brought to you by 🗓 CORE rovided by NASA Technical Reports S

New Califi Sparations Office NAS 7-344

The Dow Chefical Company

SYNTHESIS AND CHAPACTERIZATION OF MODEL POLYMERS FOR USE IN THE INVESTIGATION OF CHAR FORMING HEAT SHIELDS

¥

NUMBER 1 STATUS REFORT JANUARY 1965 DISTRIBUTION NASA/WOO (1) H. E. Hennis NASA/Ames (4) B. Legler W. L. Bressler E. L. Pendleton R. L. Carlyle M. E. Pruitt R. D. Eddy L. F. Sonnabend R. F. Helmreich R. Y. Wen ELEMENT CNE - EPCXY RESINS Researchers: R. L. Carlyle Problem No.: 7504 B. Legler R. D. Eddy January Objectives:

Obtain all starting materials including epoxy novolac resin, Nadic methyl anhydride and necessary catalysts. Begin chemical and physical characterization of the monomers and polymers. Fabricate molds and have first lot of billets ready by the month's end.

Summary:

21310 Large lots of both D.E.N. 438 epoxy novolac resin and Nadic methyl anhydride (NMA) were obtained. Sufficient amounts of DMP-30 and benzyl dimethyl amine catalysts were obtained. The greater part of analytical results on the D.E.N. 438 and NMA have been obtained. Molds were fabricated to mold 1-1/2" by 6" sample billets. Phase 1 was completed with the molding of D.E.N. 438/NMA billets in the three ratios 1/0.75, 1/0.85, and 1/0.95 equivalents D.E.N. 438 per equivalent NMA. The billets are ready for shipment. Work is progressing on obtaining physical and chemical analytical results to aid in characterizing the cured polymer. General physic properties were obtained on the Phase 1 billet formulations. Autho

(THRU) CODE

Hard copy (HC) # 1. 17 Microfiche (MF) # 1.50

Discussion:

1. Analytical results were obtained on the monomers as follows:

Analytical Results

	Lot No. 12094 D.E.N. 438	Nadic Methyl Anhydride
Percent Epoxide	24.2	
Gardner Color	1	
Brookfield Viscosity, 125	°F 53,400 cps	
Ostwald tube Viscosity	50°C - 35,980 c	ps 15.6°C - 423 cps
Ostwald Tube Viscosity	65°C - 4,570 c	ps 25°C - 172 cps
Ostwald Tube Viscosity	75°C - 1.630 c	ps 50°C - 32 cps
Percent Lights	0.2	
Molecular Weight	680	182 (178 Theor.)
Water, ppm	155	
Specific Gravity	1.231	
Durran Softening Point	31°C	
Metals		
Iron, ppm	0.3	0.2
Aluminum, ppm	2.0	2.5
Calcium, ppm	11.0	4.0
СНОН		
Carbon, %	73.34	66.54 (Theor. 67.45)
Hydrogen, %	6.30	5.57 (" 5.62)
Oxygen, %	20.34	26.92 (" 26.96)
Nitrogen, %	-	
Hydrolyzable Chloride,%	0.06	-
Refractive Index	1.5962	1.5045

2. Preparation of Billets and Cured Resin Samples

The following mixing and molding procedure was used:

1. Heat resin to 60°C under nitrogen purge.

- 2. Add Nadic methyl anhydride and mix 15 minutes.
- 3. Add Catalyst and mix 30-40 minutes.
- 4. Deagrate with vacuum for 5 minutes.
- 5. Pour into mold preheated to 105°C)
- 6. Cure 4 hours at 105°C) under nitrogen seal

)

7. Cure 15 hours at 200°C

ž

Contract of

- 8. Cool to room temperature
- 9. Remove from molds and store in nitrogen purged triple tight metal cans.

3. Recipes chosen for the first sample series are:

Sample No	14	18	10
D.E.N. 438 parts by wt.	100	100	100
Nadic methyl anhydride parts	*		
by wt.	75	85	95
DMP-30 parts by wt.	1.5	1.5	1.5

4. A partial list of the physical properties measured on these recipes follows:

	<u> 1a </u>	13	<u>1C</u>
Heat distortion temp.,°F	360	403	352
Flexural strength, psi	11,500	13,000	15,280
Compressive yield strength, psi	19,630	20,640	20,510
Tensile Strength, psi	3,410	3,960	4,440
Izod impact-ftlb./_nch of not	ch 0.19	0.22	0.19
Rockwell "M" hardness	117	122	123

- 5. Chemical and physical testing will continue. A more complete list of properties for the three recipes will be forwarded as soon as possible. The anhydride and D.E.N. 438 epoxy resin should be completely characterized by about March 1. Accelerator or catalyst materials will be characterized as time permits.
- Synthesis studies for the para tertiary butyl adduct of D.E.N. 438 are not yet completed. This work will continue through February.
- 7. In response to the request for a resume' of the analytical and physical properties tests that will be used for character zation work on this project, the following list is provided:

Analytical results requested on D.E.N. 438 Viscosity curve Durran softening point Total % OH Phenolic OH Total chloride Inorganic chloride % C, H, O, N. Quantitative on metals Infrared scan

Analytical results requested on Nadic Methyl Anhydride (NMA)Molecular weightFrestacidViscosity curveUnsaturationPurity by hydrolysisSp. Gr. 25°C% C, H,O, NWaterInorganic chloride

Analytical results requested on catalyst DMP-30 Infrared scan BDMA Infrared scan

Analytical results to be requested on catalysts Water Percent lights Primary and secondary amines Phenol content

5

4

Analytical results to be requested on cured resins Reflectance infrared Nujol Mull infrared Infrared on resin cured between salt plates Mold release penetration into sample Method: Remove outer 5 mils Remove 2nd 5 mils Obtain material from interior of sample Mold sample without mold release Compare for fluoride by Nujoi Mull I.R. Mass spec on pyrolyzed sample Chemical analysis (probably too insensitive for low concentrations) Sol-gel ratio Peak exotherm during cure Physical properties or cured resins at room temperature Tensile strength

Compressive yield strength Flexural strength Izod impact Rockwell hardness

8. The following list shows specific techniques or methods used for some of these tests:

Chemical and Physical Methods

Percent Epoxide	HBr titration method or Pyridine HCl reflux method	
Percent Lights Molecular Weight Water	150°C at 10 mm Hg for one hour Ebullioscopic (boiling point in dioxane) Fischer water titration	
Metals		
Iron	Emission spectroscopy	
Aluminum	n	
Calcium	91 U	
CHON	•	
Carbon	Pregl method	
Hydrogen		
Oxygen	Modified Unterzaucher Method	
Nitrogen	Kjeldahl Method	
Hydrolyzable		
Chloride	Caustic-solvent reflux-AgNO ₃ potentiometric	
CUTOLIGE	titration	

Physical Properties

Heat distortion temperature	ASTM D-648-56 (264 psi)
Flexural Strength	ASTM D-790-58T
Compressive Yield Strength	ASTM D-695-54
Tensile Strength	ASTM D-638-60
Izod Impact	ASTM D-256-56
Rockwell "M" Hardness	ASTM D-785-60

ð

Recipe used for Heat Distortion Measurement (Standard)

Mixture	D.E.N. 438 MDA	- 100 parts - 28 parts
Cure	2 Hours 4-1/2 Hrs.	– 93°C – 204°C

MDA = Methylene Dianiline

Heat Distortion Temperature for Lot No. 12094 D.E.N. 438 =

429.8°F

9. As agreed the outer surface of the three samples (six billet, were machined away.

February Objectives:

;

×.

- Preparation of 30 to 40 pound/cu.ft. density foams from D.E.N. 438/Nadic methyl anhydride will be examined to determ feasibility.
- 2. Techniques will be established for conducting sol/gel studie of the cured epoxy systems.

ELEMENT THREE - PHENOLICS

Researchers: L. F. Sonnabend Problem No.: 0299069107 R. Y. Wen

January Objectives:

 Preparation of Bisphenol I, a mixture of 2,2'-2,4'- and 4,4'-isomers. 2. Preparation of 2,2'-isomer of Bisphenol I.

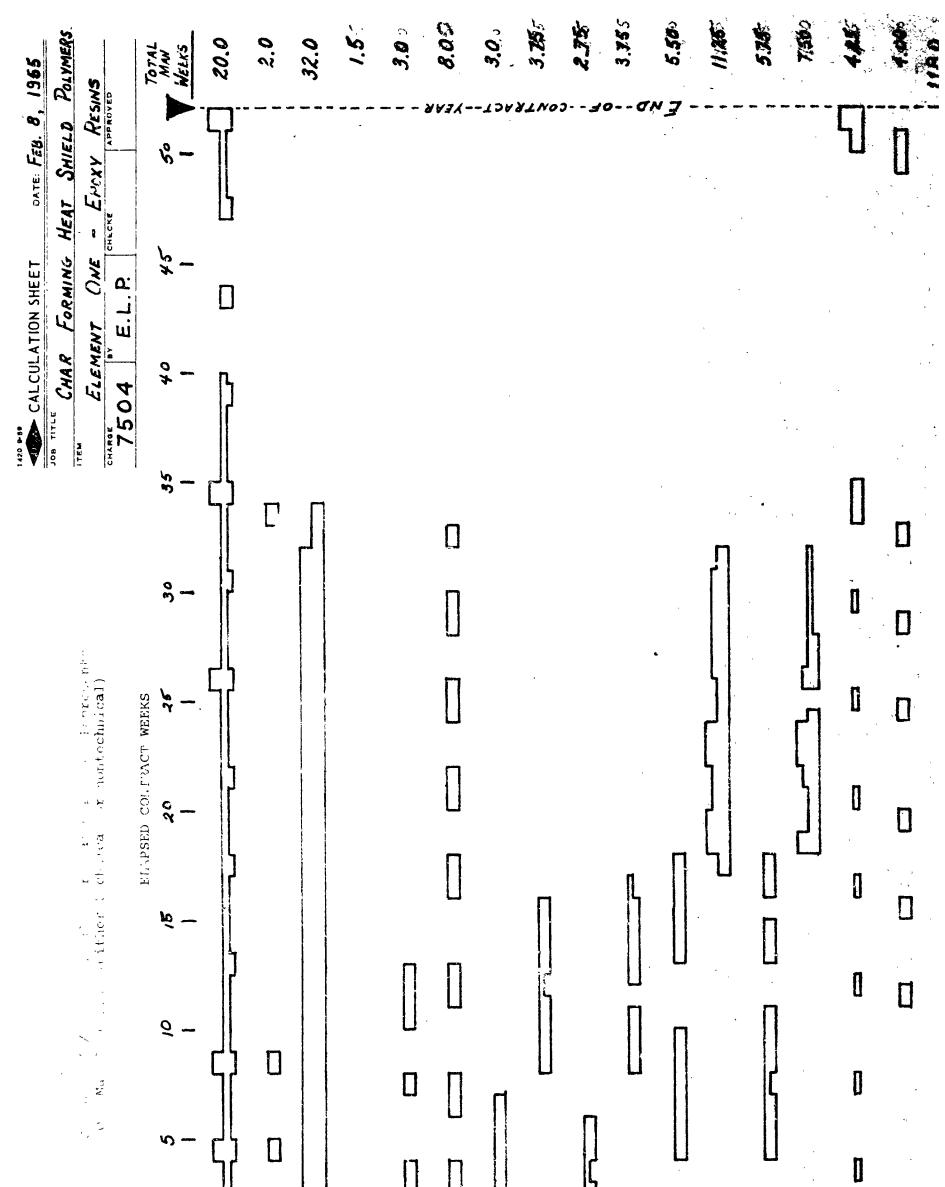
Bisphenol I

Summary:

- 1. Mixture of isomeric Bisphenol I was prepared from excess phenol and diCMDPO. Work has begun in isolation of the three isomers by thin-layer chromatography.
- 2. The starting material, ethyl p-hydroxybenzoate, for the synthesis of the 2,2'-isomer of bisphenol I was prepared.

Discussion:

Oda, et al. CA. <u>60</u>, 11926 c (1964) reported the synthesis of the 4,4'-isomer of Bisphenol I. Attempts will be made to prepare sufficient quantity of this isomer for the synthesis of polymer.


The preparation of finished billets is not scheduled for this phase of the program. As shown in the time schedule contained in the contract proposal, preparation of billets begins after the fourth month, or about the end of April.

February Objectives:

- 1. Synthesis of 4,4'-isomer of Bisphenol I.
- 2. N.M.R. study on isomers isolated by TLC.
- 3. Synthesis of methylol derivatives from the 4,4'-isomer and the mixture of Bisphenol I.

Schedule:

In response to ARTICLE II - REPORTS, page 3 of Contract NAS7-344. which requires that a schedule of man hours versus time be provided, a revised copy of the man time estimated for the Epoxy Element is attached (see following page).

PRELIM. MAKING BILLETS PRELIM. PRELIM. Equipment Design AND BUILDING PRELIM. FINAL FINAL FINAL FINAL PROGRAM MANAGER REPORTS REVIEN NASA RESULTS COMPOSITE MAN ANALYTICAL SUPPORT MATERIALS FROCUREMENT MAN WEEKS CONSULTANT CHEMICAL CHEMICAL PHASICAL DAYSICAL POLYMER MONOMER CHARACTERIZATION

The original man time schedule for the Phenolics Element is correct as it was originally submitted when the cross-hatched areas are <u>not</u> counted (see original proposal.)

Respectfully symbitted,

mer o **S** . en

Elmer L. Pendleton Program Manager

lb attach

イオード・マ