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INTRODUCTION 
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During the f i r s t  quarter ,  a 48 channel oscil lograph sys t em has been 

This will enable ordered  and is currently being hooked-up and checked out. 

al l  the data (p re s su res ,  temperatures ,  magnetic field, induced voltages, 

induced cur ren ts ,  pre-ionization power,  etc. ) to be recorded quickly and 

continuously. During this t ime experiments have been conducted in order  

to I '  calibrate" the microwave system with an equilibrium plasma. 

resu l t s  a r e  shown in F igures  1 and 2, 

Typical 

Calibration is satisfactory.  

Also during this period the following calculations were  performed to  

determine: 

1. 

2. 

3.  

The optimum seed concentration in a non-equilibrium plasma and the 

effect  of a variable seed injection rate.  

Maximum temperature  depression due to seeding, taking into account 

vaporization, heat of seed gas, ionization, and resonance radiation 

loss.  

Elec tron-beam efficiencies. 

The discussions of these calculations follow. 
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THEORETICAL OPTIMUM SEED CONCENTRATIONS 

I N  SLIGHTLY IONIZED NON-EQUILIBRIUM PLASMAS 

The electr ical  conductivity of a gas can be greatly increased by the 

addition of a smal l  amount of an easily ionized l 1  seed,"  and also by the 

creation of a non-equilibrium condition of the electrons.  The creation of 

such non-equilibrium conditions (where the average electron temperature  

i s  higher than the average neutral par t ic le  temperature)  is being widely 

studied in  near  atmospheric p re s su re  plasmas.  

MHD power generation," the creation of such a non-equilibrium plasma is 

essential .  

much grea te r  for the seed (typically an alkali metal)  than for the parent  gas 

(typically a noble gas) ,  the increase in electron density can be offset by the 

increase in electron collision frequency when too much seed is added. 

(see Reference 2) has  briefly discussed the optimum seed concentration in 

an equilibrium plasma. 

have greatly extended the analysis of the optimum composition of a gas 

mixture ,  also a t  equilibrium. Presented below is  the derivation of an 

expression for the seed concentration which gives r i s e  to the maximum 

electr ical  conductivity in a slightly ionized non-equilibrium plasma.  Al- 

though the analysis is s t r ic t ly  valid only when a very  smal l  amount of the 

seed  is ionized, the values of optimum seed concentration and corresponding 

conductivity a r e  in e r r o r  by at most 5% when even 10% of the seed i s  ionized. 

In the field of "closed cycle 

Since the electron elastic collision cross-sect ion is usually 

Rosa 

Russians Zimin and Popov ( s e e  References 6 and 7) 

\ 

\ 
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The various species a r e  assumed to possess  Maxwellian velocity distributions. 

Radiation losses  a r e  neglected. 

Equations 

The total plasma electrical  resist ivity is taken to be the sum of con- 

tributions due to electron-atom collisions and electron-ion collisions ( see  

Reference 1) .  

qp = Va + V i  

where q is the total plasma resistivity 
P 

qa is the electron-atom contribution to the plasma resis t ivi ty  

vi is the electron-ion contribution to the plasma resist ivity 

The resist ivity due to electron-atom collisions is given by the hard 

sphere Maxwellian model ( see  References 3 and 4). 

1 - 

f 

where me is the electron m a s s  

k is the Boltzman constant 

Te is the average electron temperature  

ns i s  the seed particle density 

Qes is the electron-seed atom elast ic  collision cross-sect ion 

nn is  the parent  particle density 

Qen is the electron-parent atom elast ic  collision c ros s  -section 

e i s  the electron charge 

3 

! 



t r 

F o r  convenience of calculations purposes,  Equation (2)  becomes: 

I 

I 
i 

1 
2 

1 - -1 
= 2.21 x l o 9  P 'Tn n (nsQe, t nnQen), ohm-cm ?a e (3 )  

where  p is the temperature ra t io  Te/Tn 

Te is the electron tempera ture ,  OK 

Tn is the neutral  particle tempera ture ,  OK 

ne is the electron density, e lectrons / c m  3 

ns is the seed  atom density, a t o m s / c m  3 

nn is the parent  atom density, a t o m s / c m  3 

Qes is the elast ic  electron collision cross-sect ion for  the 

2 cross-sect ion for the seed,  c m  

Qen is the elast ic  e lectron collision cross-sect ion for  the 

2 parent  gas,  cm 

These calculations a r e  performed with constant e las t ic  electron collision 

cross-sect ions for the temperature  range 1 000-3000°K, thus neglecting 

any Ramsauer  effect. 

The resis t ivi ty  due to electron-ion collisions is given by the modified 

Lorentz gas expression ( see  References 4 and 5). 

3 3 - - -  
3 - -  qi = 6.62 x 10 p Tn In h , ohm-cm 

where I\ is the rat io  of the Debye shielding 1 

impact parameter  

ngth t th aver  

(4) 
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The electron density is given by the Saha equation: 

3 3 - 1 1 , 6 0 6 E 0  - 
electrons 

cm3  c T n  9 

15 2 -  
= 2.4146 X 10 < Tn2 e ne 

ns - ne 

where Eo is the ionization potential of the seed,  e .  v. 

Note that only the alkali metal  seed is taken to ionize at  temperatures  l e s s  

than 3000°K, and thus the rat io  of the s ta t is t ical  weights is taken to be unity. 

The ideal gas law is used to determine the number density of parent  

gas atoms: 

22  3 P / T n ,  a toms /cm nn = 0. 734 x 10 (7)  

where P is the p re s su re ;  atomspheres.  

The mole fraction of seed, X,  is defined: 

3 n = Xn,, a toms /cm (8) S 

F o r  the case  of a slightly ionized plasma,  ne << ns,  the above equation may  

be combined to yield an explicit expression of the mole fraction of seed which 

produces the maximum electrical  conductivity in  a seeded gas plasma. 

Under the conditions ne << ns,  Equations ( 7 )  and (8) may be substituted 

into Equation (6 )  to yield: 
5803 Eo 

TTn 
3 ' 1 i -  

e le c t r  ons 
- - 

"e 4.210 x 10l8 p Tn 4 ~ 2 P 2 e  9 3 ( 9 )  c m  

Substituting Equations (7) ,  (8) and (9 )  into Equations ( l ) ,  (3) and 4 yields: 

5 



3 1 5803 Eo 1 - -  1 -- -- 
4 4 2  c T n  2 

= 3.853 x T, P e X (XQes t Qen) P 

9 1 1 1  1 3 3 
2 - 5 8  8 4 4 

- -- - -  
t 6 . 6 2  x l o 3  Tn 21n  6.037 x 10 c Tn P X - -  - -  [ 

2902 E o I  

e , ohm-cm 

F o r  m o r e  convenience Equation (10) is rearranged:  

- 1  

= a x  ' (XQ + Q  I t s  - y l n X ,  ohm-cm P e s  en  

1 3 1  5803 Eo 
-z P T n  -- 

1 2  4 whereU f 3.853 x 10 < T P e n 

9 11 _ _  1 
2 -5  8 8 4 

- 3 

8 .  6 . 6 2  x l o 3  < x l 0  p Tn P 

I 2902 Eo 

--mT 
e 

In orde r  to obtain the minimum plasma resis t ivi ty  with respect  to 

var iable  seed concentration, Equation (1 1) is differentiated with respec t  to 

X and the result ing expression se t  equal to zero.  Thus, 

6 
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-1 3 1 
2 a  2 

- 2 QesXo 2 en  o 

- -  -- 
- y X o  = o  - - Q  X U 

where  Xo is the optimum mole fraction of seed,  

Solving for  Xo: 

2 

(16) 

- 5803 Eo 3 1  -' T (17) 
- -  - 5 

w h e r e p  - = 8. 61 x 10 - l o c  'T 4~ z ~ e s  e 

i- (q2 i- Qes 
2 

2 Y  
Tn a Qes 

This Xo is the required mole fraction to give the optimum non-equilibrium 

conductivity. 

ponential t e r m  in U ,  for low Te the t e r m  CP in  Equation (16) becomes negligible; 

in this l imit  Equation (1  6) reduces to the well  known equilibrium expression 

for low temperatures  ( see  Reference 2);  

Because of the strong temperature  dependence i n  the ex- 

Xo = QenIQes 

Equation (1 5) does indeed represent  a minimum value of 7 since P 

(3) ' 0 .  

XO 

Calculations show the negative root omitted i n  Equation (16) to be extraneous,  

s ee  F igure  3 .  

F o r  convenience of computation, the logarithmic form of Equation (1 7) 

is presented: 

7 



5 3 1 
= 9.0659 - 4 loglo - loglo Tn - l o g l o p  

In order  for the analysis to be valid and to thus yield values of (5 
P 

and Xo which a r e  better than 9570 accurate ,  the following cr i te r ion  should 

be followed: 

< 0. 1 ne 
nS 

- 

A typical cr i ter ion graph is shown in  F igure  4. Calculations involvilg the 

values of c ,  X, Tn, the combinations which l ie  in  the lower left corner  of 

the Cri ter ion Graph, are the most  accurate.  The analysis becomes l e s s  

valid the fur ther  up and to the right the values l ie  on the cr i ter ion graph; 

however, i t  should be noted that the analysis is at  l eas t  9570 accurate for  

most  prac t ica l  seeded plasma applications such as in MHD power generation 

and in high p r e s s u r e  diodes. 

Discussion 

Various equilibrium gas systems a t  the optimum seed mole fraction, 

are compared with pure alkali metal vapors in F igure  5. 

seeded gas sys tems can yield much higher e lectr ical  conductivities than 

other seeded gas sys tems o r  pure alkali meta l  vapors a t  the same p r e s s u r e  

In general ,  ces ium 

8 



and temperature .  

given in  Table I. F o r  non-equilibrium electron temperatures ,  the con- 

ductivities a r e  of course much higher. 

concentrations vs. temperature  is  shown in F igure  6 for an argon-cesium 

plasma. 

presented in Reference 6. 

optimum mole fraction of seed can be an o r d e r  of magnitude higher than 

the low temperature  equilibrium value. During an actual experiment,  the 

The physical constants used during the calculations a r e  

A typical plot of optimum seed 

The equilibrium limit-curve is in  agreement  with the resu l t s  

F o r  some cases  of pract ical  interest ,  the 

seeding mole fract ion will actually va ry  (probably about some mean value 

such as the optimum value); the influence of such variations upon the con- 

ductivity can be determined f rom a plot of 0 F o r  a 

cesium seeded argon plasma,  with 1000°K < Tn < 2600°K and with 1 .  0 < c <  1.3,  

as much a s  a 5070 variation in  seed mole fraction about the optimum value 

will give r i s e  to no more  than a 1570 reduction in  the electr ical  conductivity. 

This is  shown for one case  in Figure 7.  F o r  the above mentioned range, in  

seeded gas non-equilibrium and equilibrium plasmas,  the conductivity r i s e s  

sharply with increasing seed concentration until the optimum point is reached; 

then the conductivity decreases  l inearly with increasing seed concentration. 

F o r  increasing values of X > X o ,  the l inear decrease  in U 

by an approximately l inearly increase in ne ( see  Figure 8). 

i n 0  
P 

sect ion.)  

seed  than to under-seed; that is, a variation of U 

vs X ( s e e  F igure  7). P 

is accompanied 

(The decrease  

P 

is  due to the overpowering influence of the increasing coulomb c r o s s -  

I t  should also be noted f rom Figure 8 that i t  i s  sa fer  to over-  

due fluctuations in X P 

9 



when X < Xo will be much la rger  than when X 1. Xo. 

MAXIMUM TEMPERATURE DEPRESSION DUE TO SEED INJECTION 

Herein developed is a simple model which allows a quick calculation 

to the maximum temperature  depression possible due to vaporization of 

cold seed,  heating of cool seed  g a s ,  par t ia l  ionization of the seed,  and 

line radiation lost  f rom the seed resonance levels. Experimental  depressions 

i n  temperature  have been observed as shown in F igure  9. 

Temperature  Depression Due t o  Loss of Line Radiation 

Let  \k be the total ra te  of energy loss, due to line radiation, f rom 

an optically thin plasma. Let  

where (pi r epresents  the contribution f r o m  the ith to the j th level. Only 
, j  

spontaneous (downward) transitions will be considered. Thus,  

Q = C  c co 
j i > j  i j  

Since the plasma is near thermal equilibrium and a t  temperatures  l e s s  than 

2000°K, only the f i r s t  two levels (resonance a t  8521 A and 8943 A) will be 
0 0 

considered. Population of the upper s ta tes  i s  negligible a s  shown in F igure  

10. The population density ratio of the f i r s t  two levels a s  a function of 

temperature ,  i s  shown in Figure 11. 

unit volume of plasma which is  optically thin, in which transit ions take 

place f rom the excited s ta tes  1 and 2 to the ground state 0 ,  is given by 

The ra te  of energy emitted f rom a 

10  



the following expression: 

* = nl  A10 E10 + n2 A20 E20 

where n l  is the population density of the 1s t  excited level 

A10 is the reciprocal mean life of the 1st excited level 

E10 is the energy of the 1st  excited level with respect  

to the ground level 

n2 is the population density of the 2nd excited level 

A20 i s  the reciprocal mean life of the 2nd excited level 

E20 is the energy of the 2nd excited level with respect  to 

the ground level 

number of 
Unit check: (atom;: level transitions 11 energy )= energy 

atom in level-sec.  transit ion cm3- s e c  

Note that induced transit ions have been neglected ( see  Reference 8). 

This is  indicated on the energy diagram shown i n  F igure  12. The t e r m s  

A10 and A 

oscil lator strength by the following expression ( see  Reference 8): 

sometimes called Einstein coefficients, a r e  related to the 
20’ 

. 6669 x l o 8  transit ions 

X 1 2  
* lo  = 

t rans  i t  ions 
A20 = f 0 2 ,  atom in 2nd level-sec 

where X1 is the wave length associated with the f i r s t  

A2 is the wave length associated with the second excited 

level ,  in microns 

11 
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go is the s ta t is t ical  weight of the ground level (25  t 1 )  

gl  is the s ta t is t ical  weight of the f i r s t  level (25 t1) 

g2 is the s ta t is t ical  weight of the second level (25  t 1 )  

J is the quantum number represent ing the total angular 

momentum of the electrons ( s e e  Reference 9) 

fO1 is the oscil lator s t rength associated with the first 

level 

f O 2  is the oscil lator s t rength associated with the second 

level 

The osci l la tor  strengths associated with the energy levels  of the cesium 

a tom have been recently reported in  Reference 10. 

i n  Equation (24) are determined f r o m  the Boltzmann expression and the 

The terms nl and n2 

ideal  gas law: 
- 11,606 'lo/' a toms in  1 s t  level  

3 c m  
, = 0. 734 x P T - l X  (5) 80  e nl 

- 11, 606 E2o/T a toms in  2nd level  
0. 734 x P T - l X  (2) e , 3 cm n2 = go 

where  P is the total p r e s s u r e ,  in a tmospheres  

T is the static temperature ,  in  OK 

Xs is  the mole fraction of seed 

E10 is the energy associated with the 1st level ,  i n  e .  v. 

E20 is the energy associated with the 2nd leve l ,  in e .  v. 

g r e f e r s  to the s ta t is t ical  weight 

12 



Thus Equation (24) becomes: 

- 11,606 E l o / T  
734 x 1022PT-1Xs (2) e 

(21 f o l ]  E10 t [.0734 x 1022PT-1Xs [- 666:1: lo* 

In the above equation 9 has the units of e .  v. /cm3-sec.  

1. 602 X joules /e .v .  and since there  a r e  4. 186 joules /ca l . ,  Equation 

( 30) be comes 

Since there  a r e  

L 

- 11, 606 E2o/T 
f02E2oe 

x,2 ’ cm3-sec 
t 

In order  to give an upper l imit  on the temperature  depression observed in  

a volume of plasma with velocity u, and heat capacity c 

downstream of a reference point, the calculation was made with the 

at a distance 1 
P’ 

13  



population density of the initial temperature.  Thus,  

where 1 is length in cm 

3 m i s  the total mole density, mo les / cm 

u is velocity in c m l s e c  

c 

T1 is the initial temperature,  OK 

is the heat capacity - 5 cal. /mole - OK for  a perfect  gas 
P 

T 3  is the final temperature a t  point 1 downstream of reference,  

OK 

Since m = 1. 219 X 10'2PT-1 rnoles/cm3 f rom the ideal gas law, Equation (32) 

be comes : 
- 11, 606 E l o / T  

1 xs 
T i  - T3 = 1.54 X 10 

- 11, 606 E2o/T 
fo  2E2 oe 

x2L 
t 

where 1 is distance from reference point, i n  c m  

X, is the mole fraction of seed 

u is the p lasma velocity 

c is the heat capacity 

fO1 is the oscillator s t rength of 1s t  level 

f O 2  i s  the oscillator s t rength of 2nd level 

P 

( 3 3 )  

14 



E10 is the energy of 1 s t  level, e. v. 

E20 is the energy of 2nd level, e .v .  

T is the s ta t ic  temperature ,  OK 

A, is the wave length associated with the 1s t  level,  in  microns 

x 2  is the wave length associated with ' the 2nd level, in microns 

Temperature  Depression Due to Vaporization 

The temperature  depression due to vaporization of the liquid seed  is 

obtained f r o m  the following expression: 

m c (T1 - T3) = m2AH2 
1 P  

Thus, 

(34) 

where  ml is the mole density of Argon 

c 

m2 is the mole density of cesium 

AH2 is the heat of vaporization p e r  mole of seed 

T1 is  the initial temperature ,  OK 

T 3  is the final temperature ,  OK 

is the heat capacity (taken a s  ideal gas) 
P 

Since m2 << m l ,  m2/ml t m2 m m2/ml m Xs,  the mole fraction of seed. 

In o r d e r  to obtain an upper limit, the heat of vaporization is assumed constant 

a t  the lowest temperature  encountered, s e e  Figure 13. 

Temperature  Depression Due to Heating of Seed 

The temperature  depression associated with heating the seed is 

15 



obtained f rom the following expression: 

m l ( T l - T 3 )  = mZ(T3-Tz) 

where ml is the mole density of argon 

m2 is the mole density of seed  

T1 is the initial argon temperature  

T 

T 2  is the initial seed temperature  

i s  the final mixture temperature  3 

Note that in Equation (36), the heat capacity of argon is assumed to be equal 

to that of the seed. Since m2 << m l ,  Equation (36) becomes: 

(T1-T3) = X ,  (T3-T2) 

Temperature  Depression Due to Pa r t i a l  Ionization of Seed 

If c represents  the mole fraction of seed ionized, then since c << 1 

for atmospheric p r e s s u r e  plasmas near  1 500°K, 

the Saha equation and the ideal gas  law a s  follows: 

can be approximated from 

(37) 

where T3 is  the plasma temperature ,  OK 

Xs i s  the seed mole fraction 

P is the static pressure ,  in atmospheres 

E i  is the ionization potential of the seed 

Thus 

m c (T1-T3) = 2.31 x lo4 Cm2Ei 
1 P  (39) 

16 



i 

3 where ml  is the mole density of argon, m o l e s / c m  

c 

T I  is the initial temperature,  OK 

T3  is  the final plasma temperature ,  OK 

m2 is the mole density of seed, m o l e s / c m  

i s  the heat capacity, cal. /mole OK 
P 

3 

Ei is the ionization potential 

Note: 

4 = 2. 31 x 10 cal. 

Thus,  the temperature  depression is: 

5 1 1  

r J  

of the seed ,  e .v .  

1. 602 x 
e .  v. 4. 186 joules 

- 5803 Ei 

Eie *3 

where T1 i s  initial temperature ,  OK 

T3  is final temperature ,  OK 

X s  is mole fraction of seed 

P is the s ta t ic  p re s su re ,  a tmospheres  

E is the ionization potential, e. v. 

c 

i 

P 
is the heat capacity, cal. /mole - OK 

Calculations are performed for the experimental  case 

where T1 = 1500 K (initial temperature)  
0 

l = 5 c m  

17 



4 
u =  10 c m / s e c  

X, = 5 X 

T1 = 1500°K 

E1O = 1. 39 e. v. ( F i r s t  excited level) 

EZ0 = 1 .46  e. v. (Second excited level 

E i  = 3. 87 e. v. (Ionization potential) 

T 2  = 300°K (Minimum possible) 

cp = 5 ca l /mole  - 

(Cesium seed in argon) 

0 K (Ideal Gas) 

h H2 = 20, 000 cal. /mole (Maximum possible) 

= .394 (See Reference 10) 

fO2  = . 814 (See Reference 10) 

X = .8521 p (See Reference 10) 

A, = .8943 p (See  Reference 10) 

fO1 

1 

The maximum temperature  depressions due to the above mentioned 

mechanisms a r e  l isted in Table 11. Since this maximum temperature  

depression model does not account for  the observed temperature  drops,  

i t  i s  postulated that the seed is entering as a par t ia l  liquid spray  which 

impinges upon the thermocouple. At  higher temperatures  ( see  Figure 15) 

m o r e  of the spray  is vaporized within the injection tube before it en te rs  the 

duct. Downstream of the point, where the tempera ture  depression is  

observed, a r e  molybdenum screens through which the flow is forced to pass .  

Beyond these screens  no temperature depression has  ever  been observed 

thus indicating that if a depression does exis t ,  i t  is l e s s  than 5K0. 

18 



THEORETICAL ELECTRON BEAM EFFICIENCY 

/ . !  
! ' -  
I .  

I' - 

Presen ted  below a r e  prel iminary calculations which indicate the 

maximum possible power increase as a function of energy imparted to 

the working fluid f rom the electron beam. Recombination f rom the point 

of injection to the magnetic field region and radiation effects a r e  neglected. 

F o r  the case  where radiative recombination is the p r i m a r y  mechanism 

for de-ionization, the power input p e r  unit volume, Pi, f rom the electron 

beam is: 

2 P. = a n e  I 
1 

where a is the recombination coefficient 

n is the e lec t rondens i ty  e 

I is the ion-pair production energy. 

The power generated p e r  unit volume in a segmented electrode generator 

is 

where K is the loading factor which is the rat io  of the load voltage 

to the open circuit  voltage 

0 

u is the average plasma velocity 

B is the magnetic field s t rength 

is the p lasma electr ical  conductivity 
P 

8, s u  7 

we i s  the electron cyclotron frequency 

e e  

19 



Te is the average time between electron and non-electron 

collisions 

wi is the ion cyclotron frequency 

T i  is the average time between ion and non-ion collisions. 

The electron beam efficiency, 77, i s  defined as follows: 

Pi r ) =  1 -- 
P O  

F o r  the case  K = 1 / 2  and B,Bi << 1, the above expression becomes 

(4 3) 

in o rde r  for the electron beam to be a practical  pre-ionization technique, 

77 1. F o r  convenience of computation, the following expression is 

presented: 

2 
6.41 1 0 - 3 ~ ~ ~  I 

q = l -  
(J u2B2 P 

3 w h e r e a  is in c m  / s e c  

n is  in e lectrons/cm 3 
e 

I is in e .v .  

0 is  m h o s / c m  P 

u is in c m / s e c  

B is in gauss 

(4  5) 

20 
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In order  for there to be a significant fraction of the plasma enthalpy 

to be converted into electr ical  energy, the magnetic interaction pa rame te r ,  

Q, will be close to unity. F o r  convenience, the following fo rm of the 

magnetic interaction parameter  i s  presented: 

Pu 

where (5 is in mhos /cm 
P 

B is in gauss 

L is in cm 

p is in g r / c m  3 

u is in c m / s e c  

Substitution of Equation (46) ( f o r  a magnetic interaction parameter  of unity) 

into Equation (45) yields: 

ane21L 

Pu 3 
-12 v = 1 - 6.41 x 10 

2 -4 3 F o r  a typical case  of I - 40 e . v . ,  L = 10 c m ,  P = 10 g r / c m  

5 and u = 10 c m / s e c ,  Equation (48) becomes: 

(47) 

77 = 1 - 2.56 x 6Cne2 (48) 

The efficiency vs .  number density of electrons is presented i n  

Figure 14 for various radiative recombination ra tes .  
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TABLE I 

Element  2 
Q,, cm Eo, e . v .  

~ 

Lithium 

Sodium 

Pot as s ium 

Rub idi urn 

Ce s ium 

Argon 

Helium 

2 .0  x 1 0 - l ~  

3. o x 1 0 - l ~  

4. o x 10-l4 

4 . 7  x 1 0 - l ~  

5 .3  x 1 0 - l ~  

2 x 10-17 

-16 5 x  10 

5.363 

5.12 

4. 318 

4. 159 

3. 87 

---- 
- - - e  
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TABLE I1 

AT - Mechanism 

Res onanc e Radiation < 4 2  KO 

Vaporization <20 KO 

Heating of Seed < 9 KO 

Partial Ionization of Seed < l K o  

Total  AT <72 KO 

Equation Used 

# 33 

# 34 

# 36 

# 39 
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