-
View metadata, citation and similar papers at core.ac.uk brought to you by . CORE

provided by NASA Technical Reports Server

e

' ‘a an’!nnr Jmrr —-n-;, mn:..-, % -

: . e B TIRE W »

E- . Eﬂ iuwﬁm’aw i & hb.m“. d“undy g,g.gsé

A THEORETICAL STUDY OF NONLINEAR FUEL SLOSHING
IN AN ELASTIC CIRCULAR TANK?*

by
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Senior Research Engineer
Department of Mechanical Sciences
Southwest Research Insitute

Investigations on breathing vibrations of an elastic shell containing
liquid were made inRefs. 1,2, and 3, In Ref. 3, it was shown that linear
theory and experiment for natural frequencies are in good agreement if
enough terms are used to represent the mode shape.

In Ref. 4, nonlinear phenomena were reported. The amplitude
frequency curve shows characteristics of softening. Aside from the
jump phenomena, more complex response of the shell resembling beats
was encountered. In the mean time, the liquid exhibits large amplitude
oscillations with a mode shape different from linear fuel sloshing but at
about the same low frequencies. For a better understanding of this
phenomena, ipreliminary studies were made to determine the approximate
steady-state response and the stability boundary,; as follows.

A. Formulation of the Problem

A preliminary investigation has been made of the problem of\fuel
sloshing in a tank consisting of an elastic thin cylindrical shell,; | with the

,,a

following basic assumptions:

(1) Linear sltell theory; i.e., displacements of the middle surface
are assur_x‘led small compared with the thickness of the shell,
and straihs are assumed directly proportional to stresses
in the sheg#l.

&

; s
(2) Potential flow th'é)ry; i. e,, the fluid is incompressible and

nonviscous, and the flgw is irrotational.
"
(3) Boundary conditior?‘é'a*rew expressed in terms up to the third
order in liquid ampli’tudg»s',:-" ut include only terms of the
first order in the amplit@de’s of shell displacement.

*Prepared partly under Contract No. NASr-94(03), SwRI Projects No, 02-

1329 and 02-1519, N65~21446
Hard copy (HC)‘// /2 (Accssv-uumazm'f 7"“”

Microfiche (MF) ‘ \% 67?— ép’js’/é"/ /(g‘_‘t"’ |

(NASA CR OR TMX OR AD NUMBER) {CATEGORY)

FACILITY FORM 602



https://core.ac.uk/display/85255578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Assumption (1) is based on experimental observation, of empty shell
vibrations,which indicates very little of the nonlinear softening effect.
Assumption (2) is made for the sake of mathematical tractability.
Assumption (3) is made in order to allow large liquid amplitudes while the
amplitudes of shell vibrations remain relatively small.

Since inclusion of the higher order terms would have greatly
complicated the boundary condition equations, |attention was limited to terms
of only the first three orders in fluid amplitudes. » Although it may be
possible to consider an infinite series in fluid amplitudes, the effort required
to derive corresponding boundary condition equations would be prohibitive,
especially since these equations would still be restricted to the region of
convergence of the infinite series.

B. Methods of Solution

Solutions to the class of problems defined above may be constructed
in the following manner. By assumption (2) the fluid motion‘is derivable
from a velocity potential which satisfies Laplace's equation throughout the
volume occupied by the fluid. Exact solutions to the Laplace equation for
a circular cylinder can be found by the method of separation of variables.
Solutions which approximately satisfy the shell equations and the boundary
condition equations can then be constructed, using the exact solutions to
Laplace's equations obtained above, by the well-known method of Galerkin.
Alternate methods of solution include perturbation techniques, in which each.
unknown is expanded in a power series of some small parameter, and other
approximate methods (Ref. 5). Numerical methods would be limited to
transient solutions, since steady solutions, which are the present objective,
would be obscured by the accumulation of errors after many time steps.
However, a seminumerical method could be used and seems to be promising.

C. A Specific Example

An upright cylindrical tank filled with a liquid to a depth equal to
three-fourths its length has been considered.' The actual vibrations of this
tank-liquid system are extremely complicated, and therefore preclude
exhaustive theoretical treatment. However, the need for qualitative
theoretical results led to drastic simplifications as regards assumed
vibration modes. Thus, even though the free-liquid-surface condition
was expressed as an infinite series, the liquid modes were assumed to
consist of one cos (46)-mode, one cos (80)-mode, and two axisymmetric
modes, one of which is constant. Likewise, the shell was assumed to
vibrate in a single breathing mode. A"/\gx_et of ordinary differential
equation"sjj results from substituting these assumed modes into the general



formulation. leThe steady state amplitudes can then be obtained approxi-
mately by the method of harmonic balance which is again limited to a
few terms.

The stability equations are obtained by considering small perturba-
tions from the steady state solution or by differentiation of the original
equation. The small or differential disturbance was assumed to be in
proportion to eM which leads to an eigenvalue problem for determining \.
The sign of the real parts indicates the stability: if any of the real parts
are positive the oscillation is unstable.

The rank of the matrix can be reduced by the assumption that the
oscillations are slowly varying, an assumption which can first be used to
reduce the order of the differential equations. Thus, for the present
problem, with the assumption of slowly varying amplitudes, a 6 X 6 matrix
was obtained; without it a 16 X 16 matrix was obtained. The problem was
further simplified to a 3 X 3 matrix for checking purposes, This 3 X3
imatrix was found to be unsatisfactory for predicting stability bounds, as
its eigenvalues are stable for all three branches of its response curve.

D. Attempts to Determine the Eigenvalues

The following four computer programs were available for use in
computing the eigenvalues: :

(1) A Jacobi-like method for real variables obtained from the
University of Rochester;

(2) The direct and inverse power method obtained from the
University of Texas;

(3) Determination of roots after expansion into a polynomial,based
on SwRI programs;

(4) A complex code of the Jacobi-like method, also from the
University of Rochester.

Considerable difficulties were encountered with the first two
programs, as the magnitudes and signs of the real parts were often
uncertain, varying significantly with the number of iterations and with the
convergence criteria. The methods were first tested on the simplified
3 X3 matrix. The Jacobi-like method (1) failed using several trial numbers
of iterations and refinements, although this program was very successful in
previous applications., After several trials of both programs (1) and (2),



using different numbers of iterations and different convergence criterions,
the power method (2) finally yielded the correct answer, which was also
obtained by the polynomial method (3).

Subsequent efforts to apply the power method to the 6 X 6 matrix
were again unsuccessful, since the (small) real parts of the first eigenvalue
continued to fluctuate in sign and magnitude with convergence criteria,
and further this method failed to converge for other eigenvalues with these
criteria,.

The polynomial method (3) was next tried on the 6 X 6 matrix, but
because instability was indicated on the stable branch of the response
curve the results are somewhat doubtful. This method was also applied
to the 16 X 16 matrix which somehow failed to converge and might require
adjustment in the initial guesses. Also,there is some doubt,when using the
polynomial method, as to the accuracy of the coefficients of the polynomial
which are obtained from powers of the matrix.

For all the methods, the difficulty could well rest with the matrix
being ill-conditioned, or due to a precision problem in the computations.

The eigenvalue problem can be written as AMx-Bx = 0. In attacking
this problem, an attempt was made to improve the conditioning of matrices
A and B by reducing the largest element of each column of A and B to order
unity. This was done by absorbing different factors into the components of
the eigenvectors. After modification, the Jacobi-like method (4) seemed
to yield reasonable answers. However, for the real code, there is no
checking program when the eigenvalues are complex. Unfortunately,
eigenvalues of the 6 X 6 matrix indicated a very mild instability every-
where. Surprisingly, this instability remained mild even for quite large
amplitudes of shell vibration at resonance. It is doubtful that discarding
the assumption of slowly varying amplitude, as discussed in Section C,
would lead to satisfactory results.

The complex code of the Jacobi-like method was used for one case,
but the result was inaccurate due to large off-diagonal terms in the
eigenvalue matrix. Numerical integration of six amplitude governing
equations was then tried. The results are encouraging as divergence was
computed for a nondimensional force equal to 0,002 at the approximate
breathing natural frequency. Motion practically maintained its shape
(over 40 cycles) for a nondimensional force equal to 0.0005 at a
frequency of 40 cps above or below the natural frequency. The philosophy
of this approach is that the truncation error would grow into significant
values if the motion is unstable. Additional investigation of this approach



will require additional funds not available at present. If additional funds are
made available, numerical integration of the simplified stability equation
could also be performed.

Finally, Routh's criterion (Ref. 6) and Hurwitz's criterion (Ref. 7)
came to the attention of the writer. In these references, there is also a
necessary condition for stability in that the coefficients of the polynomial
governing the eigenvalues must be of the same sign. On the lower stable
branch below resonance, the 3 X3 and the 6 X 6 matrix all satisfy this
condition, while the 16 X 16 matrix, without the assumption of slow varying
amplitude, yields a result of doubtful precision. It seems that comparisons
of the Hurwitz criterion with the method of numerical integration would be
rewarding.



CONCLUSIONS

The nonlinear liquid motion in an elastic circular tank under going
breathing vibrations is a laborious task. This task is amplified due to
certain '"ill-conditions'' of the matrix, the real part of the eigenvalues of
which determines the stability. So far, the computer programs available
have failed to yield reliable eigenvalues. The method of numerical
integration has been employed, but, unfortunately, additional funds will
be required before the stability boundary can be determined.

In the mathematical analysis, the breathing problem is different
in that dynamic terms are larger due to the high breathing frequency
and that balance of the small constant terms led to appreciable time inde-
pendent cos (08) and cos (86) components of the free surface elevation;
that is, they are qualitatively in agreement with experimental observations.
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