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ABSTRACT \’b

The cigenvalue problem HY = EY in quantum theory is
conveniently studied by means of the partitioning technique. It is
shown that, if 51 is a real variable, one may construct a {unction
51 = { (£, ) such that each pair £ and 61 always bracket at
least one true eigenvalue E . I £ is chosen as an upper bound
by means of ¢.g. the variation principle, the function (21 1s hence

going to provide a lower bound.

The reaction operator t associated with the perturbation
problem H = HO+ V for a positive definite perturbation V is
studied in some detail, and it is shown that a lower bound to t may

be constructed in a finite number ol operations by using the idea of
24

" 1"

inner projection " closely associated with the Aronszajn projection
previously utilized in the method of intermediate Hamiltonians. DBy
means of truncated basic sets one can now obtain not only upper bounds
but also useful lower bounds which converge towards the correct cigen-

values when the set becomes complete.

The method is applied to the Brillouin-type perturbation
theory, and lower bounds may be obtained either by pure cxpansion
methods, by inner projections, or by a combination of both approaches
leading to perturbation expansions with estimated remainders. The
applications to Schrodinger's perturbation theory are also outlined.
The method is numerically illustrated by a study of lower bounds to the

. - _—_ IS S
ground state energies of the helium-like ions : He, Li ,B 7, etc.
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i{. INTRODUCTION

In quantum theory, the energy values of the stationary states
of a physical system are determined by the eigenvalues E of the time-in-

dependent Schrédinger equation :
H é = E é (1)

where the Hamiltonian H is a self-adjoint operator (H*= H). For
atomic and molecular systems, the ground state and lower excited
states correspond to a set of discrete energy levels; the associated
Hamiltonian is hence bounded from below, and the spectrum starts with
a set of discrete eigenvalues. In addition to the closed stationary states,
there may further be scattering states connected with a continuous part
of the spectrum, but we will here focus our interest on the discrete

energy levels.

In general, it is very difficult to solve the Schrodinger
equation (1) exactly, and it is then very important to be able to "bracket"
the exact eigenvalues E by means of upper and lower bounds. Let us
denote the eigenvalues in increasing order by E, E;» Eyoves and the
associated normalized eigenfunctions by ‘1’0, ‘1’1, ‘i’z, ... respectively.
Convenient upper bounds are provided by the Rayleigh-Ritz variation

principlel), which says that the expectation value

_ L2112l ,
Sk = TLoiBS “

gives an upper bound to Eo for arbitrary wave functions ¢ , and that

it further gives an upper bound to El , if ¢ is restricted to functions
orthogonal to ‘I’o » an upper bound to E, , if ® is restricted to functions
orthogonal to ‘I’o and ‘Yl, etc. In the treatment of the excited states,

the exact wave functions for the lower states are apparently involved,

and a practically more useful formulation which avoids this difficulty



has been given by Hylleraas and Undheim 2) and by MacDonaIdS). Intro-
ducing an arbitrary orthonormal set & 1 (DZ, <I>3. .. CIDn of order n and

the associated nth order energy matrix having the elements
éﬂm = <@m\%\§b> ) (3)

they have shown that its n eigenvalues are in order upper bounds to

the true eigenvalues Eo’El’ EZ’ <o 'En-l'

The problem of finding convenient lower bounds to the eigen-
values E, seems to be considerably more difficult, and it has been
approached in many different ways. In matrix theory, there are several
theorems available about localization of characteristic roots, and the
most well-known is the Hadamard-Gershgorm theorem4) which says

that in each one of the complex circles

12 — X! = 30 X, ) (4)
' Ll

there is at least one eigenvalue E . For generalizations and surveys
of the rich literature in this field, we will refer to the recent papers

by Mincs) and HouseholderG). It is evident that this approach is useful
in connection with the Schrddinger equation only if the underlying basis

is complete and one deals with infinite matrices.

Other studies are based on the concept of the width AH of the

Hamiltonian defined by the expression

(a) = /(@ -y )| (&) -

(5)
A2 |ABY — (@RS 20,

with < <I>I<I>> = 1. This quantity vanishes if and only if ¢ 1is an eigen-
function to H . Introducing the value E, of the first excited state,

Temple 7) has given the following lower bound

(a%)°
E,-{%y

AP P E TN

0

(6)




provided that the approximation is so good that < H > <E, . Using a
similar approach, D.H. Weinstein )has shown that the e1genva1ue

Ek situated closest to < H> satisfies the relation :

Sy~ AR £ B, £ &y + AR

Another modification has been given by Stevensong). Formulas of these
types have been used in determining lower bounds for the ground state
energy of the helium atomlo). Some illustrative examples have further

been given by Bailey and Kinsey “).

An entirely different approach to the problem of lower bouﬁds
has been taken by Alexander Weinsteinlz) and his school by using the
method of so-called "intermediate" Hamiltonians. There is constructed
a set of operators H(l)é.- ul?l s H(3)é= +.. £H converging towards
the given Hamiltonian, and the associated eigenvalues in order ful-

fil then the inequalities

(2) (3)

r ceplep ... £E,

)& " w (8)

Y

providing a set of lower bounds converging towards the exact eigenvalue.
The method is very forceful and may be applied to systems with various
types of constraint. For a Hamiltonian of the form H = Ho + V, where
V is a positive definite perturbation, one may consider the mtermediate

Hamiltonians:

%Q(M) — éﬁo + —v% @('“)v 72, (9)

where O(n) is the operator for the orthogonal projection on an arbitrary

subspace of order n, which for n- ® converges towards the identity

13)

this way been studied by Bazley and Fox14).

operator Many fundamental problems in quantum theory have in

In this paper, we will use a new tool in the study of upper and
lower bounds to energy eigenvalues. In the partitioning techniquelS)
for solving the Schridinger equation, there exists a first-order iteration

procedure £k+1 =f {Ek} which generates a set of numbers




ao, 61, &Z’ (C/3, «+. such that between any two consecutive numbers
there is at least one true eigenvalue E . Such a series provides hence

upper and lower bounds, and the main problem is to evaluate the quanti-
ties involved.

2. OUTER AND INNER PROJECTIONS; ORDERING
THEOREMS FOR EIGENVALUES

Outer Projections.- Let O be an arbitrary projection operator

characterized by the relations :

@2’= O ©T=© TL(@>=’Q, (10)

) )

and which selects a certain subspace of the Hilbert space of finite or
infinite order n . For the moment, it is not necessary to specify the
explicit form of this operator. Let us further consider a self-adjoint
operator A bounded from below having the eigenvalues a; and\t‘:he

normalized eigenfunctions w

A, = QM
We will define the "outer projection " A of this operator with respect

to the subspace O by the relation :

- 080 wa

It is evident that every function in the complementary subspace associa-
ted with the projection operator (1 - O)is an eigenfunction to A asso-
ciated with the eigenvalue 0 , but these functions are usually of little
use. Instead we will concentrate our interest on the eigenfunctions G‘k

situated within the subspace O

Ry, = Rty Of, =R,  (BlR)y=1. 03

For these functions, one has the theorem that the eigenvalues of A




are upper bounds to the eigenvalues of A in order :

Ay & Oy (14)

The proof is very simple. According to the variation principle, one has:

f, = <4 )RlL)> & KLIRILY = <A, |OTA 0|4, )=
= KB IRy -, "

Next, we will consider the auxiliary function ¢ = ﬁl (314—6.2 [52 subject to
the conditions

(e
(Pl

11

<u,\E,>/A, + <Ju.\i€1>/3»z =0,
\/5:\2‘\'|/Azl\ = 1 ) (16)

and Op = @. Since @ is assumed orthogonal to Uy o the variation
principle gives :

a,c <2lRle)

I

O 18] 0P = K2 |OTRO D =
<cP|W\q>> = <"I"/‘)’I+E’1/Azlﬁ\ﬂ’lﬁt*"zz/@;>= (17)
= a:» \/3c‘2'+ ab\/ﬁ\z £ a’:.. '

Next, we will consider the auxiliary function ¢ = ﬁlﬁ it 32(32 + ﬁ3[33
subject to the conditions < u1l‘1’ >=z< uZIcp >=20, <o ]qy> =1,

I

Op = ¢ , and the variation principle gives immediately

a’is £, , e . (18)
‘The projection operator O may be defined in different

ways . If £ = (fa’f?.’fy ceef ) is a set of n linearly independent vec-

tors in Hilbert space having the metric matrix A = £ te y ioeo
Akl = < fklfl >, and spanning the subspace M_, then the projection

operator associated with this manifold is given by the relation:

O =g A4 - (+9)
511> B <5

Il




(see Appendix A). The infinite set (fl’fz’f3' +..) is complete, if and
only if the associated projection operator is identical with the identity

operator, in which case (19) represents a "resolution of the identity".

It is often convenient to choose an orthonormal basis
@ =(d 12920955 .fbn) with < ¢k1®1> = 6,4, and the projection
operator has then the form O =@ &t= 2 [o, ><o |. Within this
subspace the outer projection A= OAO is then exactly represented by
the nth order matrix A having the elements Ak%’: < CIDkIAIle >, obtained
by truncation from the infinite order matrix A . In this case, the
ordering theorem (14) says that the characteristic roots ay of any
finite matrix are in order upper bounds to the n lowest eigenvalues. ay
and that further these upper bounds decrease with increasing order of the
matrix. This gives a new proof of the previously quoted theorem by
Hylleraas and Undheimz) and by Mac Dona1d3).

In conclusion, we note that the eigenvalue problem (13) for the
operator A= OAO is also closely associated with the problem of finding
the extreme values of the integral I =< u IA]G. >/<u ]ﬁ > for functions
u which belong to the subspace of O , i.e. satisfying the condipion

Ou =u . This problem is further discussed in Appendix B.

Inequalities for Operators. ~ Let us consider two self-adjoint operators

A and B which are both bounded from below. One is using the inequality

notation

A < B (20)

if < p]Alp>< <p]B]®> for all possible ¢ , and further the domain
of B belongs entirely to the domain of A . If the eigenvalues of A and B
are denoted by a, and bk » respectively, one has the theorem
2
in order. We note that (21) ig a consequence of (20), whereas the

reverse is in general not true. The proof of (21) is simple and starts

from the eigenvalue relations :




RAL, = Q4 B Uy = by Vi (22)

The variation principle gives immediately :

<U1‘H‘01> < (U,lB[O‘> = &1 (23)

Next one considers the auxiliary function ¢ = vy [31+v subject to the

2P

conditions <u1](p> =0, <o ICP> = ], Since ¢ is orthogonal to Uy,

the variation principle gives
a, « PlRle> < <elBle)
= {4, +A)/3L’B\A)/5+A)/, S = (24)
= ‘l/ilz'-k&l/é\ £ b,
Next one considers the auxiliary function @ = v, B +v,B, + v, B,

subject to the conditions < “1]‘1’> <u Icp> =0, <cpIcp> =1, and the

variation principle gives :

Q, & b, ekc . (25)

)

The ordering theorem (21) is of fundamental importance in Weinstein's

approach using the method of intermediate problems. 12)

Inner Projections. - Let us consider a self-adjoint operator A, which

]!.S also assumed to be positive definite so that A > 0 . If the eigenvalues
and eigenfunctions are denoted by ap and uy s respectively, one has

&::he spectral resolution
R = % Q%"u‘«><“«.‘ ) (26)

where a, >0 . One can further define the "positive square root" by

the relation

‘/z. < ‘/z, |
V= T ok e @)




and this operator may then be used to define the sa-called " inner
projection” :

/

- 1t 08" e

which satisfies the important inequality
/
0 < B <A (29)

In order to prove this statement, we observe that every projection

operator O satisfying (10) is necessarily positive definite :

(p|O|oy = L2 0™@) = <2[0tO9D>= (30
= K09 |0O®)> 20

Since the same applies to the projection operator for the orthogonal

complement P = 1-O 20, one gets finally the inequality

0« O <1

’ (31)

: i
i.e. 0& <1¢IOII<P> £ <q)]q>>. Replacing ¢ by A2¢ , this gives
0£ <pla20AZfp> £ <p]A]p>, which proves theorem (29).

The inner projection on a linear manifold Mn characterized

by the projection operator (19) is hence :

SR VY A (2)

where A = I."

the substitution £ = A® g » one obtains the alternative form :

R = H%ETH , (33)

f = <1f ] £ > is a finite matrix of order n . Making

where A ! is now the inverse of the matrix A = g ta g =<¢g jA] g>-
This important form is due to Aronszajnls), who derived it by considering

a linear space having a scalar product [ g, gz_] = < gk]Alg[> . If one




1
instead makes the substitution £= A °h, one obtains another form

/ -1 9 1
N'-h A ) (34)
where A sh ' A ln= '<hlA-1]h> , which has been used particularly
by Bazley 14). We note that the three forms (32), (33) and (34)
are essentially equivalent, except for the domains of the operators
involved. In eq.{9) one has utilized the inner projection of a positive

definite perturbation V and, according to (29), one has

10) {2) (3)
H oA <R T <R (35)

The ordering theorem (21) gives then

1

O (3)
36
E, <« E,<E, <... <E, 08

i.e. a set of lower bounds converging towards the true eigenvalue. These
relations form the essential basis for the work carried out by Bazley and

Fox14).

The method of " intermediate Hamiltonians” based on the
inequalities (20) and (21) is a very powerful tool for determining lower
bounds, but it has the difficulty that one necessarily must know the
eigenvalues ay and bk in order, since otherwise (21) becomes meaning-
less. In the following, we will utilize the ideas of outer and inner
projections at the same time as we will try avoiding a specific ordering

of the eigenvalues.

3. PARTITIONING TECHNIQUi; BRACKETING THEOREM

In order to solve the Schrddinger equation (1), we will

introduce a normalized reference function ¢ , <o IqJ' > =1 » and the

associated projection operator O = [p> <] , satisfying the relations

0*-0 , 0'-0 6 RO)-<1 ©n



It is further convenient to introduce the projection operator P =1 -O

for the orthogonal complement satisfying the relations

P*-P Pl-P  OP-PO-0 O

15) . .
The key operator ) in the treatment is the "reduced resolvent"” T

defined strictly by the equation
-1
T=Pl0+PE-W)P] P (39)

for a # 0, and given the symbolic notation

™
T==

where & is a variable which may vary over the real axis or over the

(40)

entire complex plane. It is easily shown that it satisfies the following

equations :

OT =T0O =0, (41)
PE-R)T = P (42)

Let us now consider the auxiliary function ¢ = bc, defined

by the relation :

CfD = THo (43)

Multiplying (43) to the left by the operator P(& - H) and using (42), one
obtains P(E - H)¢ = PHp . Substituting P=1 -O=1 -9 <p] , one
gets further

(E-R) P+ (CPKR‘#—"} = Rep-pLPlR[PD | (aq)

where we have utilized the fact that <g ]¢> = 0 according to(41).

Introducing the new notation,

81 — (p|RIP) + LR [P > ) (45)




one can write {44) in the simple form

(@-e)er =) - (&-8) 9. )

The function Y¥g =@ + ¢, may be denoted as the " trial wave function"
associated with the parameter & and characterized by the "intermediate"
normalization <o l‘i’&> = 1, which is valid both for the discrete and
continuous part of the spectrum. Here we will concentrate our interest
on the discrete levels. We note that ¥ satisfies the Schrédinger
equation (1), if and only if 6& =E = E:

(®-E)d, = 0 (47)

In general, €, is a function of € defined by (43) and (45)

or by the relation :
=
81 =Pl H+N m‘%‘ll@> = 4;)“’} (48)

The eigenvalues satisfy the equation E = f (E). By means of (46), one
finds now easily the expectation value of H with respect to the trial

function ‘l’&:
i (B 1B-E1D)
Ry, = C 3,18, 5
E,-&
[+ <Plk>

(49)

&

If one constructs the curve corresponding to &1 = f(£), it has
a series of vertical asymptots usually situated at the eigenvalues of the
outer projection PHP and the horizontal asymptot 81_ = <@ IquJ> ; see

Fig.1. For the derivative, one obtains :

%’(&) - — <cp\5€~(-é261%€lcp>= (50)
= — Lb|> <0



i.e. the derivative is always negative and the curve descending.

A 81

N A AN A
X

Y

7 |

On each branch of the curve, there is exactly one crossing point.

( E; E) between the line 81 = £ and the curve 81 ={(E).

The geometrical construction
shows that, for any value of &
associated with a particular branch,
there is a value &1 such that the
pair (£ 5/1) brackets the true

A’f/ eigenvalue E of the branch invol-

ved.

Analytically this may be proven by putting 8 = E+ ¢ 1 and

€ = E + ¢ , and the use of Lagrange's mean-value theorem gives then
E+€ = _1)(15) + €4 (2+0€)

and (51)

€ %l(E-P 0€)

o
I



- 13 -

where 04 0% 1. This formula indicates that ¢ and €y have

different signs which proves the bracketing theorem.

The function (48) may be used to construct a first-order iteration

process. Starting out from a specific number E’o ; one defines the set

£, - w»
E, 5(6 (52)

o - tcm ,

and, according to (51), any two consecutive values 81( and E/k+1 are

then going to " bracket" a true eigenvalue E . The series is conver-
gent if lf']< 1, whereas it is divergent if lf']> 1 . In both cases, the
tirst-order process may be replaced by a second-order iteration process

1e)

‘_based on the Aitken-Samuelson formula

2
o* _ _ (&=€,)
&, 8¢ § TreEL (53)

* * *
and the iterations take the form 5/ 61, (C/Z ; &0 ) & 1 £ 2
*H H K * % :
E, E/ 6 ; etc. An alternatwe procedure is based on Newton-
Raphson s tangenual method for solving an equation of the type F(E) =0 :

é*=&—“§% (54)

/&f 50 7E

Putting F(&)=£-f(L£)= & - 61 and using (50) , one obtains
FY(E)=1+<¢]¢> , and (54) leads then to an expression identical
with the expectation value (49), so that :

7‘6__ <é&\§el2§g/> 55
&= (B 1B, > >




There is hence a close connection between the tangential construction

in (54) and the quantum-mechanical variation principlelS) .

Kesolvent Operator Formulas. - In the previous section, we have used

the "reduced" resolvent T defined by (39) and (40) , and the question
is whether similar formulas can be derived using the full resolvent

( £ -H)-l. For this purpose, we will introduce the function
-1
r o= (E-%) ¢ (56)

subject to the condition that the scalar products <@ |x > “and <yxlx>
should exist. If the Hamiltonian H has the eigenvalues Ek and the
eigenfunctions ‘l’k , and the latter are associated with the projection

operators (?(zl‘l’k} <‘fk] , one has the fundamental relations :

= 2173 O, X = ; Oy 57

)

corresponding to the "

resolution of the identity" and the spectral
resolution of the operator H, respectively. A function f(H) of the
operator H is defined by the relation {(H) = Z| f(Ek) O, » and for the

resolvent me has particularly

(&~ - 2 (e-E. 0, (58)

it £ is approaching a particular eigenvalue En , the coefficient for

the associated projection operator On is "blowing up" , and one

X b

—_——————

g-E, {elxy (oS, (59)

obtains

showing that the function x/< @|x > goes over into an eigenfunction.

The connection between the two approaches is rendered by

equation (46} which gives




I

8

(E-E)(e-2]'p -
(&—8{)/75 , (60)

Il

i.e. the previous trial function Y¢  1is proportional to X . Since

further 1 = <(p]‘1’6 >=(& - 81) <p|x >, one obtains :

£ = & —<elxy -
= &£ ~<¢!(6~3€)"1I<P> ,

which relation replaces {(48) and gives :

gg' = _L | (62)
- TE Lepl %>

By means of (61), it is easily proven that & and E, y bracket a true

(61)

eigenvalue E . Introducing the function

FlE) = <olxy ' = Col(e-a)' oy (63)

one finds that the eigenvalues satisfy the relation F(E) = 0 and that the
Newton-Raphson rule (54) takes the form

* o LolX> (64)
& =8 T L

In summary, we have hence the following four relations :
(E-R) % =@
-1
2 = L)X
: ~1
£1 = £ — <CP|,¥> j

(65)

-8 — <¢lx></%l)<>'1‘




The first is an inhomogeneous equation defining the function ¥ , the
second defines the trial function ‘Ee/ , the third is connected with the .
bracketing theorem , and the fourth with the variation principle. It
is hence possible to develop a theory based on the use of the complete
resolvent ( £ - H)-1 but, from practical points of view, it is often
more convenient to carry out the limiting procedure &~ Ek in a
formalism based on the "reduced" resolvent T = P/(&-H ). Tl;iéi)

applies particularly to the considerations in perturbation theory .

4. PERTURBATION THEORY
WAVE AND REACTION OPERATORS

- In perturbation theory, one assumes that the Hamiltnian
may be written in the form H = Ho + V , where the perturbation A% is
here not necessarily assumed to be small. As reference function ¢ ,
we will choose the normalized eigenfunction” ?, of Ho .associated with
the unperturbed eigenvalue Eo under consideration, so that Ho ®,=
Eo @, - It is here not necessary to introduce all the eigenfunctions to
Ho i for our considerations it is sufficient to introduce a single eigen-
function @, the assocjated proiection operator O = ]cp o > <@ o] , and
the projection operator for the orthogonal complement P = 1 - O.
Since Tp = 0, one gets the simplification THp = T(H_+ V)p =
= 'Zl."(EO + Vo o= TVp . Using (43) and (4°) , -one obtains the reduced
formulas :

gg& =P+ TR = (1+TV) P,
E, = L\ R+ RTRIP,> =
= E + | V+VTVIP

In this connection, it is convenient to intrcduce the wave operator W

) (66)
(67)

and the reaction operator t through th. relations
W= 1+ TV,
A =V+VTV = VW

and (66) and (67) can then be written in the form

(68)
(69)

i




§, =W, I - S,

)

The operators W and t will here be considered as functions of the
parameter £, and £ and 5/1 will be used to bracket the true eigen-
values E . According to (49) and (55), one obtains further the expec-

tation value :

5’0

*x =
8 - <A{?> 5/ " 1““ <‘90‘VT2'V(CP > (71)

_ E L SR VAVTV (& ~ENVT*V (9,
A+ Lo, VT2V i, >

It

We note that, for 81 = £, = E, the wave operator transforms the
unperturbed eigenfunction into the perturbed one, whereas the expecta-

tion value of the reaction operator gives the energy shift.

In addition to T, it is now feasible to introduce the reduced

resolvent TO for the unperturbed Hamiltonian Ho

T r (72)
v T Elm
Ty
The notation is, of course, symbolic, and TO is more strictly defined
by the relation T =P [a.O + P(E- Ho) P ] “Ip analogous to (39).

For an inverse operator, one has the identity

-1 =4 -1 -1
(A-2) " = A + A B(A-B) )
which is easily proven by multiplying both members to the right by

(A - B). Putting A=o.0+P(E£- H)P and B = PVP in (39), one
obtains the identity :

T=T+TVT :To(nv’r) (74)

By means of (69), this gives further




TV = T, %, (75)
4 o= V4 VT, A (76)

17)

which is here presented in a derivation given by Ohnol8). From (76),

one obtains ( 1 - VT, )t =V and (V-l— To) t = 1, provided v ! exists.

The last relation is the well-known Lippman-Schwinger equation

Hence one has
- (VT 0

which relation forms the starting point for our treatment of lower and

upper bounds for the energy eigenvalues.

5. UPPER AND LOWER BOUNDS FOR THE
REACTION OPERATOR

Estimates of TO. - In order to treat TO , it may temporarily be

convenient to introduce the eigenvalues Eok to I—Io , the eigenfunctions
q)s , and the associated projection operators O?{ = ]cp?( > <cp§ ]
Assuming that the set of eigenfunctions }cp}(: > is complete, one has

the following resolution of the identity :
oQ
1= 0, (7%)
=0

The summation sign implies that ane should sum over the discrete
eigenvalues and integrate over the continuous part of the spectrum.

Analogous to (58) , one obtains for the reduced resolvent

0

P i O
T = — = e (79)
0 E-R, 5:.3 E-E,; ’

where we have omitted the term associated with o o because of the




operator P . In the following, we will assume that P, is associated

with the ground state of H, and that the variable & is subject to the

condition :

£ < E, (50)

This implies that all the denominators in (79) are negative and that T

is hence a negative definite gperator :

T < 0 (81)

0
. . 3 . (s - o 0 2. QO 2.
Arranging the eigenvaluesin order , E o S E1 < B, = E 3 = )
one has
l l
: > 7 > T = L (82)
E‘ "E/ 2 - (‘.;/ Y

Hence one obtains the estimate :

~-T = i O, i @; l

£ _ - °\
- ° = T U @
=
T s T 5
E &

7/

A still better bound is rendered by keeping p terms in the sum (79)

intact and estimating the remainder :

’“‘Mo - i....% '

e EE b Ele
=3 o . .
é 7 ©4R4 + L S @ ° .
= ;E;- £ Ef’“ ~-& e En
0 ° i o .-
-’;:- ’1 kl = ——— e ( — " ) $ :‘ — r‘?
o=y ZeY_go " v - z-P — e ) ia(
r-h fﬂrﬂ A <=1

The quantity -To(p) for p=0,1,2,... gives hence © convenient uppe s

bound for the operator *To ;  we note that this approeach is ciasely




analogous to the "method of truncation'" of H | introduccd by Bazley

14)

T if an exact evaluation for some reason turns out to be difficult.
o

and Fox. The formula (84) may be used to obtain a lower bound for

Some Inequalities for Operators. - Let us start by considering two self-

adjoint operators A and B which satisfy the inequality

A > B (85)

)

according to the definition in (20), so that <gp|A]lp> > <¢|B|B>
Replacing ¢ by Q¢ , where Q 1is an arbitrary linear operator, one

obtains Jg@ ]QfAQ]cp>>'<cp]Q*B§2]cp> , i.e.

otag > oftpo (86)

which is a very useful theorem.

Previously we have considercd the identity (73), and we will
now study the two identities for { A - 13).1 which are valid for the left-

inverse and right-inverse, respectively :

(A-BY'= £+ i’ (a-rY" (57)
(R-2Y' = 1"+ (-B) B A (53)

I

|

They are easily proven by multiplying thc two relations by (A - B) to
the right and left, respectively. Substituting the second identity into
the right-hand member of the first, one <btains the " symmetric"

identity :

(R-B )~4 = H_‘*‘ H'1B (- H—1B (H~E§1,BF\1) (89)

which will be used to derive upper and lower bounds for operators.

Let us start by considering two operaters A and B which are

positive definite and satisfy the inequality

H' > B > O (()Q)




It follows that the operators A”1 and B"1 exists, are positive, and

satisfy the inequality

-1

A< »

(91)

A simple proof is based on the symmetric identity (89) which gives

B'= [A-(-B)] = -
= e (-B) K+ B (A-R) B (A-R)R

. -1 .. ..
Since (A - B) and B are positive definite, the two last terms are

positive definite, which proves that B_1 > A—1

Upper and Lower Bounds to the Reaction Operator. - According to

(70), the two quantities £ and 61 , which bracket a true eigen-

value E, are connected by the relation
—_ 93
61 B+ &Pyl (93)

It is easy to give upper and lower bounds for the last term in the case
when the reaction operator t is positive definite. As before, we will

assume that & < ElO , i.e. that the condition (80) is fulfilled, which

implies that T is negative definite. According to (77), one has the

relation

- -1
A =V — To ) (94)

which means that t-l (and hence t) will be positive definite, if and

only if

-1
V > T (95)

0

In the following , we will maiuly consider the case of a posi-

tive definite perturbation V , and the inequality (95) is then always
fulfilled. From (94) follows that eyt T > v >0, and

application of (91) gives then immediately




0 <4<V (96)

The perturbation V is hence an upper bound for the reaction operator

t

Next we will tIry to improve the lower bound for t . Putting

1
-5 . . . 12
a=t° ¢, and b=t 2o , into Schwarz inequality [valub>r]® <
-y ¥ T
“~

< alar \b]b > , one obtains 1 = ]n_q)o]cpo)] = ] q)O]t_cho}‘I <

<(P0] tIrp o:) N, )It- . ]rp O}“ , and {urther

C

CRUATRY 2 <o AT e

for any positive definite operator t . Substituting the expression

(94) for ¢! and observing that T o = 0 , one gets the lower bound:
| -1
<°Pol" lcpo> = <CP0IV lcPo> . (97)

This means that the quantity Eo + ‘.ch]V-IIrp 0> -1 is a lower bound
to the true ground state energy. The formula is useful if V_1 is a
simple operator as, for instance, in the He-atom and the Hz-moleculc
with V = ez/r”_ . This lower bound was first derived by Bazleyl‘})

using the method of intermediate Hamiltonians.

Still better lower bounds for t may be derived by using the
idea of the "inner projection” as developed in connection with formulas
(32), (33), and (34). Introducing a lincar manifold £ = (fl,fz, f3, .o .fn)
with the metric matrix A = f". f , one can define the inner projection

/ . .
t’ of t with respect to this subspace by the formula :

47— 4h g Ayt AR (98)

This operator is positive definite and satisfies the inequality t7< t,

s0 it provides actually a lower bound for t . Making the substitutions

.4’ylj o *yfj = A (99)

}




one obtains the alternative forms

4/ = 4 %A‘%Tﬁ , A = @NA‘]& , (100)
Vo= h A—U&\f , A = /?\er&-1/€1 (101)

The form (100) will be called the Aronszajn projection13) » and we
will call the space ¢ = (gl,gz, .. .gn) an Aronszajn space, whereas
the form (101) will be called a Bazley projection and the associated

space h = (hl’ hy... hn) a Bazeley space.

Because of the simplicity of relation (94) , it seems as if the

Bazley projection would be of particular importance in evaluating

lower bounds. ‘ One has
|l D,y 2 LA ]9, > =
ERSALE- R UE AP ALY VRINEY

(102)

)

-1 . . th .
where A 1 is the inverse of the n order matrix

A = AR Y -
= MWIVI=T, hy

The entire problem is thus here reduced to the evaluation of the

finite set (V~ !

(103)

- T, Jh for an arbitrary choice of the set b . This
problem may be handled in several different ways, and a few hints

for the practical treatment will be indicated below.

Evaluation of Lower Bounds. - If the exact treatment of the operator

To turns out to be practically difficult, it may be feasible to use the

relation (84), which together with (94) leads to the inequality

0< 4 < V—‘____ rT;(T)} | (107)



where —To(p) is an upper bound to —TO , which may be evaluated
if one knows the eigenfunctions cpﬂo for a =1,2,...p and the

eigenvalues an for a =1,2,...p,p+1:

7 10 ><ep | P
_ = °< P >LP
To(@ 317\ FOE +£rﬂ£{ Z\« <~\}105)

Using (86) and (91) , one obtains finally
0< A=Ky h e (VT e\h 000

and
/

Ao R AR TS AT o

which gives a convenient lower bound for the operator t”. All these
expressions may further be transformed to alternative forms by

suitable linear transformations of the sct h = (hl’h&’ . .hn ) .

Substitution b= Vi . The introduction of the transformation h = Vi

into (101) and (107) leads to the relations :

47— \/@A"‘Hv; A = L’*(V-VT{,V)L; (10¢)

SN \V—V")’;(@V\w‘%*\/’. (o7

The elements of the matrix .

(AWV-VTPVIe) = V(e +

(110)

RL ;P"i ><:C(> 4> i V) f? A2 3118
4=t T “fﬂ

are of the same type as those occuring in perturbation theory and are
comparatively easily evaluated . 1If the operator HO has a completely

discrete spectrum, one can improve the accuracy of (110) to any degree



desired, but if part of the spectrum has continuous character, the
treatment of the associated integrals requires a great deal of care

- and may cause additional difficulties.

Substitution h = {a - Hou- There exists a transformation

h =(a - Ho)j , where a is an arbitrary constant, by means of which
it is possible to partly eliminate the effect of the denominator in the
reduced resolvent T0 = P/(E - Ho ). Substitution of this transfor-

mation into (101) gives the alternative form

’&/: (Qﬁg%o);tlii’* (Q~$}{’,o) (111)

)

A = GHa-2) V(e 3) - a-2) T (e 2) 13> 11z

one has (a-H) T, = (a-&) T, + (0+P)(e-R)T, -
= (a-&)T + 0(6-E)T,+ P= (a-&)T,+ P,

and further
(- %,)T, (a-¥) = (a,—&)”To + P (20 ~&‘gf(ol)13=)
= (m—@)LTO + (\za~£*5€o\) -~ (la’é*Eo)Q

}

which leads to the formula :
A = G2V (-3, - e GITs
=y 1= AT + (R0E-E) (19,049 g0

There is still a term containing T, but it may be estimated by using
(105) and diminished by using a value of the constant a close to the
upper bound & ; one may actually put a = & . These examples may
be enough to illustrate how one can derive alternative forms for the
operator t’. We note that it is necessary that the sets £, g, h, 1,
and ) belong to the proper domains of the operators involved, but
that they otherwise may be chosen arbitrarily. The lower bounds are
going to vary with the choice of the subspace, but as a rule it is not

worthwhile to try to optimize the choice - instead it is usually more

practical to extend the subspace by increasing its order.



6. UPPER AND LOWER BOUNDS FOR EIGENVALUES IN
THE BRILLOUIN-TYPE PERTURBATION THEORY.

For the sake of simplicity, we will in this section limit
ourselves to consider only positive definite perturbations V > 0,
but many of the arguments may be extended to a more general case.
We will further assume that the parameter & fulfills the condition
E < EO1 » sothat -T >0 according to (81) ; the reaction operator

t is then also positive definite and fulfills the inequality
0< 4 <V (115)

The Brillouin-type perturbation series is based on relation (76) :

o

i

Vo+ \/"T’oﬂ = V+ >3'TOV=
— ‘\[+"\7TO\/' + V'To)g 'TOV‘

(116)

Iteration leads to the formula

an-1
_ e o ™M
4=V ATV . Ty ATV,
=0

which is a geometrical series with a remainder term. For n= w,

one obtains the infinite series

= &
4= TV = (118)
= V+VT,V+ VTVT, V-

We note that the terms of odd order have a factor V in the middle
and that, according to (86), they are positive definite, whereas the
terms of even order have a T‘o in the middle and are negative definite.
For V>0, the B rillouiu—typéexpzmsion is hence an alternating

series.

In order to investigate the convergence of {118), it is conve-

nient to use the more symmetric form




A= VS (T R
k=0

) ~ (119)

-

I 1
having the self-adjoint "quotient" V? TOVZ , which is negative

definite. The series is convergent, if and only if
%, A
-1< Vv TOV <+1, (120)

where the right-hand part is automatically fulfilled. For V>0,
this gives the condition -T < v and, according to (94) ,
-1 . T < 2vl, e,

t =V
4>V, (121)

This resull implies e.g. that the operator series (118) may be convergent
only if the energy shift is larger than %(@o]V]cpo> . The convergence

criterion will be further studied in Appendix C.

Substituting the infinite power series expansions in TOV into
.qs.(70), one obtains the fundamental formulas in the Brillouin-type

perturbation theory :
Bp = U+ TV TV Ve g L
631 = JE:O + P, \V+ VT,V VT, VT, Vs -1

Introducing the notations

P = (T V)R, | ey = <21V IRy 029

one has consequently

.5 - :
§5, 2 )64%; 81 E°+o§ ) (124)

le=

L=

provided that the two series are convergent. The functions Xy X4

Xp» X3« .. are interrelated by the recursion formula Xpsq = Tonk.

According to (72), one has P(¢ - Ho) T =P, which leads to the




. _ - v
relation P(E Ho)xk+1 P\xk or

L(C/_.%BJ/%WH = b\]/%k, . 81&“ on _ (125)

This implies that, starting from Xg =@, Onemay successively
derive the functions Xyt Xpr Xgo oo by solving inhomogeneous
equations of the type (125). The quantities introduced in this way

may now be used in estimating lower bounds to the energy.

Let us return to the exact relation (117), which is valid regard-
less of whether the infinite expansion is convergent or not. From

(115) and (86) follows that
mM
0 < (YTY" 4 (TV) <« (VT,)'V (T,v) (120

which leads to the inequality

i - am :
VE (T <A < v (mns |0
<0 . dev 0 )

which shows that lower and upper bounds for the reaction operator

t are provided by the partial sums of the Brillouin expansion (118)

to even and odd orders in V , respectively. This theorem is, of
course, true only for V > 0, whereas, for a negative definite pertur-
bation V < 0, all terms in (118) would be negative definite, and the

partial sums would form a monotonously decreasing set of operators.

1f &£ is chosen as an upper bound to the energy E , the
quantity (‘_':1 = Eo + '\'q>olt]fpo> is going to be a lower bound to the
same energy and, using (124) and (127), one obtains

am )
E >R + 5 & (128)
z
The partial sums of even orders form hence a set of lower bounds to

&1 and hence also to the energy E .

A still better lower bound for the remainder in (117) may be

obtained by using the relation t< t, where t”is the inner projection of




t defined by the equations (98) ~ (101). One obtains

-1

i, m o m an le
VI (TV) + (V) A (T V) <4<V o () 629
=0 le=0 '

For the evaluation of the term containing t”, one may use anyone

of the methods developed in the previous section. The result implies
that it is possible to obtain a lower bound for t to any accuracy
desired. Formula (129) is based on a combination of the perturbation
results expressed in (127) with Aronszajn's idea t3) of obtaining a

lower bound by means of an "inner projection"

It is possible to get an estimate of the remainder by using
only such quantities which normally enters into Brillouin's perturba-
tion theory. Using formula (108) and making the special choice

1= = (Xo’xl’XZ"'X , we obtain

m—l)

QT ATV e,y =
= (D, (VT > AKXV 9,5 = (130
= T A“ﬂu

n

where oﬁrz <p ]VT v]x

> ) is a row
vector of order m , and A =<
L

(én-!-l £ nt2’ " €ntm
V-vT V]x > is a matrix of order
0,1

-1 )

.

o

m x m with the elements (A 2,

Am = amw — & (131)

KL+
so that ’
&€y, & & y o £m"€m\+a
€,-Ea, &3"5‘,) v Eamem Comey

A = (132)

éms"émwl) ém*';-&"'\*z) age&.\“ € ame




According to (129), this gives the estimate

A0 _1' __.1
éz g, + O A & (133)
=}

E, > E, -

For n=m = 1, one has, for instance,

81 > E° + &+ &, + ‘512/(&”52,) ' (134)

It is easily shown that, for a given m , the formulas (133) for
n=0,1,2,...,m are all identical. This depends on a simple identity

valid for n < m :

[
(Emtr, Emesyore Emim) A i =
Emsm
(135)
am -1 ém\ﬂ
= Z 8@ + (émn,emu.,--~ &;zm> A &";""‘ )

le= xn+l .

& im

which is proven in Appendix D . For a given n, on the other hand,
one obtains an increasing series of lower bounds by successively

choosing m = 1,2,3,4,..., respectively. We note that, in formula

(133) for m = n, only the quantities E‘k up through k = 2n+ 1 are

involved.

In conclusion, we note that we are here dealing with a Brillouin-
type perturbation theory which contains a variable parameter 8 and
a function 61 =E_+ <(poltlcpo> defined by (70) such that the pair
& ’ 61 bracket a true eigenvalue E . The quantity 6,1 will hence
provide a lower bound to E , if (S/ is chosen as an upper bound to E ,
for instance, by means of the variation principle. By using convenient
lower bounds to the operator t, one can then obtain lower estimates

of the number <gp O']t]q)o> leading to such practically useful lower

bounds to E as are given by (128) and (133). We note that the




1
(¥ 9]
[

conventional Brillouin perturbation theory is limited to the point

61 = 6 = E, and that our results may be applied to the partial
sums also in this case.

7. UPPER AND LOWER BOUNDS FOR EIGENVALUES
IN THE SCHRODINGER -TYPE PERTURBATION THEORY.

The Schrédinger -type perturbation theory is based on the use

of a reduced resolvent of the form

‘P
Ro = E W, | (136)

Instead of expanding T in powers of V , it is now convenient to

expand T in powers of the quantity
/
V= V- (E-E,) (137)

By means of {(40) and the use of the identity (87), one obtains.

T_._ P _ _ " _

E-%  (BR)-V (138)
s 1
- R0+R0V/T = Ry (V/Ro> )
=0

For the reaction operator {69), one is hence led to the expansion

A = Ve VR, 2D (”\r’RO){"’V (239)

Of particular interest is the value of the variable & for which

f’l =& =E= E_+ < chIt]q70> . This special valt e may be found
from (139) by iteration. Arranging the terms after powers of V ,
one obtains

9&':‘33"*’)#2)'{-**3-*-;}‘1_‘.”' ) {140}
4QP0\S¥}CP0>= 6I+EQ_+ €3+ 6;' .- (141)




with the notation ¢, = < q)O]tkItpO> . A study of the right-hand

member of (139) gives immediately the result

!

4=V € = <P VI
4, = VRV, Cu7 HIVRTIY,
|+ = VR, (V-€)R )V,

(142)

i

The corresponding formula for the wave operator W = 1 + W1 +
+ W2 + W3 + ... is directly obtained from the relation t = VW, which
gives

Wy = RV
W WL - Ro (V__QJQOV) , (143)
W, = R, (V-€)R, (V-6 )R V- £,VR, v,

i

\
"Analogous to (79) , one has the following spectral resolution of the
reduced resolvent :

> PECH
R = | e > <D |

- , (144)
v e B, B

and substituting this expression into (142) and (143), one obtains the
conventional formulas for the energy E = E t e te,te gt ...

and the eigenfunction ¥ = Wy o in Schrédinger 's perturbation theory.

In order to derive lower bounds for the energy in terms of the
quantities occuring in Schrddinger 's perturbation theory, we will
keep E/ as a variable parameter and study the function E/ {
Utilizing the " symmetric" identity (89) for the expansion of T,

we get

T - R+ RVR + RV TVR, (145)




This relation indicates that it is impor.cant to oblain rough upper and
lower bounds for T , since they may then be used to derive improved

bounds, etc.

As before, we will consider the case of a positive defliniie
perturbation V > 0 which is such that one can determire an upper
bound & to the ground state which satisfics the inequality & < EO,i .
This is, for instance, the case if EZ + \cpoIV]cpo;*’<E(1) . Using .
(69) and the fact that v exists, one obtains

T=vv'-v"' (126)

According to (96) , one has the inequality 0 <t< V and, cinsequently,
one obtains the rough bounds

v e T <0 (147)

showing that T 1is a negative definite operator. [ more detailed
properties of the fundamental operator T are needed, it is usually
more convenient to study T dirzcily withcut reference to the reaction
operator t , and such an investigation will be carried out in a feorih-
coming paper. However, the considerations given are suflicient for ou.

purpose here.

Substitution of the lower bound -V for the cperator T in

(147) into the expression for the reaction operator © basea on (145):

I / .
_ Iy - . —) Y -T“) ~\ ) T Y e e v"‘,_\v )Y
9(' = V + -\l’ R \f + F\ _ ‘] X v -4 o Y b V (148)
G G 1 4 }
leads to formulas {or lower Sounds o pooendd e oney gy 1, wldeh

- . ) - .
are practically useful iif V 5 oa sunple operator. Jlowever, since

they contain terms which acuclly do not appeas in Scavddinges " s ner-

. . - o - oy e, T 1-‘ . .
turbation theory c¢.g. of the form { & - I«,()) VI VR )"\;, we wili fry
- B X \

also a different approach.

~ Ao g

. . X 5. , c
Let us instead start fro o fcrmnoaa {7F) ohaeh ooctnos withh | e
Ve

relation VT = tTO gives

\
!
,
-
-
s
A




The previous inequality for t lcads immediately to the relation
T <T<T_+T VT, and combination with the upper boundfrom (147)
leads to the simple estimate

T<T<O (150)

0

owcevers since Schrodinger's perturbati theor / 5 in te: 5 of
H s Schrodinger's perturbation theory works in terms of
R and not T) , it 1s nccessary to modify even this lower bound.

0 (
For this purpose, it is convenient to compare the spectral resolutions

of TO and R) termn for term .
<

Comparison between the Operators TO and RO. - If the unperturbed

. ‘ . 0 . . 0.
Hamiltonian Ho has the eigenvalues E.° and the ecigenfunctions P with the

k ,
associded progedion operators O]O = ]q);) ' ,cp;:I which form a
< <
resolution of the identity, one has according to (79) and (144) the

following spectral resolutions

T . P .0

12 (151)

R I = i h@‘&

0 ¥, k=1 E - I

As belore, we will assume that the upper bound £ is situated in -
. o o . . . C e
the intcerval Eo < (S < E i which implies that all the terms in 10

and R.o are negative definite. Lect us now introduce a set of

7 v ° BO E" pusitive numbers n definced
4 — 2 3
»4.__1___?,_,., f o bk R q by the relation
&
- ¢
I’*mw Ro (c - Eﬂo 52)
Ko el Ty ST (152)
A Q. °
X, & E, -£

Since the eigenvalues to Ho are arrvanged in increasing order, one

has immediately the inequality

-

X2 X, 2 X, > > (153)




This gives the transformation

0 0
0 e © EO*E; 1 Z; ¢ E-E, -

%
=
™18
S
X
I
=
x)

T > R | (154)

According to (150), we have thus the inequality
< ! (155
\'(1 —R ¢ T < 0 ) )

which gives a rough but still convenient lower bound to T . The

coefficient £y defined by (152) or the alternative expression

E-E, T
o= (! ”‘gt*gi*) (156)

contains only quantities which anyway occurs in the Schrédinger

perturbation theory, and one obtains the estimate

(1-Z2) e e (=S o
E-E, ‘ I -E,

The quantity Ky will hence be close to ! , only if the energy shift

is small in comparison to the difference (Eo1 - Eoo ) -

Lower Bounds to the Energy. By means of the lower bound for T

in (155) , one may now derive a series of lower bounds of increasing
accuracy for the reaction operator t . Starting from the definition

(69), one obtains directly

4 =VaVTV > V+ % VRV = (59




For the quantity f,l = EO + 0 O]t.]onf:' s this gives the lower bound

E, > B+ € X €y (159)

)
where the variable & in Ky has to be an upper bound e.g. 6 = E)+€ =
L
One can now refine this result by proceeding with the power series

expansion in V’. Substituting (155) into (148), one gets
S - 77 :
4 5 V+ VRV + VRVRV + %, VRVR V'R,V (160)

In order to insert a proper upper bound, we calculate the expectation
value of H for the first order wave function (! + ROV) P, which

gives the result

€,+ €,
8 = F. + €+ (161)
0 1 + 8_2) !
where 6, = ¢ ]VRZVIm . Using this value for & and (160)
' 2 Po o ‘ol T & ’

one obtains a lower bound to 61 and to the energy correct to the

fourth order.

Repeated use of (145) and the definition (69) leads finally to the
general formulas

am-1
Ve

T =R, 1 (VR RV T(VRY e

/
am-1 / le, 7 o
A >V VR STVRYV 4 (VR (VR) Y (0
=0

U sing the value of the upper bound £ corresponding tv the expectation
value of H with respect to the nth order wave function

(t + Wit Wyt Wn)(pO according to (143), one obtains a lower
bound to 5,1 and the ground state cnergy which is correct to the

order (2n+ 2).

In contrast to the Brillouin theory, the even-order approximations

to the energy in the Schrodinger theory do not usually form true lower




bounds but there are always remainders of higher order which cannot
be neglected. However, it should be observed that the discussion of
the lower bound of T given here is only meant to be a {irst sketch,
and that the results certainly can be highly improved. This question

will be further discussed in a forthcoming paper.

8. LOWER BOUNDS TO THE GROUND-STATE ENERGIES
OF THE He-LIKE IONS.

As an illustrative example of the methods described here,
we will now derive lower bounds for the ground-state energies of the
He-like 1ons : He, Li+, Be2'+, etc. This problem has previously
been treated by several authors, 10) by means of formulas of the
type (6) and (7) given by Temple and D.H. Weinstein . Using the
method of intermediate Hamiltonians developed by A. Weinstein 1,2)’
the problem has further been studied by Bazley and Fox14) and

)

recently by Gay !

The He-like ions have a non-relativistic Hamiltonian

. ) . .. 20
which in atomic units ) takes the form

3 gt g A _Z | (164)

= — — - T

W —
T 2 2 2 n, 7y )("l.

where Z =1,2,3,4,... is the atomic number. It is convenient to

make the following separation:

o= (- 2 - < i) /.

2 n, / LY M,

|
V - )Ln.

(165)

)

and we note that the perturbation V is positive definite. The
unperturbed Hamiltonian H_ is separable, and the eigenfunctions are
products of hydrogen-like wave functions associated with the

eigenvalues :
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Z s | >
— ——— _—
2, L m> rm? ) (166)
forn,m=1,2,3,..., i.e. with the spectrum

L
- Zi‘) ~0eas " —Qsss. 2Y -0saes X (167)

The unperturbed function ¢ o is given by the expression

—Z.A ~Z("|*nz)

P = - & ) (168)

and one obtains particularly the integral <ch]V]cp()>’ = 52/8. The
expectation value of H with respect to P, gives hence the upper

bound for the ground state energy

oyt s (169)

showing that the ground state energy will certainly lie below the
energy of the first excited unperturbed state -0.625 Z2 if 72> 5/3.
One can hence apply the theory developed in this paper to the case of
Z =2,3,4,5,..., whereas the case Z = | has to be treated separately

and will be studied in a forthcoming paper.

Lower bounds to the ground-state energy are here given by

the formula (70) which will be used in the form
E, = B, = L ldley > B+ 9> o)

where t” is an "inner projection" of t according to (98). Because
of the particularly simple form of the operator V 1 Tip 2 We

will here apply formulas (111)-(114) for a = & and an arbitrary
space J§ = (j . jz, .o .jn), which gives

(9,14719, = (e-E V<14 A <flo,y 07V
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where A is the inverse of the n(h order matrix :
A = e Ve )y —glegly
w (E-E NI 0<Rl§

In the evaluation of (171) we will usce the same type of functions

(172)

j]_ as has previously been introduced by Hylleraas 21) in  studying
the upper bounds
—MN4S
s 2y 3
where s = rl 4 ts t = ryo- T, u= ryp and n is scale para-

meter. We will here report the resualts of some calculations based
on a J-space of order n = 10 spanned by the following basic

clements

f\z éY[A ) f%: '{LG:Y}\A>
1{03 = 42 C:Y\A 460H=A€:Y[A )

) _ (174)
‘(;5:-/&2' C:q.A ’ aoLZXLQ'@/A,
P - Ay &1 o i el ,
g)q - /([3 @_QA ‘ dom = )‘?"”/(L)“C’:YIA

The functions selected are those previously found most effective in a
. . 22 .
tenth order upper bound calculation on helium. ) The integrals

have been evaluated by methods similar to those used by Wilets and
2
Cherry 3).

The lower bound in (170) for 7 = 2 is shown as a function of
the scale parameter n for n= 1,2,3,... 10, in Fig. 1, and we note
the nice optimum properties. The best results for n = 10 arc collected
in Table I and render good lower bounds obtained with a comparatively
small amount of effort. The numerical calculations were performed
by Dre J.G.Gay on the IBM 709-computer at the University of Florida,

and his skillul assistance is gratefully acknowledged.




Further lower-bound applications concluded at the University
of Florida include a study of the symmetric and asymmetric anharmonic
oscillators by Professor Charles Reid and an investigation of the
double ~minimum potential problem by Carlos and Annik Bunge. The
results obtained so far have been greatly encouraging, and further

work is in progress.
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TABLE I. GROUND STATES OF HELIUM AND HELIUM-LIKE
POSITIVE IONS ; ATOMIC UNITS.

System Lower Bound® Upper Bound b
He - 2.90592 - 2.903721
Lit - 7.28444 - 7.279910

2+ . A
Be - 13.66269 - 13.655563
B‘%L - 22.04074 - 22.030968
ct - 32.41864 . 32.406243

Results of this paper. Calculations were of

tenth order optimizd with respect to 1.

b Quoted from E.A. Hylleraas and J. Midtdal, 2)
Phys.Rev. 109, 1013 (1958).




9. DISCUSSION

The bracketing theorem in the partitioning technique for
treating eigenvalue problems is here used to construct lower bounds
for the energy eigenvalues. Our study is partly inspired by the
excellent work by Professor Alexander Weinsteinlz) and his school,

14)

if we have here tried to avoid the use of the "intermediate Hamilton-

and particularly by the recent papers by Bazley and Fox. Even
ians" in order to escape the explicit ordering of the eigenvalues, we
have utilized Aronsuvajn's ideaij) for constructing lower bounds to a
positive definite operator by means of an "inner projection”. In

the Brillouin-type perturbation theory for V > 0, the even-order
approximations turn out to give lower bounds, but the inner-projection

technique renders still a powerful tool for estimating the remainders.

The results indicate that, if one only has a truncated basic
set in Hilbert space at disposal for solving a specific cigenvalue
problem, one can determine upper bounds by means of the variation
principle and lower bounds by using the method described. Part of
the disadvantages connected with the fact that every basis has to be

truncated in the numerical applications have hence been removed.

Our study is only meant as a first sketch which leaves room
for many improvements. In the treatment of the perturbed Hamilton-
ian H = Ho + V, we have e¢.g. chosen the unperturbed cigenfunction
¢, asour reference function ¢ without questioning whether such a
choice is feasible. The general considerations in connection with
relation (51) indicate that one will get improved upper and lower bounds
in the series & ’ 8/1 ; éZ’ 5/3 yoo-s only if Sofd < 1, i.e.
if the reference function @ cont‘ributes more than 50 percent to the
eigenfunction desired. It seems hence worthwhile to try to modify
the perturbation treatment, so that one can choose a reference function
¢ which is a good approximation to the true eigenfunction as a start-
ing point for evaluating lower bounds. This problem will be treated

in a forthcoming paper.




We have here concentrated our interest to a study of lower
bounds for ground state energies in the case of positive definite
perturbations V , which satisfy the relation Eo + f;nOIVIq)O,.- <E 10
The method breaks down and has to be modified, if there are several
unperturbed energies of the same symmetry type situated below the
ground state energy of the perturbed system. Another important
problem is associated with the evaluation of lower bounds also for
the excited states of the perturbed system. In both cases, one may
proceed either by making a more careful choice of the reference
function ¢ or by increasing the order of the associated linear mani-
fold described by the projection operator O . These problems will

be further discussed elsewhere.




APPENDIX A

PROJECTION OPERATORS ON A LINEAR MANIFOLD.

Let us consider a linear manifold Mn of order n which
is spanned by a set of n linearly independent vectors £= (fl, fZ,
f3, . .fn )} having the metric matrix A = £ ¥ f with the elements
/_\kf E fklf£> and the properties A*: A and A >0 . Let fur-
ther F be an element which does not necessarily belong to the

subspace Mn , and let us try to express F in the form

éj%al@ + % , (A1)

where we will determine the coefficients ak , which are convenient-
ly arranged in a column vector a , so that the length of the

"remainder" g becomes a minimum.

<3‘%> = minimum ' (A2)
In this connection it is feasible to introduce a column ¢« defined by

the relation

— -LT“"’
c = AMfIF ) (A3)

or ¢, = I, (A _1) e <fy ] F> . This implies also the relations

fTF =Ac and F' f=¢e 'A. From (A1) -(A3), one obtains

directly

<3\%> = (F-Ja) (V- fo)

Fir - ¥ifa —@*j‘”?”rdﬂﬁ (A4)
- Tl —¢lAaa - afac +afAa -
= FIF — cfAcC + (e-a)fA (6-a) |

The last term in (A4) is positive definite, and one has hence the

inequality



(g19) > <FIFD-clac 20 gy

The minimum 1is adieved for the special choice a=e€ = A -1 fF ,

and we note the relation

\ "—\7 *
FIF> = 5 Gh,e, o

which is a generaliz ation of Bessel's inequality to a non-orthogonal

basis. Substituting a= € in (Al), we obtain the expansion

[ J&if*—‘? + %w}v\. =
= OF + 9.,
where we have introduced the operator
O - fA ¢! e

It satisfies the fundamental relations

(A7)

2

©*- 0, 0o'-0 TO)-1, ©

and it will be characterized as the projection operator on the linear
manifold M = spanned by the set f = (fl, fos-- .fn). According to
(A7), one has further €hin = (I - OF and

rn [ OF > = 0, (10

showing that € min is arthogonal to the projection OF .
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Formula (A7) gives hence the reso-
lution of an arbitrary element

F into its projection on a given
linear manifold M and a remainder

which is orthogonal to this manifold.

By means of (A3) and (A8), one finds that ¢ TAc =
-rieatanls te o F'f OF. According to (A5) , one may hence
write the generalization of Bessel's inequality in the form F *F >

F*OF, or

(F |7y 2 (FIOIF> (A11)

An infinite set £ = (fl’fz’f3’ ...) is finally said to be complete if,
for all elements F having a norm, one has

Mm,  KF{1-0,1F> =0 a12)

M —» 0o

where On is the projection operator for the finite set (fl, £y, f3, . .£n).
This is a direct generalization of Parseval's relation, and it may also

be written in the form

Linn, llV—"©MFVH=O, (A13)

M~ o

defining the ooncept of "convergence in mean”". Of a different character

is the "resolution of identity" |

i
1 = Ou (A14)

M- oo )
since it corresponds to the actual expansion theorem

It should be observed that the physical

interpretations of quantum theory are as a rule based on Parseval's




relation and the concept of the convergence in mean. For the sake
of simplicity, one is still often using the expansion theorem, the
resolution of the identity or the spectral resolution of an operator,
but a closer investigation often reveals that one is using tools which
are unnecessarily strong for physical results to be obtained. In our

study, however, we will follow the conventional pattern.

APPENDIX B
VARIATIONS SUBJECT TO A CONSTRAINT

Let A be a self-adjoint operator bounded from below, and

let us consider the extreme values of the integral
I _ (KR >
AL

when u 1is subject to the constraint that it should belong to the

) (B1)

subspace of O, i.e. Ou =u , where O is the projection operator
for a given linear manifold. Introducing an arbitrary function u,

one can put u = Ou , which gives

(] ORO |y ) CRERED:

= = (B2)

(] Ota Al Ol >

The variation principle &I = 0 leads immediately to the relation
(A -I0)u =0 or

R a-1xm (B3)

)

i.e. an cigenvalue problem of the type (13). The extreme values of

1 are hence given by the eigenvalues 2-11,5 of the operator A

2, (';13 [
and, according to (14), they fulfill the inequality ";k Kk

means that the constraint raises the eigenvalues and hence also the

> a, , which

extreme values of the integral I .




12)

putting (1 - O)u = 0, i.e. by requesting that the functions u are

Following Weinstein /, one can reformulate the problem by
orthgonal to the manifold described by the projection operator

P =1 -0. This is particularly convenient if the manifold associa-
ted with O is of infinite order, whereas the manifold associated
with P 1is of finite order, say n . If the latter is spanned by a
linearly independent set of elements p = (pl, Py Py - .pn) with the

metric matrix A = p ¥ p , the projection operator P has the form
P -paAp (®4)

The constraint Pu = 0 implies that 4 should be orthogonal to the
given functions P(sPys P> i.e. a finite number of conditions.

Equation (B3) now takes the form (! - P)Au=1Iu, i.e.
(F\«—-I)X[=PHE=]°Q, (B5)

where a = A_ip ¥ Au is a column vector of order n  For all

values of 1 different from the eigenvalues of A , the operator (A - I)—1
exists , and one obtains u = (A - I)"1 P a. However, since the
orthogonality constraint may be given the form p ¥ u = 0, one gets

immediately
13+(H~151‘0a= 0, (B6)

which is a linear equation system in the unknown vector a of order n .

It has a non-trivial solution if and only if det {p T(A - I)_lp } =0, i.e.
dad { < P | (H*IWFQE =0, e

where k,¢ = 1,2,3,...n. This equation in the unknown quantity I
gives the eigenvalues to the operator A . The determinant in the
left-hand member is known as Weinstein's determinant, and the
associated function in the complex variable I has been studied in

great detail. 12)



APPENDIX C
CONVERGENCE OF THE BRILLOUIN EXPANSION

The Brillouin type perturbation theory is based on the infinite
expansion (119), which is convergent if and only if the criterion
(120) is fulfilled :

—1<ViTOV'3“<+1. (c1)

Since TO is negative definite, one has onlly to stuc?y the left-hand
part which may be written in the form V2 (- T,) V¢ < 1. For the
positive definite operator ’To , we have previously derived a
decreasing series of upper bounds -TO (p) for p=0,1,2,... which

are given by relation (84) :

o)
”‘T O\ = "'*'o D
L) - iy N
~ T (4 RSN P — (9 ><¢
, - S

2,

El-E -

where P =1 - Iq)o > <q)ol. If the inequality

~VET(PVE <! (©3)

would be fulfilled for any p , one could hence be sure that the
convergence criterion (1C1) \l,vould be satisfied. For p =0, the relation

(C3) takes the form VEZPV? <Ec1) -& , or
A L 6
V = V*OV® <« B, -& (C4)

where O = ](po> <o o] and & isan upper bound smaller than or

equal to E0+'<cpol'v']cpo>. Relaxing this condition one step more, one
can say that the convergence criterion (C1) is certainly satisfied, if

the positive perturbation V {fulfills the ineguality



AVARRS E:——&, (C5)

for any upper bound & . A more detailed study of the convergence

properties of the Brillouin series is desired.

APPENDIX D
AN ALGEBRAIC IDENTITY

According to the definitions in connection with relation (130),
g L . i
the quantity @ = ( £n+1, E 420 £n+m) is a row vector of
order m , for which we temporarily will use the more speciiic
symbol @ Jr(n, m) stating the two indices involved. The quantity of

interest is of the form

-1

-1
Z 6m+k+1 A Ae,L E’muﬂ (Dl)

L= 0

-4
uTA

l

Using (131), one obtains for n < m the identity

6m+.t,+\ = (ém-&tﬂ - &m+g+2,)+ (E"VH'!*L" é’ﬁ\+£+3) ¥ oo

ot (E ey  Ematnt )+ Emagay =

-

- -
n=0 AL;N‘*"’ * & maged :
which leads to the relations
""(Zl'" -1 M;"l"f m-q
A ey Emuass = 2. P
2"__"1 A’1 m-f-1 -l 1
= V7 <7
L £’M+k+l R £M+L+: - L éomwm vl £M+k+' AML ‘SM+L+1 -
K=o n= Mt=0 ’
™= om-y -1
- -1

. S
= 20 Camener * 2, Emimeart T L € e ter AW.L Emated

- A=0 =0

=

—



Hence, one has for n< m the algebraic identity

™
Q(*'(N\)‘m) A—1°< (o,m) = > & 0(1—(%,«“)/_\10( ('m,'vn)) (D4)

AR= 3+

which is the result desired
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