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PREFACE

This Memorandum is part of a continuing study of particles and
fields conducted by The RAND Corporation under Contract NASr-21(05)
for the National Aeronautics and Space Administration. Its subject
is one presently ill-defined by experiment and one of interest to
many geophysicists -- the nature of thel;tructure of a shock wave
formed by the interaction of the geomagnetic field and the solar
wind.

The author, a consultant to The RAND Corporation, is a graduate

student at the California Institute of Technology.
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ABSTRACT
23 194

This Memorandum postulates the structure of shock waves in a low-
density plasma and uses it to explain several features of interplanetary
shock waves observed by satellites and space probes., 1t shows in
particular that unsteady tlow behind the shock wave is caused (when the
pressure there is anisotropic and satisfies the condition E%l—:—§‘> 1)

B /4T
by the refraction of small-amplitude disturbances through
the shock. The shock wave is stable, however, with respect to small
perturbations in the fluid variables, because the problem of small-
amplitude disturbances refracting through a fast hydromagnetic shock
wave has a unique solution. The length for the unsteady flow's onset is
characteristically a few ion cyclotron radii, which agrees with the
experimental data. A possible explanation is offered for the increase

in the flux of low-energy electrons seen by Explorer XI1 as the satellite

passed inward behind the earth's bow shock on September 13, 1961, Ahﬁ//
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I. TINTRODUCTION

Recent satellite and space-probe experiments have provided experi-
mental evidence for the existence of shock waves in interplanetary space,
with thicknesses much smaller than the mean free path (which, in the inter-
planetary medium, is about 1 A.U.). It seems to be characteristic of these
shock waves that the region behind thém is a region of unsteady flow,
resembling turbulence, with disordered magnetic fields and an isotropic
flux of plasma ions. We will show here how such an unsteady region of flow
is to be expected behind a shock wave in a low-density plasma. We will
first investigate the stability and structure of such shock waves, and then
show how our results apply to the shock waves observed in interplanetary
space.

The Imp 1 magnetometer and plasma data provide evidence for a bow
shock wave in front of the earth's magnetosphere in interplanetary space.
Behind this shock wave, the magnetic field fluctuates rapidly in magnitude
and direction (Ness, Scearce and Seek, 1964), and a hot isotropic flux of
positive plasma ions is observed (Bridge, et _al., 1964). The magnetometer
experiment aboard Pioneer I (Sonett, Smith, and Sims, 1960; Sonett and
Abrams, 1963) determine the low-frequency power spectrum of these magnetic-
field fluctuations. Evidence for a second hydromagnetic shock wave in inter-
planetary space about 107 km from earth and traveling towards it was found
in the Mariner 1II magnetometer and plasma data (Sonett, et al., 1964). The
plasma flux increased, and the magnetic field increased in magnitude; dis-
ordered fields were present for many hours behind the shock wave.

The satellites and space probes mentioned above moved through the
observed shock waves so rapidly that no measurements of the structure were

possible,



Experimentally, we can distinguish between the following four regions
in the flow (see Fig., 1): Region 1, the region ahead of the shock;

Region s, the shock wave itself, whose structure has not yet been
determined experimentally or theoretically; Region 2, the region behind
the shock, where the magnetic fields and plasma flow are unsteady and
disordered, whose thickness is very large compared to the thickness of
Region s; Region 3, the region of steady flow and ordered fields, which
follows the unsteady region after the fluctuations have been damped.

In this Memorandum, we investigate the consequences of dividing the
shock wave, Region s, into two sub-regions, A and B, as shown in Fig. 2.
We postulate the following structure for shock wave:

Region A: The shock wave proper, in which the electron gas undergoes
a non-adiabatic transition, and whose thickness must therefore be no
more than a few electron cyclotron radii, We suppose that there is
an electric field in the direction opposite to the flow sufficiently
strong (over a distance of a few Debye lengths) that the ion gas is
slowed down, thus restoring charge neutrality behind this region. The
postulated structure for Region A is similar to the structure discussed
by Colgate (1959) for a strong shock wave in a collisionless plasma,

Part of the energy of the ions'

directed motion goes into heating the
electrons, and part goes into compressing the ion gas. Because the
transition region is so thin compared to an ion cyclotron radius, the
compression of the ion gas is essentially one-dimensional,

Region B: The region just behind the shock wave proper, where
unstable hydromagnetic waves grow in amplitude. Because we suppose the

ion gas to undergo a compression that is essentially one-dimensional,

the parallel ion pressure is expected to become much larger than the
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Fig.1—The four regions in the flow which can be distinguished experimentally
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Fig.2—The postulated shock structure



ion pressure perpendicular to the flow direction. When the magnetic
field is also roughly in the direction of the flow, the hose instability
criterion

Il R

B2 /4

may be satisfied, where P‘l and ?L are the ion pressures parallel and
perpendicular, respectively, to the magnetic field, Hose instability
results in the growth of hydromagnetic waves (Parker, 1958). The
amplitudes of these waves remain small enough that linear analysis may
be used in a region whose thickness turns out to be a few ion cyclotron
radii (see Sect. III below), and this is defined to be Region B.

In Region 2, the growing hydromagnetic waves become nonlinear,
producing the disordered magnetic fields, isotropic ion flux, and
unsteady flow observed experimentally; eventually the waves are damped
by dissipative processes in this region, whose thickness may therefore
be expected to be of the order of the mean free path. In the case of
the earth's bow shock, the length of this region appears to be larger
than the dimensions of the magnetosphere., The disordered fields behind
the shock wave described by Sonett, et al., (1964), lasted many hours,
indicating a length comparable to 1 A,U,

In Section II below, we prove the stability of Region A by assuming

that it may be idealized as a plane, fast hydromagnetic shock,

*The terminology is that used by Bazer and Ericson (1959). A
hydromagnetic shock wave is fast if the normal Alfvén velocity behind
it is less than the normal flow velocity behind and relative to the
shock wave. The normal phase velocities of smallwamplitude waves
behind and relative to a fast shock wave are positive for six of the
modes and negative for the seventh, which is the only mode in the
rear region that can travel upstream to the shock wave.




Assuming the thickness of Region A is much smaller than wavelengths of
interest, we show, following Gardrer and Kruskal (1964), that such a shock
is stable with respect to small perturbations of the fluid variables.
(This still leaves the possibility, however, that there is instability
with respect to the degrees of freedom characteristic of the plasma's
discrete nature.)

In Section III, we discuss the structure of Region B and calculate
its thickness, assuming the dominant frequency is 0.1 times the ion
cyclotron frequency.

In Section IV, we compare our theoretical results with some

experimental results concerning the interplanetary medium,



II., THE STABILITY OF THE FAST HYDROMAGNETIC SHOCK WAVE

In an inviscid compressible fluid that is a perfect conductor,
a shock wave is a surface at which the fluid variables have jump
discontinuities. The shock conditions governing the jumps in these
quantities are derived in Appendix B. While investigating the
stability of a shock, we consider an arbitrary small perturbation in
the fluid variables, 5p,8V,8B, and s, where p is the demsity, ¥ is
the veolcity, B is the magnetic field, and s is the specific entropy,
and we consider the perturbation in the position of the shock, B,
If there is one initial small perturbation that tends to grow
exponentially with time, the shock is called unstable,

An arbitrary small disturbance at t = 0 can be expanded in terms

of normal modes; in the case of plane symmetry, we use a Fourier

expansion. If the unperturbed shock is the surface x = 0, let the

perturbed shock be the surface ¢(x,t) = x + dp(y,z,t)

0. Consider

the following mode of the shock perturbation:

~ 3 . - t
Boly,z,t) = & et x - ut) )

where f lies in the yz plane, The linearized conservation equations

provide a dispersion relation for small disturbances which have the

-—b

space and time dependence etk x - wt). (See App. C.) This is a

—
relation between w and the components of k, and there are seven possible
values for k, the x-component of the propagation vector, that satisfy
the dispersion relation. Hence, the perturbations in the fluid

variables are given by

—_

. 7 ~ ik,x s s . _
U(x,t) = PN U. e 3 el(z X wt)
=1




where 5p
5v
6Bt
§s

is a seven-component column vector, and the Uj are the amplitudes of the

~

seven normal modes of the fluid. If Im w > 0, then all disturbances
grow exponentially in time, and the shock is unstable.
Since the linearized shock conditions (see below) are to be
satisfied at x = 0 by the small disturbances U, the frequency w must
be the same for all disturbances, and the yz-component of the
propagation vector must be equal to Z for all disturbances:
K= (k,zy,zz). Furthermore, the boundary conditions U~ 0 as x = + =
imply that Im k < 0 for x < 0 and > 0 for x > 0., Because the eigen-
values of w/k ahead of the shock (x < 0) are all positive, Im k < O implies
Im w < 0. Therefore, since we are looking for unstable modes, with

Im w > 0, the disturbances in front of the shock must have zero
w

amplitudes. Also, the amplitude of the one mode for which E—-< 0
~ 7
behind the shock must have zero amplitude: U = O.

~

The coefficients Uj are determined by the initial condition,

- 7 ~ ik .x i-. . -
U (x,0) ={ T Uje J et T ¥ ,
=1

J

and by the linearized shock conditions. If it is possible to find

non-zero amplitudes Uj for the other six modes behind the shock and
for 8$; for some given values of 4 and w, with Im w > 0, then there is

-

an initial condition U(x,0) which grows exponentially, and the shock

is unstable, (This is the stability problem as posed by Gardner and
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Kruskal, 1964; although we have adopted a different method of proof
below, much of the formalism is adapted from their work, and

generalized to include the effects of non-isotropic pressure behind the

shock.)

The shock conditions may be linearized by setting ¢ = x + &p, and

P =0 + Bp, etc. The unperturbed shock then satisfies the following

conditions:
[pv, ] =0 . B l=0
A B2 - Bx N
x P, + — 1+ (v )lv]l+ ( — )[(-1B] = 0 ,
1 X
81 4m
r v2 ﬂ'
(pvx)[e+-—-+—- = 0
- 2 p

We have taken v parallel to E, and in the xy plane; E = 0 on both

sides of the shock in this coordinate system. It is always possible

to choose the coordinate system in this way if the magnetic field does

not lie in the plane of the shock, as shown by de Hoffmann and Teller

(1950). (See appendices for derivation and explanation of symbols.)

The perturbed quantities satisfy the following boundary conditionms,

neglecting terms of second order in the small quantities:
[6Gv,)] = saselp] - ik Bolovy]

2
\ EL 1 5 o -
5(pv_ ) e+ — + + (pv._ ) Tds + — (Py4- P,) —5 + v ° v
x 2 X 1 .2

Bp Bs
+ a2 — + b2 —

p p




8BX B — = g —
+v—= B+ {2} [v@ - 8B+ E - &v)]
4 41

2 2 2
v B v PJ. vB Bv
= iwbplple + — ) + —] - ik bpl (pv_)(e + — + =) + —Y— ]
2 g y y 2 p 4
E - 5B

B
2 X
- 1+ 2(pv v ]+ [v "Bp] + (2n) [(v-1)8B_]

2
[a2sp + b Bs +

B
= - ikBol{(v)lv 1+ () [e-DBI

4y
Bx ‘ v-1
[ov,pv, 1+ (v )lev 1+ [vvose] + ( - ) [ev-1)8B 1+ [ - B 58, ]
B 2

= iw&p[pvy] - iky&p[ll + pvy2 + (v-1/2) ';j;— ] ,

Bx B2

—= M (v~ = - i —_—
(pvx)[avz] + (lm) (v l)BBz] lkz&p[P-L'i' - ] s

v, - [v,88, 1+ [B.6v ] - (B)Tov, 1= iubo(B ]

[v.8B] - (B )[&v,]=0 ,

[8B_] = - iky&p[By]
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To convert from the variable %e to Bs, we have used the following

relation (see App. A):

PJ_ 1 Bp
de - — ®p = Tds + — (Py,- Pj) —
2 1 2
p 3 P

These are the boundary conditions on the small quantities at the
shock, They are useful in this form if the propagation vector K lies
along one of the coordinate axes, say, the x-axis. In this case,
because we have (from App. )k - 8B = BBX = 0 and ky = 0, the last
condition is identically satisfied. We have really only seven boundary

—

conditions relating the quantities Bp, 5;, 5B 8s before and behind

£’
the shock and &p. These conditions determine the solution of the
problem of refraction of a small-amplitude wave through a fast
hydromagnetic shock., The seven quantities &p, ps, Sgt, 8s in the
incident wave are considered as given, and we can solve to find &g
and the seven quantities Bp, 83, Bgt’ ds in the refracted wave. For
the refracted wave, there are only six modes which carry energy away
from the shock, so only six of the quantities &p, 8;, Sgt’ ds are
independent. Hence, the six amplitudes of the diverging modes and
&p are the seven quantities which are uniquely determined by the
solution of the above equations.

It is interesting to consider the role of the entropy waves in
the refraction problem. There are two cases:

(1) Propagation vector K not perpendicular to magnetic field B.
The quantities to be determined are the amplitudes of 1 fast wave,

2 Alfvén waves, 2 slow waves, and 1 entropy wave (8s).




11~

(2) Propagation vector k perpendicular to magnetic field B.
The quantities to be determined are the amplitude of 1 fast wave,

and the 5 quantities bs, B;t, 5B

t in the entropy waves.

To determine these quantities, we have a system of seven
non-homogeneous equations. Since the problem of the refraction of an
incident small disturbance through a shock is a physical problem, we
can argue that it must have a unique solution. It follows that the
system determinant is not zero. When the amplitude of the incident
wave is zero, the system of equations is homogeneous, and has only
the zero solution, since the system determinant is not zero.

Symbolically, if

where Ai is the amplitude of the ith mode in refracted wave, and

we are given

then the system may be written MX = V., On physical grounds, we have
argued that det M # 0, so that M-l exists, and the unique solution is
X=M V., In particular, if V= 0, then X = O,

Now the problem of instability, as formulated above, is

equivalent to the problem of finding a refracted wave with non-zero

amplitude when the incident wave has zero amplitude. Because, as
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we have shown, this is impossible for a fast shock, it is stable,

This completes the proof that a fast hydromagnetic shock is stable,
with no restrictions on the geometry of the shock.* The generality

of the proof is a consequence of the unique solution for the refraction
problem for fast shocks. (This is the "evolutionary condition" used by
Jeffrey and Taniuti (1964, p. 125) to select the physically relevant

solutions of the generalized Rankine--Hugoniot relations for a system

of conservation equations.)

*Cardner and Kruskal (1964) have proved it only for fast parallel
and perpendicular shocks -- that is, when the magnetic field is either
parallel, or perpendicular, to the shock normal. Although, since the
special coordinate system with E = 0 does not exist, the linearized
shock relations do not hold in the above form for perpendicular shocks,
similar equations can be written for perpendicular shocks, and the
same reasoning used,
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I11. THE STRUCTURE OF REGION B

In this section, we will assume that the ion pressure in the
direction of the magnetic field is considerably greater than the
ion pressure perpendicular to the magnetic field in Region B, i.e.,
Pll > ng . This pressure anisotropy in Region B is assumed to lead
to Eose instability (Parker, 1958). This will reduce Pl[ and cause
the field in Region B to have a disordered structure. Th?s in turn
will cause the ion flux to be isotropic, rather than predominantly in
the flow direction. The way in which hose instability comes about
is as follows: Waves of infinitesimally small amplitude ahead of
the shock and incident upon it are refracted through the shock,
generally resulting in waves of all six outgoing modes. If v > 1,
then one of the Alfvén modes will grow spatially, for a given
frequency, where

P -P
Ilb BEN
B2/4ﬂ
As an example, consider an incident Alfvén wave with k in the

plane of v and ﬁ, e,g., the xy plane; suppose the only non-zero

quantities in the incident wave are 5vz and ﬁBz . In the refracted

1 1
waves, it is consistent to set Spb =8%v. =8%v. =5BB =58BB = Ssb =
b *b b
and &p = 0. Then sz and SBZ are determined by the following
b b
relations:
By
r =X - =
(v )ov 1+ (lm) [cv-DeB8 1=0

[v.eB ] - B)ev,]=0 .
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The incident wave is

Bv . .
z1\ -1 1kyy 1(kicoseix—wt)
= c, e e
B, v 4Ty
1

The refracted wave is

v “ivv-l i(k+cosQ+x) 1 .v—l\\
+

Zp

c,e e
5B / 411p 4rip / -
zb‘/ b . b )

i
The existence of boundary conditions at x = 0 requires that ky and w
be the same for all three waves, which leads to Snell's law for

the angles of incidence and refraction: k_ = k.sinf, = R k,sing, = R _k sinb
y i i e + + e - -

or
i +
51nei i vb(v1 Al)
2 2
4 (v-
sing Vb N 1)Ab
+
and 6_ = e+, since Rek_ = Rek+. The boundary conditions give a non-

homogeneous system of two equations, which enables us to solve for the

amplitudes of the refracted Alfvén modes, c, and c¢_, in terms of the

amplitude of the incident Alfvén wave, c - In this case, we can

explicitly demonstrate the fact that the system determinant is not zero:
v-1

A= - 2ia/v-1 1+‘A—3}4o

b4

because we are assuming that v > 1. The solution of the equations is

{1+, + . i ' fo1T i 1 G
c. = —_— —_ 4 — + 2 —— —_
+ 17 A ( . )+ i ( Iy )} A ,

2 2 P1 2

ik_cose_x i(kyy-wt)
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{ 1 (v-1) : oy 1 : : Py 1 . c,
c = {-1 - - =4 — )+ i1 = e — —=
& ‘A’z Py 'A'z Py 'R'l'ﬂ’z A
where
v
A -1
*1
and
v
a2
B /[f4mo,
%p

Assuming that v > 1 behind the shock, the refracted + mode

grows to about 2.7 times its amplitude in a distance

[o,2+ 1) A D] coss,

/-
A’v-1 Abw cosab

A

from the shock, while the refracted - mode is attenuated to about

1/2.7 of its amplitude in that distance. Hence, the thickness of
Region B is of the order of a few A's. The higher frequency waves

grow faster (i.e., in a shorter distance), but the mechanism of the
instability works only for frequencies small compared to the ion
cyclotron frequency (see Longmire, 1963, p. 124), The fastest growing
waves might have a frequency of about 0.1 times the ion cyclotron
frequency, w, . This should be the dominant frequency in the disordered
field region, and with this frequency in A, we have the thickness of
Region B. Since v is not too large, and v, is of the same order of

b

magnitude as Ab’ we have approximately
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which is the cyclotron radius for an ion with the speed Vi We

conclude that the thickness of Region B is a few ion cyclotron radii.
Noerdlinger (1964) has also described instabilities that could

explain the fluctuating magnetic field in Region B. His analysis

is based on the assumption that the perpendicular pressure ?L is greater

than the parallel pressure Pll. "The anisotropy of the plasma behind

the shock front leads to instability with respect to transverse waves.'"

His calculations also agree fairly well with the noise spectrum

observed by Sonett, Smith and Sims (1960). His analysis probably

applies on the eastern sunlit side of the earth's bow wave, whereas the

analysis given in this paper is meant to apply to the western sunlit

side (see next section).
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IV, COMPARISON WITH EXPERIMENTAL RESULTS ON

THE INTERPLANETARY MEDIUM

In the solar wind, the magnetic field direction seems to lie
roughly either in the direction of, or opposite to, the flow, but is
at such an angle that it is roughly normal to thgfearth's bow shock on
— e
its western sunlit side. (See Fig. 3.) At each point on the shock,
we can investigate the shock structure in a coordinate system moving in
a direction which lies in the plane of v and B and is tangent to the
shock, with velocity such that the resultant flow velocity is parallel
to B. We assume that the shock has the same structure, over distances
small compared to its radii of curvature, as an infinite plane shock.
In the preferred coordinate system at each point on the shock, vV and B
are parallel; both are roughly parallel to the shock normal in the
western sunlit side of the shock. Since this is the part of the shock
described by the early Imp 1 data, it seems reasonable to compare these
experimental data with the theoretical results for an idealized plane
shock model in which the magnetic field and the flow velocity are both
parallel to the shock normal, i.e., a parallel shock. The results are
not too critically dependent upon this idealization, as long as the
magnetic field and flow velocity are both roughly normal to the shock.
In the case of a parallel shock, we have @ = &, so the characteristic

length for the spatial growth of the unstable hydromagnetic waves is
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Fig.3—The direction of the magnetic field near
the earth's bow shock
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If v~ 2, vy
then A= 2000 km = 1/3 R,. Since A should be measured along the field
lines, and the field is roughly as shown in Fig. 3, the distance measured
along the normal to the shock is probably about 0.1 R,.

For the frequency, we have used the highest (approximate)
frequency for which the hose instability would be expected to occur,
0.1 times the ion cyclotron frequency, which is about wy 1 sec-1
for B - 10y. Since these waves grow faster than waves of lower
frequency, we might expect that the dominant frequency in the
disordered field behind the shock would be about w= 0.1 sec-l. The
magnetometer data from Pioneer I seems to have a periodicity of about
ten seconds (Sonett, Smith and Sims, 1960), and the power spectrum
generally shows a steep decrease near w = 0.1 rad/sec (Sonett and Abrams,
1963), in agreement with this prediction.

The Imp 1 magnetometer data (Ness, Scearce and Seek, 1964)
indicate that the characteristic length for development of the
turbulence behind the earth's bow shock is about 0.1 Re’ in agreement
with our calculation of A. This fact, plus the fact that the
Pioneer I data give a spectrum in agreement with the growing hydro-
magnetic-wave hypothesis, provides the strongest experimental support
for the above theory. Evidence exists also, however, for the presence
of growing hydromagnetic waves of lower frequency and, hence, of
longer characteristic growth length, as described in the following
paragraph.

Measurements of the magnetic fields between 5.2 and 15.4 Re by

instruments aboard the interplanetary probe Pioneer V (Coleman, 1964)

show that the magnetic field beyond the geomagnetic cavity is disordered

~ 10’ cm/sec, A = 1,5 x 107 cm/sec, and w = 0. lw; = 0.1 sec”!

J
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and that both the mean field and the amplitude of the field variations
decrease with increasing geocentric distance. Freeman, Van Allen and
Cahill (1963) have observed that the flux of electrons of a few KEV
energy as measured by Explorer XII on September 13, 1961, increases
from about 12 Re inward to about 9 Re' Hence, both the amplitudes of
hydromagnetic waves and the flux of low-energy electrons increase
inwards in the disordered region behind the earth's bow shock. It is
possible that these electrons are being accelerated to the observed
energies by the process of Fermi acceleration, caused by their
interaction with low-frequency hydromagnetic waves. Since these

grow in distances of about 1 or 2 Re’ according to the above theory,
the flux of accelerated electrons would increase appreciably over the
same distance, e.g., from the shock wave at about 12 Re to about 9 Re.
Both of the above observations are therefore consistent with the
hypothesis of growing hydromagnetic waves of lower frequency than

0.1 w,.
i
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V. SUMMARY

We have shown how several features of shock waves in inter-
planetary space can be understood, Although a fast shock is stable
with respect to small perturbations of the fluid variables, the region
behind the shock will contain disordered magnetic fields and unsteady
flow if the hose instability criterion is satisfied. This will always
happen when small-amplitude disturbances are refracted through the
shock, The characteristic length for the growth of the unstable
hydromagnetic waves has been calculated for a special case and agrees
well with experimental data from Imp 1. We have also shown how the
acceleration of low-energy electrons by Fermi processes behind the
shock can explain the increase in electron flux seen by Explorer XII
as the satellite passed inward behind the earth's bow shock on

September 13, 1961.
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Appendix A

THERMODYNAMICS OF NON-ISOTROPIC GASES

Chew, Goldberger and Low (1956) have shown that in the develop-

ment of fluid equations for a plasma the general form of the gas
B.B,
ressure tensor is P_. =P .+ @ -p )1
pressu nsor is P, , L 813 ( l{ _L) 32

along the magnetic field is negligible and the magnetic field is

, when the heat flow

large. By definition, Pij = n<mvivj> s PH = n{an2> , and

P = l’n(ﬁYLz)-, where the brackets indicate an average over many

1 2

particles in some small volume. The velocity averages are taken with
the use of the velocity distribution functions for the species of
particles which are present, and the velocity is measured with
respect to the average motion of the particles.

Assuming we can neglect interparticle forces, the internal energy

e of the gas is the kinetic energy per gram. Since % Pkk is the

kinetic energy per cubic centimeter (where a sum over k from 1 to 3

is assumed), the internal energy is e = %' % , where the average

1 1
P== = = +
pressure 3 Pkk 3 (P“ ZPI)’ or 1/3 the trace of the pressure

. . . 3 .
tensor, and p is the density in grams/cm~. Defining the temperature

L <mv2) , we have the equation of state P = nkT, or P = pRT,

by kT 3

where R = E% . The second law of thermodynamics for reversible

processes may be written

P 1 dp
de = Tds + — dp = Tds + — (P;; + 2P ) — ,
2% ;TR e

where s is the entropy per gram.
In the application that interests us, the kinetic energy due to

the motion of the ions parallel to the magnetic field will not be
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small compared to that of the electrons, so we can assume that ion
acoustic waves are not present (Stix, 1962, p. 41). Since we are
interested in frequencies that are small compared to the plasma

frequency we can ignore electron plasma waves as well, and we can,

therefore, set SPll = 0, It follows that 3P = % BPl.’ and the
perpendicular pressure can be used as a thermodynamic variable, rather
P
than the average pressure, Furthermore, because we have =5 = coost
P

under conditions when the guiding center approximation is valid, (i.e.,

when the thermodynamic conditions are adiabatic) we have therefore

)\, A
3 /, p

Hence, gL is a function only of p and s. Thus we can write

B?L = az 5p + b2 Bs, where
, (RN
a‘ = —
a\p/ S
and
/ .
oP
b2 = __'1.;.\\
..\as/ p

Because for an ideal gas

N

U"Im
N

L}
bldn

where cp is the specific heat at constant pressure, we have
P
2
a = 2 4

p




and
P
c
P
P
(since a2= 2—J-").
P
In general, the momentum flux tensor for the fluid has the form
B2 1
P,.=P tevv.+— B . - — BB
] J ] gn J 4mr J

where Pij is the gas pressure tensor, and pvivj is the momentum flux
due to mass motion (V is the velocity of mass motion). The terms
involving the magnetic field B are the terms in the Maxwell stress
tensor, when the energy in the electric field fis negligible compared
to the energy in the magnetic field. With the above form for the gas

pressure tensor, we have:

2

e R BE
=(P_L+——)I+pvv+(\)-1)'—‘ s
8 4m
where
P, -P
L
v = .
lelm

2
- v P OO,
w=pv(e+——)+l?'v+—ExB .
2 411

The first term is the flux of internal energy and kinetic energy of
mass motion; the second term is the work done by a unit volume of

the gas; and the last term is the Poynting flux of electromagnetic
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energy. In a coordinate system such as we will usually choose for
simplicity, where vV is parallel to B, the last term is zero. 1In this

case, we have:

. B V2 P B2 B V2 Pl[
VeVt — + = hv—— )=y (et — +— )

2 p 41ip 2 ol
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Appendix B

CONSERVATION LAWS AND SHOCK CONDITIONS

By taking moments of the Boltzmann equation, one can get
equations which express the conservation of mass, momentum, and
energy in the fluid and the electromagnetic field. To get a closed
set of equations, with the same number of unknown quantities as
equations, we need to make some assumptions, If the effective
frequency and wave vector k for the time and space variation of the
fluid variables are such that w/k is much larger than the mean thermal
velocity of the particles, then the effect of the heat flow tensor can
be neglected (Bernstein and Trehan, 1960). We assume that this is
true, noting that the speed of shock waves in interplanetary space
is usually an order of magnitude higher than the mean thermal speed.
Furthermore, the gradients induced by small-amplitude waves
will be assumed to be so small that heat flow is negligible., We will
use the conservation equations in the following form.
3p .
Conservation of mass: —+ 7 * (pv) = 0
ot
d

Conservation of momentum: ——'(p;) + 7. T =0
Jt

) v2 B2

Conservation of energy: — [ple+ — )+ — 1+ 7. w=10
ot 2 8

ds
(The last equation can be writtemn — = 0 when the derivative exists.)
dt
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We will use the electromagnetic equations for a medium with

infinite conductivity:

1 3B . .
V:B=0, — —+ curl E =0, where E =
c ot c

| —

— =
Bxv .

The shock conditions are obtained by integrating the conserva-
tion laws and electromagnetic equations across the surface @(;,t) = 0,

which is the shock. For any function U we have

d 3 U 4, o -
— fudx=[—d%x+§ uUq- ds s
dt ot S$=0

where q is the velocity of the surface S = 0. Since dS = 0 in the

surface, we have

oS
—+Vs*g=0 ,
ot
L dr
where q= — . Now if U is the density of a quantity which is
dt ou . -
conserved, we have — + V * F = 0, where F is the flux of the

ot
conserved quantity. Using the divergence theorem, we have therefore:

d 3—-0 - — —

—[uax=¢ o . (Uq-F .

dt $=0
We apply this formula to a small pillbox-shaped surface S = 0 enclosing a
small part of the surface ¢ = 0; in the limit as the height of the

pillbox goes to zero, we have 0 = [Uq - FJ] * A, where [Q] = Q, - Q.

.~ Vo . Sp
But n = ,and q *V ¢ = - —, in this limit, so we have
% vl o
— [U]+ 7o + [F]= 0. This is the general form of the shock
at ds ds
conditions. (The equation — = — + v @ 7 s = 0 cannot be integrated
dt ot d
across the shock because the derivative — does not

dt
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exist on the shock surface.) We obtain the following shock conditions:

g . o155

— [pl+ Vo - [pv]=0 , —ov]+ Vo TP =0,
ot ot

o v2 B2 .

— o+ —)+—1+Tp- =0 ,

ot 2 8m

o, - -
— [B]+ Vo x [E] Vo - [B]l]=0 .

dt

[]
(=]
e

When the position of the shock does not change in time, these
reduce to the time-steady shock conditions, of the form 7 - [?]= 0.
In general, the shock coanditions do not hold in this form when
the flow behind the shock is unsteady. But if the time average of

the equation
d 3—0 — — —
—[ud’x=§d5 - (Uq - F)
dt

is taken over a long time, and if we assume the volume integral is

bounded as a function of time, then we have

$daS- Wg-F)=0
The surface integral can be taken over a fixed cylinder, so that
E = 0. If the cylinder can be chosen so that the contribution from
its sides averages to zero, then we have n - [F] = 0, where the flux

is evaluated at points on either side of the shock, and the average

is taken over a long time.
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Appendix C

SMALL-AMPLITUDE WAVES IN A NON-ISOTROPIC

HYDROMAGNETIC MEDIUM

D
With the forms for ﬂp and w given in Appendix A, the

conservation laws and electromagnetic equations give the following

MHD equations, assuming that the derivatives all exist:

op

—+ Te(w=0
ot

> . B?
p(—+v:eVVY)vt+ 7 (¢ +— )

at L 8t

B - (1 PH-PL B 0

B2/4n 4m ’

) . .
(—+v- -V J)s=0 , \VJ B=20 s
ot
a - — — - — —
(—+ v -V )B+B (V- -VvV)-® -VY)v=0
at

To find the equations for small-amplitude waves, we linearize

8Q
these equations by setting Q = QO + 8Q, where — << 1, for each
Q
quantity in the equations, We assume that 0
P,y - P 2p
L I -
& = 5 ( - ) = - A B ° 8B .
B™/4m B /4m
(We have already assumed that SP!! = 0, and for frequencies small

compared to the ion cyclotron frequency the adiabatic relation

P

) C—E) = 0 holds.) Furthermore, we eliminate the variable 8P by
B
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setting BgL = a26p + bZSS. If all small quantities have the space

& - X% - wt)

and time variation e , then the linearized equations are

(-w+ k- vdep+p kav=0

p (~w+ k - v )&v + k(a” 8p + b Bs + )
0 0
4t
S T |
+ o (k'BO)BB-;'-Z--(k-BO)BO(B0 5B) = 0 ,
0
(o+k.vies=0 K.88=0 ,
(-w+k'v0)6B+Bo(k'6v)-(Bo-k)6v=0 .

If we introduce components normal to the wave front (n) and
tangential to it (t), then we have seven equations in the seven
unknowns 5p, dv, Sgt’ and ds, because BBn = 0. The equations may be

written as follows:

-ckpp + posvn =0
2 2P - -
5o Il 5 B - 8B 2 2.
— - —>— 3B ") - pac*BV_+ a Bp t+ bTBs = 0
2 n 2 0 n
4m B0 B0
2P| l Bngt . . - v-1 -
- ° - * — =
5 2 5 2 (Bt 8Bt) poc 6vt + o BnSBt 0
0 0
-c*ds = 0

ek — + — - - -
c*dB_+ B Bv_ - B Bv_ = 0 ,
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w K
where c¥% = — - - v is the speed of the wave relative to the
k] k]
fluid.
1. Entropy waves:
* L 0w
ds ¥ 0, c =0, w=k * v, —=v_, Bv. = 0
0 -~ 0 n
ok
. . b?
(a) If Bn # 0 then 6Vt = 0) SBt = O, and dp = - ; Ss.

The variation in density and temperature (and hence entropy) is such
that there is no variation in pressure; it is convected with the
fluid,.
(b) 1f Bn = 0, then in general, v, 40, 5§£ # 0, and
B . 8B

a26p + b285 R 0

4m

For propagation perpendicular to the field direction, the tangential
components of velocity and magnetic field may vary.

If ¢ # 0, then &s = 0; take components parallel and
perpendicular to the magnetic field:

- ¢c¥*Bp T po6vn =0

B BB 2
81P, (B
L I VAT

* 2
- poe Byt aTsp * Kl i B 0
4 \ B0
- 2
|
. oo R
-paC OV + - B _®B =0
0 4 !
‘11 4 B IR
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x (v-1)
-p.c dv + B BB = 0 .
0 FL 4t n tL
*BB B B ¢
- C - v = }
t t °
1 "R
2, Alfvén waves:
Sp=8vn=8Bt =8vt =0
|1 |
The only equations involving the components avt and
1
5B are the last two. If
‘1
2
*2 Bn
BV, 7 0, BB, # 0, then ¢ “ + (v-1) =0 .
1 1 4mp

(a) Stable waves (0 < v < 1)

* — B _
c =+ .1V — =+ .-V A cos §
-Jﬁnpo
where
B
A=
f\/l}TTDO
and
B k-3
cos § = ~— =
B k| - B
Therefore, B
w = + A1V + v " .
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The phase velocity of the waves is w/k = (v0 + J/1-v A) cos 8.

The group velocity is

ow B
Y i '*/1-\) ]
oK O i,

which always has a positive component in the direction of Vo

behind a fast shock. We have the following two modes:

w Sy

+ mode: k, = , BV, = - ————— 8B,
(vO + A/1-v A) cos 6 i A/Qﬂpo 1
w &L=V
- mode: k_ = — , dv, = ———— 8B,
(vo -A/1-v A) cos 8 L :whﬂpo L

(b) Unstable waves (v > 1)

*
¢ =+ iv-1 Acos ¢ 5 w = lk[ cos B (V0 + i./v-1 A)

(VO - i \//\7"—]_. A) w - i lv/\:t—i
+ mode: k, = , ov = R — SBt
+ [v02'+ (v-1) A2] cos B tl ,/Aﬂpo 1
(o + i1 &) o i1
- mode: k_ = 2 2 s 8vt = ﬁBt
[vo + (v-1) A®] cos © 1 ~ﬁﬂp0 1

— —
- . ik = x - wt
Let k = [k[ cos «; since the waves vary as e ( )
VA -

itkx + gyy+gz wt)

= e , we have the following behavior for the two
modes:
+ mode:
X Vg cos o A/ v-1 Aw cos «
o 2 2~ ¢t 2 2 ¥
i(flyyHZZ) 0s 8 v, H(v-1)A cos e(vo +(v-1)a
e ‘

e g




«35=

—
-.'v=1 Aw cos o

cos B (vo2 + (v-1) Az)
- mode: {...1 e

The + mode grows spatially, and the - mode is damped spatially, with

a characteristic length for growth (or attenuation) of

[VOL + (v-1) Az] cos O

} Vv—l Aw cos «

3. Fast and Slow Waves:

The remaining equations may be written as follows:

-C po 0 0 5p
!/ 8Py B
/ 2 * {["n
/ a P 1- iy Bt/aﬂ v
0
2
-2P;+B -1 =
0 0 * I + > B &
-paC 4
0 4 t
) B0 41r n [[
*
0 Bt -Bn -C 5Bt
11

. *
The four eigenvalues of ¢ are given by
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1 B B
*
c 2 . - a2 + -V !
2 4mp 4mmp J
2 2)? 2 2.2 4 2 2
1 2 B B B 1 a Bn aB Bt
+[— |a” + -y —E& + 1-24‘-,2h v/4m - — - 2 .
4 4rip, 4Tp B G| o, B

The minus sign corresponds to the slow wave modes. These are

*
unstable, with ¢ 2 < 0, for values of v and 8 such that

2 2 2
a Bt a 2
1+ —5 'jz— 1+ =3 sin ©
A B A
\) > 2 = .
By 2
1 - 2 1 - 2 sin"H
BZ

For k parallel to §0 (& = 0) they are the same as the unstable Alfvén
waves (but with a different polarization) and are unstable for v > 1,
as we found in the preceding paragraph.

The above criterion for instability is not correct for § # O,
because Pll and ?L contain little information about the velocity
distribution function. In general, the fluid equations alone cannot
correctly treat instabilities arising from a non-Maxwellian distribu-
tion, though they happen to be sufficient for the hose instability for
Alfven waves. These last are the only specific results used in this

Memorandum.
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