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FOREWORD

This report was prepared by the Lockheed Missiles &

Space Company, Sunnyvale, California, and contains the

results of a study performed for the California Institute

of Technology/Jet Propulsion Laboratory under Contract

No. 950877, Mariner Mars 1969 Orbiter Study.
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ABSTRACT

The study of a Mariner Mars 1969 Orbiter, based on the Flox Atlas-Centaur launch

system, was performed by Lockheed Missiles & Space Company under JPL Contract

No. 950877. The objective was to determine the feasibility of performing orbiter and

orbiter/capsule missions to Mars and Venus during the 1969-1971 time period with

emphasis on a 1969 Mars mission. Mission and performance tradeoffs were made and

a conceptual design developed.

A preliminary program plan and preliminary cost estimate was made for a Mars 1969

and a follow-on Mars 1971 mission.

The study results indicate that a Mariner Mars orbiter is feasible in 1969 or 1971

and that this orbiter could readily carry an entry capsule. The 1969 orbitez could be

modified for a 1970 Venus orbiter mission. The concept lends itself to conservative

design approaches and extensive use of Mariner C technology and hardware.

A heat sterilized atmospheric capsule that does not survive landing on the surface of

Mars appears quite feasible.

A heat sterilized biological capsule, which must survive landing on Mars and perform

a biological experiment, does not appear feasible in 1969 when designed to cope with

a surface environment of 11 mb atmospheric pressure, 200 ft/sec winds and rough

terrain.
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Section 1

I NTRODUCTI ON

1.1 STUDY SCOPE AND OBJECTIVES

This report presents the results of work performed by the Lockheed Missiles & Space

Company for the Jet Propulsion Laboratories under JPL Contract No. 950877 during

the period May 4, 1964 to September 4, 1964.

_e _prime objective of this study was the .conceptual design of an!unmanned spacecraft,

launched by a Flox Atlas/Centaur, to perform scientific orbiter and orbiter/capsule

missions to the planet Mars during the launch opportunities of 1969 and 1971._ An

additional objective was the definition of capability for a 1970 mission to_Venus'_
, _:/ J/

System candidates were selected and tradeoffs of missions, systems and subsystems

performed to arrive at a feasible, conservative concept for the 1969 mission. This

concept was then refined and the impact of using the same basic design for missions

to Mars in 1971 and to Venus in 1970 was evaluated.

The basic launch system was a 20 percent Flox Atlas-Centaur and performance capa-

bility effects of varying the Flox to extremes of 30 percent and 0 percent were

determined.

A development plan and cost analysis (exclusive of the launch system) of the selected

concept is presented for Mars missions in 1969 and 1971.

Critical long leadtime items are identified.

1-1
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The contract statement of work is contained in Ref. 1, LMSC document No.

A304797-1, "Proposal for Mariner Mars Orbiter 1969-1971," Volume 1, dated

21 February 1964.

1.2 STUDY GROUND RULES AND INPUT DATA

The ground rules and input data for the study are shown in Refs. 1 and 2.

ground rules include.

These

Orbiter and orbiter/capsule missions to Mars in 1969 and 1971.

Orbiter mission to Venus in 1970.

The nominal Earth-escape capability is that of the 20 percent Flox Atlas--

Cantaur with variations of Flox to 30 percent and 0 percent.

• Spacecraft designed to limits of Surveyer launch shroud and adapted to

Centaur stage.

• Design to quasi steady-state accelerations at the launch separation plane

of 6 g axial and 0.4 g lateral.

• Two identical spacecraft will be launched within a 30-day launch window

for each mission.

• Planetary environment data as provided by JPL, including JPL Martian

model atmospheres G through K and 200 [t/sec gusts.

• 210 ft. dish DSIF (Deep Space Instrumentation Facility) network available,

all three stations.

• The DSIF is available during launch. The system will be available 24 hours

a day during maneuver and transfer periods and for the last week of planet

approach. The DSIF is available 24 hours a day for thirty days after planet

contact and for 8 hours each day thereafter until the mission is completed.

• The probability of landing a single viable Earth organism on Mars must be

less than one in 10,000 and on Venus must be less than one in 100.

• Orbiters are designed for six months of operation after planet contact.

• The RMS value of a midcourse maneuver to correct for injection errors at

20 hours after injection is 10 meters/second, one sigma.

• Components and subystems developed for Mariner C will be utilized where

feasible.
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I.3 MISSION PRIME OBJECTIVES - MARS

The mission prime objectives, in order of priority, of a Mars mission were provided

by JPL in Ref. 2 as follows:

• "Demonstrate orbiting capability and tracking for an extended period

including the use bf the orbiter in determining planet size and shape.

• Demonstrate capability of successful landing and survival for several hours.

• Successful performance of a television mission on the orbiter."

A "preferred list" of scientific instruments was provided by JPL in Ref. 2 for use in

the selection of instruments for a mission.

1.4 MISSION CONCEPTS

Mission concepts included in the study were:

Mars 1969

• An __L....... ,^_A
UX UI L_l _LAUIAU e

• An orbiter carrying an atmospheric (non-surviving) capsule released

before orbit.

• An orbiter carrying a bio (surviving) capsule released before orbit.

Mars 1971

• An orbiter alone.

• An orbiter carrying a bio-capsule released before orbit.

• An orbiter carrying a bio-capsule released from orbit.

Venus 1970

• An orbiter alone

All capsules perform atmospheric experiments during entry.
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Section 2

SUMMARY AND CONC LUSIONS

2.1 PRINCIPAL RESULTS

The Mariner Mars Orbiter study results presented in this report show that a single

basic spacecraft design, launched by the Flox Atlas-Centaur, can meet the Mars

1969 and 1971 orbiter mission objectives. This spacecraft can have provisions for

carrying an entry capsule if desired. The escape weight capability of the Atlas Cen-

taur launch system is quite marginal for the Mars 1969 mission without the addition

of Fluorine to the Atlas oxidizer (Flox). Fluorine would not be necessary for a Mars

1971 mission, unless a sizable entry capsule is desired on the mission.

An entry capsule, designed to make measurements in the Martian atmosphere but not

survive landing, could be carried by the 1969 or 1971 Mars orbiters. Attempts to de-

sign a capsule to survive entry and perform a biological experiment on the surface of

Mars for the 1969 mission were not successful within the constraints of launch system

capability, heat sterilization requirements, and the severe atmosphere, wind and

terrain specified for the study. A biological capsule may be feasible for the 1971

Mars mission.

The basic concept is that of an orbiter injected into a 1,800 x 36,000 km orbit about

Mars. This orbiter has the provisions and capability, at a weight penalty of about

10 lb, to carry a 61 in dia ballistic entry capsule that is separated from the orbiter

about two days prior to planet encounter. A unique feature of this concept is the

ability to perform the orbit injection function from the cruise condition without an

attitude maneuver.

The 1969 Mars orbiter mission can be achieved with a program go-ahead in FY 1966.

No new breakthroughs are required and Mariner C technology and hardware can be

used extensively.
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A brief description of the principal results in major areas of study follows.

2.1.1 Payload Capability

The various combinations of percent Flox in the Atlas and launch year provide pay-

loads that vary from inadequate to generous. The net scientific payload in orbit

about Mars in 1969 or in an entry capsule is shown, by percent Flox, in Table 2-1.

The 1971 Mars mission opportunity provides additional weights in orbit for science,

science support, redundancy and contingency of 280, 355, and 565 lb for 0, 20, and

30 percent Flox respectively.

Table 2-1

PAYLOAD CAPABILITY - 1969 MARS MISSION

2.1.2

Orbiter Only

Scientific Payload

Redundancy and Contingency

Orbiter Plus Atmospheric Capsule

Scientific Payload - Orbiter

Scientific Payload - Capsule

Redundancy and Contingency

Weight in lb for
Percent Flox in Atlas

0% 20%

18 132

38 104

18 88

18 18

82 28

Design Concepts

30%

132

216

88

18

140

The orbiter vehicle is common to all missions and acts as a communications relay for

the atmospheric capsule. The selected design concept consists of a spacecraft com-

prising four major assemblies:

• The Surveyer launch shroud.

• The support structure which adapts the spacecraft to the Centaur.
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• The orbiter which consists of the propulsion module and equipment module,

and provisions for carrying a capsule.

• The entry capsule which is sealed in a sterilization shroud.

2.1.3 Guidance and Control

The vehicle attitude is normally space-oriented with the roll axis and solar panels

pointed toward the Sun. Attitude information is obtained from a Sun sensor and a

Canopus tracker and processed by the on-board Computer and Controller. Attitude

control is provided by the nitrogen gas jets. An initial reference is used for all maneu-

vers. DSIF tracking data are provided for all trajectory corrections, through the on-

board computer. To provide a 4a probability that the orbiter does not approach closer

than 300 km to the surface of Mars, the final orbit periapsis nominal aim point is

not less than 1500 km.

Vehicle cameras and antennas are directed by the on-board Computer and Controller.

2.1.4 Experiments

Scientific payloads were chosen to accomplish the primary mission objectives and to

take full advantages of mission payload capability.

The experiments were designed to make measurements during interplanetary flight,

during orbit about the planet and while entering the planet atmosphere.

Both high resolution (15 m) and low resolution (150m) TV data would be obtained to

aid in defining the nature of the surface of Mars.

2.1.5 Electronics System

The selected communication system is basically that of the Mariner C and is designed

to operate with the planned three station 210 ft dish DSIF network. The orbiter-Earth
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link uses a coherent PSK modulation system in connection with an omni-directional

antenna and a 4-ft parabolic antenna. The system provides for transmission rates

of up to 300 bits per second for communication to Earth from Mars orbit.

The orbiter-atmospheric capsule entry link employs a crossed dipole antenna on the

orbiter and a whip antenna on the capsule. Operating frequency is 250 Mc with

PCM-FM modulation. Data rate is 50 bits per second at a maximum range of

10,000 km.

Primary electrical power is supplied by the Mariner C solar panels at a minimum of

310 watts. Secondary power for the orbiter is provided by batteries. Primary bat-

teries are used for power on the capsule.

2.1.6 Propulsion System

State-of-the-art propulsion systems technology was found to satisfy the requirements

for trajectory corrections, orbit injection and attitude control. The main propulsion

system is used both for midcourse guidance corrections and for orbit injection and re-

quires development of a new engine. The engine uses N204 - MMH propellants and

develops a thrust of 750 lb delivering an I of 302 sec. Guidance and spinup of the
sp

capsule are performed by small, solid-propellant motors. Orbiter attitude control is

provided by nitrogen gas jets.

2.1.7 Thermal Control

The thermodynamic analyses were limited to parametric studies and general energy

balances to determine steady state temperature levels of the spacecraft.

Most of the temperature control requirements will be met by means such as specific

surface finishes, insulation, isolators, heat sinks and selective arrangement of equip-

ment. If limited active temperature control becomes necessary this could probably

be provided by controllable shutters and by electric heaters.
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2.1.8 Entry Systems

The entry systems proposed for the Mariner Mars capsule include a high drag entry

body similar to the Apollo Command module configurations, protected by an ablative

or a heat sink heat shield. Parachutes would be used for the final deceleration system.

2.1.9 Spacecraft Sterilization

Sterilization ground rules require that the probability of contamination of Mars must

not exceed one in ten thousand. This is met by:

• Guidance accuracy with a 4a probability of entry into the Martian atmosphere

in less than 50 years after encounter.

• Clean room techniques to keep contamination of the vehicle to a minimum.

• Final heat sterilization of the capsule in a sterilization shroud.

• Retention of the capsule in the sealed sterilization shroud until after separa-

tion from the orbiter.

• Separation of the shroud prior to capsule entry guidance maneuver.

2. i. I0 Development Program Plan

The development program plan was prepared in order to outline program requirements

and to provide sufficient data to support a rough order of magnitude program cost

estimate. The plan describes program requirements for spacecraft development,

integrated testing, reliability, manufacturing, facilities and ground support, launch

operations and data processing.

A program go-ahead in September 1965 for Phase IT design and hardware would meet

the schedule requirements for a 1969 Mars mission.
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2.1.11 Program Cost

Cost estimates by major areas are presented for a 1969 Mars mission and for a 1971

follow-on Mars mission. A bare minimum program is estimated to cost a total of

110.7 million dollars for a 1969 mission (orbiter only) and a 1971 mission (orbiter

plus capsule).

Excluded from the estimates is the cost associated with:

• Launch vehicles

• NASA launch center operations

• DSIF or other tracking units and data acquisition operations

• Launch pad systems operations

2.2 CONCLUSIONS

The principal conclusions that can be drawn from the results of this study are:

• Orbiter and atmospheric capsule missions to Mars are feasible in the 1969

and 1971 launch opportunities using a Flox Atlas-Centaur launch system.

• Biological capsules, designed within the framework and ground rules of the

study, cannot be readily provided for the 1969 mission.

• Entry into orbit without a spacecraft attitude maneuver prior to engine burn

can be accomplished in both 1969 and 1971 missions.

• A single basic mod_ar design can be developed which can accomplish both

Mars and Venus missions and which can carry a capsule if desired.

• Current technology is adequate, and extensive use of Mariner C hardware

contributes to the adequacy of a conservative design.

• A program start in FY 1966 is required to accomplish a 1969 Mars mission.
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Section 3

MISSION AND PERFORMANCE ANALYSIS

The primary objective of the mission and performance analysis effort was the definition

of mission capabilities for a Mars orbiter launched by a Flox Atlas-Centaur. Major

emphasis was placed on the 1969 Mars orbiter, with and without an entry capsule, with

secondary attention to the 1971 Mars and 1970 Venus mission opportunities. Thirty-day

launch windows were selected to yield the maximum burnout weight in orbit about the

target plant.

The analyses conducted in the area of mission and performance analysis were divided

into three broad categories:

$ Interplanetary transfer

• Orbiter approach_ injection into orbit, and operation in orbit

• Capsule entry performance

The division is somewhat arbitrary in that the mode of operation, trajectory geometry,

performance capability, and vehicle design requirements are intimately related and

interdependent. The techniques for calculation and analysis determine the definition

of each category. Also, the principal criteria and predominant parameters can be

more easily demonstrated.

The objectives of this portion of the Mariner orbiter study were to:

a. Establish orbiter performance requirements and capability.

b. Determine weight capability in Mars and Venus orbits.

c. Define thirty-day launch windows for the 1969 and 1971 Mars and the 1970

Venus missions.

d. Establish communication and guidance geometry.

e. Define nominal design trajectories and orbits.

f. Establish orbiter and capsule vehicle design requirements.
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The results of these analysis are presented in this section including data from previou._

LMSC studies such as the Voyager (Ref. 3) where applicable. The main emphasis

was placed upon the Mars orbiter requirements and concept. The analysis of the entry

system was lhnited to applying and refining previous study results and establishing

de,tail trajectories for heat shield, parachute, and structural design. However, the

(h,velol,ment of the ,,ntry system concepts, techniques, and design requirements is

l_rescnted in sufficic,nt detail to demonstrate the entry capsule feasibility, to indicate

}n'incilm] limitations, and to illustrate the implications upon the orbiter vehicle concept

and design.

Th(_ cxamhmtion of individual trajectory maneuvers from the viewpoint of the complete

mission profile led to one important concept vitally affecting the orbiter design arrange-

mont. This concept was for performing the orbit injection maneuver while maintaining

tim interplanetary cruise attitude with fixed thrust nozzle angle. The consequence was

a lighter weight, more compact design yielding increased reliability by elimination of

one orientation maneuver. The development of this mode is traced in detail in a later

sccti_)n.

3. 1 BASIC GROUND RULES AND INPUT DATA

The basic ground rules and input data for mission analysis and launch window selection

included thc following:

$ The Earth-escape capability of the Flox Atlas-Centaur launch system as shown

in Fig. 3-1. 20 percent Flox in the Atlas is the nominal system.

• The declination of the departure asymptote from Earth was limited to angles

between -28 and +33 deg.

• Mass discarded or consumed enroute to Mars includes: support structure 50

lb.;midcourse propellant 30 lb.; attitudecontrol gas 4 lb.

• Interplmmtary trajectory data was obtained from Refs. 4, 5, and 6.

• Model atmospheres for Mars as specified by JPL and shown in Table 3-1

and Fig. 3-2 (Ref. 2) with surface gusts of 200 ft/sec.

• The orbiter primary propulsion system I is 302 sec.
sp
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Fig. 3-1 Launch System Earth Escape Payload
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Fig. 3-2 Model Atmospheres for Mars
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T_ble 3-1

MARS MODEL ATMOSPHERES

(Interim low Pressure Models With 13.3 gm/cm 2 Argon)

Property Symbol Dimensions

Surface pressure

Stratosphere tempera-
ture

Surface temperature

P
O

Ws

To

mb

Ib/ft2

oK

°R

°K

oR

Acceleration of gravity
at surface

Composition (volume)

CO 2
A

N 2

Molecular weight

Specific heat ratio

Adiabatic temp. lapse
rate

Tropopause altitude

Inverse scale height
(stratosphere)

Surface density

Artificial surface densit_

Density at tropopause

g

M

T

r

h T

D o

!

Po

Pt

cm/sec 2

ft/sec 2

%

mol- 1

° K/km
°R/ft x 103

km
ft

km -1

ft -1 x 105

(gm/cm3)105

(sl/ft 3) 105

(gm/cm3)105

(sl/ft3)105

(gm/cm3)lO 5

(sl/ft3)lO5

G H I

11 11 15

23.0 23.0 31.3

130 230 180

234 414 324

260 260 230

468 468 414

375 375 375
12.3 12.3 12.3

64. 8

35.2
0

42.6

1.37

5.18

2.84

25.09
82300

. 1478
4. 506

2.17
4.21

13.60
26.40

0. 332
0. 643

Reproduced from Ref. 2

64.8

35.2
0

42.6

1.37

5.18

2.84

5.79
19000

.0835
2. 546

2.17

4.21

2.52
4.89

1.55
3.02

43.3

32.2
24.5

38.8

1.39

4.91

2.69

10.19
33400

.0972
2.963

3.04
5.90

4.35
8.44

1.62
3.14

J K

30 30

62.6 62.6

130 230
234 414

210 230
378 414

375 375
12.3 12.3

10.5

13.0
76.5

31.3

1.40

4.05

2.22

19.75
64800

.1085

3. 308

5.37
10.42

14.20
27.55

1.66
3.23

10.5

13.0
76.3

31.3

1.40

0

0

.0613
1.869

4.91
9.54

4.91
9.54
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3.2 INTERPLANETARY MISSION CONSIDERATIONS

3.2. I Typical Mission Profile

In order to place the missions in proper perspective, typical transfer orbit character-

istics are illustrated in Fig. 3-3 for the 1969 Mars opportunity. Launch occurs on

Jmmary 29, 1969 with arrival at Mars on October 26, 1969. The relative position of

the spacecraft with Mars and Earth is shown at 40 day intervals. The Type II trajectory

was selected to provide maximum weight in orbit at Mars within the launch constraints

at the Florida launch site. A transfer angle of about 206 deg results with the space-

craft l irst passing inside Earth's orbit and then slightly outside the orbit of Mars. Con-

junction of Earth and Sun is seen to occur after about 120 days although the spacecraft

is out of the plane of the ecliptic. Note that the look angle geometry between Earth-

spacecraft-Sun remains essentially constant near encounter and varies only moderately

during the six months orbiting lifetime. The variation of Earth's position at launch, and

Mars and Earth positions at encounter over the thirty-day launch window indicate that

the relative geometry varies only slightly. The 1971 Mars and 1970 Venus missions

exhibit similar characteristics as illustrated in Figs. 3-4 and 3-5.

These exact trajectories were computed with the Interplanetary Trajectory Program

(Reference 7) including the gravitational influence of Earth and. Mars (or Venus)

perturbations due to the other planets. Tables 3-2, 3-3 and 3-4 list longitude, latitude,

and distances of the Sun, Earth, and Mars (or Venus) as viewed from the spacecraft

from Earth escape injection to Mars (or Venus) periapsis passage.

3.2.2 Guidance and Communication Geometry

The communication and guidance geometry for the three missions is illustrated in

Figs. 3-6 and 3-7, in terms of the spacecraft look angles between Earth and Sun, Sun

and Canopus, and the relative inclination of the planes containing these angles. This

geometry is depicted by the sketch in Fig. 3-6. Large variations occur in these angles
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Fig. 3-3 Typical Transfer Profile- Mars 1969
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Fig. 3-4 Typical Transfer Profile- Mars 1971
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Fig. 3-5 Typical Transfer Profile- Venus 1970
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Fig. 3-7 Midcourse Communications and Guidance Geometry - Venus 1970
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throughout the transfer period as implied by Figs. 3-3 to 3-5. In the 1969 Mars

transfer, the Earth-spacecraft-Sun angle (q_l) exhibits a 100 deg change, whereas

the Sun-spacecraft-Canopus angle (_2) changes about 30 deg. The relative roll orien-

tation (_3) of Earth and Canopus about the spacecraft-Sun axis changes rapidly near

Earth and rapidly near conjunction, but remains nearly constant for 100 days before

encounter. (The negative portion has been plotted positively for convenience. ) These

geometrical characteristics establish the antenna and star tracker gimballing require-

ments (See Section 5.3). Communication distance (_) increases gradually until con-

junction since the transfer orbit remains near Earth's orbit. A more rapid increase

after conjunction results in a distance near 170 million km at encounter. The communi-

cation distance becomes about 260 million km after 3 mo in orbit about Mars, increasing

to 350 million km after 6 mo in orbit (see Fig. 3-3). Even after 6 mo in orbit, good

communication characteristics can be expected since the Sun is displaced about 20 deg

from the spacecraft-Earth direction.

Smaller variations in the communication and guidance angles are encountered during

the 1971 Mars mission as seen in Fig. 3-6. The 1970 Venus mission (Fig. 3-7) shows

the comparable characteristics, except that the direction of change is inwrted because

of transfer to a smaller orbit than Earth's.

3.2.3 Interplanetary Transfer Characteristics

The variations of the principal transfer characteristics throughout the 30-day launch

window are presented in Figs. 3-8, 3-9 and 3-10, as obtained from Refs. 4 and 5.

The balance between departure excess energy, C 3 and arrival excess energy, C 4 is of

primary importance in obtaining the maximum spacecraft weight in orbit about the

target planet.

The launch windows shown for Mars 1969 and Venus 1970 were selected to provide

maximum weight in orbit. The opening day of the launch window shown for Mars 1971

was determined by the requirement to restrict the declination of the geocentric asymptote

to limits of -28 deg and + 33 deg.
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NOTE :
LAUNCH WINDOW CHOSEN FOR MAXIMUM WEIGHT IN ORBIT

C3 = DEPARTURE HYPERBOLIC-EXCESS SPEED SQUARED
VHP = ARRIVAL HYPERBOLIC-EXCESS SPEED

TERMS AND DATA ARE FROM REF 5 , JPL - M 33-100
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3.2.4 Performance Capability and Launch Window Selection

The escape weight at Earth and the burnout weight in orbit about Mars and Venus are

shown in Figs. 3-11, 3-12 and 3-13 for the launch windows selected.

The escape weights for the nominal 20 percent Flox Atlas-Centaur are shown to be

around 2000 lb (1800 to 2145 lb) for all missions considered. Examination of the

0 percent and 30 percent Flox curves shows that for each 1 percent addition of Fluorine

to the Atlas oxidizer, the escape weight is increased by 21 to 22 lb.

Approximately 85 lb of mass is dropped or consumed between the time of departure at

Earth and arrival at the target planet. This mass consists of the spacecraft support

structure (50 lb) midcourse guidance propellant (30 lb) and attitude control gas (4 lb).

The orbit injection propulsion system was assumed to have an Isp of 302 sec.

A nominal orbit of 1,800 km periapsis and 36,000 km apoapsis was assumed for Mars.

This orbit decreased the injection energy requirement to a near minimum while insuring

a 50 yr orbital lifetime within the tolerance of the guidance system. The burnout weight

in Mars orbit is shown by the lower curves of Figs. 3-11 and 3-12, assuming no injection

losses. Allowance for gravity and trajectory shaping losses for the constant thrust

attitude during injection is obtained from Fig. 3-20 as discussed later. On-loading of

orbit injection propellant throughout the launch window is assumed for the 1969 Mars

mission.

The nominal burnout weight in orbit for the 1969 Mars mission with no capsule is then

960 lb. This represents about 50 percent of the arrival weight. For each pound of

capsule separated before start of orbit inject, the orbital weight is decreased about

0.5 lb. The burnout weight varies from the nominal 960 lb for 20 percent Flox to 730

lb for no Flox and 1180 lb for 30 percent Flox.
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NOTE :

LAUNCH WINDOW CHOSEN FOR MAXIMUM WEIGHT IN 1800 × 36000 KM ORBIT
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Fig. 3-11 Mars 1969 Performance Capability
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NOTE:
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Fig. 3-13 Venus 1970 Performance Capability
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The corresponding weights in orbit for the 1971 Mars mission are: nominal 1315 lb,

no Flox 1010 lb and 30 percent Flox 1465 lb. The propellant loading can remain constant

throughout the launch window.

A nominal orbit of 1,000 km by 100,000 km was chosen for Venus performance calcula-

tions. The burnout weights in this orbit for the 1970 mission, shown on Fig. 3-13 and

assuming impulsive burn, are: nominal 1050 lb, no Flox 800 lb, and 30 percent Flox

1175 lb.

The orbital weights for the three missions is summarized in Table 3-5.

3.3 ORBITAL OPERATION CRITERIA

3.3.1 Orbit Selection

The nominal design orbit was selected to minimize the injection energy requirements,

yield a minimum 50-yr lifetime, provide the geometry necessary for the primary

experiments and to simplify communications, guidance and operational requirements.

The fraction of the approach weight which can be placed in orbit is influenced profoundly

by the orbit geometry and significantly by the mission period. This is illustrated in

Fig. 3-14 and 3-15 in terms of the planet approach energy C4 for several combinations

of the orbit periapsis and apoapsis altitudes. An effective I of 302 sec for the
sp

propulsion system was used. The 1969 Mars mission results in the most severe orbit

inject energy requirement. Between 0.50 to 0.56 of the approach weight can be placed

in the nominal 1800 × 36,000 km orbit in 1969, whereas in 1971 at Mars a weight

fraction of 0.67 - 0.68 can be achieved. For Venus, the corresponding capability for

a nominal 1000 × 100,000 km orbit is 0.55 to 0.60 during the 1970 mission.

The 1800 by 36,000 km orbit was selected as the nominal geometry early in the study

based on the estimated approach guidance tolerances, orbit lifetime requirements, and

minimizing injection energy requirements. The large eccentricity and low periapsis

3-23

LOCKHEED MISSILES & SPACE COMPANY



M-29-64-I

Table 3-5

SUMMARY OF BURNOUT WEIGHT IN ORBIT

Mission *Burnout Weight in Orbit (lb)

Mars - 1969

1,800 × 36,000 km orbit

Mars - 1971

1,800 x 36,000 km orbit

Venus - 1970

1,000 × 100,000 km orbit

0%

730

i010

800

Flox

'20%

(Nominal)

960

1315

1050

30%

1080

1465

1175

*No thrust angle or gravity losses included

Table 3-6

MARS ORBITAL LIFETIME

m/CDA = 6.25 km/m 2

Altitude

km

200

300

400

500

1,800

2,300

1,800 x 18,000

Lifetime - Years

K Atmos

0.5 x 10-3

0.22

202.0

2.8 x 1036

5.1 x 1044

H Atmos

i.6 x 10-4

0.53

2240

8.93 x 106

5102 × 1043

7.02 x 1067

K Atmos +

Chamberlain

m

m

50

50
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Fig. 3-14 Weight in Orbit Capability, Isp = 302 SEC - Mars
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altitude reduce the injection energy requirements as is apparent from Fig. 3-14. More

detailed analysis of the guidance capability (Section 5.1) indicate that a 1500 km periapsis

altitude is feasible. This would yield about a 15 lb increase in the weight in orbit capa-

bility at Mars. The nominal capability is within 6 percent of the maximum limit defined

by the escape condition for the 1800 km periapsis. Decreasing eccentricity or apoapsis

is quite costly as indicated by the 1800 x 18,000 km curve for which 6 percent decrease

in weight fraction occurs. Providing a circular orbit is so expensive that the mission

is essentially wiped out. The 1970 Venus mission also yields greater weight fractions

for similarly large eccentricity and low periapsis orbits, as shown in Fig. 3-15.

3.3.2 Lifetime Characteristics

For this study, the minimum orbit altitude was determined upon the basis of a circular

orbit and exponential extensions of the specified Mars atmospheric models (JPL G-K).

These assumptions would yield sufficiently conservative lifetimes to account for varia-

tions in the orbit due to approach guidance and orbit inject maneuver tolerances. The

JPL model K atmosphere (yielding the highest densities at high altitudes) indicated

that a 300 km orbit altitude is sufficient to provide a 50-yr lifetime for an equivalent

drag area of 50 sq m.

The effects of orbit geometry and atmospheric model on orbit lifetime are shown in

Table 3-6. The significant difference between these results and the minimum orbits

suggested by JPL for the Voyager study arises from JPL's fairing the density profile

through a singular density point at 1500 km altitude defined by Chamberlain (Ref. 8).

In view of the extremely low densities from the surface to 250 km of the model atmos-

pheres specified for the study, use of the Chamberlain data appears unnecessarily

conservative. Better determination of the high altitude density profile for purposes

of orbit lifetime control appears to be a pertinent experiment for presently programmed

flyby missions.

Very significant increase of lifetime results from the higher eccentricity of the nominal

design orbit as shown by Table 3-6 for the nominal design orbit of 1800 × 36,000 km.
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3.3.3 Experimental Considerations

A nominal Mars orbit period of 25 hr was considered desirable to provide overlapping

TV ground coverage and to allow communication with the lander capsule near the end

of the firstorbit. The periapsis altitudeand desired period then determine the retro

energy requirements as shown in Fig. 3-16 for the range of approach energy levels

encountered during the 1969 and 1971 Mars missions. For fixed injection AV, the

period varies radically with periapsis altitudeas indicated by the cross hatched area

about the nominal point. For example, a +800 km change in periapsis altitudecauses

a period variation of about +21 hr and - 12 hr, respectively, for the end of the 1969

Mars window. The variation is limited to about + 10 and - 8 hr for the 1971 Mars

missions. Approach periapsis altitudetolerances on the order of + 800 km will result

from Earth based tracking and guidance.

Acceptance of these wide orbit period variations will have important implications upon

the biological capsule communications system (see Section 5.3) and the capsule design

requirements (Section 4). The 50 year lifetime contour on Fig. 3-16 shows that the

lifetime constraints will not be exceeded for the latest estimates of the density profile.

One method of reducing the period variations (at the cost of increased AV) is to set

the maximum period and injection impulse for the maximum periapsis altitude tolerance.

This is illustrated in Fig. 3-16 for C4 of 18 km2/sec 2 by the lower curve where the

nominal 18 hour period varies between about 11 and 30 hr for the example + 800 km

altitude dispersion. The period variation is always less than 30 hr which allows the

orbit to "catch up" to the landed capsule within 1-1/2 days after impact. This mode

requires balancing out lander impact location tolerance and the orbit inclination, period

and periapsis position.

The second method is to provide on-board guidance to control the retro velocity cutoff,

depending upon the measured altitude. The added complexity for providing additional

equipment or utilizing appropriate scientific instrumentation would tend to reduce over-

all reliability.
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A third method might be to adjust the orbit period after injection. For the nominal

orbit, about 0.3 m/sec, per km initial periapsis error would be required. Since the

orbit period is highly sensitive to periapsis altitude, post facto measurement of the

approach periapsis by period determination appears practical. The orbit period adjust-

ment is relatively expensive, namely about 13 m/sec/hr of period change. For example,

with a 500-m periapsis error, about 40 lb of propellant is required to adjust the period

to a nominal 25 hr.

The orientation of the nominal design orbit was selected to satisfy the second major

objective of the mission (i. e., to measure Mars diameter), to maintain solar cell

power, and to keep Canopus reference in view. An orientation was chosen at Mars

encounter to provide the greatest probability of planet occultation for diameter measure-

ments. The highly eccentric orbit allows continuous viewing of both the Sun and Canopus.

The periapsis is placed on the sunlit side and yields a relatively high inclination to the

Mars equator. The encounter inclination of the orbit was selected at 24.6 deg, and

13.2 deg and 115.3 deg to the ecliptic for 1969 Mars, 1971 Mars, and 1970 Venus,

respectively. Initially, the Earth view of the orbit is edge on. This view rotates to

become more normal to the orbit plane during the orbital operational lifetime. After

six months, the orbit is inclined about 135 deg to the Earth'Mars line-of-sight.

3.3.4 Orbit Variations

Only minor variations in orbit parameters will occur during the six month orbital

mission duration. Perturbations to the orbit from Mars oblateness were estimated

from currently accepted values based on observations of the moons, Phobos and Deimos.

The secular perturbations due to oblateness are given by:

R 2
d_2/do = -J-_ cos i

P

(regression of nodes)

 2(2 )dw/d0 = J_-_ - _ sin i
(rotation of apsides)
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The magnitude of these effects was evaluated through the factor J (R2/p 2) (d0/dt)

presented in Fig. 3-17 as a function of the semi-major axis of the orbit. The variation

in this factor is slight over a range of periapsis altitude from 500 to 2000 km. For a

25 hr orbit period with an 1800 km periapsis altitude, the perturbations will be on the

order of 0.1 deg/day. Such a variation in the regression of nodes will not affect the

measurements of planet diameter during the occultation period. Over a period of 6 mo,

the shift may be sufficient to improve the presently accepted value of J.

3.4 ORBITER INJECTION MANEUVER

The weight in orbit capability presented in Figs. 3-11 and 3-12 was determined for

no injection losses. In this Section losses are determined for an injection burn per-

formed in the cruise attitude, that is, with the roll axis oriented toward the sun and the

star tracker locked on Canopus. Incorporating this fixed attitude concept into the vehicle

design accrues several distinct advantages:

• One attitude maneuver is eliminated at a critical time with a consequent increase

in reliability.

• Solar cell power is maintained, permitting use of all electronics during orbit

inject without additional battery weight.

• The side-mounted engine design yields a more compact and lighter vehicle and

allows a larger maximum capsule diameter.

• The high gain antenna remains pointed toward Earth allowing data transmission

during orbit inject.

Propulsion losses, attitude requirements and performance capability were evaluated

for three maneuver modes; gravity turn, constant inertial attitude and optimum pro-

grammed attitude. The results demonstrated that for any given launch day the constant

attitude maneuver is considerably more efficient than the gravity turn and negligible

gain is achieved with optimal attitude programming. Furthermore, only moderate

propulsion penalty accrues from using a fixed attitude with respect to the Sun, through-

out the launch window. The considerations leading to the recommendation of orbit

injection from the cruise attitude are developed in the following paragraphs.
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3.4.1 Orbiter Approach Geometry

The orbiter approach geometry during the Mars 1969 launch window is illustrated in

Fig. 3-18 for a periapsis altitude of 1800 km. The direction of the Sun and Earth in

the plane of the approach asymptote are depicted for the nominal mission of January 29,

1969 along with the position of the approach hyperbola periapsis for an approach hyper-

bolic excess velocity, V H = 4 km/sec ( C4 = 16 km2/sec 2 ). The variation and

direction of change throughout the thirty-day launch window are shown by the shaded

segments and arrows. The corresponding positions and variations of the orbit inject

maneuver ignition and burnout are illustrated in a similar manner for the side-mounted

engine configuration with a nozzle angle of 89 deg to the spacecraft-Sun line operating

in the cruise attitude.

Note that the path of the hyperbola is nearly normal to the direction of the Sun in the

region of thrusting and that the trajectory during thrusting deviates only slightly from

the vacuum hyperbola. Thus, for a gravity turn, the thrust axis is essentially per-

pendicular to the Sun direction. This immediately suggested maintaining cruise attitude

during thrusting.

3.4.2 Performance Requirements

For this analysis, the inertial thrust attitude angle, _ , was defined with respect to

the local horizontal at burnout (see Fig. 3-18) at the Mars orbit periapsis. Propellant

requirements and trajectory characteristics were generated with a 5-D point mass

trajectory program incorporating two degrees of attitude programming. The computa-

tion was initiated at the burnout point (the 1800 × 36, 000 km orbit periapsis) and pro-

ceeded "backwards" with increasing mass to a specified hyperbolic energy. Thrust to

weight ratios (TPC¢) between 0.2 and 1.0 at burnout and attitude angles, _, between

+ 10 deg and -25 deg were evaluated for a propulsion system effective I of 310 sec.
sp

Change of Isp to 302 see will have only slight effect upon these data.
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The mass ratio requirements (weight at start of burn/weight at burnout) are seen in

Fig. 3-19 to be a function primarily of the approach energy level with lesser effects

from final T/_ and attitude angle. Mass ratio varies between about 1.75 and 2.0 for

the 1969 mission and from about 1.45 to 1.55 in 1971. A final T/W ratio greater than

0.5 appears sufficient to minimize gravity losses.

3.4.3 Maneuver Loss Evaluation

Moderate losses occur for the large variation in thrust attitude angles required as

shown in Fig. 3-20 for an 0. 6 final T/W ratio throughout the 1969 launch window. The

propulsion penalty is presented as a fraction of the impulsive burn mass ratio for each

approach energy level. Minimum losses between 0.4 percent to 0.8 percent accrue by

employing an attitude maneuver to yield an angle } between the thrust vector and the

velocity vector at burnout of between 2 deg and 4 deg throughout the thirty day window

as indicated by the cross-hatched area. These losses represent a significant perform-

ance improvement over the corresponding gravity turn losses of 1.2 percent and 1.8

percent.

The maximum penalty for using a fixed nozzle angle ( 0 V ) of 89 deg to the spacecraft-

Sun line is seen to be about 3 percent. This corresponds to about 22 lb less burnout

weight in orbit than for the attitude maneuvering case.

The selection of a fixed nozzle angle for orbit inject in the cruise orientation is more

clearly demonstrated in Fig. 3-21. The variation of the angle (0V) between the

thrust vector and the Sun direction is presented as a function of the angle _, with

approach speed as the parameter. Contours of maneuver losses are overlaid. The

constant thrust angle (OV = 89 degrees, for example) is adjusted until the same

loss contour is encountered for values of velocity corresponding to the maximum

variation over the 1969 launch window (C 4 = 14 to 18 Km2/sec 2 ).
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In 1971 the approach energy range shifts to C4 = 7.9 to 8.3 Km2/sec 2. The

selection of a fixed nozzle angle for the 1971 mission is made through use of

Fig. 3-22. Here it is shown that the minimum penalty of 0. 225 percent or about

3 lb will occur with a thrust angle, 0 V , of 64.5 deg. If the 1969 mission

optimum 0 V of 89 deg were retained for the 1971 mission, the resulting

penalty would be about 9.5 percent. This corresponds to about 125 lb less

burnout weight in orbit than for the optimum angle case. It appears, therefore,

that either the engine mounting angle should be changed for the 1971 mission or

the concept of inj ection from the cruise attitude abandoned and an attitude

maneuver performed.

3.4.4 Traj ectory Changes and Dispersions

Ignition time defined with respect to the time of hyperbolic periapsis passage

is shown in Fig. 3-23 to be dependent primarily on approach energy and final

thrust to weight ratio. Thrust attitude effects are small.
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The change in orbit periapsis altitude from the approach (flyby) periapsis altitude is

given in Fig. 3 24. The maximum variation for the 1969 Mars orbiter concept selected

is about -40 km.

The angular position shift of burnout periapsis is indicated in Fig. 3-25. The variation

in true anomaly from the approach periapsis position varies linearly with thrust attitude

angle over a maximum range of about + 12 deg to - 4 deg.

Dispersions of orbit characteristics resulting from injection maneuver and propulsion

system errors are significantly smaller than those due to approach guidance tolerances.

Figure 3-26 illustrates the effects of in-plane (A_) and normal (AE) attitude, and

propulsion system performance (A Isp ), on orbit inclination, period and periapsis

attitude. Orbit inclination and altitude errors are seen to be essentially negligible.

The period errors are moderate when compared to the 12 to 24 hr variation noted in

Fig. 3-16.

3.5 ENTRY SYSTEMS

While the main emphasis of the study was placed upon the conceptual design of the

orbiter vehicle, the entry system concepts and requirements can exert a major influence.

The philosophy adopted in the definition of the entry system was to minimize the require-

ments imposed upon the orbiter design and operation and to establish the most rugged

and least sensitive entry system possible for the environment encountered.

The ballistic blunt body mode of atmospheric entry provides the simplest and most

reliable system for unmanned vehicles. The principal restrictions result from the

acceleration limits of the scientific instrumentation and structure, from the guidance

tolerances to ensure capture by the planetary atmosphere, and from terminal velocity

conditions at surface impact. The atmospheric uncertainties encountered at Mars

influence the acceleration and guidance restrictions to a moderate degree and exhibit

a profound influence upon the terminal velocity condition.
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Within volume and arrangement constraints, the minimum entry vehicle weight will be

obtained by the config,u:ation with the highest drag per unit area with minimum heat

shield area. A configuration with these attributes and for which aerodynamic and heat

transfer data is available is the current Apollo command module configuration. This

compact shape lends itself to efficient internal arrangement, provides good stability

characteristics, exhibits high drag per unit area, and has a blunt stagnation region

shape conducive to reducing the magnitude of the heat transfer rate. Consequently,

this configuration was adapted to the Mariner Mars entry capsule with one modification,

namely, reducing the length by removing as much of the aft cone apex as possible.

The ground rules for the study included consideration of a heat sterilizable capsule to

survive impact, perform biological experiments and communicate data within a period

of one day. The requirement for heat sterilization plus the imposition of 200 fps winds

near the surface essentially caused elimination of the biological capsule because of

excess weight. Utilization of sterile assembly techniques combined with no wind can

provide a feasible lander with biological experiments. These conclusions are sum-

marized in Fig. 3-27. The capsule entry weight variation with size is illustrated for

sterile assembly and no winds, with scientific instrumentation weighing 9 and 17 lb,

respectively. Comparison with the weight-diameter contours for ballistic parameters

from 5 to 7 lb/ft 2 indicate a minimum diameter of 57.5 in. and 52 in. for the 17 lb and

9 lb science packages, respectively. The maximum capsule diameter of 76 in. is set

by the launch shroud dimensions. A nominal design point of 61-in. diameter was

selected for the study on this basis. A W/CDA of 7 lb/ft 2 represents the maximum

entry ballistic parameter yielding subsonic impact and parachute deployment conditions

below Mach 2 and above a minimum 15,000-ft altitude. The nominal design point yields

an entry weight of 188 lb. Accounting for heat sterilization, 200 fps surface winds and

impact against a hard vertical surface yield weighs which are off the figure. By assum-

ing a wind profile similar to Earth's surface winds, as explained later, the crush

structure is reduced sufficiently to yield a weight of about 295 lb for the 61-in. diameter

capsule. Even projecting this weight to the maximum size yields ballistic factors

larger than 7 psf. Hence, the heat sterilizable biological capsule does not appear

feasible when the specified wind criteria is imposed. A non-surviving atmosphere
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experiment capsule carrying eighteen pounds of instruments appears practical even

with heat sterilization as indicated by the nominal point at 136 pounds entry weight.

This is extrapolated to 108 lb for a 45 in. diameter capsule with W/CDA = 7 psf.

The entry system criteria, vehicle selection configuration, design requirements and

operational considerations leading to these conclusions are described in the following

sections.

3.5.1 Entry Trajectory Criteria

With the specified atmosphere models, the entry problem reduces primarily to slowing

the entry capsule to a reasonable touchdown velocity for a survivable biological experi-

ment or providing adequate subsonic flight time for measuring atmospheric properties

and data communication to the orbiter. The JPL atmosphere models "G" through "K"

characteristics are listed in Table 3-1 and the density profile is given in Fig. 3-2.

With limited weight available on the Mariner orbiter mission for addition of an entry

system, the cost in terms of heat protection, supporting structure, and parachute

system and impact absorption material weight for delivering a given equipment weight

to the desired terminal conditions assumes critical importance.

The specified model atmospheres for Mars yield acceleration loadings as shown in

Fig. 3-28 for vertical entry at the maximum entry speed for the 1969 mission. The

maximum acceleration magnitude is seen to be proportional to the representative scale

heights illustrated here. For the extremes of the atmosphere model designated, the

maximum acceleration encountered for vertical entry is about 115 Earth G's. This is

about one-third of the maximum acceleration for Earth vertical re-entry at orbital

speed. The maximum magnitude can vary by a factor of two from the "G" to "K"

model atmospheres. Note that the AUen-Eggers analytic solution is in excellent agree-

ment with digitally computed trajectory data shown. Hence, the analytic solutions are

useful for demonstrating the influence of the atmospheric parameters upon the environ-

ment and design requirement. Furthermore, the Allen-Eggers analytic model is
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especially useful in designing experiments for and interpreting data from an atmosphere

capsule.

The minimum entry flight path angle for single pass entry varies between about six to

twelve degrees which defines the upper entry corridor boundary. Although the maximum

acceleration level is low on the skip-out boundary, a minimum design acceleration of

12 G's is required due to the uncertainties of the atmosphere model. The lower limit

(i. e., minimum density gradient, fl ) of the atmosphere model also defines the upper

limit of the entry corridor. The lower limit of the entry corridor is then set by the

maximum allowable acceleration tolerance. However, the types of experiments which

can be accomplished within a small size and weight capsule and limited data handling

capability will require simply and easily defined entry trajectory characteristics. These

properties can be best achieved with steep angle trajectories. For Mars, steep entry

implies flight path angles greater than thirty degrees.

A significant advantage is gained with steep entry angles by the corresponding reduction

in the heating environment encountered. This is demonstrated in Fig. 3-29 where the

total convective heat load at a given entry path angle is compared to that for vertical

entry. For the example cited, a five-fold increase in the heat load occurs between the

skip limit and vertical entry. Since the heat shield weight is proportional to the heat

load, a significant reduction in heat shield weight will result for steep entries. With

the reduced guidance tolerance, the variation across the design entry corridor is

reduced to less than a factor of 1.4. Furthermore, the influence of the atmosphere

model uncertainties are slight (about + 12 percent).

The terminal environment will depend not only upon the density near the surface but on

the drag capability of the entry capsule during high speed flight at higher altitudes.

This is illustrated in Fig. 3-30 for the model atmosphere extremes with entry at

21, 000 fps. Almost 7/8 of the atmosphere is traversed before appreciable deceleration

occurs. With shallow entry path, subsonic velocities can be achieved since deceleration

occurs at higher altitudes. Velocities representing state-of-the-art parachute deploy-

meat capability are reached at relative low altitudes as indicated by the contours on

the left side of the figure.
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The parachute deployment requirements are presented in Fig. 3-31 in terms of Mach

number, ballistic parameter and entry path angle. These data are taken from digital

computation incorporating the specified density altitude profile and drag variations

with Mach number. The altitude for chute deployment within current state-of-the-art

( M < 2.5 ) is seen to be less than 30,000 ft for the steepest entry path in the corridor

and a ballistic parameter of 7 lb/ft 2 . This represents the most severe design case

for the parachute system. In order to increase both chute deployment altitudes and

subsonic descent time the entry corridor was chosen between limits of 30 deg and 60

deg. This was just within the tolerance of the guidance system.

The most severe criteria affecting the design requirements for the survivable lander

was the 200 fps surface wind coupled with impact against a hard, vertical surface.

Also, a parachute designed for a maximum twenty degree angular oscillation amplitude

was assumed. These conditions then determine the amount and distribution of the

impact attentuation structure for the instrument package. As mentioned previously,

the 200 fps wind at the surface required an impractical amount of crushable structure.

An interpretation of the wind criteria was developed which led to the wind profile

shown in Fig. 3-32. Assuming a surface roughness corresponding to 5 ft diameter

boulders and a viscosity similar to Earth's atmosphere resulted in a reduction in the

magnitude of the horizontal velocity of the capsule to about 114 fps at a height of I00 ft

above the surface. Interpreting the wind criteria in this manner reduces the capsule

weight requirements significantly. It is apparent that surface winds may constitute a

serious obstacle to performing surface biological experiments.

3.5.2 Entry Dynamics

The allowable entry vehicle guidance thrust attitude, separation rate, and attitude

tolerances, and spin rate during entry are governed by the angle of attack permissible

at the time of data collection and during certain critical events. The two principal

angle-of-attack limitations arise during the period of maximum heating and at parachute

deployment. Minimizing the heating of the afterbody requires angle-of-attack covergenee

to less than 20 deg by the time the altitude of maximum heating is reached. This will
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ensure a stagnation region on the main heat shield. A similar angle-of-attack limitation

(about 45 deg) is required for successful chute deployment.

The angle of attack at these critical times stems from the following:

• Attitude and angular rates of the vehicle at separation

• Thrust misalignment during guidance motor burning

• Trim asymmetries; for blunt configurations, primarily the lateral center

of gravity tolerances

• Capsule inertial characteristics

The trim asymmetry effect is best controlled by setting an adequate static restoring

moment ( C /o_ ). The attitude and angular rate allowance are governed by the degreem

of angle-of-attack convergence by the time of interest. The thrust misalignment effects

require either an active attitude control system or spin.

An active control system is costly in weight and complexity and was not considered.

The results of the dynamics evaluation are illustrated in Fig. 3-33 assuming the least

dense of the atmosphere models and vertical entry at 25,000 fps. These assumptions

impose the most severe conditions upon the angle-of-attack convergence control. An

example of the effects of spin and of a change in moment of inertia are shown.

These data show that for the indicated range of inertial characteristics of the capsule,

excellent angle-of-attack convergence is possible with no spin. The critical points are

designated by the appropriate symbols. For example, with an entry angle-of-attack

of 90 deg (but no angular rates), the angle-of-attack is reduced to 8 deg at the maximum

heating point and to 6 deg at the altitude of maximum dynamic pressure. Because of

the high magnitude of damping parameter for the capsule configuration, the angle-of-

attack continues to decrease to about 4 deg at parachute deployment. However, the

damping parameter is critically dependent upon the balance between the moment of

inertia properties of the capsule and the aerodynamic damping characteristics of the
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configuration geometry. The curve labeled with I = 2.8 illustrates that even a change

in the damping parameter by a factor of two provides excellent convergence beyond

maximum dynamic pressure. The influence of spin is seen to be powerful in resisting

the convergence due to the increase in gyroscopic stability. The spin rate of 60 rpm

(selected for thrust vector control during guidance rocket thrusting) increases the angle

of attack by a factor over three as compared to the no-spin case, when coupled with the

worst atmosphere. In this case, the angle limitation during heating cannot be met for

large entry angles of attack.

Four solutions are possible to restore the stabilitynecessary: (I)de-spin (2)reduce

the spin rate (3) increase aerodynamic stabilityand (4)reduce entry angle of attack.

A de-spin requirement leads to increased weight and complexity and hence reduced

reliability. Selection of a lower spin rate is desirable if separation and retro require-

ments can be satisfied. Increased aerodynamic stabilityappears to be an effective

means of reducing the angle of attack. An increase in Cm/C_ to 1.6 will provide an

improvement by a factor of two. However, this would require adding an extendable

aerodynamic surface to the back end of the capsule with a consequent increase in com-

plexity. The afterbody of the Apollo shape adopted for the entry capsule resulted from

booster integrationand abort requirements. Although sufficientaerodynamic forces

are available, the pressure distributionof this aft cone yields a destablizing moment

at high angles of attack for any practical center-of-gravity location. This effect is

reduced by removing as much of the aftcone as practical. Addition of an aerodynamic

sleeve does not appear necessary after considering the efficacy of the fourth listed

solution.

The best method is to reduce the initial entry angle of attack by proper application of

the separation and guidance maneuver. This was indeed possible as discussed in the

following section.

3.5.3 Separation Maneuver and Attitude Control

The selection of the separation point and maneuver requirements depends upon nominal

entry trajectory selection, the capsule descent, experiment and data transmission time,
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and the proximity of the orbiter injection maneuver and timing requirements. The

orbiter and capsule approach geometry presented in Fig. 3-34 illustrates the inter-

action of these considerations. A typical orbiter approach trajectory for the nominal

mission profile (January 29, 1969 launch date) with an approach energy level of

16 km2/sec 2 and periapsis altitude of 1800 km was selected for this example. Entry

trajectories are shown for the extremes of the entry corridor resulting from separa-

tion at two days before periapsis. A forward velocity increment of 26 m/sec was

applied to provide impact (through the K model atmosphere with parachute) prior to

orbiter injectionmaneuver ignition. The lines of sight at entry and at impact indi-

cate that adquate communication time for atmosphere experiments is attained. The

most stringent condition results for shallow entry path angles. For the case illus-

trated about six minutes between impact and ignitionresults for a thirtydegree entry

path, increasing to about sixteen minutes for the sixty degree entry. The line of

sight variations indicated by the time indices provide a measure of the orbiter antenna

gimbal requirements. With the capsule spin maintaining orientation along the direc-

tion of the applied separation velocity, the angle _ varies + 31 deg throughout shallow

entry and about + 40 deg for steep entry. Note also that the entry angle of attack is

reduced significantlyby the additional forward velocity component.

The separation performance requirements are small as demonstrated in Fig. 3-35,

for the example cited above. From the curves on the left side, a normal (to the

approach asymptote) velocity of less than 50 m/sec will yield entry for separation

one day out or greater. This corresponds to about five pounds of propellant for a

200 lb capsule. A two day separation time was selected for the nominal design require-

ments, yielding a normal velocity component of about 30 m/sec for the selected entry

path angle of 45 deg. Differences in the nominal periapsis altitude and approach

energy are accounted for by changing the separation time appropriately.

The curves on the right side of Fig. 3-35 show the forward velocity requirements to

provide a time increment between capsule impact and orbiter ignition. The case

illustrated in Fig. 3-34 is noted in Fig. 3-35 by the dashed lines. Selection of a
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50 m/sec separation capability for the nominal 45 deg entry angle allows application

of 40 m/sec to the forward velocity component. This yields a minimum time incre-

ment of 15 min between capsule impact and orbiter ignition for the shallow entry

tolerance.

The consequence of approach guidance tolerance upon the orbiter-capsule communi-

cation geometry is illustrated in Fig. 3-36 for 50 m/sec separation velocity incre-

ment. The minimum time increment of about 17 rain occurs for the higher periapsis

tolerence of + 600 kin. The look angle geometry is approximately the same as in

Fig. 3-34. The periapsis altitude tolerance increases the antenna angle range by

about 1-1/2 deg at entry and 2-1/2 deg at impact. Note again that the entry angle-

of-attack is reduced (to about 20 deg).

The influence of the forward velocity addition upon entry angle-of-attack is more

succinctly demonstrated in Fig. 3-37. The maximum entry angle-of-attack is less

than 30 deg for the most steep trajectory within the corridor. Even for vertical

entry, the initial angle-of-attack is only 45 deg. Thus, the angle of attack conver-

gence within the atmosphere is greatly enhanced by adding the forward velocity

increment and by the increased approach guidance capability in lowering the periapsis

altitude.

A direct consequence of this improved entry attitude control is the elimination of the

necessity for capsule de-spin to provide adequate angle-of-attack convergence.

Hence, one sequence and operation can be eliminated, simplifying the design and

enhancing reliability.

3.5.4 Entry from Orbit Considerations

The possibility of carrying the entry capsule into Mars orbit was suggested as a

possible mode for later missions where greater payload capability existed. A few

results taken from the LMSC in-house Voyager study (Ref. 3} will serve to

illustrate the pertinent considerations.
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Fig. 3-37 Capsule Entry Attitude
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The effect of orbit variations on capsule retro requirements is shown in Fig. 3-38.

It is evident that the retro _V requirements to obtain a given entry path angle do not

vary significantly for wide variations in the orbit periapsis altitude. Further, the

sensitivity to retro errors can be essentially eliminated by selecting an entry path

angle of 37.5 deg. The corresponding AV of 285 m/sec (about twice the minimum)

must be reconciled with the increased propulsion system weight. However, the

additional propulsion capability yields a greater flexibility in orbit retro maneuver

operation.

The retro requirements for landing-point control from the nominal orbit are indicated

in Fig. 3-38. The range angle 0 is measured from apoapsis. Hence, the landing

is fixed by the choice of _V and the orbit orientation. The cost of landing-point

control is seen to be high for this technique.

The variation of the retropropulsion requirements with orbit position in the nominal

Mars orbit are illustrated in Fig. 3-39. While the entry path angle varies signifi-

cantly, the entry velocity variation is slight. The minimum possible AV of 132 m/sec

is set by the skip-out boundary and retro exactly at apoapsis. This condition is ob-

viously unrealistic due to guidance and mechanization tolerances. A moderate

increase in z_V to 152 m/sec is seen to provide an orbit position tolerance A_ of

_- 18 deg. In view of the heat shield weight savings obtained for entry angles greater

than 20 deg, the maximum AV possible consistent with the propulsion weight in-

crease should be selected.

Thrust vector control of the retro maneuver as considered for the capsule entry is

most simply and reliably handled by imparting a suitable spin to the entry vehicle

after separation. Separation attitude changes and rate can be held to acceptable

levels by current LMSC design techniques, utilized for such vehicles as the Discoverer

reentry capsule. The spin rate is selected to provide a "large" number of turns (say

ten) during the thrusting period, depending on the expected thrust misalignment and

the allowable path deviation. Quite large retro AV or deviations appear tolerable
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for the design approach adopted for the entry vehicle in conjunction with the impulse

requirements shown in Figs. 3-38 and 3-39.

Good communication between the orbiter and the entry vehicle is maintained for retro

in the vicinity of apoapsis, as demonstrated in Fig. 3-40 for any entry path angle.

The sighting angles vary over a range of 9 to 30 deg, which will tend to minimize

antenna orientation requirements. The geometry illustrated is representative of the

range of orbit characteristics shown in Fig. 3-38 and hence such variations will

present no communication orientation problem.

The principal differences between entry from orbit and entry from the approach

hyperbola are a reduced acceleration and heating environmeat, and a much larger

separation _V requirement for the latter. The weight saving on heat shield and

structure appears to be considerably less than the penalty for increased AV. In

addition, the complete entry system must be carried into orbit at a propellant cost

equal to the weight of the capsule. Hence, this mode does not appear to be a practi-

cal approach for limited payload capability launch vehicles. It may be attractive

for a 1971 Mars mission.
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Section 4

SYSTEM DESIGN

The approach to design of the Mariner spacecraft was governed by the scientific payload

requirements, by the sterilization and reliability requirements, and by the objective

to perform all missions with a single spacecraft design.

The scientific payloads as described in Section 5.2 consist of the following main

p ac kage s:

• Interplanetary experiments

• Mars orbital experiments

• Mars entry and surface experiments

The weight, volume, power, sequencing, and installation requirements for these

experimental packages were a primary influence in the design selection.

4.1 SPACECRAFT CONCEPT SELECTION

During the initial phase of the study several spacecraft configurations were investigated

and alternate equipment, propulsion and science platform locations were compared.

From these early configurations the four most promising designs were selected for

further study and analysis. These four configurations are shown in Fig. 4-1.

At the conclusion of the first phase (2 mos) of the study, the selection of a single pre-

ferred concept was made from the four basic configurations, and the remaining portion

of the study (approximately two months} was spent in refining the preferred concept,

Configuration 4.

In each of the configurations the existing static and dynamic payload envelope data pro-

vided by JPL in Ref. 2 were used as basic design criteria. These restraints were
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used in conjunction with the existing Surveyor shroud geometry and the 57.50 in. diam-

eter interface ring attached to the forward bulkhead of the Centaur.

All of the conceptual designs described in the following paragraphs will require the on-

loading of fuel and oxidizer during the Mars 1969 launch window. This will be necessary

to take maximum advantage of the launch system payload capability. Existing flight

proven hardware, particularly Mariner C components have been used wherever possible.

With the exception of Configuration 1, all of the concepts have been designed in such a

manner that a capsule can be installed without major modification to the basic orbiter

spacecraft.

The selection of a single preferred concept, with emphasis on the hardware require-

ments this early in the 1969 Mars orbiter program, has been done with the intent of

obtaining a sound, representative vehicle into which has been integrated all of the per-

formance and hardware requirements necessary for the mission. The spacecraft

weight estimates are therefore considered in greater detail than would have been possi-

ble if only parametric data had been used.

At the conclusion of the first phase of the study, a comparison of the weights of

Configurations 2, 3, and 4 was made and is presented on Table 4-1.

A summary description of the four basic configurations examined during the study is

contained in the following paragraphs and are followed by a detailed description of the

preferred concept (Configuration 4).

4.1.1 Configuration 1

This concept is an early design in which the installation of a capsule is not considered.

The centrally located propellant tank provides the basic structural element around

which are located the electronic and scientific equipment, with the solar panels attached

to the lower section of the outer structural ring. The antenna is mounted directly to

the oxidizer tank and is enclosed during the launch phase by the booster adapter struc-

ture. The main propulsion engine is attached to a gimbal ring supported on a short

conical structure attached to the fuel tank.
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Table 4-1

PRELIMINARY WEIGHT COMPARISON

(BASIC SPACECRAFT)

Configuration 2

Structure 85

Actuators and Pin Pullers 15

Insulation and Thermal Cont. 15

Guidance (100 percent Redundancy) 65

Engine 20

Valves and Mtg. Brkts. 10

Propellant Tanks 50*

Plumbing 10

Batteries, Wiring 116

Solar Panels (51 ft 2 minimum) 51

Electronics (26 lb Redundancy) 123

Attitude Control Gas (N2) 20*

Attitude Control Gas Tanks 25*

Pressurization Gas (He) 4

Pressurization Gas Tank 21

630 lbsTOTAL 654 lbs

Configuration 3 Configuration 4

80 79

15 15

14 15

65 65

20 20

15 10

25* 25*

20* 10

116 116

51 51

123 123

40* 33*

45* 38*

4 4

21 21

625 lbs

*Denotes major differences.

Although this concept results in a very compact design it was dropped early in the study

because major modifications would be required to install a capsule, and it would have

only a slight weight advantage over Configuration 2. In addition it was found that with

the antenna mounted below the solar panels, the required look angles could not be

achieved. During separation of the spacecraft from the Centaur, extreme care would

be necessary to ensure that the antenna edge ring does not impinge upon the Centaur

adapter structure.
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4.1.2 Configuration 2

This is a combined orbiter/capsule concept utilizing the same tank arrangement as

Configuration 1, but with the tankage reversed and the propulsion unit installed on the

aft dome of the tanks on the centerline of the vehicle. This arrangement permits a

shorter length booster adapter and better clearances for spacecraft/booster separation.

Inboard profiles of Configuration 2 with and without a capsule are shown on Fig. 4-2

and Fig. 4-3, respectively. Both of these drawings show unfurlable antennas with

diameters ranging from 4 ft to 6 ft; however a rigid antenna of 4 ft diameter could be

installed on either design.

The major features of this concept are:

• Accepts 61-in. diameter capsule.

• Utilizes Mariner C solar panels.

• Center of Gravity shiftduring engine burn is along thrust axis, reducing

engine gimbal angles.

• Single, compartmented propellant tank.

• Long overall length gives least moment of inertia in the roll axis, requiring

less attitudecontrol gas than the shorter vehicles.

• Requires large structural support cone between Centaur adapter and space-

craft equipment bay.

• Scientificequipment mounted on forward end of equipment bay is well clear of

any possible impingement from the exhaust plume of the main propulsion unit.

• Antenna look angles (these became more severe after the layouts were made)

will be difficultto achieve because of the engine nozzle protrusion.

The propellant tank is a single welded pressure vessel with a central, integral bulk-

head separating the fuel from the oxidizer. To obtain a minimum length tank, elliptical

domes have been used, the ellipsoids have a semimajor to semiminor axes ratio of

:1 to eliminate the possibility of compressive stresses in the domes.

q
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4.1.3 Configuration 3

In this concept the basic philosophy was to determine the maximum capsule diameter

possible within the restraints of the surveyor shroud geometry. The design is

illustrated on Fig. 4-4.

The large diameter capsule (77 in. ) precludes the use of a rigid parabolic antenna and

therefore two alternative antenna arrangements are shown. The first is an unfurlable

parabolic design that is stowed in a canister secured to the spacecraft during launch.

This design, called "FLEX-RIB," has been completely developed on a current LMSC

project and will soon be flight tested on an Agena mission. The second alternative

antenna that was briefly investigated is of the helical type; although such a design

would have the advantage of a small area with respect to solar pressure (permitting a

symmetrical distribution of the solar panels around the spacecraft centerline) it is felt

that the very long, slender design would prove impractical to manufacture to the very

close tolerances necessary for antenna performance. As with Configuration 2 the

antenna look angles will be restricted somewhat by the engine nozzle protrusion. If the

mission is flown without a capsule, a rigid parabolic antenna of conventional design

could be installed.

To minimize vehicle length, and to reduce center of gravity shift as much as possible

the propellants are contained in four separate spherical tanks, with the combustion

chamber of the main propulsion unit nesting between them. This system would require

complicated manifolding, plumbing, and valving to ensure proper fuel utilization.

Other major features of this concept are:

• Accepts 77-in. diameter capsule.

• Mariner C solar panels could not be installed.

• Short length vehicle, gives highest roll moment of inertia requiring greater

amount of attitude control gas than longer vehicles.
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4. i.4 Configuration 4

This configuration was selected as the preferred concept and has been examined in

more detail than the other designs. A detailed description of the configuration is

contained elsewhere in this report, therefore only a brief summary of the design

follows.

The main feature of this concept is the side-mounted engine. The advantages of such

an arrangement are.

• Cruise orientation can be maintained during orbit injection, eliminating a

maneuver at a critical time in the mission

• Solar power can be maintained throughout the mission, except at midcourse

correction

• Communication with Earth can be maintained at orbit injection

• Scientific instrumentation and data readout equipment can be operable during

orbit inject

• Accepts 71-in. diameter capsule

• Two simple spherical propellant tanks are used

• Short-length primary structure

• Light weight

• Look angles for antenna are readily obtained

Inboard profiles of Configuration 4 without and with capsules are shown on Fig. 4-5

and Fig. 4-6, respectively.

4.2 DESCRIPTION OF BASIC ORBITER (CONFIGURATION 4) WITHOUT CAPSULE

The orbiter assembly is made up of the following major subsystems.

• Scientific Instrumentation

• Structure

• Propulsion

• Power supply

4-12
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• Electronics

e Thermal control

$ Guidance

$ Attitude control

4.2.1 Scientific Instrumentation Installation

The scientific instrumentation has been either independently mounted on the spacecraft

or mounted on a planet science scan platform. The planet science scan platform will

be gimballed by the use of two electric servo motors, each of which will be programmed

to provide maximum possible planet coverage.

The science platform has been mounted on the same side of the spacecraft as the fuel

tanks to help maintain the spacecraft center of gravity at the vehicle center line. This

location provides sufficient clearance for the look angles of the camera's other equip-

ment. The platform will be protected during the coast phase by a retractable protective

cover and by thermal insulation.

Scientific instrumentation assumed for design purposes to be carried on the platform

consists of:

$ Visual TV (2 cameras)

• Infrared TV

• Ultraviolet photometer

• Infrared radiometer

• Planet diameter scanner

The independently mounted scientific equipment has been distributed at various locations

on the spacecraft as shown on Fig. 4-5.

A complete list of all recommended scientific instrumentation is shown in

Section 5.2.
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4.2.2 Structure

The basic structure consists of an octagonal outer frame to which is attached a series

of beams. The beams support the propellant tanks and the majority of the electronic

equipment; strong points located at the intersections of the beams and the outer frame-

work will serve as the attachment points for the solar panel assemblies. Additional

strong points are provided in the outer framework to support the propulsion unit, com-

munications antenna, and the science platform. These same strong points could be

utilized to attach the capsule adapter support truss.

Two spherical propellant tanks are installed side-by-side within the octagonal frame-

work. A conical sump at the tank outlets houses a multiple screen arrangement that

is designed to ensure fuel entrapment at engine ignition.

The equipment bays are located within the octagonal frame on either side of the fuel

tanks. Top and bottom closures are provided by stiffened panels attaching to the outer

ring and the beam caps. The flat sides of the outer frame will have a series of louvers

built into them, if necessary, to provide an active thermal control system for the

internal equipment.

4.2.3 Main Propulsion Engine Installation

For the 1969 mission the main engine is installed at approximately 89 deg to the space-

craft center line on the forward face of the basic structural shell as shown on Fig. 4-5.

The gimbal ring at the throat of the engine is attached to the upper ring of the octagonal

framework by a pair of stiffened brackets that extend inward to the upper flanges of

two of the internal diagonal beams. The engine actuator loads will be reacted at

integral fittings built into the beam structures. The propellant tank pressure vessel,

containing helium, is installed directly in line with the main engine and is also

mounted on the forward face of the structural shell.
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For the 1971 mission, the basic orbiter will require considerably less propellant than

is necessary for the 1969 mission; approximately 670 lb against 990 lb. Although this

smaller amount of fuel could be carried in the 1969 orbiter tanks, with a large ullage

space, a better approach would be to install new smaller tanks which can readily be

attached to the same strong points on the basic spaceframe. The smaller tanks would

be lighter and would permit better propellant orientation within the tank and tank pump.

The engine installation may also require modification in order to align the engine to

the optimum angle for orbit injection from the cruise attitude. For the 1961 mission,

this angle is approximately 60 deg as compared to 89 deg for the 1969 mission. This

can be done by building a thrust structure above the forward face of the octagonal

structure as shown on Fig. 4-7.

The structural weight penalty for new tanks and 60 deg thrust angle is estimated to be

6 lb. If the 1969 tanks are retained while the thrust angle is changed to 60 deg, the

structural weight penalty is estimated to be 9 lb.

4.2.4 Power Supply Installation

With the exception of the solar array all of the power supply subsystem is installed

within the main equipment bays. The solar array, which is the same as that used on

Mariner C vehicles is attached at the lower end of the octagonal structure.

To maintain the center of solar pressure as close as possible to the spacecraft center

line, the solar panels have been installed slightly offset from the normally 90 deg

square pattern used on Mariner C. In determining this location, the 4 ft diameter

antenna dish was assumed to have a 25 deg effective pressure area in the same plane

as the solar panels. The offset location permits easy installation of a rigid type

antenna and also the main propulsion engine. The exhaust plume impingement on the

solar panels was examined and found to be of only minor significance.
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4.2.5 Electronics Installation

The majority of the electronic components have been installed within the two main

equipment bays, although there is also some space available for additional equipment

on the front and rear faces of the basic structure. The equipment bays shown on

Figs. 4-5 and 4-6 are 14 in. high; detailed examination may show that this will need to

be increased to obtain more internal volume. If high-density integral packaging tech-

niques are developed, these equipment bays should provide more than adequate volume.

4.2.6 Thermal Control

A discussion of thermal control techniques is presented in Section 5.5 of this report.

Thermal painted surfaces in addition to louvers, heaters, small local heat sinks, and

thermal insulation blankets and covers will all be used.

4.2.7 Guidance Components Installation

The inertial guidance system will be installed within the main equipment bay enclosure.

4.2.8 Attitude Control System Installation

To obtain the required view angles, the Canopus tracker has been installed on the for-

ward end of the octagonal frame. Sun sensors are installed on both front and rear

faces of the spacecraft.

The attitude control system is basically the same as that used on Mariner C spacecraft,

with 100 degrees redundancy in the hardware components. The attitude control gas

(N 2) is contained within two identical spherical pressure vessels mounted on either

side of the thrust axis. The reaction jet nozzles are located on the extreme outboard

ends of the solar panels in a similar manner to Mariner C except that the attachment

points will be offset from the center lines of the panels. This has been done to avoid

building separate outriggers onto the panels which would be necessary to obtain a

symmetrical 90 deg square pattern between nozzle assemblies in the plan view.
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Fig. 4-7 Revised Engine and Tank Installation for 1971 Mission
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4.2.9 Antenna Installation

A rigid 4-ft diameter parabolic communication antenna is installed opposite the main

propulsion engine and is attached to the lower basic framework by a pair of cantilevered

brackets. The hinge point extends slightly below the spacecraft separation plane to

provide clearance for the maximum antenna look angle. The antenna is provided with

a two-axis gimbal system.

4.2.10 Science Instrumentation Installation

With the installation of a capsule the centrally located, independently mounted science

equipment must be relocated. In addition, the infrared TV and the planet diameter

scanner are deleted from the gimballed platform. A description of science instruments

is presented in Section 5.2.

4.3 DESCRIPTION OF BASIC ORBITER (CONFIGURATION 4) WITH CAPSULE

The basic orbiter spacecraft discussed in the preceding paragraphs will require only

a minimum amount of modification to allow a capsule to be installed. For a 61 in.

diameter capsule (the nominal diameter used in the study) the major change would be

to install outrigger structures at the base of the octagonal framework to support the

Mariner C solar panels; such a vehicle is shown in Fig. 4-6. The maximum diameter

capsule that can be installed without using outriggers is 48 in. An alternative to using

outriggers would be to use shorter length solar panels and to attach fixed solar panels

to the underside of the spacecraft equipment bays. The use of shorter solar panels

has the disadvantage of reducing the moment arm of the attitude control reaction jets

mounted on the outer edge of the panels, thereby requiring an increase in attitude

control gas. The upper supports for the solar panel attachments would require

repositioning.

The structural weight penalty on the basic spacecraft for installing a 61 in. diameter

capsule has been estimated at 10 lb. A detailed breakdown of the additional equipment

required on the basic spacecraft when fitted with either an atmospheric or biological

capsule is shown on Table 4-2.
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Table 4-2

ADDITIONAL EQUIPMENT ADDED TO BASIC ORBITER WHEN A 61 IN.
DIAMETER CAPSULE IS INSTALLED

Atmospheric Biological
Description Capsule (lb) Capsule (lb)

Electronics

Crossed Dipole Antenna

Receiver

Command and Sequence Timer Equipment

Buffer Storage

Miscellaneous (Relays, etc.)

Structure

Solar Panel Outriggers

Miscellaneous Fittings

TOTAL

1

4

2

3

3

8

2

23

2

3

3

8

2

18

4.4 CAPSULE DESIGN

Two basic types of capsules were examined during the study; an atmospheric capsule

which does not survive after impact and a biological capsule which would survive impact.

For both types of capsule a high drag, blunt forebody/conical aftbody, Apollo-type

entrybody was selected as the most efficient shape. The entire heat shield and its

supporting structure are jettisoned prior to parachute deployment.

4.4.1 Atmospheric Capsule

The atmospheric capsule is shown on Fig. 4-8 and is made up of the following major

subassemblies.

• Sterility shroud

• Entry body (including heat shield)

• Payload compartment
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• Descent system (described in section 5.7)

• Guidance rocket system (described in Section 5.4)

Sterility Shroud. The sterility shroud completely envelopes the atmospheric capsule

and remains on the capsule until after separation of the capsule assembly from the

spacecraft 2 days prior to planet encounter. The shroud consists of two highly polished

aluminum subassemblies welded together at the maximum diameter adjacent to the

circumferential shroud separation plane. Separation of the shroud from the capsule

is achieved by firing the prima-cord charge around the periphery of the welded flanges

of the two halves of the shroud; the separation force is obtained from a series of small

springs between the entry body and the shroud. A debris shield and shock absorber

would be installed on the inner surface of the shroud adjacent to the separation plane.

The shroud will be vented during the boost phase of the flight, an internal pressure of

approximately 1.0 psi being maintained throughout the flight.

The hardpoints are integral with the shroud at the spin rockets and a snubbing device

will transmit spin loads to the capsule structure. A two-stage electrical disconnect

and the vent valve are installed on the aft dome of the shroud; also attached to the out-

side of the aft dome is the loop antenna required for communication with the orbiter.

Hardpoints are provided on the aft ring of the sterility shroud to which will be attached

taper pins that form a part of the pin-puller separation mechanism.

Entry Body. The entry body consists of the forebody heatshield, aft body heatshield,

and internal supporting structure.

The forebody heat shield depicted in Fig. 4-8 is a microballoon construction nylon

phenolic ablator bonded to a waffle pattern back-up structure made from HM -21A-T81

magnesium thorium alloy; however, severe dimensional stability problems can be

anticipated with the nylon phenolic during the heat sterilization cycle, and a silicon

ablator or a heat sink of beryllium should be used if the heat sterilization technique

remains a design ground rule. The forebody geometry is a shallow spherical dome

with an outside diameter of 61 in. The transition from the forebody to the aftbody
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Biological Capsule Assembly

The biological capsule, shown on Fig. 4-9, differs from the atmospheric capsule pri-

marily because provision must be made to survive impact on the Martian surface.

The biocapsule consists of the following major components:

$ Sterility shroud

$ Entry body

• Lander capsule

The sterility shroud and entrybody are basically the same as the atmospheric capsule.

Lander Capsule. The lander capsule houses the scientific experiments, the communi-

cations and power supply, the parachute system and the guidance rocket. The primary

instrument, a life experiment, is housed in a central compartment to which are

attached the pickup devices to obtain a sample of surface material. The structural

webs that support the majority of the capsule equipment are also attached to the central

column.

Two recessed monopole antennas are installed on opposite surfaces of the science

housing, either one of which will be activated by a gravity switch depending on the

final attitude the capsule adopts after impact.

The science housing is surrounded on sides and bottom by a spherical balsa wood

impact structure designed to absorb impact at velocities of 114 ft/sec without exceeding

an acceleration of 900 Earth g's.

A preliminary analysis of several energy absorption systems was made. The energy

absorption capabilities of these systems are listed on Table 4-3. It is seen that the

crushable balsa wood system has the greatest potential efficiency, followed by metal

honeycomb. Although balsa wood was selected primarily for its energy absorption

capacity a secondary advantage is that its dielectric properties permit the use of

flush mounted antennas on the internal back-up structure. If aluminum (or other

metal) were used a pop-out antenna device would be necessary.
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cone is formed by an annular section with a radius of approximately 2.50 in. Weight

estimates are shown in Section 4.9 both for asceptic assembly using a Nylon Phenolic

heat shield and for heat sterilization using a beryllium heat sink.

The heatshield aftbody forms the external conical surface of the entry body and has a

ring attached to the aft end to which are secured hard points for the capsule/orbiter

attachments. The internal support structural cone is also attached to the aft ring.

The stiffened aftbody cone is constructed from beryllium.

The internal supporting structure consists of a stiffened conical shell extending from

the aft ring of the aftbody heat shield to a ring located at the base of the instrument

capsule. Four fittings attached to the stiffeners on the internal cone are provided to

give stability to the aft face of the payload compartment. All of the internal structure

is constructed of magnesium alloys ZK60A-T81 and HK31A-H24.

Payload Compartment. The payload compartment houses the scientific experiments,

the communications and power supply, the parachute system, and the capsule guidance

system. The payload capsule is attached to the entrybody by a small Marmon clamp

at the lower end of a central support tube. This tube is also used to attach the equip-

ment support webs and the parachute swivel attachment. Separation of the instrument

probe from the entry body is achieved by releasing the small Marmon clamp imme-

diately prior to parachute deployment.

The capsule guidance rocket is attached to the parachute compartment cover and is

jettisoned by actuating a pin puller device installed in the aft end of the central tube;

three ejection pistons equally spaced around the periphery of the parachute cover

provide the separation force.

A loop antenna is provided on the aft face of the payload compartment for communica-

tion with the orbiter during capsule separation. A whip antenna is located on the aft

face of the capsule instrument compartment for communication with the orbiter during

the entry phase.
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M-29-64-1

The lander capsule assembly is attached to the entry body through a spider beam

assembly on the aft face. The spider beam has a conical structure to support the

guidance rocket and a short cylindrical section which forms a protecting cover for

the parachute compartment. The spent guidance rocket is released from the entry

body, together with the spider beam assembly, by releasing the separation mechanisms

on the outside ends of the spider beams.

Table 4-3

ENERGY-ABSORPTION CAPACITY OF VARIOUS
MATERIALS AND SYSTEMS*

System/Material

Crushable/ balsa

Crushable/plastics

Crushable/paper honeycomb

Crushable/metal honeycomb

Gas bag/metal

Gas bag/fabric

Range Energy Absorbed
ft-lb/lb

9,000 - 24,000

1,000 - 4,500

800 - 2,500

2,000 - 11,000

8,000 - 11,000

1,000- 6,000

*Ref: NASA TN D-1308 Energy absorption devices for soft
landing of space vehicles.

4.5 CENTAUR ADAPTER STRUCTURE

The adapter structure shown on Figs. 4-5 and 4-6 is of the orthodox ring/skin/stringer

design with access holes for separation mechanism adjustments, etc. The aft end

attaches rigidly and uniformly to the payload interface ring (57.50 in. diameter) on

the forward bulkhead of the Centaur LH 2 tank. The forward section attaches to the

spacecraft interface ring.

A brief strength analysis of the adapter structure was made in order to obtain a pre-

liminary weight estimate. Two load transfer theories were considered: (1) uniform

load contacts around the periphery of the shell, and (2) concentrated loads at ten
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points of attachment to local stiffeners which distribute the loads uniformly throughout

the shell. The weight difference is only 2.7 lb as discussed in Section 4.7.

Thermal isolators may be necessary at the lower end of the adapter at the Centaur

bulkhead and some local beef-up of the adapter shell has been included in the adapter

weight estimate to allow for the extremely low temperatures that can be expected

from the Centaur LH 2 tank.

The interface ring provided at the base of the spacecraft octagonal structure transfers

all loads into the Centaur adapter structure and also forms the separation plane.

Separation of the spacecraft from the Centaur adapter is achieved by releasing a

tension band and allowing the closely aligned spring assemblies to impart the required

separation velocity to the spacecraft. This system is the same as that employed on

Mariner C. An alternative method would be to use pin pullers (as used on Ranger

flights) in place of the tension band arrangement.

4.6 CAPSULE/SPACECRAFT ADAPTER STRUCTURE

The capsule assembly described in the previous paragraphs is attached to the orbiter

by a truss-type structure designed to transmit capsule loads to strong points built

into the basic orbiter structure. The tubular cross-bracing assemblies would be

arranged in such a manner that they do not interfere with the scan envelopes of the

scientific instruments on the science scan platform. They will also have to clear the

fixed equipment, H e and N 2 bottles, engine, magnetometer boom, etc., installed

on the forward face of the orbiter.

The capsule separation mechanism is installed on the forward ring of the adapter

structure and consists of four pin pullers and closely aligned compression spring

assemblies. Tipoff rates will be critical during capsule separation and extreme care

will be necessary during detail design phases to ensure a clean flat separation.
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4.7 STRUCTURAL ANALYSIS

A preliminary structural analysis of the spacecraft has been made and is summarized

in this section.

The main components considered were:

• Solar panel supports (for orbiter with capsule)

• Fuel tankage and supports

• Equipment support beams

• Spacecraft/Centaur adapter structure

The analysis considered only two flight-load conditions: (1) Booster acceleration, and

(2) spaceflight. The booster acceleration condition (specified in Ref. 2 ) was a

maximum quasi-steady state acceleration at the separation plane of 6-g axial and 0.4-g

lateral. All critical loads occur during the boost phase of the flight.

Several materials and types of fabrication were considered for the various components,

as shown in the Strength Analysis Summary, Table 4-4. In most case, magnesium

alloy appears to be the most practical.

The solar panel support structure required for the orbiter/capsule configuration

becomes impractical to fabricate when attempting to design the structure for zero

margin, and the gage selection was therefore based on minimum handling requirements.

The magnesium alloy proved to be the most efficient choice of material. The dynamics

of the structure has not been studied and final analysis may prove that stiffness

requirements are more critical than strength requirements.

The propellant tanks were designed for internal pressures existing during flight. The

tanks are pressurized to 250 psia. For design, this value is increased by the increment

due to hydrostatic head caused by booster acceleration. Fuel-oxidizer proportions

were selected to yield balanced tank volumes together with optimum engine operation.
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Table 4-4

STRENGTH ANALYSIS SUMMARY

Item

Solar Panel Support
Frames

Solar Panel Support l
Struts

Fuel Tankage

Equipment Support
Panels

Equipment Section

Ring Frames

Equipment Section
Outer Shell

Adapter - Orbiter/
Centaur

Material

HK31A-H24

2K60A-T5

AL 2219-T87

Mag Sandwich
Panels

7075-T6

HK31A Shell

w/2K 60A-T5
Strs.

!HK31A Shell

Weight
(Ib)

6.00

1.06

24.8

7.3

9.4

9.9

31.0

Margin!
of

Safety

High

High

0

High

+. 60

+.19

0

Alternate

N one

None

None

Mag Skin
& Stringer

2K60A-T5

Mag Longeron
& Shear Web

Shell/Stiff**

Weight M.S.

m

13.5 +.58

9.9 +.09

8.9 +.31

33.7 0

**Alternate configuration considers concentrated loads being reacted at forward section

by tapered stiffeners.

The tanks were designed to have an ullage space for a volume of approximately 5 lb

per tank. Aluminum alloy 2219-T87 was selected as the most suitable material because

of its good strength to wei_,ht ratio and its excellent weldability. The spherical tanks

are identical, consisting of two hemispheres. The hemispheres would be spun from

2219 aluminum sheets and ehem-milled to reduce membrane areas to required thick-

ness {approximately half the thickness of the equator and polar areas where welding

reduces the unit strength). Flanges are welded to the hemispheres to provide both

continuous attachment and external support.
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The equipment support beams provide for the internal support of the propellant tanks

as well as the support of all the equipment and engine thrust structure. Two types of

fabrication were considered for analysis: (1) the common aircraft type of shear web

with zee stiffeners using magnesium alloy and (2) thin magnesium sandwich panels

with aluminum honeycomb core. As can be seen from the strength summary,

Table 4-4 the honeycomb sandwich panels are much lighter, inherently provide much

greater lateral stiffness, and have a very high margin of safety. As in the case of the

solar panel supports, final analysis may prove that stiffness requirements are more

critical than strength; therefore, no attempt was made to optimize the sandwich

configuration.

The forward and aft rings are designed to resist the "kick" loads caused by the shear

panels. Analysis has shown that both aluminum alloy 7075-T6 and Magnesium alloy

HM 31A-T5 are satisfactory. The aluminum ring will be lighter, but the weight

variation is small.

The equipment section outer shell is presently designed as a partial octagon where

most of the outer panels are flat. The lightest design for this type of configuration is

to have eight main longerons carrying the loads directly to the interstage structure.

Light, stiffened shear panels are installed between the longerons to give the structure

torsional and shear stability and strength. This type of fabrication lends itself nicely

to accessability of equipment since nonstructural circular doors may be installed in

the shear webs.

Mass moments of inertia were calculated for an orbiter alone and for an orbiter with

capsule. A summary of the results is presented in Fig. 4-10.

4.8 MATERIAL SELECTION

Several material candidates have been considered for each of the major structural

components; these are shown in Table 4-5.
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Table 4-5

MATERIAL CANDIDATES - ORBITER

Primary Structure

• Aluminum 7075-T6

• Beryllium/Alum Alloy (Lockalloy)

* • Magnesium HK 31A-H24 (Sheet and Plate)

ZK 60A-T5 (Extrusions and forgings)

HM 21A-T8 (High Temperature)

Propellant Tanks

• Filament Wound Fiberglass

• Titanium

e Stainless Steel

* • Aluminum 2219-T87 (7106 and 7039)

Helium and Nitrogen Pressure Tanks

* • Titanium 6AL4V

Spacecraft/Centaur Adapter

(Existing hardware)

• Beryllium

• Lockalloy

• Aluminum 7075-T6

* • Magnesium HK 31A-T4
ZK 60A-T5

4

*Indicates material selected for use in calculating structural weight.

The material selection has been based on the conservative approach where only

currently available material, state -of-the-art manufacturing techniques, and well

established material mechanical properties are considered. However, further evalua-

tion of other materials such as beryllium, Lockalloy (Be/A1), and Mag/Lithium

should be made in an effort to reduce the structural weight of the spacecraft.
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LOADED CONDITION (INCLUDED 900 LBS PROPELLANTS AND 220 LB CAPSULE)

= 17.81 IN.

_f = 0.55 IN.

=-1.13 IN.

I X = 338 SLUG FT 2

Iy = 240 SLUG FT 2

I Z = 318 SLUG FT 2

EMPTY CONDITION (NO PROPELLANTS, NO CAPSULE)

= 14.01 IN.

= -3.31 IN.

= -2.98 IN.

I X = 265 SLUG FT 2

Iy -- 177 SLUG FT 2

IZ = 203 SLUG FT 2

Y

(

Y

X

X

+

+

+
Fig. 4-10 Summary of Mass Moments of Inertia
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4.9 WEIGHT AND BALANCE

A weight summary for the basic orbiter is shown in Table 4-6. A detailed weight

breakdown for each subsystem on the basic orbiter is shown in Table 4-7.

Tables 4-8 and 4-9 present the overall vehicle weights for the orbiter alone and the

orbiter with capsule, respectively, and indicate the weight capabilities for 0 deg,

20 deg and 30 deg Flox Atlas-Centaur boosters. The 20 deg flox vehicle has been con-

sidered the nominal vehicle throughout the study. As can be seen from the tables the

0 deg flox vehicle has very marginal performance even without a capsule and a nega-

tive margin when the 61 in. diameter capsule is added. Propellant weight for orbit

injection is computed on the basis of thrusting from the cruise attitude as discussed in

Section 3. The penalty for this method of orbit injection is a 3 percent increase in

mass ratio for the 1969 Mars Mission as shown in Fig. 3-20. This result is about

a 3 percent (29 lb) reduction in burnout weight in orbit.

An equipment list and the weight estimates for an atmospheric capsule are shown in

Table 4-10. The weight advantages to be obtained by using an asceptic assembly tech-

nique rather than heat sterilization can be seen from this table. Included in the table

is the weight estimate for a 45-in. diameter capsule, discussed in Section 3.

An equipment list and weight estimates for a biocapsule are shown in Table 4-11. Here

again a weight advantage for asceptic assembly is shown.
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Table 4-6

WEIGHT SUMMARY- CONFIGURATION 4 (FIG. 4-5) -EMPTY

(BASIC ORBITER LESS IMPULSE PROPELLANTS AND PAYLOAD)

Subsystem Weight

Structure 99

Propulsion 112

Power Supply 189

Electronics 166

* Guidance 26

*Attitude Control 88

Thermal Control 15

(Ib)

695

*Includes 100 percent redundancy on components, and 200 percent
redundancy on control gas.

Table 4-7

DETAILED SUBSYSTEM WEIGHT BREAKDOWN -BASIC ORBITER

Structure

Top Ring
Bottom Ring
Equipment Beams
Top Closure
Bottom Closure
Outer Skin
Inner Skin

Beef-up at Engine
Solar Panel Attachments

S/C Separation Fittings

N 2 + He Tank Supports
Longerons and Stiffeners
Miscellaneous Brackets

Science Support Structure
Scan Platform Actuators
Umbilical Attachments

Hardware (Bolts, etc.)
Magnetometer boom
Miscellaneous

4-41
Total

Weight (lb)

5
9

14
3
3

10
2

4

8
1

4
5
5
6
5
2

3
7
3

99 lb
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Table 4-7 (Cont.)

.Propulsion

Engine Assembly (Inc. Gimbal Ring)
*Propellant Tanks

Fill Valves

Lines and Fittings

H e Tank
H e Gas
H e Fill Valve
H e Tank Support
Pressure Regulator
Gas Filter

Check Valves (2)

Relief Valves (2)
Thrust Structure

Residual Propellants
Gimbal Actuator System
Start Valve

TOTA L

*The fuel and oxidizer tank weight is made up as follows:

Tank Shell 10.6
Weld Lands 0.6

Attach. Flange 1.2
Sump 1.3
Slosh + Vortex Baffles 1.8

Total 15.5 lb per tank assembly

Thermal Control

Louver Assemblies (4)
Heaters
Local Heat Sinks

Paint, Misc.

TOTAL

Weight (lb)

21.8
31.0

0.5
4.3

23 7
34
0 2
20
1 0

0 5

0.2
2.0
3.0

10.0

7.0
1.5

112.1

8
2

3
2

15
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Table 4-7 (Cont.)

Power Supply

Solar Panel Assemblies

Booster Regulator
Power Synchronizer
Battery Charger
2400 CPS Inverter

400 Cps 1 q5 Inverter
400 Cps 3 _) Inverter
Secondary Battery
Wiring, Misc. etc.

Attitude Control System

Nitrogen Gas

Nitrogen Gas Tanks (2)

4 Jet Manifold Assemblys (2)

2 Jet Manifold Assemblys (2)

Plumbing and Line Fittings

Gas Regulators
Sun Sensors

Electronics

Canopus Tracker

Misc. Wiring, etc.

Guidance Subsystem

Inertial Unit

Electronics

Miscellaneous Wiring, etc.

Total

Total

Total

75
42

2

3
5
2

7
23
3O

189

19 0
24 0

25
1 5
4O
2 0
30
90

20 0

3.0

88.0

18
6
2

26
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Table 4-7 (Cont.)

Electronics

Radio Systems

4 ft dia. parabolic antenna

(including mechanisms and supt. brkts.)
Omni antennas (2)
Receiver
Exciter

Power Amplifier
DC to DC Converter

Circulators, etc.
Misc. Brkts, wiring, etc.

Sub -Total

Data Encoder

PN Generator

Modulator, Amplifier, etc.
Power Supply
Event Counters

Misc. (switching, wiring, etc. )

Sub -Total

Central Controller

Experiment Support Electronics

Command Programmer
Command Sub-system
Sequence Timer
Clock and Countdown

Multiplexer/Encoder

Tape Recorder
Misc. (wiring, relays, etc.)

Sub-Total

Status Instrumentation Sub-Total

Electronics Total

22
4
6.5
3.5
2
3
5
8

54 lb

2
2
1
2

4

11 lb

15

5
9
5
3

12
36

6

91 lb

10 lb

166 lb
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Table 4-7 (Cont.)

Centaur Adapter Structure

End Rings + Doors
Skin

Spring Assemblies
Separation Mechm. Supports
Local Beef-up at Centaur

Insulator Ring
Insulation Blankets

Tension Band Assembly

Total

Weight (lb)

9
22

4
4
4
2

6
5

56

Table 4-8

WEIGHT SUMMARY -- CONFIGURATION 4 (NO CAPSULE) - LOADED

0% 20% 30%
Flox Flox Flox

Basic Spacecraft 652 695 700

Science Payload 18 132 132

Orbit Injection Weight Required 670 827 832

Redundancy and Contingency 38 104 216

Orbit Injection Weight Capability

Impulse Propellant

Centaur Adapter

708

787

5O

931

998

56

1,048

1,102

6O

Total Vehicle Weight (lb) 1,545 1,985 2,210
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Table 4-9

WEIGHT SUMMARY -CONFIGURATION 4 (WITH 61-IN.

ATMOSPHERE CAPSULE) - LOADED

Basic Spacecraft

Science Payload on Basic Spacecraft

Capsule Adapter and Separation Mechanism

Orbit Injection Weight Required

Redundancy and Contingency

Orbit Injection Weight Capability

Capsule Complete (18 lb Science)

Impulse Propellant

Centaur Adapter

Total Vehicle Weight (lb)

0%
Flox

675

18

18

711

-82

629

158

DIAMETER

20%
Flox

718

88

18

824

28

852

158

30%
Flox

708

5O

919

56

723

88

18

829

140

969

158

1,023

60

i,545 1,985 2,210
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Table 4-10

WEIGHT SUMMARY- ATMOSPHERIC CAPSULE

Scientific Instruments

Sterility Shroud

Heat Shield

Heat Shield Back-up Structure

Entrybody Internal Structure

Guidance Rocket Assembly

Payload Compartment Structure

Electronics

Battery & Inverter

Insulation

Parachute System

Total Capsule Weight

Total Weight at Entry

Weight on Parachute (Including Parachute}

Asceptic

Assembly (lb)
61 in. Dia

18

22

22 (N)

14

14

10

11

20

7

2

3

143

118

61

61 in. Dia

18

24

33 (B)

0

19

11

12

20

15

2

4

Heat Sterilized Ilbl

45 in. Dia

18

13

18 (B)

0

10

8

12
1-

2O

15

2

4

158

130

71

120

104

71

N = Nylon Phenolic (Micro balloon)
B - Beryllium
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Table 4-11

WEIGHT SUMMARY- BIOLOGICAL CAPSULE

(61 in. Dia.)

Scientific Instruments

Sterility Shroud Assembly

Heat Shield

Heat Shield Back-up Structure

Guidance Rocket Assembly

Payload Compartment Structure

Crush Structure (Balsa)*

Electronics

Batteries & Inverter

Insulation

Parachute System

Total Capsule Weight

Total Weight at Entry

Weight on Parachute
(Incl. Parachute)

Asceptic

Assembly
(lb)

12

22

33 (iN)

18

2O

2O

28

43

3O

2

21

249

222

156

Heat Sterilized

(lb)

12

24

33 (B)

2O

24

22

5O

43

84

2

37

351

32O

248

5

24

33 (B)

2O

22

22

31

43

49

2

23

274

244

175

N = Nylon Phenolic (micro balloon)

B = Beryllium

*Assumes 114 ft/sec impact velocity and maximum deceleration of
900 g 's.
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4. i0 ALTERNATIVE LAUNCH SHROUD AND SPACECRAFT CONCEPTS

Although the existing Surveyor shroud has been used in the vehicle configuration

studies, there are many alternate shroud geometries possible. Two of these alterna-

tives are compared with the surveyor shroud on Fig. 4-11 and are briefly described

here.

The tangent ogive shroud shown on Fig. 4-11 indicates that approximately 4 ft 6 in

can be reduced from the length of the overall vehicle, and by reducing aerodynamic

drag forces results in less structural loading in the lower booster stages. As can

be seen from the sketch the amount of unused volume can be decreased considerably.

The double conical shape depicted in Fig. 4-11 has the advantage of utilizing the full

120 in diameter of the Centaur. Other advantages are that very large diameter cap-

sules could be accommodated and a fixed solar panel area of 78 ft 2 can be used. Also

in such a design the fuel and ozidizer tanks of the orbiter can be placed on the thrust

line of the engine thus reducing cg travel at engine burn. In this design all of the

orbiter equipment is installed around the periphery of the vehicle and is readily

accessible for adjustment and checkout on the launch pad. The Centaur equipment

bay has been rearranged to utilize the full 120 in. diameter.
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Section 5

SUBSYSTEM DESCRIPTION

5.1 GUIDANCE AND CONTROL

5.1.1 Attitude Control

The function of the attitude control system is to stabilize the spacecraft so that its

solar panels face the Sun. This permits orientation of the communication antenna

toward Earth. Requirements for Attitude Control exist both during the transfer from

Earth to Mars and during the vehicle's life on orbit at Mars. In addition, the attitude

control system provides a reference system of coordinates within which orientation

and thrust vector control for guidance maneuvers are accomplished.

For the Mars missions two maneuvers are anticipated to correct the course of the

spacecraft, and for vehicles which include a direct-entry capsule an additional orien-

tation maneuver is required for release of the capsule. The vehicle design with a

side-mounted engine permits injection into orbit about Mars in 1969 and 1971 without

changing the in-flight orientation. If the same vehicle is used on a Venus mission, a

maneuver for injection into orbit is required.

After the vehicle is in a planetary orbit, its attitude will remain fixed provided the

planetary scan subsystem remains operative. In the event that this unit fails, it

would be possible to direct the scientific instruments for short periods of time by

reorienting the vehicle upon a command from Earth.

5.1.1.1 Description

Control System Operation. The attitude control system that is considered most appro-

priate for these missions is similar to that used on Mariner C. It operates in a

primary mode in which the attitude is fixed during most of its lifetime and in a

secondary mode for short intervals when a special orientation is required.

5-1

LOCKHEED MISSILES & SPACE COMPANY



M-29-64-1

In the primary mode the longitudinal axis points toward the Sun, and roll about this

axis is stabilized with reference to Canopus (Fig. 5-1). A sun sensor directed forward

in the spacecraft senses the deviation from the direction of the Sun in the pitch and yaw

axes and energizes the reaction control jets on these axes to rotate the vehicle opposite

to the deviation. A star tracker directed toward the south celestial pole detects the

direction of Canopus relative to the vehicle and actuates reaction control jets on the

roll axis to keep Canopus in the center of the field of view.

A stabilization accuracy of one degree is required for pointing the high-gain antenna.

This is also adequate for directing the solar panels and/or orientation for guidance

maneuvers. Consequently, in the absence of disturbances, each axis of the control

system is designed to operate with a two-degree deadband, centered about the null

position. To achieve optimum utilization of the specific impulse of the propellant a

minimum on-time for the reaction jets is designed into the controller. Twenty milli-

seconds is considered to be a practical value. The vehicle's attitude will then limit

cycle within the bounds of the deadband at a rate determined by the thrust of the jets.

In the secondary mode, the required orientation may be such that the Sun sensor and

star tracker are not directed at the Sun and Canopus. For example, the orientation

required at the time of the first guidance correction is dependent on the random dis-

persion of the errors incurred at launch. For this purpose, three gyroscopes with

mutually perpendicular input axes are mounted on the vehicle. Before reorienting the

vehicle, the gyroscopes are energized with their spin vectors caged through their

torquers. Actuation signals to the controller are transferred from the Sun sensor and

star tracker to the output signals from the gyros.

In the caged mode, the gyros measure the vehicle rates so that the spacecraft can be

commanded to assume an angular rate by applying currents to the torquers. To rotate

through a specified angle, the currents are applied for a fixed duration and then

removed. After thrusting, or any other function of the maneuver, the rotation is made

again in the opposite direction to return to the primary orientation. At this time,

control is transferred back to the primary attitude references.
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Fig. 5-1 Mariner Orbiter Attitude Cohtrol Reference System
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Thus to perform a maneuver, the magnitudes and durations of the currents to be applied

are transmitted to the spacecraft and stored in the computer. At the selected time, a

computer program will execute the maneuver and return the vehicle to its primary mode

of operation.

To establish the primary reference initially and to reestablish it if it is lost for any

reason, an acquisition sequence is followed. With the gyros energized, the pitch and

yaw axes will drive until the sun sensor is nulled. A secondary sun sensor directed

backward in the vehicle provides a reference when the orientation is more than 180

deg from the Sun.

When the signals from the sun sensor fall below a prescribed level, indicating Sun

acquisition, a roll rate is commanded. As the star tracker passes over Canopus, the

roll axis locks onto the signal from the tracker and stops the rotation. After acquisition

is accomplished, the gyros are deenergized and damping of vehicle motion is accom-

plished by derived rate circuits in the controller. In the event of a false acquisition in

roll, as evidenced by lack of communication through the high-gain antenna, an override

signal which causes the vehicle to continue to roll can be commanded through the

omnidirectional antenna. Although the data rate at large distances is very low in this

mode, sufficient communication is possible to convey the override command.

Thrust Vector Control. For midcourse and injection maneuvers, the rocket engine is

fired until a specified velocity increment is acquired by the spacecraft. To control

the direction of the increment of velocity, the vehicle is rotated until the rocket engine

points opposite to the desired velocity vector. The engine is mounted on two gimbals

which permit it to rotate relative to the pitch and yaw axes of the vehicle. Before firing

the engine, the gyros are uncaged, causing them to measure the angles of deviation

rather than the rates. Signals from these gyros continue to drive the attitude controller

and they are also used to drive the thrust vector controller which energized the actuators

on the engine's gimbals. When the engine is fired, the gimbals move to maintain the

vehicle's attitude, thereby causing the thrust vector to pass through the center of

gravity.
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Due to the release of the capsule and to the use of propellant during injection the center-

of-gravity of the vehicle shifts, causing a deviation in the direction of the velocity vector

that this system produces. However, the shift when the capsule is released will be

known with fair accuracy, and the direction of the thrust vector for orbit injection is

not critical. For the two guidance corrections, the location of the center of gravity

will be known precisely from a measurement made before launch, and its uncertainty

will contribute little to the error in the direction of the velocity vector. Net errors in

the direction of the velocity due to sensors, gyro drift, and cg uncertainties are

estimated to be 0.6 deg rms.

To control the magnitude of the incremental velocity, an aceelerometer oriented along

the direction of thrust is provided. Its output is integrated in the computer counting

the number of pulses required to restore its test mass. When this number exceeds a

specified value, a signal is derived which shuts off the engine. Errors in the magnitude

of incremental velocity are caused primarily by uncertainties in the thrust

profile during shutdown. These are estimated to produce an rms uncertainty of 0.1

1Tl/SeC.

Equipment. The sun sensors, gyros, and star tracker can be the same as those used

on Mariner C. The star tracker is gimballed and has a field of'view of 30 deg by 4 deg.

Since Canopus lies about 15 deg off the south celestial pole, this permits it to be seen

with the vehicle-to-sun line in any direction in the ecliptic if the 30-deg field is mouated

along the longitudinal axis with its center toward the south pole. Developments in the

area of optical sensors make it appear likely that a solid-state sensor having the same

performance as the Canopus tracker for Mariner C will be available before 1969. It

so, it should have some advantages in reliability and in the required operating voltage

levels.

At present, cold gas jets with nitrogen as a propellant are preferred for the aetuatol"s.

The use of solar vane actuators is not considered advantageous for the Mars orbiter

mission in view of the magnitude of solar pressure at the radius of Mars and the dis-

turbing influence that the albedo of Mars would exert during the time in orbit. Altcrmlte
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methods of actuation have been considered and are discussed in this report under the

subject of propulsion.

Flight-control electronics for the Mariner orbiter consist primarily of the control and

derived rate circuits for transferring attitude reference signals from the sensors to

the actuators and the circuits required for thrust vector control. These are conventional

semiconductor circuits which may be designed as modules or as integrated circuits. To

increase the reliability, they will be provided in redundant sets with failure-monitoring

and self-repairing capability.

The accelerometer for measuring thrust level is a standard type using a magnetically

constrained test mass in a pulse rebalance circuit. Linearity and bias errors on the

order of 5 x 10 -4 g give adequate accuracy.

5.1.1.2 Impulse Requirements

Disturbances. Possible sources of torques tending to disturb the vehicle's attitude are

micrometeroite impacts, solar radiation and, in orbit about a planet, the gradient of

the gravitational field. To evaluate the effects of meteorites, the flux density at Mars

is assumed to be the same as at Earth, 7 x 10 -9 gm/m2/sec at a velocity of 30 km/sec,

and the spacecraft is approximated by a sphere 10 ft in diameter. The expected impulse

derived from this is only 0.3 Ib-ft-sec/mo, which could be overcome by a neglibible

amount of cold gas propellant.

The effect of solar pressure acting on the 100 sq ft of frontal area of the spacecraft

produces an impulse of 38 lb-ft-sec/mo if the center of pressure and center of gravity

are offset by one ft. This effect does not add to the gas requirement for this system

acting in a limit cycle mode, since the minimum impulse is considerably larger than

that required to overcome the solar pressure disturbance.

With different principal moments of inertia, disturbing torques are exerted on the

vehicle in orbit as a result of the gravitational field. With the nominal orbit considered
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for the Mariner orbiter and a difference of 55 slug-ft 2 in the moments of inertia, the

disturbance amounts to 1 lb-ft-see/mo.

It is concluded that solar pressure is the dominant disturbance on the spacecraft, whether

it is in heliocentric or planetocentric orbit. The meteorite flux at Mars may exceed that

at Earth, but it would have to increase by two orders of magnitude before its effects

become comparable to those due to solar radiation.

Limit Cycle. The majority of the impulse required to stabilizethe vehicle is consumed

by operation of the limit cycle. Itis desirable to make itsperiod as long as possible;

however, for practical implementation with reliable and simple equipment the period is

limited to about 2000 sec. Ifthis is the period of the limit cycle corresponding to the

largest moment of inertia (338 slug-ft2), the impulse expenditure for this axis is 6. 13

ib-see/mo with the reaction jets mounted 10 ftfrom the cg. The remaining axes are

estimated to have moments of 318 and 240 slug-ft2 during transfer. With identical

reaction jets on all axes, the impulse requirement is 21.5 Ib-sec/mo. The thrust

level on each axis is 0.13 lb.

After the capsule is released and the vehicle is injected into orbit its principal moments

of inertia are reduced to 265, 203, and 177 slug-ft 2. With the same reaction control

system, the periods of the limit cycles will decrease and the rate of impulse expenditure

will be greater. Under these assumptions, the requirement for on-orbit operation

becomes 29.8 lb-sec/mo.

The overall limit cycle requirement for a 9-month transfer phase and 6 months on

orbit is 373 lb-sec exclusive of whatever amount of propellant is dissipated through

leakage. If a specific impulse of 60 can be realized, the weight of the propellmlt is

6.2 lb. With a sustained disturbance due to solar pressure, this requirement remains

essentially the same. A large meteorite impact would cause a higher rate of expendi-

ture, but these should occur so infrequently that their net contribution is negligible.

Acquisitions and Maneuvers. The propellant used for maneuvering is a function of the

rate with which it is desired to reorient the spacecraft. Reorientation c:m proceed as
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slowly as it is practicable to torque the gyros, since no maneuver is required for

which the time for performing it is critical. A typical maneuver is considered to be

one in which the vehicle is turned 90 deg in 30 min. This operation, plus return to the

original orientation, requires 3.6 lb-sec in addition to that used to maintain the limit

cycles. The three maneuvers anticipated for the mission would then require 10.8

lb-sec of impulse. Additional propellant for 10 maneuvers will be carried as a backup

for possible failures of the planetary scan system.

Acquisition or reacquisition of the references involves a rotation of the vehicle under

gyro control in the same manner as for a maneuver. Because three axes are involved

and the possibility of false acquisitions exists, the expected impulse required for an

acquisition may be considerably larger than for a maneuver. It is estimated that 12

lb-sec are needed and that acquisition will occur twice during a typical mission.

Total Impulse. To summarize the preceding estimation of impulse for a 1969 orbiter/

capsule mission of 9-month transfer duration and 6 months on orbit, the expected value

of attitude control impulse is about 435 lb-sec exclusive of leakage and redundancy

requirements. For an orbiter that does not carry a capsule, it is proposed to shorten

the control jet moment arms from 10 ft to 9 ft, thus increasing impulse requirements

to about 475 lb-sec.

5.1.1.3 Redundancy

The overall reliability of the attitude control system as described above is relatively

low, and since the success of any part of the mission is critically dependent upon its

operation every component is to be provided in redundant pairs. Each sun sensor and

the star tracker is supplied in duplicate. All units are operative and comparators at

their outputs detect failures. A diagnostic routine isolates the unit that has failed and

removes it from the circuit.

The flight control electronic circuits will be designed in a self-monitoring and self-

repairing unit which will make optimum use of the components carried as spares.
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Since it contains three identical sets of circuitry for the three axes, provision will be

made for applying each redundant circuit to whichever axis encounters a failure. By

applying existing techniques in self-organization the electronic circuits can be made

sufficiently reliable that the dominant mode of failure will exist in the sensors or the

actuation system.

Duplicate sets of reaction jets and propellant supply systems will operate in parallel.

In the event that a jet fails to open, the alternate jet will maintain operation in a limit

cycle of longer duration. If a jet fails to close, it will exhaust its propellant supply

as well as that of the other jets fed by that supply. The disbalance this situation incurs

will be counteracted in part by jets fed from the other supply. Consequently an amount

of propellant equal to three times that which is required without failures will be carried

on the spacecraft. Thus an impulse capability of 1305 lb-sec is to be supplied for a

1969 orbiter carrying a capsule. For a 1969 orbiter without a capsule, the total impulse

capability to be supplied is 1425 lb-sec. No additional allowance is made for leakage,

since a leakage allowance is automatically provided in all circumstances except that of

a valve stuck open very early in the mission.

5.1.2 Guidance

A nominal trajectory from Earth to Mars for each day within the selected 1969 lam_ch

window has been established. The purpose of the spacecraft guidance function is to

provide means of following these trajectories as closely as possible by making periodic

observations of the course and suitable corrections to the flight path.

For the missions considered here, the only means of navigation will be by radio trackil_'

through the DSIF network. Alternate possibilities involving optical sensing of the stars

and/or the destination planet have been rejected because of the consider,xbly greater

weight that would have to be carried in the form of instrumentation. Furthermore,

instruments adequate for this purpose are not available and would have to be developed.

Changes in the flight path will be accomplished by placing the vehicle in a g_n'O-l'eferclwcd

mode, rotating it to a selected attitude, and firing the rocket engine until the velocity
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increment required to achieve the new flight path is attained. During firing, the direction

of the thrust vector is maintained by an autopilot, referenced to the gyroscopes and con-

trolling the engine's gimbal angles.

Primary emphasis in this study has been placed on the guidance requirements for the

1969 Mars orbiter. The 1971 Mars mission and the 1970 Venus mission are expected

to have requirements sufficiently similar to cause no changes in the design or perform-

ance of the vehicle.

5. i. 2.1 Error Sources

Uncertainties in the physical model of the solar system and dispersions in the tracking

data received through the DSIF network are the principal sources of navigation errors

in determining the course of the spacecraft. Additional deviations from the nominal tra-

jectory are caused by errors in pointing the thrust vector during maneuvers and in con-

trolling the magnitude of the velocity increment it produces.

Physical Model. Distances measured relative to bodies in the solar system are uncertain

to the extent that the Astronomical Unit (AU) is in error. That is, the absolute range

of a spacecraft from Mars is indeterminate because the distance to Mars is not known

precisely.

Determination of the AU by radar returns from Venus has reduced this uncertainty to

within a standard deviation of 250 km. Inaccuracy in the measurement is due in part

to the uncertainty in the velocity of propagation of radio waves and partly due to the

fact that the particular area of the surface from which the energy was received is not

known. The probable error in velocity of propagation, currently estimated at 200

m/sec, results in a standard deviation in the AU of 150 km. An error of 200 km is

attributed to the reflecting surface and electronic equipment.

The ephemerides of the planets are established optically to within the resolving power

of the telescope used for measurement. The standard deviation in their estimation
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is currently about 0.05 sec of arc. The ratios of the distances between planetary

orbits is known with extreme accuracy from observations of their orbital periods,

any error is considered neglibible compared to the other errors in the model.

and

At the time of arrival of the 1969 orbiter, Mars will be approximately 170 million

kilometers distant from Earth. Ifthe spacecraft were tracked with absolute precision

relative to Earth itsposition relative to Mars would be in error by 43 kilometers in

directions normal to the line of sight because of the uncertainty in the ephemeris of

Mars. The error in Mars' position in the direction of the line of sight would be 283

kilometers ifthe fulldeviation of 250 km in the AU is used. However, since the method

of tracking also involves the velocity of propagation of radio waves, this contribution to

the error in the AU is cancelled for relative measurements and the line of sight error

becomes 227 km.

These errors have an effect on the dispersion of the impact parameter. This is the

location of the arrival asymptote relative to the center of the destination planet in a

plane normal to the asymptote. For the nominal launch and arrival dates, January 29

and October 26, 1969, the ellipse of 1_ dispersions due to errors in the physical model

is 324 kilometers long and 86 km wide in this plane.

DSIF Tracking. For several days after launch the vehicle is tracked continuously from

the DSIF stations, and its course is determined within certain tolerances. After that,

it is tracked periodically throughout the transit time. Both range tracking, by means

of the time between the transmission of a signal and its return, and range-rate tracking,

by means of the doppler shift in the carrier, are used.

A complete evaluation of the accuracies of orbit determination by this method is beyond

this study. Here it is assumed that for near-earth tracking there is a standard deviation

of 0.1 n_sec in the velocity in any direction between the trajectory that is determined

by tracking and a trajectory that actually achieves the required position mid arrival

time of the asymptote upon arrival at Mars.
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It is assumed that, as a result of correlation of the tracking data during the rest of the

trip, the standard deviation in the position of the vehicle on the arrival asymptote is

10 km in the direction of the line of sight and 220 km in directions normal to the line of

sight. The line of sight range at arrival can be derived almost entirely from ranging

on the vehicle in the vicinity of Mars whereas the normal errors are strongly dependent

upon near-earth tracking and periodic samples along the trajectory.

Solar Pressure. The uncertainty in the effects of solar pressure on the vehicle will pro-

duce a large deviation between the actual trajectory which the spacecraft follows and

the one which is predicted. However, this deviation is measured as a result of DSIF

tracking along the course and its contribution to the error in determination of the vehicle's

position after tracking is expected to be small.

Maneuver Execution. During any thrusting maneuver, there is a deviation in the direc-

tion of the velocity increment given to the vehicle which is caused by errors in the

attitude references to which the gyroscopes are aligned, drift in the gyros during the

maneuver, and errors in controlling the thrust vector to the gyro reference. There

is an error in the magnitude of the velocity increment caused by inaccuracies in

measuring and integrating the vehicle's acceleration and in cutting off the rocket engine

thrust at the correct time. The error in direction is estimated to have a standard

deviation of 0.6 deg and the error in magnitude to have a standard deviation of 0.1

m/sec. Thus, with an expected value of 10 m/sec for the first correction, the 1

error distribution in velocity is 0.1 m/sec in any direction. The 3_ value for com-

puting propellant requirements is 30 m/sec.

5.1.2.2 First Guidance Correction

After the spacecraft has been tracked until its course is determined with sufficient

accuracy, a correction is made to decrease the dispersion in the arrival asymptote at

Mars. The time at which this correction can be made with the minimum expenditure

of propellant may occur at twenty or thirty days after launch; however, the difference

between the propellant required at that time and that required immediately after launch

LOCKHEED
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is small. There is some accuracy to be gained by performing the maneuver as early

as possible since near earth tracking of the vehicle after the maneuver will permit

more accurate measurement of the execution errors. Consequently, it is assumed

that the first correction is performed as soon as possible after launch. It is estimated

that three days will be required to attain sufficient tracking accuracy to make the

maneuver.

After the maneuver the tracking error of 0.1 m/see and the maneuver execution error

of 0.1 m/sec result in an elliptic dispersion of the impact parameter at Mars with semi

major and minor axes of the 1 a ellipse of 9060 km and 705 km for launch on January 29,

1969. The semimajor axis is inclined at 25.1 deg to the ecliptic, Fig. 5-2. The ellipse

varies from 6850 by 790 km at an inclination of 34.9 deg for launch on January 15, 1969,

to 11, 050 by 639 km at an inclination of 16.6 deg for launch on February 14, 1969.

Guidance of the vehicle must be accomplished such that the probability of impact on the

surface is less than 10 -4 . Since the probability of failure of the guidance system after

the first correction and before another can be made is considerably larger than 10 -4 ,

the nominal arrival asymptote after the first correction must be selected so that the

probability of entry is less than 10 -4 . This is satisfied approximately if the entry

corridor at Mars falls outside of the ellipse of 4 _ dispersion.

The distance of the nominal arrival asymptote from the selected point of orbit injection

is smallest with the aiming point located as shown in Fig. 5-2. Thus the distance of the

arrival asymptote from the center of the planet for the January 29 launch date is 11,200

km, and the aiming point is inclined at 51 deg to the direction of the impact parameter

required for orbit injection. This distance remains relatively constant through the

launch window.

5.1.2.3 Second Guidance Correction

The dispersion in the position and time of arrival at Mars after the first guidance

correction is so great that a planetary orbit cannot be established without another
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correction. After tracking at intervals during the trip, the location of the vehicle

relative to earth is predictable to within 220 km in directions normal to the line of sight.

This uncertainty together with the uncertainty in the Mars ephemeris results in a stand-

ard deviation of 225 km in the predicted location of a vehicle at Mars. The uncertainty

in the AU and the tracking error result in a standard deviation of nearly the same

magnitude in the direction of the line-of-sight from earth.

The second correction will leave the arrival asymptote with a residual error due to its

execution. By waiting to make the correction until the distance to the planet is very

small, the effect of the execution error becomes negligible; however, the propellant

required is excessive. On the other hand, if the correction is made too early, the

errors in performing it will far exceed the tracking errors. As a compromise, the

second correction is made at the time when its execution contributes approximately the

same errors to the impact parameter as does the uncertainty in radio tracking. This

occurs at 26 days prior to arrival at Mars.

The aiming point for the second correction must also be such that the probability of

landing on Mars is less than 10 -4 . The net dispersion in the impact parameter due to

tracking and maneuver execution has a 1_ value of 315 km in either direction. To

keep the entry corridor at the planet outside of the circle of 4or dispersion, the nominal

asymptote must be aimed a distance of 7120 km from the center of Mars. The nominal

periapsis altitude then becomes 1500 km. Minimum altitude is taken as 300 km above

the surface to insure orbits of 50 yr lifetime. Figure 5-3 illustrates the dispersion in

the arrival asymptote that will exist after the second correction. With the dispersion

in the first correction shown in Fig. 5-2, the impulse required for the second correc-

tion will fall between 3 and 13 m/sec for more than 99 percent of the trajectories. The

3 cr value for computing propellant requirements is 13 m/sec.

5.1.2.4 Orbit Dispersions

The dispersion in the impact parameter and the error in determining the time of

periapsis of the approach hyperbola cause a dispersion in the parameters of the orbit
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that is established about Mars after the injection maneuver has been performed. The

more important of these are shown in Fig. 5-4 as a function of launch date. The nominal

aiming point is selected to give the minimum value of periapsis, thereby using the min-

imum energy for orbit injection, while retaining a probability of 10 -4 that periapsis will

remain more than 300 km above the surface. This varies slightly through the launch

window because of the variation in hyperbolic excess velocity at Mars.

The 3 (r limits on the parameters give the boundaries outside of which the probability of

occurrence is no more than 0. 0027. Rather large dispersions in the radius of apoapsis

and in the orbit period occur. The dispersions generally become greater in the latter

portion of the launch window.

5.1.2.5 Orbit Selection

From the dispersions given in the preceding section, limits on those orbits which may be

achieved can be set. A primary consideration is that the line-of-sight to the sun, required

for attitude control and power, not be occulted by Mars. Figure 5-5 shows the relative

directions of the Sun and the approach asymptote for the nominal arrival date. Periapsis

of the nominal approach hyperbola will be rotated 21.5 deg around the planet from th(,

normal to the approach asymptote which passes through the center of Mars. Periapsis

of the orbit around Mars will nearly coincide with this, and thus will fall approximately

in the plane normal to the ecliptic which contains the Sun and Mars. Therefore, the

dispersion of apoapsis with limits of three standard deviations might appear as illus-

trated in Fig. 5-6. To avoid occulation within this boundary, the angle between the

directions of periapsis and the Sun must be greater than 13 deg.

The attitude control system also requires a line-of-sight to Canopus for its operation.

With periapsis south of the ecliptic parallel through the center of Mars, this condition

is satisfied except for orbits of exceedingly high inclination. Because of the direction

of Mars' pole, polar orbits can be achieved without occultation of Canopus. For periapsis

more than 13 deg north of the ecliptic parallel, the orbit plane approaches Mars equa-

torial plane. This condition is not desirable because observation of the surface is
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restricted to a zone about the equator and does not permit acquisition of information

about the temperate zones. If periapsis is not on the sunward side of Mars, the orbit

is further restricted; however, since the most information will be acquired during the

time of closest approach it is considered essential to select an orbit so that the surface

is sunlit at this time.

A further consideration in selecting the orbit is the line of sight to Earth. One means

of measuring the diameter of Mars involves occultation of the orbiter by Mars. Figure

5-7 shows the trace of the nominal orbit for which the line-of-sight to Earth, the center

of Mars and the orbiter are colinear on the nominal date of arrival. Periapsis is

declined 22 deg below the ecliptic parallel through Mars and rotated 5.5 deg past the

Mars-Sun line. The nominal orbit plane contains the approach asymptote and is chosen

to contain the line-of-sight to Earth.

The shaded area is that part of the celestial sphere which will be occulted from view

of the orbiter by Mars at some time during the orbit. With this selection of an orbit

the line-of-sight to Earth will be occulted for all guidance dispersions within the 3

limit although the trace of the line of sight will not necessarily cross a diameter of

Mars on the first pass. As time passes after injection into orbit, the Sun and Earth

vectors rotate counterclockwise along the ecliptic parallel. Thus, the Earth eventually

comes out of the area of occultation and the Sun enters it. However, it is nearly a

year after injection before occultation of the Sun occurs.

Since the vector to Mars' pole is inclined 26.6 deg in a direction nearly opposite to

that of perapsis the inclinationof the orbit is about 55 deg relative to the Martian equator.

The ascending node between the orbit and equatorial planes is rotated about 110 deg

from periapsis of the orbit.

5.1.2.6 Capsule Guidance

For mission concepts involving a direct landing capsule, a separation maneuver is

made after the second guidance correction. Because of the small amount of propellant
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required to deflect the capsule to impact on the planet, the maneuver can be made

sufficiently close to Mars that errors in its execution are negligible compared to the

radio tracking errors. A time of two days before arrival has been selected for this

event. The spacecraft is reoriented to an angle of 32 deg to the flight path, the capsule

is separated, spun to 50 rpm and given a velocity of 50 m/sec by firing a solid rocket

engine. It thus arrives at Mars some time before the orbiter at a nominal entry angle

of 46 deg.

The 3 _ dispersion of 945 km due to errors in tracking and execution of the second

correction will cause the entry angle to be dispersed between 58 deg and 32 deg. The

nominal entry is chosen to restrict the velocity at parachute deployment to Mach 2.5

and to restrict the thermal impulse during descent to that given by entry above 30 deg.

The landing point is dispersed between 5 and 30 deg of latitude in the southern hemisphere

of Mars.
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5.2 EXPERIMENTAL TECHNIQUES AND INSTRUMENTATION

Scientific payload packages were suggested in the Mariner orbiter study in order to

generate spacecraft design requirements and to provide measures of mission

capability.

The assemblages of scientific instruments proposed here were thoughtfully selected

to aid the designers in arriving at a well-proportioned system capable of achieving

the prescribed mission objectives with as much reliability as possible through func-

tional redundancy. At the same time the unique opportunities for correlated observa-

tions of various phenomena for an extended period afforded by a long-life orbiter led

to the selection of a more diversified array of scientific instruments than is required

by the primary mission objectives. It is believed that the final selections of scientific

payloads described here have much to offer in regard to capability for achieving the

primary mission objectives as well as diversity relative to the acquisition of important

information beyond the minimum requirements of the missions.

5.2.1 Scientific Objectives

In compliance with instructions from JPL in Ref. 2 concerning the prime objectives

of the Mariner Mars 1969 Orbiter, attention was directed mainly to examining the

capabilities of the orbiter in relation to the following scientific objectives:

• Size and shape determination of Mars

• Television observation of surface of Mars

• Acquisition of biological and surface environmental data with a landing

capsule

Performance of interplanetary experiments during the flight from Earth to Mars is

also required insofar as such experiments do not interfere significantly with the

prime objectives.
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5.2.2 InitialSelection of ScientificPayloads

Itwas necessary early in the study to indicate tentativescientificpayload requirements

so as to provide a basis for the design of supporting subsystems. A "shopping list"of

experimental instruments was prepared specifying size, weight, power and data out-

put rates for each instrument as shown in Table 5-1. Specifications were obtained,

for the most part, from a preferred listsupplied by JPL in Ref. 2. Some items,

such as radar altimeters, accelerometers, and rate gyros, are represented in accord-

ance with data supplied by vendors and two instruments (the planet diameter scanner

and the star deflectometer) are entirely conceptual at present.

A choice of possible payloads was offered to the subsystem designers by selecting from

the list four different assemblages of instruments ranging in total weight from 18 to

244 lb for the orbiter alone. In view of the smaller payload capability of the orbiter

with capsule compared to the oribiter alone, a somewhat smaller range of optional

scientific payload weights was devised for the orbiter with capsule.

5.2.3 Orbiter Capabilities

Determination of Mars Size and Shape. It appears feasible to determine the size and

shape of Mars in a number of ways with the aid of the orbiter. Accuracies should be

considerably better than are likely to be achieved by instrumentation on Earth. The

accuracy to which the diameter of Mars is now known is indicated by the following

considerations.

The angular resolving power of a telescope is expressed by the formula 1.22 k/'d,

in which X is the wavelength of light and d is the diameter of the telescope aperture.

In the case of the Palomar 200-in telescope, using light of wavelength 0.6 micron, the

resolving power is 1.44 × 10 -6 radians. Mars nearest approach to Earth is about

55 x 106 km. Hence, at best the visual limit of resolution is about 80 km. Because

of atmospheric shimmer, photographic resolution is only about half as good as visual
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Table 5-1

EXPERIMENTAL INSTRUMENT SHOPPING LIST

Size Weight Power Sample

Orbiter Instruments (in) (lb) _ (bits)

Ion Gage 5 diam 1.3 0.1 14

Particle Flux Meter 4 x 5 x 6 2.5 0.35 42

Medium Energy Proton Monitor 4 x 5 × 5 3 1 84

High Energy Proton Monitor 3 × 4 × 4 4 0.5 84

Cosmic Ray Spectrum Analyzer 6 x 6 × 18 18 2.5 98

Low Energy Plasma Monitor 6 x 8 × 8 7 i. 25 56

High Energy Plasma Monitor 8 x 8 × 12 20 4 98

Cosmic Dust Detector (A) 4 × 4 × 4 2.5 0.2 56

Cosmic Dust Detector (B) 3 × 4 × 4 2 0.25 28

Micrometeoroid Detector (A) 8 × 8 x 8 8 0.5 56

Micrometeoroid Detector (B) 3 × 8 × 8 4 0.3 28

X-Ray Telescope 4 × 5 × 6 5 3 56

Neutron Spectrometer 5 × 6 x 6 8 3 35

Magnetometer 4 x 4 × 6 5 5 21

Trapped Radiation Detector 4× 5 × 5 4 0.7 28

Microwave Spectrometer (A) i0 x 10 × 12 30 13 210

Microwave Spectrometer (B) 12 × 12 x 12 35 15 420

UV Spectrometer 9 × 10 x 24 22 12 315

IR Spectrometer 15 x 12 diam 29 7 420

UV Photometer (A) 5 × 3 diam 1.5 1.5 21

UV Photometer (B) 5 × 6 x 7 6 5 84

IR Radiometer 4 x 5 × 7 3 3 28

IR Interferometer 7 x 8 x 12 16 5 35

Microwave Radiometer 8 x 8 x 14 24 4 28

Television (A) (low resolution) 2 x 3 x 4 6 15 2 x 105

Television (B) (high resolution) 15 × 7 diam 30 15 1.8 x 106

Television (C) (very high resolution) 24 x 10 diam 130 25 6 × 106
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Orbiter Instruments

IR Television

Facsimile Television

Planet Diameter Scanner

Star Deflectometer

Radar Altimeter

Bi-Static Radar

Top-Side Sounder

Capsule Instruments

Pressure Gage

Temperature Gage

Density Gage

Acoustic Velocity Gage

Pitch-Yaw Rate Gyro

Radar Altimeter

Accelerometer

UV Photometer

IR Radiometer

TV (Surface Scanning)

Solar Zenith Angle Indicator

Ionizing Radiation Monitor

Wind Velocity Indicator

Gravitometer

Seismometer

Soil Properties Gages

Mass Spectrometer

Gas Chromatometer

Simple Gas Analyzers

Optical Polarimeter

Table 5-1 (Continued)

Size

3x3x5

4x6x6

6 x 3 diam

12 x 4 diam

8x8x14

4x4x12

5x5x14

Weight

(lb)

10

10

10

10

37

10

25

2x 1.6diam 0.4

3 x 1 diam 0.3

2x3x4 1.5

2 x2.3diam 0.6

5 x 3 diam 2

4x9x12 8

2x2x2 2

5 x 3 diam 2.5

4xSx7 3

2x3x4 5

2x2x4 0.8

4x5x6 3

24 x 2 diam 2

6 x 5 diam 10

5x4. Sdiam 7.5

12 x 12 x 24 14

3×5x10 5

8 × 8 × 10 14

6x8x8 8

6 × 3 diam 5

Power

(wa s)

6

5

5

2

39

5

10

0.1

0.1

2

0.3

7

25

4

1.5

3

I0

2

0.5

0.1

1

0.5

3

6

20

6

2

Sample

(bits)

2 x 10 5

2 x 105

28

28

14

35

140

7

7

7

7

14

7

14

21

28

2 × 105

14

21

14

14

210

35

140

280

42

21
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Capsule Instruments

X-Ray Diffractometer

Alpha Scattering Analyzer

Neutron Activation Analyzer

X-Ray Spectrometer

Fluorescent Spectrometer

Gulliver

Wolf Trap

Multivator

Optical Rotation

J-Band Detector

Organic Gas Chromatometer

Vidicon Microscope

Table 5-1 (Continued)

Size Weight Power

(_) (Ib)

8 x i0 x 12 16 15

6x6x8 7 2

6 x 8 x 10 14 6

5x6x6 8 3

4 x 12 x 15 40 30

6x8x10 6 3

6x6x6 4 1

10 x 3 diam 4 2

4x6x6 5 1

3x8x10 5 5

5x5x8 7 4.5

i0 x 3 diam 5 2

Sample

(bits)

28O

21

98

28O

28O

98

98

140

98

210

140

10 6
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capability. Thus, the uncertainty in the dimensions of Mars determined by photo-

graphic techniques is about 160 km, which is more than 2 percent of the diameter.

Table 5-2 lists eight combinations of basic information, obtainable with the aid of an

orbiter, from which the dimensions of Mars can be deduced. All but one of the com-

binations require accurate data concerning the orbit parameters of the orbiter. The

additional weight and power associated with the experimental technique implied by

each combination and the estimated uncertainties in the results are indicated in the

bottom rows of Table 5-2. All of the techniques offer considerable improvement in

our knowledge of the dimensions of Mars, and two require no additional equipment

weight or power.

Table 5-2

DETERMINATION OF MARS RADIUS

Basic Information

Orbit Parameters

Radio Occultation Time

Star Occultation Time

Planet Angular Diameter

Radar Altitude

TV Location of Surface

Features

Surface Transponder
Doppler Signals

Surface Gravity

Added Weight, lb

Added Power, Watts

Estimated Uncertainty, KM

Technique

1 2 3 4 5 6 7 8

X X X X X X

X

X

X

X

X

X

X

X

X

X

0 10 10 37 0 20 26 47

0 2 2 39 0 10 4 41

3.5 2.4 1.2 1.3 4 1.4 0.4 3.7
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Some of the techniques yield more information than others; e. g., angular measure-

ments of the equatorial and polar diameters of Mars will immediately determine the

degree of oblateness, whereas radar altitude measurements cannot yield data about

the dimensions of Mars beyond the range of latitudes covered by the orbit. A brief

examination of the operational details behind the various techniques will aid in evaluating

their relative merits.

Technique No. i, Radio Occultation. Occultation of the orbiter by Mars with respect

to Earth willinterrupt communication between Earth and the orbiter. Accurate knowl-

edge of the orbiter's position at the time communication is interrupted will permit the

radius of Mars to be inferred. It is estimated the DSIF tracking can establish the

orbiter's position within 1 km relative to Mars' center of mass. This would indicate

the feasible accuracy in determining the radius of Mars if orbiter position were the

only source of error. Reflection and refraction of the radio beam by the ionosphere

of Mars (ifMars has an ionosphere) and confused diffractionof the wave pattern by

surface irregularitiesaround the limb of Mars will add to the uncertainties in the

occultationmeasurement. Present ignorance of Martian conditions does not permit

quantitativeestimates of the effects attributable to the ionosphere and surface features.

Refraction of the radio beam by the atmosphere of Mars will delay radio occultation

relative to the instant of "geometrical" occultation corresponding to the point where

the orbiter enters the "geometrical shadow" of Mars as viewed from Earth. If the

composition and density of the atmosphere of Mars were accurately known, the

refractive effect could be precisely calculated. For the purposes of the present

study, the range of uncertainty concerning Mars' atmosphere is assumed to be

bracketed by JPL Mars atmospheric models "H" and "J", respectively representing

the least and greatest surface densities among the more recent models.

The refractive indexes of non-polar gases, such as nitrogen, carbon dioxide and

argon, which presumably comprise the bulk of the atmosphere of Mars are practi-

cally the same for radio-frequency electromagnetic waves as for visible light. The
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only polar gas present in detectable amounts with anomalous refractive properties at

radio frequencies is water vapor, and its concentration is believed to be too small to

exert a significant effect.

The refractive index of a mixture of gases is given by the following expression:

n =i+ p " -i)E (nsi
i

(5.1)

in which

n = refractive index

N = Mole fraction

p = density

i designates the ith component

s signifies value for standard conditions (0"C, 1 atm)

The density of the Martian atmosphere at altitudes below 60 km, where most of the

refraction occurs, is represented well enough for present purposes by

-z/H
P =Po e (5.2)

where

Po

H

Z

= density at ground level

= scale height

= altitude

Small-angle approximations and rectangular coordinates can be used to analyze the

situation because the refractive deflection of the radio beam is very small and nearly

all of the deflection occurs within a distance parallel to the surface that is small

compared to the radius of Mars. The curvature of the ray path is proportional to the
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gradient of the refractive index normal to the ray path in accordance with the following

relation:

C = i dn (5.3)
n dz

in which the factor 1/n is unity for all practical purposes.

deflection angle is given by

Hence, the ray path

= fc, = (5.4)

in which x is the distance measured along the ray path. The situation is represented

schematically in Fig. 5-8. The relation between z and x is given approximately by

2
z = z + x (5.5)

o 2r

in which r is the radius of Mars and z
o

approach to the surface

is the altitude of the ray path at closest

The foregoing relations can be combined to obtain

z 2
o x

= Hp-- N i (nsi- i) e e dx (5.6)
S

i

The physical limits of the integral need extend over only that portion of the ray path

where the gradient of the refractive index normal to the ray is significantly different

from zero. However, it is permissible and simpler to let the integration limits be
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Fig. 5-8 Refraction by Mars Atmosphere
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± _ in which case the following is obtained:

Z
0

iZ= - _ V-_- . Ni • (nsi-i)
(5.7)

The deflection is obviously greatest at grazing incidence, i.e., when z ° = O. Hence,

the maximum angle of deflection of the radio beam by refraction in the atmosphere

of Mars is

max = - p-_ _ Z Ni" (nsi - 1) (5.8)
i

The following date in Table 5-3 were used:

Table 5-3

ATMOSPHERIC DATA FOR MARS

Nitrogen

Carbon Dioxide

Argon

Z Ni(nsi - i)
i

H, km

P , gm/cm 3
S

Po ' gm/cm3

Index of

Refraction

1.000296

1.000448

1.000281

Atmosphere
"H"

0

6570

3570

3.89 x 10 -4

12

1.90 x 10 -3

-5
2.17 x 10

Model
_vji!

7670

1370

1170

3.11 x 10-4

19

-3
1.40 × 10

5.37 x 10-5
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Assuming that the diameter of Mars is 6780 km, we find the maximum deflection

angles to be 39 and 82 sec of arc, respectively, for atmosphere models "H" and "J".

The correction to be added to the apparent radius of Mars indicated by radio occulta-

tion is

Ar = sT (5.9)

in which T is the tangential distance from the orbiter to Mars' surface at the time

of occultation (see Fig. 5-9). The uncertainty in _ corresponding to the difference

between atmospheric models "H" and "J" is 43 seconds of arc. The initial value of

T may be anywhere from 8000 to 22,000 km depending upon which of the possible

orbits, ranging in period from 12 to 65 hr, the orbiter is injected into upon arriving

at Mars. Thus, the uncertainty in Ar may be anywhere from 1.7 to 4.6 km. Because

of changes in the relative positions of Mars and Earth, the value of T increases with

each cycle of the orbiter, so the most accurate determinations of Mars' radius by

radio occultation are obtained early in the orbiter mission.

Except for the possibility that Mars might have an extremely potent ionosphere, the

uncertainty in estimating the ordinary refractive effect of the atmosphere is the

major source of error in determining Mars' radius, and this source of error will be

obviated by acquisition of accurate information about Mars atmosphere. However,

with our present state of knowledge, if we assume an uncertainty of i km in the

location of the orbiter and attribute an uncertainty of i km to effects arising from

irregularities in the surface of Mars, the resultant uncertainty in measuring the

radius of Mars by radio occultation ranges from 2.2 to 4.7 km, depending upon whether

we obtain a short or a long-period orbit.

In general, the plane of the orbit about Mars will be tilted at some angle relative to

the line of sight from Earth. The guidance and navigation specialists state that we

can choose the orbit plane so that the orbiter initially passes behind Mars below the

line of sight from Earth. After a while the relative motions of Earth and Mars will
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present an edgewise view of the orbital plane after which the orbiter will pass behind

Mars above the Earth line of sight. Eventually, the view of the orbit as seen from

Earth will be such that occultation no longer occurs. In this way, it will be possible

to delineate the shape of Mars by obtaining a series of radius measurements at various

latitudes encompassing more than half of one limb of the planet.

It has been suggested that radius measurements on the other half of Mars' limb might

be obtained by noting when communication is restored after the orbiter comes out

from behind Mars. However, because of frequency drift in the crystal oscillator that

controls the signal from the orbiter and because of the narrow bandwidth of the re-

ceivers on Earth, a systematic search over a finite interval of the frequency spectrum

must be maintained to reacquire the signal from the orbiter. This introduces an

uncertainty of about one minute in determining precisely when radio occultation has

ceased. It is estimated that proper use of a few additional lb and watts, to reduce

the frequency drift of the orbiter signal, might reduce the uncertainty in reacquiring

the signal to about 6 sec, but this still represents an uncertainty of about 10 km in

addition to other errors in determining the radius. No new or better data concerning

the radius of Mars are obtained from measurements based upon reacquiring the

orbiter signal, so that technique has little to recommend it.

We summarize the advantages and disadvantages of the radio occultation technique for

the 1969 orbiter as follows:

Advantages.

• It permits determination of the radius of Mars with uncertainties ranging

from 2.2 to 4.7 km

• The accuracy will improve with improved knowledge of the atmosphere of

Mars

• It permits determination of the shape of Mars

• It depends only upon the capabilities of the DSIF communication system,

requires no additional equipment or power, and requires no additional

capability in the command or data transfer system.

• It is not affected by dust or haze in the atmosphere of Mars

LOCKHEED
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Fig. 5-9 Effect of Atmospheric Refraction on the Radio Occultation Point
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Disadvantages.

• Itis an available technique only during the firstfew weeks after injection

intoorbit.

• Itmay be adversely affected by the ionosphere of Mars.

Technique No. 2, Star Occultation. As the orbiter circulates around Mars, a very

large portion of the celestialbackground will be obscured by Mars when viewed from

the orbiter. Thus, the orbiter will have many opportunities to observe the occultation

of bright stars by Mars, an exceedingly rare event when viewed from Earth.

If the orbiter is equipped with a star tracker, gimballed so as to permit alignment

with any of a number of appropriate stars, the occultation of a star will provide a

measure of the radius of Mars based upon the same principles underlying the radio

occultation technique. The same uncertainties associated with atmospheric refraction

apply to star occultation as to radio occultation. However, the star occultation tech-

nique enjoys a possible advantage in being free from ionospheric confusion. On the

other hand, dust or haze in the Martian atmosphere may obscure the horizon and give

a false indication of the desired occultation point.

Itis probable that the star tracker will be useful for observing star occultations only

on the dark limb of Mars because tracking even a bright star as itapproaches the

sunlit limb of the planet may be difficult. Ifthe star tracker is located on the side

of the orbiter facing away from the sun, the dark limb of Mars on the approaching

branch of the orbit will be in the field of view at tangential distances ranging from

3000 to 14,000 km, depending upon which orbit the orbiter is in, (see Fig. 5-10.

Hence, based upon the 43-sec of are uncertainty in atmospheric refraction derived

in connection with the radio occultationtechnique, the corresponding uncertainty in

the radius ofMars determined by star occultation ranges from 0.6 to 2.9 kin. The

approaching branch of the orbit is probably favorable for star occultation experiments

because the morning side of the planet is then in view, and dust and haze will have

had all night to settle.
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If we assume a 1-km uncertainty in the position of the orbiter and assign a 1-km

uncertainty to irregularities in the topography of Mars and combine these uncertainties

orthogonally with the atmospheric refraction effect, the resultant uncertainty in deter-

mining the radius of Mars by observing star occultations ranges from 1.5 to 3.2 km.

This is slightly better than the radio occultation technique because the orbiter is gen-

erally closer to the planet when observing star occultations than when involved with

radio occultations.

The star occultation technique permits determining Mars' shape by a judicious selection

of stars that are occulted at various latitudes on Mars' dark limb, thus providing a

number of radius determinations at different latitudes. We conclude this discussion of

the star occultation technique by listing its advantages and disadvantages as follows:

Advantages.

• For the particular orbital conditions of the 1969 mission it appears slightly

more accurate than the radio occultation technique. With present knowledge

of the atmosphere of Mars, the uncertainty in the determination of the radius

of Mars varies from 1.5 to 3.2 km.

• The accuracy is subject to improvement with improved knowledge of the

atmosphere of Mars.

• It permits determination of the shape of Mars.

• It is an available technique throughout the life of the orbiter.

Disadvantages.

• It adds to the burden of the orbiter command and data transfer system. Upon

command from Earth, the star tracker should be able to locate and lock on to

any one of a number of stars that will be occulted by Mars when viewed from

the orbiter.

Technique No. 3, Angular Diameter.

center of a spherical object are known, the radius of the object is

r = R sin fl/2
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in which R is the distance of an external point P from the center of the sphere and

B is the angular diameter of the sphere viewed from P. The uncertainty in deter-

mining r may be expressed as follows:

r 1 _/R 2 2
6r = -r 6fl (5.11)

in which the symbol 8 designates the uncertainty in the accompanying quantity.

We could assume the uncertainties in R and fl are independent, in which case the

resultant uncertainty in r would be the orthogonal sum of the two components on the

right-hand side of Eq. (5.11). However, to be conservative, we shall assume the worst

case and treat the uncertainties as directly additive. The DSIF uncertainty in R is

taken to be 1 km. Lockheed optical specialists estimate that the proper choice of a

wavelength interval in the red or near infrared portion of the spectrum that avoids

carbon dioxide and water emission and absorption bands will permit detection of the

true limb of the planet with an angular resolution of about 0.5 min of arc at the standoff

distances of concern here. Hence, the uncertainty in measuring the angular diameter

of Mars is about 1 min of arc.

The range of radial distances from center of Mars in which the field of view from the

orbiter's plaaetary instrument platform permits observation of the angular diameter

of Mars is between 4000 and 10,000 km. Hence, according to Eq. (5.11), the uncertainty

in determining the radius of Mars varies from 1.2 to 1.7 km, the smaller value being

associated with measurements near periapsis.

The foregoing analysis treats Mars as a sphere. However, the angular measurement

technique need not be so restricted. Figure 5-11 illustrates a situation with the

oblateness of Mars represented by an ellipse with an eccentricity of about 0.5, which

is a gross exaggeration of Mars' actual oblateness. Since DSIF can give the location

of the orbiter with great precision relative to the center of mass of Mars, the direction

of the radial distance vector R is known relative to the orbiter's frame of reference.
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! !

Therefore, the tangent angles, fll and f12 can be determined, in which case the

apparent radii of Mars are given by

! !

r 1 = R sin fll

! !

r 2 = R sin f12

The true radii, r 1 and r 2 corresponding to the actual points of tangency from the

orbiter to the surface of Mars are slightly greater than the apparent radii for the situa-

tion shown in Fig. 5-11. It is obvious by inspection of the diagram that the differences

between the apparent and the true radii will be imperceptible for the actual case in

which the oblateness of the Mars is relatively quite small. However, the difference

between the radii r I and r 2 is expected to be easily observable from the orbiter

since even Earth-based measurements of the polar and equatorial diameters of Mars

indicate a detectable difference.

In addition to observational difficulties, such as haze or dust in the atmosphere of Mars,

it might be expected that some uncertainty in the accuracy of the angular measurement

technique will be introduced by uncertainties related to optical refraction in the atmos-

phere of Mars. The effect of refraction is to magnify slightly the apparent radius of

Mars. The amount of magnification can be precisely computed if the composition and

density distribution of the atmosphere are known.

The situation is described schematically in Fig. 5-12 with considerable exaggeration

of the angular magnitudes involved. Curvature of the refracted light ray PO from a

point on the surface of Mars to the orbiter results in an apparent increase Ar in the

radius of Mars. Using small-angle approximations, the following relationship can be

derived:

Ar = xa - As (5. 12)
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in which

X

AS

OL

= distance from P measured along the ray

= linear displacement of a point on the refracted ray relative to the tangent

at P

= angle of refraction of the ray relative to the tangent P

The angle of refraction

expressed by

is given by Eq. (5.6)with z° = 0. The quantity AS is

X

AS = -- N i(nsi - 1)
HP s

0 i
]fexp(2H r) 

0

d_ (5.13)

In which _? and _ are merely dummy variables for purposes of integration.

It is not permissible to let x approach infinity, as was done in the analysis of the

first technique, because AS then becomes infinitely large. Therefore, a value for

x is chosen large enough to include substantially all of the refractive effects of the

atmosphere of the Mars yet small enough to retain the validity of the small-angle

approximations. In the case of atmosphere J , which because of its greater density

will exhibit the greater refractive effects, a suitable value for x is 700 km, corres-

ponding to a point about 72 km above the surface of Mars. Using the data from Table 5-3

in the analysis of the first technique, we find Eq. (5.13) yields a value of 0. 103 km for

AS. Hence, Eq. (5.12) indicates the value of Ar is 0. 036 km. The uncertainty in

Ar due to the uncertainty in the properties of Mars' atmosphere is about half of Ar.

We conclude in relation to angular diameter measurements the effects of atmospheric

refraction are negligible compared to other sources of error.

Presently available Earth horizon scanners are not suited to the measurement of the

diameter of Mars from an orbiter because they operate on the gradient of the infrared
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emission that is found to have a fairly reproducible profile corresponding to emission

from an altitude of about 35 km in the Earth's atmosphere. There is probably an

analogous situation on Mars, but it represents only an imponderable uncertainty so far

as the present application is concerned.

It appears, therefore, the angular diameter technique for measuring the dimensions of

Mars will require development of a special instrument. The basic principle seems

simple enough to leave little doubt about the immediate feasibility of such a development.

Existing scanning techniques may be used with the principal problem being the selection

of radiation sensors with optimum capability for detecting the required optical discon-

tinuity at the limb of Mars. Lockheed instrument design specialists have estimated

that a device with the required capabilities would weigh about 10 lb and require about

2w.

The status of the angular diameter technique is estimated to be as follows:

Advantages.

• Permits determination of the radius of Mars with uncertainties ranging from

1.2 to 1.7 km, which is considerably better than the two preceding techniques.

• Accuracy is not significantly affected by present ignorance about the composi-

tion and density of the atmosphere of Mars.

• Permits determination of the shape of Mars.

• Is an available technique throughout the life of the orbiter.

Disadvantages.

• Requires additional equipment weight and power, estimated 10 lb and 2 w.

• Requires development of a new instrument.

• Adds to the burden of the data handling system; readout precision should be at

least 13 bits per measurement.

• May be adversely affected by dust or haze in Mars' atmosphere.

Technique No. 4 Radar Altitude. Conceptually, the simplest, most direct way to

determine the radius of Mars is to measure the altitude of the orbiter and subtract the
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Fig. 5-11 Relation Between True and Apparent Radii Measurements
for an Oblate Ellipsoid
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Fig. 5-12 Effect of Atmospheric Refraction on Angular Diameter Measurement
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altitude from the known distance or the orbiter from the center of Mars. A radar

altimeter with an estimated range of 4000 km and a range accuracy of 0.3 km would

weigh about 37 lb, including a 4-ft dish antenna and all the requisite electronics, and

would require a peak power input of about 39 w. The resultant uncertainty in measuring

the radius of Mars is 1.3 km.

The amount of surface available on Mars for measurement by the radar technique will

depend upon the orientation of the orbit. With the highly elliptical orbits proposed in

the present study, the limited range of radar will confine the measurements to the

vicinity of periapsis. It is estimated that radius determinations ranging in latitude

from about 40 deg south to about 20 deg north of the Martian equator may be obtained.

This should be sufficient to give a good measure of the oblateness of Mars.

The principal uncertainty, so far as the theoretical feasibility of the radar altimeter

technique is concerned, is the question of the reflectivity of Mars at radar frequencies.

Sperry Corporation engineers supplied the weight, power range and accuracy specifi-

cations quoted here, based upon an assumed radar reflectivity similar to the Moon. A

prototype system has been developed. The status of the radar altimeter technique for

measuring the radius of Mars is somewhat as follows:

Advantages.

• Permits determination of the radius of Mars with an uncertainty of 1.3 km,

which is comparable to the best of the preceding techniques.

• Does not depend upon knowledge of the atmospheric composition and density

of Mars.

• Is not affected by dust or haze in the atmosphere of Mars.

• Is an available technique throughout the life of the orbiter.

Disadvantages.

• Is heavy and requires a relatively large amount of power.

• Is electronically complex and correspondingly subject to failure.

• Adds to the burden of the control and data handling system.

• Range of latitudes over which it can make radius measurements depends upon

the orientation of the orbit.
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Technique No. 5, Television. During the anticipated 6-mo lifetime of the orbiter, there

is some likelihood of seeing the same areas more than once and from different points

of view. In particular, if a well-defined feature on the surface of Mars is seen from

two very different points of view, e.g., on the morning side and the evening side, an

opportunity is afforded to determine the radius of Mars at the feature in question with

considerable precision.

Figure 5-13 represents the situation as a problem in plane geometry though it should

be realized a three-dimensional configuration of points and lines will generally be

involved. Suppose an identifiable object is seen at P1 in a TV picture taken at time

t I . From the known position of the orbiter relative to the center-of-mass of Mars

and the known orientation of the camera relative to coordinates fixed by the Sun and

Canopus, we can determine the line L 1 on which the object was known to be at time

t 1. Suppose at some later time t 2 on another pass around Mars, the same object is

seen again in a TV picture but at a different location P2 because Mars will meanwhile

have rotated. Again we can establish a line L 2 on which the object was known to have

been at time t2 . Since the angular rate of rotation of Mars is accurately known, the

angular separation 0 of the points Pl ' P2 is accurately determined by

0 = w(t 2 - t 1) - 2_k (5.14)

in which

k =

angular rate of rotation of Mars

an integer representing the number of revolutions Mars completed between

t 1 and t 2

By inspection of Fig. 5-13 it is not difficult to convince oneself intuitively that the

positions of 1)1 , P2 on the lines L 1 , L 2 are uniquely determined by the requirements

that they be equidistant from the center of Mars and separated by the angle 0. The

analytical problem is a bit sticky, particularly in three dimensions, but should offer no

serious difficulty with the aid of an automatic computer.
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Fig. 5-13 Determination of Mars Radius With Television Data
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The resolving power of the wide-angle TV is assumed to be 1 km. The location of the

orbiter is assumed to be known within 1 kin. The times t I and t 2 should be known to

0.1 sec. Hence, the uncertainty ill determining the radial distance of the points P1 '

P2 from the center of the Mars is estimated to be about 4 km provided the intersection

of the lines L 1 , L 2 (if they are coplanar) is not too close to the center of Mars. If

the lines should happen to intersect near the center of Mars, the uncertainty in deter-

mining the radius becomes very large, and the particular pair of TV observations in

that case are not useful. Hence, at least one of the TV observations in each pair should

present a line of sight that misses the center of Mars by a wide margin.

The TV technique for measuring the radius of Mars depends to some degree upon unpre-

dictable factors. First, it is necessary to discover at least one well defined object

that can be recognized from two widely separated viewpoints of the surface of Mars.

Second, TV pictures of the object must be obtained from viewpoints satisfying the

geometrical requirements of the problem. Unless some means are provided to adjust

the period of the orbit after the first pass around the planet, it may happen that the

required observations of the same object from different viewpoints will not be feasible

within the lifetime of the orbiter, particularly if suitable objects on the surface of Mars

are scarce. The determination of the oblateness of Mars by this method requires that

there be two or more suitable objects at somewhat different latitudes.

A favorable aspect of the TV technique is the fact that it involves observations through

the atmosphere of Mars at reasonably acute angles relative to the vertical. Therefore,

it should be affected by the atmospheric conditions of Mars to a lesser degree than

techniques No. i and No. 2, which require observation of the surface of Mars at

tangential incidence through the thickest possible layer of atmosphere.

The TV technique requires a capability for precise correlation of the TV field of view

with angular coordinates determined by the Sun and Canopus so that the lines L 1 and

L 2 can be established. The uncertainty needs to be less than 1 min of arc. It is

estimated that the present Mariner C attitude sensors can be modified with no appreciable

increase in weight and power so as to read out the instantaneous degree of misalignment
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relative to the Sun and Canopus with the desired precision. This information would,

of course, have to be transmitted along with each TV picture. Hence, a slight additional

load on the data transfer system is implied by the TV technique for measuring the radius

of Mars.

The advantages and disadvantages of the TV technique are summarized as follows:

Advantages.

• Probably involves no appreciable increase in weight or power and only a slight

addition to the data handling capacity, e.g., three 10-bit words indicating the

magnitudes of the error signals from the solar sensors and the star tracker.

• Compared to other optical techniques, itis less susceptible to Martian atmos-

pheric conditions.

• Capable of determining the shape of Mars.

• An available technique throughout the lifetime of the orbiter.

Disadvantages.

• Depends upon a fortuitous occurrence of well-defined objects suitably located

on the surface of Mars.

• Present estimates do not give itquite as much accuracy as other techniques,

but this is not an inherent limitation. The accuracy can be improved by use

of high-resolution TV and greater precision in determining the TV frame of

reference.

Technique No. 6, Surface Transponder. It is estimated that a two-way doppler link

between the orbiter and a transponder onthe surface of Mars could indicate the velocity

of the transponder relative to the orbiter with an uncertainty of 0.1 m/sec. Possibly

even better performance could be obtained by locking the carrier frequency of the orbiter

through DSIF to a superstable oscillator on Earth. It is claimed that DSIF can determine

the orbiter's velocity relative to the center-of-mass of Mars with an uncertainty some-

what less than 0.1 m/sec. Hence, from the vector difference of the velocities, the

velocity of the surface transponder relative to the center of Mars may be determined

within 0.1 m/sec.
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The velocity of a point on the surface of Mars relative to the axis of rotation of the

planet is expressed by

y = wr cos q_

in which

w = angular rate of rotation

= latitude

Hence,

r = _ (5.15)
w cos

If the transponder is on the equator of Mars, then according to Eq. (5.15), an uncertainty

of 0.1 n_/sec in v represents an uncertainty of about 1.4 km in r.

In general, it is not to be expected that the transponder will land on the equator. How-

ever, the doppler data obtained by tracking the surface transponder for an extended

time (e. g., several hours) with the orbit er will contain enough information to locate

the transponder both in latitude and longitude. In fact, the doppler data permit a deter-

mination of the radius of Mars even though the transponder were to land on one of the

poles, a situation outside the range of applicability of Eq. (5.15) because cos (p = 0

at the poles.

The surface transponder technique does not merit a more detailed analysis here

because its disadvantages relative to the preceding techniques far outweigh its advantages.

The merits and demerits of the technique are as follows:

Advantages.

• Not likely to be affected by the atmospheric or ionospheric conditions on Mars.

• Potentially quite accurate; estimated uncertainty is 1.4 km.

LOCKHEED
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Disadvantages.

• Requires landing a surviving capsule on Mars.

• Requires power, weight and data handling capability in a surviving capsule that

preferably would be used for other kinds of experiments.

• Requires placing two or more transponders at different latitudes to determine

the shape of Mars.

• Requires additional capability in the orbiter; i. e., a two-way doppler link

between orbiter and lander.

• Could fail through an adverse timing relationship between the period of the

orbiter and the location of the transponder on Mars such that communication

within the lifetime of the lander's batteries is not accomplished.

Technique No. 7, Surface Gravity. The radial acceleration field outside a spherically

symmetrical mass is given by

Gm
g - 2

r

Hence,

r = _ (5.16)

in which

g = gravitational acceleration

G = 6.670 × 10 -8 dyne cm2/gm 2

m = mass

The value of the product Gm can be determined from orbital data with an uncertainty

of about 1 part in 104 . If a gravitometer with sensitivity sufficient to measure acceler-

ation to one part in 104 is placed on Mars' surface, then Eq. (5.16) indicates the

radial distance from the center of mass can be determined with comparable precision;

i. e,
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r =2_ Gm +g

The resultant uncertainty in r is about 0.7 km.

The situation is actually a little more complicated than the above remarks indicate.

Allowance must be made for acceleration effects associated with the rotation of Mars,

for deviation from spherical symmetry in the distribution of the mass of Mars and for

the variation of gravitational acceleration with altitude, assuming Mars has topographical

features with significant differences in altitude. The first correction requires knowledge

of the location of the gravitometer so that allowance can be made for the latitude depend-

ence of rotational acceleration. The second requires information about the oblateness

of Mars which is known with moderate accuracy from the precession of the orbits of the

moon of Mars. The altitude data needed for the third correction might be determined

from atmospheric pressure measurements, though this implies more knowledge about

the average surface conditions of Mars than is now available.

A variation in altitude of one-third of a kilometer would register as a measurable

effect on a gravitometer with a sensitivity of one part in 10 4 . Thus, the gravitometer

might be regarded as a kind of absolute altimeter, if other factors such as the location

of the gravitometer and the oblateness of the mass distribution of Mars are known with

sufficient accuracy.

Transmission of the gravitometer data directly to Earth via DSIF would permit the

latitude and longitude coordinates of the gravttometer to be determined through doppler

data. That is, the experiment is not dependent upon establishing a communication link

between the surface of Mars and the orbiter.

For very much the same reasons as the surface transponder technique, the disadvantages

of the gravitometer technique outweigh its merits relative to other ways of measuring

the radius of Mars even though the present rather superficial analysis indicates it is
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follows:

Advantages

• Not likely to be affected by the atmospheric or ionospheric conditions on Mars.

• Potentially quite accurate; estimated uncertainly 0.4 km if other data such as

latitude, deviation from the mean altitude and magnitude of Mars' oblateness

are known.

Disadvantages

• Requires landing a surviving capsule on Mars.

• Requires power, weight and data handling capability in a surviving capsule that

preferably would be used for other kinds of experiments.

• It requires two or more gravitometers at different latitudes to determine the

shape of Mars.

Technique No. 8, Radar Altitude Plus Angular Diameter

All of the preceding techniques for measuring the radius of Mars depend in some way

upon precise knowledge of the orbit parameters which depend upon acquiring adequate

DSIF doppler tracking data. If communication with the orbiter should permanently fail

before the orbit has been tracked long enough to yield the requisite precision (i. e.,

within a few hours after injection into orbit} a measurement of the diameter of Mars

before failure of the communication link and by a method independent of orbit data

would be most welcome. Such a method is represented by a combination of radar

altimeter and optical angular diameter measurements.

The required diameter is given by

2z sin fl/2
D = 1 - sin fl/2 (5.17)
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in which

z = altitude above Mars' surface

= angular diameter

If the uncertainties in the altimeter and angular diameter measurements are assumed

to be 0.3 km and 2 minutes of arc, respectively, it is not difficult to show that Eq.

(5.17) indicates an optimum altitude of about 3000 km at which to perform the meas-

urement, the resultant uncertainty in the diameter having a minimum value of 7.4 km.

According to Fig. 5-10, the optimum time for measuring the diameter varies from

a half-hour before or after periapsis for the smallest orbit to 15 min before and after

periapsis for the largest orbit. However, before orbit injection it is not likely that

the particular orbit to be acquired will be accurately known.

It should be realized that because of the oblateness of Mars, the present technique

actually measures the sum of the radii to two different points on the surface, but it

is not feasible to resolve the measurement into the separate radii without additional

data concerning the position of the orbiter relative to the center of Mars. Hence,

as a means of determining the oblateness of Mars, the best measurements will be

obtained as the orbiter crosses the equator, for the radii in the equatorial plane are

expected to be practically equal, and likewise for symmetrically located radii in a

plane through the poles.

The main objection to the present technique for determining the dimensions of Mars

is the weight, power and complexity of the required equipment. This is offset some-

what by the fact that it represents a four-fold redundancy in means for measuring

Mars if the DSIF communication link does not fail (i.e., Techniques No. 1, 3, 4,

and 8), as well as providing a likelihood of delivering the desired data even if the

DSIF link fails shortly after orbit injection. If the need for the measurement is

very great, this technique should be given serious consideration.
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single TV picture frame contains of the order of 2 × 106 bits. Hence, almost two

hours are required to transmit one complete picture to Earth. Other factors that

complicate the situation are the eccentricity of the orbit, the wide range of possible

orbital periods (12 to 65 hours), and the varying intervals during which occultation

by Mars interrupts the transmission of data to Earth.

It is desirable to view Mars at minimum range to obtain maximum resolution of sur-

face detail. Hence, TV data are acquired and stored on tape while the orbiter is near

periapsis, and the remainder of the orbit period is used to transmit the data to Earth.

The tape storage capacity of 66 x 106 bits was chosen to accommodate the total data

transfer requirement of one cycle of the longest period orbit, i.e., the 65-hour orbit.

If the orbital period is appreciably less than 65 hours, it is possible either to use

more than one orbit cycle to transmit the data to Earth or to load only the amount of

data into the storage unit that can be transmitted in one orbit cycle.

The estimated area of Mars available for observation by the orbiter is about 108 km 2.

The anticipated amount of data to be transmitted to Earth during the 6-month lifetime

of the orbiter is about 109 bits, which implies that only a very small fraction of the

surface of Mars can be viewed in great detail.

TV Camera Characteristics. The recommended TV system comprises three cameras.

Two cameras are sensitive primarily to visible light (0.4 to 1.0 micron) and the third

responds to infrared (1.0 to 10 microns}. Filters in each camera provide for color

discrimination in the visible region and selection of particular bands of interest in the

infrared. The two visible-light cameras have identical characteristics and each can

operate in either a high-resolution or a low-resolution mode. The infrared camera

is provided with only low-resolution capability.

The three cameras are mounted on the planet-oriented instrument platform with their

optical axes aligned in the same direction. Pictures are taken simultaneously by all
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three cameras with one of the visible-light cameras in the high-resolution mode and

the other in the low-resolution mode. Two-minute intervals between successive

frames provide time for the slow-scan system to transfer the picture data to tape

storage.

The high-resolution optical system comprises an f/5.7 lens with a 40-in. focal length.

The resultant image intensity is more than sufficient to permit present high-sensitivity

vidicon systems to observe scenes near the terminators, even though the average

brightness of the Martian surface is estimated to be only one-sixth that of Earth. The

very large variation of surface brightness from the terminators to the noon meridian

is accommodated by neutral filters in the optical system and automatic gain control

in the image-scanning circuit.

A 600-line raster with a line density of 30 lp/mm is used in the high-resolution mode.

The resultant angular field of view is 0.57 deg. The same number of lines is used in

the low-resolution mode but with a shorter focal length and a larger raster so as to

obtain a 5.7 deg angular field of view. The infrared camera also has a 5.7 deg angular

field of view but uses only a 200-line raster. The corresponding linear dimensions

of the fields of view on the surface of Mars are respectively one hundredth and one

tenth of the altitude of the orbiter for the high and low resolution cameras.

The resolving power of the TV cameras relative to surface details on Mars is inversely

proportional to the altitude of the orbiter, which may be anywhere from 6000 km while

observing the sunrise terminator from a 65-hr orbit to 600 km at periapsis of a 12-hr

orbit. Table 5-4 gives the resolving power in meters per line pair projected on the

surface of Mars from various altitudes. For a nominal periapsis altitude of 1500 km

the resolving power of the high-resolution camera is 50 m while the low-resolution

visible light camera and the infrared camera, respectively, have resolving powers of

500 and 1500 m.
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The pro's and con's of the radar altitude angular diameter technique are as follows

Advantage s:

• Promises a measurement of the dimensions of Mars without depending upon

prolonged tracking of the orbiter after injection into orbit; i. e°, it does not

depend upon accurate orbit data.

• Provides a 4-fold redundancy; i. e., high reliability, in getting the desired

measurement.

• Not sensitive to present lack of exact information about the atmosphere of

Mars; i. e., refractive effects do not introduce appreciable uncertainty.

• Not expected to be affected by the ionosphere of Mars (if such exists).

• Can provide a measure of the oblateness of Mars.

• An available technique throughout the life of the orbiter.

Disadvantages:

• Adds considerably to the payload weight and power; estimate 47 lb., 41 w°

• Electronically complex.

• May be adversely affected by dust or haze in Mars' atmosphere.

• Angular diameter instrument is still a conceptual device requiring development.

Conclusions Concerning Determination of Mars' Size and Shape. The foregoing discus-

sion does not exhaust the subject, though it is believed to present a fairly comprehensive

survey of techniques that might be used. The most attractive techniques are those

that require no weight or power in addition to what is expected to be part of the payload

anyway. However, these Techniques (No. 1 and 5) appear to be the least accurate.

Technique No. 1 (radio occultation) is subject to considerable improvement in accuracy

when better information about the atmosphere of Mars becomes available, provided

no unusual ionospheric effects are discovered. With highly precise orientation sensors

relative to the Sun and Canopus, the accuracy of Technique No. 5 would be improved

by an order of magnitude if a suitable object on the surface of Mars were to be

observed with high resolution TV (0.1 km resolution) at two different times.
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The next most attractive techniques are No. 2 (star occultation) and No. 3 (angular

diameter). With more exact information about the atmosphere of Mars, Technique

No. 2 could very well be the most accurate of all since most of the uncertainty is in

the atmospheric refraction effect. Technique No. 3 has rather poor potential for

improved accuracy unless it proves feasible to detect the true limb of Mars with con-

siderably greater precision than the present estimate assumes. However, it is

recommended because it is not sensitive to our lack of exact information about Mars'

atmosphere.

Technique No. 4 (radar) and No. 8 (radar and angular diameter) rank next in order

of preference because of their weight and power requirements. Finally, the least

attractive Techniques are No. 6 (surface transponder) and No. 7 (surface gravity)

because they require landing instruments on Mars in surviving capsules. It is un-

likely that they could compete successfully with obviously more significant chemical

and biological experiments to be performed on Mars' surface.

Techniques No. 1, 3, and 5 have been assumed for the basic instrument package for

the 1959 orbiter mission.

5.2.4 The Orbiter Television System

The television system described here is intended to provide a measure of the 1969

orbiter's picture acquisition capability based upon a conservative application of

present state of the art. The orbiter TV system differs from conventional commercial

TV in that the individual picture frames are taken at widely spaced instants of time

(2 minutes between frames), a slow scan rate of about 11 lines/sec is used to read

out the picture information, and the picture information is read out, stored and trans-

mitted in digital form.

The main factor limiting the TV capability is the capacity of the data transfer link to

Earth. The maximum rate of data transfer to Earth is 300 bits/sec, whereas, a
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Table 5-4

RESOLVING POWER OF THE ORBITER TV SYSTEM

Resolution Mode Infrared

Altitude High Low Camera
(km) _ (m/lp) (m/Ip)

60O 20 2O0 60O

1500 50 500 1500

2400 80 800 2400

6000 200 2000 6000

At the nominal periapsis altitude of 1500 km, the speed of the orbiter is about 4 km/sec.

The distance traversed in the 2-min interval between TV frames is about 480 km, which

is more than three times the low-resolution field of view. Hence, TV coverage at

periapsis provides no overlap of successive pictures. However, when the altitude of

the orbiter is 3400 km on the approach to or departure from nominal periapsis, the

orbital speed has decreased and the field of view has increased just enough to permit

some overlap. At an altitude of 6000 km the overlap is about 60 percent. This is the

altitude at which observations of the sunrise and sunset terminators would be made in

the early part of the orbiter mission. Near the end of the 6-mo orbiter mission, the

sunrise terminator will have moved almost to a point below periapsis so that pictures

with maximum resolution at very oblique incidence of sunlight may then be obtained.

It is more desirable to obtain a 2-color picture of each scene than alternate colors

with successive frames. A beam splitter can be used to produce two identical images

thus permitting a different filter for each image. If the images have a 2 to 1 ratio of

height to width, they can be projected beside one another on the vidicon target so as

to present a square format. The result is scanned and transmitted as a single picture.

Each frame of the visible-light cameras represents 1.8 × 106 data bits, while a frame

of the infrared camera requires 2 x 105 bits. Firing all three cameras simultaneously
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involves 3.8 x 106 bits. The total data transfer capability of 109 bits throughout the'

6-mo life of the orbiter provides for sending to Earth about 600 pictures representing

200 different scenes.

The orbiter offers the possibility of observing the same scene more than once from

different view angles and different solar illumination angles, but the probability of

this occurring accidentally with the high-resolution camera is exceedingly small. To

exploit this possibility, means must be provided to command from Earth the time at

which a picture is taken within + 0.5 sec and to control the angular orientation of the

camera relative to celestial coordinates within + 0.1 °. Control of the camera's

angular orientation could be performed relative to the orbiter's framework provided

the orbiter's angular attitude is suitably monitored. A further requirement is that

the desired scene shall come within camera range more than once. This may involve

a small adjustment of the orbital period after injection into orbit.

The main reason for desiring pictures of the same scene from different view angles

is to obtain a stereoscopic measure of the variation in elevation of surface irregu-

larities. Presumably the two visible-light cameras could both be operated in the

high-resolution mode, offset a few degrees relative to one another in the plane of the

orbit, and separately timed to take pictures with just the proper delay to get the same

scene at different angles. However, this procedure requires versatility and sophisti-

cation in the command system to a degree that should be viewed with skepticism so far

as the first orbiter mission is concerned.

5.2.5 Other Orbiter Experiments

The emphasis on TV leaves little room for other heavy instruments such as spectrome-

ters for microwave, infrared, or ultraviolet radiation. Omission of any kind of high-

resolution spectrometer may be regarded as a deficiency that is sufficiently serious

to force a compromise on the weight allotted to TV. On the other hand, it may

equally well be argued that the only way an orbiter can get really significant data
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about the physical character of the Martian surface is by use of an even more sophisti-

cated (and heavier) TV system with image motion control permitting surface resolu-

tion down to a meter or less.

The bi-static radar experiment proposed by the Stanford University Radioscience

Laboratory is attractivefor several reasons. In addition to providing a measure of

the electron distributionin interplanetary space, it is expected to measure the elec-

tron concentration in the Martian ionosphere and Van Allen belts, ifsuch exist.

Variations in the distributionof interplanetary electrons can significantlyaffectthe

accuracy of interpreting DSIF range and velocity data. The measurement of the

radius of Mars by the radio occultation technique may be affected by a Martian

ionosphere. The presence of Van Allen belts around Mars may be indicated by the

bi-staticradar experiment even though the trapped radiation detectors failto reg-

ister any measurable effectbecause of an unfavorable orbit.

A magnetometer for observing interplanetary fields is a nuisance because of the severe

restriction it places on all other components of the spacecraft in regard to residual

DC magnetic fields. The somewhat dubious feasibility of reducing all of the local

magnetic disturbances to an acceptable level (about 0.1 gamma) for interplanetary

measurements is a strong argument for dropping the interplanetary magnetometer

from the present mission. Provision need then be made only for the measurement

of planetary magnetic fields with expected intensities much greater than the inter-

planetary background.

To round out the interplanetary experimental capability so as to provide an adequate

measure of the interplanetery background with which to compare space environ-

mental conditions in the neighborhood of Mars, it is highly desirable to include an

assortment of charged-particle detectors covering a wide spectrum of energies (from

101 to 10 9 ev). Instrumentation for measuring the flux of cosmic dust and micro-

meteoroids between Earth and Mars is also indicated.
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5.2.6 Capsule Capabilities

Biological Capsule. The results of the present study indicate that the capability for

landing even a very small biological package on Mars, as a part of the 1969 orbiter

mission is in doubt. Nonetheless, a small biological instrumentation package is

proposed for use in design studies. This package weighs about 12 pounds and consists

of a life experiment, a mass spectrometer, an accelerometer, and pressure and

temperature gages as shown in Table 5-5.

Atmospheric Capsule. The situationin regard to an atmospheric capsule is quite

attractive. Impact survival is not required. The duration of the experiments in-

volves only the relativelybrief time of descent through Mars' atmosphere. The

data linkfrom the capsule to the orbiter is short compared to direct transmission of

data to Earth required by the biological capsule. The weight allowance of scientific

instruments for the atmospheric capsule is therefore somewhat more generous than

for the biological capsule.

An atmospheric instrumentation package weighing about 18 lb is suggested in Table

5-5. These instruments include accelerometers, pressure gages, temperature

gages, a mass spectrometer, an ultraviolet photometer and an infrared radiometer.

5.2.7 Recommended Instrumentation for Mars 1969 Missions

While imposing some severe requirements upon the subsystem designers, an effort

has been made here to devise scientific payloads providing well-balanced capabilities

for performing both interplanetary and orbiter experiments, in addition to satisfying

the primary objectives of the missions. The entire emphasis of the orbiter missions

is on planet-oriented experiments, so the instruments for interplanetary measure-

ments have been selected for their ability to contribute to the study of the planetary

space environment.

LOCKHEED
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Table 5-5

RECOMMENDED EXPERIMENTAL INSTRUMENTATION

Weight Power Orbiter

{w) Only

Bus Instruments

Fixed Mount

Ion Chamber 1.3 0.1 x

Particle Flux Meter 2.5 0.35 x

Low Energy Plasma Monitor 7 1.25 x

Medium Energy Proton Monitor 3 1 x

High Energy Proton Monitor 4 0.5 x

Trapped Radiation Detector 4 0.7

Magnetometer 5 5 x

Bi-Static Radar 10 5 x

Cosmic Dust Detector 2.5 0.2 x

Micrometeoroid Detector 8 0.3 x

Planet Oriented

Visual TV (2 cameras) 60 30 x

Infrared TV 10 6 x

Ultraviolet Photometer 6 5 x

Infrared Radiometer 3 3 x

Planet Diameter Scanner 10 5 x

Total Weight 132 lb

Capsule Instruments

Multivator

Accelerometer (single axis)

Accelerometer (3-axis)

Pressure gages (2)

Temperature gages (2)

Mass Spectrometer

Ultraviolet Photometer

Infrared Radiometer

4 2

2 4

6.1 6

0.8 0.2

0.6 0.2

5 6

2°5 5

3 3
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Orbiter

(with Capsule)

X

X

X

X

X

X

X

X

X

92 lb

Capsule

(Bio) (Atm)

X

X

X

X X

X X

X X

X

X

12.4 lb 18 lb
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Relative to an orbiter alone, the inclusion of a biological or an atmospheric capsule

reduces the total scientific instrument payload of an orbiter mission. The reduction

is justified by the ability of a capsule to acquire data not otherwise obtainable.

Table 5-5 presents the recommended experimental instrumentation for the Mars

1969 orbiter missions. For the orbiter only, 70 lb of the total scientific instrument

payload of 132 lb is assigned to TV. The ultraviolet photometer and the infrared

radiometer comprise the capability of the planet-oriented instruments for analyzing

the physical and chemical properties of the Martian atmosphere and surface. With

polarizing filters, it is expected that these instruments will obtain valuable data

about the nature of the atmospheric haze and the Martian surface by observation

of scattered and reflected light at very oblique angles. A planet diameter scanner

is included to insure getting a quick accurate measure of the size and shape of Mars

during the first pass just in case the communication link should fail before a satis-

factory measure of the dimensions of Mars is obtained by the radio occultation

technique.

The effect of adding a capsule is to reduce the permissible orbiter scientific payload

from 132 to 92 lb. To accommodate this reduction, Table 5-5 shows that a trapped

radiation detector package is substituted for some of the more discriminating charged-

particle detectors while the bi-static radar, the infrared TV, and the planet diameter

scanner are sacrificed. In exchange we get either a biological capsule with some

capability for measuring environmental properties or an atmospheric capsule especially

designed to determine the chemical composition and the pressure-temperature-

density profile of the Martian atmosphere as a function of altitude up to the height

where parachute deployment occurred.

The restriction on payload weight requires that the environmental instrumentation of

the biological capsule consist of an abridged version of the corresponding instrumenta-

tion in the atmospheric capsule. Thus, the former has only a single-axis accelerome-

ter, which is useful for estimating the maximum deceleration during entry but tells
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nothing about the angle of attack at any time during entry and descent. The atmos-

pheric capsule uses a 3-axis accelerometer to determine angle of attack during

entry, thus permitting a detailed computation of the precise entry trajectory.

5.2.8 Mars 1971 and Venus 1970 Missions

The payload capability of the Mars 1971 mission opportunity is significantly better

than that of the 1969 mission. This suggests that emphasis should be placed upon

developing an acceptable biological capsule for 1971. It seems likely that communica-

tion by modulated LASER beams will by that time greatly increase the capacity for

interplanetary data transfer so that the quantity and quality of TV coverage can be

correspondingly improved. In any event an increase in TV resolving power by at

least an order of magnitude over that proposed in the present study should be under-

taken. The possibility of soft landing a TV camera for close inspection of the surface

of Mars should be examined.

As for Venus orbiter missions, the perpetual cloud cover shifts the emphasis from

visible-light TV to the far infrared and microwave radiometry and radar. Probably a

narrow-field scanning microwave radiometer or radar will reveal some of the topologi-

cal details of the surface. An atmospheric capsule offers the best means of determin-

ing atmospheric composition. Presumably high ambient temperatures make the con-

cept of a surviving capsule on the surface of Venus plausible only for a relatively

short time after landing. However, such a capsule could perform a number of mean-

ingful analytical experiments on surface materials before expiring. It would be of

interest also to lower a TV system by parachute in an attempt to discover whether

the opaque cloud cover extends down to the surface. A major difficulty with the TV-

parachute experiment is the transmission of data at a rate sufficiently great to permit

acquisition of one or more pictures before the system is destroyed by impact on the

surface.

In general, Venus orbiter missions do not present any essentially new operational

problems. The de-emphasis of TV represents a considerable reduction in the load on

the data link to Earth.
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5.3 ELECTRONICS SUBSYSTEMS

The design of the 1969-1971 Mariner electronics subsystems discussed in the following

sections is based on the following general criteria:

• The primary objective of the program is success in gathering scientific data

and transmitting this data back to Earth.

• Proven techniques and components should be utilized wherever possible to

assure the success of the mission.

• All spacecraft-Earth links should be compatible with Deep Space Instrumenta-

tion Facility (DSIF) capabilities.

• The DSIF will carry the burden of all spacecraft control, computation, and data

processing functions where possible in order to maximize the available space-

craft weight which can be utilized for scientific payload and redundancy.

In addition to the above general criteria, a number of assumptions have been used in

the study regarding the expected capabilities and availability of the DSIF communication

facilities.

• Commands originating from the Goldstone facility will be sufficient for mission

control. The Goldstone facility will have available a 100 kw transmitter with

an 85 ft antenna for command transmission. The command frequency will be

in the 2110 to 2120 Mc band.

• The three DSIF installations will each employ a 210 ft antenna with a maser

preamplifier for signal reception. In addition to the three fixed DSIF installa-

tions, the Mobile Tracking Station (MTS) may be used for tracking during launch.

The MTS will have a 10 ft antenna with a receiver system excess noise tempera-

ture of 1000°K. The received frequencies from all spacecraft, through the mis-

sion, will be between 2290 and 2300 Me.

• The DSIF will not be available continuously throughout the mission. The avail-

ability schedule assumed for the study is:

(1) Continuous for up to 35 days after launch.

(2) A schedule of 3 days off and 1 day on until the first vehicle is 1 mo from

planetary encounter.
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(3) Continuous for the following 2 to 3 mo depending on whether one or both

vehicles are still operating and the time interval between arrivals at the

planet. The first month in orbit, therefore, the DSIF will be available

continuously.

(4) During the remainder of the mission, the DSIF will be available 8 hr out

of every 24-hr period.

• At planetary encounter (172 x 108 km range), the DSIF acquisition time for

angle, two-way doppler, and subcarrier lock may be as long as 26 rainbased

on a round trip signal propagation time of 19 min.

The following paragraphs present, for each mission concept, the basic mission require-

ments and constraints (Section 5.3.1), the trade-off and decision rationales (Section

5.3.2) and a recommended electronic system configuration (Section 5.3.3).

5.3.1 Mission Requirements

Three possible missions were considered in the study: (1) an orbiter only, (2) an

orbiter plus a biological probe, and (3) an orbiter plus a non-surviving atmospheric

probe. Since the orbiter-only mission is of primary concern, the requirements for

such a mission will be discussed first. Then the additional requirements for the other

two missions will be discussed in terms of their effect on the orbiter-only mission.

5.3.1.1 Orbiter-Only Mission

In order to establish a proper framework for the ensuing discussion, a detailed sequence

of events for the nominal orbiter mission is presented in Table 5-6 . Some elaboration

and definition of this table is necessary to fully understand its contents.

• Spacecraft maneuvers are referenced to body axes. High gain antenna maneuvers

are referenced approximately to the spacecraft's heliocentric orbit plane; i.e.,

the yaw axis is approximately perpendicular to the orbit plane and the roll axis

(orbiter-Sun line) lies approximately in the orbit plane as would the pitch axis.

The science platform axes are defined similarly to the antenna axes.
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O The time of occurrence of events 54 to 59 and 66 to 70 are only for reference.

Because these events are initiated by commands from Earth, they must be

timed to coincide with Goldstone coverage of the mission. Thus, the two

groups of events are nominally separated by 24 hr. The absolute time of

these events is not critical, and accurate definition would require detailed

trajectory computations beyond the scope of the present study.

The telemetry modes of operation may be defined as follows:

Mode 1: The transmitted data will include only engineering performance

information at a data rate of 9. 375 bits/sec.

Mode 2: Data includes interplanetary science and limited engineering per-

formance information at a data rate of 9. 375 bits/see.

Mode 3: Data includes orbit science and engineering performance informa-

tion at a data rate of 300 bits/sec.

Mode 4: This mode is identical to Mode 3 with the data rate reduced to 150

bits/sec.

Mode 5: This mode is identical to Mode 4 with the data rate reduced to 75 bits/see.

Abbreviations

LCE

Power

CC

Pyro

A/C

SIT

C o n]m

Q.C.

D.C.

Pr()p

DAS

Table 5-6

SEQUENCE OF EVENTS - ORBITER ONLY

Launch Complex Equipment

Orbiter Power Subsystem

Orbiter Central Controller

Orbiter Pyrotechnics Subsystem

Attitude Control Subsystem

Separation Initiated Timer

Communications Subsystem

Quantitative Command

Direct Conlnmnd

Propul,qion Stfl)system

Data Acquisition System
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There are eight basic series of events presented in Table 5-6 They include launch,

primary, and backup midcourse maneuvers, the Mars approach maneuver, Mars orbit

injection, on-orbit operation, high gain antenna position updating, and Canopus tracker

cone angle updating. The majority of events presented are selfexplanatory but others

require further explanation. The rationale employed in the development of these events

is more properly deferred to following sections for elaboration. The main purpose

for introducing the sequence of events at this point is only to place further discussions

in the proper context.

There are several geometrical factors which significantly affect the design of a space-

craft for the anticipated mission. One of these factors is the look-angle coverage

required for a low gain antenna system. The desire for uninterrupted communications

throughout the midcourse and approach maneuvers is the most significant factor in

establishing the look angle requirements for the low gain antenna. In fact, an omni-

directional antenna pattern is required because of the spherically random distribution

encountered for corrective spacecraft thrust attitudes as indicated in Section 5.1. Even

if communications were not desired during the trajectory correction maneuvers, an

essentially omnidirectional radiation pattern would still be required for communica-

tions during the initial celestial reference acquisition period (Events 10 through 13).

However, the depth of tolerable pattern nulls could be much greater during this acquisi-

tion phase because of the shorter communication range involved.

The high gain antenna look angles which will be encountered throughout the mission are

defined by four major parameters:

• Attitude stabilization of the spacecraft which results in a random antenna

positioning tolerance of +1 deg.

• Relative motion of the Earth and spacecraft which results in antenna look-

angle variations parallel to the plane of the ecliptic.

• Inclination of the spacecraft trajectory to the plane of the ecliptic combined

with the distance between the spacecraft and Earth which results in antenna

angle variations in a plane perpendicular to the ecliptic plane.

5-78

LOCKHEED MISSILES & SPACE COMPANY



M-29-64-1

Relative motion of the Sun-oriented spacecraft and Canopus in conjunction with

a single-degree-of-freedom Canopus tracker results in antenna angle varia-

tions perpendicular to the ecliptic plane.

The variation of antenna look-angle components as a function of the last three predictable

parameters is illustrated in Figs. 5-14 and 5-15 for the nominal 1969 and 1971 missions,

respectively. Assuming that the antenna is pointed directly at Earth (within ± 1 deg) at

orbit injection and neglecting the relatively minor effects of cross-coupling terms

created by spacecraft rolling with a subsequent rotation of the coordinate axes, the

required antenna look-angle components parallel and perpendicular to the ecliptic plane

can be established as presented in Figs. 5-16 and 5-17 for 1969 and 1971 missions,

respectively.

It is readily apparent from Figs. 5-16 and 5-17 that the actual high gain antenna sys-

tem requirements can only be defined when the dates for initial turn on and mission

completion have been specified. This represents a major design tradeoff which will

be described in detail in Section 5.3.2.

Another constraint on the system design is the variation in communication range between

the spacecraft and Earth throughout the duration of the mission. This variation is

presented in Fig. 5-18 for the nominal 1969 and 1971 trajectories.

The final constraint that will be considered in this section is the variation of the solar

constant which is of prime importance in the determination of solar array characteris-

tics. The variation of the solar constant during the 1969 and 1971 missions is illus-

trated in Fig. 5-19.

A discussion of several other pertinent constraints on the design of the spacecraft

electronics subsystems is deferred to later sections for reasons of clarity.
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5.3.1.2 Orbiter-Plus-Biocapsule Mission

The basic sequence of events presented for the orbiter-only mission must be modified

as shown in Table 5-7 for a biocapsule mission. The number of each event refers to

its position in time relative to the events in Table 5-6 . The primary operational

requirement for the electronics systems design is that capsule data will be measured

and transmitted during three phases of the mission: (1) during the capsule-orbiter

separation phase, (2) during atmospheric descent and (3) after impact, in addition, a

pre-separation checkout operation is required in order to avoid planet impact if the

capsule is not expected to function properly.

Based on the trajectory information in Section 3, there are several communication

system constraints illustrated in Table 5-8 which significantly affect the proposed

system design.

Other factors impose constraints on the design of the capsule electronics systems.

For clarity these constraints will be discussed in later sections as required.

5.3.1.3 Orbiter-Plus-Atmospheric Capsule Mission

For the orbiter-plus-atmospheric capsule mission, a few minor modifications are

required to the sequence of events presented in Table 5-7 . In fact, deletion of

Events 62D, 62G, and all events following 62H, and changing the time of impact to

E-5 minutes minimum are the only modifications required.

The basic constraints on the atmospheric capsule electronics system design are simi-

lar to those required for a biocapsule prior to impact. The only real differences from

Table 5-8 are the maximum atmospheric descent time (17.5 min) and subsonic readout

time (70 sec). Other constraints on the design of the electronic systems for an atmos-

pheric capsule mission will be considered in subsequent sections as required.
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Table 5-7

SEQUENCE OF EVENTS-ORBITER PLUS BIOCAPSULE

Abbreviations

1. Pyro

2. Comm

3. CC

4. A/C

5. SUP

6. Power

i. C-Prop

2. C-ST

3. C-Pyro

4. CAPSULE

5. C-DAS

6. C-Comm

7. C-Thermal

8. Switch

Orbiter

Pyrotechnics Subsystem

Communications Subsystem

Central Controller

Attitude Control Subsystem

Capsule Mission Support Equipment

Power Subsystem

Capsule

Propulsion Subsystem

Sequence Timer

Pyrotechnics Subsystem

All Subsystems

Data Acquisition System

Communications Subsystem

Thermal Control Subsystem

"g" - switches

1. D.C.

2. Q.C.

3. DSIF

Direct Command

Quantitative Command

Deep Space Instrumentation Facilities

Note:

Sequence of event numbers indicate relative position of the event referred to in
Table
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Table 5-8

BIOCAPSULE COMMUNICATION CONSTRAINTS

Mission Phase

Sep ar ation

Atmospheric Descent

Post-Impact

R ange:

Operating Time:

Constraint

0<R< 1000 feet

6 min

Range to Orbiter:

Capsule Antenna
Be am width"

Orbiter Antenna
Beamwidth:

Entry Velocity:

Peak Deceleration:

Maximum Descent Time:

Subsonic Read Out Time:

104km Maximum

>- 104 deg

- 14.5 deg

21,000 ft/sec

150 g's

20.5 rain

4 rain

Range to Earth:

Impact Shock:

Data Acquisition Time:

Data Transmission Time:

172 x 106 km

<900 g's

->20 hr

Sufficientto read

out data once
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5.3.2 System Tradeoffs

Several of the system tradeoffs considered in the study are applicable to all three of

the missions investigated. Therefore, the tradeoffs will be presented for the orbiter-

only mission first since these tradeoffs are common to all missions. Then the

following sections will be devoted entirely to mission-peculiar tradeoffs.

5.3.2.1 Orbiter-Only Tradeoffs

Telecommunication System Modulation. There is a basic requirement that the orbiter

Communication system must be compatible with the DSIF. This requirement immediately

limits the modulation on the link to coherent phase shift keying (PSK). However, some

latitude was considered available in the implementation of the coherent PSK technique.

That is, a selection is permissible between the double subcarrier implementation

employed on Mariner R and Mariner C and the single subcarrier "post 1965" design

presently under development. The most obvious advantages of the double subcarrier

system is that it is fully flight-qualified and has flown very successfully on a rela-

tively short (3 1/2 mo) mission, and that the DSIF has been equipped to operate with

such a system at data rates of 33 1/3 bits/sec or 8 1/3 bits/sec.

The advantages of the single subcarrier system appear to be increased data efficiency

(30 percent), less complexity, slightly lower weight and, clock regeneration at the

receiver is simpler and more accurate.

The prime disadvantages of this system are that it has not been flight-qualified and

the DSIF has not yet been equipped to support it. However, it was felt that the modif-

ications of the double subcarrier system for the higher data rates that can be achieved

on the 1969 mission, the possibility that the package must be redesigned, and the two

to three year period available for qualification of the post-1965 system provide suffi-

cient justification for attempting to obtain the benefits of the single subcarrier system.

It is realized that the preceding rationale is very subjective and the interpretation of

the JPL Space Program Summaries concerning the development status of the post-1965
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system may be optimistic. However, the overall feasibility of the 1969 and 1971

orbiter mission does not depend critically on the implementation of the coherent

PSK system which will ultimately be flown. Therefore, only the single subcarrier

system was used to determine the data rate capability, system weight, etc, in the

remainder of the study.

Mission Design Lifetime. One of the many goals of the study was to establish a

rationale which could be helpful in defining a design goal for on-orbit mission lifetime.

The first step in the rationale is to define the system parameters that are sensitive

to on-orbit lifetime. The variation of such parameters as increased communication

range, lower solar constant, etc, are reflected in the spacecraft design by increased

weight requirements. Therefore, an effective measure of the payload penalty incurred

for increased on-orbit operational lifetimes is the additional weight requirement of

the spacecraft support subsystems. However, other factors such as increased system

complexity must also be evaluated against the enhanced data-gathering capability of an

extended mission. Since a reliability analysis could not be included in the scope of the

present study, it was necessary that these latter evaluations be subjective in nature.

Neglecting the possible need for more redundancy to achieve a given reliability on

extended missions, the high gain antenna is the only electronic system component

which will greatly enhance the data-gathering capability of the mission at some cost

in complexity. Therefore, the first tradeoff considered is the use of a fixed position

antenna (as on Mariner C), a single axis steerable antenna, or a two axis steerable

antenna.

Referring again to Fig. 5-16 and 5-17 which present the antenna look-angle variations

about the look angle at encounter for 1969 and 1971 missions, respectively, the beam-

width requirements for a fixed antenna can be calculated as a function of the mission

design lifetime on-orbit. However, if communications are required throughout the

transfer trajectory, the lifetime on-orbit may not be the real determining factor in

specifying the required antenna beamwidths.

It will be shown in a later section that the maximum comnmnication range at a data

rate of 9-3/8 bits/sec that can be expected using the spacecraft's low gain antenna
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is about 66 × 106 km. If it is assumed that, at this range, data transmission will be

transferred to the high gain antenna, the beamwidth requirements for a fixed antenna

as a function of mission design lifetime on-orbit are illustrated in Fig. 5-20. There

are three main factors which should be noted about these results:

• Design lifetimes greater than 6 mo in orbit were not considered because at

this time sun occultation can be expected during a portion of each orbit,

making attitude control battery-supplied power requirements untenable.

• The antenna axis with the largest beamwidth requirement for a 1969 mission

is perpendicular to the ecliptic, but in 1971 this axis is parallel to the ecliptic.

• A fixed antenna tailored to the 1969 mission will provide suboptimum per-

formance on a 1971 mission.

Using the standard equation for approximation of the gain of a rectangular aperture

antenna, estimates of the peak antenna gains (obtained only at encounter) can be

determined.

30,000

G = WHWE

where

G

W H

W E

-- peak antenna pattern gain

= H-plane half-power beamwidth

= E-plane half-power beamwidth

The results of this estimation are presented in Fig. 5-2 1 and 5-22 for a fixed and

single-degree-of-freedom antenna. For reference, the peak gain of a two-degree-

of-freedom antenna is also indicated. For simplicity, the antennas were assumed

to be physically constrained to a maximum reflector dimension of 4 ft. If the 4 ft

restriction were deleted, the gains of the single and double-axis antennas could be

increased, but the gain of the latter would increase more rapidly. Emphasizing
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the four basic assumptions used in deriving these figures; (i. e., (1) continuous, low

data rate communications throughout the entire transfer period, (2) peak gain will be

designed to occur at encounter, (3) communications will always occur within the half

power beamwidth for each axis, and (4) the maximum antenna dimension must be no

greater than four feet) the data rate penalty incurred at encounter by restricting the

freedom of the antenna can be determined directly from the figures.

As a typical example, assume the mission design lifetime is to be 3 mo on-orbit for

the 1969 mission and the data rate attainable at encounter with a two-degree-of-freedom

antenna is 300 bits/sec (this will be shown to be the capability of the system design

example in a later section). Then the data rate at encounter using a single-degree-of-

freedom antenna would be reduced to about 110 bit/sec and using a fixed antenna, the

data rate would be reduced further to about 20 bits/sec.

As a further example assume the mission design lifetime is selected to be 6 mo on-

orbit. Then the data rate at encounter is further reduced to about 45 bits/sec using

a single-degree-of-freedom antenna and 7.5 bits/sec using a fixed antenna.

Referring to Fig. 5-22 for results pertaining to the 1971 mission, the data rate

penalty incurred by restricting the antenna freedom will be much less than that in-

curred on the 1969 mission. For example, a single-degree-of-freedom antenna

employed for a 3 mo on-orbit mission would suffer a data rate loss at encounter of

about 1.8 db instead of the 4.2 db loss incurred on the 1969 mission.

The real significance of the preceding discussion is demonstrated in Fig. 5-23 which

shows the relative data rate penalty, throughout the orbit life of the spacecraft, in-

curred for a 1969 mission by restricting the antenna freedom entirely or partially

for typical mission design lifetimes. The apparently random behavior of gain for

the steerable antennas is due to the assumption that the antenna positions will be up-

dated in 3-deg incremental steps. These curves would be smooth if the antenna

position was continuously variable. In any event it is readily apparent from this
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graph that the data rate penalty incurred after encounter is even greater than the

penalty incurred at encounter if the antenna has a restricted motion.

Figure 5-24 presents the data similar to Fig. 5-23 for a 1971 mission. However, the

steerable antenna curves have been smoothed for simplicity, as though their positions

were continuously variable.

In both Fig. 5-23 and 5-24 the effect of increasing communication range as a function

of time in orbit has not been shown, since it is independent of antenna freedom.

If the constraint that communications must be maintained continuously throughout the

transfer trajectory is discarded, the antenna gain at encounter as a function of mission

design lifetime on-orbit is illustrated in Fig. 5-25 for the 1969 and 1971 missions.

In this case the data rate penalties incurred at encounter by using a restricted motion

antenna are much less than the penalty incurred in the previous examples (see Fig. 5-23

and 5-24. Since the required antenna gain at a communication range of 66 x 106 km

and a data rate of 9-3/8 bits/sec is only about three db, communications throughout

the transfer trajectory can probably be maintained on the 1969 mission with a single-

degree-of-freedom antenna by operating on the edge of the main lobe of the pattern

(<_ 21 db below peak gain). On the 1971 mission, communication throughout the trans-

fer trajectory is much more certain than for the 1969 mission if a single-degree-of-

freedom antenna is used.

All of the preceding calculations were based on the assumption that the Mariner C

single-degree-of-freedom Canopus tracker will be used in the spacecraft guidance

and control system. If a second-degree-of-freedom is provided for the Canopus

tracker, the inherent rolling of the spacecraft would be eliminated. Then the data

rate penalty incurred using a single-degree-of-freedom antenna is nearly zero for

the 1971 mission and only about 2 db at the conciusion of a 6-mo on-orbit mission in

1969. However, this approach would not reduce the system complexity, while it
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would require considerable development efforts to modify an existing, flight-qualified

Mariner C component. This approach does not appear to be a logical solution to the

problem.

From the preceding discussion a fixed high-gain antenna appears unreasonable for

both the 1969 and 1971 missions. A brief summary of the major advantages and dis-

advantages of the single and double-degree of freedom antennas is presented in

Table 5-9 . Based on this summary, it is recommended that a two-degree-of-freedom

antenna be incorporated in the design of the spacecraft. Throughout the remainder of

the report it is assumed that a two-axis high-gain antenna system will be used.

Table 5- 9

SUMMARY OF ANTENNA TRADE-OFFS

Single Axis

New development required for
1971 mission

Communications may be main-
tainable throughout transfer
trajectory

Large unfurlable antennas cannot
increase the data rates on-orbit

comparable to a two-axis antenna

Two Axis

More complexity

About 5 lb heavier

3 db more data in 1969
3 to 6 db more data in 1971

1969 mission antenna will be

used in 1971

Communications can be main-

tained throughout transfer

trajectory

Large unfurlable antennas can
be used to increase the data

rate significantly

Having made the decision to use a two-degree-of-freedom antenna on the spacecraft,

itis possible to investigatethe increase in weight requirements of the electronic

system as a function of mission design lifetime on-orbit (neglecting redundancy effects).

Only the communication system and solar array weights are directly affected by ex-

tended mission lifetimes. The solar array weight increase to provide a fixed output

power independent of time in orbit will be considered first.
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Assume that the Mariner C solar array was used on the spacecraft for the 1969 mis-

sion. Then the solar constant, array temperature and array power output would be

expected to vary as indicated in Fig. 5-26. Based on the array area of 70.4 sq ft and

a specific weight of about 1.1 lb/ft 2 it can be shown as an example that the additional

solar array weight required for a 6 mo on-orbit mission instead of a 3 mo mission is

about 13 lb if the system requirements are held constant. It will be shown in a later

section that the existing Mariner C array is sufficient for a 6 mo mission and is rec-

ommended for use since it is a fully qualified system. Thus there is no real solar

array weight penalty incurred by prolonging the mission lifetime to 6 mo on-orbit.

The required communication system weight is not only a function of lifetime in orbit

but also a function of the transmitted data rate required at completion of the mission.

There are three components which are responsible for the primary weight variations

as a function of data rate: the antenna, the transmitter, and the portion of the solar

array required to supply power for the transmitter. The antenna considered in this

portion of the study was a "flex-rib" antenna presently under development at LMSC.

This antenna is being developed as an unfurlable parabolic device using a contoured

wire mesh as the reflector. Several models of this antenna have already been suc-

cessfully fabricated and tested at LMSC and one is scheduled for flight test within

a few months. The expected physical characteristics of this type of antenna are

shown without need for further explanation in Fig. 5-27 and 5-28. In this phase of the

study it was assumed that the antenna size might be variable between 3 ft and 16.5 ft

in diameter and that an antenna with an aperture in excess of 5 ft would be unfurlable;

if less than 5 ft it could be launched in an open position.

The pertinent characteristics of the transmitters considered in this phase of the

study are shown in Table 5-10. These transmitters are representative of the state-

of-the-art in satellite-borne units with a premium on weight, volume, and efficiency.
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Table 5-10

TRANSMITTERS FOR 2.3 G TELEMETRY

Output Power Raw Input Power Weight (lb) Volume (in 3) Manufacturer

1. 2.5 (Solid State) 32 2.5 100 Space Technology
Labs

2. 5 (Triode) 35 5 100 Radiation at
Stanford*

3. 10 (Triode) 64 10 170 Resdel

4. 20 (Amplitron) 50 10 200 -**
(TWT) 65 10 200 -***

5. 40 (VTM) 140 12 190 Eitel-McCullough
**

6. 70 (Amplitron) 175 12 250 -

*Availability uncertain since Radiation at Stanford no longer exists.

**Amplitron built by Raytheon.
***TWT built by Watkins-Johnson.

Using the preceding constraints and estimates, a curve of antenna, transmitter, and

directly chargeable solar array weight versus data rate for 3 and 6 mo on-orbit

missions was established with the results shown in Fig. 5-29. As an example,

assume the transmitted data rate is 300 bits/sec. Then the weight penalty incurred

for an extra 3 mo in orbit would only be about 6 lb.

The other set of curves shown in Fig. 5-29 assume that the Mariner C transmitter is

used on the mission. Thus, only the antenna size is allowed to vary as a function of

data rate and communication distance. These curves indicate similar results to the

situation considered in the preceding paragraph. It may also be seen from this graph

that the Mariner C transmitter is not state-of-the-art on the basis of weight. How-

ever, the long-life requirement for this type of mission is an overriding factor and

the status of the Mariner C transmitter is such that it will probably be used on the

1969 mission. The only other transmitter which appears very promising is the 20-w
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traveling-wave-tube unit being developed by Watkins-Johnson. A design goal for this

power amplifier is a tube life of 50,000 hr which, combined with its relatively high

efficiency (40 percent for the tube alone), makes this transmitter look very attractive.

The qualification and development testing requirements for any new transmitter makes

this a long leadtime development item. For the remainder of the study, a conserva-

tive approach has been used and the Mariner C transmitter is used for later estimates

and calculations.

Since the weight penalties incurred for a 6-mo on-orbit mission are so small (refer

to Section 5.1 for attitude-control/gas weight penalties), the 6 mo mission has been

selected as the nominal goal.

5.3.2.2 Orbiter Plus Biocapsule

There are two basic concepts which must be defined for a biocapsule mission, prior

to any discussion of the most suitable system configuration. These concepts concern:

(1) The communication path for transmission between the capsule and Earth during

each phase of the mission and (2) the length of time which the capsule must survive on

the planet surface.

Communication Path- Post Impact Phase. In deciding whether communication with

the biocapsule should be via a direct Earth-capsule link or relayed through the orbiter,

it is best to consider the last phase of the mission first, that is, communication to

and from the surface of the planet. If a direct Earth-capsule link is considered, the

frequency and modulation are required to be S-band and coherent PSK, respectively.

If a relay link via the orbiter is considered, there is no frequency or modulation

constraint on the capsule-orbiter segment of the link.

Several of the primary considerations for determining the best communication path

for the biocapsule link are based on simple geometrical factors. Of prime importance

is the fact that the anticipated orbiter guidance dispersions may result in orbital
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periods varying from about 11 hr to 62.5 hr. In addition, the biocapsule will have

a tendency to land in the southern hemisphere on Mars while the orbiter will spend

most of its time above the northern hemisphere. Since the biocapsule rotation

period is fixed at about 24.5 hr, determination of available line-of-sight communi-

cation periods presents a straightforward but lengthy computation problem which

was beyond the scope of the study. In addition, the local obscura in the vicinity of

the capsule landing point will be unknown and may further limit communication periods

with the orbiter.

This brief introduction to the problem is sufficient to conclude that the capsule

survival time on the planet surface before its first line-of-sight contact with the

orbiter may vary from only a few hours to several days. It should also be noted

that the length of time that the orbiter and capsule will remain within line-of-sight

is uncertain, but it may vary from seconds to many hours.

Using a direct capsule-to-earth communication link, the nominal readout periods

available occur at 24.5 hr intervals and, neglecting local capsule obscura, available

line-of-sight periods will last at least 10 hr. Therefore, the required capsule sur-

vival time may be well defined with a minimum requirement of at least 28 hr.

If it is assumed that the capsule requires a minimum of electrical power (8 w) during

its dormant, data acquisition, or incubation phase, and that heat sterilized batteries

must supply this power, the battery weight required in the capsule for each hour of

dormant life will be about 1/2 lb. Apparently the biological experimenters would like

a minimum incubation period of about 20 hr for which the direct communication link

concept is well-suited. Using the relay concept it may be necessary to provide the

capsule with two or more days of survivial capability with an attendant battery weight

penalty of at least 12 lb. The design survival period has been selected as one day to

minimize capsule weight.

Another advantage of the direct link concept is that the success of the biocapsule

mission is independent of the success of the orbiter mission after separation.
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Other advantages of the direct link concept can be noted by considering the system

antenna design problems. Providing capsule antennas with a sufficiently large look-

angel capability is a problem common to both the direct and relay concepts. How-

ever antenna size, and hence physical location difficulties, decrease as their opera-

ting frequency increases. The use of S-band frequencies, or even higher frequencies,

is desirable. A relay link concept poses an additional constraint on the design of the

orbiter which must be capable of receiving data at any position in its orbit; its antenna

must have a near omnidirectional pattern because the orbiter is stabilized with

respect to the Sun and Canopus. This requirement presents additional design problems

especially if relatively low frequency (VHF for example) operation is required.

It may also be necessary to provide additional temporary storage capability in the

orbiter to avoid undesirable interruptions in the normal orbiter-Earth data trans-

mission if the relay concept is used.

It might also be concluded that an orbiter weight saving on the order of about 13 lb

could be achieved by eliminating the capsule-to-orbiter relay equipment. However,

this is only true if there is no requirement for communications with the capsule

after separation from the orbiter and prior to landing. Such a condition is unlikely

The only question remaining before discarding the relay communication concept con-

cerns the data rate attainable (if any) using a direct capsule-to-Earth link. Tables

5-11 and 5-12 present typical calculations for both the capsule-to-Earth link and the

Earth-to-capsule link respectively. The conclusion based on these calculations is

that a data rate of about 1 bit/sec can be achieved using a 20-w transmitter on the

capsule, and the capsule can sync to Goldstone. Further investigation is required

to determine whether voltage breakdown problems will be encountered at this power

level and to determine solutions to such problems if they exist. Tabel 5-13 presents

the calculations for a biocapsule-to-orbiter link at a frequency of 125 Mc using a 20-w

transmitter. This calculation indicates that a data rate of about 33 bits/sec could be

achieved on such a link.
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Table 5-11

BIOCAPSULE-TO-EARTH LINK CALCULATION

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Parameter

Total Transmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss
at 2290 Mc, R = 175 x 106 km

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Receiver Noise Spectral Density (N/B)

at Te = 30 ° ± 10°K

Carrier Modulation Loss

Received Carrier Power

Carrier APC Noise Bw(2BLO = 4 ± 1 cps)

Value (db)

+13 dbw

-2

-3

incl. in 3

-264.5

incl. in 7

+61

incl. in 7

incl. in 7

-208.5

- 195.5 dbw

-213.6 dbw

-2

- 197.5 dbw

+6

Carrier Performance - One Way Tracking

Threshold SNR in 2BLO

Threshold Carrier Power

Performance Margin

0

-207.6 dbw

+10.1

Carrier Performance - Two Way Tracking

Threshold SNR in 2BLO +i

Threshold Carrier Power -206.6 dbw

Performance Margin +9. 1

Tolerance (db)

+1

:U:). 5

+6, -3

+0, -i

+6.5,-4.5

+7.5, -5.5

+i, -2

_0.5

+8, -6

+1,-1.2
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Table 5-11 (Continued)

No.

22

23

24

25

26

27

28

29

30

31

32

33

Parameter

Modulation Loss

Received Subcarrier Power

Bit Rate (l/T)

Required ST/N/B

Threshold Subcarrier Power

Performance Margin

Data Channel

Sync Channel

Modulation Loss

Received Subcarrier Power

Sync APC Noise BW (2BLO = 4 i 1 cps)

Threshold SNR in 2BLo

Threshold Subcarrier Power

Performance Margin

Value (db)

-4.9

-200.4 dbw

0

+6.5

-207.1 dbw

+6.7

-4.9

-200.4 dbw

+6

0

-207.6 dbw

+7.2

Tolerance (db)

_0.3

+7.8, -2.8

+0.8, -0

+1.8, -1.2

+9, -4.6

!0.3

+7.8, -2.8

+1,-1.2

+2, -3.2

+11, -4.8
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Table 5-12

EARTH-TO-BIOCAPSULE LINK CALCULATION

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Parameter

Total Transmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss
at 2115 Mc, R = 175 × 106 km

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Receiver Noise Spectral Density (N/B)
at Te = 700 ° • 100OK

Carrier Modulation Loss

Received Carrier Power

Carrier APC Noise BW (2BLO = 20 + 4 cps)

Value (db)

+50 dbw

-0.4

+51.4

-0.5

-263.9

incl. in 7

-3

incl. in 7

-1

-217.4

-167.4 dbw

-200.1 dbw

-4

-171.4 dbw

+13

Carrier Performance - One Way Tracking

Threshold SNR in 2BLo

Threshold Carrier Power

Performance Margin

0

-187.1 dbw

+15.7

Carrier Performance - Two Way Tracking

Threshold SNR in 2BLO +1

Threshold Carrier Power -186.1 dbw

Performance Margin +14.7

Tolerance (db)

=el

+0.1, -0.3

i0.5

+0.5, -0

+6, -3

+0.2, -0.5

+7.3, -4.3

+8.3, -5.3

+0.5,-0.7

I0.5

+8.8, -5.8

+0.8, -0.6

+1.3

+10.1,-7.1

+1.3

+10.1,-7.1
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NO.

22

23

24

25

26

27

Table 5-12 (Continued)

Parameter

Sync Channel

Modulation Loss

Received Subcarrier Power

Sync APC Noise BW (2BLO = 20 ± 4 cps)

Threshold SNR in 2BLO

Threshold Subcarrier Power

Performance Margin

Value (db)

-3

-170.4 dbw

+13

0

-187.1 dbw

+17.7

Tolerance (db)

_0.5

+8.8, -5.8

+0.8, -0.6

±1.3

+10.1,-7.1
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No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Table 5-13

BIOCAPSULE-TO-ORBITER LINK CALCULATION (COHERENT PSK)

Parameter

Total Transmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss
at 125 Mc, R = 65 x 103 km

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Receiver Noise Spectral Density (N/B)
at Te = 800 ° + 400°K

Carrier Modulation Loss

Received Carrier Power

Carrier APC Noise BW (2BLO = 20 ± 4 cps)

Value (db)

+13 dbw

-1

-3

incl. in 3

-171

incl. in 7

0

incl. in 7

-I

-176

- 163 dbw

-199.6 dbw

-7

-170 dbw

+13

Carrier Performance - One Way Tracking

Threshold SNR in 2BLO

Threshold Carrier Power

Performance Margin

Modulation Loss

Received Subcarrier Power

Bit Rate (l/T) 33-1/3 bps

Required ST/N/B

Data Channel

0

-186.6 dbw

+16.6

-2.4

-165.4 dbw

+15.2

+6.5

Tolerance (db)

±l

i0.3

+6, -3

+6, -3

_0.2

+12.5, -6.5

+13.5,-7.5

+2, -3

:_0.5

+14, -8

+0.8, -1

_0.5

+14, -8

+0.8, -0
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Table 5-13 (Continued)

No.

23

24

25

26

27

28

29

30

Parameter

Threshold Subcarrier Power

Performance Margin

Sync Channel

Modulation Loss

Received Subcarrier Power

Sync APC Nose (Bw (2BLO = 10 ± 2 cps)

Threshold SNR in 2BLO

Threshold Subcarrier Power

Performance Margin

Value (db)

-177.9 dbw

+12.5

-2.4

-165.4 dbw

+10

0

-189.6 dbw

+24.2

Tolerance (db)

+2.8, -3

+17, -10.8

_0.5

+14, -8

+0.8, -1

+2.8, -4

+18, -10.8
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Communication Path-Atmospheric Entry Phase. Using the calculations in Table 5-11

which indicate a data rate of 1 bit/sec may be achievable on a direct capsule-to-Earth

communication link, it is readily apparent that such a link is insufficient during

atmospheric entry due to reacquisltion time after entry blackout and the small amount

of data which can be transmitted during a subsonic descent period of about 240 sec.

Therefore the only method of communicating during atmospheric entry is to relay data

to Earth via the orbiter. Since this is the only possible communication path, the

presentation of its characteristics will be deferred to Section 5.2.3.3. However it

is appropriate to state that an atmospheric phase capsule-to-orbiter link can provide

a data rate capability of 50 blts/sec after blackout using an S-band, coherent PSK

system.

Communication Path-Capsule Separation Phase. Once it has been decided that a relay

link is requlred for communications during the atmospheric entry phase of the biocap-

sule mission, it becomes obvious that a similar relay link should be used during the

separation phase where the maximum communication range to the orbiter is only

i000 ft.

.R.elay Link Implementation. The capsule-orbiter communication link required during

the separation and atmospheric entry phases should be compatible with the capsule-

Earth link used after landing to minimize the complexity and weight of the capsule.

Therefore, an S-band, coherent PSK system is required. Two implementation con-

cepts for this type of system must be considered. The first concept would close the

communication link by transmission from capsule to orbiter to Earth using the orbiter

only as a repeater, i. e., frequency translator and power amplifier. This concept

has the advantage that no PN code generator or demodulation equipment is required

in the orbiter specifically for support of the capsule. It does however, have three

overwhelming disadvantages.

• The reacquisition time after blackout may take several minutes, thus

practically eliminating the chance to obtain entry data before impact.
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• The orbiter high gain antenna must be pointing at Earth throughout the

separation phase, adding complexity to the mission.

• This concept requires switching in the orbiter-Earth link exciter thereby

reducing the reliability of the more important link.

The fate of this concept is obvious.

The second concept, and the most feasible one, is to incorporate a self-sufficient

link between the orbiter and capsule. The data received by the orbiter would then

be inserted into the orbiter-Earth link in place of normal orbiter data.

5.3.2.3 Orbiter Plus Atmospheric Capsule

The majority of basic tradeoffs pertinent to an orbiter-plus-atmospheric capsule

mission have already been discussed in the preceding sections and need not be re-

peated. However, for this mission, there is no operational constraint on the frequency

and modulation used in the capsule-orbiter link. In order to minimize the weight in

both the capsule and the orbiter (about 5 lb and 15 lb, respectively) a simple one-way

link should be used. It is also desirable to employ a link which can be developed

with minimum effort and cost. A PCM-FM system is a very conservative solution

to the problem. While the communication efficiency of PCM-FM is poor, relative

to coherent PSK and differentially coherent PSK systems, the attainable data rate

of about 50 bits/sec appears ample for this mission. As for a choice of frequency,

the VHF telemetry band (225-260 Mc) reduces many system problems encountered

at higher frequencies and maximizes the availability of componentry. Thus, the link

calculations in Section 5.3.3.2 will be based on an operating frequency of 250 Mc.

5.3.3 Electronic System Design

The basic electronic system design concepts for the 1969 Mariner mission to Mars

will be presented in this section. The scope of the study did not include a preliminary
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design of the vehicle so that only sufficient detail is provided to demonstrate the basic

feasibility of the mission and to provide the necessary information for estimating sub-

system weight, power and volume requirements. In addition, portions of the system

which appear to be compatible with the desired use of Mariner C and other flight

qualified components will be specified. Other portions of the system that could

employ qualified circuitry will also be delineated (e. g., the Mariner C communication

equipments modified to provide different data rates). It is not anticipated that signi-

ficant modifications will be required for the 1971 mission in any portion of the system

with the possible exception of the data acquisition system and its interface require-

ments with new or modified experiments.

5.3.3.1 Orbiter Only

A functional block diagram of the basic spacecraft is illustrated in Fig. 5-30, a, b

and c. Perhaps the simplest manner of explaining these diagrams is to discuss

each subsystem separately.

Radio Subsystem

The orbiter radio subsystem must provide three system functions: (1) tracking,

(2) command signal reception and demodulation, and (3) telemetry modulation and

transmission. As mentioned previously it is expected that this subsystem will employ

post-1965 Mariner techniques. To accomplish these general system functions, the

orbiter radio subsystem must have the following capability:

• Receive the RF signal transmitted from the DSIF

• Coherently translate the frequency and phase of the received RF signal by a

fixed ratio

• Demodulate the received RF signal and send a composite command signal to

the orbiter command subsystem
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• If required, demodulate the range code transmitted to the orbiter and sub-

sequently modulate the transmitter with this demodulated ranging signal

from the turnaround ranging circuits

• Modulate the transmitted signal with a composite telemetry signal

• Transmit the modulated RF signal to the DSIF

The receiver portion of the transponder will be a double superheterodyne phase

coherent circuit employing a tunnel diode preamplifier yielding an effective system

noise temperature of 630 degrees Kelvin. The carrier phase-lock loop noise band-

width at threshold will be 12 cps. The sync subcarrier phase-lock loop noise band-

width at threshold is 8 cps.

The link calculations for the command link with a command rate of one bit/sec are

presented in Table 5-14 using the orbiter's low gain antenna for reception from

Goldstone throughout a 1969 mission, including a 6 mo period in orbit about Mars.

Actually the orbiter will use its high gain antenna for reception as long as the space-

craft is in its proper attitude, since even the Goldstone link is marginal through the

low gain antenna. It was assumed that the Woomera and Johannesburg stations

would only have 10 kilowatt transmitters which are certainly insufficient. The link

calculations for these stations using the high gain antenna on the orbiter are presented

in Table 5-15.

With the narrow loop noise bandwidths postulated for a receiver, a possible question

arises as to whether or not such a receiver can track the doppler shifting signal from

the DSIF. The highest rate of change of doppler shifts will naturally be encountered

after a Mars orbit has been achieved.

The highest rate of change of doppler shift will occur when the orbiter is near periapsis.

It has been estimated that the highest acceleration of the orbiter with respect to Earth

will be about 1.5 ft/sec. A second order loop filter with a noise bandwidth of about
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Table 5-14

ORBITER COMMAND LINK CALCULATION

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Parameter

Total Transmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss
at 2115 Mc, R = 355 × 106 km

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Receiver Noise Spectral Density (N/B)

at T e = 630 ° ±I00°K

Carrier Modulation Loss

Received Carrier Power

Carrier APC Noise BW (2BLO = 12 ± 2 eps)

Value (db)

+50 dbw

-0.4

+51.4

-0.5

-269.5

incl. in 7

0

incl. in 7

-1

-220

-170 dbw

-200.6 dbw

-4

-174 dbw

+i0.8

Carrier Performance -One Way Tracking

Threshold SNR in 2BLO

Threshold Carrier Power

Performance Margin

0

-189.8 dbw

+15.8

Carrier Performance - Two Way Tracking

Threshold SNR in 2BLO +1

Threshold Carrier Power -188.8 dbw

Performance Margin +14.8

Tolerance (db)

±i

+0.1, -0.3

I0.5

+0.5, -0

+6, -2

+0.2, -0.5

+7.3, -3.3

+8.3, -4.3

+0.6,-0.7

i0.5

+8.8, -4.8

i0.8
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No.

22

23

24

25

26

27

28

29

30

31

32

33

Table 5-14 (Continued)

Parameter

Command Channel

Modulation Loss

Received Subcarrier Power

Bit Rate (l/T)

Required ST/N/B

Threshold Subcarrier Power

Performance Margin

Sync Channel

Modulation Loss

Received Subcarrier Power

Sync APC Noise Bw (2BLO = 8 • 1 cps)

Threshold SNR in 2BLO

Threshold Subcarrier Power

Performance Margin

Value (db)

-2.9

- 172.9 dbw

0

+9.6

-191 dbw

+18.1

-2.9

-172.9 dbw

+9

0

- 191.6 dbw

+18.7

Tolerance (db)

_0.5

+8.8, -4.8

+0.8, -0

+1.4, -0.7

+9.5, -6.2

_0.5

+8.8,-4.8

i<).5

+1.1,-1.2

+10, -5.9
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Table 5-15

DSIF-TO-ORBITER LINK CALCULATION

No.

1

2

3

4

5

6

7

8

9

I0

Ii

12

13

14

15

16

17

18

19

20

21

Parameter

Total Transmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss
at 2115 Mc, R = 355 x 106 km

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Receiver Noise Spectral Desntiy (N/B)
at T e = 630 ° ± 100°K

Carrier Modulation Loss

Received Carrier Power

Carrier APC Noise BW (2BLO = 12 + 2 cps)

Value (db)

+40 dbw

-0.4

+51.4

-0.5

-269.5

incl. in 7

+25

-2

-1

-197

-157 dbw

-200.6 dbw

-4 db

-161 dbw

+10.8 db

Carrier Performance - One Way Tracking

Threshold SNR in 2BLO

Threshold Carrier Power

Performance Margin

0

-189.8 c,bw

+28.8

Carrier Performance - Two Way Tracking

Threshold SNR in 2BLO +1

Threshold Carrier Power -188.8 dbw

Performance Margin +27.8

Tolerance (db)

+1

+0.1, -0.3

±0.5

+0.5, -0

+1,-0.5

+2, -0.5

+0.2, -0.5

+4.3, -2.3

+5.3, -3.3

+0.6, -0.7

i0.5

+5.8, -3.8

±0.8
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No.

22

2:3

24

25

26

27

Table 5-15 (Continued

Parameter

Sync Channel

Modulation Loss

Received Subcarrier Power

Sync APC Noise BW (2BLO = 8 + i eps)

Threshold SNR in 2BLo

Threshold Subcarrier Power

Performance Margin

Value (db)

-2.9

- 159.9 dbw

+9

0

- 191.6 dbw

+31.7

Toleranee(db)

:LO.5

+5.8, -3.8

:LO.5

+1.1,-1.2

+7, -4.9
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2 eps for one-way transmission and 4 cps for two-way transmission is required for

tracking such an acceleration. * Therefore, the postulated receiver bandwidths should

be adequate.

The transponder transmitter will employ a I0 w TWT power amplifier (the tube being

used as a backup on the Mariner C vehicle). The link calculations used to compute

the attainable telemetry data rate at encounter are shown in Table 5-16. These

calculations indicate that a data rate of 300 bits/see is attainable for up to 12 days

on-orbit. To keep the complexity of the system to a reasonable minimum, the data

rate will only be reduced twice during the remainder of the mission. The data rate

will be reduced after 12 days on-orbit to 150 bits/see. This data rate can be main-

tained until 75 days after orbit has been achieved. After 75 days on orbit the data

rate will be further reduced to 75 bits/see for the remainder of the mission.

Using the orbiter's low gain antenna, a telemetry data rate of 9-3/8 bits/see can be

maintained during the interplanetary trip over a communication range from Earth of

about 66 mihlion km. The unique data rate of 9-3/8 bits/see is used because itis a

binary factor (8)of the next lowest data rate (75 bits/sec), which makes the imple-

mentation of the data rate conversions as simple as possible. The link calculations

for this case are presented in Table 5-17. For completeness, the link calculations

for the use of the mobile tracking stationto enhance the tracking station capability to

a range of 20,000 km are presented in Tables 5-18 and 5-19.

Having specified the capability of the communication links it is pertinent to consider

the operation of the link. After the Surveyor shroud is separated from the Centaur,

the orbiter's RF power is turned on and will operate continuously thereafter. The

spacecraft low gain antenna is used for both reception and transmission until about

175 days after launch when the communication range reaches about 66 million km.

During this phase of the mission, the transmitted data rate will be continuous at

*"Principles and Applications of Phase-Lock Detection in Phase Coherent Systems",
C.L. Nielson, Hallamore Electronics Co., 1957
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Table 5-16

ORBITER-TO-DSIF LINK CALCULATION

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

Parameter

Total Transmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss
at 2295 Mc, R = 175 x 106 km

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Receiver Noise Spectral Density (N/B)
at Te = 30 ° ± 10°K

Carrier Modulation Loss

Received Carrier Power

Carrier APC Noise BW (2BLO = 5 ± 1 cps)

Value (db)

+10 dbw

-2

+26,3

-2

-264.5 dbw

incl. in 7

+60

incl. in 7

inc. in 7

-182.2

-172.2 dbw

-213.6dbw

-5

-177.2 dbw

+7

Carrier Performance - One Way Tracking

Threshold SNR in 2BLO

Threshold Carrier Power

Performance Margin

0

-206.6 dbw

+29.4

Carrier Performance - Two Way Tracking

Threshold SNR in 2BLo +1

Threshold Carrier Power -205.6 dbw

Performance Margin +28.4

Tolerance (db)

±1

_0.5

+0.5, -1

+2, -0.5

+1, -2

_4

+5

+1, -2

_0.5

±5.5

+0.8, -i

5-132

LOCKHEED MISSILES & SPACE COMPANY



M-29-64-1

No.

22

23

24

25

26

27

28

29

30

31

32

33

Table 5-16 (Continued)

Parameter

Modulation Loss

Received Subcarrier Power

Bit Rate (l/T) 300 bps

Required ST/N/B

Threshold Subcarrier Power

Performance Margin

Data Channel

Sync Channel

Modulation Loss

Received Subcarrier Power

Sync APC Noise BW (2BLO = 10 + 2 cps)

Threshold SNR in 2BLO

Threshold Subcarrier Power

Performance Margin

Value (db)

-2.4

-174.6 dbw

+24.8 db

+6.5

- 182.3 dbw

+7.7 db

-2.4

-174.6 dbw

+10

0

-203.6 dbw

+29

Tolerance (db)

+0.2, -0.3

+5.2, -5.3

+0.8, -0

+1.8, -2

+7.2, -7.1

+0.2, -0.3

+5.2, -5.3

+0.8, -i

+i. 8, -3

+8.2,-7. 1
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Table 5-17

CRUISE PHASE ORBITER-TO-EARTH LINK CALCULATIONS

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Parameter

Total Transmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss
at 2295 Mc, R = 66 x 106 km

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Receiver Noise Spectral Density (N/B)

at Te = 30 ° ± 10°K

Carrier Modulation Loss

Received Carrier Power

Carrier APC Noise BW (2BLO = 4 ± 1 cps)

Value (db)

+10 dbw

-2

+3

incl. in 3

-256

incl. in 7

+60

incl. in 7

incl. in 7

-195

-185 dbw

-213.6 dbw

-5

-189 dbw

+6

Carrier Performance - One Way Tracking

Threshold SNR in 2 BLO

Threshold Carrier Power

Performance Margin

0

-207.6 dbw

+18.6

Carrier Performance - Two Way Tracking

Threshold SNR in 2BLO +1

Threshold Carrier Power -206.6 dbw

Performance Margin +17.6

Tolerance (db)

±1

_0.5

_3

+I,-2

+4.5,-5.5

+5.5,-6.5

+i, -2

_0.5

+6, -7

+1,-1.2
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No.

22

23

24

25

26

27

28

29

30

31

32

33

Table 5-17 (Continued)

Parameter

Modulation Loss

Received Subcarrier Power

Bit Rate (l/T) 9-3/8 bps

Required ST/N/B

Threshold Subcarrier Power

Performance Margin

Data Channel

Sync Channel

Modulation Loss

Received Subcarrier Power

Sync APC Noise BW (2BLo = 4 ± 1 cps)

Threshold SNR in 2BLo

Threshold Subcarrier Power

Performance Margin

Value (db)

-2.4

-187.4 dbw

+9.7

+6.5

-197.4 dbw

+10 db

-2.4

-187.4 dbw

+6

0

-207.6 dbw

+20.2

Tolerance (db)

+0.2, -0.3

+5.7, -6.8

+0.8, -0

+1.8, -2

+7.7, -8.6

+0.2, -0.3

+5.7, -6.8

+1,-1.2

+2, -3.2

+8.9, -8.8
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Table 5- 18

MOBILE TRACKING STATION-TO-ORBITER LINK

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Parameter

Total Transmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss
at 2115 Mc, R = 20 × 103 km

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Receiver Noise Spectral Density (N/B)

at T e = 630 ° + 100°K

Carrier Modulation Loss

Received Carrier Power

Carrier APC Noise BW (2BLO = 12 ± 2 cps)

Value (db)

+14 dbw

incl. in 3

32

incl. in 3

-185

incl. in 7

-3

incl. in 7

-1

-157

-143 dbw

-200.6 dbw

-4

- 147 dbw

+10.8

Carrier Performance - One Way Tracking

Threshold SNR in 2BLO

Threshold Carrier Power

Performance Margin

0

-189.8 dbw

+42.8

Carrier Performance - Two Way Tracking

Threshold SNR in 2BLO +1

Threshold Carrier Power -188.8 dbw

Performance Margin +41.8

Tolerance (db)

±1 db

+i, -2

+9, -6

+0.2, -0.5

+10.2, -8.5

+11.2, -9.5

+0.6, -0.7

_0.5

+11.7, -10

_).8
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No.

22

23

24

25

26

27

Table 5-18 (Continued)

Parameter

Sync Channel

Modulation Loss

Received Subcarrier Power

Sync APC Noise BW (2BLO = 8 ± 1 cps)

Threshold SNR in 2BLo

Threshold Subcarrier Power

Performance Margin

Value (db)

-. 29

-145.9 dbw

+9

0

- 191.6 dbw

+45.7

Tolerance (db)

+0.5

+11.7, -10

_0.5

+1.1,-1.2

+12.9,-11. 1
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Table 5-19

ORBITER-TO-MOBILE TRACKING STATION LINK

NO.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Parameter

Total Transmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss
at 2295 Mc, R = 20 ± 103 km

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Receiver Noise Spectral Density (N/B)

at Te = 1000 ± 100°K

Carrier Modulation Loss

Received Carrier Power

Carrier APC Noise BW (2BLO = 20 ± 2 cps)

Value (db)

+10 dbw

-2

-3

incl. in 3

-185.7

incl. in 7

31

incl. in 7

incl. in 7

- 159.7

-149.7 dbw

-198.6 dbw

-5

- 154.7 dbw

+13

Carrier Performance - One Way Tracking

Threshold SNR in 2BLo

Threshold Carrier Power

Performance Margin

0

-185.6 dbw

+30.9

Carrier Performance - Two Way Tracking

Threshold SNR in 2BLO 1

Threshold Carrier Power -184.6 dbw

Performance Margin +29.9

Tolerance (db)

±i

_0.5

+9, -6

±2

+ii. 5, -8.5

+12.5, -9.5

+0.4, -0.5

_0.5

+13, -10

+0.4, -0.5
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No.

22

23

24

25

26

27

Table 5-19 (Continued)

Parameter

Sync Channel

Modulation Loss

Received Subcarrier Power

Sync APC Noise BW ( 2BLO = 20 ± 2 cps)

Threshold SNR in 2BLO

Threshold Subcarrier Power

Performance Margin

Value (db)

-2.4

-152.1 dbw

+13

0

-185.6 dbw

+33.5

Tolerance (db)

+0.2, -0.3

+12.7,-9.8

+0.4, -0.5

+0.8, -1

+13.7,-10.6
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9-3/8 bits/sec. During the midcourse maneuvers the transmitted data will consist

entirely of engineering performance measurements. Throughout the remainder of

this phase of the mission, transmitted data will consist of a mixture of performance

measurements and cruise science measurements (Mode 2). At 175 days after launch,

the steerable high gain antenna will replace the low gain antenna.

During the approach maneuver which occurs about 26 days before encounter (about

142 million km communication distance) communications will be lost for a period of

time extending up to two hours.

After the cruise altitude has been re-acquired, transmission will continue in Mode 2

until about 82 minutes before the initiation of the engine burn for injection into orbit

around Mars. At this time the system switches to telemetry Mode 3 in which the data

rate is 300 bits/sec. Transmission of data at this high rate will be maintained through

orbit injection and for about 12 days thereafter. Telemetry mode 4 will be initiated

at encounter plus 12 days and will continue through encounter plus 75 days. Telemetry

mode 5 will be initiated after 75 days in orbit and the system will operate in this

mode until the mission is complete.

Turnaround ranging, if used at all, will only be used for a brief interval shortly prior

to the approach maneuver.

Command Subsystem. The function of the command subsystem is to detect the sub-

carrier command information passed on by the receiver, decode these commands and

distribute them according to the address function. The majority of commands received

will be direct commands; i. e., the commanded events will occure immediately.

Several commands, however, will be quantitative commands; i. e., they will contain

information concerning the future time of an event, or the desired magnitude of an

event. These commands will be forwarded to the Central Controller for storage in its

command programmer. A tentative list of the commands required for this mission

are presented in Table 5-20. It is anticipated that single bit error detection and

correction logic will be incorporated into the system although the average bit error

rate is less than 10 -5 based on the expected receiver signal-to-noise ratios.
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Central Controller. The Central Controller must perform the following functions:

• Provide system clock and timing information for all orbiter subsystems

• Initiate all quantitative commands at the proper time and of the proper

magnitude

• Control all fixed sequential activity

• Control data acquisition system sampling and data storage componets

• Adjust individual instrumentation sensor characteristics via command

for DSIF

The basic system clock might be a crystal controlled circuit operating at a frequency

of about 130 kc/sec. Even without an oven, it is expected that the clock stability will

be about 1 part/one hundred thousand over relatively wide temperature ranges which

should be sufficient for all orbiter subsystems.

The capacity and resolution requirements for the command programmer were indicated

in Table 5-20. The memory of this programmer will be implemented using nondestruc-

tive readout techniques to provide permanent storage of such programs as the celestial

reacquisition sequence, etc. The activation of timing events will be accomplished

through the use of simple counters; i.e., the commanded time of an event transmitted

from Earth will be equal to the capacity of the counter less the time of activation after

receipt of the command. Thus, the event will be initiated when the counter overflows.

The thrust termination velocity meter can be implemented in a similar manner except

that velocity increment pulses are derived from an integrating accelerometer rather

than the system clock.

The required sequence timer events are indicated in Table 5-21 for appropriate mis-

sion phases. It is evident from the table that only one sequence timer is required for

the midcourse maneuver(s) and the approach maneuver. By the addition of straight-

forward inhibiting circuitry, the same timer may also be used to control the orbit

injection maneuver sequence.
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The data acquisition sequence timing system is unique in that a fixed sequence of

events must be repeated three times whenever TV data is being acquired. However,

the time interval between these three sequences is programmable from DSIF through

the command programmer. An events counters can be used to inititate the playback

mode on the tape recorder and to reset the command programmer sequence timer.

An additional sequencer, switching one television camera alternately between high

and low resolution settings, may consist of a simple bi-stable flip-flop multivibrator

Eccles-Jordan Trigger Circuit. This sequencer would be useful in the event one of

the television cameras fails to operate properly.

Data Acquisition System. The data acquisition system is easily the most nebulous

portion of the vehicle equipment since the experiments that are flown will undoubtedly

differfrom those presented in Section 5.2. For this reason itis impossible to define

the electronics which are required to support the experiments, such as counters,

individual encoders, etc. However, itwill be noted in the vehicle weight statement

in Section 4.9 that 15 Ib have been allottedfor this equipment. However, the television

system provides the majority of telemetry data on-orbit, and therefore itwill largely

define the tape recorder characteristics and data format.

The television system discussed in Section 5.2 consists of a 600 by 600 line low-

resolution camera, a 600 by 600 line high-resolution camera and a 200 by 200 line

infrared camera. Assuming each element is encoded into 5 bits, the number of bits

in each frame is 1.8 x106 , 1.8 x 106 and0.2 x 106 respectively. Thus the total

number of bits in a television "frame set" is 3.8 x 10 6. If it is assumed that 95

percent of all on-orbit telemetered data is television information, then 4 × 106 bits

of data will be transmitted during the time is takes to read out one television frame

set.

In order to maximize the amount of data returned from an orbiter mission, the

quantity of data obtained during an orbit period should be as close as possible to the

quantity of data that can be transmitted in the same period. Therefore the capacity
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of the tape recorder is determined by the longest anticipated orbit period (62.5 hrs)

and the maximum data transmission rate (300 bits/sec). No television data will be

transmitted during approximately 1.5 hr when pictures are being obtained. Therefore,

only about 61 hr of data readout need be stored. The estimated characteristics of a

conventional tape recorder for this mission are presented in Table 5-22. For com-

parison purposes, LMSC presently has an in-house funded development program on a

unique tape recording system which for this mission could be expected to have the

basic characteristics presented at the bottom of Table 5-22. Of special significance

are the extimated weight and volume savings as well as the fact that essentially any

record/playback speed ratio is attainable. Conventional tape recorders with speed

reduction ratios of 100:1 are difficult to achieve. The only tape recorder with greater

reduction ratios unearthed during this study is the Advanced Mariner recorder being

developed by the Raymond Engineering Company with a reduction ratio goal of 1000: 1.

To be conservative the conventional tape recorder estimates have been used in genera-

ting spacecraft weight, power, and volume requirements.

It was assumed that during the on-orbit phase of the mission, the data acquisition

system might comprise 100 status channels, 21 non-video science channels, and the

television system discussed previously. Then a typical data frame might consist of

one television line (3000 bits), three non-video science words (30 bits, two status

measurements (20 bits) and 110 bits for synchronization and housekeeping functions.

Then the time between samples of a given channel would be as shown in Table 5-23.

The video repetition rate shown is the time required to transmit one frame set.

During the cruise mode, it was assumed that there might be 15 channels of science

data and 100 channels of status data. The data frame format was assumed to consist

of all 115 data channels plus 60 bits of sync and housekeeping data. The measurement

repetition rates are shown in Table 5-23 for telemetry Mode.

During the maneuvers (Telemetry Mode 1) it was assumed that 115 status channels

would be used with the additional 15 channels simply replacing the cruise science

measurements. Then the channel repetition rates would be as shown in Table 5-23.
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Table 5-22

MARS ORBITER TAPE RECORDER

Capacity: 66 × 106 bits

Record Rate: 33 × 103 bits/second

Record/Playback Speed Ratios: 110 :1

220 : 1

440 : 1

Conventional Recorder:

No. of Tracks:

Record Speed:

Bit Packing Density:

Tape Width:

Tape Length:

Estimated Weight:

Volume:

Record Power:

Playback Power:

LMSC Recorder (Development)

Record/Playback Speed Ratios
Obtainable:

No. of Tracks:

Tape Width:

Tape Length:

Estimated Weight:

Volume:

Record Power:

Playback Power:

ROM Development Cost:

Development Time:

ROM Mfg. Cost:

6

11 inches/second

500 bits longitudinal

1/2 inch

1850 feet

36 pounds

1200 in 3

15 watts

3 watts

Essentially Unlimited

64

1 inch

50 feet

11 pounds

300 in 3

3 watts

3 watts

$180,000

18 months from order

$15,000 in quantities of 10-20
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Table 5-23

CHANNEL REPETITION RATE

T/MMODE STATUS (sec) NON-VIDEO SCIENCE (sec) VIDEO (hr)

1 130 0 0

2 130 130 0

3 525 74 3.7

4 1050 148 7.4

5 2100 296 14.8

A brief description of the television data-acquisition sequence is pertinent at this

point. During any orbit period, there are three intervals during which television

information will be obtained: (1) near the sunrise terminator, (2) high noon, and

(3) near the sunset terminator. During each of these periods, the pictures obtained

will consist of six low-resolution, five high-resolution, and five infrared frames.

The times at which these pictures are taken is programmed by the DSIF once the orbit

parameters have been refined. The system may have to be reprogrammed several

times before a proper timing sequence is obtained due to errors in measuring the

orbit parameters. Once the proper timing has been established, however, further

adjustments will only be required as the orbit appears to precess around the planet.

The multiplexing system should be programmable for an orbiter mission to allow the

experimenter some freedom to change the type and quantity of data returned as his

knowledge of the scientific environment increases with the processing and reduction

of the initial data returns. It will also minimize modifications of the 1971 missions.

Guidance and Attitude Control System. The guidance and attitude control system

shown functionally in Fig. 5-29 is basically the Mariner C system. Since the system

has already been discussed in Section 5.1, no further consideration will be devoted to

it.
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Electrical Power System. The electrical power system illustrated functionally in

Fig. 5-30 is essentially the Mariner C system. It is expected that the subsequent

equipment design will emulate Mariner C developed components almost without mod-

ification for the 1969 mission. The only significant modification for the 1971 mission

might be the size of the required solar array.

No major equipment development efforts are anticipated other than repackaging and

testing of batteries.

The power requirements for the various phases of the Mariner 1969 Mars Orbiter

Mission are shown in Fig. 5-31, and summarized in Table 5-24. These power require-

ments are only for the various subsystem equipments without consideration of the

power system inefficiency. No contingencies have been included in these power require-

ments. The design of the power sources must take these inefficiency contingencies and

degradation factors into account. Table 5-25 is a tabulation of the total requirements

from the various power sources, with the above factors taken into consideration.

Figure 5-32 presents the block diagram power system configuration design for the

1969 mission. Basically, the following types of power are available to users.

Type of Power Output Voltage (VAC) Tolerance Deviation (%)

2400 --1 _b 50 :_2

400 --i _b 28 _5

400--1 _b 32.5 _5

400 --3 _b 27 (L-L) ±10

unregulated DC 25 - 50 VDC N.A.

One exception is that a 50 VDC • 1 percent line will be made available to the power

synchronizer.

As stated previously, the power sources for the orbiter section are primarily solar

photovoltaic arrays, supplemented by a rechargeable silver-cadmium battery. During
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Fig. 5-31 Orbiter-Only Power Profile - 1969 Mission
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Mission
Phase

Launch

Acquisition

Table 5-24

ESTIMATED ORBITER ONLY POWER REQUIREMENTS

1969 MISSION

Power Level (W)
400 ~ 400 N 2400 ~ Unreg.

Subsystem i q_ 3 _b lq_ D.C.

Guidance &
Control

Electronics

Science Inst.

Thermal
Control

Battery
Charging

Status Inst.

Failure
Sensors

35 26

m

i

i

Battery
Energy
(w-hrs)

140

45 56 140

14 - 10

-- 0

10

10

I

I

20

20

Total 0

Guidance &
Control

Electronics

Science Inst.

Thermal
Control

Battery
Charging

Status Inst.

Failure
Sensors

35 105 56 330

35

a

I

I

I

26

45 56

14 0

1

10

10 m

Included

In

Launch

Phase

Total 0 35 105 56
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Table 5-24 (Continued)

Mission
Phase

Orbit

Injection

(Cont.)

Subsystem

Status Inst.

Failure
Sensors

Propulsion

400 ~

1¢

Power Level (W) Battery
400 ~ 2400 ~ Unreg. Energy

3@ lq_ D.C. (W-hrs)

50 5

Total 0 35 132 111 85

On Orbit Guidance &
Control

Electronics 10

Science Inst. 3

Thermal
Control

Battery
Charging

Status Inst.

Failure
Sensors

m

16

52 56 5

63 - 60

i0

i0

15 110

D m

I

Total 13 0 151 71 175

For a 1971 mission, an increase in solar panel area of about 20 percent will be required

due to variations in the solar constant and panel temperature. This is based on similar

orbiter power requirements for 1969 and 1971.

Electrical power distribution for the orbiter mission will follow the same ground rules

developed for the Mariner 1964 mission. Electrical distribution harness reliability and

electromagnetic interference elimination will be some of the prime considerations for

the design of the power distribution system. No foreseeable deviation from the Mariner

C power distribution system can be envisioned at this time for the Orbiter missions.
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Mission
Phase

Cruise

Maneuvers

Orbit

Injection

Subsystem

Guidance &
Control

Electronics

Science Inst.

Thermal
Control

Battery
Charging

Status Inst.

Failure
Sensors

Table 5-24 (Continued)

Power Level (W)
400 ~ 400 ~ 2400 ~ Unreg.

1¢ 3¢ 1¢ D.C.

m

m

m

m

16

45

14

10

10

56

5

12

m

Total 95 73

Guidance &
Control

Electronics

Science Inst.

Thermal

Control

Status Inst.

Failure
Sensors

Propulsion

35

m

26

45

14

10

10

56

5

5O

Total 0 35 105 Iii

Guidance &
Control

Electronics

Science Inst.

Thermal
Control

35

w

26

52

34

56
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Battery

Energy
(W-hrs)

m

m

550

m

55O

105

120

24

5

18

18

5

295

75

5
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the launch phase of the mission, the orbiter will be powered by the secondary battery

until the solar panels are deployed and the sun is acquired by the vehicle. When power

becomes available from solar arrays, the system will go into a power sharing mode in

which both the battery and the solar arrays will participate in making their power

available. Battery participation will depend on booster regulator and battery voltages,

which are yet to be determined. During the cruise phase of the mission, the orbiter

will draw its power primarily from the solar arrays, at which time, the secondary

battery will be recharged. At the end of the predetermined charge cycle, the battery

will go into a float charge mode drawing about 20 ma of current and will remain in that

state until battery power is needed during the midcourse and Mars approach correction

phases. During these two phases, the orbiter will be powered completely by the sec-

ondary batter, until solar alignment is re-established by the vehicle. At the initiation

of the Mars orbit entry phase and thereafter, which includes the long period of orbiting

the planet Mars, the battery and the solar arrays will again go into the power-sharing

mode, with the battery recharged between the sharing periods. The orbiter battery

can be isolated from the rest of the system by direct command in case of failures or

other warranted conditions. This will put the battery into an OFF mode until restored

by a second command. This is to insure against the possibility of the battery grounding

the system in case of failure.

Table 5-26 is a list of the power system equipment and its characteristics for the 1969

mission. All of the equipment in Table 5-26 are Mariner C components. Only the

secondary battery in Table 5-26 is a new unit; however, only repackaging of existing

silver-cadmium batteries will be required for the 1969 mission.

The solar photovoltaic arrays on the orbiter are the same as those used in the Mariner

C mission except that the output power is higher because of solar constant and array

temperature differences caused by the difference in trajectory of the 1969 mission.

Figure 5-33 is a plot of the projected photovoltaic system output as a functions of the

time from launch. This raw output must be conditioned prior to distribution to power

users. The data presented in Fig. 5-33 was derived from Mariner C test data, as

shown in Figs. 5-34 and 5-35.
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The pyrotechnic ignition energy storage circuit will basically consist of a bank of

capacitors as on Mariner C in order to eliminate harmful transients from propagating

through the power supply to other subsystems.

5.3.3.2 Orbiter Plus Atmospheric Capsule

The sequence of events for this mission was presented in Table 5-7 and a functional

block diagram of the orbiter was presented in Fig. 5-30. Now Fig. 5-36 presents

a functional block diagram of the capsule system and its interface with the orbiter

subsystems. The first concept to be considered in this diagram is the need for two

transmitters on the capsule and therefore two receivers on the orbiter. This arrange-

ment is a consequence of the requirement for communications during the separa-
I

tion phase and atmospheric entry phase of the mission and the fact that at 250 Mc

the free-space attenuation of the link will vary over a range in excess of 160 db. The

most obvious solution to a dynamic range problem of this magnitude is to simply reduce

the transmitter power output to a sufficient level such that an AGC loop in the receiver

can accommodate the remaining variation in signal strength. However, this would

require a reduction in transmitted power of about 100 db which is not simple to

achieve. However, assume that the orbiter receiver is a three stage superheterodyne

circuit with its final IF centered around 500 kc. Then, during the separation phase,

capsule signals could be received at this lower frequency. The generation of signals

at this frequency in the capsule is simply a problem of translating the modulator

output to this lower frequency. In effect, split the receiver in two parts; a mixer in

the capsule and the IF amplifier plus the discriminator in the orbiter as illustrated

in Figs. 5-37 and 5-38.

The next problem to be considered is the interface between this receiver and the

orbiter-earth telemetry link. During the preseparation checkout period and the

atmospheric entry period, the received data will be buffered and subsequently inserted

into the orbiter-Earth link. During checkout, the data will be inserted in place of

normal orbiter measurements. During atmospheric entry, the data will be inserted ill

the Mode 3 frame in slots allocated for television data. However, since orbit has not

yet been achieved, no television data is actually being replaced.
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During the separation phase however, an additional constraint must be considered; the

orbiter has been maneuvered into a noncruise attitude required for release of the

capsule, thereby interrupting communications with the DSIF. Therefore, all capsule

separation data must be stored in the orbiter for re-transmission after the cruise

attitude has been re-established. Since the separation phase is only 1 min and a

sufficient capsule-orbiter data rate will not exceed 50 bits/sec, a three-thousand

bit core memory will be required to store this data.

The capsule data acquisition system will have four operating modes; checkout, separa-

tion, supersonic entry and subsonic entry. During checkout only engineering data will

be acquired with science instrumentation checkout data being considered part of this

data. During separation, the occurrence of specific events and system status data

will be transmitted. During supersonic entry, and especially at velocities in excess

of 10,000 ft/sec, it is expected that plasma sheath generation will eliminate all

possibility of communicating with the orbiter. Therefore, the data acquired from an

accelerometer and various capsule temperature sensors will be stored until the drogue

chute is released. Assume that ten measurements are being recorded at this time

and the highest sampling rate required for any measurement is one sample/sec from

both accelerometer outputs. Also assume that a sample rate of 0.25 samples/sec is

adequate for the remaining eight measurements. Then the data storage device will

require no greater than 1200 bits capacity.

During subsonic entry only scientific data will be acquired. During one complete

multiplexer frame, there may be 25 measurements to be transmitted including 19

from a mass spectrometer. If the sample rate per channel is 0.1 samples/sec, the

transmitted data rate (neglecting sync) would be 25 bits/sec. However, the stored

supersonic entry data must also be transmitted at this time and the memory should be

cleared within 60 sec to ensure transmission before impact. Therefore, the data

transmission rate, including a 10 percent allotment for synchronization, should be at

least 50 bits/sec. For the nominal subsonic descent time of 70 sec, all stored super-

sonic data can be cleared and seven data points will be obtained for each subsonic
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measurement channel. It is possible to rearrange the sampling format to allow more

data points to be obtained from the pressure and temperature sensors for example, by

reducing the number of measurements from the mass spectrometer. However, the

transmitted data rate of 50 bits/see appears to be sufficient for a useful mission.

The communication link calculations based on a 50 bit/sec data rate are presented in

Tables 5-27 and 5-28 for the separation and atmospheric entry phases respectively. It

can be seen from Table 5-27 that even a one mw capsule transmitter is far greater than

required. In fact, a 40 db or 50 db attenuator should be inserted in the system.

From Table 5-28 it is apparent that an 8-w solid-state transmitter is satisfactory for

the capsule-orbiter relay link. This power capability is well within the state-of-the-

art. One of the major concerns of any atmospheric capsule link is the link acquisition

time after blackout. Based on JPL External Publication No. 673, it was estimated

that the receiver could acquire the transmitted frequency within 6 or 7 sec using a

phase lock loop with a loop noise bandwidth at threshold of 75 cps. Allowing another 3

see (150 bits) to obtain frame synchronization, it is estimated that complete acquisition

can be achieved in about 10 sec.

The capsule sequence timer, illustrated with the other electronics equipment in Fig.

5-37, has two phases of operation; the separation phase and cruise phase. The

separation phase timer will unitiate five events as indicated in Table 5-7 (Events 53P

through 53U). As shown in this table, the resolution of the timer must be 0.5 sec with

a capacity of about 64 sec. Therefore, a seven-stage counter will be required.

The cruise sequence timer has only one function and that is to turn on all capsule

subsystems nominally 38 min before the oribter engine is ignited to inject the vehicle

into orbit. Therefore, the timer must have a capacity of about 96 hrs and a resolution

of 1 min is ample. The clock stability required for the capsule sequence timer is only

one part in ten thousand which can easily be achieved using crystal controlled oscillators.

However, in order to minimize capsule battery weights, the lowest power timer that

can be used should be used. The Accutron appears to be very well suited to this

mission.
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No.

1

2

3

4

5

6

7

8

9

i0

11

12

13

14

15

16

17

18

Table 5-27

ATMOSPHERIC CAPSULE-ORBITER LINK (SEPARATION PHASE)

Parameter

Total Transmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss
at 500kc, R = 1,000 feet

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Filter and Detector Loss

Net Received Signal Power

Receiver Noise Spectral Density (N/B)
atT = (2.5 × 105 =_5× 104 ) °K

e

Bit Rate (l/T) 50 bps

Required ST/N/B

Required Received Signal Power

Performance Margin

Value (db)

-30 dbw

-1

-10

incl. in 3

-16.3

incl. in 7

-10

incl. in 7

-2

-39.3

-69.3 dbw

-3

-72.3 dbw

-174.6 dbw

+17

+i0.6

- 147 dbw

+74.7

Tolerance (db)

+i

±0.3

+16, -10

+16, -i0

_0.5

+32.8, -20.8

+33.8, -21.8

_0.5

+34.3, -22.3

+0.8, -1

+1.5, -0

+2.3, -1

+33.8, -26.1
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NO.

i

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Table 5-28

ATMOSPHERIC CAPSULE-ORBITER LINK (ENTRY PHASE)

Parameter

Total Transmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss
at 250 Mc, R - 104 km

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Filter and Detector Loss

Net Received Signal Power

Receiver Noise Spectral Density (N/B)
atT -- 800_400"K

e

Bit Rate (l/T) 50 bps

Required ST/N/B

Required Received Signal Power

Performance Margin

Value (db)

+9 dbw

-1

-3

incl. in 3

-160.5

incl. in 7

0

incl. in 7

-1

-165.5

-156.5 dbw

-3

-159.5 dbw

-199.6 dbw

+17

+10.6

-172 dbw

+12.5

Tolerance (db)

±1

• 0.3

+6, -3

+6, -3

:_0.2

+12.5, -6.5

+13.5, -7.5

• 0.5

+14, -8

+2, -3

+1.5, -0

+3.5, -3

+17, -ii. 5
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The capsule power will be supplied by a single, remote, activated primary battery.

This battery will be activated by the bus pyrotechnics sys' _m through the capsule

umbilical at least 5 min prior to initiation of the preseparation checkout routine. In

order to achieve the highest specific energy, and therefore the lowest weight, the

batteries will be Ag-Zn-KOH units. The present state-of-the-art in remote activa-

tion of silver-zinc batteries is such that they can provide a specific energy for this

application of 30 w-hr/lb. However, a heat sterilization unit may suffer a reduction

of specific energy to about 14 w-hr/lb.

The estimated power and energy requirements for the atmospheric capsule equipment

are presented in Table 5-29. These energy requirements are based on a 4-day cruise

period with a 30-min atmospheric entry period. A block diagram of the capsule power

system is shown in Fig. 5-39. The philosophy in the design of the capsule power sys-

tem is similar to that presented for the orbiter power system; i.e., all regulated

power will be supplied from a 2400 cps inverter system. If the power system efficiency

is assumed to be 85 percent and a 10 percent contingency factor is allowed, the total

battery energy requirement is about 170 w-hrs. The characteristics of the power

system components are presented in Table 5-30.

Table 5-30

ATMOSPHERIC CAPSULE POWER SYSTEM COMPONENTS

Est. Est. Input Output No. Req'd.

Type Wt. Vol. Voltage Voltage Capacity Per Vehicle

Primary Remote 6.1 A-Hr
Battery Activated 12 lb 120 in 3 N.A. 28V DC 170W-Hr

Ag - Zn

2400 cps lq5 3.2 lb 90 in 3 25-50V 50V ACInverter DC + 2% 105 w 1

The capsule pyrotechnics will obtain their activation energy from a capacitor bank

similar to that used on the orbiter.
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Table 5-29

ESTIMATED ATMOSPHERIC CAPSULE POWER/ENERGY REQUIREMENTS

Subsystem Power Level (w) Total Energy (w-hr)

Electronics

Multiplexer/Encoder 7 4

Buffer Storage 1 0.5

Transmitter 62 34

Sequence Timer 0.7 67

Relays, Switches, etc. 2 1

Signal Conditioner 3 1.5

Subtotal 75.7 108

Instrumentation

Accelerometer 5 2.5

Mass Spectrometer 6 3

Pressure Gauges 0.2 0.1

Temperature Gauges O.2 O. 1

IR Radiometer 8 4

UV Photometer 3.5 1.8

Subtotal 22.9 11.5

Total ~99 ~ 120
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Additional equipment must be carried on the orbiter to support the capsule mission,

including the following:

* The receiver mentioned previously and illustrated in Fig. 5-38.

o A 3000-bit capacity core buffer/memory.

• A sequence timer with a counter equivalent to that used in the capsule cruise

phase timer.

• Slightly additional command capability as indicated in Table 5-20.

• At least two additional pyrotechnic events for activation of the capsule

battery and capsule separation.

5.3.3.3 Orbiter Plus Biological Capsule

Functionally, the biological capsule does not differ greatly from the atmospheric cap-

sule except that it must survive impact and operate for about 28 hr after impact. Prior

to impact, there is no difference in the operation of the two capsules. There is no

operational difference in the orbiter support systems at any time in the mission.

However, the implementation of the capsule-orbiter radio subsystem differs significantly

and the other biocapsule subsystems differ to varying degrees from the atmospheric

capsule systems.

Because the atmospheric and biological capsules are operationally the same prior to

impact, there is no need to repeat this portion of the mission operation. Only the

operations after impact will be considered in this section.

At capsule impact, the orbiter support systems are turned off permanently. In the

capsule, meanwhile, a number of interesting events are occurring.

• The majority of capsule electronics are turned off to conserve energy for the

remainder of the mission.

• Before being deactivated, an accelerometer output will be used with simple

logic circuits to determine which end is up, so that the capsule antenna

system will known which side of the capsule can expect to receive signals

from Earth.
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• The capsule sequence timer begins a new phase of operation. On the surface

of Mars, data acquisition and storage command_ will be initiated by the sequence

timer at l-hr intervals for the remainder of the mission. In addition, this

timer will be used to activate the capsule receiver after about 20 hr to search

for signals from the DSIF representing a read out command.

• Upon receipt of DSIF signals, the capsule transmitter will be energized and

after an interval of about 20 min, stored data read out will be initiated.

This data will be read out once and repeated until the DSIF signal is lost or

the batteries run down.

A functional block diagram of the orbiter-biocapsule interface is shown in Fig. 5-40.

Since the only significant difference between this Figure and Fig. 5-36 occurs in the

radio subsystem, no further discussion of the diagram is required. However, the

more detailed block diagram of the electronics system presented in Figs. 5-41 and

5-42 requires some further explanation.

Recalling the discussion in Section 5.3.2.2 concerning the selection of operating

frequencies and modulation for the biocapsule radio subsystem, this system is

constrained to use a coherent PSK, S-band link. The addition of a capsule receiver

is necessary to determine DSIF readiness for data read out. The one additional

antenna shown on the capsule is to ensure that one or the other of the S-band antennas

will be facing approximately skyward after impact. This antenna will then be used

for subsequent readout to Earth.

It should be noted here that both the atmospheric capsule and orbiter used only

near-omni antennas for communications. On a biocapsule mission however, the orbiter's

S-band antenna will be a relatively high-gain unit such as a helix or quad-helix array.

This gain can be realized by virtue of the fact that the required beamwidth of the

orbiter antenna is only 16.5 deg to account for 3a dispersions in the capsule impact

point and orbiter attitude instability. Using the following simplified Eq. 5-18 for a

helix antenna, it can be shown that the half-power gain of such an antenna could be as

high as 18.6 db.
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Peak Gain, G =
4 × 104

B 2
(5.18)

where

B = half-power beamwidth in deg

However, the length of this helix is given by Eq. (5.19) to be nearly 53 in.

Antenna Length = 0.11_ /|1 + 2.46 x 10.j4_

B 2\ /
(5.19)

where

_( = wavelength

Such an antenna is far too long to be properly located in the orbiter designs being

considered. However, using an equivalent quad-helix array, the length of the antenna

can be reduced to 13 in. The spacing between the helices should be about 13 in. sq.

Proper location of the quad-helix antenna was also a problem, so a degradation in

capability was accepted through the use of a 1-ft long, single helix antenna yielding a

beamwidth at 2290 Mc of 35 deg with a peak gain of about 15 db.

The calculations for the biocapsule-Earth links were presented previously in Tables

5-11 and 5-12 and will not be repeated here. The calculations for the capsule-orbiter

entry link are presented in Table 5-31 The separation phase link calculations are not

shown because of their basic similarity to the atmospheric capsule separation link

calculations. It should be noted that a data rate of 50 bits/sec can be achieved on the

atmospheric entry link using a 20-w transmitter in the capsule. The separation link

transmitter power requirements are in the microwatt region once again.
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Table 5-31

BIOCAPSULE-TO-ORBITER ENTRY LINK

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Parameter

Total Transmitter Power

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss
at 2290 Mc, R = 104 km

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Receiver Noise Spectral Density (N/B)
at T e = 600 ° ± 100°K

Carrier Modulation Loss

Received Carrier Power

Carrier APC Noise BW (2BLO = 40 ± 8 cps)

Value (db)

+13 dbw

-2

-3

incl. in 3

-179.7

incl. in 7

+13

incl. in 7

-1

-172.7

-159.7 dbw

-200.8 dbw

-2

-161.7 dbw

+16

Carrier Performance -One Way Tracking

Threshold SNR in 2BLO

Threshold Carrier Power

Performance Margin

Modulation Loss

Received Subcarrier Power

Bit Rate * l/T) 50 bps

Data Channel

0

-184.8 dbw

+23.1

-4.9

-164.6 dbw

+17

Tolerance (db)

±1

_0.5

+6, -3

+2, -1

±0.2

+8.7, -4.7

+9.7, -5.7

+0.7, -0.8

_0.5

+10.2,-6.2

+0.8, -1
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No.

22

23

24

25

26

27

28

29

3O

Table 5-31 (Continued)

Parameter

Required ST/N/B

Threshold Subcarrier Power

Performance Margin

Sync Channel

Modulation Loss

Received Subcarrier Power

Sync APC Noise BW (2BLO = 20 ± 4 cps)

Threshold SNR in 2BLO

Threshold Subcarrier Power

Performance Margin

Value (db)

+6.5

- 177.3 dbw

+12.7

-4.9

-164.6 dbw

+13

0

-187.8 dbw

+23.2

Tolerance (db)

+0.8, -0

+1.5, -0.8

+10.8, -7.5

_.3

+10, -6

+0.8, -1

+1.5, -1.8

+11.8, -7.5
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Either the Amplitron or a traveling wave tube can be used as the power amplifier in the

capsule transmitter. However, the ability of either or both of these devices to accept

heat sterilization and to withstand 900-g shocks on surface impact is uncertain.

Typical experiments that might be conducted on the surface of the planet are given in

Section 5.2 as two pressure sensors, two temperature sensors, a mass spectrometer

with sequential output equivalent to 19 channels, and a biological experiment equivalent

to 15 channels. If these instruments are sampled once per hr over a 24 hr period, the

total storage capacity required is about 10,000 bits. With an acquisition time on the

order of 20 min after initial signal reception, and a transmitted data rate of 1 bit/sec,

the minimum required transmission time is slightly more than 3 hrs.

Since the capsule antenna pattern may have nulls sufficiently deep to cause a loss of

lock for short intervals during this 3-hr readout period, the capsule transmitter will

always be turned off when the receiver is out of lock in order to conserve energy. Thus

an allowance for at least three interruptions in the data link should be considered in

determining the battery energy requirements.

It is expected that the 10,000-bit memory will be a non-destructive readout core

device in order to minimize standby power requirements and allow the possibility of

multiple readout.

The expected energy requirements for the biocapsule are shown in Table 5-32 along

with the characteristics of the power system equipments illustrated in the functional

block diagram of Fig. 5-43. The power will be supplied by a silver-zinc, remote-

activated primary battery similar to that used in the atmospheric capsule. However,

if the assumed heat sterilizable battery specific energy of 14 w-hrs/ib is required to

be used, the biocapsule battery alone would weight 58 lb. This weight is intolerable.

Radiation sterilization or asceptic assembly techniques must be considered if a

biological capsule mission is seriously considered. In this case, the battery weight

would still be a relatively high 27 lb.
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Table 5-32

ESTIMATED BIOCAPSULE POWER/ENERGY REQUIREMENTS

Subsystem Power Level (w) Total Energy (w-hrs)

Electronics

Multiplexer/Encoder 7 7

Buffer Storage 2 28

Transponder 70 328

Sequence Timer 0.7 84

Relays, Switches, etc. 2 1

Signal Conditioner 3 3

Subtotal 84.7 451

Thermal Control

Heaters 5 120

Instrumentation

Mass Spectrometer 6 6

Accelerometer 5 3

Pressure Gauges 0.2 3

Temperature Gauges 0.2 3

Multivator 2 48

Subtotal 13.4 63

Total 103 634
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The additional energy requirements for the capsule support equipment in the orbiter

can be obtained from the secondary battery.

5.3.4 System Weight and Volume Summary

The estimated weight and volume requirements are summarized in Table 5-33 with a

more detailed breakdown provided in Section 4.9. Since a reliability analysis was far

beyond the scope of this study, these estimates do not include an allowance for

redundancy or associated failure sensors. Without any analysis on which to base

an estimate, an allowance of perhaps 15 percent (50 lb) for redundancy might be

required for both the 1969 and 1971 orbiters. The capsules will carry no redundancy

because of their short periods of activity and because they are not considered critical

to the overall success of the mission.

5.3.5 Long Lead Time Development Items

There were no long-lead time development items, required for the 1969 orbiter-only

mission, uncovered during the course of this study. The only component which may

require a major development effort at an early date is the tape recorder. The

Advanced Mariner tape recorder developed or being developed by Raymond Engineering

has a greater capability than that required for the 1969 mission. Whether suitable

modifications would be difficult is unknown, but should be investigated.

There were two components mentioned previously which are presently under develop-

ment and if they are successful they could significantly increase the mission

capability -- a non-standard tape recording technique under development at LMSC

and a Watkins-Johnson 20-w TWT which should bs on the market shortly. These

components would both require an early start to qualify them for the planned mission.
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Table 5-33

ELECTRONICS WEIGHT AND VOLUME SUMMARY

Mission

Orbiter Only

Orbiter

Plus

Atmospheric Capsule

Estimated Weight (lh)

355

368

35

Estimated Volume (in3)

9020

9570

810

Orbiter

Plus

Biological Capsule

371

73

9720

1230
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5.4 PROPULSION

The objectives of the 1969 Mariner Mars propulsion study were to establish propulsion

requirements for the vehicle, to select propellants, to develop a propulsion system

concept, and to define possible development problems areas. Emphasis was placed on

those design and performance aspects having the most impact on the overall spacecraft

system. As a result of this study it was found possible to satisfy both the mid-course

maneuver and the orbit injection propulsion requirements with a single-engine propulsion i
,q

unit. The ablative-cooled engine selected to fill these requirements is considered state-

of-the-art, and uses storable nitrogen tetroxide (N204) and monomethyl hydrazine (MMH)

as propellants.

Wherever possible, recent advances in propulsion system technology have been incorpor-

ated into the propulsion system design. In particular, passive ullage control through

the incorporation of propellant containment screens in a tank outlet (sump) have been

included.

A cold gas propulsion unit was selected for the vehicle attitude control system. Exten-

sive flight experience at JPL, LMSC, and elsewhere has demonstrated the reliability

of such a system. A subliming solid system was critically evaluated. Although it

offers a significant reduction in weight and potential improvement in reliability (low

pressure storage), the subliming system was not selected because of the lack of flight

experience and lack of proven technology. However, use of subliming systems on

near-future Air Force and NASA vehicles may allow its reconsideration as a feasible

improvement later in the program.

A heat sterilizable solid propellant rocket motor is proposed for propulsion on the

capsule. Although present information indicates that off-the-self hardware is not avail-

able to fulfill this requirement, it was determined feasible to develop such a system

within the required time schedule. Standard, small impulse solid motors were chosen

for spin rockets on the capsule.
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5.4.1 Primary Propulsion System

Performance Requirements. The launch window for the 1969 Mars orbiter mission

extends from January 15, 1969 to February 14, 1969. For injection into a 1, 800 by

36, 000 km orbit D the ideal required AV varies from 5600 fps on January 15, 1969 to

6670 fps on February 14, 1969. The propellant tanks must be designed for capacity to

satisfy the last day of the launch window including allowance for gravity losses. For

maximum performance the tanks must be partially filled on the first day of the window,

and incrementally on-loaded through the window. As discussed under the guidance and

control section, two midcourse correction maneuvers are required during the transfer

trajectory. Provision is made for an additional midcourse maneuver if required.

Finally, sufficient incremental velocity is required to place the orbiter into Mars

orbit. In the interest of simplicity and the associated reliability, every effort was

made to satisfy all of these requirements with one engine. The midcourse and orbit

correction maneuvers have a minimum impulse requirement of 100 lb-sec as deter-

mined by the guidance analysis. This minimum impulse capability is available from

engines up to 1000 lb thrust, and this value was used as an upper limit of thrust during

the optimization analysis.

System Concept Selection. Three candidate propulsion systems were studied for space-

craft primary propulsion:

• A dual system consisting of a bipropellant unit for orbit injection and the

Mariner C hydrazine monopropellant thruster for trajectory corrections.

• A solid propellant motor for orbit injection in conjunction with the Mariner C

hydrazine monopropellant system for trajectory corrections.

• A single pressure-fed storable liquid bipropellant system for both orbit

injection and trajectory corrections.

As previously mentioned, propellant on-loading is required through the launch window

for maximum performance. On-loading of solid propellants is not considered feasible.

Further, the specific impulse of available solid propellants is considerably less than

the proposed 302 sec. The combination of these two considerations yields about a 100 lb

payload penalty indicating the choice of a solid propellant would be ill-advised.
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The all-liquid dual system is considerably more complex than a single system, requir-

ing three propellants and requiring mounting provisions considered difficult to imple-

ment without separate thrust-vector control systems. The dual system is also heavier

than a single engine and would be selected only if a single system could not provide the

minimum impulse bit required for guidance corrections. As a result of these consid-

erations, the effort was concentrated on the design of a single system which could

satisfy all the primary propulsion requirements.

Propellant Selection. The mission feasibility study showed that the mission could be

performed with state-of-the-art storable liquid propellants. Nitrogen Tetroxide is a

readily available storable oxidizer having extensive test experience in the 300-sec

specific-impulse regime. The majority of this testing has been done with either

Monomethyl-Hydrazine (MMH) or 50 percent MMH and 50 percent Hydrazine (50-50) as

the fuel. The chemical characteristics of these two fuels are very similar, except for

their freezing points, with the value for MMH considerably lower than for 50-50.

Although theoretically a 1-sec specific impulse advantage is found for the 50-50, rocket

engine manufacturers have not been able to demonstrate it in testing. Therefore_ to

minimize thermal control requirements, MMH was chosen as the fuel.

Engine Selection. The thrust chamber optimization was accomplished by an iterative

technique. Based on an assumed chamber pressure and area ratio, the minimum

delivered specific impulse was determined from Fig. 5-44 . The data for this figure,

which accounts for the low chamber pressure re-combination losses recently quantitized

during many small engine test programs, was obtained from Aerojet General Corp.

Results from their tests on NASA Contract No. NAS/7-136 are to be documented in the

near future. Using this specific impulse, the maximum total propellant weight required

for maneuvers (maximum of three totaling no more than 46 m/sec) was calculated.

Subtracting this weight, the booster adapter weight, and the capsule weight from the

vehicle escape weight (1990 lb) yields the vehicle weight at start of orbit injection.

Thrust, chamber pressure and expansion ratio were varied in a tradeoff analysis to

optimize nonpropulsive weight in a 1800 by 36,000 km orbit about Mars. The tradeoff
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matrix was:

Chamber Pressure (Pc) = 150, 100, 50 PSIA

Expansion Ratio (_) = 100:1, 60:1, 30:1

Thrust (T) = 300, 500, 750, 1000 lb

Total nonpropulsive weight on orbit was determined by subtracting propulsive weight

from the burnout vehicle weight. For this exercise, propulsive weight includes the

thrust chamber, helium tank, propellant tanks, valves, lines, and residuals. Figure

5-45 presents the results of this procedure. From this figure, and the limited Surveyor

envelope restriction, a design point of 750 lb thrust, 150 PSIA chamber pressure, and

expansion ratio of 60:1 was chosen.

5.4.2 Details of the Selected Primary Propulsion System

The primary propulsion system is schematically shown in Fig. 5-46. The preliminary

design characteristics are presented in Table 5-34 and the detailed weight breakdown

is shown in Table 5-35.

Engine. The performance characteristics of the engine design are provided in Table

5-34. This engine utilizes an ablation-cooled thrust chamber to an area ratio of 20:1

and a radiation skirt extension from 20:1 out to 60:1. A throat insert is necessary to

eliminate throat ablation and consequent thrust decay. This specific engine design is

not presently available or under contractual development at any of the manufacturers.

However_ information from the manufacturers contacted indicates that development

program unknowns will be minimized since extensive in-house prototype testing has

been accomplished at thrust levels bracketing this design. Since a development program

will be required, this is a long-lead time item requiring an estimated 18 mo through

qualification. The design shown in Fig. 5-47 was provided unsolicited by Rocketdyne.

Rocketdyne indicated that many requests for design confirmation on an engine of this

type have been received and that they felt a preliminary design was warranted.
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Table 5-34

ORBITER PRIMARY PROPULSION SYSTEM CHARACTERISTICS

Parameter

Thrust

Area Ratio

Chamber Pressure

Mixture Ratio

Minimum Impulse Bit

Specific Impulse

Thrust Duration Time

Number of Starts

Tank Operating Pressure

Helium Load

Helium Tank Volume

Oxidizer

Fuel

Ox Tank Volume

Fuel Tank Volume

Value

750 Ibf

60:1

150 psia

1.6:1

100 lbf-sec

lbf-sec
302

Ibm

400 sec

4

250 psia

3.4 Ibm

1.08 ft 3

Nitrogen Tetroxide

Monomethyl Hydrazine

7.4 ft 3

7.4 ft 3

Thrust Vector Control System. Figure 5-47 shows a gimbal ring assembly at the throat

of the thrust chamber. This location was selected to provide the longest possible

moment arm, thereby minimizing TVC requirements. An electromechanical gimbal

assembly attached at this point will provide two-axis attitude control during engine

firing. The third axis control will be provided by the reaction control system. The

electromechanical system was selected primarily due to the greater innate reliability,

compared to a hydraulic system which requires liquid storage during the long mission

life.

Pressurization. The pressurization system utilized flight-proven concepts and hard-

ware throughout. Helium was chosen as the pressurant, due to significant weight savings

compared to other pressurants. Leak potential is theoretically higher with helium than
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Table 5-35

PRIMARY PROPULSION SYSTEM WEIGHT BREAKDOWN

Equipment Weight (lb)

Engine assembly (includinggimbal ring)

Propellant Tanks*

Fillvalves

Lines and fittings

He tank

He gas

He fillvalve

He tank support

Pressure regulator

Gas filter

Check valves (2)

Relief valves (2)

Thrust structure

Residual propellants

Gimbal actuator system

Start valve

21.8

31.0

0.5

4.3

23.7

3.4

0.2

2.0

1.0

0.5

2.0

2.0

3.0

10.0

7.0

1.5

TOTAL 112.1

*The fuel and oxidizer tank weight is made up as follows:

Tank shell 10.6

Weld lands 0.6

Attached flange 1.2
Sump 1.3
Slosh and vortex baffles 1.8

TOTAL 15.5 lb per tank assy.

LOCKHEED
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other available gases. The successful experience with helium management and storage

on LMSC programs to data, using a maximum of welded joints and stringent check

procedures to avoid leaks, indicates that vehicle reliability and life requirements should

not be compromised.

Propellant Containment and Scavenging System. The Mars orbiter stage is equipped

with equal volume spherical propellant tanks. The shape of the outletsection is modified

to minimize residual propellants. This may be accomplished by extensive modification

to the hemispheres or minimum hemisphere modification and the addition of propellant

sumps.

Since more than one restart is required, either a propellant settling system or passive

containment of the restart propellants at the tank outlet must be provided to assure

reliable gas-free restart.

A passive propellant containment system with sumps was chosen, based on present

Agena containment/scavenging system design, since it provides the following advantages:

• Minimum stage burnout weight

Minimum residual propellants

Minimum propellant positioning hardware

• Maximum restart reliability

Restart propellants positioned over tank outlet at all times (no

moving parts)

No auxiliary thrust device operation required prior to restart

Multiple restart capability

• Minimum stage cost

Sumps inexpensive to fabricate

Passive containment system fabricated from screen material

No auxiliary thrust system required

Identical oxidizer and fuel containment and scavenging system parts
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After separation from the booster, surface tension forces will shape the ullage bubbles

into spheres and aerodynamic drag forces may position them over the tank outlets.

The containment screen acts as a "bubble barrier" to prevent gas from entering the

sumps. Since there is negligible volume between the propellant valves, and the injector

and propellant preflow is small, the AP across the containment screen is insufficient

to allow penetration of any bubble resting on the screen at first start. At chamber

ignition, the resultant buoyant force on the ullage bubbles will immediately eject them

to the top of the tanks.

After first and subsequent shutdowns, the ullage bubbles will again assume spherical

shapes and stable positions in the tanks. Calculations show that even for minimum

propellants at final restart, the ullage bubble will be essentially spherical, will be

kept out of the sump by the containment screen, and should not enter the sump during

restart.

During coast periods, heat-soak back to the propellant valves will raise the temperature

and vapor pressure of adjacent propellants. However, the temperature rise will never

be sufficient to allow propellant boiling. Hence, no check valves are required to main-

tain the sumps full of propellants.

During depletion, the sump acts as a reservoir maintaining flow to the thrust chamber

as the terminal quantities of propellants flow into them from the tanks. Further, they

are each equipped with a conical screen which dissipates any rotary or vortex motion.

Based on these factors and the shape of the sumps, low propellant residuals are

assured.

Spacecraft Interface. The forces caused by the impingement of main engine exhaust

gases on the solar panels have been estimated for gimbal angles of 0 deg and +5 deg.

For a gimbal angle of zero, the total force on each of the two panels nearest the engine

is estimated to be approximately 3 x 10 -4 lb. The maximum unbalanced force results

when the engine is gimballed to its maximum capability in the direction of one of the

panels. In this case the total force on one panel is predicted to be approximately
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2 × 10 -3 lb. The force on the other panel may be considered negligible in comparison.

Because of the high degree of expansion experienced by the exhaust gases before they

reach the solar panels, the free-stream temperature will be very low, probably less

than 100 °R. As the gases impinge on the panels their temperature will increase as

kinetic energy is converted intothermal energy. However, since the gas density is

very low at this point the totalenergy involved is extremely small, even for a large

gas temperature increase. Hence, the solar panels should experience almost no

temperature change during engine burn.

5.4.3 Reaction Control System

It is required that the reaction control system be capable of providing a minimum
-3

impulse bit of 2.6 × 10 lbf-sec in a 20 ms pulse. Based on LMSC test experience

on similar systems, a square wave approximation of the actual thrust time profile is

0.6 times the product of maximum thrust level and pulse width. The required thrust

per jet is therefore 10.84 x 10 -2 lbf. For a complete mission, i.e. , Earth to Mars,

plus a 6-mo Mars orbit life, the total impulse requirement is about 435 lbf-sec. A

total impulse of 1305 lbf-sec has been used for this design, as explained in Section

5.1. This philosophy is consistent with the Mariner C reaction control system.

The following four propulsion systems currently under development or in flight status

were evaluated for use in the reaction control system:

• Hydrazine monopropellant

• Nitrogen cold gas

• Encapsulated solid propellant

• Subliming solid

The only configuration of the encapsulated solid system which offered a weight advantage

over the cold gas system involved the use of a multidirectional motor which was not

available in a reliable form. In addition, confidence has not been established in the

tape-feed system, particularly regarding tape tear.
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The subliming solid system shows a definite weight savings (at least 15 lb) over the

nitrogen cold gas system. Although it is less complex and inherently more reliable,

it does not have the flight experience of the nitrogen system. Additionally, power is

required for thermal control.

The hydrazine plenum system shows a weight advantage about equal to that of the

subliming solid system, but it is far more complex, and also has no flight experience.

Hence the N 2 cold gas system was chosen for the preliminary design, with the sub-

liming solid system considered as a possible state-of-the-art improvement should

reliable experience be gained on forthcoming flights.

The nitrogen cold gas system weight breakdown is given on Table 5-36. This data is

based on a nozzle optimization study performed on the present Agena cold gas system.

In this study, area ratio was varied while holding thrust, chamber pressure, and total

impulse constant. Total system weight was calculated and plotted as a function of

area ratio in Fig. 5-48 for a total impulse of 1284 lb-sec, later increase to 1305 lbf-sec.

Table 5-36

NITROGEN COLD GAS SYSTEM WEIGHT BREAKDOWN

Item

Nitrogen gas

Nitrogen tanks (2)

4 Jet manifold assembly (2)

2 Jet manifold assembly (2)

Plumbing and line fittings

Gas Regulators (2)

Nozzle area ratio

Specific impulse

Tank pressure

TOTAL

£ =

I =
sp

Pt =

Weight (lb)

19.0

24.0

2.5

1.5

4.0

2.0

53.0

15:1

68 sec

3000 psia
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The selected reaction control system is shown schematically in Fig. 5-49. This

system design is identical to that used on Mariner C and is completely redundant. The

two systems are designed to operate simultaneously. Each unit has a nitrogen gas

bottle (standard Agena item), a pressure regulator (Mariner C hardware), six valves

and six nozzles with welded joints to minimize leakage possibilities.

The valves and nozzles are clustered at the ends of the solar panels, four on one and

two on the adjacent panel. This provides equal pure couple control in 3 deg of freedom.

Each nitrogen bottle is loaded with 1.5 times the amount necessary for a complete

mission. This assures that if a valve sticks open from the time of booster separation,

enough gas will remain in the bottle of the other unit to allow accomplishment of a

complete mission, as explained in Section 5.1.

5.4.4 Capsule Guidance Propulsion System Selection

Capsule propulsion system requirements are:

Velocity Increment

Maximum Total Impulse

Burn Time

Thrust

Sterilization

Electromagnetic Interference (EMI)

50 meters/second

765 lbf-sec

~ I0 sec

~ 75 ibf

By heat, as defined in Section 5.8

No metallic components or exhaust products

No ionized exhaust products

The capsule propulsion system is used to direct the capsule toward the surface of

Mars with a single short burn after mechanical ejection from the orbiter. As part of

the lander package, the capsule propulsion system is subject to the sterilization

requirements. A preliminary survey of heat sterilizable propellants conducted for

this study indicated that such motors are not available off-the-shelf. However, results

of the survey indicate that sterilizable propellants are presently under development,

and a motor for this usage could be developed within the proposed schedule. This is
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another long lead time item, requiring at least 12 mo through qualification, according

to discussion with Aerojet & Atlantic Research Corp. personnel. Sterilizable pro-

pellants under development include ARC Arcite 413 and AGC JATO propellant.

Arcite 413, used in the Terrior Weapon System, is cured at a constant temperature of

350 ° F, illustrating the feasibility of sterilizing solid propellants. A quoted specific

impulse of 220 sec yields a system weight of 6 lb. Since total impulse required is

low and high reliability is necessary, a solid propellant motor is a good selection.

Presently developed and flown propellants which yield no metallics in the exhaust gases

can satisfy at least part of the EMI requirements. Both vendors indicated non-metallic

motor uses and thrust chamber nozzles could be readily developed. The exclusion of

ionized particles in the exhaust requires further examination.

5.4.5 Capsule Spin Motors Selection

In the proposed design, the capsule, after ejection from the orbiter, is given a spin rate

by two small solid motors for thrust vector control during guidance rocket firing. Prior

to ignition of the guidance rocket, the spin motors are ejected with the sterilization

shroud. Hence the sterilization requirement does not apply to the spin rockets. Since

many motors are available off-the-shelf that will fill the requirements, no attempt was

made at this time to select any particular one.

5-207

LOCKHEED MISSILES & SPACE COMPANY



M-29-64-I

5.5 THERMODYNAMIC ANALYSIS

The thermodynamic analyses have been limited to parametric studies and general

energy balances to determine steady-state temperature levels of the spacecraft. This

method of analysis was the most expedient, due to the various configurations considered

and the limited detail available on spacecraft hardware.

Thermal control of the Mars orbiter will most likely be accomplished by some combina-

tion of passive and active temperature control. Passive temperature control involves

the use of specific surface finishes, insulation, isolators, heat-sinks, and optimum

equipment arrangements to properly manage all of the thermal energy. Active tempera-

ture control systems may consist of a shutter system which exhibits different effective

surface finishes as a function of temperature, variable conductance devices, thermo-

statically controlled heaters, and circulating liquids or vapors with a space radiator

system each by itself or in any combination required to maintain near optimum tempera-

ture levels.

The phases of the Mars orbiter mission considered were:

• Prelaunch and Ascent

• Transfer Orbit

• Mars Orbit

5.5.1 Prelaunch and Ascent

During prelaunch operation, normal spacecraft cooling techniques will be used to absorb

the external heat loads and any internal power dissipation. The aerodynamic shroud,

which protects the spacecraft from the ascent heating pulse, may be exposed to the

external environments of solar radiation (direct, reflected, and diffuse), convective

heat transfer with the ambient air, and radiation heat transfer with the surroundings

depending upon the prelaunch cooling method utilized. Direct internal air conditioning

or a shroud cooling blanket, or a combination of the two, may be utilized depending
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upon the power dissipation rates and desired spacecraft temperature levels. Direct

internal air conditioning is usually the most effective.

During the ascent phase of flight, with the shroud on, shroud insulation will not be

required to maintain low back face temperatures; adhesive backed foil may be neces-

sary, however, to reduce radiation exchange with the spacecraft. Maximum internal

backface temperature of the honeycomb section has been predicted to be less than 200°F

for the OAO mission which utilizes the identical shroud.

5.5.2 Transfer Orbit

During the long transfer orbit (~270 days), the spacecraft remains solar oriented except

during midcourse corrections. Due to the transfer orbit trajectory to Mars away from

the sun, the solar energy varies from a maximum of approximately 460 Btu/Hr/Ft 2

at the time of Mars encounter (Fig. 5-50). The higher values of incident solar energy

is due to the Earth being near its perihelion at the anticipated launch time and the

spacecraft trajectory which falls inside the Earth's orbit.

Passive Thermal Control. With a passive thermal control system the spacecraft tem-

peratures will reflect the decrease in available solar energy as the spacecraft approaches

Mars. Passive thermal control may be feasible, however, depending upon the tem-

perature limits of the critical spacecraft components. Surface finishes can be selected

that will result in maximum design temperatures near Earth and temperature levels

nearer the lower limits at Mars. Passive thermal control feasibility will then depend

upon the Earth to Mars temperature excursion falling within the allowable design tem-

perature range of the sensitive components in the spacecraft.

Specific studies have been conducted to demonstrate the feasibility of passive thermal

control. A range of surface finishes was selected for solar oriented portions of the

vehicle while low emittance finishes were assumed on the remaining surfaces that

radiate to outer space. The variation in surface temperature as a function of surface

c_/_ is shown in Fig. 5-51 for internal power dissipation rates of 100, 150, and 200 w

for values of the solar constant near Earth and at Mars encounter. The temperature
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excursions (Earth to Mars} vary from 60°F with an _/e ratio of 0.24 to 100°F with an

_/e ratio of 1.06. Considering that most electronic components are qualified to the

LMSC 6117B environmental specification temperature range of -30 F to +160°F, the

provision of an a/e ratio of 0.55 would result in temperatures below 150°F near Earth

and approximately 50 °F at Mars.

The possibility of using the increasein solar absorptance (_), that occurs when some

paints are exposed to ultraviolet radiation, was considered in order to make better use

of the available solar energy at Mars. Figure 5-52 presents the equivalent sun-hours

that a solar oriented surface will experience during the transfer orbit. With the sun-

hour curve and LMSC Thermophysics Laboratory data of Ref. 9, solar absorptance

curves were determined for three white paints as a function of time. Studies of the

orbiter were then conducted using both a degrading White Silicone paint and White Sky-

spar paint on the solar oriented surfaces. Figure 5-53 presents the results of these

studies. Assuming that the internal power dissipation rate of the orbiter will be approxi-

mately 200 w, the White Silicone front face results in temperatures ranging from l17°F

near Earth to 48°F at Mars encounter, whereas the White Skyspar would result in a

temperature range from 170°F to 96°F. From the results of the orbiter studies using

the degrading white paints, it is evident that the degradation is too rapid to obtain the

desired constant temperature during the transfer orbit.

Solar panel temperatures were determined for the mission considering only the effects

of incident solar energy. An a/c ratio of . 85/. 85 for the solar cells and a backside

emittance (c) of . 90 (JPL values) were used for the analysis. The resultant tempera-

ture history of the solar panel is presented in Fig. 5-53. A maximum temperature of

139°F is reached after 20 days and drops to 45°F at Mars encounter and subsequently

to 16°F atthe end of the Mars mission.

Passive thermal control appears feasible based upon the temperature excursions

expected for the mission. Further detailed analyses are required to determine tem-

perature histories of the critical spacecraft components.
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The capsule (atmospheric or biological) will be essentially shielded from the sun due

to its location behind the orbiter. The thermal control concept for the capsule is to

minimize the energy losses by the use of isolators, insulation, low emittance surfaces

throughout, and the use of heater power. The equipment section with the scientific

instruments will be surrounded with insulation and low emittance surfaces, and thermally

isolated from the main structure. Equipment arrangement will locate the temperature-

sensitive components in the center surrounded by the less sensitive items. Some solar

energy is incident upon the capsule periphery where the spin rockets and separation

charges are located, and will be adequate to maintain these components at acceptable

levels.

Active Thermal Control. An active thermal control system of shutters as utilized on

the Mariner C spacecraft can be used if passive control is inadequate. With the use of

shutter systems, it would be possible to dissipate more energy near Earth and less at

Mars to result in more uniform temperatures throughout the mission.

5.5.3 Mars Orbit

During the Mars Orbit, the solar constant will decrease from 232 Btu/Hr/Ft 2 to approxi-

mately 183 Btu/Hr/Ft 2 after 180 days. The sun remains the most significant energy

source to the orbiter along with the internal power dissipation rates.

Typical Mars heat rates were calculated for the nominal orbit using the heat flux pro-

gram developed for JPL (Ref. 10). Figure 5-55 presents the absorbed heat rates

(Btu/Sec) upon one solar panel. The heat fluxes upon the remaining surfaces were also

calculated but are not presented. With the maximum absorbed heat fluxes, the result-

ant solar panel temperature would be 80°F as compared to 45°F with only solar energy

incident upon the panel. The Mars heat rates are incident upon the spacecraft approxi-

mately 5 percent of the orbit only; therefore, solar energy remains the prime energy

source.
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The decrease in solar energy from 232 Btu/Hr/Ft 2 at encounter to 183 Btu/Hr/Ft 2 at

the end of the mission results in a 30"F temperature drop of the solar panels and a

20 to 25°F temperature drop for the orbiter. The terminal point of the Mars orbit

mission, with its low value of incident solar energy will be the design condition for the

thermal control system.

5.5.4 Venus Mission

The Venus mission with its trajectory in toward the sun presents a high temperature

problem instead of a low temperature problem as is the case for the Mars mission.

The solar constant will increase from 443 Btu/Hr/Ft 2 at Earth to 863 Btu/Hr/Ft 2 at

Venus. The effect of the increased solar energy upon a solar panel oriented normal to

the sun will raise its temperature from 135" F at Earth to 240" F at Venus. In order to

obtain lower temperatures, if desired, the panels may have to be oriented at an angle

off of normal from the solar vector. Areas of low _/e surfaces between cells should

also be considered. The spacecraft will require a low a/_ surface on the front face to

minimize energy gains and high emittance surfaces on the remaining faces to radiate

sufficient energy away in order to maintain acceptable temperature levels. The thermal

control concept will be to design for minimum temperatures at Earth in order to obtain

desirable temperature levels at Venus.
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5.6 AEROTHERMAL ENVIRONMENT

The lander vehicle will be subjected to a relatively mild aerothermal environment

during entry of the Martian atmosphere. This section describes the environmental

conditions and associated heat transfer. Also discussed briefly are the prerequisite

high-temperature properties and structure of the Martian atmosphere.

5.6.1 Atmospheric Characteristics

Experimental observations of the Martian atmosphere have been insufficient to afford

an accurate definition of its characteristics. The major constituents are believed to

be carbon dioxide, nitrogen, and argon; their relative concentrations are ill-defined.

Surface pressure and atmospheric temperature distribution are known only within

relatively large ranges. Several possible atmosphere models were provided by the

contracting agency for the conduct of this study (Ref. 2 ). The models identified as

G and K have been utilized in evaluation of the environment; they represent the ex-

tremes with respect to both density gradient (in the altitude range of thermal interest)

and composition, the factors most affecting heat transfer.

The high-temperature thermodynamic and radiative properties of the Martian-

atmosphere gas mixture have been obtained from the results of a separate NASA study

conducted by LMSC (Refs. 11 and 12). None of the particular mixtures considered in

the I_JcISC work are identical to those of the adopted model atmospheres; however, the

two mixtures described below are representative of the extremes and therefore have

been used.

Volume Concentration

Constituent Mixture 1 (_ K ) Mixture 2 (_G !

CO 2 0.16 0.64

N 2 0.76 0.28

A 0.08 0.08
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References 11 and 12 describe, in addition to the computed properties of these mixtures,

the basic techniques and assumptions utilized in generation of the results. It is noted

that in the temperature range of interest here, the LMSC steradiancy prediction,

shown for a representative pressure in Fig. 5-56, is somewhat less than that observed

by James and that predicted by Spiegel and Horton (Ref. 13 }. The difference between

the LMSC predictions and those of Spiegel and Horton arises from two sources. First

Spiegel and Horton employed the Kivel and Bailey prediction of steradiant emissivity

per CN particle which is greater than the result obtained by Weisner at LMSC. Second,

the CN particle concentration computed by Spiegel and Horton is greater; evidently the

heats of formation used for the CN molecule in the two equilibrium-composition calcu-

lations differ.

5.6.2 Entry Trajectory

The lander vehicle enters the atmosphere ballistically at a speed of 21,000 ft/sec and

at an entry angle in the range from 30 deg to 60 deg. As indicated in Figs. 3-32 and

3-36 the vehicle enters in an asymmetric attitude, but the angle of attack oscillation

is rapidly damped.

A typical entry trajectory is shown in Fig. 5-57. The vehicle decelerates at relatively

high altitudes as a consequence of its low ballistic coefficient (W/CDA) of 7 lb/ft 2.

5.6.3 Shock Layer Flow

Thermodynamic conditions immediately behind the shock are simply determined

assuming thermodynamic equilibrium by application of the conservation equations.

Typical results obtained for conditions behind the normal portion of the shock are

described as a function of time in Fig. 5-58; they are for the trajectory shown in

Fig. 5-57. The enthalpy decreases monotonically for the time period shown. The

enthalpy reference is that of the elements in their standard state at 298 ° K. The

pressure initially rises as the vehicle descends, peaking at a value less than 0.2 atm.

5-220

LOCKHEED MISSILES & SPACE COMPANY



M-29-64-I

L'I

i o
I I

I I I

IIII I I I

I

#

I
!I,

I

° I

II,
, I
I

!lI
I

|

/

/
I

I

i Illlvll t I
0 0

(D2_ _:&A/flz_D _DNVIQVU

u:-)

L©

%1

c;

t_

I

X

52

L_

<

2;

O

O

_4

L©

o

_9

_D
c_

<

©

2:

CD
>
(D

O

_9

I

°,-_

5-221

LOCKHEED MISSILES & SPACE COMPANY



M-29-64-1

I
t_
c_

0

0 O ,0

I
@q

(_,_OIx _L_I)_(ID._LLL"IV

L ,,, J .... 1

(g__0IX C),"4"B/3,_I),I_I,IC)O"I.';IrA

J

r_

r,.)

_o

"_.

I
t_

5-222

LOCKHEED MISSILES & SPACE COMPANY J



X

_D
_D

I

X

;a

<

z

×

I

X

o

<

M-29-64-1

20 --
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Fig. 5-58 Shock Layer Thermodynamic Conditions
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for this trajectory. The maximum temperature in the shock layer is approximately

10,000 ° R; the density is low during the period of high temperatures, being of the

order of 1/100 of earth sea-level density.

The pressure distribution over the surface of the vehicle has been established em-

pirically from the data reported in Refs. 13 and 14. The zero-angle-of-attach dis-

tribution is described in Fig. 5-59. For this case the pressures on the large radius

sector are somewhat less than predicted by Newtonian theory; even so, the pressure

gradient on this sector is much less than that over the small radius corner. At angle-

of-attack, the pressure distribution becomes asymmetric. The flow stagnation point

(peak pressure location) moves toward the windward corner, reaching the small radius

sector at about 30-deg angle-of-attack.

The flow structure within the shock layer has been determined using a stream-tube

technique which is discussed in the subsequent section on radiative heat transfer.

The shock standoff distance, shown as a function of surface position in Fig. 5-60 for

the zero-angle-of-attack case, is a small fraction of the body radius. The velocity

and density increase in essentially linear fashion, moving from the surface through

the shock layer. The flow velocity immediately behind the shock surface is approxi-

mately twice that at the body surface; the density change is comparable. At angle-

of-attack the shock-standoff distance is reduced in the windward corner region and

increased on the lee side. With increasing angle-of-attack, the flow over the large

radius sector changes from subsonic to supersonic.

5.6.4 Heat Transfer

Convective Analysis Techniques. Although the lander vehicle is a very blunt config-

uration, convection is the dominant heat transfer mechanism for the velocities of

interest here. As a consequence, careful consideration must be given to the several

phenomena which may affect convective rates. Cross flow, bow-shock-curvature-

induced vorticity, mass transpiration, and boundary layer transition are important

considerations and will be discussed after a review of the basic convective heat-

transfer relations.
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The stagnation-point convective-heat-transfer coefficient has been evaluated using

the theoretical correlation obtained by Hoshizaki (Ref. 15) for an equilibrium boundary

layer. (Dependence of the heating level on carbon-dioxide/nitrogen ratio is not sig-

nificant as shown by Hoshizaki, thus the single equation may be applied for the several

atmospheres of concern. )

0 0-0'M = 2.2 P¢o (5.20)(ho)X 0 x = 0

where p_ is in lbm/ft 3, u o in ft/sec, r m in ft, and (h0)
x=0

Nomenclature for Section 5.6 is shown on page 5-272.

in lbm/ft2-sec.

The effective velocity gradient is determined in the general, three-dimensioned case

from the surface pressure distribution through the relations:

-ue) [+ 2,,_,eft 2 -- (1 - 2P_/Po ) (5.21)Pb
x y

and

X

(1 - P/Px=O )1/2 ]

X/RM J
y=0, x-_0

y x=0, y-_0

where the x-coordinate distance is measured from the stagnation point along the axis
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of symmetry and the y-coordinate distance is measured in the direction normal to the

x-coordinate. It is noted that at zero angle of attack

RM/x \RM/y
2. 10

The convection coefficient away from the stagnation point is related to that at the

stagnation point by means of Lee's similarity solution

u 0.5
h PeUe_e r [ dUe]

x = 0 2 Pe_eUe r Vdx

(5.22)

At non-zero angle-of-attack, the distribution has been predicted for two limiting cases,

axi-symmetric and two-dimensional flow. The available experimental data are, for

the most part, bracketed by the two predictions. The data are extensive and have been

used, in combination with the theoretical results, to define the convective coefficient

distributions shown in Fig. 5-61 for the plane of symmetry.

At angle-of-attack, theoretical prediction of the convective heat-flux distribution off

the plane of symmetry is difficult as a consequence of the complexity of the cross-

flow pattern. Greater reliance must be placed on the experimental data. Two obser-

vations are pertinent. The convective flux level varies only slightly over the large

radius sector in a direction normal to the plane of symmetry. The flux is maximum

at the plane of symmetry.

At the higher altitudes, when convective heating first becomes appreciable the Reynolds

number is small and consequently the boundary layer occupies an appreciable portion

of the shock-layer. At such conditions, the velocity gradient in the inviscid flow

normal to the surface may appreciably increase the heat rate. The magnitude of

LOCKHEED

5-228

MISSILES & SPACE COMPANY



M-29-64-1

|jjljl|llwllJlll|jJJ| ||j||||||||jjj

"W|_I_i_IL mI O.

-,% ! CO

II

_3

b
..C

0

r/1

r/1

[...

4_

o

o
0

"8

0

I
u_

5-229

LOCKHEED MISSILES & SPACE COMPANY



this bow-shock-curvature-induced vorticity effect has been examined using the results

obtained by Van Dyke for the stagnation point (Ref. 16). The influence on total heat

transfer is small and hence the vorticity effect may be neglected.

At the lower altitudes the Reynolds number becomes relatively large and the possibility

of turbulent boundary-layer flow must be examined. The momentum-thickness

Reynolds number has been adopted as a transition criterion for the purposes of this

study. The local value is determined using a transformation of the flat-plate in-

compressible result, which is

/ 2r ]0.50. 664 Pe#eUe r dx

-- (5 23)Re0 u

/_e r

The computed distribution over the forebody at a representative time in the trajectory

of Fig. 5-57is shown in Fig. 5-62. Available flight test data(Refs. 17, 18, 19) indicate

that the boundary layer may transit at a Reynolds No. of approximately 300. Using

this value to estimate the occurrence of transition, it is predicted that the boundary

layer will remain laminar except for a short period during entry into the G-atmosphere

and then only at the steeper entry angles. In these latter cases, turbulence is con-

fined to the small radius corner region immediately upstream of the point of separation.

The turbulent heat flux in this region (as determined by the method proposed by

Bromberg, Fox and Ackerman, Ref. 20) is somewhat less than the laminar heat flux

on the large radius sector; this difference is a consequence of the relatively low

pressures near the point of separation.

Convective heating to an ablating surface is appreciably reduced by the injection of

gaseous ablation products into the boundary layer. The theoretical results of Libby

(Ref. 21 ) have been used to describe the extent of the reduction. His results are for

air injection into air at a stagnation point and have consequently been modified for

application. Libby's results are presented in terms of a dimensionless injection
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velocity; this dimensionless velocity is simply transformed to a more convenient

parameter, the ratio of the mass injection rate to the non-blowing value of the con-

vection coefficient. The effect of injection of a gas other than air may be accounted

}1/4
for by a multiplying factor ( Ma/Min j . The assumption of local similarity per-

mits extension to positions away from the stagnation point.

Reaction kinetics in the boundary layer may be sufficiently slow at the higher altitudes

such that an appreciable departure from chemical equilibrium occurs. As a consequence

a significant reduction of the convective heat transfer may occur depending on the cata-

licity of the surface. Quantitative investigation of the non-equilibrium affect has not

been conducted; such a study is beyond the scope of this work.

Radiative Analysis Techniques. The radiative heat transfer to the vehicle surface from

the shock layer gases may be determined in the general case by definition of the volu-

metric and spectral emission distributions through the shock layer. Self-absorption

and radiative energy loss must be considered. A rigorous evaluation is complex and

simplifying assumptions are usually introduced. For the situation of interest, the

shock layer is relatively thin in comparison with the body radius of curvature, and

the shock layer may be locally approximated as a semi-infinite plane parallel slab

whose properties vary only in the direction normal to the vehicle surface. The optical

thickness of the shock layer is small and hence self absorption may be neglected.

Under these conditions the local radiative flux to the surface is given by

A 4
= 2 fpkuT dy%

0

where k is the Planck-mean mass absorption coefficient which is related to the

Planck-mean emissivity per unit length by

(5.24)

1E
k _ _

2L
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To solve Eq. 5-24 the density and temperature (or pressure and enthalpy) distributions

through the shock layers must be determined. A streamtube technique has been used.

The differential conservation equations expressed in terms of the natural (stream-tube)

co-ordinate system (s, y) are

I
ri

!
U_

AXIS OR PLANE

,N- OF SYMMETRY

r

U

ODY SURFACE

SH 0 CKWAV E

V
pur dy = dm (5.25)

du dp (5.26)
pu _-_ = - ds

pu d(H + u2/2)ds = - 4pk_T 4 (5.27)

To simplify integration, the approximations are introduced that (1) the local velocity

vector is parallel to the surface, (2) the normal pressure variation across the shock

layer is small, and (3) the shock layer is then compared with the surface radius.

With these approximations

r.

y 1

f P_u_° Ir[drivpudy -
r

O O

(5.28)

5-233

LOCKHEED MISSILES & SPACE COMPANY



M-29-64-I

2
U

S
2

ui _ f ldp ds

2 S pds
1

(5.29)

H - H i sf 4k T 4 1.... _ ds

1

(5.30)

Eq. (5.28) determines the locus of the entering streamlines (entering at r i or Si)

which pass through a point (y, r or S) within the shock layer. Eq. (5-29) and (5.30)

are integrated simultaneously by forward finite differnces to determine all pertinent

quantities along a given streamline once the surface pressure is given and k, T, and

p are expressed as functions of H, p . The initial conditions at r. or S. are
1 1

determined from the shock-wave conservation equations. When Eqs. (5-29) and (5-30)

are solved, the radiation heat flux to the vehicle surface may be calculated by combining

Eqs. (5-24) and (5-28).

r(S)

2p_°u°° / k(_T4 r. v drqr (S) - v u I i
r

o

The formulation does not enable consideration of the general three-dimensional flow

case but is limited to axi-symmetric and two-dimensional flows.

The radiative heat transfer distribution along the plane of symmetry of the lander

vehicle has been obtained for several angles-of-attack assuming rotationally symmetric

flow. (Some error is incurred at larger angles of attack due to the asymmetric character

of the flow. ) Some of the results showing the effect of angle-of-attack on the distribu-

tion are described in Fig. 5-63. The maximum radiative heat load occurs at zero

angle-of-attack as would be expected from consideration of relative shock layer

temperatures. At zero angle-of-attack the peak flux occurs at the stagnation point and

the flux is relatively uniform over the large radius sector. At larger angles-of-attack,

5-234

LOCKHEED MISSILES & SPACE COMPANY " _-.,,



M-29-64-1

o

,4
I

v

Z
0
F_

0
0

o

2
0

0

0

o

0

0

0

0

I

5-235

LOCKHEED MISSILES & SPACE COMPANY



M-29-64-1

the peak radiative heating occurs between the stagnation point and the geometric center;

this is a consequence of the relatively rapid shock-layer-thickness growth away from

the stagnation point.

The radiative flux distribution exhibits some sensitivity to the flight condition, in

particular to the velocity. This behavior is unlike that for an air atmosphere (Ref. 22)

and is a consequence of the peculiar variation of the radiation intensity with enthalpy

(Ref. 12).

The streamtube technique accounts for radiative energy loss from the flow. It is noted,

however, that for the flight conditions of interest the losses are not significant; the

shock-layer flow is essentially adiabatic.

The radiative flux to the surface has been determined, neglecting two possibly important

contributions. Ablation products injected into the boundary layer may radiate signifi-

cantly. Appreciable emission may emanate from the non-equilibrium zone immediately

behind the shock. Insufficient data are available to afford an accurate assessment of

the importance of these phenomena.

Afterbody Heat Transfer Analysis. Definition of the afterbody thermal environment

requires consideration of flow phenomena distinct from those of the forebody. Engi-

neering analysis methods are in general poorly developed, and greater recourse to

approximation and empiricism is required to predict the heat transfer. Fortunately,

an abundance of convective heat transfer data exist for a similarly configured body, the

Apollo. Radiative heat transfer to the afterbody because of its relatively low level

need not be considered.
q

Convective heat transfer data, in the form of the ratio of local convection coefficient

to stagnation point, have been taken from Refs. 13 and 14 for direct application here.

The axial variation of the convection coefficient except in the immediate neighborhood

of the separation point is generally small, whereas the peripheral variation at angle-

of-attack is large. The experimental data are sufficient to define the windward line

(maximum) convection coefficient and an approximate peripheral average convection

coefficient.
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Convective heating to an aerodynamic stabilizer (right-circular cylinder extending

rearward from the main body) has been estimated using a simple flow model in the

absence of experimental data. In particular, that portion of the stabilizer extending

out of the separated region has been treated as a cylinder in the free stream, swept at

an angle (r/2 - _). Convective heating to that portion remaining in the separated zone

has been assumed to be equal to that on the afterbody. The extent of direct flow

impingement was estimated using flow discharge photographs (Ref. 14 ) of the flow

over the Apollo configuration.

The estimated windward line and peripheral average convection coefficient levels are

shown in Fig. 5-64, for both the afterbody and aerodynamic stabilizer. The results for

the latter section must be considered very approximate. In application of these results

to obtain convective heating histories, the peripheral average values have been used

since the vehicle is spinning at a relatively rapid rate.

Entry Heating Predictions. The heating experienced by the capsule has been determined

for four trajectories, corresponding to entries at the limit entry angles (30 and 60 deg)

into the extreme atmospheres (K and G). The computations for the forebody have been

made assuming zero angle-of-attack. (Recognizing that the angles-of-attack are

moderate and that the vehicle is spinning, and examining the heat transfer distributions

of Figs. 5-61 and 5-63, it does not appear that the total heat transfer at any location will

differ substantially from that predicted for zero angle-of-attack. ) Heat transfer results

for the stagnation point, or peak-heating position, are shown in Fig. 5-65 . The

convective rate shown is that to a cold wall without mass injection. In every case,

convection dominates over radiation. As would be expected, total heat transfer is

greatest (about 1100 BTU/ft 2) for the case of shallow-angle entry into the K atmosphere.

The maximum heat transfer rate in this case is relatively low, and the heating period

is long. The conditions of this trajectory are most severe from a heat shielding con-

sideration and consequently they will be used in determination of heat shielding

requirements.

Heat transfer to the capsule afterbody is relatively sensitive to angle-of-attack, as

indicated by the results of Fig. 5-64. Vehicle dynamics are, in turn, dependent on
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entry angle (see Fig. 3-32). The trajectory which is thermally most severe for the

afterbody is entry at 60-deg angle into the K atmosphere. The estimated angle-of-

attack history for this trajectory is shown in Fig. 5-66. The associated convective

heat-transfer histories for the afterbody and aerodynamic stabilizer are described in

Fig. 5-67. At early times when the angle-of-attack is relatively large, heat transfer

to the stabilizer is somewhat greater. Later when the angle-of-attack becomes small

and both sections are within the separated flow region, the heating rates are identical.

Total heat transfer to the afterbody and stabilizer is small as compared to that to

the forebody.

5.6.5 Thermal Protection

There are many materials which can be considered as candidates for thermal protection

of the lander vehicle. In this study, microballoon-loaded nylon-phenolic and beryllium

have been considered. They are representative of the more efficient ablative and heat-

sink type materials. Techniques used for prediction of their performance are briefly

reviewed, then shielding requirements are indicated. Protection of the afterbody is

discussed separately.

Heat-Sink Thermal Protection. Because the thermal environment by the lander vehicle

is relatively mild, there is no large weight penalty associated with the use of an efficient

heat-sink-type thermal protection system. The heat-sink system meets sterilization

requirements. Because the sink acts as a calorimeter, it affords a simple means of

measurement of the incident heat flux. The heat sink has the disadvantage that design

uncertainties in the heat load directly influence (in linear manner) the shield weight.

Furthermore, in design of the vehicle assembly, the heat shield must be thermally

isolated from temperature-sensitive components.

The heat sink accommodates net heat transferred to the surface by sensible enthalpy

change (simple temperature rise). As a consequence of its high specific heat, beryl-

lium is an unusually attractive material for the heat-sink application. The techniques

for prediction of its temperature response are well known and consequently will not be

discussed. Thermal-physical properties of the material have been obtained from
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Fig. 5-67 Afterbody Heating Histories
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Ref. 23. In this regard, it is noted that the assumed density is 115 lb/ft 2. In evalua-

tion of the surface boundary conditions, the absorption coefficient for radiation incident

from the shock layer has been conservatively taken as unity, whereas emission from

the surface has been computed using experimentally derived values of the emissivity.

The predicted shield-temperature response at the stagnation point is given in Fig. 5-68

for three different section thicknesses (The temperature distribution through the section

_being essentially isothermal and consequently only the bulk-or average-temperature is

shown). For an allowable temperature of 1500 ° F the thickness requirement is approxi-

mately 0, 1 in. The variation of required thickness with position on the forebody is

shown in Fig. 5-69. For a given allowable temperature the thickness may be maintained

constant over the large radius sector without appreciable weight penalty. Thickness

may be rapidly reduced in moving around the shoulder,

Ablator Thermal Protection. Nylon-phenolic may be considered a typical charring

ablator. Incident heat is largely absorbed in pyrolysis (decomposition) of the virgin

material and by the gaseous pyrolysis products percolating through the :'esidual char

layer. Under high heat-flux conditions this class of materials is thermally superior

to the heat sink class; however, in a mild environment the amount of ablative material

used for insulation of the substructure is relatively large and the two material classes

are competitive from a weight standpoint.

Shielding requirements with ablative materials are less affected by perturbations in

the heat transfer than are those with heat-sink materials; thus environmental uncer-

tainties are not of as much consequence in heat shield design. Ablative material shield

fabrication is usually simpler and less expensive than construction of beryllium shields.

Not all ablative materials will withstand sterilization by temperature soaking. Nylon-

phenolic, in particular, is not heat sterilizable. It has been considered here because

its performance characteristics are well defined. Other materials with gross per-

formance comparable to nylon-phenolic, such as some members of the silicone rubber
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family, will withstand high temperature soaking. Thus the end results for nylon-

phenolic shield weight requirements are not directly applicable, but may be considered

representative of the results which would be obtained for other acceptable charring

ablators.

To describe the thermal performance of nylon-phenolic, the theoretical model developed

by Kratsch and others (Ref. 24 ) has been used. The model rigorously accounts for the

significant phenomena by mathematically coupling the energy and mass transfer proc-

esses. Reference 24 includes all the data required in implementation of the model

for nylon-phenolic. In particular, the kinetics of the pyrolysis reaction was defined.

Thermophysical properties of the virgin plastic, partially degraded plastic, and char

material are provided, and a detailed description of the gaseous pyrolysis products is

given. The model has been extended recently for application in Mars-like atmospheres

(Ref. 11 ). The model has been corroborated by correlation of both ground and flight-

test data (Refs. 11, 18, and 24).

A rigorous finite difference formulation of the conduction equation for charring

materials (Ref. 25) has been used in determination of required heat-shield thicknesses.

Initial results indicated that the thickness of nylon-phenolic used for insulation com-

prises the majority of the section thickness. As a consequence, the inclusion of phenolic

micro-balloons to improve insulating capability was considered. The results presented

are for a loaded nylon-phenolic material in which the volumetric concentration of

micro-balloons is 0.5; the density and conductivity of the loaded material are both about

a factor of two less than the unloaded nylon-phenolic.

The predicted temperature response of a nylon-phenolic/substructure composite at the

stagnation point is described in Fig. 5-70. The exterior strata of the nylon-phenolic

are elevated in temperature to the pyrolysis range (800-1100 ° F) early during the

heating period. As time progresses the temperature wave moves slowly across the

section. The surface temperature peaks at a value somewhat less than 2000°F and

drops rather rapidly. For the nylon-phenolic section thickness considered. O. 15 in.

the temperature equilibrates somewhat in excess of 500" F. Very little surface
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erosion occurs; however, the pyrolysis zone penetrates to a depth of about 55 mils.

Thus. about one-third of the nylon-phenolic is degraded, while two-thirds of the thick-

ness is required for insulation of the substructure.

It is of interest to examine the effect of pyrolysis on the convective heating. Figure 5-71

shows that the injection of gaseous ablation products reduces the convective heat flux

by a factor of about two during the peak heating period.

Because the substructure temperature continues to rise well after the cessation of

heating, the required nylon-phenolic thickness for a given allowable-substructure-

temperature rise will depend on the time at which the heat shield is separated from the

instrument package. Shield section weight at the stagnation point is shown in Fig. 5-72

as a function both of the allowable structure temperature and the velocity at shield

separation. (Included in the section weight are the nylon-phenolic and substructure

contributions; no accounting is made for an adhesive bond. ) The section weight require-

ment varies slowly with both parameters. The figure also shows for comparative pur-

poses section weight for a beryllium shield; the two types of shields are seen to be

about equal in weight.

Necessary nylon-phenolic thickness varies very little across the large radius sector

of the forebody. As with the beryllium shield, thickness requirements are rapidly

reduced in moving around the corner to the afterbody.

Afterbody Heat Shielding.. Heat transfer to the afterbody is sufficiently small that

thermal protection is not required. The basic structure will accommodate the heat

without excessive temperature rise.

Figure 5-73 describes temperature histories of the afterbody and aerodynamic stabilizer

by means of a normalized temperature rise parameter. The afterbody skin is magne-

sium with an effective thickness of 0. 054 in. and a thermal capacitance (pcS) of

0.12 Btu/ft 2 o F; thus its final temperature rise will be only 250 ° F. The aerodynamic

stabilizer will survive sufficiently long so that it has served its purpose.
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5.6.6 Conclusions

Preliminary analysis indicates the feasibility of thermally protecting the lander vehicle

from the heating experienced during entry of the Martian atmosphere. Ablative or heat

sink type shields may be used. Comprehensive material optimization studies should

be conducted in subsequent efforts.

The thermal environment is relatively mild. Convective heat transfer exceeds radia-

tive heat transfer. Several environmental phenomena warrant further investigation in

subsequent studies. In particular, the influence of uncertainties in the occurrence of

boundary layer transition and high temperature emissivity on heat shielding require-

ments should be assessed. Nonequilibrium effects require definition.
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5.7 PARACHUTE DESCENT SYSTEM

Two basic requirements were assumed in the study of parachute deceleration systems

designed to lower approximately 100 lb to the surface of Mars. The first requirement

was to decelerate an atmospheric (non-surviving) capsule to provide at least 60 sec

at subsonic velocity prior to impact. The second requirement was to decelerate a

combination atmospheric-biological (surviving) capsule to provide at least 60 sec at

subsonic velocity and to reduce the vertical descent velocity to 60 ft/sec at nominal

zero elevation.

The environmental characteristics used are shown in Ref. 2 with various atmospheres,

Models G through K, considered as appropriate to limiting conditions (i. e., worst

cases) for descent system design. The envelope of reentry trajectories for the vehicle

prior to initiation of the parachute recovery sequence is as shown in Fig. 5-74, where

the boundaries of the envelope are set by the limiting cases of reentry at the shallowest

angle in the most-dense Martian atmosphere and reentry at the steepest angle in the

least-dense Martian atmosphere.

Other data pertinent to design of the parachute systems are:

• Oscillations of the capsule on the main chute limited to :_20 deg to limit the

requirement for distribution of crushable material.

• There may exist Martian surface irregularities of up to 5km (5 km = 16,405 ft).

• The descent system components/assembly will be required to undergo heat

sterilization as defined in Section 5.8.

• At time of initiation of the recovery sequence, the vehicle will be spinning

(about the longitudinal axis) at a rate of up to 60 rev/min.

Design criteria for the parachute descent systems are:

• Reliability

• Minimum weight consistent with obtaining the specified times of

subsonic descent

• Cost
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5.7.1 Approach to Design

The type of final descent parachute to be used for a biocapsule is selected on the basis

of allowable oscillatory amplitude during descent. Once the type of final descent chute

is established, its size is fixed by the requirement of 60 ft/sec vertical velocity, the

mass to be lowered, and the Martian environment. Since the final descent parachute

is the largest single item in overall descent system weight, it is desirable to design

this chute from the lightest materials available which are compatible in strength with

the loads (mechanical and thermal) to which the chute is to be subjected.

It would be possible to use a single-parachute descent system for the capsule if the

aerodynamic drag of the reentry vehicle were of itself sufficient to decelerate the

vehicle to a Mach number and dynamic pressure suitable for the deployment of a rela-

tively large, final descent chute* at an altitude of, say, 16,500 ft (16,500 ft is selected

as the minimum altitude for deployment of the final descent chute in view of the possi-

bility of Martian terrain elevations of up to 5 km above nominal zero elevation).

However, as seen in Fig. 5-74, the reentry trajectory envelope for the vehicle is such

that a single parachute system will not suffice in all cases. It is therefore necessary

to use an initial deceleration (drag) parachute to decelerate the vehicle to a Mach-

number dynamic-pressure condition safe for deployment of the final stage parachute

at an altitude of 16,500 ft. The required drag parachute is sized on the basis of the

lightest weight chute required to decelerate the payload to conditions safe for the final

descent chute, keeping in mind such factors as drag chute state-of-the-art and the

requirement for testing the system in the Earth environment.

Design of the descent system parachutes is therefore relatively straightforward, involv-

ing mainly cut-and-try sizing of the drag chute and checking of subsonic descent time.

* Where suitable conditions for deployment of large, final-descent type parachutes

mean mainly subsonic speeds. Such chutes can be built to withstand high dynamic
pressures, but will not inflate reliably in transonic or supersonic flow.
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5.7.2 Note on Parachute Textile Materials

Parachute textile materials are selected for ability to withstand mechanical and thermal

loads, aerodynamic characteristics (e.g., porosity), and for availability and cost. In

this case, the most stringent textile requirements are imposed by the heat steriliza-

tion procedure. The proof-test heat sterilization procedure of three, 36-hr cycles at

293°F is too severe for presently available commercial and MIL SPEC Nylon and

Dacron parachute textiles. However, the recently-introduced DuPont NOMEX Nylon

yarn (Ref. 26), formerly designated as "HT-I" by DuPont, shows less than 5 percent

strength loss after more than 1,000 hours exposure to 350°F hot, dry air. Parachute

textiles made from NOMEX yarn would therefore be satisfactory for fabrication of the

M_rs capsule parachutes.

NOMEX yarn has already been made into parachute textiles in pilot quantities. The

finished textiles are generally 10 percent higher in weight, substantially lower in

breaking elongation, and somewhat lower in porosity than comparable textiles woven

from standard Nylon. NOMEX textiles are also much higher in price than comparable

standard Nylon textiles.

In this study NOMEX is selected as the primary material for fabrication of the Mars

capsule parachutes in view of its very superior heat resistant qualities. For more

specific identification of the general types (strength and weave) of materials recom-

mended, following sections of this report will call out a NOMEX material similar to

existing commercial and/or MIL SPEC fabrics.

5.7.3 Final Descent Parachute for a Biocapsule

Recovery system weight to a large extent depends on the weight of the final descent

parachute, and the first step in weight optimization is, therefore, to make the final

descent chute as light as possible. For the Mars capsule, a 10 percent flat, extended

skirt-type chute is selected for final descent, since this type of chute provides the best

drag-to-weight efficiency of all nonrotating canopy designs within the allowable oscil-

latory limit of • 20 deg. The size of the final descent chute is fixed at 30.3 ft nominal
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diameter (Do) by the requirement of 60 ft/sec on Mars at a mass density of 4.21 x

10 -5 sl/ft 3 for a nominal total lowered weight of 100 lb, using a conventional design

drag coefficient (C D ) of 0.70.
O

The configuration recommended for the final descent parachute is: 30.3 ft nominal

diameter, solid textile, 10 percent flat extended skirt type parachute with a NOMEX

fabric similar to 0.88 oz/yd 2 (JAN-P-498) Nylon in the lower two-thirds of the canopy,

NOMEX similar to 1.1 oz/yd 2 (MIL-C-7020D Type I) Nylon in the upper third of the

canopy, and twenty-eight 300-1b tensile strength NOMEX suspension lines similar to

MIL-C-7515B, Type XI, Nylon. The weight of this parachute will be approximately

11.9 lb, including a 10 percent allowance to account for the use of NOMEX rather than

standard Nylon, and it will safely withstand deployment at a dynamic pressure of 4.0

lbs/ft 2, using design and safety factors recommended for terminal-stage space vehicle

recovery. This configuration represents a 1-1b savings in weight relative to a conven-

tional light-weight chute of the same size and of standard Nylon.

Since appreciable residual spin may remain at the time of final-descent chute deploy-

ment, a swivel must be incorporated into the final descent chute attachment rigging.

Also, so that the final descent parachute will not drag the capsule after touchdown,

some type of post-impact release fitting must be incorporated into the final descent

chute attachment rigging. Several different types of parachute load release fittings

have been developed and flight tested on previous drone, missile, and cargo delivery

parachute systems.

5.7.4 Drag Parachute

Current state-of-the-art in drag parachutes indicates that there should be no major dif-

ficulty in design and development of a ribbon-type parachute to operate reliably at

Maeh numbers up to, say, 2.5; especially at the relatively low dynamic pressures

(order of 30 lb/ft 2) anticipated for the Mars parachute descent system. As an example

of technology in this field, a 2.18-ft constructed diameter ribbon-type parachute has
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been successfully deployed in a flight test at Mach 2.45, 60,000 ft altitude, and an

incompressible dynamic pressure of 520 lb/ft 2. However, in general, the lower the

Mach number, the easier and less expensive the development program necessary for

a drag chute system.

For service in the Martian environment, a rather large drag parachute (10 to 15-ft

diameter range} is required. Since there is at present no high-supersonic flight-test

experience with this large a parachute and since obtaining dynamically similar test

conditions in the Earth environment becomes a complicated and costly affair for higher

Mach numbers, the most practical and reliable approach is to reduce the Mars-descent-

system drag-chute Mach number requirement by as much as possible. For these reasons,

Mach 2.5 is (somewhat arbitrarily} established as an upper limit for deployment of the

Mars descent system drag chute.

As noted before, the final descent parachute should be deployed at subsonic speed, at

16,500 ft altitude or above, and at a dynamic pressure of 4.0 lb/ft 2 or less. These

conditions establish the design point for the final descent chute shown in Fig. 5-75.

The drag chute is sized so as to decelerate the vehicle to the final descent chute design

point when deployed at Mach 2.5 or less. By calculation, it is determined that a 12-ft

nominal diameter ribbon-type parachute deployed at Mach 1.75 at 21,800 ft will decelerate

the vehicle to the final descent chute design point for the limiting case of reentry at the

steepest angle in the least dense atmosphere. The trajectory for the capsule on the

drag chute is also shown in Fig. 5-75. Although a smaller drag chute deployed at

higher Mach number would also serve to decelerate the capsule to the required final

descent chute design point, the 12-ft diameter drag chute has the additional utility of

providing a sufficient time of descent (without the use of a final descent chute} between

sonic speed and zero nominal elevation (touchdown} to serve as the only chute required

for an atmospheric capsule.

The configuration recommended for the drag parachute is a 12-ft nominal diameter,

ribbon-type parachute with 100-1b and 200-1b NOMEX ribbons (similar to MIL-T-5608E,
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Type V, Classes A and B, respectively) in the canopy and with twelve 375-1b NOMEX

suspension lines (similar to MIL-C-5040B, Type II). The canopy ribbons mentioned

might be replaced by other ribbons of equivalent strength in order to secure a canopy

grid pattern suitable for supersonic inflation.

The weight of the drag parachute will be approximately 1.9 lb and it would safely with-

stand deployment at an incompressible dynamic pressure of 27 lb/ft 2, using design

and safety factors recommended for space vehicle decleration stage parachutes. Note

that the weight estimated for the drag chute includes a 10 percent allowance for use of

NOMEX textiles and that the calculated drag chute trajectory in Fig. 5-75 has taken

into account the known supersonic drag-area reduction for parachutes.

5.7.5 Recovery System Sequencing

Since the elapsed times from beginning of entry (or from time of de-orbiting) vary

widely for the envelope of entry trajectories which must be considered, the most direct

manner in which to initiate sequencing of the descent system appears to be use of a

"g"-switch. The trajectory data of Fig. 5-76 show that initiation of drag chute deploy-

ment at a longitudinal load factor setting of 3.5 would result in deployment conditions

varying from Mach 1.75 at 21,800 ft (incompressible dynamic pressure of 27 lb/ft 2)

to Mach 2.5 at 131,000 ft (incompressible dynamic pressure of 27 lb/ft2). Thus, use

of a single g-switch has the advantage of simplicity in the instrumentation required to

initiate deployment and the disadvantage of exposing the drag chute to a high-Mach

environment for a relatively long time for one of the extremes of entry conditions.

However, since the drag chute can be qualified for high-Mach performance in develop-

ment tests, this scheme appears more desirable than use of a multiple-g switch and

time-delay deployment scheme which could be used to narrow the Mach number spread

in deployment conditions. Since the g-switch circuit is critical to successful deploy-

ment of the drag chute, parallel circuitry is mandatory.

Operation of the g-switch at a preselected setting (e.g., longitudinal load factor of

3.5) would actuate a pyrotechnic device which would effect ejection of the aft cover
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from the vehicle, and an intermediate tie-line between the aft cover and the drag chute

deployment bag would be used to extract the drag chute p.ck from its compartment and

subsequently to peel the deployment bag from the drag chute. That is, the aft vehicle

cover serves as a pilot chute for deployment of the drag chute.

Release of the drag chute (in the case of the descent system configuration requiring

also a final descent chute) could also be signalled by a g-switch, with the switch setting

selected to deploy the final descent parachute at its design dynamic pressure of 4.0

lb/ft 2. The circuit used for this element of the sequence should be well damped, in

view of the wide fluctuations in load which will occur during and following supersonic

deployment of the drag chute. An intermediate jumper line from the drag parachute

to the final descent chute pack would be used to extract the final descent chute pack

from its stowage compartment in the capsule and subsequently to peel the deployment

bag from the final descent parachute. Thus, the drag chute serves as a pilot chute for

deployment of the final descent chute; a system which has the advantage that the vehicle

continues to descend on the drag chute should any element of the drag chute release cir-

cuit fail (as contrasted, for example, to a scheme in which the final descent chute is

deployed independently following release of the drag chute).

5.7.6 Development Test Program

The approximate development test program recommended for the Mars descent system

is summarized in Table 5-37. In the wind tunnel and systems tests, it is particularly

important that the flow field which will exist at time of deployment of the drag chute be

duplicated insofar as possible, including the effects of vehicle spin and oscillation.

Satisfactory ejection and deployment of parachutes at supersonic speeds is a complex

problem, particularly in view of the adverse pressure gradient existing in the super-

sonic wake of a bluff body, and systems tests must therefore be designed to ensure

that the design used presents a satisfactory solution to the problem.

In addition to the wind tunnel and free-flight tests shown in Table 5-37, there also

should be performed the usual textile, bench, and mockup tests performed for a
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parachute recovery system; for example, ground tests of the aft cover ejection mecha-

nism to determine if sufficient kinetic energy is delivered to the aft cover assembly by

the mechanism.

5.7.7 Summary of Design Data

Weight. Preliminary design calculations indicate that descent system weight will be:

Weight (lb)

Atmospheric

Item Biocapsule Capsule

Final descent parachute 11.9 0

Final descent chute deployment bag 0.4 0

Final descent chute swivel and release fitting 0.8 0

Drag chute 1.9 1.9

Drag chute riser 1.0 1.0

Drag chute bag 0.3 0.3

Ejection device, etc. 1.5 1.5

Total 17 .==_8 4.7

Packed Volume. Packed volume required for the two parachute assemblies (chute,

bag, connecting links, riser} will be approximately:

• Final descent parachute assembly ........... 810 cu in.

190 cu in.• Drag parachute assembly ...............

Parachute Loads. Peak loads at deployment of the parachutes will be approximately:

1,525 Ib force• Drag parachute .................

3,640 ib force• Final descent parachute ...............

5.7.8 Time of Descent

The atmospheric capsule system will have a subsonic time of descent of about 71 sec

(1 min 11 sec) between 18,600 ft and ground zero. The biocapsule, using the final
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descent chute, will have a subsonic time of descent of about 248 sec (4 min 08 sec).

Figure 5-77 shows altitude versus time elapsed after reaching sonic speed for the two

systems. Note that Fig. 5-77 is for the case of steepest reentry into the least dense

(K) atmosphere at the same angle; the times of descent of Fig. 5-77 would be increased

by a factor of 1.5 if the parachutes were initially deployed at the same altitude. From

Fig. 5-77 it is evident that neither parachute descent system provides sufficient margin

for the case of the 5"km (16,405-ft) high mountain; however, such a case is, statis-

tically, of vanishingly small probability. The two-parachute descent system gives

ample time (1 min) at subsonic velocity for terrain elevations as high as 12,000 ft.

5.7.8 Tradeoffs

For small changes in total lowered weight, each of the descent system configurations

described herein will remain at about the same percentage of total lowered weight,

all performance criteria remaining the same. Thus, the single-drag-chute system

will weigh about 5 percent of total lowered weight, and the drag chute/final descent

chute system will amount to about 18 percent of total lowered weight.
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5.8 STERILIZATION

5.8.1 Sterilization Concept

Necessi .ty. Studies of the Martian atmosphere indicate that conditions are such that life

in some form may exist. In light of this, Mars has been declared a biological preserve,

and any vehicle destined for entry into the atmosphere must be sterilized to prevent

contamination of the planet by terrestrial microorganisms. Sterilization criteria has

been established requiring the vehicle to be absolutely sterile in order to achieve a

probability of one in 10,000 that no viable earth organism reaches Mars.

Treatments and Methods. The most accepted method for sterilization of spacecraft is

by dry heat. Temperature cycles of 145°C for 36 hr, three cycles for certification

and 135°C for 24 hr for sterilization, have been established. Thermal sterilization

requires heating in an inert atmosphere to minimize oxidation.

Gaseous sterilization using ethylene-oxide has been used for surface sterilization of

the Ranger vehicle and as a sterilant in aseptic assembly glove box operations. Asep-

tic assembly techniques have been proposed for combining with heat sterilization in

producing a sterile vehicle containing heat sensitive components.

Other sterilization techniques such as ionizing radiation may be possible; however,

insufficient data as to dosage, procedures and vehicle integration technique is avail-

able to allow consideration during this study. Liquid wipeon sterilants can be used as

a cleansing step prior to other sterilization processes.

Vehicle Integration. The integration of sterilization procedures into spacecraft factory-

to-launch sequences requires many precautions to prevent inadvertent re-contamination

after the final sterilization treatment. The vehicle or probe to be sterilized must be

encapsulated in a biological shroud and a positive pressure maintained within the shroud.

The probe or vehicle must remain encapsulated until final separation from the booster
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The minimum distance from earth for ejection of

For the purposes of this study a heat sterilizable atmospheric probe was considered.

A set of sterilization guidelines have been adopted and integrated with vehicle design.

Components and materials of construction were selected for compatibility with heat

sterilization. The use of organic materials was avoided because of many disadvantages

(i. e., incompatibility with heat, a possible bacteria culture medium, raising the

vehicle material contamination level).

Assembly of the probe would be performed in a clean-room environment to minimize

material contamination levels. All components and systems would be assembled and

the completed probe encapsulated in a biological shroud. Umbilical connections to

the capsule provide for flowing heated nitrogen through the capsule to perform the heat

sterilization cycle. Prior tests with a thermal mockup would provide data as to length

of time to achieve thermal stabilization of the largest thermal mass. Filtered sterile

nitrogen would be circulated through the capsule for the prescribed sterilization cycle.

After-sterilization provisions allow for maintaining a positive pressure within the

capsule to retain the sterile condition.

Once mated to the spacecraft, instrumentation can provide a constant monitor of pres-

sure within the capsule. If pressure were to be lost, the capsule would be removed

from the vehicle, and a "spare" capsule subsituted; the faulty capsule would have the

leakage point diagnosed, and the heat sterilization cycle repeated.

The sterility shroud would be retained until the capsule has been separated from the

orbiter bus. Separation of the shroud from the landing capsule can be programmed

to prevent the shroud from entering the Martian atmosphere.

5.8.2 Problem Areas

Heat Sensitive Items. Heat sterilization imposes many restrictions on vehicle design.

Each component and material of construction must be researched to determine
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compatibility with the thermal environment. In most cases, spacecraft components

can withstand the sterilization temperature without damage.

Some spacecraft components are classified heat sensitive and cannot withstand the

heat sterilization temperature. For the purposes of this study each of the systems

considered for use within the entry capsule were analyzed for possible heat steriliza-

tion problem areas. Major areas of concern were batteries, propulsion, and

parachutes.

Currently available high-energy primary batteries cannot withstand the heat steriliza-

tion cycle. The atmospheric probe being considered in this study requires a relatively

low amount of electrical power. The Jet Propulsion Laboratory has informed LMSC

that a heat sterilizable battery can be made available which will satisfy the power

requirements of the probe.

Obtaining a heat sterilizable solid propellant was considered a problem area. One

propellant company has successfully tested solid propellants which have been subjected

to the sterilization temperature cycles. This propellant has been considered for the

propulsion system for the atmospheric probe.

Heat sterilization of the parachute retardation system may be accomplished in an

inert atmosphere. Several parachute manufacturers have been conducting tests to

determine performance degradation after the temperature cycles.

System Tradeoffs. In selecting components and systems to be compatible with heat

sterilization it sometimes becomes necessary to sacrifice performance or weight to

obtain an operational vehicle. The atmospheric probe being considered during this

study required some alteration of component selection.

• The parachute material will have to be a heavier type than ordinarily neces-

sary to be able to withstand the sterilization process.
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. The batteries to be used must be heavier than nominal to withstand the heat

sterilization requirement. Estimates of 10 w- hr/pound have been suggested

by JPL rather than 30 w- hr/pound for a non-heat sterilizable system.

• The mass spectrometer to be used will employ a Faraday cup rather than a

scintillation counter using a crystal. This unit can be heat sterilized whereas

the crystal system would deteriorate with heat.

Alternate Sterilization Processes. While this study only considered a heat sterilizable

atmospheric probe, the possibility of using alternate sterilization methods exists.

Gaseous sterilization using ethylene-oxide gas, radiation, and aseptic assembly all

may be used in conjunction with heat sterilization.

A possible step to aid in assurance of a sterile capsule would be to surface sterilize

the orbiter bus with ethylene-oxide gas after final assembly of the vehicle. This pro-

cedure would require sealing the interior of the bus from the adjacent booster stage.

5.8.3 Support Equipment

Heat Sterilization. Specifications for heat sterilization require heating in an inert

atmosphere. Sterilization cycles can be accomplished in an oven containing nitrogen,

provided provisions are made to replace the atmosphere within the capsule with nitro-

gen. Care must also be taken to accommodate the increase in pressure within the

capsule. A laboratory-type temperature chamber can be used to perform the

steriliz ation.

The concept proposed during this study is to circulate heated sterile nitrogen through

the capsule using quick disconnect couplings for inlet and outlet of the heated gas.

Equipment to perform this function will essentially be a closed-loop air-conditioning

system. Sterile nitrogen would be introduced to the unit and heated to the sterilization

temperature. The heated gas would be circulated through the unit to sterilize com-

ponents through the gas flow lines. Bacteria filters would be inserted in the inlet and

outlet lines of the unit for added sterility confidence.
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Procedures. Procedures for performing the sterilization cycles must, by necessity,

be carefully detailed. These procedures should be included in specifications to vendors

for assembly of subsystems. An outline of sterilization procedures is as follows:

• Structural design to allow maximum surface area for sterilization heat

• Assembly of all components and subsystems in clean rooms to reduce natural

contamination levels

• Maximum protection of subassemblies during shipment to protect against

undue contamination

• Assembly of the capsule in highest-level clean-room atmosphere

• Biological shielding of capsule after assembly

• Heat sterilization of capsule just prior to mating with the orbiter spacecraft

• Maintenance of positive pressure within the capsule after sterilization to

prevent r econtamination

• Retention of biological shield until after separation of the capsule from the

orbiter.
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NOMENCLATURE FOR SECTION 5.6
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O"

specific heat

static enthalpy

non-blowing value of convection coefficient

Planck-mean mass absorption coefficient

mass flow between surface and streamline

molecular weight of atmospheric gas mixture

molecular weight of injected gas mixture

pressure

radiative heat flux

distance from axis or plane of symmetry

momentum thickness Reynolds number

maximum body radius

effective radius of curvature

distance along streamline

temperature

velocity

distance along surface in plane of symmetry from stagnation point

distance along surface normal to plane of symmetry from stagnation

point, or distance from surface through shock layer

material thickness

emissivity

viscosity

density

Stefan-Boltzmann constant

index, zero for two-dimensional flow and unity for axisymmetric flow

SUBSCRIPTS

e

i

O

edge of boundary layer

entry point

s

free stream
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Section 6

PROGRAM PLAN FOR MARS ORBITER AND
ATMOSPHERIC CAPSULE DEVELOPMENT

As a base for establishment of a reasonable estimate of the eventual cost of system

design and development, all phases of the program, from preliminary design to com-

pletion of reduction of data from the orbiter, have been reviewed. The proposed pro-

gram outlined herein establishes milestone dates and has been set down in sufficient

detail to allow logical derivation of program requirements and to highlight those areas

in which special effort is required. The plan assumes two separate missions: a Mars

orbiter launched in 1969, and a Mars orbiter and atmospheric capsule launched in 1971.

Additional data is presented to show the effect of adding an atmospheric capsule to the

1969 mission.

To allow derivation of reasonable price data and to arrive at a tangible integrated

testing and manufacturing plan, it has been assumed that LMSC would be the Con-

tractor for the orbiter and capsule; however, the plan presented and cost thereof

should be approximately the same for any other contractor with comparable capability.

6.1 DEVELOPMENT PROGRAM

Following is a discussion of the ground rules of the proposed plan, an outline of the

orbiter and capsule subsystems (as a base for discussion of hardware elements), and

a description of the basic pieces of the plan including the Master Schedule and the

factory-to-launch sequence.
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6.1.1 Program Ground Rules

A preliminary program plan has been prepared for the development, manufacture

and test, and launch of Mars orbiters and capsules based on the following ground

rules:

• Two launches of orbiter will be planned for the 1969 mission

• Two launches of orbiter/capsule will be planned for the 1971 mission

• Floxed Atlas-Centaur launch vehicle (launch system, launch pads, and

modifications not costed)

• Program go-ahead approximately September 1, 1965 for Phase II and

hardware

• Utilize maximum proven hardware from Mariner C (solar arrays, etc.)

• Scientific instruments to be "GFE", design integrated by LMSC and installed

by JPL

• Capsule sterilization at JPL

• 210 ft. dish DSIF network available

• Six month data acquisition following each Mars encounter

6.1.2 Orbiter/Capsule Subsystems and Functions

The hardware elements of the program comprise the orbiter, the capsule, and support

equipment (AGE). Figures 4-5 and 4-6 show the general configuration of the orbiter

and capsule; the 1971 orbiter is essentially the same as the 1969 orbiter except that it

provides mechanical support for the capsule and embodies rearrangement of the

scientific instruments to provide space for the capsule support cone. A single elec-

trical breakaway connector connects the capsule functionally to the orbiter.

The basic subsystems and their major components are listed below.

Orbiter.

Spaceframe - Includes release mechanisms, separation springs, and actuation hard-

ware for solar-array extension and magnetometer boom extension.
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Scientific Instruments -Includes the various instruments for both interplanetary and

Mars orbit measurements. Includes also the instrument platforms and actuation

servos.

Electronics -Includes the antennas, communication and command equipment, and the

central controller for all subsystems.

Guidance and Control -Includes the inertial platform, the position-orienting instru-

ments, the control electronics package, and the attitude control elements (gas supply,

valves and plumbing, and pitch/yaw/roll gas jets).

Thermal Control -Includes temperature control louvers, heaters, insulation.

Propulsion - Includes the gimballing liquid propellant engine, the propellant tankage

(including pressurization gas), plumbing and valving.

Electrical Power- Includes battery, solar arrays, power conditioning equipment,

and all electrical interconnect cablIng.

Capsule.

Spaceframe -Includes the entry heatshield (jettisonable), the sterility shroud

(jettisonable), the separation devices, and payload release mechanism.

Capsule Guidance and Control -Includes the parachute pack and solid-propellant

rocket.

Payload Assembly- Includes structural frame which mounts the various scientific

instruments and electronic equipment.

Scientific Instruments -Includes instruments for sampling of Mars atmosphere as

payload package moves from orbit to Mars impact.

Electronic-Electrical - Includes battery, power conditioning, antenna, and information

storage, conditioning, and transmission equipment (for transmission to orbiter).

Support Equipment.

These equipments (AGE) comprise the handling, checkout, and transportation hardware

required for supporting the orbiter and capsule from factory to launch. Also included

is the sterilization equipment required for sterilizing the capsule at JPL. Three com-

plete sets of AGE (excluding the sterilization equipment) are included, one set each to

LMSC, JPL, and MILA. *

• MILA is used to designate the launch pad area whether in NASA or Air Force
location.
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6. I. 3 Basic Plan Outline and Schedule

Quantities of Hardware Required. For the 1969 Mission phase of the program, the

following hardware will be required:

3 Flight articles (orbiter) -includes one backup unit

1 Qualification test article (orbiter)

1 Structural test article (orbiter structural elements only)

1 Functional mockup (orbiter)

Components for development and reliability tests

3 (Sets) AGE

20 percent spares

The following hardware will be required for the 1971 Mission:

3*

2

I*

i*

1

I*

**

3***

Flight articles (orbiter/capsule) - includes one backup unit

Flight articles (capsule) -for additional backup

Qualification test article (orbiter/capsule)

Structural test article (orbiter/capsule structural elements)

Sterilization article (capsule)

Functional mockup (orbiter/capsule)

Miscellaneous hardware for development and reliability tests

(Sets) AGE

The Master Schedule. The 1969 mission plan, as illustrated by Fig. 6-1 would re-

sult in the delivery of three orbiters to MILA in the fourth quarter of 1968, ready to

launch in the first month of 1969. Two launches are planned; the third orbiter would

be readied and available as a backup article. Both launches would be performed within

the 30-day opportunity and it is expected that two separate launch pads (Launch Com-

plexes 36A and 36B) would be assigned.

*Includes "modified" 1969 orbiter elements

**Testing required only for modified or new elements
***Includes modified 1969 AGE elements
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Following a Phase II go-ahead in September 1965, subsystem design and development

would be initiated in parallel. Design can be completed in the fourth quarter of 1966,

allowing sufficient time to complete the qual£fication and reliability test hardware in

early 1967 and providing a reasonable span for building the flight articles and per-

forming preliminary checkout of integrated subsystems. The orbiters (flight articles)

would be shipped to JPL in May of 1968 where the scientific instruments would be

installed and final checkout (equivalent to launch base checkout) performed prior to

shipping to MILA. The 1969 mission effort will terminate with data acquisition and

reduction, approximately mid-1970.

The 1971 mission plan illustrated by Fig. 6-2 is quite similar to that for the 1969

mission. Two launches are planned in a 30-day opportunity in May 1971. A third

orbiter/capsule vehicle would be readied at MILA for backup to the two launch

vehicles; additionally, two complete capsules would be available for replacement on

any of the three flight vehicles. A separate capsule would be supplied to JPL for

sterilization and sterility assessment during the development and qualification phase

(delivery to JPL in fourth quarter of 1969).

All flight articles for a particular mission would be assembled essentially in parallel;

therefore, no schedule offsets have been shown for the separate articles. Also,

manufacture of AGE would proceed essentially in parallel with equivalent flight

articles so that interface tests could be made; for example, the LMSC qualification

unit of AGE would be used in conjunction with the qualification tests of the orbiter

or capsule.

Factory to Launch Sequence (Flight Articles). It is planned that the orbiter or capsule

be assembled in a segregated and environmentally isolated (dust filtration and air con-

ditioning) area at the LMSC Sunnyvale complex. The capsule will be assembed in a

"white room" atmosphere and sealed, with the objective of limiting the quantity of

spores to be eradicated by the subsequent heat sterilization at JPL. The components

of the various subsystems will be manufactured at LMSC or subcontractor's facilities

and delivered to the assembly site.
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Acceptance Testing. Acceptance testing of each major element of a subsystem and

finally of the preassembled subsystem itself will be conducted at appropriate coordi-

nated test stations. Section 6.2 discusses the overall test plan.

Preliminary Acceptance Test and Hot Fire. The orbiter and capsule would be sepa-

rately assembled and given a preliminary acceptance test in the assembly area. They

would then be mated and shipped to Santa Cruz Test Base (LMSC facility, approxi-

mately 30 miles from Sunnyvale) for hot fire test. The main engine would be operated

while the other subsystems are exercised through a nominal routine. The various

pryoteclmic devices would also be activated as practicable and capsule separation

from orbiter simulated (in a holding fixture). After test, toxic fuel systems would

be drained and purged and refurbishment as necessary accomplished.

Final Acceptance Test at LMSC Assembly Site. The orbiter or orbiter/capsule would

then be returned to the LMSC assembly site where a complete final acceptance test

would be performed. After complete integrated systems runs, the articles would

be given a checkout test identical to that which would be conducted during MILA

checkout, using the AGE checkout gear.

Installation and Checkout of Scientific Instruments. The orbiter or orbiter/capsule

would be placed in an environmental-isolating transport van (AGE) and shipped to

JPL. JPL would install the scientific instruments in the flight articles and check

out the installation. Additional checkout of other subsystems is planned to assess

maintenance of functional capability; an additional set of AGE would be provided to

JPL for purposes of handling and checkout.

Sterilization of Capsule. The complete capsule would be sterilized in the heat-

sterilization chamber (AGE) at JPL. The capsule would be reattached to the orbiter

and mounted in the transport van (AGE) for shipment to MILA.
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MILA Operations - Checkout and Staging. The orbiters and capsules upon arrival

at MILA would be completely inspected and checked out, using the AGE checkout

equipment, to a predetermined test schedule (part of the integrated test plan and

reliability plan). For the 1969 mission, three orbiters would be readied in a launch

assembly area assigned to this project. For the 1971 mission, three combined

orbiter/capsule vehicles and two separate capsules would be readied. The Launch

Operations Support Plan, Section 6.6, provides details of the MILA operations.

If at any time an orbiter or capsule should fail to pass a prelaunch checkout, it would

be replaced with a standby article. The faulty unit would be returned to JPL or

LMSC for repair or adjustment.

At time of launch vehicle staging, the orbiter or orbiter/capsule would be transported

to the launch pad in the transport van and hoisted and erected onto the Atlas-Centaur

vehicle. The pressurized gas tanks will have been filled and sealed in the launch

assembly building. Propellant would be loaded on the pad, with on-loading occurring

at discrete steps through the launch period if delays are experienced. After staging,

a countdown of the Atlas-Centaur/orbiter vehicle can be conducted with a simulated

launch and flight being completed immediately prior to actual launch.

Test Articles. Various test articles are required to validate the functional char-

acteristics and reliability of the flight articles. These are described in general

terms as follows. For a detailed description of the testing involved and the test

plan, refer to Section 6.2

Development Test Hardware. Various functional models and breadboards will have

to be fabricated and tested during the development engineering phase to verify func-

tional concepts and interfaces. Additionally, test specimens for materials tests,

thermal and structural evaluation, and process development will have to be fabricated

and tested. This development-test hardware will not necessarily be identical to the

final orbiter or capsule but must satisfy all requirements of the development test
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program. Previously qualified or standard components can be combined with newly

developed items in building up the test breadboards and other test articles required.

Functional Mock-Up. A complete orbiter or capsule would be assembled utilizing

prototype units from each subsystem. System interfaces, mounting arrangements,

interconnect cabling and plumbing can be determined on this mockup. Additionally,

the prototype AGE checkout equipment can be connected to the mockup subsystems

and preliminary system checks made. This mockup would be updated as qualified

hardware became available, or as changes are made to the orbiter or capsule so that

it always represented the latest configuration.

Qualification Articles. One equivalent vehicle is planned for all the qualification tests.

Although qualification may be required at the assembly or subsystem level, the final

assembled flight article will require functional qualification under the expected environ-

mental and operating conditions. The hardware supplied for the qualification test

would be identical to that delivered for the flight articles.

Structural Test Articles. The spaceframe of the orbiter and capsule and those pieces

of equipment which affect the structural function of the flight articles would be assembled

and tested under various static and dynamic loads. These structural items will be the

prototypes of those used on the flight articles. Dummy weights simulating functional

subsystem equipment can be utilized in lieu of the subsystem components (electronic,

etc. ).

Sterility Test Article - Capsule. A complete capsule, including all functional equip-

ment, would be assembled, checked out, and shipped to JPL for sterilization and post-

sterilization assessment. This article would include items identical to flight article

hardware and would afford final verification that the sterilization process will be

effective and will not degrade the functional characteristics of the capsule.
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Modifications for 1971 Mission. It has been assumed that the 1969 orbiter, with cer-

tain modifications, can be utilized for the 1971 mission. It is therefore planned that

only modifications to the various subsystems be accomplished for the 1971 mission.

This approach reduces the effort required for design, development, and testing.

Similarly, AGE can be modified for usage for the 1971 mission rather than building

completely new equipment. The modification concept is reflected in the cost summary

data which are contained in Section 7.

I 6.2 INTEGRATED TEST PLAN
6.2.1 Integrated Test Matrix

In order to maintain test program costs within reasonable limits, an integrated pro-

gram approach is required. Such a program permits the acquisition and usage of all

test data from the various test sources. The program has the advantage that with

computer assistance, demonstration of reliability can be performed with a minimum

of additional testing, and redundancy in the types of tests performed can be eliminated.

The numbers of test articles planned to conduct the development, qualification,

reliability assessment, acceptance and launch base tests are tabulated in Table 6-1.

Objectives of the Integrated Test Plan are:

• Verification of product design

• Determination of functional and environmental suitability

• Demonstration of design adequacy

• Identification of problem areas

• Demonstration of reliability of all hardware including the final system

• Provision for the acquisition and reduction of all test data

The various testing routines within the program consist of:

• Development Testing. To determine where design revision is required to

specification, and to provide data for final design verification. Tests would
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begin after completion of preliminary design and would b('_ (-,inducted

concurrently with finaldesign.

• Qualification Testing. To assure suitability o1 Slmt:(.'t:r;,l't parts, subas-

semblies, and assemblies for fabrication. Qu:,lili(.ation t(:sting would begin

after final desigll verification.

• Reliability Assessment Testing. Establishes op(;r:,ting life data, and criti-

cal failure modes of quMified hardware. This testing would begin after

fabrication and testing of breadboard test modules, but would primarily

require flight-type hardware.

• Acceptance Testing. Assures that hardware meets established specifications

for final flight configuration. Tests would be conducted at LMSC and at JPL

prior to final spacecraft delivery to MILA.

• Reliability Demonstration Tests. These tests are conducted as a means of

demonstrating reliability of the flight article. Such tests would be few in

number (because of verification and data from other previously conducted

tests), and serve only to afford additional data not provided by the acceptance

or reliability assessment tests.

6.2.2 Program Test Schedule

The outline schedule for the integrated test program is shown in Figure 6-3. The

specific tests performed in each of the categories listed are discussed in following

sections.

6.2.3 Development Tests

Component and Subsystem Tests. Development tests are functional tests conducted on

prototype materials, components, and breadboard assemblies at the subsystem level.

The operating and environmental conditions are simulated to obtain design data, verify

design assumptions, and improve design configurations by elimination of critical areas

and problems discovered.
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Full-Scale Functional Mock-Up. In addition to the various other tests performed dur-

ing the development phase of the program, a full-scale functional mock-up would be

constructed. Essentially, this mock-up would simulate the final complex of subsystems

except that it would initially be constructed of items in the final breadboard stages.

The various hardware elements would undergo a series of tests and an overall checkout

in order to verify that all subsystems can function in sequence as an integrated sysfem.

Interface problems between subsystems could be explored and means determined to

solve these problems.

6.2.4 Qualification Tests

Qualification tests would be conducted at the completion of development testing to

demonstrate final product capability to meet operational requirements under expected

environmental conditions. Such tests require a minimum of one each of the end item

components, although additional units would be desirable during environmental exposure

periods. The result of such tests can then be factored into the reliability test

considerations.

In the course of these tests, not only would all specifications, governing the design

and employment of say, a star tracker, be ratified by test results, but the tracker

would be subjected to simulated launch loads, a long dormant period under vacuum,

and finally be expected to function on command by acquiring data and tracking a simu-

lated and collimated celestial body.

6.2.5 Acceptance Tests

Acceptance tests would be conducted in three phases:

• "Black Box" or components tests

• Subsystems acceptance tests

• Final acceptance test
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"Black Box" or Component Acceptance Tests are made during the manufacturing pro-

cess, and are a prerequisite to final installation on the final test vehicIe.

Where these equipment items are purchased from vendors outside LMSC, the tests

may be carried out at the vendor's facility. However, when this practice is followed,

a checkout is performed at LMSC to ensure that the shipping process has not degraded

the function of the device. All testing done at vendors' plants would be witnessed by

LMSC Quality Assurance personnel.

Subsystems Acceptance Tests follow the same general pattern as the tests described

above. In these subsystem tests however, the tests must be designed to reveal the

functional capabilities of a complete subsystem. The environments will not be simu-

lated for purposes of these tests as a general rule.

Final Acceptance Test - LMSC. This test requires combined operation of all subsys-

tems, and duplicates as closely as possible the normal pre-flight, launch, and flight-

mission functions. The tests would be conducted at the factory for manufacturing

release, with simulated engine operation.

The total system test would be repeated at the LMSC Santa Cruz Test Base, with

simulated countdown, launch, and flight mission sequence of events included. An

actual engine short-duration "hot fire" test would be performed. Use of hardline

umbilical and test plug connections would be mandatory throughout this test which

would include, but not be restricted to:

Spacecraft/GSE interface

Booster/spacecraft interface (with simulators)

Orbiter, capsule interface

Orbiter functions and events including

Guidance and control

Communications

Propulsion subsystem

Scientific instruments

payload (simulated)

Electrical subsystem

LOCKHEED
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• Capsule functions and events including

Communications Scientific instruments payload (simulated)

Electrical subsystem Parachute descent subsystem

• Countdown simulation

• Launch and flight functional simulation

Final Acceptance Test - JPL. The complete orbiter or orbiter/capsule would be shipped

to JPL where the scientific instruments would be installed and the capsule sterilized.

Following this work, an additional acceptance test would be conducted. This test would

include those tests which will be conducted at MILA in the assembly area and on the

launch pad, and additional JPL tests to verify the operation of the scientific instrument

subsystems.

(i. 2.6 Reliability Tests

In keeping with the overall ITP (Integrated Test Plan) philosophy, reliability tests-

peculiar will not duplicate data obtained from other types of tests; the rationale being

that all of the other test programs would afford meaningful data applicable for relia-

bility determinations. However, within the general category of reliability tests there

are two sub-categories:

• Reliability Assessment Tests (RATS)

• Reliability Demonstration Tests (RELDEM)

The former category or RAT is performed at the black box level during the develop-

ment and qualification test phases. These tests are designed to explore areas of criti-

cality in the design, demonstrate and assess failure modes, and by accelerated stress

means determine the validity of the MTTF (Mean Time To Failure) predicted for the

hardware element in question. As detailed in Section 6.3, all variable data would be

continuously acquired; computer data reduction would give a measure of reliability

growth against a desired numerical index.
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The second category of tests is the Reliability Demonstration, really an extension of

the FAT (Final Acceptance Test). Essentially, their purpose is as follows:

Whereas the FAT is final demonstration of function, the RELDEM

follows the philosophy that function must be for a required time in

specific environment.

After computer evaluation of all data accrued during the total test program, it is neces-

sary to add sufficient iterations of tests, and sufficient time duration per iteration to

permit reliability at a specific confidence level to be demonstrated mathematically.

Since all foregoing data tends to build confidence in the reliability of the product at

black box and subsystems levels, few iterations for relatively short time periods are

necessary at the systems level to complete the picture (accomplished by acceptance

and prelaunch tests).

6.2.7 Launch Base Tests

These tests are expected to be conducted within an assembly facility at MILA.

tests would include but not be restricted to:

The

Receiving inspection by Quality Assurance to determine damage in transit.

Subsystems performance checkout tests to determine, by comparison with

existing program test data, any major change in performance capability or

level.

Propulsion subsystem and guidance subsystem alignment and checkout tests.

A final systems checkout, simulating countdown, launch, and mission events

and operations to the maximum extent possible.

Tests conducted at the launch pad would include, but not be restricted to:

• Spacecraft systems performance checkout (may be automated checkout)

• Radio communications checkout

• Countdown (including destruct system checkout) and launch
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6.3 RELIABILITY PROGRAM- MARINER 1969 MARS ORBITER CAPSULE

6.3.1 General Approach to Hardware Reliability Assurance

The reliability requirements imposed upon the hardware responsible for the success

of this mission are extremely rigorous. Not only must all hardware survive the

adverse conditions of shock, vibration, etc., during launch, but also it must survive

a long dormancy period, and yet function satisfactorily when commands are received

to operate in the active mode.

It is apparent that the probability of mission success is divided into several inter-

related subordinate probabilities, all of which are directly dependent upon specific

hardware elements functioning reliably. It may be written that:

Probable Mission Success = f

Probability of successful launch

Probability of achieving successful transfer

phase

Probability of successful planet orbiting

Probability of successful ejection of the

capsule (1971 mission)

Probability of successful experiments

function

Probability of successful data transmission

and reception

Each of these subprobabilities involves the successful function of many items of hard-

ware, many of which are novel in design, and are end-functionally applied for the first

time during the discharge of this mission. In order to achieve the high hardware

reliabilities required, it is necessary that test programs be instituted which furnish

the desired design proof of adequacy as deep space conditions are simulated during

all prelaunch test performance.
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Such a program, which is described fully in Section 6.2 would take the maximum

advantage of computer assistance so that results may be acquired, reduced, trans-

lated, and stored in order to permit meaningful design and procedural decisions to

be made.

A computer-assisted approach is considered essential to the successful prosecution

of the militant reliability program necessary to assure mission success. The means

by which such a program could be implemented are detailed in the following text (a

similar approach to that being used on the LMSC Polaris Missile program), in order

to establish a sound basis for cost and schedule estimates.

6.3.2 Reliability Goal Determination and Subsystem Reliability Apportionment

The reliability requirements for this mission are determined by the dictates of the

mission sequence of events. The time column of Table 6-2 shows the timetable of

event occurrence and persistence, and thus sets the active and dormant life require-

ments and equipment. The time intervals may be translated into Mean Times to Fail

(MTTF) for the various subsystems.

Once the subsystem MTTF's are known, a mathematical model may be constructed,

and solved by the computer in order to derive the various reliability indices or

figures of merit for each equipment element within each subsystem. The model

ascribes significance or weighting factors to each equipment element, ranking it in

order to express its functional contribution in the terms of

• How probable is failure in a catastrophic mode ?

• How deleterious is failure to ultimate mission success?

• The redundancy required to minimize effect of failure of equipment, in

areas of critical function.

The mathematical model must take into consideration the reliability indices of the

launch vehicle, the orbiter, and the capsule. Since the reliability of the launch

vehicle is a vital link in the mission success chain, and since the vehicle would be
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furnished by a manufacturer other than LMSC, strict attention must be paid to the

acquirement of all meaningful reliability data concerning it. Such a task would

require close cooperation between LMSC and the launch vehicle supplier, and mutual

agreement upon the reliability technology applied throughout the program.

Figure 6-4 depicts the means by which data from outside LMSC would be acquired and

resolved, not only from the launch vehicle supplier but also from the suppliers of all

purchased subsystems or subsystem elements.

6.3.3 Reliability Data Matrix and Computer Program

Figure 6-5 illustrates the tripartite computer-assisted approach to the entire relia-

bility program.

Program I, as has been stated, concerns itself with the determination of reliability

goals, and apportionment of sub systems reliability indices from analysis of the basic

mission requirements.

Program 2 is an assistance to design engineering. In this particular program,

circuits are synthesized, and the parameters variation explored. Not only may the

optimum stress levels for parts be determined, but also the reliabilityvalues for

each subsystem circuit element may be derived.

Program 3. This program accepts and reduces all data accruing from the Integrated

Test Program (ITP). In order to minimize the monetary value of the total test pro-

gram for the entire mission, the reliability tests would be held to a minimum, and

redundancies in testing eliminated insofar as possible. This approach is possible if

use is made of all available data which can contribute to reliability determinations at

applicable confidence levels. The detailed means by which such data treatment is

effected are described in Section 6.2.
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Fig. 6-4 Reliability Data Acquisition and Reduction
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As each step in all three programs is resolved by the computer, results are fed back

into the memory, after reduction of the information on the first printouts. This

recomputed technique permits a final analysis of all available data to produce a set of

final results. The feedback loops are designated Z to denote a summation and digest

of first-order results.

6.3.4 Hardware Reliability Analysis

The hardware involved in the Mariner 1969 Mars program falls within two broad

generalized categories :

(a) Electrical, Electronic

(b) Mechanical

In order to achieve the very high reliabilities essential to mission success, a

departure from the more customery "Worst Case" analysis will be necessary.

method proposed is known as SYNSAM or Synthetic Sampling Analysis, and is

particularly advantageous in dealing with hardware in the (a) category above.

The

SYNSAM differs from "Worst Case" in that a measure of circuit drift reliability may

be predicted, whereas no such measure of reliability is possible with "Worst Case. "

Assuming component parameter distributions, a determination of the circuit output

distribution and the predicted reliability may be computed. By adjustment of the

various parameter values of a given component, it is possible to alter the output

distributions and improve the functional reliability of the circuit. SYNSAM is par-

ticularly valuable in reliability analysis for Mariner circuits, since it permits at

least predictive answers to the questions: "If output of a circuit is x and reliability

is y and if we know the measure of component parametric drift with time, what will

be the reliability of the circuit after a dormancy period of 200 plus days in deep

space environment?" If such a prediction can be made, design can allow for such

drifts and produce a more reliable circuit. SYNSAM is a statistical technique easily

resolvable by the computer.
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Analysis of all items falling into the broad category (b)would employ another computer

assisted technique. Parametric variation for mechanical devices does not lend itself

readily to such mathematical routines as "Monte Carlo." However, variables may be

treated, and reliability results obtained, by means of a routine known as MESTAN.

MESTAN, or Means and Standard Deviations Analysis relies on the Theorem of Propa-

gation of variance. The routine is statistical and permits of the collation and reduc-

tion of parameters into distributions, the mean and standard deviations of which may

be described. If determinations are made that X percent of cases falls within _-Ya

limits about a mean, then KOLMOGOROV SMIRNOV tests for Normality may be made,

and the conclusions drawn, that the reliability imposed in the sample, possesses a

given confidence interval. These technniques are well suited to the determination of

the reliability of mechanical structures and/or devices.

6.3.5 Reliability Design Review

Design reviews for the Mariner program would be on a formal basis. At the outset

of the program, a Design Review Commitee would be convened, comprised of.

• The Program Manager, who would act as chairman

• The Reliability Manager

• The Quality Assurance Manager

• The several cognizant design managers

• Specialists in design as designated

• Representatives of marketing and contracts as applicable

• Customer liaison personnel as designated

There would be at least three formal Design Reviews:

• Initial or conceptual, where the various design concepts are critiqued

exhaustively and recommendations for early design changes are made.

• Interim or breadboard review. This review will be conducted at the early

breadboard stage, as design undergoes translation into early hardware.
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Final, or preproduction design review. This review represents the final

critique by all parties, and furnishes recommendations for last-minute

design changes, before production phases begin.

There would be as many informal reviews as the committee considers necessary, but

such reviews would be held to a minimum in the interests of time and cost savings.

The purpose of all design reviews is to survey the progress of the program, highlight

troublesome areas, recommend fixes and changes, review reliability growth, and

monitor costs and schedule compliance.

As these factors are considered, the Reliability Manager would be responsible for

determining the impact of design changes proposed upon reliability growth by means

of having the computer reduce the new data and deliver a numerical solution.

All minutes and proceedings of the committee would be entered in a Design Review

Log, which would form a complete history of the design review program, and excerpts

from which would be included in the scheduled reports to the customer.

6.3.6 Reliability Documentation

A "major milestone" chart would be compiled to depict significant reporting dates for

reliability events. Such events would take the form of but not be restricted to:

• Preliminary design reviews

• Interim design reviews

• Final design review

• Regular progress reports as necessary

• Trouble and failure report summaries

• Recommendation for corrective action reports

• Reliability growth curves

Reports of
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A corrective action committee would be formed to rule upon the reliability implications

of all corrective actions recommended, and this committee would issue reports, at

the regularized intervals as prescribed by the major milestones report.

Since much of the reliability reporting would be in the form of computer runoffs, the

volume of reportage would be too voluminous to transmit each first-order run, or

subroutine run. Regular summaries would be used instead with the computer perform-

ing the summation and digest and releasing a printout on a scheduled basis.

6.4 PROGRAM MANUFACTURING PLAN

6.4.1 Basic Plan and Approach

A proposed manufacturing plan for the orbiter and orbiter/capsule is described in this

section. The plan provides flexibility of manufacturing operations and quick response

to design changes which may occur as design progresses toward the flight hardware

phas e.

The basic objective of the manufacturing effort is to furnish a product at minimum cost

which satisfies the design and reliability requirements; this can be accomplished

through the following:

• Project Type Organization. Segregated manufacturing areas for final

assembly and test; close coordination with Engineering, Procurement, Quality

Assurance, and Test Operations

• Development Shop Approach. Extensive use of development technicians and

skilled mechanics in experimental shop to assure efficient tooling and minimum

shop operations

• Integrated Reliability. Special training of personnel in "Hi-Rel" packaging,

handling, and assembly; integration of manufacturing tests with master program

plan (Integrated Te_t Plan)
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• Control of Processes. Continuous monitoring and recording of critical pro-

cesses and testing

The basic areas of interest discussed herein are:

• Product Requirements.

niques

• Manufacturing Sequence.

• Manufacturing Schedule.

missions

• Fabrication/Test Plan.

Special materials, processes, manufacturing tech-

General plan of assembly breakdown

Milestones and schedules for 1969 and 1971

Product flow from vendor to launch base

6.4.2 Product Requirements

The general configuration of the orbiter for the 1969 mission is shown in Fig. 4-5.

The orbiter/capsule configuration is shown on Fig. 4-6.

Orbiter. The materials utilized in the orbiter are within the state-of-the-art of

existing technology. A basic structural shell which allows internal mounting of sub-

system equipment is readily built up of sheet metal, machined fittings, and tubing

elements. Thermal insulation and micrometeorite shielding (as required) will be

applied to the structural shell or directly to the equipment. The servicing and

handling equipment required to support the orbiter is conventional (handling dollies,

slings, etc.). The liquid-propellant engine of the orbiter requires hot-fire facili-

ties for subsystem testing and for final integrated system hot-fire test. The pro-

pellant tanks are conventional, representing small-scale duplicates of those used on

Agena and other space vehicles.

Capsule. The primary requirement is the sterilization requirement. It is assumed

that heat sterilization of the completed capsule is required. Assembly operations

would be a "white room ," but not sterile, atmosphere; the capsule would then be

installed in the sterility shroud and sealed and internally pressurized with sterilant,

ethylene oxide.
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The capsule heat shield forebody would require new process development, as would

sterility shroud sealing techniques; however, no new engineering concept is required

to accomplish this development.

Support Equipment (AGE). The sterilization chamber (proposed to be built at LMSC

and delivered to JPL) is the only advanced state-of-art item in the AGE list. The

checkout equipment would be conventional and tailored to integration with existing

equipment at MILA. The handling equipment would be simple support frames and

hoists to allow manipulating the orbiter or capsule or orbiter/capsule combination

and storing them in ready condition. Servicing equipment would be conventional and

comprise only those elements required to service the propellant/pressurization tankage

and the cold-gas pressure bottles on the orbiter.

Make or Buy Items and GFE. It is assumed that 40 to 50 percent of the equipment items

on the orbiter and capsule will be "buy" items; included would be certain communica-

tion equipment, the engine, the batteries, and parachute pack. The scientific instru-

ments are assumed to be GFE.

6.4.3 Manufacturing Schedule

Figure 6-6 shows in outline form the manufacturing schedule and milestones for the

1969 and 1971 missions. The schedule indicates a rather rapid buildup in 1966 and

1967 with tapering off until a second buildup starting in the latter half of 1968. This

"lull" would create a problem of maintaining a staff of experienced personnel which

could be assigned to the 1971 program.

The detail scheduling of miscellaneous test articles (for development test, etc. ) is

not shown. These articles will be integrated into the manufacturing schedule without

affecting the established flight article delivery.
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6.4.4 Fab/Assembly/Test Plan

The product flow plan from vendor through final acceptance test of orbiter and capsule

at LMSC and JPL is shown on Figs. 6-7 and 6-8 respectively.

All tooling would be of the soft type with master gage control on the following interfaces..

• Orbiter adapter to Centaur mounting

• Orbiter adapter to orbiter mounting

• Orbiter to capsule mounting

• Scientific instruments mounting on orbiter and capsule

Fabrication tooling would be held to a minimum and would be duplicated as required

to support the product flow rates.

The manufacturing tests performed in the product line would be a portion of an overall

integrated test plan (see Section 6.2 for detail). This will provide not only the go/no

go acceptance or rejection of the component, subsystem, or vehicle, but will accumulate

data into the master test data bank to become part of the total reliability assessment

program.

Because of the need to install the pyrotechnic devices before the sterilization shroud

is installed (parachute release device and the guidance rocket motor), final assembly

of the capsule, and acceptance testing, may require an isolated facility such as at

SCTB. Figure 6-8 illustrates the product flow for this condition and shows SCTB as

the place of assembly and test. If it were found later that this minor explosives

handling could be done at the main assembly plant area, a change would be made to

the plan. JPL would require evaluation of this problem relevant to the capsule sterili-

zation operation.
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6.5 FACILITIES PLAN

The development and manufacture of the orbiter and capsule will require certain special

facilities. In the following discussion, major items are outlined in four categories:

• Development test facilities

• Assembly plant and test facilities

• JPL facilities

• Launch base facilities

6.5o 1 Development Test Facilities

Special facilities will be required for testing at the subsystem or vehicle level. Examples

are as follows:

High Vacuum Orbital Simulator (HIVOS). A chamber large enough to accept the total

orbiter or capsule, simulate space vacuum, and provide simulated solar energy and

space cold. (This chamber exists at LMSC and has not been included in the "additional

facilities" requirements.) Solar array extension, solar array operation in space

environment, antenna and instrument servo actuation, and similar functional tests

would be performed in this or a similar chamber.

Hazardous Tests in Vacuum. A smaller vacuum chamber with space heat/cold simu-

lation equipment and "boiler-plated" to allow detonation of pyrotechnic devices (pin

pullers, linear shaped charges, spin rockets, etc.) would also be required. The

various pyrotechnic devices would be tested in this chamber to check effect of long

time soak at various temperatures prior to ignition. (Santa Cruz Test Base has such

an installation and therefore this item is not listed in additional equipment).

Hot-Fire Test Facility. A test facility for testing both the liquid-fueled orbiter engine

and the capsule guidance rocket motor, attached to the spaceframe would be required.

In addition to the early engine development tests, final acceptance hot-fire tests on the

assembled orbiter would be accomplished, simulating booster vibrational inputs.
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Also, spaeeframe separation tests would require fixturing and hazardous testing area

to test structural and functional system reaction to explosive charges used for separa-

tion. These areas are available at SCTB but project tooling is needed for vehicle and

subsystem support during the testing (the costs for these items have been included in

"special tooling and equipment").

Parachute Test. In addition to flight tests wherein the chute would be deployed under

conditions simulating Mars entry (by changing altitude, payload weight, etc. }, it is

planned to perform a vacuum wind-tunnel test on chute deployment. Arnold Engineering

Development Center would probably be used for this type of test and test priority would

have to be arranged.

Numerous other tests on electronic components, antennas, mechanisms, electrical

power _ and similar orbiter or capsule hardware must be accomplished under simu-

lated operating conditions. It was assumed that a typical large aerospace company

would have the various facilities and equipment necessary to perform these tests and

no special listing nor cost has been derived for this report. The special equipment

required for acceptance testing of the orbiter or capsule and the various components/

subsystems thereof is essentially tailored to the Mariner requirements and has been

costed as project or special tooling and test equipment.

6.5.2 Assembly Plant and Test Facilities

A centralized assembly facility would be required for the orbiter and the capsule.

Because of the need to control the bacterial count on and within the capsule, a white-

room facility is planned for its assembly. To provide a good background for the

orbiter assembly, a clean room with filtered and air-conditioned air is planned.

Because of the limited-quantity production, separate detail fabrication areas are not

planned. The Mariner program would be supported by existing sheet metal, machine,

and processing shop areas. However, all final assembly and testing would be
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accomplished in the aforementioned clean areas. No new manufacturing building would

be required for this program, but modification to install the white-room area for the

capsule would be required. If it were found undesirable to assemble the pyrotechnic

assemblies of the capsule in the main plant area, final installation of these devices

and sterility shroud sealing would be accomplished at SCTB. This approach would

require an additional white-room at SCTB. Because of the smallness of the items

involved (the guidance rocket motor and the pin pullers), it has been assumed that

this work can be done at the main assembly plant and no costs have been added for the

SCTB installation.

The equipment required for acceptance of the flight articles would be in one of two

categories: (a) special project tooling and test equipment (and therefore not accruing

cost to the facilities/equipment area) or (b) capital equipment. LMSC has the necos-

sary shakers, vacuum chamber, hot-fire test stands, and other capital equipment

required; a general assumption has been made that other qualified contractors would

also have this equipment or facilities and not require new installations.

6.5.3 JPL Facilities Requirements

The plan described in this report assumes that capsule sterilization would be accom-

plished by JPL. Also, installation of the scientific instruments in the orbiter would

be accomplished by JPL. It is planned that a sterilization chamber would be furnished

as AGE to JgL. This chamber would require certain venting and power which would

accrue as facility modifications. In addition, a clean room area, filtered and air-

conditioned air, would be required for the orbiter during installation and final check-

out operations. It is assumed that JPL would use orbiter and capsule AGE for any

handling and checkout of the vehicles at JPL.

6.5.4 Launch Base Facilities

The launch base facilities would consist of a spacecraft (orbiter or orbiter/capsule

checkout-assembly building and the launch complex 36A and 36B. The checkout-assembly
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building is assumed available for the period required. It will require filtered and air-

conditioned air (presumed already available). The launch complex consists of:

• Launch pad (36A or 36B)

Launch pad service building

Umbilical tower

• Launch control building

• Gantry service tower

• Cableways to pad A or pad B

Both pads 36A and 36B would be required for the 1969 Mariner Mars mission. The

orbiter would be assembled or checked out in the launch control building, transported

to the launch pad in the transport van (AGE), and erected atop the booster vehicle.

No modification would be required to the existing umbilical tower. The cabling from

the launch control building to the launch pads would be supplied as AGE cable

assemblies.

6.6 LAUNCH OPERATIONS PLAN

The launch operations activity would include those efforts which are required to trans-

port the orbiter or capsule from the assembly plant (Sunnyvale, Calif.) to JPL, trans-

port the orbiter or capsule to the launch base at MILA, checkout the orbiter and

capsule at the launch base, transport the orbiter or capsule to the launch pad, assist

in erection atop the launch vehicle, and accomplish a prelaunch checkout of the

orbiter and capsule in the launch-ready condition. Manpower has been allotted to

these efforts and cost of support equipment (AGE) has been included.

6.6.1 Support to JPL

After acceptance by the customer of the orbiter and capsule at Sunnyvale, Calif.,

it would be transported in the transport van (AGE) to JPL for installation of the

scientific instruments and sterilization of the capsule. The transport van would
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be equipped with air conditioner, pressure regulator, and would be instrumented for

recording shock loads imposed on the spacecraft during transit. An LMSC engineer

would accompany the spacecraft to JPL and thence to the launch base to insure status.

A spacecraft log book would accompany each vehicle and would be maintained with

entries by the LMSC engineers and JPL personnel. The capsule, after sterilization

at JPL and following installation of scientific instruments would be reassembled to

the orbiter and a checkout performed using AGE checkout equipment. The spacecraft

will then be loaded into the transport van for movement to Cape Kennedy.

6.6.2 Support to Cape Kennedy

The spacecraft checkout building would be the receiving area for the orbiter and cap-

sule. This building is located in the industrial area at Cape Kennedy. It would also

be utilized for storage area for this program and for administrative offices.

Personnel support is planned for loading and unloading the spacecraft, checkout of

the spacecraft, transporting the spacecraft from the checkout building to the launch

pad, and checkout of the spacecraft (after its erection atop the launch vehicle) remotely

from the launch control building.

6.6.3 Launch Base Test Plan

The launch base test plan has been developed as the final part of the factory-to-launch

testing sequence. All testing at the launch base is based upon the following:

• No testing at the launch base would invalidate a previous test

• Prime purpose of testing at launch base would be to verify the integrity of

the overall system; therefore, qualitative type test equipment would be

utilized.

• There would be no replacement nor rework of spacecraft. All failed articles

would be replaced en toto and failed articles shipped back to JPL or LMSC.

Only complete orbiters or capsules would be handled at the launch base.
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An outline of the launch base test plan follows:

1. Industrial area - spacecraft checkout building

a. Receiving inspection of orbiter and capsule (visual for damge, etc. )

b. Qualitative functional checks

(1) Magnetometer boom extension

(2} Antenna extension

(3) Solar panel extension, circuit continuity

(4) Guidance and control, passive

(5} Transmitter (capsule}

2. Launch pad assembly

a. Install Centaur adapter

b. Mate orbiter/capsule to Centaur adapter

c. Install pyrotechnics

d. Conduct telemetry system check

e. Final level all tankage (helium, nitrogen, etc. )

f. Install external shroud

6.6.4 Support Equipment (AGE}

The following equipment would be utilized in handling and transporting the orbiter and

capsule and in accomplishment of checkout and launch operations. One set each of the

handling, servicing, and checkout equipment is planned for LMSC, JPL, and the

launch base; the launch control equipment is planned as one set for the launch base

only. Additional pieces would be planned for shop handling aids and for required

quantities of orbiter or capsule-peculiar items.

Handling Equipment

• Transport van -for orbiter or capsule or combined

• Orbiter handling dolly -horizontal

• Orbiter checkout dolly - vertical (supports solar panels during extension}

• Capsule dolly

6-42

LOCKHEED MISSILES & SPACE COMPANY _""



M-29-64-I

• Orbiter handling tilt sling

• Capsule sling

• Orbiter protective cover

• Capsule protective cover

Servicing Equipment

• Propellant loading equipment, fuel (MMH) and oxidizer (N 2

• Gas pressurization equipment, Helium and nitrogen

Checkout Equipment

• Electrical umbilical coupling

• Mass spectrometer leak detector

• Orbiter propulsion checkout console

• Solar collector portable checkout unit

• Battery load tester

• External orbiter power supply

• Battery charger

• Guidance checkout console

• Communication/decoder checkout

• Antenna coupler

Launch Control Equipment

• Cable assembly (launch pad to control building)

• Orbiter checkout console

• Capsule checkout console

0 4)
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Section 7

PROGRAM COSTS

The estimated program costs have been based upon the various plans and hardware

systems described herein and within certain ground rules:

• 1969 mission to require 3 orbiter vehicles as flight articles

• 1971 mission to require 3 orbiter/capsule vehicles and 2 backup

capsules as flight articles

• Utilize maximum proven hardware from Mariner (solar arrays, etc.)

• JPL to install scientific instruments, sterilize capsules

(estimated costs included for these operations)

• Scientific instruments to be GFE (estimated costs included)

• Launch vehicle to be Atlas-Centaur (costs for vehicle, vehicle modifi-

cation, and launching not included)

• Data acquisition and analysis to continue 6 mos after Mars contact

for each mission (costs included for data analysis and reduction but

not for acquisition)

• Launch operations for orbiter and capsule (assembly, checkout,

servicing, and prelaunch countdown) will be accomplished and costs

accruing from these are included.

This cost estimate is considered to be a bare minimum. The program costs to be

expected may be higher, depending on the degree of usage of existing hardware.

7.1 SUMMARY OF COSTS

Table 7-1 itemizes the program costs in three categories:

1969 Mission- orbiter only $58.9 Million

1969 Mission - capsule added cost $19.9 Million

1971 Mission - orbiter and capsule $51.8 Million
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The lower total for the 1971 mission assumes that much of the technology developed

in the 1969 mission is reusable (modified) and that certain hardware elements (such

as AGE) can be modified and reused.

7.2 DISTRIBUTION OF COSTS BY TIME

Figure 7-1 illustrates the funding requirements for the 1969 mission, the 1971 mis-

sion, and the total distributed by calendar and fiscal year. The rather sharp buildup

in CY 1966 indicates a problem area which can be helped by initiating the program

earlier, relevant to development. Funding is rather constant for the years 1966 thru

1969 if programs are planned as outlined herein.

Figure 7-2 illustrates separately the funding requirements for engineering/develop-

ment, manufacturing, and reliability/qualification testing. For the former two, a

comparatively large "sag" occurs in funding (and manning level) between the 1969

and 1971 missions. The engineering sag is in CY 1967, the manufacturing sag in

CY 1968. Both conditions would contribute to problems in maintaining skilled man-

power during these periods. Some improvement could be attained by moving the 1971

program upstream, but this would lessen the probability that maximum advantage

was to taken of the data from the 1969 mission testing, flight, and data acquisition.

Further analysis of these areas is required.

The sag in the reliability/qualification testing area is not severe; the largely reduced

amount of testing required in the 1971 mission results from the assumption that re-

qualification of many items within the orbiter will not be necessary, and considerable

reliability confidence and experience will be available from the 1969 mission.
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