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MEAN AND MEAN SQUARE MEASUREMENTS
OF NONSTATIONARY RANDOM PROCESSES

1. INTRODUCTION

A random process {xi(t)} » 1i=1,2,3,..., 1is an ensemble of functions
of a single variable t which can be characterized through its statistical
properties. A typical random process is pictured in Figure 1. The variable

t is time or any other parameter of interest.

x.(t)

(t)

X

xz(t)

xl(t)

Figure 1. Random Process

The set of amplitude values at a particular time t1 , denoted by {Xi(tl)} ,
can be combined together in appropriate ways to determine their mean value,
mean square value, and higher moments, and thus a complete probability
distribution at tl , where the probability distribution yields the probability

that the amplitude values at tl will lie in any specified amplitude range.



For example, the mean value at t, is defined by the ensemble average,

1
denoted by the expected value E[ ], namely,

) x,(t)) (1)

=1

Zl-

b (0= E[xt)] = lim

=

A different time t = t2 can be selected, and similar statistical
calculations may be carried out for the set of amplitude values {Xi(tz)} ,
i=1,2,... In general, significantly different results would be obtained
for the two sets {xi(tl)} and {xi (tz)} . That is to say, the statistical

results would not be invariant with respect to translations in time., Random

processes of this general category are known as nonstationary random

processes. The processes are said to be stationary when statistical properties
do not change with time. Much past analytical work assumed a stationary
hypothesis because it simplified the further derivations. This report is
concerned with methods for analyzing nonstationary data.

Nonstationary data are of common occurrence in different physical
situations. Such data are obtained when an environment changes suddenly,
as in transient operating conditions, or when properties of a system are
altered to such a degree that its response is changed, as under fatigue effects
or through adaptive mechanisms.

In Section 2, techniques for estimating nonstationary mean values are
presented using methods of ensemble averaging and orthogonal function
approximations. The assumptions are made that the time t in each record
xi(t) is measured from a well-defined origin and that the set of records

{xi(t)} are statistically independent. KExpressions are developed for the
expected value of each estimate as well as the corresponding mean square

estimation error. Further, it is shown that the orthogonal function



approximation technique will produce smaller errors than ensemble averaging
if a bias error can be made small.

Section 3 considers the corresponding estimation problem for non-
stationary mean square values. Three techniques are analyzed: ensemble
averaging, orthogonal approximation, and short time averaging. Two
examples are given of the application of the orthogonal approximation tech-
nique to the estimation of nonstationary mean square values; and a comparison
is made between these results and ensemble averaging. For short time
averaging techniques, a special type of nonstationary random process is
considered in some detail consisting of a time varying amplification of a
stationary process. Mathematical formulas are obtained which yield the
bias error and an upper bound on the mean square measurement error.
Because of the complexity of the formulas, numerical results are difficult
to obtain without computers.

In Section 4, recommendations are given for a computer based simu-
lation of the various estimation procedures for typical nonstationary random
processes of interest. It is indicated that the results of the simulation
program would lead to a rational basis for optimally choosing an estimation

procedure in many applications.



2. MEAN VALUE MEASUREMENTS

2.1 ENSEMBLE AVERAGING

For nonstationary data, a basic statistical problem is to determine
how the average (mean) value changes with time. Mean values can be esti-
mated by using an average response computer that performs the following
operation to calculate a sample mean value from a sample of size N, namely
for N records «[xi(t) ; 0<t<T ; 1=1,2,.. .,N} from a nonstationary

process x(t), compute

N
=1 ) xw 2
m(t) = T L, % (2)
i=1
The quantity m(t) will differ over different choices of the N samples {xi(t)} .
Consequently one must investigate how closely an arbitrary measurement,
m(t), approximates the true mean value p(t) which is given by the expected

value

Zi-

N
w(t) = E[m(1)] = Z E[x0] = w0 (3)

Note that m(t) is an unbiased estimate of the true mean value since
= t).
p(t) = p_(t)
A measure of the error involved in estimating p(t) by mf(t) is the

variance of m(t) given by

o2 (1) = E[m() - u()]? (4)

The square root of the variance, crm(t), called the ""standard deviation)
provides the indicator that determines how closely a set of measurements

of m(t) clusters about its mean value p(t).



In most practical applications, the N samples used to compute m(t)
are statistically independent and this will be assumed here. Upon expanding

Eq. (4), it is seen that

i=1
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where o-j(t) is the variance associated with the nonstationary process x(t).
It should be noted that the independent sample assumption causes all the
cross-product terms (i # j) in the double sum of Eq. (5) to be zero.

As was shown in Ref. [1] , a knowledge of the mean value and
variance for the random variable m(t) at any time t enables one to answer
questions concerning the range of the results at any time t without knowing
the exact probability distribution function for m(t). From the Tchebycheff
inequality, which applies to arbitrary general situations, one may state
with 89% confidence, for example, that an observed measurement for m(t)
lies inside the range [p.(t) - 3crm(t), p(t) + 3o-m(t)J . In equation form, for
any constant k, the Tchebycheff inequality is

Prob [lm(t) - p(t)' > ko’m(t)] < —kiz (6)



Thus, for k = 3, this probability is at most (1:9), giving the above 89%

confidence limits. See Figure 2.

m(t) + 30 (t)
m

m(t)

r(t) m(t) - 3o (t)

e e el e e S t

Figurc 2. 89% Confidence Limits for Arbitrary Distribution
based upon Tchebycheff Inequality

A stronger statement can be made if one can justify an assumption
that m(t) follows a normal (Gaussian) distribution at any value of t. For
this special case, a 95% confidence band is given by the range
[p(t) - Zu'm(t), p(t) + Z(rm(t)] . Thus an observed measurement for mf(t)
in the Gaussian casec yields a greater confidence of being close to the
theorctical mecan value than in the case where the underlying probability
distribution is unknown.

Consider the range for p(t) as given by Eq. (6), namely
| m(t) - p(t)] < ke (1) (7)
= m

where k is a constant.



UL

Solving for p(t) yields the two extreme range values:

b(t) = m(t) + ko_ (1) | (8)

Thus, one would measure m(t) and then apply the above formula to estimate
p(t) for various conditions. Also, note from Eq. (5) that by increasing N,
one may guarantee that m(t) will fall close to u(t) regardless of the magni-
tude of a-x(t) and the underlying distribution. This effect is illustrated

by the curves shown in Figure 3 which are plots of the ratio p(t)/m(t) as a
function of ('\[1; |J.(t)/0'x(t) . Two cases are considered. Case 1 applied

to arbitrary probability distributions and sets k = 3, corresponding to an
89% confidence band as given by the Tchebycheff inequality. Case 2 applies
to a Gaussian probability distribution and sets k = 2, corresponding to a

95% confidence band. The lower and upper limits used for Figure 3 are

shown in Table 1.

V—l_\l- p(t) Case 1 Case 2
_m' Lower Upper Lower Upper
x Lirn_it Limit Limit Limit
2 -- -- 0.50 fo's}
3 0.50 oo} 0.60 3.00
4 0.57 4.00 0.67 2.00
5 0.63 2.50 0.71 1.67
6 0.67 2.00 0.75 1.50
8 0.73 1.60 0.80 1.33
10 0.77 1.43 0.83 1.25
12 0.80 1.33 0.86 1.20
15 0.83 1.25 0. 88 1.15
18 0.86 1.20 0.90 1.12
20 0.87 1.18 0.91 1.11
25 _ 0.89 1.14 0.93 1.09

Table 1. Data for Figure 3
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2.2 ORTHOGONAL FUNCTION APPROXIMATION

The second approach is based upon fitting an Kth order orthogonal
function to m(t) and using the resulting expansion to estimate p(t). This
method has the advantage that a double smoothing effect is achieved since
m(t) is an average of the N measurements, and the coefficients of the
expansion are obtained by a time average.

Let {Pk(t) , k=0,1,... } be a complete set of orthonormal func-

tions defined on the interval (0, T). Thus

T

0 ) 1 # J
f P.(t)P.(t) dt = (9)
o 1 J .

Let LK(t) be a linear combination of the first K members of Pk(t):

K

Lo (t) = 2;0 a, P, (t) (10)

where the coefficients ak are to be determined as follows. Consider the
quantity
T

A=f [m(t) -LK(t)]‘2 at (11)
0

which is a measure of the total distance between m(t) and LK(t). The

coefficients a, are to be chosen to minimize A. Without going into the

detailed calculations, it may be shown that the minimum value of A occurs

when

oA

aak

=0 , k=0,...,K (12)




from which it follows that

T
a =I m(t) Pk(t) dt _ (13)
0
At this point it is convenient to compute the first two moments of a

K
From Eq. (13),

T T
E[ak]= f E[m(t)] P, (t) at =[ p(t) P, (t) dt = b (14)
0 0
where bk is defined to be the kth coefficient in the orthogonal expansion
of p(t). The second moment of a is
T T

E[{]:j;[) E [m(u) m(v)] P ()P, (v) du av

T T
Rx(u, V)
=f0 [) wlu) w(v) + ———|P, (W) P, (V) du dv (15)

where Rx(u, v) is the covariance function of the nonstationary random

process x(t). Using Eq. (14), Eq. (15) may be expressed as
T T

E[alf] - blf +lN ‘/0"/(; R (u,v) P, (a) P, (v) du dv (16)

The covariance function Rx(u, v) 1is defined by

E{[xm - (@) [x(v) - ux(v)]}

E [xwx(v)] - p_(w)p (v)

I

Rx(u, v)

10



and should not be confused with the correlation function which is defined by
E‘[x(u) x(v)] alone. When either of the mean values px(u) or px(v) is
zero, then the covariance function Rx(u, v) 1is identical to the correlation
function E [x(u) x(v)] .

The expected value of LK(t) may now be found by application of
Eqgs. (10) and (14). Thus,

K
E[LK(t) Z E Bz ROE Z b, P, (1) (17)
k=0

Equation (17) indicates that, unless p(t) can be represented exactly by a
Kth order expansion of the Pk(t), LK(t) is a biased estimate of p(t). The
effect of bias will be shown more clearly after the mean square error has
been determined.

Rather than use the error criterion at a particular value of t discussed
in the previous section, the one to be employed here will be the integrated
mean square difference between LK(t) and p(t) for all t in the range

0 £ t £ T, which is defined by

T
2 :j; E[LK(t) - |.L(t)]2 dt (18)

There are several reasons for this choice. First, it is a measure of the
total ""distance'' between LK(t) and p(t) for all t in the range 0 < t < T,
and secondly, it leads to a separation of the bias and noise errors.

Expanding Eq. (18), it is seen that

T T T
.2 =f0 elr2m]a - z[o E[L (0] uo at +L wi(e) at (19)

11




The first two integrals of Eq. (19) may be evaluated as follows:

T T K
f E[LK(t)]p.(t) at = f Z by P, () u(t) dt
0 0 =0
K T
= b [ p(t) P, (t) dt
)
2
= b (20)
k=0 k
and
T T K
2
f E} L_(t) dt=f Ela.a.|P_(t)P.(t) dt
0 [ K ] 0 1,2;;0 [ 13] i j
)
2
= Eja
Y o]
f T T
2 1
= b, + — /j R (u,v)P, (u) P, (v) du dv (21)
=0 k N 0“0 x k k

where the last equality of Eq. (21) follows from Eq. (16). Substitution of
Eq. (20) and (21) into Eq. (19) shows that

T K K T T
2 2 2 1
€ :f po(t) dt - Z bk + N Z f[ Rx(u, v) Pk(u) Pk(v) du dv
0 k=0 k=0 "070

(22)

12



Equation (22) has several interesting properties which resulted from
the use of the orthogonal expansion. Let eé represent the first two terms
of ¢ 2 , called the truncation error. It is clear that these two terms involve
only p(t) and the coefficients in the orthogonal expansion of p(t), and thus
are independent of the noise process x(t). The truncation error Eé in
using a finite orthogonal expansion is thus completely isolated from the
error caused by noise. This property is of great practical importance
since it permits independent investigations of the "'signal'' and ''noise'" to
be carried out.

It should be noted that eé is always positive or zero. This follows
from the fact that, for any orthonormal system, Bessel's inequality,

Ref, [2, P. 51] , applies so that

K T

by sf w2t at (23)
k =0 0

where the equality sign holds if pu(t) can be represented exactly by a Kth
degree expansion.

The final term in the expression for ¢ 2 is the contribution of the
noise to the mean square error and will be denoted by ej . Unless p(t)
and R(u, v) are known, it is not possible to evaluate the double integrals;
however, an upper bound may be obtained by using the fact that
R(u, v) € R(u, u). Thus

N

T T
2 1 fj’
€ = = R (u, v)P. (u) P, (v) du dv
o N =070 %o x k k
N T T
_.'11(1 z f R (u, u) P (u)f P (v) dv du (24)
=070 0

13



1

Since P_.(v) = —— , the orthogonality property of the set P, (v) shows
0 7{_T k

that
T T
VT ]o P (v) P (v) dv =fo P, (v) dv = 0 (25)

Thus all terms in the second line of Eq. (24) are zero except the k = 0

term, and

T T
2 1 1 2
€, < N j(; Rx(u, u) du = N,/;) crx(u) du (26)

If the integrated mean square error criterion is applied to the
ensemble averaging technique, it is easily shown that the resulting mean
square error is exactly equal to the right side of Eq. (26). This means
that by choosing a suitable value of K to minimize € s 2l improved
estimate of p(t) will be obtained in almost all cases through the use of the
orthogonal expansion.

The orthogonal expansion technique will be illustrated in a subsequent

section on the estimation of mean square values.

14



3. MEAN SQUARE VALUE MEASUREMENTS

3.1 ENSEMBLE AVERAGING

A similar analysis to the one given in Section 2.1 will now be carried
out to determine how the nonstationary mean square values change with time.
This can be estimated by usingla mean square value device that performs
the following operation on the N available sample records .[ xi(t)} ,

i=1,2,...,N, namely to define gi(t) = xiz(t) and to compute

N N
Z g;(t) = lN Z x, “(t) (27)

i=1 i=1

g(t) =

zi-

The quantity g(t) is an estimate of the true mean square value of the

random process {xi(t)} at any time t since the mean value of g(t) is

N
lNZ E x, (t)
i=1

[

w0 = B[ go]

1
N

™z

(120 + o 2w)

i=1

"

w20 + o 2(t) (28)

The variance associated with a set of estimates g(t) will now be

calculated. By definition, the variance
2 2 2
o= E[gf®] -ui® (29)

where pg(t) is given by Eq. (28) and where

15



N
E[gz(t)]ri2 Z E[xiz(t)sz(t)] (30)

N i, j=1
=L ZNE[X.‘*(t>]+ i E[x (% ()] (31)
NLE =1 ~ '
i#j

Thus the problem reduces to evaluation of the ensemble averages appearing
in Eq. (31).

In order to obtain reasonable closed form answers, it will be assumed
now that the set of values {xi(t)} at any time t follows a Gaussian distribu-

tion with mean value px(t) and variance o (t). One can then derive for the

ensemble averages
B[xtw] =3[l +u 0]} - 200 (32)
E[xiz(t) sz(t)] (o2 +ufw]? for i4; (33)

Substitution into Eqgs. (31) and (29) yields the result
o ott)= %[o}fm + 22 (1) cr;‘(t)] (34)

Thus o-gz(t) approaches zero as N approaches infinity so that g(t) is a
consistent estimate of the mean value p.g(t).

For the case in which the mean value p.x(t) is equal to zero, estima-
tion of mean square values and variances are equivalent since variances

represent mean square values about the mean. Equation (28) now becomes

2
Hg(t) =0 (t) (35)

16



Therefore, g(t) is an unbiased estimate of the variance if and only if the

mean value is zero. The corresponding variance of g(t) becomes

2 2 4 2 2
(rg(t) =N "<t =5 My (t) (36)

Confidence curves similar to those obtained in Section 2.1 may be

obtained from the Tchebycheff inequality. For any positive constant, k,
1
Prob[l g(t) -p ()] 2 ke (t)J < =5 (37)
g g k

where |.Lg(t) and ¢ (t) represent the true mean value and standard deviation
associated with the set of measurements {g(t)} . A value of k=3 corres-

ponds to an 89% confidence band. The end limits are found from

glt) = ug(t) + kcrg(t)

2
= 1{\/; k ) p.g(t) (38)

Solving for p.g(t) yields

L (t) = g(t) (39)
g ~f2
li —N' k

assuming that V % > k. This equation indicates how |J.g(t)_ is related to
an estimate g(t).
For example, if k=3 and N = 50, then there is an 89% confidence

that p.g(t) lies in the range bounded by

g(t)
t) = =10.625 2.5 4
e T [0.6258(t) to 2.5 g(1) ] (40)

17
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Special tables and confidence curves can be generated similar to Table 1
and Figure 3.

Figure 4 based on Eq. (39) is a plot of the ratio p.g(t)/g(t) as a function
of the number of samples N. Two cases are considered. Case 1 applies to
arbitrary probability distributions for g(t) and sets k = 3 corresponding to
an 89% confidence band as given by the Tchebycheff inequality. Case 2
applies to a Gaussian probability distribution for g(t) and sets k=2

corresponding to a 95% Gaussian confidence band.

3.2 ORTHOGONAL FUNCTION APPROXIMATION

In Section 2.2 the analytical basis for orthogonal function approximation
is established and therefore will not be repeated here. The corresponding
results for mean square value estimation by an orthogonal expansion LK(t)
may be obtained by appropriate modification of the equations of Section 2. 2.

As in previous sections, it is assumed that N independent sample
records {xi(t)} are available. For simplicity it is also assumed that the
underlying random process has zero mean. The quantity g(t) is again

defined by Eq. (27), namely

AL
™z
HN

[\Y)

[
I
[

g(t) = . (t) (41)

Thus, if m(t) is replaced by g(t) in Eq. (13) of Section 2.2, the coefficients
of the orthogonal expansion of g(t) are given by
T

a, = [ glt) P () at (42)
0

19



Upon taking the expected value of Eq. (42), it is seen from Eq. (35)

that
T

E[ak] =f0 0'}5(1:) P, (t) dt = b_ (43)
where bk is now the kth coefficient in the orthogonal expansion of cri(t),
In order to calculate the second moment of ay it is necessary to have the
fourth moment of =x(t) which in general will not be known.
For the important special case of a Gaussian distribution, however,
the fourth moment is expressible in terms of the second moment. There-
fore, in the remainder of this section, the Gaussian assumption will be

made. Then, it may be shown that

T T
E [alf] =L j(; crj(u) Ui(V)[l +-12<I p}f(u, v)] P, (u) P, (v) du dv (44)

where px(u, v) is the normalized covariance function of the nonstationary

random process x(t).

The normalized covariance function px(u, v) is defined by

Rx(u, v)

p_(u, v) = T
X [Rx(u, WR (v, v]?

where Rx(u, v) 1is the unnormalized covariance function. For all u and

v, it may be shown that

-1 £ px(u, v) <1

Using the above results, the first and second moments of the mean

square estimate, LK(t), are found to be

20



K
E[LK(t)] = 1; b, P (1) (45)

This is the same expression as was obtained in Eq. (17) of Section 2. 2.
Thus, unless o‘:'(t) can be represented exactly by a Kth ordzer expansion
of the Pk(t), the quantity LK(t) is a biased estimate of crx(t).

The integrated mean square error will again be used to measure
how close LK(t) is to crj(t). From the definition presented previously,

. 2 ..
the integrated mean square error e is given by

T

(2o f [LK(t) - G;‘(t)]z dt (46)
0

An expansion of Eq. (46) similar to the one carried out in Section 2.2 which

2
led to Eq. (22) shows that € may be written as

T K K T T
2 f 4 } 2 2 E 2 2 2
€ = o (t) dt - b, +— f f g (Wo (v)p (u, v) P, ()P, (v) du dv
o x =1 k N x=1% o X x X k k

(47)

Here again, it is seen that the errors caused by truncation and noise are

2
completely separated. Thus, as before e can be written as

2
€ = € + e ° (48)
and it may be shown that T
2 2 4
eo < -];Ijo‘ O'X(t) dt (49)

indicating that if the truncation error, e o is small, the orthogonal function

approximation technique will produce lower errors than ensemble averaging.

21



The orthogonal function approximation technique will now be illustrated
by two examples to show how this approach may be applied to the estimation
of nonstationary mean square values. For simplicity, the time interval of
interest is chosen to be of unit length and the normalized covariance function

to be stationary (i.e., p(u, v) = p(u-v).

Example 1:

Suppose it is known that a random process with zero mean has a mean

square value which can be represented by a second order polynomial, i.e.,

2 2
= <
o (t) <, + clt + czt . 0 <t (50)

where the coefficients are unknown but constant. This could have been deter-
mined by computer simulation of the physical process, for example. Since
crz(t) is a polynomial on the interval (0, 1), the best set of orthonormal func-
tions to use is the set of orthonormal polynomials on the interval (0, 1) since
the smallest number of terms are then required to estimate crz(t). On the

interval (0, 1), the first three orthonormal polynomials are

pl(t)=wf§ (2t - 1) (51)
Pz(t) = \/'E (6t2 -6t + 1)

After g(t), as defined by Eq. (41), has been measured experimentally,

2
the coefficients of the estimate of ¢ (t) would be determined from

1
a__ :f g P_(t)dt i=0,1,2 (52)
0

2
so that the estimate of ¢ (t) becomes

22



2

LM(t) = Z a.um(t) o (53)
m=0

. . . 2 .
It is easily seen that L_ (t) is an unbiased estimate of o (t) since

M
2 _

(L, 0] = 5 Ela_]P_®

m=0

2

= 1'er=0 b_P_(t) (54)
where 1
2 ! €2
b, =f0 AYOPy(t) dt = c ) + 5 + ==
c, + CZ

1
2
b, =j0 A“ P (1) dt =

2V3

1
c
2 2
b =f A ()P (t) dt = ———
2 o 2 6Vs
2 . . oy s cps
Because ¢ (t) is a second order polynomial, it is completely specified

by a second order orthogonal polynomial expansion. Thus the truncation error

2
€K is zero and the mean square error expression of Eq. (47) reduces to

1 1
2.2 ) f [ 2@ o) o (- P_(a)P_(v) du dv (55)
m=0 "0 70

where p(T) is the normalized stationary covariance function. Unfortunately,
Eq. (55) is quite tedious to evaluate even for a simple covariance function such

as exp (-K|7|) and the resulting expression would not be subject to easy
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interpretation. In evaluating the above mean square error for actual experi-

mental data, the computations would best be carried out on a digital computer.

Examgle 2:

To illustrate the smoothing effect of an orthogonal expansion in the
estimation of crz(t), the following example has been developed which allows
the calculation of eoz without undue effort.

Let oz(t) have the form shown in Figure 5. Since o-z(t) consists of a
set of step functions, it is convenient to choose an orthonormal set which is
also made up of step functions. One set of such functions is comprised of
Walsh functions, Ref. [3, P- 20-21] ; the first four of which are shown in
Figure 6. The values of the coefficients of the expansion of o-z(t) in terms

of the Walsh functions are

1
b, =j0 «2(t) P(t) dt = i—

o'
!

1
j O'Z(t)Pl(t) dt = “II (56)
0

Direct calculation shows that

1
4 1 1 5
fc‘(t)dt——8-+2 =3
0
and
2 2_9 .1 _5
by P =15 tT6 3

so that the truncation error is zero if the first two terms in the expansion
2
are used to represent ¢ (t). The resulting expression for the integrated

mean square error is
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512 = —21\-1 j [fo(u,v) + fl(u, v)] pz(u-v) du dv (57)
0-0
where 2 2
fi(u, v) =0 (u)o (v) Pi(u) Pi(v) ; i=1,2

2
Because of the jumps in both the Walsh functions and o (t), the region
over which the integration is to be carried out in Eq. (57) must be divided
into four parts as shown in Figure 7. In each region the values of fo and

f  are constants which are tabulated below.

1
Region a p Yy | 6
fo(u, v) 1/4 1/2 1/2 1
fl(u, v) 1/4 |-1/2 -1/2 1
Table 3

From the table it is seen that the integrals over § and vy cancel and

Eq. (57) reduces to

.21 fpz(u-V)dudVszfPz(u-V)dudV (58)
1 TNz S s

Upon making the change of variable

r=u-v ’ du dv = dr ds

(59)

s=u+t+v
the regions @ and & are mapped onto the r-s plane as shown in Figure 8,

2 .
and the expression for ¢ 1 becomes

-;—[ pZ(r) dr ds + Zf pz(r) dr ds}

a

6
ol ol Jrowa] e
. @ a'l 61 52
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Without going into the details, it may be shown that the four integrals

in Eq. (60) are numerically equal. Thus, by adding the coefficients,

% i-r
‘
€ 2.3 j pz(r) dr ds = 2 j j pZ(r) ds dr (61)
1 N N

al 0 “r

Assume that the normalized covariance is given by
p(r) = exp (~-y ix}) (62)

Then, substitution of Eq. (62) into Eq. (61) leads to the result that

(N[

2 5 [ 5 e-Y-I-y—l
€ = Njo (1 -2r) exp (-2yr) dr = N (63)

2y

Equation (63) is shown in Figure 9 where the integrated mean square
error is plotted as a function of the parameter vy. Since vy is directly pro-
portional to the effective width of the stationary noise spectrum, it is
clear that the orthogonal function expansion is much more effective in smooth-
ing if the noise is wideband. .It is likely that this result is true for most
cases of practical interest; however, a general proof is not given here.

As a numerical illustration of these results, suppose vy = 5 and
N = 100. From Figure 9, the orthogonal approximation approach produces
an integrated mean square error of 0.004 while the error for ensemble

averaging is 0.0125.
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Integrated Mean Square Error

1.4

1.2
N (integrated mean square error
1.0 for ensemble averaging)
.8
2
N €5
% p(T) = exp (-yIT|)
4
.2
I 1 1
O0 "2 ) b ) 10
Y
Figure 9.. Integrated Mean Square Error
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3.3 SHORT TIME AVERAGING

One technique which is currently employed to estimate nonstationary
mean square values when only one or a few samples are available consists
of obtaining a continuous short time average. The effect of a time average
is to smooth the random fluctuations over the averaging interval and thus
reduce the uncertainty in the estimate. In the analysis presented below,
explicit expressions for the bias error and mean square error will be
developed for processes with nonstationary mean square values.

It will be assumed that the nonstationary process has zero mean value,
and is of the form

y(t) = A(t) x(t) (64)

where x(t) is a zero mean Gaussian process and A(t) is any integrable
function. The covariance function of x(t) is RX(tl s tZ) and it is assumed
that Rx(t, t) = Rx(t) = 1. Many physical situations may be represented by
the nonstationary process of Eq. (64).

Suppose that y(t) is first squared and then averaged over a time 2s,

as shown below.

2 time
y(t) y (t) z(t)
— square average e
over 2s
- ]

The resulting random process z(t) is thus defined by

t+s

2(t) ——15f y(u) du (65)
t-s
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The expected value of z(t) may be found as follows.

tts
E [2(t)] = 2_1; : Al E[xPw] au
-8 .
t+s
1 2
= 5- . A" (u) du (66)

since E{_xz(u)] = R(u) = 1.
2
In order to determine the bias error, assume that A (t) can be repre-

sented in the interval (t-s, t+s) by a power series of order N, namely,

N
A% = Z a_t” (67)

n=0

Substitution of Eq. (67) into Eq. (66) gives

slowl gy 2ona ) o
n= -
N a
n n+l n+l
D [ g
n=0
N n (n+1)
- Z a g AL g (68)
n=0 m=0

where the third equality is obtained after some algebraic manipulation and
the "e'" within the second summation means that only the even values of

m are used.
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The bias error in estimating Az(t) is defined >by

2] - a%(®)

b{t, s) = E [
_N n n+1)
"~ ——y + -
- a‘n € nrll+i tn - Sm (69)
n=0 m=2
If b(t, s) is written in the form
N
bt 5)= ) b_(t, s) (70)
— "n
n=0

then the first few terms of the series of Eq. (70) are given by

b0=0
b1:0

2
b*azs
2 3
b, = t‘2
3—3.3 s

4

2 2 S
b4—a4(2ts + —)

10t™ s 4
bs—a5 3 +ts)
b, =a t4s2 +3tzs4+£
6 "6\ 5 7

SSZ
b7:a7 = + 7t s + ts
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It is clear from the above development that if Az(t) is a polynomial
of moderate order, a large bias error can be introduced into the estimation
procedure. In most practical applications, however, the variations in Az(t)
are not too complicated within an interval of length 2s since s is usually
small. This means that, within each interval of length 2s, AZ(t) can be
considered to be a polynomial of degree two or less and the resulting bias
error will be negligible or zero.

The mean square error in estimating Az(t) by a short time average
may be found as follows: Let ¢ 2(t) denote the expected value of the square

of the difference between z(t) and Az(t), then

2 = Ef=(0) - a%m)]?

H

E [zz(t)] - 2a%) E{z(t)] + aty

E[z40] - 2% [Az(t) +b(t, 5)] + A%

E [zz(t)] - At - 2821 b(t, ) (71)

From the definition of z(t),
t+s

E[ (t) ff yz(u) yz(v)] du dv

t+s

-1 > jf Az(u) AZ(V) E [xz(u) xz(v)] du dv (72)
4s ts

When x(t) is assumed to be Gaussian, as is the case here, a well

known result for Gaussian processes gives
2 2 2 2 2
E[x*(w) x°(v)] = R R®(v) + 2R%(u, v) = 142R%(w, v (73)

since R(u) = R(v) =
33



Therefore, Eq. (72) becomes

. “t+s :
2
E[z (t)] = jf A (u)A (v)[1+2R (u, v)]du dv
' 4s '
tts 2 t+s
2 2
= 2 [ Az(u) du|{ + 1 f A (u)AZ(v)R (u, v) du dv
2s 2
t-s 2s -s
t+s
2 2 2
- [Az(t) + blt, s)] " f A% A%(v) R%(u, v) du dv
2s -s
(74)
Substitution of this result into Eq. (71) shows that
t+s
2 2 1 2 2 2
e (t) = Db (t, s) +———-2- A (u)A (V)R (u, v) du dv (75)
2s t'-'s

The double integral occurring in Eq. (75) is quite difficult to evaluate
even for simple cases. However, it is possible to establish an upper bound.
The Schwarz inequality, Ref.[ 2,p.49 ] , states that for any two integrable

functions f and g

fg (76)

In terms of the double integral of Eq. (75), the Schwarz inequality shows that

t+s t+s 3
1—2 [ A% A%(v) R (u, v) du dv <—[ [fA wAat(v) au av ff R*(w, v) du dv
2s
t+s ;
- —1—2 f Atw) du f f R*w, v) du dv
2s t-
(77)



Using the above results, it is now possible to examine certain limiting
cases for the mean square error and bias. As a first step, consider the

limiting case as s approaches zero. From Eq. (69),

limb(t, s) = 0 (78)
s—»0
and from Eq. (75),
2
lim e = V2 A7(t) (79)
s—»0
2
Note that the rms error is 2 times the quantity A (t) being measured

for small s.

Further examination of Eq. (75) indicates that the mean square error
will become quite large for large values of s because of the increasing
bias effect. Thus it is of interest to determine if an optimum value of s
exists such that e 2(‘c) is a minimum.

For simplicity, let the double integral in Eq. (75) be denoted by

1—2 K(t, s), then

s

c2(t, s) = bA(t, 8) + 5“2’—5) (80)
S

2
The derivative of € with respect to s is given by

d 2 SZK' 2sK
€ - 1 S5 > T &stx
i - 2bb' + 84 (81)

For small s, the bias term (2bb') will in most cases be zero or negligible.

Hence, any value s1 , such that

=0 (82)
will be close to a corresponding value s,, where

2’

35



2_1
SZK (t, SZ) - ZSZK(t, SZ) =0 (83)

Now if a value s, can be found, it will be a first approximation to the

2
2
optimum averaging time s, and it is likely that e (t, SZ) will be close to
2
e (t, sl).

From Eq. (83) it follows that

2

K'(t, SZ) .
S
K(t, Sz) 2
or

K(t, s,) = csz‘2 (84)

where C is a constant of integration. The value of C may be found from

Eq. (79) to be ('2A4(t) ), and the value of s_ is given by the solution of the

2
equation
4 2
K(t, s,) = 2A (t) s (85a)
2 2
In terms of the original functions
t+ s2
2 2 4 2
[j Az(u)A (V) R (u, v) du dv = 2A " (t) s, (85Db)
t- s2

The considerations presented above clearly illustrate the analytic
difficulties associated with an error analysis of short time 'averaging tech-
niques. In order to further investigate this, and other estimation procedures
as well, it is advisable to simulate typical cases of interest on a computer
and observe the effects of averaging time on the mean square error. This
approach also has the advantage of permitting easy variation of the input
parameters to test the sensitivity of the mean square error to these

variations.
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4. RECOMMENDATIONS FOR SUCCEEDING RESEARCH

In deciding which estimation procedure to implement for an experi-

. mental program, consideration must be given to the over-all costs involved.
While certain of the techniques described in this report will theoretically
give better results than others, they may be much more expensive to set

up because of the complexity of operations. Thus, trade-offs exist between
the number of measurements made, the cost of each measurement, and the
cost of implementing the estimation procedure. Because of the high cost

of many experimental programs, it is very desirable to select the estima-
tion procedure which will minimize the total cost.

To gain a better understanding of the relative performance of the
various estimation techniques, the following program is suggested. First,
since mathematical difficulties preclude an exact error analysis in most
cases, a computer simulation study should be made. Nonstationary
processes of the type expected in actual physical situations would be used
and a comparative evaluation of each estimation technique made for each
type of process. One of the principal results of such a simulation would
be to give the experimenter a better understanding of which estimation
technique is best for his particular application. Quantitatively, the
simulation would result in establishing required sample sizes to produce
the same value of the mean square error. Also, it should be possible to

determine optimum values for the parameters of the estimation procedures.
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