xl + 12.

Then the difference
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I

A VX)) = V(X ) - V(X)

> o 2 2
xp (bygn) *+ %5(t4) = x1(t) - x5(ty)

2
B () = x0)1 + (2 (e (e P - () - 5(ty)

(B () + xa(8,0)% - (b)) - x5(t,))

= (5 +D) - F 4D

Thus the origin is asymptotically stable for |[X|| < 1. Therefore the above
results are applicable. Iet W(X) in (VI-24) be the function

x2(t ) + xz(tk). We now wish to examine the expression w (1L + W(X')
1Mk 2 n=k

TTk(l * W(xn)) =[1+ x?.(tk) + xg(tk)][l + xi(tk+l) + xg(tk-i-l)l
n=

1+ 2 () + Xty

2
X

1+

1, 2n
[L+x2 + 510+ (xi+xg)2][1+ L+ 6B L

If this product is multiplied out we obtain

o 2 m
T (W) =1 E+x0) + (5 +28) + e+ (4 x5) 4.
1

2 2
= T+ (xi N xg) for (xl + x2) < 1.

Thus v(xk) becomes

V5 =1 - TR

1 2 2
-1-‘ n —xl+x2.

1-(x§+x
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Therefore the complete region of asymptotic stability 1s given by

2 2
v = xl + x2 <l.
An alternate procedure for determining the region of asymptotic
stability is based on the following: Consider the system (VI-2)

(VI-2) Xy = F(Xk) .

Assume that there exist a "V" function which is positive definite through-
out the whole space and such that AV 1is negative definite for [X|| <s.
Iet C be the minimum value of V(X) for [X|| = s. Then we have that the
origin is asymptotically stable for all X such that V(X) = C. Thus the
curve V(X) = C becomes the boundary of asymptotic stability given by this
cholce of V. The actual region of asymptotic stabllity may be much larger.
We now conslider a sequence of Liapunov functions as follows: Iet

v, (%) = V(F(X,))
ve(xk) = vl(F(xk))

v (5,) = V. (F(x,)).

The functions Vn are Liapunov functions which are positive definite and
are such that the region of asymptotic stability is given by vn(xk) = C.
Thus we can lterate and remap the boundary of the region of asymptotie
stability. If the fumction F(X(tk)) is a contraction in the nom

V(X,) = X'qX, then the procedure will expand the boundary at each step,
and we have the set Sn contained in the set Sn-l for all n where Sn
is the set of all X such that vn(x) £ C. If F 1is not a contraction
in our original norm we have no assurance than S, contains Sn-l’ but
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we may still improve on the region of asymptotic stability by taking the
union of these regions. 'To illustrate this procedure which is based on
the inverse mapping technique due to O'Shea.ﬂ cansider the following exampls

Example VI-4 (0'Shea™).

%) (byyy) = xg(tk)
AL x?.(tk)'

2

As an initial choice for V consider V = x, + xg. Then AV 1is given by

AV = Xlt) +5t) - X)) ~x5(h)
= xh(b,) + x(ty) - xo(v,) - x5(ty)
= - x?_(l - xi) - xg(l - xg).

Thus AV 1s negative definite for [[X|| < 1. The region of asymptotic
stability is given by

V= x;a_(tk) + xg(tk+l) <1.
Its boundary becomes
v(xk) = 1.

If we now apply the mapping procedure we have that this boundary 1s after
one iteration

VoK) = VE() = xf +xb 21

V(%) =V (F(X)) = x0 + x5 = 1

2n+1 n+1

Vo) =V, ((F(X)) =  +x5 =1
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In the limit as n increases without bound the region given by

V,(X,) =1 approaches the square which circumscribes the unit circle.
Thus we have asymptotic stability for all X such that

X}l = max lxil = 1. This mapping may be applied to regions of instability
as well as to regions of stability.

Example VI-5. (0'Shea™Y)
%) (b)) = Kl +x5(%)
%o(tyy) = Xy (ty)-

Let
2 2
V= xl(tk) + x2(tk).

Then AV 1is given by
AV = xi(tyy) +x5(ty) - Gt - 25(t)

(E(t,) + x5(6,))% + X5 (6,) - xo(t,) - xa(ty)

o2+ D)7 -2

1

For xi + xg >1 VYV 1is positive definite and we have instability. The
boundary of this region is

v=la

If the preceding mapping is applied we have

(x§+x§)2+x§=l

2
(2 +32) Ha2 + D)

vl(xk) VO (7 (Xk) )

Vy(x,) = V(F(x,))

&
(xi + xg) + (x?_ +x§)(2x§ + 1) +x; = 1.
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Consider as a second choice of a Liapunov function the following

WX, ) = o + x5

Then

2

AWK = 2 () +x5(h) - 20 (8) - S(ty)

2-2x2-x.2

2
2 2
2(xy +x3) +x; 1

L12(5 +x2) =11 + 5205 +23) - 1]

for x5 +x2 <& AW 1is negative definite, thus we have asymptotic
stablility for all Xk such that

2 2 _1

The boundary of the region of asymptotic stablility is given by W = -2]=.

It 1s obvious that the complete region of asymptotic stability has its

boundary between W = -21-'- and V = 1. If we apply the above mappings we
have that this boundary lies in the space between Wn = % and Vn = 1.

The concept of boundedness or lagrange stability has been extended
to sampled data systems by Pea::'son32 . Once again the appropriate defini-
tion only requlires a small change in language from those for the continuous

case,

Definition VI-3: A discrete system (VI-2) is said to be bounded if for
every o >0 there exists a p(a) >0 such that if lb{kﬂ <a then

"x'k+n“ <8 for all n,

Definition VI-U: A discrete system (VI-2) is said to be ultimately bounded
1f (VI-2) is bounded region Q containing the origin such that all solution
sequences approach § asymptotically as k —yee,
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The corresponding theorems for the relation between Liapunov
functions and boundedness are

Theorem VI-5: Iet Q be the set given by ||xk|| >r and assume that there
exists a function v(xk) which is positive definite in Q and such that
V(Xk) —»® as llxkll —w, If the difference AV = V(Xkﬂ_) - v(xk) is nega-
tive semi-definite for all X in Q then all solutions of (VI-2) are
bounded.

Theorem VI-6: Iet 0 be the same as above, if there exist a V(Xk) which
is definite in Qq while AV 1is definite of opposite sign then the solu-
tions of (VI-2) are ultimately bounded.

The stability of discrete systems of the Lur'e type play an impor-
tant role in analysis of many guidance systems. Such problems usually arise
from a combination of contlnuous and discrete sugsystems. Thus many prac-
tical systems are described by the equations

X = AX + Efl(crk)

(vI-28)
o = C'Txk

where in general the equation for o, comes from the digitized guidance
loop. This system takes the discrete form

AT T a(r-s)

Xy =€ X * [fo e dﬂ]Blf(ok)
o = K.
AT T A(T-8)
If we define the matrix A =e and B=f e ds B, then we have
the discrete system 0
Xeqy = 8 + Bf(crk)
(vI-29) o = chk

T T
w1 = C A% +C Bf(ck),

Q
J
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which becomes the Lur'e problem of direct control 1n discrete form. One
major difference between the discrete and continuous problem must be em-
phasized. In the continuous case the problem was to obtain conditions
for asymptotic stability for which the only restrictions on f£(o) were

of(c) >0 fo £(o)do »w.

For the discrete system the same conditions can not be used for f(o’k)
since every function f(ok) = roy  1s In the above region for r >O0.
In the closed loop discrete case we wlll never have stability for all
gains, therefore we must restrict £(o). Thus in (VI-29) we assume that
£(o) 1is such that

£2(0) =0 0 =g f(0) s kmoi

In addition it i1s assumed that the curve f£(o) 1s differentiable and

such that Ig—-(ﬂ = p. As a Lispunov function consider the form
T ’x
(VI-20) V=

XX, +4d fo £(s)ds.

The difference AV along solutions of (VI-29) are

AV = XL[ATQA - QIX, + £(0)BTQAX, + X, ATQBE(0y) + £%(c, )BTaB

(vi-3) o
k+1
+ f £(s)ds.

Oy

If we apply the mean value theorem to the last term in equation (VI-31)
we obtain
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k1

(VI-3) ] £(s)as s £(oy) logy ~o ]+ % (043 = O

%%

)2

thus we have

AV = - X"EX + 20, )FQAX, + X ATQBe(o, ) + 2%(c, )BTQB
(VIi-33)
+at(o) oy, ~ ol + 4 (o, - ak)2

If the idemtity ~a(oxf(cy,)) - C'Xf(0,)] s added to the above expression,
we obtain after much algebraic manipulation

(VI-3) AV = - XK, + £(0,) [D'K + X'D] - 5£%(0,) - ot (o) [0, - = £(0y)]
m

where the matrix R, the vector D and the scalar S are defined as

(VI-%) R=p -5 (af - r)oc™(A - 1)
T T dpn T.T oof 4 T, . oCTA o0t
(VI-26) D =BQA-=2BcCc -F- +IE pootA + &2 LT
3 2 '3 2 2
(VI-37) s =% . plqE - @B -%ﬁBchTBT

&l

where ATQA -~ Q= ~P, If the constants 4 and a can be chosen such
that R 18 positive definite, S 1s greater than zero and S - DTR"]'D £
zero, then the right hand side i1s at least negative semi-definite, and thus
the origin is asymptotically stable.
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Observe that one still has the basic problem of how to choose the
matrix P in order to maximize the region of stability in terms of the
parameter space. Also observe that the maximum slope of f(¢) had to
be bounded, If this assumption is relaxed, then one has difficulty in
incorporating the term involving the integral of the nonlinearity in the
Liapunov function. This restriction on f£(o) can be overcome if the pro-
blem 1is treated as one of direct cantrol. Consider once again the system

(vI-29)

X4y = A% + BE(oy)
% = "Txx

(vi-29)

where we assume O < of(o) < ko>. Consider for v

(VI-0) ¥V = XX,

Then the difference of V along the solutions of (VI-29) becomes

]+ BTQBfa(O‘k) .

(VI-20) AV = X [A7QA -a] + £(o) [BAx, + XATQB

If the two quantities -~ (crkf(o‘) - CTXf(a'k) and + 22_]&(2)- are added to
(VI-30) we obtain

T
AV = XTIATQA - Q1 + 2(a) [(BTeA + S-)x, + X3 (A7qB + £]

(vz-32)
- & - (o) - (o - ED(ey)

Since A 1s assumed to bhave eigenvalues which are less than unity in
absolute value, then (VI-3l) takes the form
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(7,)
(VI-3) V= - TRIY - £(0) (0, - 05

where I;E = [Xz, f(ck)]
P ~ (ATqB + g)

T
~(A%em + §) (z - 5'aB)

The origin is asymptotically stable if R 18 neg tive definite.

quires

k

T
=>BQB and i - BQB - (A7QB + 2) P (4GB + £) 2 .

This re-

This last result could have heen obtained directly from the equations

(VI-3), (VI-26) and (VI-37) by choosing d to be zero.
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CHAPTER VII

MODERN COMIROL APPLICATIONS OF THE DIRECT METHOD

The role of the direct method in the synthesis of linear and non-
linear catrol systems has been greatly overshadowed by 1ts success as
an analysis tool. In actuality its use in synthesis is in many respects
the easler of the two problems. In the analysis of a nonlinear system,
the system is well defined and 1t 18 necessary to seek out a ILiapunov
function which demonstrates its stability properties. Such functions
can be very 1llusive. 1In the area of synthesis, one may choose almost
any function at random a8 long as it is definite. The requirement that
1ts derivative be definite of opposite sign automatically places re-
strictions upon the parameters of the system. Unfortunately these re-
strictlons may pose considerable problems of mechenization. An alterna-
tive choice of the "W" function may lead to very simple mechanization.
The inability to relate such requirements & prori in the choice of the "y"
function has posed the large problems in synthesis. Some of the results
from optimal control theory should mitigate these difficulties.

The vast majority of control systems desligned to date are based
upon a ruthless linearization of all encountered nonlinearities. Idnear
systems are understood by most engineers and they can relate non-mathematical
performance criteria such as peak overshoot, natural frequency, etec., to
their linear analyses. When they first encounter the direct method much
of thelr lntultive feel is lost. This limitation is8 more & limitation of
nonlinear systems rather than a particular limitation of the direct method.

Even with these admitted difficulties, the direct method when treated
as & philosophical approach or point of view leads to many useful designs.
Its relation to the fundamental concepts of optimal and adaptive control
theory are too intimate to be ignored.
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A. Control based on negative ?. The problem of synthesis takes
the form

(VII-1) X = F(X, U)

where X 1is assumed to be an n-vector and U an m-vector. U represents
the control variables. The obJect of the synthesis problem is to choose
U=1U(X, t) as a function of the state variables and or time, such that
the system, 1n addition to belng stable, performs in some desirable manner.
In many cases the control varlables U will be restricted in some manner,
for example, the norm may be required to be less than a given amount.

For many such problems the syrthesis procedure may be as simple as
constructing a Lispunov function and choosing the control U +to make ¥V
as negative as possible. For example consider the linear system

Example VII-l.

(VII-2) X = AX + BU

where it is assumed that IUi[ <1 and that the system is completely con-
trollable. This last restriction is required to insure that the system

can be stabllized. We do not assume that it 1s necessarlly stable. Consider
as a Liapunov function the positive definite quadratic form

v = xTuo

Then for ﬁ we have

¥ = xT[ATQ + QAJX + UTBTQX + XTQEU.

Therefore we wish to choose U 1in such a manner that V 1s as negative as
possible. Such a choice gives
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(VII-3) U = - Sga(B'eX)

which is a bang-bang controller. If A 1s not stable, then this gilves

a stable operation near the equilibrium position. One still has a degree
of freedom in the choosing of the matrix Q. If the original uncontrolled
system 1s elther stable or asymptotically stable, then U can be chosen
to not only stabilize but to meet auxiliary performance criteria. Such
procedures are applicable to nonlinear systems. Consider the problem of
a tumbling space vehicle.

Example VII-2. The equations are given by

+ (1 -I\ar:'_[_‘_+rl,,1' +m T

Ib+ (1 y %’ > 17 1272 " 153

(vIz-k) Iyti + (Iz - Ix)pr = m T + T, +omy Ty
o+ (1 Iy)pq = m13‘1‘l + “ZTa + T}.

The numbers m, 3 represent the misalignment in the application of the
thrust vector. We assume that the components of thrust are bounded where
without loss in generality we assume lTil = 1. Since the above system
without control is a conservative system with a stable equilibrium position,
we can construct a V function from the integrals of motion. Iet YV be

such a function
2 2 2
(VII-5) V=Ip"+Ig +Ir.
If we represent the original system in vectar notation we have

=FX) + q'lMU
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where Q™ in the inverse of the diagonal inertia matrix, M is the
misalignment matrix. Observe that V 1is

Vv = XTQX.
Thus for V we obtain
V = [FlaX + XTQF + X'MU + UMK
but Q was chosen such that FTQI + XTQF = 0. Therefore we have

(VII-6) 7 =2 u'mx.

If U 1is chosen such that

- MX
U="53n(§"):

vV is negative definite and we have asymptotic stability. This control
gives for the components of U

T, = - sgn(p + cleq + cljr)
(vix-7) T, = - sgn(cyp + q + ¢ppr)
T3 = - 58n(°13P teys t r).

Once agaln wve obtain an asymptotically stable system with a bang-
bang control. If the problem discussed above in example 2 is such that
there are no constraints upon the control vector, then not only can the
thrust be chosen such that the origin is asymptotically stable, but one
can generate a linear control wlth exponential stability. Thus consider

Exemple 2 - continued.
X = F(X) + Q" Mu
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where Q is the moment of inertia matrix and M represents the thrust
misalignment matrix. Once again we consider V of the form

v = XQx

and V takes the form

¥ = [F'Q + QF] + X°MU + UMK

= XTMU + UMK = 2XMU.
Now if U 1s chosen as
U= - kX

we obtain

V = - 2kXTQX = - 2KV.

Thus we have a linear feedback control which is asymptotically stable. If

we exemine the above equation we obtain

V=~ 2KV

- 2kt
V=Voe L]

Thus we have
Ice)lf = o)l = =

or

Ix(6)lly = Ix(0)llge™ Kt
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and all solutions of the nonlinear system have exponential asymptotic
stability. Other choices of U could be made to give almost any desired
type of response.

Not only may the use of the direct method lead to greater stabllity,

but it may also improve the performance of a system. This procedure as

shown by 1'_.aS¢3.lle3'3 is as follows. Consider the control system

(VII-2) X = AX + BU

where A 1is assumed stable. As a cost function or performrance index con-
sider the following

(-]
(viz-8) é;o(x, U) = J (XTEX + U'CU)ds.
0
As a Liapunov function consider the quadratic form V = XTQX where

Q 1s such that ATQ + QA = ~ P. Without the application of control we

have

(VII-9) ¥ = - X°PX.

Integrating we obtain

o« o
| Has=-/ x"exas
0 0
(viz-10)
-] nT
v] = - [ XX ds.
0 0

Since the uncontrolled system is asymptotically stable (VII-10) reduces to

(VII-11) v(0) = +f:(xTPX)ds _G, o).

- 146 -



For the controlled system using the same V function we have for '

(VII~12) ¥ = - XTPX + UCBIQX + X1QEHU.

Iet R be any positive definite symmetric matrix and define the relation
between U and X as

- fgill - B'gX or U= - 2R™BlEx.

V 1in equation (VII-1l) now takes the form
(VII-13) V = - X'FX - URU.

Observe that V is more negative. Thus stability has been improved.
Integrating (VII-13) we obtain

[ a5 = y(=) -V(0) = - f x"mas - [ U'Rds
0 0 0

(VII-1%) m »
or [ X'Pxds = V(0) - [ U'Ruds.
0 0

The value of the psrformance order with control is

G, 0

(VII-15)

o o
[ xTPx as + [ UTcU
0 0

v(0) - J UTRU+ J UPCUds.
0 )

The difference 1n the value of the performance function becomes

(VII-16) Q)(X, 0) -é)(x, U) + f“UT(R - C)U ds.
0
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b

Thus the value of the performance with control is less than that of the
uncontrolled system providing R 18 chosen such that R-C i1is positive
definite. An obvious choice of R is R = AC with )\ greater than
unity.

B. Adaptive Conmtrol. In the area of adaptive control the second
method of Iiapunov may give insight as to the methods of approach. For
model reference adaptive systems, the concept of adaption may alternatively
be thought of as a stabllity problem. 8ince a control is sought to force
the plant to follow the model, then the error between the plant and the
model 18 required to be asymptotically stable. Ta 1llustrate this approach
consider the followlng:

Example VII-3 (Ra.nga“). Asgsume the objJect to be conbrolled is described
by the equation

(viz-17) ¥+ ax +axs= azu(t)

where the quantities a, & and a, are elther constant or slowly vary-

ing, but in either case wmknown. Assume & model of the form
(VIr-18) §+ v § + by = bE(E)

where it is assuced that the coefficilents bi are known and the system
(VII-18) is asymptotically stable. It is desired to determine how to
choose the control u such that (VII-17) is forced to respond like (VII-18).

Iet z =x -y bhe the error between the plant and the model. Thus
z satisfies the equatlon

(ViI-19) B+b%+bz=au-bf+ (b -a)k+ (b -a)x
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If the control u was chosen as
l -
(vir-20) u = ;; [baf - (bo - ab)x - (bl - al)x]
then the plant characteristics would be replaced by those of the model.
Unfortunately we do not know the plant parameters, therefore we choose

a controller of a similar form namely

(m-ﬂ) u = gz[bzf - (bO - go)i - (bl - gl)x]

Qe
i
=2
~
N
-
Ll
S’

(viz-22) & =

i
=2
[
~~
L)
-
N
A d

vwhere we assume the functions hi(O, 0) = 0. Ultimately we desire the
functions & to approach the unknown plant characteristics a,. Thus

for the system given by the equations (VII-22) and (VII-19) we desire a
Idapunov function given in terms of the desired equilibrium point

(x, %, g8, &, g2) = (0, 0, &, a, % ). Thus consider a Llapunov function

(o}
which is a quadratic form in the deviations of the variables from the equili-~

brium.
.2 b b k
Z 0 . 1 2 s 2
V=5-+3 22 +35 2" +5 (go - ab)
(VIiI-23) K
A | 1
2 ( a‘].) + (82 ;2)°

Differentiating we obtain
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b b k
hd [ ] b [o) 2 ° O -
vV=(2+ 5 z)z + 52z +bzz + E-(go - ao)g + kl(gl - a,l)g_1
b
1 . 0 7.2 . 2 o (o}
(VIiI-24) + 1:28.2(\52 - )g2 = -5 (z° + b zz + b,z ) Hz + 5 z)

[au - be(bo a'o);[ + (bl - l)x] + ko(go - a’o)ho * k1(81 - B’l)h'l

+ 1:2(13.252 - l)hz.
If the identity

(VII-25) - [oge - (b, - 8)% - (b =g )x]1=0

N(NIF:

is added to (VII-24) we obtain

b

. 0 4.2
V=--2—-(z

b

+ bozi + blzz) +(go - ao)[koho + x(z + 59- z)]

(VII-26) b b

+ (gy - a)lgh) +x(2 +522)] + (s, -~ 1)[h, + (2 + = z)g-]
2

Thus V will be negative semi-definite if we set the coefficients of
(go - a.o), (gl - al), anl (51.232 - 1) equal to zero., This gives the
following

. b
(VII-27) ho=-;-:-;(é + 5> 2)
X bo
(VII-28) hl=-i-l (z +-2—-z)
b
h, = - =— (2 +.2
(vir-29) 2 8ak2( * 5= z).
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If the term f£{t) is kept nonzero, then the system will eventually reach
the desired equilibrium position. The mechanization of the system 18 given
by the block diagram

£ wt
— MO OEL L— CoNTROLLER AL PLANT

.

|

This scheme does not necessarily lead to a good adaptive system since
it 18 rather slow and does not follow rapidly changing plant characteristics.
Another disadvantage is that even though it can be extended to systems of
higher order, it cannot be used for systems with zeros in its transfer func-
tion.

An alternate procedure for the solution of the same problem under
different hypotheses was presented by (}ra.;rsonz'5 . 'The equation for the
plamt and modes remain the same. The difference equation (VII-19) is

(VII-19) Z+Db %+ Dbz =au-Dbf+ (b, - a )k + (b, -a, )x.
The control u 1s assumed to be of the form
(viz-21) u=(1-g,)f-gx ~gx.

If the ¥V function

1 1
(VII-30) V=52"+5b22 +1v22

is differentiated we obtain
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Now 1if 859 81 and g, &re chosen to ensure 1.( is negative then we have

asymptotic stability.

too widely from the model, and

ties hold

and the quantities 8y

(VII-2) &
(ViI-3) 2,
(VII-33) &

)

lay, = v, | <e,
lay -bll <ey

lay - B,| <oy

can be chosen as follows

od

e, sgn x(z +

ou‘l\)

z)

e, Bgn x(z +

L= 2 \V)

¢4, 8gn £(2 + -2-2 z).

If the plant parameters are limited and cannot vary
is nonzero, then the following irequali-

An advantage of this last procedure is that it permits a system to
track a plant which is changing rather rapidly; in addition it is not re-
stricted to systems with no zeros in the transfer function but can be
generalized to such cases. Hiza and ]:.;L36 have extended this approach to

the case where the model is of one order lower than the plant.
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disadvantage to this approach is that one requires 5. priori bounds upon
the variation of the parameters, but for most practical systems these
are reasonable restrictions.

C. Optimal Control. Returning to the problem of optimal control,
one often may use the Zubov construction to give a Iiapunov function in
terms of the performance index. Under suitable conditions this partial
differential equation treated as a function of u may be minimized thus
rermitting U to be solved in terms of the gradient of V. Thus given
the system

(VII-33) X = F(X, t, U)

with a cost function of the form
-]
G) = ftL(x, U, 8)ds

thern a Idapunov function V 1is sought such that

(VIT-3%) %} gz + PV - F(X, t, U) = = L(X, U, t).

The quantity to be minimized with respect to U 13 the function
(VII-35) i ( Y+ YVF(X, t, U) + L(X, U, t)).

Equation (VII-36) for U =U optimal becomes the Hamilton-Jacobi
partlial differential equation of optimal control theory. If L 1is
positive definite

F(0, 0, t) = 0, L(O, 0, t) =0,

then the existence of a solution to (VII-35) implies asymptotic stability.
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Example VII-%. Consider the optimal control problem due to Kalman>!,
(VII-36) X = AX + BU
(VIx-37) 6) = [ [X'ex +URUlds.

%

Since (VII-37) and (VII-38) are autonomous assume a V function which is
autonomous. Its derlvative becomes

(VII-38) V = gV [4X + By

but it 1s desired to choose V¥ such that

(Viz-29) 7= OVIAX + Byl = - X'PX = U'rl

Thus for an optimum solution we desire to find
min{ VL [AX + BU] + X'PX + U'RU).
U

This minimization gives

-R" T

(VII-ko) v-=B E gy,

If V is assumed to be a quadratic form

Y = XoX

then

YV=20X and U= - RBTx

- 154 -



and YV becomes

¥ = K@ ™" - AT)Q + Q(A - R™IBTQ) Ix = - X'px - XTQE1BTax.

Thus we requlre

(- QER™IE + AT)Q + Q(A - BR™15TQ)] + P + QEREQIX = 0.

This implies that Q must be a sBolution to

ATQ + QA + P - QR™BIQ = 0.

When a optimization problem is such that one cannot solve (VIT-34)
and (VII-35), then various iteration schemes are avilable. Consider the

system (VII-1)
(VII-1) X = ¥(X, 1)

and an assoclated performance index

(vIz-h1) = [ L{X, U}at
t

where L{X, U} 1is assumed to be positive definite. Assume that there
exists a nominal control Un(x) which stabilizes (VII-1). Such a control
can always be found if (VII-l) is linearized and for L we use the quadra-
tic approximation. In terms of this solution an iterative procedure can
be applied based upon the procedures described in Section A. Similar pro-
cedures were used by Ao]d.m.
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The major contributions of the direct method to the solution of
practical control problems has been via an application of Lur'e construc-
tion and its extensions. This contribution would be much more extensive if
it were not for the formidable number of computations one must resort to
in lleu of any optimal way of choosing the matrix of the quadratic form.
Iet us reexamine the application of these camstruction techniques from the
point of view of the computational requirements. The model for the pro-
blem of ILur'e in the discrete form points out what is involved. The equa-
tions have the representation

X = AX + Bt (o, )

c'x, .

Oy

The first step in such a solution is the transformation to discrete form.
To accomplish this we require the two computations

T
(1) AT A (2) foeA(T'B)d.sB - B.

Once these computations are made the system then bags the discrete represen-
tation

Xy = MX + Byf(oy)

oy = c'nxk.

Invariably at thls stage, the matrix A1 poseesses one or more eigenvalues
with absolute value equal to or greater than unity. Thus we are forced

to stabilize this matrix before we proceed. This stabilization is accom-~
plished by replacing the nonlinearity by the expression
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£(oy) = ko, + &(0y)
where the value k must be chosen such that
Ay = (A + kBlcT)

has all elgenvalues less than unity in absolute value. In addition one
must ascertain the range of the parameter klll <k < l:.M for which stability
18 insured. We now construct a V¥V function of the form

%

V=X +a ] a(s)s

and obtaln the difference AV 1in the form
AV S - x"!ka + g(o) [D%(k + x,D] - Sga(o'k) + ag(ay ) [, - %M g(ay)]

where

R=-(A?QA2-Q) - 2 (A7 - Tloc(4, - T)

T
oE o - E o e f B meth v E Tl
a

. - BB - ac'B, - 3 A BTco s,

For asymptotic stabllity it is sufficient for the following to hold for

some o and d.

(1) R to be positive definite
(2) S be positive
(3) 8 =~ DR be positive.

Observe that to insure definiteness we must compute the matrix Q from
the relation
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AQA— = =P,

Once Qi’ a and 4 are speciflied the resulting quantities Rl, DT, and

S can be computed along with a check of the above sufficient conditions
for stabllity. Thus the major computations are

T
(1) A= eAT, B, = joeA(T"s)ds B
(2) find k and. ky, with k <k <k, such that

(Al + kBlC ) is stable in the discrete sense

(3) for given P compute Q such that

T
AaQAZ -Q==P
() choose « and d such that R is positive definite,
and S -DR™D is equal to or greater than zero.

For continuous systems step one in the above computation can be eliminated.
If the result of the above computation does not lead to a useful result
then the values of either «, d or the matrix P must be modified and

steps (3) and (4) repeated.

Fortunately the required computations for the above already exist in
a8 computer program developed for NASA under Contract No. NAS2-1107 by
Dr. R. E. Kalman and Mr. T. S. Englar. This program, entitled "An Automatic
Synthesis Program for Optimal Filters and Control Systems”, is primarily
designed to lmplement the solution of the linear optimal control problem
with a quadratic performance index whose solution wes given by Kalman. This
program accepts matrices as inputs up to a maximum dimension of fifteen by
fifteen and 1s adequate to handle all of the anticipated problems of this

nature.
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A problem representing a seventh order discrete guidance parameter
study was placed into the above described program. Unfortunately results
were not available in time for inclusion in this report but will be made
available in a separate communication at a later date.
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CEAPTER VIIT

CONCILUSIONS AND RECOMMENDATTIONS

From the material presented in the previous sections it is otvious
that even though the second method is a powerful tool of analysis and bears
many close ties with much of modern control theory, it has serious diffi-
clencies when applied to realistic problems. These deficiencies result
primarily from the inability to construct optimal "v" functions to deter=-
mine regions in the parameter space which insure stability. A second major
deficiency is the inability to relate to a given "y" function qualitative
design goals.

Even with these limitations 1t must be realized that this is the
only method to date to treat nonlinear systems. The above limitations
will be overcome as familiarity with the second method is developed at
the level of the working design englneer. Adequate computer programs will
be developed as the need for such methods increase. From a practical point
off view, it would appear that the direct method will have its largest role
of application in the synthesis and analysis of discrete systems. For con-
tinuous systems, linear synthesis procedures coupled with computer simula-
tion have been adequate for such a large percentage of systems that the
role of the direct method has been only considered for the exceptional pro-
blem. For discrete systems the situation is somewhat different. Here there
is not a long heritage of familliar procedures. As the discrete systems grow
increasingly complex, the direct method will become the major analytic tool.

In the area of future development, it is felt that this should be
prirarily in the area of computer program development. Adequate procedures
presently exist for generating "V" functions for any given problem, but
for high order systems one must fall back upon computers to make any practical
use of such procedures. A second problem is the determination of definiteness
or indefiniteness of homogeneous functions of degree greater than the second.
This 1s primarily a research task and 1s not amendable to computer solution.
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Appendixs

During the first quarter of this program an extensive survey of
the literature both domestic and translated was made. The results of this
survey are presented here.

Bibliography on ILiapunov's Second Method.

During the first three months of this program a survey of the litera-
ture on the theory and application of Iiapunov's second method was made,
The purpose of this survey was to obtain all applications to problems in
the control field and optimistically form a table of appropriate "y" func-
tions for different classes of problems. Unfortunately, this goal was not
realized, since, other than the Lur'e problem, no general class of control
problems has been documented with appropriate construction of "V" func-
tions. Applications of the second method are plentiful, and methods of
construction are also plentiful, but these methods still require consider-
able Ingenuity of the user,

In this paper, we have tentatively classified the various papers into
five different categories. This classification is somewhat arbitrary and
many of the papers actually could be classified into many different cate-
gories. To revlew each paper is beyond the capabllities of the writer, but
rather we will survey each category and indicate the more interesting of

bapers.

A. General Theory.

The basis of the Iiapunov Second Method is contained in the memoir
(6) which was first written in 1896. Although the results were known to
mathematicians, interest in the second method was not generated in this
country untll about ten years ago. Texts have appeared within the past few
years along with translations of the more significant books from Russia,
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For a general treatment of the theory, without the requirement of a strong
mathematics background, (%) is excellent, (3) gives the most detailed
treatment of the subJect and the natural extensions of the method with
applications. (4) is also noteworthy for its complete bibliography. The
texts (2), (7), and (8) translated from the Russians are more difficult
to study due to the absence of matrix notation.

_ From an engineering poimt of view, most interest in the second
method has been with respect to autonomous systems. For non-autonomous
systems the concepts of stability become more complex because of the need
for more types of stability and the construction of ILiapunov functions be-
come considerably more involved. (1) gives a detailled treatment of the
various concepts of stabllity and thelr interrelations.

From an engineering point of view, one wishes to construct a w"
function which gives the strongest type of stability in the largest region.
In applications, one often obtains one without the other. This problen is
somewhat aleviated as & result of the extensions due to LaSalle (5). These
extensions permit one to obtaln in many cases conclusions on asymptotic sta-
bility from a Idapunov function which only insures stability.

In most applications, one, by use of the Liapunov second method,
obtains sufficlent conditions for stabllity. Converse theorems showing the
necessity of the second method were obtained by Massera, Kurzweil and cthers

(9), (10), (11), and (12).

B. General Construction of Iiapunov Functions.

The construction of a Lispunov function for a specific nonlinear system
presents a challenge to the designer. The problem may be separated into
two parts (a) determining whether & given function is definite or indefinite,
(b) assuming (a) has been solved, construct a function which is definite while
its derivatives are definite of the opposite sign. The solution to problem
(a) has not as yet been found. In general for quadratic forms, conditions
for definiteness of the function can be stated in terms of the elements of
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the matrix of the quadratic form. In some cases scalar nonlinearities

may be integrated to give an analogue of stored energy, this accounts for
the wide spread use of V functions formed from the combination of these
two. The most famous of such constructions is due to ILur'e which will be
treated later. For many applications, particularly for conservative systems,
ILiapunov functions are formed from some of the integrals of motion. In
physical cases these integrals correspond to the total momentum or total
energy in the system.

Specific methods of construction other than the above have been
proposed. In general none of these methods give a solution to the deter-
mination of the definiteness of a given function, but assuming that this
problem is solvable, they do, lead to methods of conmstruction of ™" func-
tions. The most noteworthy of these methods 1s the variable gradient method
proposed by Gibson and Schultz (20). The method consists in the assumption
of a vector PV, From this vector V can be formed by taking the dot
product of YV with X. The elements of ¢V are kept free with the
restriction that the matrix g)-{- VY 1is symmetric. This ensures that ¢V
may be integrated independent of the path. The elements of @V are then
chosen to force V to be at least negative semi-definite. The principle
advantege 1s that it enables one to handle the specific non-linearity in
the systen.

Another approach to the construction of Iiaspunov functions was pro-
posed by Zubov (8). This approach has been treated in detail in (17).
(21), (22), and (23) use an approach which is similar in that it is based
on the same differential equation, but the construction proceeds along
different lines. The Zubov approach starts with the partial differential

equation,
JVFX) = o) [1 + FFIL - V]

where ¢ 1is a positive definite quadratic form. For this construction it
1s assumed that the original system is asymptotically stable. The Zuboy
construction does glve the region of stability and an approximation
scheme for its determination.
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Many extensions of the concept of a positive definite quadratic
form have been proposed. These usually proceed with a quadratic form for
the linear system and then generalize i1t by permitting the elements to
become functions of the state variables. The methods vary in the original
matrix of the quadratic form and the manner in which this form is extended.
(16) and (15) are the two main references to this approach.

An interesting approach from a geometric point of view was proposed
by Infante and Clark (1), but umfortunately appears to be restricted to
second order systems. The approach 18 based on constructing a function
which is the lntegral of the original system modifled by the addition of
extra terms which are kept free. The cross product of the tangent vector
of the original system with the tangent vector of the modified system 1is
required to be negative.

Geiss and Reiss (19) advocate an approach based on starting with a
form which is semi-definite and integrating this by parts using the differ-
ential equations to aid in the integration.

It is difficult to detemine which of these methods is preferable
in any given case since each requires a certain degree of Ingenuity of
the user. On some sample problems the writer obtained comparable results
by all of the above methods. The only factor which would recommend one
approach over ancther would be the ease of construction and this appears
to be subjective. The author has found the varlable gradient procedure

the easlest to apply.

Papers (24) to (34) contain various applications of constructions of
"y" functions consisting of quadratic forms and integrals of the non-
linearizaties. Papers (35) to (44) are constructions of functions from one
or more first integrals of motion.

C. The Iur'e and Alzermasn Problem.

The problem of Iur'e is perhaps the most completely documented non-
linear control problem, The basic problem may be stated as follows: gliven

the systen
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AX + BS

CTX - rd

’s
n

Q
n

where the equation for the controller is given in various forms:

a) Direct control 8=F(d) r=0 F(0) =0 dF(a) >0
F(o) F(0) = 0 oF(c) > 0.

b) Indirect control &

Obtain conditions on the vectors B and C to ensure asymptotic stabi-
1lity of the null solution. Iur'e (45) considered a "V" function of the
form of a combination of a quadratic form plus an integral of the non-
linearity. Before constructing the "V" function ILur'e first transformed
the system to one in which A was assumed diagonal and the vector B
consisted of all ones. Differentiating V he obtained ¥ 1in the form

¥ = - XRX + F(0)a'X - rF (o).

Conditions for asymptotic stability were obtained by setting the coefficlent
of F(o) to zero giving a set of algebraic equations which requires solu-
tion, If the quadratic form of the "V" function is assumed to be

V = X'5X.

Then R 1s glven by
-~ R = A'S + SA.
Lur'e chose for the matrix R a particularly simple form, namely R = Q!IT.

The condition for stabllity thus bhecomes conditions on the elements a in
the resolving equations. A detailed treatment of this problem may be found
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in (46) and (47). Lur'e assumed falsely that by his approach global
asymptotic stablility was insured, but LaSalle (63) demonstrated conditions
under which this was true. The form of the resolving equations become quite
complicated for systems of higher dimension, these having been tabulated by
Rekasius (77) and Rozenvasser (78). Kalman (61) proves the conditions
under which the resolving equations are solvable.

Iefschetz (64) and Yakubovich (83) independently recast the Lur'e
problem in matrix notation and obtained simpler conditions for asymptotic
stability. In the Iefschetz construction a single condition is given, this
may be obtaiped as follows:

X = &X + (o) § = OX - rF(o).
ILet
T g
V=XgX + [ F(t)at.
0
T
¥ = XTA7Q + Qalx + X7 (a8 + SIF(a) + F(o) [B7Q + -1 - 2F ().
then
X
\¥(e)
where
8§ - «a -8 =AQ+QA
V=1 Y
4fr r a=QB + g .
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e

Thus for V +to be negative definite we must have r - 'S '@ > 0. Since
Q depends upon the choice of 8, 1t i1s obvious that this inequality be-
comes & complicated expression in terms of the elements of S. It would
be desirable to choose S such that aTS-la is minimized. Results in
this direction have been reported by Morozan (70). This construction due
to Iefschetz lends ltself to the consideration of multiple nonlinearities
with 1ittle loss. Application to the lateral equations of an alrcraft
with two nonlinearities has been treated by Chang Jen-Wei (56) and (55).
Others have approached the ILur'e problem using a different matrix for the

quadratic form giving simpler conditions for stability (51), (52), and
(54).

The problem of Iur'e has been extended to the case where the con-
troller equation has taken a more complicated form. Chang Ssu-Ying (57)

assunes a cantroller of the form
a8 + bd + cd = F(a).

Meyer (69), Maigerin (68) and Ietoy (65) consider a controller in which the
effect of the load is taken into account. This gives the controller equa-
tion in the form

1 w=1l
8 = F(o)#(w) d(w) = Jvw  o<w<1
0 w<o0

where w may take various forms such as?

1 - 35 sgn (o)

A
]

1 - (a5 + £8)sgn (a).

A
]

Meyer (69) gives complete results for the non-critical case and partial re-
sults in the critical case. Rozenvasser (80) considers the case where the
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controller depends upon t while Gorbatenko (59) considers the case where
F(c) is of the form F(og) = & kio'i. Yakubovich (82) considers a controller
with hysteresis.

The Aizerman problem may be considered as a converse problem to the
Lur'e problem. In the Lur'e problem one finds conditions under which
asymptotic stability exists for arbltrary non-linearity in a given region.
The Alzerman problem or conjecture may be stated as follows:

Iet
AX + ¥(aq)

¢ = CX.

s
i

Assume that the origin is asymptotically stable for F(g) = k¢ with
k) = k & k, then is the origin asymptotically stable for all F(g) such
that

2
k0" = oF(g) = kzdz.

In general the answer to this problem is in the negative although for some
classes of problems it is8 true. The conjecture is verified for a class of
third order systems by Bergen and Williams (53) and Pliss (73). Mufti (72)
solves the Aizerman problem for the systems,
X = X + F(Y) X
and
¥ =1bX +ecY ¥

F(X) + aY

It

bX + cY.

D. Problems in Optimal and Adaptive Comtrol.

The relationship between Liapunovfs functions and performance criteria
was Tirst suggested by Kalman and Bertram (93) where they advocated the use
of positive definite performance criteria thus insuring asymptotic stability.
IaSalle (99) shows how one by use of a ILiapunov function may aid in the
choice of & control that improves the stability and performance of a system.
Kalman (9%) has given the optimal solution of the linear system with quadratic
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performance index and has shown that this index is a Liapumov function.
Al'Brekht (85) constructs a Liapunov function for the nonlinear system

in terms of a series expansion assuming the solution to the linear problem.
Aoki (86) proposes an algorithm to successively optimize the control system
by constructing a sequence of approximations to a Liapunov function.

Applications of the I.iapunov second method have been made to the area
of model reference adaptive control. The main idea behind this application
18 that the eventual agreement between the learning model coefficients and
the plant coefficients may be interpreted as a problem in asymptotic stabl-
1lity. Rang and Johnson (90) and (105) design a nonlinear continuous con-
troller by means of a Liapunov function for a system with a single input
where it is assumed that the model is of the same order as the system.
Grayson (88) designs a similar system by use of a discontinuous control.
Kiza and I1 (89) extend Grayson's approach to a time varying plant and a
model of lower order than the plant. Donalson and Ieondes (87) who have
poineered in the area of model reference systems apply the concept of
eventual stability due to LaSalle and Rath (99) to analyse a class of adap-
tive systems.

The class of control problems discussed so far have been primarily
continuous systems. Extensions of most of the preceding work has been
made to discrete or sampled systems. Once again the main reference theore-
tically is due to Kalman and Bertrem (93). Pearson (104) trecats a discrete
form of the Lur'e problem and obtalns necessary conditions for the existence
of a quadratic form Iiapunov function. Xodama (96) ard (97) obtain suffl-
clent conditions for global asymptotic stability of a discrete version of
the Aizerman type equation. Counter examples of Aizerman's conjecture are
glven. 0'Shea (102) extends Zubov's method to discrete systems. Approxi-
mate methods of solving for the Liapunov function are deseribed. Jury and
Iee (91) describe a cless of nonlinear sampled data systems of the Lur'e
type. Kadota and Bourne (92) apply the construction of ILiapunov functions
to a class of systems of the pulse-modulated type.
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E. Boundedness and Non-stationary Systems.

In many practical cases an engineer is willing to forego stability
providing his solutions are bounded near the equilibrium point. This
practical stability or Iagrange Stability as it is called 1s an outgrowth
of the Liapunov theory. Boundedness in & sense is the stabllity of the
point at infinity. The most detailed treatment of boundedness 1is due to
Yoshizawa (113) and (114). Pliss (110) treats the boundedness of non-
linear equations of third order. Rekasius (111) constructs Iiapunov func-
tions for control systems with step inputs to obtaln boundedness.

The problem of constructing ILiapunov functions for time varying
systems becomes much more complicated. Part of the difficulty is in the
construction of positive definite time varylng matrixes, this problem 1is
facilitated if the matrix is diagonal. One may start with diagonalizing
the linear portion of the system, but this transforms the difficulty to
the diagonalization of time varying systems. In general one starts with
a Iiapunov form based upon & non-~time varying system and then tries to
find bounds on the time variation to ensure negative definiteness of
V. Szegd (126) constructs a Iiapunov function of the form V = XT(C(t)X
where the elements of C(t) are solved from the equation:

c()A + (C(t)A)T = c(t)B(t) - A(t)I

where A(t) is a scalar and B(t) i1s assured semi-definite. Roitenberg
(125), Razumikhin (124%), Chetaev (117) consider constant coefficient quadra-
tic forms in order to obtain stability bounds. Pozharitskii (122) con-
siders combinations of the first integrals of motion. Persidskii (121)
glves conditions on V(t, X) to obtain instability. FEhatia (115) gives a
detailed treatment of stabllity of nonlinear time varying second order

systems.
An area of much current research is the field of functional differen-

tial equations. Functional differential equations in many cases represent
& more realistic approach to practical problems, since most systems have
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distributed parameters and contain lags. Unfortunately, the handling of
such problems poses unsurmountable difficulties. Problems involving dew
lays have been treated in the literature. For nonlinear systems results
by examining the linearized delay equations have been treated by
Razumikhin (123). Stability theorems for functional equations have been
developed by Hale (128) and (129). Applications to partial differential
equations have been made by Fowler (130) and Wang (131).
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