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Honeywell MPG Report 1546-QR 1 22 February 1965

RESEARCH AND STUDY IN

SYSTEM OPTIMIZATION TECHNIQUES

SECTION 1

GENERAL

This is the first quarterly progress report submitted in accordance with
the provisions of Modification 4 to Contract NAS 8-5222, "Research and Study
in System Optimization Techniques." It covers the period from 14 November 1964

to 14 February 1965.

SECTION IT

SUMMARY OF PRIOR PROGRESS

The results of the previous work done under the contract are reported in
Final Report 1546-FTR 1.

The February 3 and 4 meeting of contractors on Guidance and Space Flight

- Theory was attended by Dr. E. B. Lee and D. K. Scharmack of Honeywell. Dr.Lee

presented a paper entitled "Approximations to Linear Bounded Phase Coordinate
Control Problems™ and Mr. Scharmack presented a paper entitled "Nonlinear

Optimal Feedback Control for Reentry'at the general session.



SECTION ITT

PROGRESS DURING REPORTING PERIOCD

Stability of Motion Study

The new results that have been obtained in the area of stability of
motion are contained in the attached appendix entitled'IyapunOV'Functions.
and Their Related Systems with Applications to Finding Their Best Estimators.”
It includes a discussion of how Lyapunov functions can be applied to the
fundamental problem of the determination of sets of initial states from
which the desired terminal state of a dynamical system (with control) may
be attained.

The paper also contains a mathematical analysis of the connection between
differential equations and their Lyapunov functions. In the section on
applications a method for obtaining estimates of Lyapunov functions via
computer is developed. (see the summary)

The literature survey on methcods
of stability is being carried on. As yet no new methods other than those
previously examined have been found. However, some interesting related papers
have been examined. The survey shall be continued as more of the prospective

papers are collected.

Guidance Study

All the memos written at Honeywell on P-matrix predictive guidance have



been read. It was decided to do computer simulations to evaluate P-matrix
predictive guidance. The three stage Thor vehicle was chosen as the model
and thrust and aerc data was gathered on it. It was decided to use a cross
product steering law. The predicted terminal error will be calculated as
compenents in & guidance coordinate system. Thrust guidance will be used
to drive two or three of the terminal error components to zero. Coding was

started on the simulation program.

SECTION IV

PLANS FOR NEXT QUARTER

In the stability area the literature survey will be continued. Also
some of the questions raised in the appended paper will be examined. One
of these is "What should be the criteria for the choice of positive definite
forms used in calculating Lyapunov functions?"

The computer program to evaluate P-matrix guidance will be coded and
checked out. Simulations will be run to evaluate P-matrix guidance and
modifications will be made to increase its ability to guide for off-nominal

trajectories.

SECTION V

EXPENDITURES

Total funds expended on Modification 4 contract from its effective date
of November 14, 1964 to February 7, 1965 have been $3694. This is 16 percent

of the funds from Modification L.
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APPENDIX

LYAPUNOV FUNCTIONS AND THEIR RELATED SYSTEMS OF ORDINARY
DIFFERENTIAL EQUATIONS WITH APPLICATIONS
TO FINDING THEIR BEST ESTIMATORS

by
D. L. Lukes



SECTION I
INTRODUCTORY THEORY

Introduction

Lyapunov functions have been used by mathematiclans in the
study of stability and asymptotic stability of the solutions
of ordinary differential equations.* They can also be applied
to determine regions of asymptotic stability and to find
estimates of the disturbed motion about a reference trajectory.
Consequently they have a high potential for being useful in
many problems in applied mathematics.

Unfortunately, this use has been limited by the difficulty
usually encountered in determining them for specific differen-
tial equations.** But, fortunately for the analyst, there
is a one-to-many correspondence between a differential equation
and its Lyapunov functions. Consequen@ly, the technique of
choosing a positive definite form and attempting to adjust
its parameters to obtain a Lyapunov function for the system
could conceivably be developed into a highly effective applied
mathemetical tool-particularly if the parameter adjustment
could be done on high speed computers.

In this section the correspondence between systems and

¥See 1,. Cesari [2, 1077 for a discussion of Lyapunov's second

method and bibliographical notes.
**V, I, Zubov [5 _] has developed a method for constructing

Lyapunov functions as solutions to partial differential equations.
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their Lyapunov functions is studied. On the basis of some
of these results, functions d = d(w) defined on the parameter
space & are obtained in section II. The parameters in the
form can be adjusted by minimizing d(w) over Q and so the

process can be carried out on a computer,

Summary

We begin by establishing the correspondence between a
Lyapunov function and the differential systems to which it
applies. This is done first for the autonomous case (Theorem
13) and later to the more complicated case where time enters
explicitly in the right hand sides of the system equations
(Theccem 1.8).

For the autonomous case this correspondence 1is examined
in more detail to arrive at cannonical forms for systems with
quadratic Lyapunov functions (Corollaries 1.5 and 1.6).

Theorem 1.9 shows that if the Lyapunov derivative of a
positive definite form V is negative in a deleted neighbor-
hood of the origin, then a sufficient condition for global
asymptotic stability is that its derivative in the direction
VV be nonpositive.

We now prove some lemmas.

Lemma 1.1

Let yeR™ and y # O. Then

yl = {K&}Kejc where
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= a1l skew symmetric nxn matrices.

Proof:

{ky}Ke& c yt  since for arbitrayr Ke¥,

(v,Ky) = (-Ky,y) = -y,Ky) so

(y,Ky) = 0.%
Now we show im& Ke % 2yt

Let xey‘L and e = . Then since y # 0, there exlists an ortho-

Fo.e OO

gonal matrix U for which y = ||y|Ue. Thus, since (x,y) = O,
(x,||lyllue) = l|yll (U*x,e) = 0. Thus (U*x,e) = O,

But it is clear that this requires

1
22
U*x = . for some Zi’ i=1,2,...n.
“n-1
0
*(x,y) and ||x| = vX,x) denote the euclidean inner product and

norm, respectively.
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Lemma 1.2
Let yeR" and y # O. Then the solutions of the inequality

(x,y) < 0 are given by

HOveee O O
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where XA > 0 and the elements a are arbitrary.

Proof':

Let x satisfy (x,y) < O where O # yeR". Then x = Uy+v
where U 1s a sgcalar and veyl. By the previous lemma, v = Ky
for some skew-symmetric matrix K. Also, (x,y) = (wytv,y) =
= U Hyﬂ2 < 0soi <O,

Conversely, every such x provides a solutilon.
Q.E.D,

We can now determine the systems with respect to which a
given function 1s a Lyapunov functlon.

Theorem 1,3

Let fcCl(R®) and V satisfy:
(1) 0< Ve C3(rRY)
(11) V(x) =0 x=0
(111) V(x) » » as ||x|| > =
(iv) w(x) = 0 =» x = 0,

|
Then V is a Lyapunov function for f o f(x) = [k(x) - k(x);jvv(x)

where reCland 0 <(A(x) £ [£(x)] on R™ - 0 and K(x) 1s skew

symmetric, nVVH
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Proof:

) 1 £(x) = [g(x) - k(x)I:]VV as specified in the theorem, then

~~
Hy
-
g
]

(VV,KVV) - A(VV,VV)

A|VV]% < 0 on R® - oO.

(=) If (£,9V) < O on R® - 0, then by the previous lemma

f(x) = -a(x) W(x) + K(x)v(x).
But (£,7V) = -3|vV]|% so

A= =(£,W) eCl(Rn - 0) and A(x) > 0 for x # 0.

2
v Q.E.D.

Remarks:

(1) The theorem says that V corresponds to f as a Lyapunov
function if and only if they can be related by a A(x) and K(x)
according to the equation f(x) = [%(x) - x(x)i] v(x).

We will now show that thils equation can be solived for
V(x).

First we need a lemma,

@ denotes "if and only if"

=2 and < denote "implies"
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Lemma 1.4
If K is any skew symmetric matrix then its eigenvalues
lie on the imaginary axis so that 1f X # O then K - AI

is a non-singular matrix.

Proof:

From matrix theory we know that the unitary matrices
are the exponentials of skew symmetric matrices. But the
eigenvalues of unitary matrices have modulus 1. Then by
the specﬁral mapping theorem the elgenvalues of skew

symmetric matrices are on thé imaglnary axis.¥
Q.E.D.

Thus, by the lemma, for A # O, vV = [K - A1 f. But

this partial differential equation can be solved [ { ,29¢ ].

x x
1
V(x) = g vl(c,xe,XB,...,xn)dc + I02 v2(0,c,x3...,xn)dc

X
+ ° ] ° @ + J‘ n Vn(0,0:-ou)O:U)dU
0

where v(x) = {K(x) - K(X)I]_l f(x).

1

(2) Whereas Theorem 1.3 provides the correspondence from a
positive definite form to the systems respect to which it
is a Lyapunov function, remark (1) provides the correspondence

in the other direction.

¥see I' R, Gantmacher Eﬂ
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That is, suppose f(x) is given and we want to con-

struct its Lyapunov functions, we would have to find the

n2 - nt2

2
K(x) and A(x) which in turn would provide v(x) which in

- tuples of functions to constitute the elements of

turn would be integrated to get V(x). Note that the ele-
ments of K(x) and A(x) must be related through f so that

the 1= 2 partial ~differential equations avi = oV hold.
ox

2 BXJ 1
(3) Suppose feCl(Rn) , f(x) =0 e x = 0 and V(x) satisfies
(1) - (iv). Then K(x) and x(x) can be calculated so that
£(x) = (K{x) - A(x)I]vV(x). Furthermore suppose A(x) > O
on some deleted neighborhood of the origin. Then f is
globally asymptotically stable if det.[K(x) - A(x)I] # O
for x # 0,

Corollary 1.5

The Cl autonomous differential systems on R™ which have
quadratic Lyapunov functions can be represented (module a
non-singular linear transformation) as:

x = [K(x) - AMx)P)x where

K = K(x) is skew symmetric, A = A(x) > O on R® - 0 and
xeCl(Rn - 0), and P is a positive definite symmetric nxn
matrix.

Every such system has the quadratic Lyapunov function
V(x) = Hxﬂg, Also the form of the system is invariant with

respect to orthogonal transformations.



Proof:

Assume the hypotheses; namely that x = f(x) ¢ Cl(Rn)

and (£,vV) < 0 on R® - 0 where V(x) = %(X,PX), P positive

definite and symmetric. Then VV(x) Px so by the previous

corollary,

£(x) = [K(x) - A(x)I]Px where * > O on R - 0 and
reCH(R® - 0) and K(x) is skew symmetric.

Now make the change of variable y = vP x where VP 1is

the unique symmetric positive definite square root of P.

Then

vy = vP x =+vP [K - AI] lJ? y 80

x = (VB) Yy

t<.
i

[ (VP K vP) - XP]\y. But

x = (VP) 1y

vP K(VP) is skew symmetric and O < x(/?"ly) on R - 0 and
also CY(R® - 0).

Conversely, every system of the form x = [K(x) - A(x)Plx
has V(x) = HXH2 as a Lyapunov function since WW(x) = 2x

and (TK - AP)x, 2x) = 2(x,Kx) - 2 A(x,Px)

ox(x,Px) for x # 0.
To see that the given form of the differential equation
is invariant with respect to orthogonal linear transformations,

let vy = Ux where U is an orthogonal matrix.
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UK - Af] Uy

Then § = Ux

= [UKU* - AUPU*]y.

But UKU* is skew symmetric and UPU* 1s positive definite

symmetric,
Q.E.D,

Now by a judicious choice of U and a possible repara-

nmeterization of the solutions we can obtaln an even further

reduction to a cannonlcal form:

Corollary 1.6

Every C1 autonomous differential system on R™ which has

a quadratic Lyapunov function (in a coordinate system (x))

is geometrically equivalent to a system

x = [K{x) - Alx where

A= . R xl > 0 and constant

1,2,...n and
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Remarks:

(1) Every such system has the Lyapunov function

v(x) = |ix}i®.

(2) Every such system in which a(x)e Cl(Rn) has a linear
part.
Proof:

In the previous corollary, choose U so as to dlagonalize
P. Also reparameterize by %% = a(x).

We shall now solve the nonhomogeneous inequality which
oceurs in the analysis of non-autonomous systems. It 1s a
generalization of lemma 1.2.

Lemma 1.7
Let yeRn and y # 0. Let ¢ be a fixed scalar.

Then the solutions of the inequality (x,y) < c are given

AN [

whee A > O, the elements of o are arbitrary and P satisfies

the equation (B,y) + xc = 1.
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Proof: Let x = (xl,xg,o.,,xn\* be an arbitrary element in
R™, Then (xl, xz,,,.,xn,l)* in R can be represented as

u - Av where A is some scalar, v = (yl,ye,o,,,y -c)¥*

n’
and uev®t, But if x is a solution of the inequality (x,y)< e,
then (x,y) = ¢ = -knvng <0, But v#0soAr>0,
A
Furthermore, by lemmall, u can be written as u = Kv where

R is a skew symmetric (n+l)x(n+l) matrix,

. . Thus we see that x solves the inequality

if znd only if (xl, Xy saoy X, 1)¥ =u - Av for A > C

n’
and uev', That ig, the solutions of the inequality (x,y)< c

are the solutions of the system

//Xl\ -2 1
Y

\
[ 4
c a
\.2 YQ
|
|| :
= ° . But wec can write
» o
A o
bl %3 e
n
he -\
n =C
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Y DY -p
Y Y -B
a
\ &\ - .
Y -B
By 62 e e Bn -\
so the solutions of the inequality can be written
Xy 2 Yq By
-\ a |
X2 Y2 Po
- . ¢
*n =X yn/ P

where the equation (B,y) + XAc = 1 must also be satisfied.
Q.E.D.
We shall now make the appropriate assumptions and
definitions so that we can prove the theorem corresponding
to theorem 1.3 for the nonautonomous case. For a discussion
of how nonautonomous systems arise in appllcations we refer
the reader to Section II1.
Consider a system of differential equations

ii = fi(xl’xg’°"xn’t) i =1,2,...n where the right hand
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sides together with their partial derivatives 911 (xl,x

X
are continuous 1n a domain I of the space of var}ables

xl,xz,...,xn,t.* The differential equation will also be
written as a vector equation x = £(x,t). We make the same
assumptions on a function v = v(x,t) and its partial
derivatives ﬁ%&&LEL s 1 =1,2,...n in I'. We further assume

i
that T has the form T = N, (v)
o

[(x)t);lo < vix,t) < €,

to < t < T] where €,» Y, and T are fixed constants and that

v(x,t)

We also require that for each fixed tle[to,T] the level

surfaces v(x,tl) = constant < € are simple closed surfaces

o
(topological n-spheres) about (O,tl). For example, if for
each fixed tle[to,T]}v(x,tl) is defined for all xeRn, then
the previous condition is satisfied if v(x,t) - as x| = «
and va(x,t) = 0 if and only if x = 0, for each fixed
telt ,Tl.

A condition sufficient for trajectories passing through
a point (xl,tl) in N_ (v) at time t; < T to remain in the set
Nel(v) = [(x,t)] 0 ¢ 3(x,t) S_V(Xl,tl)] for future time up to
T is that QXL%%El < 0 along the trajectories in N_ (v)
for which x # 0. °

Definition

When £ and v satisfy all of the above conditions we say

2,o°.,Xn,t)

O and f(x,t) = O if and only if x = 0, for each telt,,T].

*¥These conditions are sufficient for the existence and
uniqueness of the solutions of the differential equations,
see Pontryagin [4,159].
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that f(x,t) is v-stable on N (v).
o

We can now apply lemma 1.7 to determine the v-stable

systems.

Theorem 1.8

The systems which are v-stable on N, (v) are those which

o)
can be written in the form:

f(x,t) = [K(x,t) - x(x,t)I]vxv(x,t) - MB(X t)

on N/¥) where A(x,t) > O for x # 0, K is skew symmetric and
o)

B satisfies the equation (6,vxv) - A %% =1,

Proof: The proof is a simple application of lemma 1.7

and the fact that QXL%ﬁEl = (f,vxv) + %% along a trajectory.

Remarks:

(1) Theorem/.81is a generalization of Theorem 1.3,
(2) The way that this theorem could be applied would
be to choose a v and N (v) for the problem and
then try to choose the garameters K, » and B so
that the resulting system f(x,t) matches up with
the system being analyzed. Notice that the equation

that B must satisfy is a linear algebraic equation.

We now return to the autonomous case.
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Theorem 1.9

Suppose f(x) € Cl(Rn) and that £f(x) = 0 & x = 0,
Furthermore suppose V satisfies:

(1) 0 < VeG®(R™)

(11) V(x) =0 e x =0

(i11) V(%) » » = x = 0, and

(f,VV) < 0 in a deleted neighborhood of the origin.

Then if (VV, V(f,VV)) < O in R™ the system x = f(x)
is globally asymptotically stable.
Proof:

Suppose the hypotheses of the theorem hold.

If (£,YV) < O on R™ - 0 then V is a Lyapunov function
and the system is globally asymptotically stable.

We now consider the contrary case. Thus, there exists
x # 0 in R™ such that (f(x), VV(x)) = O (by the intermediate
value theorem which applies since (f,VV) is continuous in

n

R - O which is connected and since (f,VV) < O in a deleted

neighborhood of the origin.)
Define T - [x: (f(x),VV(x)) = 0, x # 0] which we note to be
a nonempty closed set. Then by (iii) and the continuity of

V, min V{(x) occurs for a point in T which we denote by x*.
xeT

Thus V(x*) = min V(x).
xeT

Next we define

D* = [x: 0 < V(x) < V(x*)].
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This is an open, arc-wise connected set about the origin,
To see the nrcwlse connectedness of a set [x: 0 < V(x) < ¢«]
where o > 0, suppose there were a component other than the
one about the origin - call it 6. But 6 1s bounded since

0< V(6) < @ and V(x) - = as ||x|| = «. Thus min V(x)
xeb

occurs on 6.

If min V(x) occure at a point in 6, then 1t is necessary
that vaieo at the point, which is impossible, since 6 does
not contain the origin.

The remaining possibility is that min V(x) occurs on
36, the boundary of 8. But ab = [x:V(§§6= a] so we would have
V(6) = o and so again VV = 0, this time on all of ©. Thus
there are no other components.

(a) Therefore we have (f,vV) # O on D* which 1is connected,
put (£,vV) < O on part of D¥ so (£,VV) < 0 on all of D¥,

(b) We now snow that x* - ¢ vV(x*) 1s in D* for all sufficiently

w
)
'...l
’-J
m

V]
O

V(x* - € vV(x*)) = V(x*) - ¢ “VV(X*)“2 + 0(€2). But
VV(x*) # 0 so for all sufficlently small e > O, V(x* - evV(x*))
< V(x*), Also x* - e vV(x*) # O for all sufficientiy
small € > O since x* # O.

Therefore 0 < V(x* - evV(x*)) < V(x*) for all sufficlently

small ¢ > 0,
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(¢) Thus from (a) and (b) we have (f[x* - evV(x*)],
vV[x* - € vV(x*¥)]) < O for all sufficiently small e > O,
Now we shall show that this leads to a contradiction of
our hypotheses.
(d) Expanding,
(£lx* - evV(x*)], vV[x* - evV(x*)]) =

= (£(x%), W(x*)) - e(£(x*), ) wW(xr))

af
AX*

as € = 0, Thus, letting € - 0 and dividing by -1,

= e(wvix*), QL) wv(x*)) + n(0(e?)) where ||n(0(e?))]| = 0(e®)

(£(x%), (BZD wV(xx)) + (vW(xx), (35,) wv(x%)) > 0.

But (§%¥) is a symmetric matrix so
: Vv f
(w(xx), (3%x) £(x*) + (§) TV(x*)) > 0

But this says (vV, v(f,vV)) > 0 at x* which is contrary

to our hypothesis,
Q.E.D.

SECTION II

APPLICATIONS, CALCULATION
OF BEST ESTIMATORS

Some Remarks About Section I

One of the objectives 1n Section I was to study the

connection between a differential equation and its Lyapunov
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functions. We saw that part of the form of a differential
equation Ean be changed without requiring a change in the
Lyapunov function. That is, if we have a system f(x)
with Lyapunov function V(x) then we can perturb the system
by adding any term of the form K(x) vV(x) (where K(x) is
skew symmetric) to get another system with the same Lyapunov
function. This has the important implication that once a
Lyapunov function has been found for a system there are a
variety of design changes that can be made in the physical
system which will not affect the stablility of the system.
Similar remarks could be made about nonautonomous systems.

Another conclusion that can be drawn from theorem 1.3
is that if the parameters in a positive definite form 5 can
be adjusted so that it will be a Lyapunov function for f(x),
then the parameter adjustment could be done by equating
coefficients in an equation (f,VG) = -A(x) HV"\}‘H2 for some
x(x) > 0., A corregponding remark could be made about the
nonautonomous case.

It should be noted that ° the conditions in the
theorems could be changed to give local results. Of course
that is all that i1s required in many applied problems since
the physicél system operates in only a small part of the
phase space.

We now discuss how some applied problems fall into the

category that has been considered.
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How Lyapunov Functions Might Apply to the Study of Equations

of Disturbed Motion

We shall now indicate how Lyapunov functions might be
used to obtain estimates of the disturbed motion about a
reference trajectory.

Consider an ordinary differential equation

y = g(y,t) to be called the equation of undisturbed
motion and let y = §(t,to,yo) be a solution satisfying
§(to,to,yo) = y,. We are interested in analyzing the
behavior of the system in a neighborhood of the reference
trajectory §. Define a new variable x = y - ¥y and consider
the new differential equation

x = f(x,t) = g(x + y,t) - g(y,t). The latter equation
is called the equation of disturbed motion. Any solution
X = x(t,to,xo) with x(to,to,xo) = x, of this equation glves
the vector difference between corresponding points (in time)
on the reference trajectory and the trajectory generated
by the equation of undisturbed motion passing through
Y, + %, at time t . Notice that £(0,t) = 0 for all ¢t.

It should be noted that no linearization has been made
and that an important feature of the Lyapunov technique is
that with it an attempt is made at obtaining bounds on the
variation in x without linearizing the equation of disturbed
motion.

Thus we are led to a nonautonomous differential equation
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x = f(x,t) where £(0,t) = 0. We shall now consider
the motion of this system in the space-time configuration

space indicated by fig. 1.

A
/ )
N, (v
o
Reference TraJectory -
> o = = > Z
T
B j/ﬂ/ /”"_' ~——

Fig. 1 - A Neighborhood Of
The Reference TraJectory In Space-Time

In certain applied problems 1t is important that for
various kinds of neighborhoods of the reference trajectory
the trajectories intersecting the neighborhocd remain in the
neighborhood for future time. In principle Lyapunov functions
can be applied to verify the existence of these neighborhoods
and also to determine their size and shape.

In some applications to the guidance and control of
aero-space vehicles the system equation for the controlled
system % = f(x,t) and the reference trajectory y are obtained
only after much work in the face of many design constraints.

Obviously it is important that these constraints not be
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violated when the system 1s disturbed away from the reference
trajectory. Also it 1s an important problem to predict the
size of the disturbances that can be tolerated. For example,
it would be valuable to be able to quickly predict the variance
in initial conditions that could be tolerated in a rocket
launching problem without critically violating the constraints
on the burnout velocity and position. This problem would be
solved if a Lyapunov function such as in theorem 1.8 could
be found for the system.

We shall now consider the problem of computing Lyapunov
functions. First we discuss the autonomous case and later the
nonautonomous case,

A
Calculation of Best Estimators V for Autonomous Systems
1

Let f(x) be a C~ differential system which is asymptotically
stable at the origin. Suppose that we have selected a
positive definite form ka) with free parameters in a set 0
and for each choice of the parameters conditions (i) - (iv)
of Theorem 1.3 are satisfied. The problem to be considered is
how to adjust the parameters of v(x) so as to make it into
a Lyapuno§ function for f(x).
In view of Theorem 1.3 we can now consider the systems
of differential equations T which correspond to G; that is,
F(x) = [K(x) - AM(x)1I9V(x)
where K(x) is any skew symmetric matrix function of x and

A(x) is any positive definite form. We now propose approximating
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f by T by sultably determining K, A and the free parameters
in ¥,
Since K is allowed to depend upon x we first choose it

so as to solve the problem, min ||f - £Il. But
K

Iz - TP = e - kW + AT

e - kW72 + 2x(f - KWV, WV) + A2 |WV|°

e - K972 + ax(e,v%) + a2 |WV|2.

Thus K occurs in only the first term and 1t is easy to see

that min|lf - KVV|° = —(&Y@i . Thus
K vl

nin it - TR = {002 4 o (e,w) + 2R,
K V|2

Next we minimize over A(x).

min min |If - §“2=</ Iov]|
>0 K

\ O when (f,VF) < 0,

Now it would seem appropriate to conclude the approximation
by a least squares type determination of the parameters by

choosing a collection of base points Q filling out a neigh-
borhood of the origin under investigation. In short we are

led to adjusting the free parameters in the form G’by
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minimizing the non-negative real valued function d(w) defined

on the parameters space § by the formula:

20 K 1P llell” 991

~ 2 ~
d(w) = min minz le - )" =Z (<L 72,
X (£,9V)>0

Whenever d(w) has a minimum on @ we call the corresponding
¥ a best estimator and denote it by .

Thus once the form V has been selected and the base
points Q specified, then the computation for adjusting the
parameters to obtain G reduces to a standard numerical
problem of minimizing a real valued function d(w) of several
variables over f, Of course G(x) depends upon ;; % ana f.
Once the calculation 1is terminated, the region where

A
(£(x), V(x)) < 0 will already be calculated.

Calculation of Best Estimators G for Nonautonomous Systems

We now carry out the corresponding calculations for the
nonautonomous case. Again we assume that a positive definilte
form ka,t) with parameter space §! has been selected. As in
the autonomous case we attempt to obtain an algorithm for
adjusting the parameters of G'by approximgting f by systems
f which are ; stable with respect to V, Thus we define
d(w) = min mini{i_ RSkl on

20 K e
(x5%)
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where F is to have the form
~ ~ )
F(x,t) = [K(x,8) - A(x,8)1] V,5(x,8) - LK) p(x,t)

where K 1s skew symmetric and B(x,t) is any solution of

~ oV
(B,VXV)-K R = lo

Here (x?t) denotes a collection of base poinés in the
neighborhood of the reference trajectory in the space-time
configuration space. As before, the algorithm for adjusting
the parameters in v will be to minimize d(w) over . When
this minimum is realized at some point in & the corresponding
v will be called a best estimator and be denoted by 9.

We now calculate the two minimums indicated in the formula

for d(w).
1e-312 = J2)2 - 2(5,7) + T2

(B,f).

A,

(£,F) = (£,XV.7) - A(£,V. V) -
1712 = kv, 712 - L (B,kV, V)

s 221032 + 2 & (s, W)

L~

N (5,k0,F) +r (5,0, + §D2 (1812

= kv vIP - 2 g%(s,KvX'G)

SRS 2V (5,v%) + (I )2 2.
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Thus,

12 - av (B,KV,V) - 2(f,kv V)

~2 ~
12-F12 = k9,5
A5V V% + 2x BV (B,9,V) + 2x(£,V.7)

+22 (g,r) + (2812 + 2

Il

”hv v - ( B + f)” - H 5 + fu

nmj-<%a+fm2

+ A5V v|® + ex (5 V) + 2x(f,V 7).

e (Fprr, 0T

I, 7)<

B+ 1) )2

sl

But min |KV_v - (
X X

e 2
Vv . ~ ~
= [gf (8,9,7) + (f,vxv)}

v 3°

Now we use the fact that B is restricted to be a solution

of the equation (5,7.V) = 1 + %% in the two equations

above to get
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min ||£-7)° = [(f,vx?) + %%(1 t %—%)J
K

+ 2 [(f,va) + g—‘é (1 + A %%)] + 28 F1°.

Thus we sgsee

~ |2
~ ov -~ ~
[(f’vx") * 8’6] when (£,9.%) + &

~ > 0
min min [£-F)|% = || s St
W0 K S |
0 when(fV?f')+av<O
1% ot =~

Therefore we get

2
d(w) = min min f-f2
2o K £l
(x,t)
V.Y & | 2
= (2, X )+ 3E
T T ed g 19,31
(£,V.V) + B‘% > 0

Thus we see that the formula for d(w) reduces to the one
previously derived for the autonomous case.

We have not discussed the problem of how Vor ¥ and Q is
to be selected. A study of this problem would be of value to

the technigue for computing best estimators discussed above.
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f(x,t)

R0

YV (x)

-

P
0

X*’D*

(Xl:x2’°-°

U*,p*

SYMBOLS COMMONLY USED

parameter space

positive definite form

positive definite form
orthogonal complement

skew symmetric matrix

class of skew symmetric matrices
euclidean inner product
euclidean norm

orthogonal matrix

n-dimensional euclidean space

class of functions with contlnuous first partial
derivatives on RR

right hand side for a system of autonomous differential
equations -

right hand side for a system of nonautonomous
differential equations

R™ with the origin deleted
gradient of V(x)

identity nxn matrix

positive definite symmetric matrix
closure of the set ©

* denotes a superscript

X )*
column vector (transposed row)

*¥* denotes transpose of a matrix



