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MEAN AND  MEAN  SQUARE MEASUREMENTS 
O F  NONSTATIONARY  RANDOM PROCESSES 

1. INTRODUCTION 

A random  process {xi(t)] , i = 1 ,  2, 3, . . . , is  an  ensemble of functions 

of a single  variable t which can be characterized  through its statistical 

properties. A typical  random  process  is  pictured  in  Figure  1.  The  variable 

t is time  or  any  other  parameter of interest. 
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Figure 1. Random Process  

The set of amplitude  values  at  a  particular  time denoted by x ( t  ) , ' 1. i  1) 
can be combined  together  in  appropriate  ways  to  determine  their  mean  value, 

mean  square  value,  and  higher  moments,  and  thus  a  complete  probability 

distribution  at t where  the  probability  distribution  yields  the  probability 

that  the  amplitude  values  at t will  lie  in  any  specified  amplitude  range. 
1 '  
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For  example, the mean  value  at t is  defined by  the  ensemble  average, 

denoted by the  expected  value E[ 3, namely, 
1 

N 

A different  time t = t can  be  selected,  and  similar  statistical 
2 ~ 

calculations  may be carried out for  the  set of amplitude  values 

i = 1, 2, . . . In  general,  significantly  different  results would be  obtained 

for  the two sets {xi(tl)} and  {xi(t2)} . That is to  say,  the  statistical 

results would  not be  invariant  with  respect  to  translations  in  time.  Random 

processes of this  general  category  are known a s  nonstationary  random 

processes.   The  processes  are  said  to  be  stationary when  statistical  properties 

do not change  with  time. Much past  analytical  work  assumed a stationary 

hypothesis  because  it  simplified  the  further  derivations.  This  report is 

concerned  with  methods  for  analyzing  nonstationary  data. 

Nonstationary  data a r e  of common  occurrence  in  different  physical 

situations. Such  data a r e  obtained when an  environment  changes  suddenly, 

as  in  transient  operating  conditions,  or when properties of a system  are 

altered  to  such a degree  that  its  response  is  changed,  as  under  fatigue  effects 

or  through  adaptive  mechanisms. 

In  Section 2, techniques  for  estimating  nonstationary  mean  values  are 

presented  using  methods of ensemble  averaging  and  orthogonal  function 

approximations.  The  assumptions  are  made  that  the  time t in  each  record 

x.(t) is measured  from a well-defined  origin  and  that  the  set of records 
1 

{xi(t)} are  statist ically independent.  Expressions a r e  developed f o r  the 

expected  value of each  estimate  as  well  as  the  corresponding  mean  square 

estimation  error.   Further,   i t  is shown that  the  orthogonal  function 

2 



approximation  technique  will  produce  smaller  errors  than  ensemble  averaging 

if a bias  error  can  be  made small. 

Section 3 considers  the  corresponding  estimation  problem  for non- 

stationary  mean  square  values.  Three  techniques  are  analyzed:  ensemble 

averaging,  orthogonal  approximation,  and  short  time  averaging. Two 

examples  are given of the  application of the  orthogonal  approximation  tech- 

nique  to  the  estimation of nonstationary  mean  square  values;  and a comparison 

is made  between  these  results  and  ensemble  averaging.  For  short  time 

averaging  techniques,  a  special  type of nonstationary  random  process is 

considered  in  some  detail  consisting of a time  varying  amplification of a 

stationary  process.  Mathematical  formulas  are  obtained which  yield  the 

bias  error  and  an  upper bound on the  mean  square  measurement  error. 

Because of the  complexity of the  formulas,  numerical  results  are  difficult 

to  obtain  without  computers. 

In  Section 4, recommendations a r e  given  for  a  computer  based  simu- 

lation of the  various  estimation  procedures  for  typical  nonstationary  random 

processes of interest.  It  is  indicated  that  the  results of the  simulation 

program would lead  to  a  rational  basis  for  optimally  choosing  an  estimation 

procedure  in  many  applications. 

3 
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2. MEAN VALUE MEASUREMENTS 

2.1 ENSEMBLE AVERAGING 

For  nonstationary  data, a basic  statistical  problem is to  determine 

how the  average  (mean)  value  changes  with  time.  Mean  values  can  be  esti- 

mated by using  an  average  response  computer  that  performs  the  following 

operation  to  calculate a sample  mean  value  from a sample of size N, namely 

for N records  {xi(t) ; 0 I t I T ; i = 1,2 ,  .. . , N } from a nonstationary 

process x(t), compute 

The  quantity m(t)  will  differ  over  different  choices of the N samples  xi(t) . { I  
Consequently  one  must  investigate how closely  an  arbitrary  measurement,  

m(t),  approximates  the  true  mean  value  p(t)  which  is  given by the  expected 

Note that  m(t) is an  unbiased  estimate of the  true  mean  value  since 

P(t) = tLX(t). 

A measure of the  error  involved  in  estimating  p(t)  by  m(t)  is  the 

variance of m(t)  given by 

The  square  root of the  variance, u (t),  called  the ' I  standard  deviatiodl m 
provides  the  indicator  that  determines how closely a set of measurements 

of m(t)  clusters  about  its  mean  value  p(t). 
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In  most  practical  applications,  the N samples  used  to  compute m(t) 

are statistically  independent  and  this will be  assumed  here. Upon expanding 

Eq. (4), it Is seen  that 

N 

N 

2 
where cr (t)  is  the  variance  associated  with  the  nonstationary  process  x(t). 

It  should  be  noted  that  the  independent  sample  assumption  causes  all  the 

cross-product  terms (i # j )  in  the  double s u m  of Eq. (5) to  be  zero. 

X 

As was shown  in  Ref. [ 1 1  , a  knowledge of the  mean  value  and 

variance  for  the  random  variable  m(t)  at  any  time  t  enables one  to  answer 

questions  concerning  the  range of the  results  at  any  time  t  without knowing 

the  exact  probability  distribution  function  for  m(t).  From  the  Tchebycheff 

inequality,  which  applies  to  arbitrary  general  situations,  one  may  state 

with 89% confidence,  for  example,  that  an  observed  measurement  for  m(t) 

lies  inside  the  range [ p(t) - 3cr (t),  p(t) + 3um(t)] . In equation  form,  for 

any  constant  k,  the  Tchebycheff  inequality is 
m 
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Thus,  for k = 3 ,  this  probability is at most (1 : 9) ,  giving the  above 89% 

confidcncc  limits. See Figure 2. 

Figure 2. 89% Confidence  Limits  for  Arbitrary  Distribution 
based upon Tchcbycheff  Inequality 

A stronger  stntcmcnt  can be made if one  can  justify  an  assumption 

that m(t)  follows a normal  (Gaussian)  distribution  at  any  value of t .   For  

this spccial case,  a 9570 confidence  band is given by the  range 

[ p(t) - 20- ( t ) ,  p(t) t 2 r m (  t)  ] . Thus  an  observed  measurement  for m(t) 
m 

in the G;iussi;in casc yields a greater  confidence of being  close  to  the 

theorcticnl  mean  value  than  in  the  case  where  the  underlying  probability 

distri l~ution  is  unknown. 

Consitlcr Lhc range  for p(t) a s  given by Eq. (6) ,  namely 

whcrc k is n constant. 
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Solving for  p(t)  yields  the two extreme  range  values: 

Thus, one  would measure  m(t)  and  then  apply  the  above  formula  to  estimate 

p(t)  for  various  conditions.  Also,  note  from Eq. (5) that by increasing N, 

one may  guarantee  that  m(t)  will  fall  close  to  p(t)  regardless of the  magni- 

tude of cr (t) and  the  underlying  distribution.  This  effect is illustrated 

by the  curves shown in  Figure 3 which are  plots of the  ratio p(t)  / m( t) a s  a 

function of ( fi p(t)/u  ( t)  1. Two cases  are  considered.  Case 1 applied 

to  arbitrary  probability  distributions  and  sets k = 3, corresponding  to  an 

8970 confidence band a s  given by the Tchebycheff  inequality.  Case 2 applies 

to  a  Gaussian  probability  distribution  and  sets k = 2 ,  corresponding  to  a 

9570 confidence  band. The lower  and  upper  limits  used  for  Figure 3 a r e  

shown in Table 1. 
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Case 1 T 
Lower 
Limit 

. 
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0 .  50 

0.57 

0.63 

0.67 

0.73 

0.77 

0.80 

0.83 

0.86 

0.87 

0.89 

Upper 
Limit 

“ 

00 

4.00 

2 . 5 0  

2.00 

1.60 

1.43 

1.33 

1.25 

1.20 

1.18 

1.14 
” 

Case 2 I 
Lower 
Limit 

0 .  50 

0.60 

0.67 

0.71 

0.75 

0.80 

0.83 

0.86 

0.88 

0.90 

0.91 

0.93 
”- 

Upper 
Limit 

00 

3.00 
2 . 0 0  

1.67 

1.50 

1.33 

1.25 
t 

1.20 

1.15 

1.12 

1.11 

1.09 

Table 1. Data for  Figure 3 
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Figure 3 .  Confidence  Bands  for  p(t)/m(t) as function of fi p(t)/r (t) 
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2 . 2  ORTHOGONAL FUNCTION APPROXIMATION 

The  second  approach is based upon fitting  an :Kth order  orthogonal 

function  to  m(t)  and  using  the  resulting  expansion  to  estimate p(t). This 

method  has  the  advantage  that  a  double  smoothing  effect is achieved  since 

m(t) is an  average of the N measurements,  and  the  coefficients of the 

expansion a r e  obtained by a  time  average. 

Let [ Pk(t) , k = 0, 1, . . . 1 be  a  complete  set of orthonormal  func- 

tions  defined on the  interval (0, T).  Thus 

0 i f j  

1 J  1 , i = j  
P.(t) P.(t)  dt = 

Let  L (t) be a  linear  combination of the  first K members of P (t):  K k 

where  the  coefficients  a  are  to be determined  as  follows.  Consider the 

quantity 
k 

T 

A = 1 [m(t)  - LK(t)]' dt 
0 

which is a  measure of the  total  distance  between  m(t)  and  L  (t). The 

coefficients  a  are  to  be  chosen to minimize A.  Without  going into  the 

detailed  calculations, it may be  shown that  the  minimum  value of A occurs 

when 

K 

k 

- = 0 , k = O ,  ..., K aA 
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f rom which it follows  that 

T 

a = m(t) Pk(t) dt 
k O  

At this  point it is convenient  to  compute  the  first two moments of a 
k’ 

From Eq.  (13), 

T T 
m 

E [ ak]  = lo E [ m(t)] Pk(t) dt = p( t)  Pk(t)  dt = bk 
10 

where b is defined  to  be  the kth coefficient in the  orthogonal  expansion 

of p(t). The  second  moment of a  is  
k 

k 

Rx(u’ Pk(u)  Pk(v) du dv 

where R (u,  v) is the  covariance  function of the  nonstationary  random 

process  x(t). Using  Eq.  (14),  Eq. (15) may  be  expressed  as 
X 

E [ a k ]  2 = bk t t  
R (u,  v)  Pk(u)  Pk(v) du dv 
X 

The covariance  function R (u,  v) is defined by 
X 

10 



and  should  not  be  confused  with  the  correlation  function  which is  defined by 

E [x(u)  x(v)]  alone. When either of the  mean  values p (u)  or p (v) i s  

zero,  then the covariance  function R (u,  v) is identical  to  the  correlation 

function E [x(u)  x(v)] . 

X X 

X 

The  expected  value of L (t) may now be  found by application of K 
Eqs. (10) and (14). Thus, 

Equation (17) indicates  that,  unless  p(t)  can  be  represented  exactly by a 

Kth order  expansion of the P (t) ,  L (t) is a biased  estimate of p(t).  The 

effect of bias  will  be shown more  clearly  after  the  mean  square  error  has 

been  determined. 

k K 

Rather  than  use  the  error  criterion  at a particular  value of t discussed 

in  the  previous  section,  the  one  to  be  employed  here  will  be  the  integrated 

mean  square  difference  between  LK(t)  and  p(t)  for  all t in  the  range 

0 5 t 5 T, which i s  defined by 

T 

There  are  several  reasons  for  this  choice.  First,  it  is a measure of the 

total  "distance"  between L (t) and  p(t)  for  all t in  the  range 0 5 t <, T, 

and  secondly,  it  leads  to a separation of the  bias  and  noise  errors. 
K 

Expanding  Eq. (18), it   is  seen  that 

1 1  



The f i r s t  two integrals of Eq.  (19)  may  be  evaluated as follows: 

T 
f r  

T K  
I\' 

K 

and 
T 

k= 0 

T K  

K 

= E [ a l ]  
k= 0 

where  the  last  equality of Eq.  (21)  follows  from  Eq.  (16).  Substitution of 

Eq. (20)  and  (21)  into  Eq.  (1 9 )  shows  that 

T K K T T  

12 



Equation (22)  has  several  interesting  properties  which  resulted  from 
2 
K the  use of the  orthogonal  expansion.  Let E represent  the first two terms 

of E , called  the  truncation  error. It is  clear  that  these two terms involve 

only p(t) and  the  coefficients  in  the  orthogonal  expansion of p(t), and  thus 

a r e  independent of the  noise  process x(t). The  truncation  error E in 

using a finite  orthogonal  expansion is thus  completely  isolated  from  the 

error  caused by noise.  This  property  is of great  practical  importance 

since  it  permits  independent  investigations of the  "signal"  and  "noise"  to 

be carried out. 

2 

2 
K 

2 
K It should  be  noted  that E is  always  positive  or  zero.  This  follows 

from the  fact  that,  for  any  orthonormal  system,  Bessel's  inequality, 

Ref. [ 2, p. 513 , applies so that 

where  the  equality  sign  holds if p(t)  can be represented  exactly by a Kth 

degree  expansion. 
2 

The final  term  in  the  expression  for E is  the  contribution of the 
2 

noise  to  the  mean  square  error  and will be  denoted by E . Unless p(t)  

and  R(u, v) a r e  known, it is not possible  to  evaluate  the  double  integrals; 

however,  an  upper bound may  be  obtained by using  the  fact  that 

R(u, v) I R(u,  u).  Thus 

0 

N 
7 T T  

13 
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1 
Since P (v) = - , the  orthogonality  property of the set P,(v) shows 

O f i  that 

T T 

fi 1 Pk(v)P  (v)  dv = 
0 

0 

Thus  all  terms  in  the  second  line of Eq.  (24)  are  zero  except  the k = 0 

term,  and 
T T 

E <_ 1 R (u,  u) du = 
2 
0 X 

If the  integrated  mean  square  error  criterion is applied  to  the 

ensemble  averaging  technique,  it is easily shown that  the  resulting  mean 

square  error  is  exactly  equal  to  the  right  side of Eq. (26) .  This  means 

that  by  choosing  a  suitable  value of K to  minimize E an  improved 

estimate of p(t)  will  be  obtained  in  almost  all  cases  through  the  use of the 
K '  

orthogonal  expansion. 

The  orthogonal  expansion  technique  will  be  illustrated  in  a  subsequent 

section on  the  estimation of mean  square  values. 
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3.  MEAN  SQUARE  VALUE MEASUREMENTS 

3 .1  ENSEMBLE AVERAGING 

A similar  analysis  .to  the one given  in  Section  2.1  will now be carried 

out  to  determine how the  nonstationary  mean  square  values  change  with  time. 

This  can  be  estimated by using  a 

the  following operation on the N 

i = 1,2, . . . , N, namely  to  define 

1 
g(t) = 

The  quantity g(t) is an  estimate - - 

mean  square  value  device  that  performs 

available  sample  records  {xi(t)} , 
gi(t) = xi (t) and to  compute 

2 

N N 

i= 1 N 
i= 1 

of the  true  mean  square  value of the 

random  process  [xi(t))  at  any  time  t  since  the  mean  value of g(t) is 

N 

N 

The variance  associated with  a  set of estimates g(t) will now be 

calculated. By definition,  the  variance 

15 



N 

N 1 

if j 

Thus  the  problem  reduces  to  evaluation of the  ensemble  averages  appearing 

in  Eq.  (31). 

In order  to  obtain  reasonable  closed  form  answers, it will  be  assumed 

now that  the  set of values {xi(t)] at   any  t ime t follows a Gaussian  distribu- 

tion  with  mean  value p (t) and  variance u (t). One can  then  derive  for  the 

ensemble  averages 

2 
X X 

E[x2(t)x. 2 (t)] = [ux ( t )  2 i- p,(t)] 2 2  for  i # j 
1 J  

Substitution  into  Eqs.  (31)  and (29)  yields  the  result 

(33) 

2 
g 

Thus u (t) approaches  zero  as N approaches  infinity so that  g(t)  is a 

consistent  estimate of the  mean  value p (t). 
g 

For  the  case  in  which  the  mean  value p (t) is equal  to  zero,  estima- 
X 

tion of mean  square  values  and  variances  are  equivalent  since  variances 

represent  mean  square  values  about  the  mean.  Equation  (28) now becomes 

16 



Therefore,  g(t) is an  unbiased  estimate of the  variance if and  only if the 

mean  value is zero.  The  corresponding  variance of g(t)  becomes 

2 2 4   2 2  
u (t) = - u (t) = - cr. (t) 

€5 N x  N g  

Confidence  curves  similar  to  those  obtained  in  Section 2.1 may  be 

obtained  from  the  Tchebycheff  inequality.  For  any  positive  constant, k, 

where p (t)  and u (t)  represent  the  true  mean  value  and  standard  deviation 

associated  with  the  set of measurements  {g(t)] . A value of k = 3 corres-  

ponds to  an 897' confidence  band.  The  end  limits a r e  found from 

g g 

Solving for p (t)  yields 
g 

assuming  that fi > k. This  equation  indicates how p (t) is   related  to 

an  estimate  g(t). 
g 

For  example, if k = 3 and N = 50, then  there is an 897' confidence 

g 
that p (t) lies  in  the  range bounded  by 

g(t) cr. (t) = 
g 1 - t 0 . 6 0  

= [ 0.625 g(t)  to 2. 5 g(t)] 

17 
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Special  tables  and  confidence  curves  can  be  generated  similar  to  Table 1 

and  Figure 3.  

Figure 4 based on Eq. (39)  is a plot of the  ratio p ( t ) /g ( t )  as  a function 
g 

of the  number of samples N. Two cases  are  considered.  Case 1 applies  to 

arbitrary  probability  distributions  for  g(t)  and  sets  k = 3 corresponding  to 

an 89% confidence  band a s  given by the  Tchebycheff  inequality.  Case 2 

applies  to  a  Gaussian  probability  distribution  for  g(t)  and  sets  k = 2 

corresponding  to  a 95% Gaussian  confidence  band. 

3 . 2  ORTHOGONAL FUNCTION APPROXIMATION 

In Section 2. 2 the  analytical  basis fo r  orthogonal  function  approximation 

is  established  and  therefore  will not be  repeated  here. The corresponding 

results  for  mean  square  value  estimation by an  orthogonal  expansion  LK(t) 

may be obtained by appropriate  modification of the  equations of Section 2.  2.  

As  in  previous  sections,  it  is  assumed  that N independent  sample 

records [ xi(t)]  are  available.  For  simplicity  it is also  assumed  that  the 

underlying  random  process  has  zero  mean.  The  quantity  g(t) is again 

defined by Eq. ( 2 7 ) ,  namely 

N 

Thus, i f  m(t)  is replaced by g(t)  in Eq. (13 )  of Section 2 .2 ,  the  coefficients 

of the  orthogonal  expansion of g( t )   are  given by 

T 
f 
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Upon taking  the  expected  value of Eq.  (42),  it  is  seen  from Eq. (35) 

that 
T 

E[ ak]  = I w 2(t) P (t) dt = bk 
0 

X k (43) 

where b is now the  kth  coefficient  in  the  orthogonal  expansion of u (t). 

In order  to  calculate  the  second  moment of a  it  is  necessary  to  have  the 

fourth  moment of x(t) which  in  general  will  not  be known. 

L 
k X 

k ’  

For  the  important  special  case of a Gaussian  distribution,  however, 

the  fourth  moment  is  expressible  in  terms of the  second  moment.  There- 

fore,  in  the  remainder of this  section,  the  Gaussian  assumption  will  be 

made. Then, it may  be shown that 

T T  

E [ a i ]  = I F;(U) ux(v) ‘ [  1 t E 2 2  px(u,  v) ] k  P (u) P k  (v) du  dv (44) 
0 0  

where p (u, v) is  the  normalized  covariance  function of the  nonstationary 

random  process x(t). 
X 

The normalized  covariance  function p (u,  v)  is  defined by 
X 

where R (u,  v) is the  unnormalized  covariance  function.  For  all  u  and 

v, it  may  be shown that 
X 

-1 5 PJU’ v) I - 1 

Using  the  above  results,  the  first  and  second  moments of the  mean 

square  estimate, L ( t ) ,   a re  found to  be K 
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K 

This is the  same  expression as was  obtained  in Eq. ( 1 7 )  of Section 2.2.  

Thus,  unless IT (t)  can  be  represented  exactly by a Kth  order  expansion 

of the P (t),  the  quantity L (t) is a biased  estimate of IT (t). 

2 
X 2 

k K X 

The  integrated  mean  square  error  will  again  be  used  to  measure 
2 

K X 
how close L (t) is   to  cr (t). F r o m  the  definition  presented  previously, 

2 
the  integrated  mean  square  error E i s  given by 

T 

E = [ LK(t) - m;(t)]' dt 

An expansion of Eq. (46)  similar  to  the one carried out  in  Section 2. 2 which 

led  to Eq. (22)  shows  that E may  be  written  as 
2 

T K K T T  

E =a cr4(t) dt - b i  + I cr (u)u,(v) p,(u, v)  Pk(u)Pk(v) du dv 
2 2 2 

X k= 1 k=l 0 0 
X 

Here  again, it is  seen  that  the  errors  caused by truncation  and  noise  are 

completely  separated.  Thus,  as  before E can  be  written  as 
2 

and it may  be shown that 

2 2 2 
K O  E = E  + E  

T 

E 0 < 1 04(t )  X dt (49) 

2 indicating  that if the  truncation  error, e K  , is small,  the  orthogonal  function 

approximation  technique  will  produce  lower  errors  than  ensemble  averaging. 
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The  orthogonal  function  approximation  technique  will now be  illustrated 

by  two  examples  to  show how this  approach  may  be  applied  to  the  estimation 

of nonstationary  mean  square  values. For simplicity,  the time interval of 

interest is chosen  to  be of unit  length  and  the  normalized  covariance  function 

to  be  stationary (io e . ,  p(u,  v) = p(u - v). 

Examde  1: 

Suppose  it is known that a random  process  with  zero  mean  has a mean 

square  value  which  can  be  represented by a second  order  polynomial, i. e . ,  

2 2 
0- ( t ) = c   t c   t t c  t t O I t S l  (50)  0 1  2 

where  the  coefficients a r e  unknown but constant.  This  could  have  been  deter- 

mined by computer  simulation of the  physical  process,  for  example.  Since 

u (t)  is a polynomial  on  the  interval (0,  l ) ,  the  best  set of orthonormal  func- 

tions  to  use is the  set of orthonormal  polynomials  on  the  interval (0, 1)  since 

the  smallest  number of t e r m s   a r e  then  required  to  estimate u (t). On the 

interval (0,  l ) ,  the  first  three  orthonormal  polynomials  are 

2 

2 

P ( t )  = 1 
0 

P l ( t )  = fi (2t - 1 )  

P2(t)  = fi (6 t2  - 6t  t 1) 

After  g(t),  as  defined by  Eq.  (41),  has  been  measured  experimentally, 
2 

the  coefficients of the  estimate of u (t) would be  determined  from 

1 
f 

2 
s o  that  the  estimate of u (t) becomes 
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2 
It is easily  seen  that L (t) is an  unbiased  estimate of u (t)  since M 

2 

where 1 
C C 1 bo = 1 A2(t) P (t) dt = co t - t - 2 

0 2 3 

1 
2 c t c  

bl = A  (t)  P,(t)  dt = 
1 2  

2 6  

1 
C 

b2 = I, A2(t)  P2(t)  dt = 2 
6 6  

2 Because u ( t )  is a  second  order  polynomial,  it is completely  specified 

by a  second order  orthogonal  polynomial  expansion.  Thus  the  truncation e r r o r  

E is zero  and  the  mean  square  error  expression of Eq. (47) reduces  to 
2 
K 

2 1 1  

E = $ 1 I 1 a2(u) u (v) p (u - v)  Pm(u)  Pm(v) du dv 
2 2 

1 m=O 0 0 
(55) 

where P(T) is the  normalized  stationary  covariance  function.  Unfortunately, 

Eq. (55) is quite  tedious  to  evaluate  even  for  a  simple  covariance  function  such 

as exp (-K I T I ) and  the  resulting  expression would  not be  subject  to  easy 
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interpretation. In evaluating 

mental  data,  the  computations 

the  above  mean  square  error  for  actual  experi- 

would best  be  carried out on a digital  computer. 

To illustrate  the  smoothing  effect of an  orthogonal  expansion  in  the 
2 

estimation of u (t), the  following  example  has  been  developed  which  allows 

the  calculation of E without  undue effort. 
L 

2 0 
2 Let u (t) have  the  form shown in  Figure 5. Since cr (t) consists of a 

set of step  functions,  it  is  convenient  to  choose  an  orthonormal  set  which  is 

also  made up of step  functions. One set  of such  functions is comprised of 

Walsh  functions,  Ref. [ 3,  p. 20-211 ; the  first  four of which a r e  shown in 

Figure 6. The values of the  coefficients of the  expansion of u (t)  in  terms 

of the  Walsh  functions a r e  

2 

1 

bo = 02(t) Po(t) dt = - a 
4 

1 

bl = u2( t )P l ( t )  dt = -- 1 
4 

b. = 0 , j =  2 , 3 ,  ... 
J 

Direct  calculation  shows  that 

1 
1 1  5 

u (t)  dt = - t -  = -  
8 2  8 

and 
2 2 9 1 5  

bo t b -- t- 2 -  
1 - 16  16 8 

so  that  the  truncation  error is zero if the  first two terms  in  the  expansion 

are  used  to  represent u ( t ) .  The resulting  expression  for  the  integrated 

mean  square  error is 

2 

2 4  



1 1  

where 2 2 fi(u, v) = IJ (u) IJ (v)  Pi(u) P.(v) ; i = 1, 2 
1 

Because of the  jumps  in  both  the  Walsh  functions  and r (t), the  region 2 

over which  the  integration is to be carr ied out in Eq. (57) must be  divided 

into  four  parts  as shown in  Figure 7. In each  region  the  values of f and 

f are  constants which a r e  tabulated below. 
0 

1 

Table 3 

From  the  table  it  is  seen  that  the  integrals  over p and y cancel  and 

Eq. (57)  reduces  to 

€ 1 "  =;[$ / p 2 ( u - v )   d u d v t  2 /  p2(u -v )   dudv  
CY 6 1 

Upon making  the  change of variable 

r = u - v  

s = u t v  
du dv = - dr   ds  

2 (59) 

the  regions CY and 6 a r e  mapped  onto  the r - s plane a s  shown  in  Figure 8, 

and  the  expression  for E becomes 2 
1 

E 1 = a[il p 2 ( r )  d r   d s  + 2 
6 1 

" 

- N  [ {il t i l  t 2 1  t 2 1  }p2(r )  d r   ds  1 1 
61 62  1 
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Figure 6. Walsh Functions 
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Figure 8. Transformed  Region of Integration 
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Without  going into  the  details,  it  may  be shown that  the  four  integrals 

in  Eq. (60) are  numerically  equal.  Thus, by adding  the  coefficients, 

Assume  that  the  normalized  covariance  is  given by 

Then,  substitution of Eq. (62)  into Eq. (6  1)  leads  to  the  result  that 

Equation  (63) is shown  in  Figure 9 where  the  integrated  mean  square 

e r ro r   i s  plotted a s  a function of the  parameter y. Since y is directly  pro- 

portional to the  effective  width of the stationary  noise  spectrum,  it is 

clear  that  the  orthogonal  function  expansion  is  much  more  effective  in  smooth- 

ing if the  noise  is  wideband.  It  is  likely  that  this  result  is  true  for  most 

cases of practical  interest;  however, a general proof is  not given  here. 

As a numerical  illustration of these  results,  suppose y = 5 and 

N = 100. From  Figure 9, the  orthogonal  approximation  approach  produces 

an  integrated  mean  square  error of 0 .004  while  the error  for  ensemble 

averaging  is 0. 0125. 
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Figure 9.. Integrated  Mean  Square  Error 

29  



3 . 3  SHORT TJME AVERAGING 

One technique  which is currently  employed  to  estimate  nonstationary 

mean  square  values  when only  one or  a few  samples  are  available  consists 

of obtaining a continuous  short  time  average.  The  effect of a time  average 

is to  smooth  the  random  fluctuations  over  the  averaging  interval  and  thus 

reduce  the  uncertainty  in  the  estimate. In the  analysis  presented below, 

explicit  expressions  for  the  bias  error  and  mean  square  error  will  be 

developed  for  processes with  nonstationary  mean  square  values. 

It  will  be  assumed  that  the  nonstationary  process  has  zero  mean  value, 

and  is of the  form 

y(t) = A(t)  x(t)  (64) 

where  x(t)  is a zero  mean  Gaussian  process  and  A(t)  is  any  integrable 

function.  The  covariance  function of x( t )   i s  R (t t ) and  it  is  assumed 

that R (t,   t) 2 R (t)  z 1. Many physical  situations  may be represented by 
x 1 ’  2 

X X 

the  nonstationary  process of Eq. (64). 

Suppose  that  y(t)  is  first  squared  and  then  averaged  over a time 2s ,  

a s  shown  below. 

Y(t) Y (t) 
2 time 

+ average square 
over 2s 

t) 

- 

The  resulting  random  process  z(t)  is  thus  defined by 

r 
t t  s 
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The  expected  value of z(t) may  be found as follows, 

r t t s  

n 
t t  s 

- -!- I A  (u)  dq 
2 - 

2 s  t- s 

2 
In order  to  determine  the  bias  error,  assume  that  A (t) can be repre-  

sented  in  the  interval  (t-s, tts.) by a power series of order N, namely, 

N 

A2(t) = 1 a t 
n 

n n= 0 

Substitution of Eq. (67) into  Eq. ( 6 6 )  gives 

N t+ s 

E [ z(t)] = & an I u  n du 
n= 0 t -  s 

N 
a 

= c 2 S ( Z t l )  [ (t t d n t l  - ( t  - s )  
n t  11 

n= 0 

where  the  third  equality is obtained  after  some  algebraic  manipulation  and 

the llell within  the  second  summation  means  that  only  the  even  values of 

m are  used. 
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2 
The bias  error  in  estimating A (t) is defined by 

b(t, s) = E [z(t)] - A (t) 
2 

\ r n + l l   n - m  m t 
n t l  

5 

n= 0 m= 2 

If b(t, s) is  written in the  form 
N 

then  the  first few te rms  of the  series of Eq. (70)  a r e  given by 

b = O  
0 

b = O  
1 

2 
b = a  t s  

3 3  

2 2  s 
4 

b = a  ( 2 t  s + - )  
4 4  5 

3 2  
b 5 5  = a  ( l o t s  3 t t s  

b = a  i ' 4 2  - 2 4 s6 ) 
6 6 5  

+ 3 t  s t -  
7 

t 7 t  s + t s  
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2 It is  clear  from  the  above  development  that if A (t) is a  polynomial 

of moderate  order,  a  large  bias  error  can  be  introduced  into  the  estimation 

procedure. In most  practical  applications,  however,  the  variations  in  A (t) 

a r e  not  too  complicated  within  an  interval of length 2 s  since s is usually 

small.  This  means  that,  within  each  interval of length  2s, A (t) can  be 

considered  to be a  polynomial of degree two or   less  and  the  resulting  bias 

error  will  be  negligible  or  zero. 

2 

2 

2 The mean  square  error  in  estimating A (t) by a  short  time  average 
2 

may be  found a s  follows:  Let E (t) denote  the  expected  value of the  square 

of the  difference  between  z(t)  and A (t), then 2 

E (t) = E [ z(t) - A (t)]  
2 2 2  

= E [ z2(t)]  - 2A2( t) E [ z(t)] t A4( t) 

= E[  z2(t,] - 2A2(t)  [A2(t) + b(t, s ) ]  + A4(t) 

= E [z2(t)]  - A (t) - 2A (t)  b(t, s) 
4 2 

From  the  definition of z(t), 

c 2 3  2 

t t  s 

E z (t) =- 
4 s  t - s  

When x(t) is assumed  to  be  Gaussian,  as is the  case  here,  a  well 

known result  for  Gaussian  processes  gives 

E[x2(u) x (v)] = R (u) R (v) + 2R (u, v) = 1 + 2R (u,  v) (73) 
2 2  2 2 2 

since  R(u) = R(v) = 1. 
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Therefore, Eq. (72) becomes 

t t s  - 

E [ z2(t)] = I/ A  (u)  A2(v) [ 1 t -2R (u,  v)] du dv 
2  2 

4 s  t - s  . .  

= [A2(t)  t b(t, s)] t - 1 Is 2  2 2 
2 A (u)A  (v) R (u,  v) du dv 

2s t - s  

Substitution of this  result  into Eq.  (71)  shows  that 

2  2 2  2 

2 s  t - s  
j) A2(u)A  (v) R (u,  v)  du dv E (t) = b (t, s)  t- 2 (7  5) 

The  double  integral  occurring  in Eq.  (75) is quite  difficult  to  evaluate 

even for  simple  cases.  However, it is possible  to  establish  an  upper bound. 

The  Schwarz  inequality,  Ref. [ 2, p. 49 ] , states  that  for  any two integrable 

functions f and g 

In terms of the  double  integral of Eq. (75), the  Schwarz  inequality  shows  that 

(77)  
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Using  the  above  results,  it is now possible  to  examine  certain  limiting 

cases  for  the  mean  square  error  and  bias.   As a first step,  consider  the 

limiting  case as s approaches  zero.  From  Eq. ( 6 9 ) ,  

and  from  Eq.  (75), 

lim b(t, s) = 0 
s-0 

lim E = fi A2(t) 
s "bo 

( 7 9 )  

Note that  the  rms  error  is  fi times  the  quantity A (t)  being  measured 

for  small s .  

2 

Further  examination of Eq. (75) indicates  that  the  mean  square  error 

will  become  quite  large fo r  large  values of s because of the  increasing 

bias  effect.  Thus  it  is of interest  to  determine if  an  optimum  value of s 
2 exists  such  that E ( t )   i s  a minimum. 

For  simplicity,  let  the  double  integral  in Eq. ( 7 5 )  be denoted by 
1 - K(t, s), then 2 
S 2 2 

E (t ,  S) = b (t,  S) + - K(t, s) 
2 

S 

2 
The  derivative of E with  respect  to s is  given by 

2 2 '  
s K - 2sK - d.E = 2b b' t 

4 (81) dS 

For  small  s, the  bias  term  (2b  b') will 

Hence,  any  value s such  that 
1 '  

2 dE 
ds 

S 

in  most  cases  be  zero  or  negligible. 

= o  
s= s1 

will  be  close  to a corresponding  value s where 2' 
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2 1  s 2 K  (t, s2) - 2s2K(t, s ) = 0 2 (83) 

Now if a value s can  be found, it will  be a first approximation  to  the 

optimum  aver.aging  time s, and it is  likely  that E (t, s ) will  be  close  to 
2 2 

2 2 
E (t, SI). 

From Eq,. ( 8 3 )  it follows  that 

o r  
2 

2 2 K(t, s ) = Cs 

where C is  a constant of integration.  The  value of C may  be found from 

Eq. (79)  to  be (2A (t) ), and  the  value of s is given  by  the  solution of the 

equation 

. 4  
2 

4 2 
K ( t ,  s2) = 2A (t) s 2 (85a) 

In  terms of the  original  functions 

The  considerations  presented  above  clearly  illustrate  the  analytic 

difficulties  associated  with  an  error  analysis of short  time  averaging  tech- 

niques. In order  to  further  investigate  this,  and  other  estimation  procedures 

a s  well, it is advisable  to  simulate  typical  cases of interest on a computer 

and  observe  the  effects of averaging  time on the  mean  square  error.  This 

approach  also  has  the  advantage of permitting easy variation of the  input 

parameters  to  test  the  sensitivity of the  mean  square  error  to  these 

variations. 

36  



4. RECOMMENDATIONS  FOR SUCCEEDING RESEARCH 

In deciding  which  estimation  procedure  to  implement  for  an  experi- 

mental  program,  consideration must be  given  to  the  over-all  costs  involved. 

While certain of the  techniques  described  fn  this  report  will  theoretically 

give  better  results  than  others,  they  may  be  much  more  expensive  to  set 

up  because of the  complexity of operations.  Thus,  trade-offs exist between 

the  number of measurements  made,  the  cost of each  measurement,  and  the 

cost of implementing  the  estimation  procedure.  Because of the  high  cost 

of many  experimental  programs, it is very  desirable  to  select  the  estima- 

tion  procedure  which  will  minimize  the  total  cost. 

To gain a better  understanding of the  relative  performance of the 

.various  estimation  techniques,  the following program is suggested.  First, 

since  mathematical  difficulties  preclude  an  exact  error  analysis  in  most 

cases, a computer  simulation  study  should  be  made.  Nonstationary 

processes of the  type  expected  in  actual  physical  situations would be  used 

and a comparative  evaluation of each  estimation  technique  made  for  each 

type of process. One of the  principal  results of such a simulation would 

be  to  give  the  experimenter a better  understanding of which  estimation 

technique is best  for  his  particular  application.  Quantitatively,  the 

simulation  would  result  in  establishing  required  sample  sizes  to  produce 

the  same  value of the  mean  square  error.  Also, it should  be  possible  to 

determine  optimum  values  for  the  parameters of the  estimation  procedures. 
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