

A MODIFICATION OF THE KUHN-TUCKER THEOREM

GPO PRICE \$

OTS PRICE(S)

By

Kenzo Seo

Technical Report No. 1
December 1964

UNPUELCMED PRELCMARY DATA

Research Sponsored in part by the
National Aeronautics and Space Administration
Grant No. NAS G-569

Submitted in lieu of Status Report for the period June 1, 1964 through December 3I, 1964.

Department of Mathematics and Statistics Colorado State University

Fort Collins, Colorado

A MODIFICATION OF THE KUHN-TUCKER THEOREM

Summary:

$$
2300^{4}
$$

The problem of simultaneously maximizing a set of concave functions whose domain is defined by another set of concave functions is considered. It will be shown that any version of the Kuhn-Tucker theorem can be modified to deal with this problem.

Introduction:
Let $f(x)=<f_{1}(x), \cdots, f_{m}(x)>$ and $g(x)=<g_{1}(x), \cdots, g_{n}(x)>$ be respectively m and n-dimensional vector valued functions defined on a Euclidean space. We shall write $u \geqq 0$ if all components of the vector u are non-negative and $u>0$ if all components of u are positive. Consider the following:
'Maximum problem'. For $z=\left(z_{1}, \cdots, z_{m}\right) \geqq 0$ find a vector which maximizes.

$$
\mathrm{z} \cdot \mathrm{f}(\mathrm{x})=\Sigma_{\mathrm{i}} \mathrm{z}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}(\mathrm{x})
$$

subject to the restrictions

$$
x \geqq 0 \text { and } g(x) \geq 0
$$

If the corresponding Lagrangian form $L(x, y, z)$ defined by

$$
L(x, y, z)=z \cdot f(x)+y \cdot g(x)
$$

has a saddle-point (x^{\prime}, y^{\prime}) in $x \geqq 0$ and $y \geqq 0$, then the vector x^{\prime} is a solution to the maximum problem. A pair ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$) is called a saddle-point of a Lagrangian form L in $x \geqq 0$ and $y \geqq 0$ if $x^{\prime} \geqq 0, y^{\prime} \geqq 0$, and
(1) $L\left(x, y^{\prime}, z\right) \leqq L\left(x^{\prime}, y^{\prime}, z\right) \leqq L\left(x^{\prime}, y, z\right)$
for all $x \geqq 0$ and $y \geqq 0$. A solution to the maximum problem, however, does not in general correspond to a saddle-point of the Lagrangian form. The Kuhn- Tucker theorem is concerned with restrictions on f and g under which the correspondence does hold.

We shall use the following version of the Kuhn-Tucker theorem (due to Slater) in our discussion below:

Theorem 1. Assume that, for $x \geqq 0, h(x)$ is a concave real valued function. Assume also that $g(x)$ is a concave vector valued function such that there exists a vector $\mathrm{x}^{0} \geqq 0$ for which $\mathrm{g}\left(\mathrm{x}^{0}\right)>0$. Then the vector x^{\prime}
maximizes $h(x)$ subject to the restrictions $x \geqq 0, g(x) \geqq 0$, if and only if, there is a vector $y^{\prime} \geqq 0$ such that (x^{\prime}, y^{\prime}) is a saddle-point of the Lagrangian form $L(x, y)=h(x)+\leq{ }_{i} y_{i} g_{i}(x)$.

The modification of the maximum problem which we wish to investigate here is the 'uniform maximum problem'. Find a vector x^{\prime} that uniformly maximizes all components of $f(x)$ subject to the restrictions $x \geqq 0$ and $\mathrm{g}(\mathrm{x}) \geqq 0$ 。

Theorem 2. Assume that $f(x)$ and $g(x)$ are concave vector valued functions on $x \geqq 0$, and $g(x)$ satisfies the following condition:

There exists a vector $x^{0} \geqq 0$ such that $g\left(x^{0}\right)>0$. Then a vector x^{\prime} is a solution to the uniform maximum problem if and only if, the following conditions hold: for all $z \geqq 0$, there exists a vector $y^{\prime}=y^{\prime}(z) \geqq 0$ such that the pair (x^{\prime}, y^{\prime}) is a saddle-point of the Lagrangian form $L(x, y, z)=z \cdot f(x)+y \cdot g(x)$.

Proof: 'If part'. Suppose that ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$) is a saddle-point of L. From the last inequality in (1), it follows that

$$
y^{\prime} \cdot g\left(x^{\prime}\right) \leqq y \cdot g\left(x^{\prime}\right) \quad \text { for all } y \geqq 0
$$

In particular $y^{\prime} \cdot g\left(x^{\prime}\right) \leqq 0$. From the first inequality in (1) it follows that $z \cdot f(x) \leqq z \cdot f\left(x^{\prime}\right)$ whenever $x \geqq 0$ and $g(x) \geqq 0$. Since z is arbitrary we have $f_{i}(x) \leqq f_{i}\left(x^{\prime}\right)$ for all i. Thus, x^{\prime} is a solution to the uniform maximum problem.
'Only if part'. Under the assumptions given, $z \cdot f(x)$ is a real valued concave function maximized by x^{\prime}. By Theorem 1 it follows that there is a vector $y^{\prime} \geqq 0$ such that (x^{\prime}, y^{\prime}) is a saddle-point of $L(x, y, z)$.

Note: Clearly, for any condition on f and g under which the solution to the maximum problem corresponds to a saddle-point of the corresponding Lagrangian form, our modification holds under the same condition. The extension of this result into abstruct spaces is immediate.

Reference:

M. Slater, "Lagrange Multipliers Revisited: A Contribution to Non-Linear Programming," Cowles Commission Discussion Paper, Math. 403, November 1950.

