ION KARMA CENTER

ADVANCED PROGRAMS DEPARTMENT

THERMAL STRAIN ANALYSIS OF
ADVANCED MANNED SPACECRAFT HEAT SHIELDS
First Quarterly Status Report
to the
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

Report No. Q 5654-01-1 / December 1963 / Copy No.

GPO PRICE
$\$$ \qquad
UTS PRICES) $\$$

Hard copy
(BC)
\qquad

Microfiche (MF)

AEROJET

general tire
GENERAL

CONTRACT FULFILLMENT STATEMENT

This is the first of three quarterly progress reports submitted in partial fulfillment of the National Aeronautics and Space Administration Contract No. NAS 9-1986. This report covers the period from 1 September 1963 to 30 November 1963.

Approved by:

I. SUMMARY OF PROGRESS TO DATE

A. DERIVATION OF BASIC EQUILIBRIUM AND STRESS EQUATIONS AND THEIR FINITE DIFFERENCE ANALOGS

The derivation of the basic equations in the appropriate coordinate systems (spherical and toroidal) for the general non-axisymmetric case has been completed. The finite difference analogs to the partial difference equations have been derived for the general case (given in Appendix A for completeness). The above cited equations are based on the "thick-shell" theory which is appropriate for the overall thickness of the composite shell structure. The existence of very thin layers - the bond and sandwich face plates -.within the structure are expected to cause numerical computation difficulties in the mixed derivatives for the thin layers if the thick wall formulation is utilized for these layers. Furthermore, such a treatment of the thin layers will require an excessive number of nodes. The possibility of adapting "thin-wall" theory for these layers was suggested by Mr. F. H. Brady. An analysis of this problem was carried out by Dr. D. H. Platus. This approach requires only a two-dimensional solution of the displacement equilibrium equations at the median surface of the shell. The stress and strain distributions throughout the shell thickness are then obtained using the Kirchhoff bending hypothesis for thin shells. This effort method is summarized in Appendix B for a flat plate using Cartesian coordinates.
B. THE SINGULAR POINT

The equations for the general non-axisymmetric case possess a singularity on the geometric axis-of-symmetry. Inasmuch as this singularity is not an "essential-singularity", it should in principle be possible to formulate locally valid non-singular equations for this'point. Since this point is common to all meridian planes, using it as a common node would reduce the total number of nodes considerably. An attempt was therefore made to derive such a formulation:; A summary of this effort is presented in Appendix C. The additional programming required to utilize this formulation and the complications introduced would probably not justify the possible benefits (reduced total number of nodes). It was decided to establish the "singularity region" by the use of the simplified axisymmetric test case.

I Summary of Progress to Date (cont.)

C. PROGRAMMING

Programming of the input data modeling and the equilibrium coefficient evaluation/storage subroutines is about 50% complete for the two media axisymmetric test case.) Techniques for reducing round-off error arising in the use of the finite difference models of the partial derivatives are being studied in conjunction with an examination of the latest state-of-theart in relaxation methods.

II. PLANNED ACTIVITIES FOR NEXT REPORTTING FERIOD

A. DERIVATION OF EQUATIONS

The completion of the derivation of the "thin-wall" equations in the sphericalmoroidal coordinate system will be accomplished during the next reporting period. The derivation of the finite difference analog of these equations will be initiated.
B. FORMULATION OF BOUNDARY CONDITIONS

The effort will be expanded during this period in formulating the boundary conditions for all cases under consideration.
C. PROGRAMMING

Effort will continue in programming the axisymmetric test case with the latest input incorporated. The objective of this test case is to establish optimum grid spacing, gain experience in the convergence problem and to establish the optimum grid layout near the singular point. It should be noted that the major part of the programming aiready completed and that planned is directly applicable to the general case.

III. PROBLEM AREAS

A. BASIC EQUATIONS

Numerical computation difficulties (accuracy degradation) are anticipated in the use of the "thin-shell" approximations for the bond and face plates. These problems are due to fourth derivatives required in these formulations. The extent of the difficulties and methods for their

III Problem Areas (cont.)
alleviation will be investigated upon completion of the derivation of the equations in the proper coordinate system.
B. THE SINGULAR POINT

As pointed out previously, the "simple" axisymmetric test case will be utilized to overcome this problem. The expected solution will be in the form of an "optimum" grid around the singular point.
C. OVERRELAXXATION METHOD AND CONVERGENCE CRITEERTA

An extensive effort is planned in this area with the test case providing the tool for testing approaches. Convergence criteria will be developed specifically suitable to the present formulation.
IV. PROGRAM CHANGES

The progress to date and the problems encountered during the last reporting period make it necessary to revise the original program schedule. These modifications are designed to assure timely achievement of the program objectives. The revised program schedule is shown in Figure l. Reference to this revised program schedule will be made in the subsequent monthly reports.
THERMAL SIRAIN ANALYSIS OF ADVANCED MANNED SPACECRAFT VEHICLES

Figure 1

APPEHIDIX A
 Derivation of Equilibrium Equations in Terms of Diaplanemants in Spherical and Toroidal Coordinates

Orthogonal curvilinear coordinates ($\alpha_{1}, \alpha_{1}, \alpha_{s}$)
Element of arc de d defined by

$$
\begin{equation*}
d e^{2}=\sum_{i=1}^{3} e_{1 i} d_{d_{i}}^{2} \tag{1}
\end{equation*}
$$

Where E_{ii} are the metric coefficients

Toroidal Coordinates
Spherical Coordinates

$$
\begin{gathered}
r \\
\varphi \\
\theta \\
1 \\
r^{2} \\
(a+r \sin \varphi)^{2} \\
r(a+r \sin \varphi)
\end{gathered}
$$

Mote: Toroidal coordinates reduce to spherical coordinates in the limit as $a \rightarrow 0$.

Page A-1

Iquitione of equilibriw with cero body force:

$$
\begin{equation*}
\underset{j=1}{\sum}\left[\frac{\partial}{\partial a_{j}}\left(\frac{\varepsilon_{j i}{ }^{+}}{\sqrt{\varepsilon_{i 1 i}} E_{j j}}\right)-\frac{1}{2} \cdot \frac{\varepsilon_{j 1}^{T}}{\varepsilon_{j j}} \frac{\partial g_{j j}}{\partial a_{i}}\right]=0 \tag{2}
\end{equation*}
$$

Where $g \equiv \sqrt{8_{1 I^{E_{21}} 5_{53}}}$ and $T_{i i}$ and $T_{i j}$ are normal and shear components of etreas, reapestively.
Smentituting the respective componente of α_{i} and $\varepsilon_{i 1}$ in Eq. (2) and perfermang the indicated differentiationg and mamations, there are obtained the selimeming oquatherim equatione in terms of etresses for each coordinate ayatem:

Toroidal Coordinates

$$
\begin{align*}
& \frac{\partial T_{r r}}{\partial r}+\frac{1}{r} \frac{\partial T_{r}}{\partial \varphi}+\frac{1}{(a+r s i n \varphi)} \frac{\partial T_{r \theta}}{\partial \theta} \tag{6}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial r_{\varphi}}{\partial r}+\frac{1}{r} \frac{\partial{ }^{\top}}{\partial_{\varphi}}+\frac{1}{a+r \operatorname{in} n_{\varphi}} \frac{\partial^{\top}{ }_{\varphi}}{\partial \theta}
\end{aligned}
$$

Derdantion of Dquilibrime Equatione in Terese of
Dinfleonmette in Spherical and Toroidal Coordinates (cont.)

$$
\begin{align*}
& \frac{\partial \tau_{r \theta}}{\partial r}+\frac{1}{r} \frac{\partial T_{i \theta}}{\partial \theta}+\frac{1}{\left(\theta+\operatorname{ren}_{\varphi}\right)} \frac{\partial \tau_{\theta \theta}}{\partial \theta}
\end{align*}
$$

Hocke's Lay Includind Temperatnra Tarnat

$$
\begin{align*}
& T_{i i}=\lambda \theta+2 \mu e_{i i}-(3 \lambda+2 i) \int_{T_{0}}^{T} \alpha(r) d T \tag{9}\\
& T_{i j}=2 j e_{i j} \tag{10}
\end{align*}
$$

there

$$
\theta=e_{11}+e_{22}+e_{33}
$$

and λ and n are the Lame' constants defined in terme of Poiamen's ratie * and Young's modulwe E according to

$$
\begin{align*}
& \lambda=\frac{v E}{(1+\nu)(1-2 v)} \\
& \dot{\beta}=\frac{E}{2(1+v)} \tag{11}
\end{align*}
$$

Strain - Displacement Relations

$$
\begin{equation*}
e_{i i}=\frac{\partial}{\partial \alpha_{i}} \frac{u_{i}}{\sqrt{\delta_{i 1}}}+\frac{1}{2 g_{i 1}} \sum_{k=1}^{3} \frac{\partial_{g_{i 1}}}{\partial \alpha_{k}} \frac{u_{k}}{\sqrt{\varepsilon_{k k}}} \tag{12}
\end{equation*}
$$

Dexivation of Equilibriun Equations in Ferms of Dioplacements in Spherical amal Toroidal Coordimptew (cont.)

$$
\begin{equation*}
\left.e_{i j}=\frac{1}{z \sqrt{g_{i 1} g_{j j}}}\left[\left.g_{i 1} \frac{\partial}{\partial a_{j}}\left(\frac{u_{i}}{\sqrt{\varepsilon_{i i}}}\right)+E_{j j} \frac{\partial}{\partial a_{i}} \right\rvert\, \frac{u_{j}}{\sqrt{g_{j j}}}\right)\right] \quad i \neq j \tag{13}
\end{equation*}
$$

Let $u_{i} V, u$ be compopents of displacement in the three principal directions r or R, φ and 0 . Then anbatitution of theae dimplammate in Iqs. (12) and (13), with the metric coefficients of page 1, yields the etrain-dieplacement rebledien for the tyo epordinate astems:

Spherical Coordinates

$$
\begin{align*}
& e_{R R}=\frac{\partial u}{\partial R} \\
& { }_{\mu \varphi}=\frac{1}{R} \frac{\partial v}{\partial \varphi}+\frac{u}{R} \\
& \theta_{\theta \theta}=\frac{1}{\operatorname{Rat} n_{\varphi}} \frac{\partial w}{\partial \theta}+\frac{u}{R}+\frac{\operatorname{rcot}_{\theta}}{R} \\
& { }^{e} \mathrm{R}_{\varphi}=\frac{1}{2}\left(\frac{1}{R} \frac{\partial u}{\partial \varphi}-\frac{T}{R}+\frac{\partial v}{\partial R}\right) \tag{14}\\
& e_{\varphi \theta}=\frac{1}{2}\left(\frac{1}{R} \frac{\partial M}{\partial \varphi}-\frac{v \cot \varphi}{R}+\frac{1}{\operatorname{Rein}_{\varphi}}-\frac{\partial \nu}{\partial \theta}\right) \\
& e_{R \theta}=\frac{1}{2}\left|\frac{1}{\operatorname{Rsin}_{\varphi}} \frac{\partial u}{\partial \theta}-\frac{w}{R}+\frac{\partial w}{\partial R}\right|
\end{align*}
$$

Toroidal Coordinates

$$
\begin{aligned}
& e_{r r}=\frac{\partial u}{\partial r} \\
& e_{\psi \varphi}=\frac{1}{r} \frac{\partial v}{\partial \varphi}+\frac{u}{r}
\end{aligned}
$$

Dipplacemanta in Spherical and Toroidal Coordinates (cont.)

$$
\begin{align*}
& c_{r_{\varphi}}=\frac{1}{2}\left(\frac{1}{r} \frac{\partial u}{\partial \varphi}+\frac{\partial v}{\partial r}-\frac{V}{r}\right) \\
& e_{\varphi}=\frac{1}{2}\left(\left.\frac{1}{a+r \sin } \frac{\partial r}{\partial \gamma}+\frac{1}{r} \frac{\partial \omega}{\partial \varphi}-\frac{\cos \theta}{2+r \sin \varphi} \right\rvert\,\right. \tag{15}\\
& e_{r \theta}=\frac{1}{2}\left(\frac{1}{a+r \sin \varphi} \frac{\partial u}{\partial \theta}+\frac{\partial u}{\partial r}-\frac{\operatorname{man} \varphi}{a+r \sin \varphi}\right)
\end{align*}
$$

 Eqz. (9) and (10), with the train-dirplacement Felations, Bqa. (14) and (15), the eqpilibrium equations, Eqs. (3) - (8), my be written in terme of displacemothe in the fors

$$
\begin{aligned}
& A_{k} \frac{\partial^{2} u_{n}}{\partial \alpha_{1}^{2}}+B_{k} \frac{\partial^{2} u}{\partial \alpha_{2}^{2}}+c_{k} \frac{\partial^{2} u}{\partial \theta_{3}^{2}}+D_{k} \frac{\partial^{2} u}{\partial \alpha_{1} \alpha_{2}}+E_{z} \frac{\partial^{2} u}{\partial \alpha_{2} \alpha_{3}} \\
& +F_{k} \frac{\partial^{2} u}{\partial \alpha_{1} \partial \alpha_{3}}+\sigma_{k} \frac{\partial u}{\partial \omega_{1}}+F_{k} \frac{\partial u}{\partial \alpha_{2}}+I_{k} \frac{\partial u}{\partial \alpha_{3}}+J_{k} u
\end{aligned}
$$

$$
\begin{align*}
& +\bar{F}_{k} \frac{\partial^{2} v}{\partial a_{1} \partial_{\alpha_{3}}}+\bar{G}_{k} \frac{\partial v}{\partial \alpha_{1}}+H_{k} \frac{\partial v}{\partial_{e_{2}}}+\bar{I}_{k} \frac{\partial v}{\partial e_{3}}+\bar{J}_{k} v \tag{16}\\
& +F_{k} \frac{\partial^{2} w}{\partial \alpha_{1}^{2}}+\overline{\bar{B}}_{k} \frac{\partial^{2} w}{\partial \alpha_{2}^{2}}+\overline{\bar{c}}_{k} \frac{\partial^{2} w}{\partial \alpha_{3}^{2}}+\overline{\bar{B}}_{k} \frac{\partial^{2} w}{\partial \alpha_{1} \partial \alpha_{2}}+\bar{F}_{k} \frac{\partial^{2} w}{\partial \alpha_{2} \partial \sigma_{3}}
\end{align*}
$$

$$
\begin{aligned}
& \frac{(3 \lambda+2 \mu) c(T)}{\sqrt{\delta_{1 c k}}} \frac{\partial T}{\partial \alpha_{k}} \quad, \quad k=1,2,3
\end{aligned}
$$

```
Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.) table I
```

COEFTICIEHES OF FQilutinaibu Equations
SPHERICAL COORDINATES
$(\neq 0)$

Page A-6

TABLE I
COEFFICIENTS OF EQUILIBRIDA EQUATIOME SPHERICAL COORDIMATES (cont.)
($\varphi \neq 0$)

	$k=1$	$k=2$	$k=3$
F_{k}	0	0	H
E	0	0	M / R^{2}
${ }_{\mathbf{C}}$	0	0	$(\lambda+2 \omega) /\left(R^{2} \sin ^{2} \varphi\right)$
B_{k}	0	0	0
最	0	$(\lambda+m) / R^{2}{ }_{\sin \varphi}$)	0
${ }_{F}{ }_{\mathbf{F}}$	$(\lambda+\mu) /(\operatorname{sein} \varphi)$	0	0
E	0	0	$24 / 8$
雲	0	0	$\mu \cot \Phi /{ }^{2}$
${ }_{\text {I }}$	$-(\lambda+3 *) /\left(\mathbb{R}^{2} \sin 4\right)$	$-(\lambda+3 \mu) \cot \varphi /\left(R^{2} \sin ^{\text {m }}\right.$)	0
z_{k}	0	0	$-\mu /\left(\mathrm{R}^{2} \sin ^{2} \varphi\right)$

TABLE II
COEFTICIEATS OF EQUILIBRIUM EQUATIONS
TOROIDAL COORDIHATES

	$k=1$	$\mathbf{k}=2$	$k=3$
$\mathrm{A}_{\text {k }}$	$\lambda+2 i$	0	0
B_{k}	m / r^{2}	0	0
c_{k}	$m /(m+r s i n \varphi)^{2}$	0	0
$\mathrm{D}_{\mathbf{k}}$	0	$(\lambda+\mu) / r$	0
${ }_{\text {F }}$	0	0	0
$\mathrm{F}_{\mathbf{k}}$	0	0	$(\lambda+\omega) /(a+28140)$
G_{k}	$(\lambda+2 \mu)(a+2 r a i m \varphi) /[r(a+r s i m p)]$	0	-
E	$\mu \cos \varphi /[r(\alpha+r s i n \varphi)]$	$\frac{2(\lambda+2 \mu)_{r \sin \varphi}(\lambda+3 \mu) a}{r^{2}(a+r \sin \varphi)}$	-

Page A-7

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

TABLE II
COHPFICIENTS OF EQUILIBRIUM EQUATIONS
TOROIDAL COORDINATES (cont.)

	$k=1$	$k=2$	$k=3$
I_{k}	0	0	
J_{k}	$-(\lambda+2 \mu)\left[1 / r^{2}+\sin ^{2} \varphi /(\alpha+r \sin \varphi)^{2}\right]$	$(\lambda+24) \cos 4 /\left[\underline{[}(\alpha+\sin 4)^{2}\right]$	0
π_{k}	0	\#	0
E	0	$(\lambda+2 \mu) / r^{2}$	-
C_{k}	0	$w /(2+x \ln)^{2}$	-
$\bar{D}_{\mathbf{k}}$	$(\lambda+1) / r$	0	0
\%	0	0	$(\lambda+\mu) /[2(+x \rightarrow i n \varphi)]$
${ }^{7}$	0	0	0
$\bar{\square}_{\mathbf{G}}$	$(\lambda+\mu) \cos \varphi /(\alpha+r \sin \varphi)$		0
國	$-(\lambda+3 m) / r^{2}$	$(\lambda+2 \mu) \operatorname{cost} /[r(2+r s i x \phi)]$	0
F_{k}	0	0	$(\lambda+34) 000 /(0+r \pi x i m p)^{2}$
$\mathcal{F}_{\mathbf{k}}$		$\frac{(\lambda+2 \mu) r^{2}+\mu a^{2}+(\lambda+3 \psi) \operatorname{argin} \varphi}{r^{2}(a+r \sin \varphi)^{2}}$	0
π_{k}	0	0	4
\bar{B}_{k}	0	0	$w r^{2}$
$\overline{\bar{C}}$	0	0	$(\lambda+2 \mu) /(2+r s i n \varphi)^{2}$

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

PARTS II
COBFFICIENTS OF EQUILIBRIUM EQUATIONS
TOROIDAL COORDIHARES (eont.)

	$\mathbf{k}=1$	$k=2$	$k=3$
$\bar{D}_{\mathbf{k}}$	0	0	0
素	0	$(\lambda+u) /[r(a+r \sin \varphi)]$	0
$\overline{\mathrm{F}}_{\mathrm{F}}$	$(\lambda+\mu) /(a+r s i n \varphi)$	0	0
\bar{W}_{k}	0	0	$\varphi(a+2 r \sin \varphi) /[r(a+r s i n \varphi)]$
言	0	0	$\mu \cos \varphi /[r(a+r s i n \varphi)]$
$\overline{\bar{I}_{k}}$	$-(\lambda+3 \mu) \sin 4 /(\pi+r \sin \varphi)^{2}$	$-(\lambda+3 \mu) \operatorname{cosen} /(2+r \sin \varphi)^{2}$	0
\bar{J}_{k}	0	0	$-M /(a+r \sin \varphi)^{2}$

TABLE III
COEFFICIENTS OF EQUILIBRIUM EQUATIONS
POLAR COORDINATES - FOR APPROXIMATE TWO DIMIENSIONAL LOCAL SOLUTION FOR ANY (θ = constant) CROSS-SBCTIONAL PLANE

	$\mathbf{k}=1$	$\mathbf{k}=2$
A_{k}	$\lambda+L_{\mu}$	0
B_{k}	μ / R^{2}	0
$D_{\mathbf{k}}$	0	$(\lambda+\mu) / R$
\mathbf{G}	$(\lambda+2 \mu) / R+\frac{\partial}{\partial T}(\lambda+2 \mu) \frac{\partial T}{\partial R}$	$\frac{1}{R} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial \varphi}$

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

TaPirs III
COEFFICIENTS OF EQUILIBRIUM EQUATIONS
POLAR COORDINATES - FOR APPROXIMATE TWO DIMENSIONAL LOCAL SOLUTION FOR ANY ($\theta=$ constant) CROSS-SDCTIONAL PLAARE
(cont.)

NOTE: Temperature dependent material property derivative terms are also included.: Only applicable coefficients are listed. By replacing R by r, the above coefficients are applicable in the torus eross-section region.

Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)
Equations for Stresses in Terms of Displacements
Pron Hake's law, Eq. (9) and (10),

$$
\begin{equation*}
T_{i j}=2 \pi e_{i j}+\delta_{i j}\left[\lambda \theta-(3 \lambda+2 \mu) \int_{T_{0}}^{T} \alpha(T) d T\right] \tag{17}
\end{equation*}
$$

Where $\delta_{\text {if }}$ is the Kronecker delta defined by

$$
\begin{aligned}
\delta_{i j} & =1, \quad 1=j \\
& =0, \quad 1 \neq j
\end{aligned}
$$

and

$$
\theta=e_{12}+e_{22}+e_{33}
$$

Writing the strains in terms of displacements from either Bis. (14) or (15) and shortening the nomenclature by defining the stresses

$$
\begin{aligned}
& T_{1} \equiv T_{r r} \text { or } T_{R R} \\
& T_{2} \equiv T_{\varphi \varphi} \\
& T_{3} \equiv T_{\theta \theta} \\
& T_{4} \equiv T_{r \varphi} \text { or } T_{H \varphi} \\
& T_{5}=T_{\varphi \theta} \\
& T_{6} \equiv T_{r \theta} \text { or } T_{R \theta}
\end{aligned}
$$

Eq. (17) may be written min terms of displacements according to

$$
\begin{align*}
T_{l}+A_{l}\left(3 \lambda+2_{l}\right) \int_{T_{0}}^{T} \alpha(T) d T & =\alpha_{l} u_{r}+B_{l} u_{\varphi}+\gamma_{l} u_{\theta}+\delta_{l} u \\
& +\bar{\alpha}_{l} v_{r}+\bar{B}_{l} \bar{v}_{\varphi}+\bar{\gamma}_{l} v_{\theta}+\bar{\delta}_{l} \overline{ } \tag{18}\\
& +\bar{z}_{l w_{r}}+\bar{B}_{l} w_{\varphi}+\bar{\nabla}_{l} w_{\theta}+\bar{\delta}_{l w}
\end{align*}
$$

Where

$$
\begin{aligned}
\Delta_{l} & =1 & \text { if } & l=1,2,3 \\
& =0 & \text { if } & l=4,5,6
\end{aligned}
$$

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

TABLE IV
COEFPICIRMES OF StRESS EQUATIONS SPHERICAL COORDINATES
$(\oplus \neq 0)$

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

Tamtie V
COMFFICIEMTS OF STRESS EQUATIOIS
TOROIDAL COORDIMACES

ℓ	1	2	3	4	5	6
α_{1}	$\lambda+2 \mu$	λ	λ	0	0	0
B_{1}	0	0	0	M/R	0	-
V_{1}	0	0	0	0	0	$\mu /\left(\begin{array}{l}\text { arcaina }\end{array}\right.$
81	$\frac{\lambda(a+2 \operatorname{sen} \varphi)}{\Gamma(a+r \sin \varphi)}$	$\frac{\lambda+2 u}{r}+\frac{\lambda \sin \varphi}{2+r \sin \varphi}$	$\frac{\lambda}{r}+\frac{(\lambda+2 y)}{a+r \sin x}$	0	0	0
${ }^{2}$	-	0	0	M	0	-
P_{2}	N / r	$(\lambda+2 \mu) / r$	λ / r	0	0	0
$\bar{\gamma}_{l}$	0	0	0	0	$\omega /(a+r s i z(1)$	0
${ }_{8}^{8}$		$\frac{\text { deose }}{\text { a }+ \text { rsin } \varphi}$	$\frac{(\lambda+2 \mu) \cos \varphi}{a+r \sin \varphi}$	$-4 / r$	0	0
\square_{2}	0	0	0	0	0	μ
$\bar{\beta}_{1}$	0	0	0	0	m / r	0
\bar{Y}_{1}	N (20+raine	$\frac{\lambda}{a+r \sin \varphi}$	$\frac{\lambda+2 \phi}{2+r \sin \varphi}$	0	0	0
${ }^{\text {\% }}$ \%	\bigcirc	0	0	0	$-\frac{\operatorname{mogeg}}{2+r \sin \varphi}$	

Derivation of Equilibrium Equations in 'Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

Table VI
COEFPICIEATS OF EQUILIPRIEM EquATIOMS
POLAR COORDINATES - FOR APPROXIMATE TWO DIMBMSIOMAL LOCAL SOLUTION YOR ANF ($\theta=$ conetmat) CEPSS-SEOFIONAL PLAME

	1	2	4
\otimes	$\lambda+24$	λ	0
\%	0	0	ω / R
81	λ / R	$(\lambda+2 \mu) / R$	\bigcirc
\%	0	0	M
票/	N / \mathbf{R}	$(\lambda+2 n) / R$	0
${ }_{8} 8$	0	0	- $-1 / 1$

WOFI: Only applicable valuan af land coefficients are listed. By replacing R by r , the above coefficients are applicable in the torus cross-section region.

Derivation of Equilibring Equations in Ferme of
Dtuplamentryix fpmertenl and Toroidal Coordinates (cont.)

 equations become aingular at the axis of aymetry ($=0$). For the aqn-
 nificance and this point can be avoided. For tha axially-aymetric case, howierer, the acis of symetry is gamally quite impartant and the singalar coefticients may be exalnated by therme of I'Itomptal's male. For empule, the coefficient H_{1} in the dimplacoment equilibriam aquatime in epherieal coardinates is meoty $/ \mathrm{R}^{2}$ mhich becomes infinite as approaches zero. From Ha. (16), this term maltiplies the diaplacoment component $\frac{\partial u}{\partial \varphi}$ The conditions for axial symatry tre

$$
\begin{equation*}
w(x, \varphi, \theta)=\frac{\partial f}{\partial \theta}=0 \text {, where } f \text { is any function of } R, \varphi, \theta, \tag{19}
\end{equation*}
$$

frek which it can be harp that

$$
\begin{equation*}
\tau=\frac{\partial u}{\partial \psi}=\frac{\partial^{2} v}{\partial \varphi^{2}}=0 d t=0 \tag{20}
\end{equation*}
$$

 rule is applicable to the product

$$
\frac{\text { mooty }}{R^{2}} \frac{\partial u}{\partial \varphi}
$$

as $\varphi \rightarrow 0$. Taking the linit, there is obtained

$$
\begin{aligned}
& \lim _{\varphi \rightarrow 0} \frac{\mu \cot \varphi}{R^{2}} \cdot \frac{\partial u}{\partial \varphi}=\frac{H}{R^{2} \varphi \rightarrow 0} \frac{\frac{\partial u}{\partial \varphi} \cos \varphi}{\sin \varphi} \\
&=\frac{\partial^{2} u}{n^{2} \lim \cos \varphi}-\frac{\partial u}{\partial \varphi} \sin \varphi \\
& \cos \varphi
\end{aligned}
$$

Deriwetion of Equilibrios Equationa in Terme of Dtepprecenents in Spherical and Toroidal Coordinate (cont.)

Hence, for this case, the coefficient H_{1} becomes zere and the coefficient B_{1} which multiplies $\frac{\partial h^{2}}{\partial \theta^{2}}$ is increased by W / R^{2}. Applydes thia jimiting precess to all the singular terme the folleminetee of ecafficionts are obtained:

TARLE VII
COEFFICIEATS OF EQUILIBRIUR Equations OM AIIS
OF SMAETRI ($\varphi=0$) FOR AXIALLI - SYMHETRIC CASE
SPRERICAL COORDIMATBS

$\underline{1}$	1	2	3	\mathbf{k}	1	2	3	k	1	2	3
A_{k}	$\lambda+2 \mu$	0	0	\bar{A}_{k}	0	0	. 0	$\overline{\bar{A}}_{\underline{E}}$	0	0	0
B_{k}	24/85	0	0	$\overline{\mathrm{B}}_{\mathrm{k}}$	0	0	0	$\overline{\bar{B}}_{\underline{k}}$	0	0	0
c_{k}	0	0	0	$\bar{c}_{\mathbf{k}}$	0	0	0	$\overline{\bar{C}}_{\mathbf{k}}$	0	0	0
D_{k}	0	θ	0	$\overline{\mathrm{D}}_{\mathbf{k}}$	$2\left(\lambda+1, \frac{1}{}\right.$	0	0	$\overline{\bar{B}}_{\mathbf{k}}$	0	0	0
$\mathbf{F}_{\mathbf{k}}$	0	0	0	$\overline{\mathrm{E}}_{\mathrm{k}}$	0	0	0	最	0	0	0
$\mathrm{F}_{\mathbf{k}}$	0	0	0	$\overline{\mathbf{F}}_{\mathbf{k}}$	0	0	0	$\overline{\bar{F}}_{\underline{k}}$	0	0	0
${ }^{G}$	$2(\lambda+2 \mu) / R$	0	0	\bar{G}_{k}	θ	0	0	$\overline{\bar{G}}{ }_{k}$	0	0	0
最	0	0	0	$\overline{\mathrm{H}}_{\mathrm{k}}$	$-2(\lambda+3 u) / R^{2}$	0	0		0	0	0
I_{k}	0	0	0	$\bar{I}_{\text {k }}$	0	0	0	$\overline{\overline{\bar{I}}}_{\overline{\mathrm{E}}}$	0	0	0
J_{k}	$-2(\lambda+a p) / R^{\prime \prime}$	0	0	\bar{J}_{k}	0	0	0	$\overline{\bar{J}}_{k}$	0	0	0

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

> TABLB VIII
> CORFFICIESHES OF STRESS RLUATIONS ON AXIS OF SWMATEY ($\varphi-0$) FOR AXIALLY - SYMMETRIC CASE SPHERTCAL COORDITASEES

ℓ	1	2	3	4 .	5	6
α^{\prime}	$\lambda+2{ }^{1}$	λ	\cdots	0	0	0
Bl	0	0	0	μ / R	0	0
${ }_{1}$	0	0	0	0	0	0
$8 /$	$2 \lambda / R$	$2(\lambda+\mu) / R$	$2(\lambda+1 / 2)$	0	0	0
$\bar{\alpha}_{\ell}$	0	0	0	4	0	0
$\bar{\theta}_{1}$	$2 \lambda / R$	$2(\lambda+\mu) / R$	$2(\lambda+\mu) / R$	0	\bigcirc	0
\bar{Y}_{ℓ}	0	0	0	0	0	0
$\overline{8} 8$	0	0	0	$-1 / R$	0	0
$\overline{\bar{\alpha}}_{\ell}$	0	0	0	0	0	0
$\overline{\overline{\bar{B}}}{ }_{l}$	0	0	0	0	0	0
$\overline{\bar{Y}}_{\ell}$	0	0	0	0	0	0
$\overline{\bar{\delta}} \ell$	0	0	0	0	0	0

Temperature Dependence of Elastic Constants
If, in addition to the coefficient of thermal expansion, the elastic constants are strongly dependent on temperature, then additional terms aust be included in the displacement equilibrium equations to account for the special derivatives of these constants. Differentiating the stress component $T_{i 1}$ with respect to coordinate α_{1}, for example, from Equation (9), there is obtained

Dérivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

$$
\begin{align*}
\frac{\partial \tau_{i 1}}{\partial \alpha_{i}}=\lambda \frac{\partial \theta}{\partial \alpha_{i}} & +\theta \frac{\partial \lambda}{\partial \alpha_{i}}+2 \frac{\partial e_{i 1}}{\partial \alpha_{i}}+2 e_{i i} \frac{\partial \mu}{\partial \alpha_{i}} \\
& -(3 \lambda+2 t) \alpha(T) \frac{\partial T}{\partial \alpha_{i}}-\frac{\partial}{\partial \alpha_{i}}-(3 \lambda+2 \mu) \int_{T}^{T} \alpha(T) d T \\
= & \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial \alpha_{i}}+2 e_{i 1} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \alpha_{i}}-\frac{\partial}{\partial T}(3 \lambda+24) \frac{\partial T}{\partial \alpha_{i}} \int_{T}^{T} \alpha(T) d T \tag{2I}\\
& +\lambda \frac{\partial \theta}{\partial \alpha_{i}}+2 \mu_{i 1} \frac{\partial e_{i 1}}{\partial \alpha_{i}}-\left(3 \lambda+\alpha_{i}\right) \alpha(T) \frac{\partial T}{\partial \alpha_{i}},
\end{align*}
$$

Where the first three terms to the right of the equal sign have not been accounted for in the caeffictents of Equation (16). Representing the additional terms by primect quatittes, Equation (16) becomes

$$
\begin{align*}
& \left(A_{k}+A_{k}^{\prime}\right) \frac{\partial{ }^{\prime} u}{\partial \alpha_{1}}+\left(B_{k}+B_{k}^{\prime}\right) \frac{\partial^{\prime} u}{\partial \alpha_{B}}+\ldots=\frac{(3 \lambda+2 u) \alpha(T)}{\sqrt{E_{k k}}} \frac{\partial F}{\partial \alpha_{k}} \tag{22}\\
& +\frac{1}{\sqrt{E_{k k}}} \frac{\partial}{\partial T}(3 \lambda+2 \mu) \frac{\partial T}{\partial \alpha_{k}} \int_{T_{0}}^{T} \alpha(T) d T, k=1,2,3
\end{align*}
$$

The coefficients $A_{k}^{\prime}, B_{k}^{\prime}, \ldots$ are tabulated below for spherical and toroidal coordinates, and for the special point in spherical coordinates on the axis of symmetry for the case of axial symmetry.

Derivation of Equilibrium Equations in Terms of Bisplacements in Spherical and Toroidal Coordinates (cont.)

TABLE IX
ADDITIONAL TERNS II CGEFFICIMNTS OF EQUILIBRIUM ERUATIOMS FROM TEMMPRRATURE DEFPANDINCE OF ELASTIC CONSTAMTS

SPHERICAL COORDITATES

	$k=1$	$k=2$	$k=3$
$\mathrm{A}^{\prime} \mathrm{k}$	0	0	0
$\mathrm{B}^{\prime}{ }_{\mathbf{k}}$	0	0	0
$\mathrm{c}_{\mathrm{k}}^{\prime}$	0	0	0
D_{4}^{\prime}	0	0	0
$\mathbf{E}^{\prime} \mathbf{k}$	0	0	0
$\mathrm{F}^{\prime}{ }_{\mathbf{k}}$	0	0	0
$\mathrm{G}^{\prime}{ }_{k}$	$\frac{\partial}{\partial T}(\lambda+2 \mu) \frac{\partial T}{\partial R}$	$\frac{I}{K} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial \varphi}$	$\frac{1}{R \sin \varphi} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial \theta}$
$\mathrm{H}^{\prime} \mathrm{k}$	$\frac{1}{R^{r}} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \varphi}$	$\frac{1}{R} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial R}$	0
$\mathrm{I}^{\prime}{ }_{\mathrm{k}}$	$\frac{1}{\mathrm{R}^{2} \sin \varphi} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \theta}$	0	$\frac{I}{R_{-} \sin \varphi} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial R}$
$\mathrm{J}^{\prime} \mathrm{E}$	$\frac{2}{R} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial R}$	$\frac{2}{R^{W}} \frac{\partial}{\partial T}(\lambda+\mu) \frac{\partial T}{\partial \varphi}$	$\frac{2}{R^{-}-\frac{1 \pi}{} \sin } \frac{\partial}{\partial T}(\lambda+\mu) \frac{\partial T}{\partial \theta}$
$\overline{\mathbf{A}}^{\prime}{ }_{\mathrm{k}}$	0	0	0
$\overline{\mathbf{B}}_{\mathbf{k}}{ }^{\text {c }}$	0	0	0
$\bar{C}^{\prime}{ }_{k}$	0	0	0
$\overline{\mathbf{D}}^{\prime}{ }_{\mathbf{k}}$	0	0	0
$\overline{\mathrm{E}}^{\prime}{ }_{\mathrm{k}}$	0	0	0
\bar{F}^{\prime}	0	0	0
$\overline{\mathrm{G}}^{\prime} \mathrm{k}$	$\frac{1}{R} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \varphi}$	$\frac{\partial \mu}{\partial T} \frac{\partial T}{\partial R}$	0
$\overline{\mathbf{H}}_{k}^{\prime}$	$\frac{1}{R} \frac{\partial \lambda}{\partial T} \frac{\partial \Psi}{\partial R}$	$\frac{1}{R^{F}} \frac{\partial}{\partial T}\left(\lambda+q_{\mu}\right) \frac{\partial T}{\partial \varphi}$	$\frac{1}{R^{\top}-\sin \varphi} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial \theta}$

Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)
table IX
ADDITIONAL TERRS IN COEFFFICIENIS OF EQUILIBRIUM EQUATIONS FROM THMPIRRATURE DEPENDENCE OF ETASTIC COMSTANTS

SPHERICAL COORDINATTES (cont.)

	$k=1$	$k=2$	$k=3$
$\overline{\mathrm{I}}^{\prime}{ }_{k}$	0	$\frac{\lambda}{R^{2} \sin ^{8} \varphi} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \theta}$	$\bar{R}^{*} \frac{1}{\phi \sin \varphi} \frac{\partial \varphi}{\partial T} \frac{\partial T}{\partial \varphi}$
$\overrightarrow{\mathrm{J}}^{\prime}{ }_{\mathbf{k}}$	$\frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial R} \frac{\cot \varphi}{R}-\frac{1}{R^{T}} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \varphi}$	$\frac{\text { cote }}{R^{-}} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial \varphi}-\frac{1}{R} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial R}$	$\frac{\operatorname{cot\varphi }}{\mathrm{R}^{\mathrm{B}}-\sin \varphi} \frac{\partial}{\partial T^{-}}(\lambda+2 \mu) \frac{\partial T}{\partial \theta}$
$\overline{\bar{A}}^{\prime}{ }_{k}$	0	- 0	0
$\overline{\bar{B}}_{\mathbf{k}}^{\prime}$	0	0	0
$\overline{\overline{\bar{C}}}^{\prime}{ }_{\mathbf{k}}$	0	0	0
$\overline{\mathrm{D}}^{\prime} \mathrm{k}$	0	0	0
$\overline{\bar{E}}^{\prime}{ }_{k}$	0	0	0
$\overline{\bar{F}}^{\prime}$	0	0	0
$\overline{\mathrm{G}}^{\prime}{ }_{\mathrm{k}}$	$\frac{1}{R \sin \varphi} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \theta}$	0	$\frac{\partial \mu}{\partial T} \frac{\partial T}{\partial R}$
$\bar{H}^{\prime}{ }_{k}$	0	$\frac{1}{\sin \sin } \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \theta}$	$\frac{1}{R}{ }^{\text {r }} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \varphi}$
$\overline{\bar{I}}^{\prime}{ }_{k}$	$\frac{I}{R \sin \varphi} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial R}$	$\frac{1}{\overline{\mathrm{~B}}^{\top-\frac{1}{\sin \varphi}}} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial \varphi}$	$\frac{1}{\mathrm{R}^{\mathrm{F}} \frac{1}{\sin \varphi} \varphi} \frac{\partial}{\partial \Phi}\left(\lambda+\mu_{\mu}\right) \frac{\partial T}{\partial \theta}$
$\overline{\bar{J}}^{\prime}{ }_{k}$	$-\frac{1}{\sin \varphi} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \theta}$	$-\frac{\operatorname{cote\varphi }}{R^{F} \sin \varphi} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \theta}$	$-\frac{\lambda}{\bar{R}} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial R}-\frac{\cot \varphi}{R^{\mu}} \frac{\partial \mu}{\partial T} \cdot \frac{\partial T}{\partial \varphi}$

Derivation of Equilibrium Equations in Terins of Displacements in Spherical and Toroidal Coordinates (cont.)

TABLE X
ADDITIONAL TERMS II COEFFICIENTS OF EQUILIBRIUM ERUATIONS FROM THMPERAIURE DEPEHDEINCE OF ELASTIC CONSTANIS TOROIDAL COORDINATES

	$k=1$	$k=2$	$k=3$
$\mathrm{A}^{\prime}{ }_{\mathbf{k}}$	0	0	0
$\mathrm{B}^{\prime}{ }_{\mathbf{k}}$	0	0	0
$C^{\prime}{ }_{k}^{\prime}$	0	0	0
$\mathrm{D}^{\prime}{ }_{\mathbf{k}}$	0	0	0
$\mathrm{E}^{\prime}{ }_{\mathbf{k}}$	0	0	0
$\mathrm{F}^{\prime} \mathrm{k}$	0	0	0
G_{k}^{\prime}	$\frac{\partial}{\partial T}(\lambda+2 \mu) \frac{\partial T}{\partial r}$	$\frac{I}{r} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial \varphi}$	$\frac{I}{(A+r s i n \varphi()} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial \theta}$
$\mathrm{H}^{\mathbf{\prime}} \mathrm{k}$	$\frac{1}{r} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \varphi}$	$\frac{I}{r} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial r}$	0
$\mathrm{I}^{\prime}{ }_{\mathbf{k}}-$	$\frac{1}{(a+r \sin \varphi)} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \theta}$	0	$\frac{1}{(a+r s i n \varphi)} \frac{\partial \mu}{\partial T} \frac{\partial \Phi}{\partial r}$
$\mathrm{J}^{\prime} \mathrm{k}$	$\left[\frac{1}{r}+\frac{\sin \varphi}{(a+r \sin \varphi)}\right] \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial r}$	$\frac{1}{r^{T}} \frac{\partial}{\partial T}\left(\lambda+a_{\mu}\right) \frac{\partial T}{\partial \varphi}+\frac{8 \ln \varphi}{r(a+r s \ln \varphi)} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial \varphi}$	$\frac{\sin \varphi}{(a+r \sin \varphi)} \frac{\partial}{\partial T}\left(\lambda+\alpha_{4}\right) \frac{\partial T}{\partial \theta}+\frac{\frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial \theta}}{r(a+r s i n \varphi)}$
$\bar{A}^{\prime}{ }^{\text {k }}$	0	0	0
$\bar{B}^{\prime}{ }^{\prime}$	0	0	0
$\bar{C}^{\prime}{ }^{\prime}$	0	0	0
$\overline{\bar{D}}^{\prime} \mathrm{k}$	0	0	0
$\bar{E}^{\prime}{ }^{\text {k }}$	0	0	0
$\bar{F}^{\prime}{ }_{k}$	0	0	0
$\bar{G}^{\prime}{ }^{\text {k }}$	$\frac{I}{x} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \varphi}$	$\frac{\partial \mu}{\partial T} \frac{\partial T}{\partial r}$	0
$\overline{\mathbf{H}}^{\prime} \mathbf{k}$	$\frac{I}{r} \frac{\partial \lambda}{\partial T} \frac{\partial F}{\partial r}$	$\frac{I}{T T} \frac{\partial}{\partial T}\left(\lambda+\alpha_{\mu}\right) \frac{\partial T}{\partial \varphi}$	$\frac{1}{r(\varepsilon+\Omega i m)} \frac{\partial \lambda}{\partial \Phi} \frac{\partial T}{\partial \theta}$

Derivation of Equilibriun Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

TABLE X
AIDITIORAL TEHRS IT COEFFICIENTHS OF EQUILIBRIUM EQUATIONS FROM WFMPERAIUBE BEPEMETCE OF ETAGFIC COISTANTS

TOROIDAL COORDITAIES (sont.)

	$k=1$	$k=2$	$k=3$
$\overline{\mathrm{I}}^{\prime}{ }_{k}$	0	$\frac{1}{(a+r \sin \varphi)^{r}} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \theta}$	$\frac{1}{r(a+r \sin \varphi)} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \varphi}$
$\bar{J}^{\prime}{ }_{k}$	$\frac{\cos \varphi}{(a+r \sin \varphi)} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial r} \frac{1}{I^{T}} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \varphi}$	$\left.\frac{\cos \varphi}{r(\varepsilon+r s i n \varphi}\right) \frac{\partial \lambda}{\partial T} \frac{\partial m}{\partial \varphi}-\frac{1}{r} \frac{\partial \psi}{\partial T} \frac{\partial T}{\partial r}$	$\frac{\cos \varphi}{(a+\overline{\sin } \varphi)^{\prime}} \frac{\partial}{\partial T}\left(\lambda+a_{i}\right) \frac{\partial \Psi}{\partial \theta}$
$\bar{A}^{\prime}{ }_{k}$	0	0	0
${ }^{\text {B' }}{ }^{\text {¢ }}$	0	0	0
$\overline{\overline{\mathrm{C}}}^{\prime}$	0	0	0
	0	0	0
$\bar{E}^{\prime}{ }_{k}$	0	0	0
$\bar{F}^{\prime}{ }^{\prime}$	0	0	0
$\overline{\mathrm{G}}^{\prime} \mathrm{k}$	$\frac{1}{(a+r \sin \varphi)} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \theta}$	0	$\frac{\partial \mu}{\partial \mu} \frac{\partial T}{\partial r}$
$\overline{\bar{H}}^{\prime}{ }_{k}$	0	$\frac{1}{r(a+r \sin \varphi)} \frac{\partial \mu}{\partial \Phi} \frac{\partial \Psi}{\partial \theta}$	$\frac{1}{r} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \varphi}$
$\overline{\bar{I}}^{\prime}{ }_{\mathbf{k}}$	$\frac{1}{(a+r \sin p)} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial r}$	$\frac{1}{r(a+r \sin)} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial \varphi}$	$\left.\frac{I}{(a+r s i n}\right) \frac{\partial \lim _{f}}{\partial T}\left(\lambda+a_{i} \frac{\partial T}{\partial \theta}\right.$
${ }^{\text {², }}$	$-\frac{\sin \phi}{(a+r \sin)^{1}} \frac{\partial y}{\partial T} \frac{\partial T}{\partial \theta}$	$-\frac{\cos \varphi}{(a+r \ln \varphi)} \frac{\partial \mu}{\partial T} \frac{\partial T}{\partial \theta}$	$-\frac{\frac{\partial \mu}{\partial T}}{\left(a+r^{8 i m} \varphi\right)}\left[\frac{\partial T}{\partial r_{1}} \operatorname{in\varphi }+\frac{\partial \Phi}{\partial \varphi} \frac{\cos \varphi}{r_{i}}\right]$

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

Axis of Symmetry With Axial Symmetry

The only non-aero terms in the coefficients of Table IX on the axis of symmetry in the axially-symmetric case are the following:
$G_{2}^{\prime}=\frac{\partial}{\partial T}\left(\lambda+a_{\mu}\right) \frac{\partial T}{\partial R}$
$J_{1}{ }^{\prime}=\frac{2}{R} \frac{\partial \lambda}{\partial T} \frac{\partial T}{\partial R}$
$\bar{H}_{2}^{\prime}=\frac{2}{R} \frac{\partial \lambda}{\partial T} \frac{\partial \text { 里 }}{\partial R}$
The integral term in Rquation (22) is also non-zero for the equilibriun equation corresponding to $k=1$:

Finite Difference Formulation

The difference analogs to the partial differential equations are constructed on a grid network as shown in Figure 2, for whith α_{2} = constant lines are ordered by the subscript $i, \alpha_{0}=$ constant lines by the subscript $j, \alpha_{3}=$ constant lines by the subscript k, and the intersection of grid lines (nodes) by the triple subscript $1, j, k$.

Figure 2. Grid Notation for Finite Difference

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

For the general case the grid spacing will be irregular and the increments in the vicinity of a node will be designated by the following:

Let $f\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ be any function of the coordinates such that it and its partial derivatives (up to any order required in the analysis) are continuous, and expand the function about the point $1, j, k$. Using a new coordinate system with origin at i, j, k and with $\xi_{1}, \xi_{1}, \xi_{3}$ directed along $\alpha_{2}, \alpha_{1}, \alpha_{3}$, respectively, the function $f\left(\xi_{1}, \xi_{m}, \xi_{s}\right)$ is written

The first and second derivatives of $f\left(\alpha_{2}, \alpha_{3}, \alpha_{3}\right)$ with respect to $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are obtained from Equation (23) according to

$$
\left.\left.\frac{\partial f}{\partial \alpha_{3}}\right|_{i, j, k}=\left.\frac{\partial f}{\partial \xi_{s}}\right|_{(0,0,0}\right)=B_{3},\left.\quad \frac{\partial_{f}}{\partial \alpha_{3}} \partial \alpha_{1}\right|_{i, j, k}=B_{8},\left.\frac{\partial^{n} f}{\partial \alpha_{3}}\right|_{i, j, k}=2 B_{0}
$$

By considering the values of $f\left(\xi_{i}, \xi_{n}, \xi_{3}\right)$ at the twelve nodes adjacent to - i, j, k, the constants B_{1} are evaluated in terms of the function at these nodes and the grid spacings as shown in Figure 3.

$$
\begin{aligned}
& \left.\frac{\partial f}{\partial \alpha_{1}}\right|_{1, j, k}=\left.\frac{\partial f}{\partial \xi_{1}}\right|_{(0,0,0}=B_{2},\left.\frac{\partial^{m}}{\partial \alpha_{2}} \partial \alpha_{1}\right|_{i, j, k}=B_{4},\left.\frac{\partial^{m} f}{\partial \alpha_{1}}\right|_{1, j, k}=2 B_{7} \\
& \left.\left.\frac{\partial f}{\partial \alpha_{0}}\right|_{i, j, k}=\left.\frac{\partial f}{\partial \xi_{m}}\right|_{(0,0,0}\right)\left.^{=B_{B},} \quad \frac{\partial_{f}}{\partial \alpha_{m} \partial \alpha_{3}}\right|_{i, j, k}=B_{B},\left.\frac{\partial_{f}}{\partial \alpha_{f}}\right|_{i, j, k}=2 B_{B}
\end{aligned}
$$

$$
\begin{align*}
& f\left(\xi_{1}, \xi_{5}, \xi_{3}\right)=f_{1, f, k}+B_{2} \xi_{2}+B_{2} \xi_{2}+B_{3} \xi_{3}+B_{4} \xi_{2} \xi_{5} \\
& +B_{5} \xi_{n} \xi_{3}+B_{B} \xi_{3} \xi_{2}+B_{7} \xi_{1} n+B_{8} \xi_{n}^{n}+B_{9} \xi_{3}^{2} \tag{23}
\end{align*}
$$

$$
\begin{aligned}
& +B_{14} \xi_{5} \xi_{s}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& h_{12}=\left(\alpha_{1}\right)_{i+1}-\left(\alpha_{1}\right)_{i} \quad h_{m_{2}}=\left(\alpha_{1}\right)_{1+1}-\left(\alpha_{1}\right)_{i} \quad h_{B_{2}}=\left(\alpha_{3}\right)_{1+1}-\left(\alpha_{3}\right)_{i} \\
& h_{2}=\left(\alpha_{2}\right)_{i+1}-\left(\alpha_{1}\right)_{i} \quad h_{a}-\left(\alpha_{1}\right)_{i+1}-\left(\alpha_{1}\right)_{i} \quad h_{B}-\left(\alpha_{3}\right)_{i+1}-\left(\alpha_{3}\right)_{1} \\
& h_{13}=\left(\alpha_{1}\right)_{i}-\left(\alpha_{1}\right)_{i-2} \quad h_{1 s s}-\left(\alpha_{1}\right)_{i}-\left(\alpha_{1}\right)_{i-1} \quad h_{3 s}=\left(\alpha_{3}\right)_{i}-\left(\alpha_{3}\right)_{i-1} \\
& h_{14}=\left(\alpha_{2}\right)_{1}-\left(\alpha_{2}\right)_{1-0} \quad h_{14}=\left(\alpha_{1}\right)_{1}-\left(\alpha_{3}\right)_{1-1} \quad h_{34}=\left(\alpha_{3}\right)_{1}-\left(\alpha_{3}\right)_{1-\infty}
\end{aligned}
$$

Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)

Figure 3. Coordinates of Irregular Mesh Intervals

Note that the grid spacing increments $h_{i j}$ do not, in general, have the dimersins of length but have the dimensions of $\alpha_{2} ; \alpha_{a}$ and α_{3}.

At points 1 and 3, Equation (23) becomes

$$
\begin{align*}
& f\left(h_{11,0,0}\right)=f_{1, j, k}+B_{1} h_{11}+B_{7} h_{11} \tag{25}\\
& f\left(-h_{13,0,0}\right)=f_{i, j, k}-B_{2} h_{13}+B_{7} h_{13}
\end{align*}
$$

where terms of higher order are deleted. Solving for B_{2} and B_{7} from Equation (25) gives for the first and second irregular central derivative with respect to α_{1} :

$$
\begin{align*}
& \left.\frac{\partial f}{\partial \alpha_{1}}\right)_{1, f, k}=\frac{h_{13} f_{i+1, j, k}+\left(h_{11}-h_{13}\right) f_{i, j, k}-h_{11} f_{i-1, j, k}}{h_{11} h_{13}\left(h_{11}+h_{13}\right)} \\
& \left.\frac{\partial^{2} f}{\partial \alpha_{1}}\right|_{i, j, k}=2\left[\frac{h_{13} f_{1+1, j, k}-\left(h_{11}+h_{13}\right) f_{1, j, k}+h_{11} f_{i-1, j, k}}{h_{11}\left(h_{13}\left(h_{11}+h_{13}\right)\right.}\right] \tag{26}
\end{align*}
$$

Derivetion of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

Substituting $h_{21}=h_{1}=h_{1}$ into Equation (26) gives for the first and second regular central derivatives with respect to α_{i}

$$
\begin{align*}
& \left.\frac{\partial f}{\partial \alpha_{1}}\right|_{i, j, k}=\frac{f_{i+1, j, k}-f_{i-1, j, k}}{2 h_{1}} \\
& \left.\frac{\partial^{n} f_{f}}{\partial \alpha_{1}}\right|_{i, j, k}=\frac{f_{i+1, j, k}-2 f_{1, j, k}+f_{i-1, j, k}}{h_{1}} \tag{27}
\end{align*}
$$

By a sinilar procedure the following first and second regular and irregular central derivatives are obtained with respect to the coordinates α_{3} and α_{3} : First Regular Central Derivatives ($h_{1}=h_{n_{2}}=h_{13}, h_{0}=h_{0_{1}}=h_{03}$)

$$
\begin{align*}
& \left.\frac{\partial f}{\partial \alpha_{1}}\right|_{i, j, k}=\frac{f_{i, j+1, k}-f_{i, j-1, k}}{2 h_{m}} \tag{28}\\
& \left.\frac{\partial f}{\partial \alpha_{3}}\right|_{i, j, k}=\frac{f_{i, j, k+1}-f_{i, j, k-1}}{2 h_{e}} \tag{29}
\end{align*}
$$

First Irregular Central Derivatives

$$
\begin{align*}
& \left.\frac{\partial f}{\partial \alpha_{3}}\right)_{i, j, k}=\frac{h_{B 3} f_{i, j, k+1}+\left(h_{B_{1}}-h_{B 3}\right) f_{1, j, k}-h_{b_{1}} f_{i, j, k-1}}{h_{B_{1}} h_{B 3}\left(h_{B_{1}}+h_{B 3}\right)} \tag{30}
\end{align*}
$$

Second Regular Central Derivatives ($h_{10}=h_{n_{1}}=h_{n_{3}}, h_{B}=h_{B_{2}}=h_{B 3}$)

$$
\begin{align*}
& \left.\frac{\partial f_{f}}{\partial \alpha_{k}}\right|_{i, j, k}=\frac{f_{i, j+1, k}-2 f_{i, j, k}+f_{i, j-1, k}}{h_{m}} \tag{32}\\
& \left.\frac{\partial_{f}}{\partial \alpha_{3}}\right|_{i, j, k}=\frac{f_{i, j, k+1}-2 f_{i, j, k}+f_{i, j, k-1}}{h_{k}} \tag{33}
\end{align*}
$$

Second Irregular Central Derivatives

$$
\begin{equation*}
\left.\frac{\partial{ }^{\prime} f}{\partial \alpha_{n}}\right)_{i, j, k}=\frac{2\left[h_{n 3} f_{i, j+1, k}-\left(h_{m 1}+h_{n 3}\right) f_{i_{2} j, k}+h_{n 1} f_{i, j-1, k}\right]}{h_{01} h_{m 3}\left(h_{01}+h_{m 3}\right)} \tag{34}
\end{equation*}
$$

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

Forward and Backwand Derivatives
By applying the same procedure as above with respect to two nodes located either forward or backward from the origin ($1, j, k$), the first and second regular and irregular derivatives are obtained in terms of the function $f\left(\alpha_{1}, \alpha_{n}, \infty_{0}\right)$ evaluated at these nodes. The results are sumarized below for the three coorkinate directions:

First Irregular Forward Derivatives

$$
\begin{align*}
& \left.\frac{\partial f}{\partial \alpha_{1}}\right)_{i, j, k}=\frac{-\left(h_{1}-h_{1,}\right) f_{i, j, k}+h_{2}=f_{i+1, j, k}-h_{12} f_{i+2, j, k}}{h_{12} h_{1}\left(h_{1}-h_{1} 1\right.} \tag{36}
\end{align*}
$$

$$
\begin{align*}
& \left.\frac{\partial f}{\partial \alpha_{3}}\right)_{i, j, k}=\frac{-\left(h_{B 2}{ }^{2}-h_{B_{1}}{ }^{2}\right) f_{i, j, k}+h_{B} f_{i, j, k+1}-h_{B 2} f_{i, j, k+2}}{h_{B_{1}} h_{B}\left(h_{B A}-h_{B_{1}}\right)} \tag{37}
\end{align*}
$$

First Regular Forward Derivatives

For equal grid spacings in each of the three coordinate directions, defined according to

$$
\left.\begin{array}{l}
h_{L_{1}}=h_{h_{1}} / 2 \equiv h_{1} \tag{39}\\
h_{b_{1}}=h_{B} / 2 \equiv h_{B} \\
h_{B_{1}}=h_{B} / 2 \equiv h_{B}
\end{array}\right\}
$$

Equations (36) - (38) reduce to

$$
\begin{align*}
& \left.\frac{\partial f}{\partial \alpha_{1}}\right|_{i, j, k}=\frac{-3 f_{i, j, k}+4 f_{i+1, j, k}-f_{i+2, j, k}}{2 h_{1}} \tag{40}\\
& \left.\frac{\partial f}{\partial \alpha_{2}}\right|_{i, j, k}=\frac{-3 f_{i, j, k}+4 f_{i, i+1, k}-f_{i, j+2, k}}{2 h_{k}} \tag{41}
\end{align*}
$$

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

$$
\begin{equation*}
\left.\frac{\partial f}{\partial \epsilon_{3}}\right|_{i, j, k}=\frac{-3 f_{i, j, k}+4 f_{i, j, k+1}-f_{i, j, k+2}}{2 h_{3}} \tag{42}
\end{equation*}
$$

Second Irregular Forward Derivatives

$$
\begin{align*}
& \left.\frac{\partial f_{1}}{\partial \alpha_{1}}\right|_{1, j, k}=2\left[\frac{-h_{1}: f_{1+1, j_{2} k}+\left(h_{1}-h_{12}\right) f_{1, j, k}+h_{12} f_{1+2, j, k}}{h_{12} h_{1,}\left(h_{12}-h_{12}\right)}\right] \tag{43}\\
& \left.\frac{\partial \|_{f}}{\partial \alpha_{0}}\right)_{i, j, k}=2\left[\frac{-h_{m a} f_{i, j+1, k}+\left(h_{n \theta}-h_{A 1}\right) f_{i, j, k}+h_{n 2} f_{i, j+2, k}}{h_{21} h_{23}\left(h_{22}-h_{m 1}\right)}\right] \tag{44}
\end{align*}
$$

Second Regular Forward Derivatives
With equal grid spacing, according to Equation (39), Equations (43) - (45) reduce to

$$
\begin{align*}
& \left.\frac{\partial^{m_{f}}}{\partial \alpha_{1}}\right|_{i, j, k}=\frac{-2 f_{i+1, j, k}+f_{i, j, k}+f_{i+2, j, k}}{h_{2}} \tag{46}\\
& \left.\frac{\partial^{2} f}{\partial \alpha_{m}}\right|_{i, j, k}=\frac{-2 f_{i, j+1, k}+f_{i, j, k}+f_{i, j+2, k}}{h_{8}} \tag{47}\\
& \left.\frac{\partial^{2} f_{f}}{\partial \alpha_{3}}\right|_{i, j, k}=\frac{-2 f_{i, j, k+1}+f_{i, j, k}+f_{i, j, k+2}}{h_{k}} \tag{48}
\end{align*}
$$

First Irregular Backward Derivatives

$$
\begin{align*}
& \left.\frac{\partial f}{\partial \alpha_{i}}\right|_{i, j, k}=\frac{h_{23}{ }^{2} f_{i-2, j, k}+\left(h_{24}{ }^{2}-h_{23}\right) f_{i, j, k}-h_{14}{ }^{2} f_{i-1, j, k}}{h_{13} h_{14}\left(h_{24}-h_{13}\right)} \tag{49}\\
& \left.\frac{\partial f}{\partial \alpha_{m}}\right|_{i, j, k}=\frac{h_{m 3}^{2} f_{i, j-2, k}+\left(h_{m 4}{ }^{2}-h_{m a}\right) f_{i, j, k}-h_{84}{ }^{2} f_{i, j-1, k}}{h_{9 a} h_{m 4}\left(h_{m 4}-h_{m}\right)} \tag{50}\\
& \left.\frac{\partial f}{\partial \alpha_{3}}\right|_{i, j, k}=\frac{h_{B} \cdot f_{i, j, k-2}+\left(h_{B} \cdot h_{B s}\right) f_{i, j, k}-h_{B} f_{j, j, k-1}}{h_{B 3} h_{8}\left(h_{B 4}-h_{0 s}\right)} \tag{51}
\end{align*}
$$

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)
First Regular Backward Derivatives ($h_{13}=\frac{h_{14}}{2} h_{1}$, etc.)

$$
\begin{align*}
& \left.\frac{\partial f}{\partial \alpha_{1}}\right|_{i, j, k}=\frac{f_{i-2, j, k}+3 f_{i, j, k}-4 f_{i-1, j, k}}{2 h_{1}} \tag{52}\\
& \left.\frac{\partial f}{\partial \alpha_{i}}\right|_{i, j, k}=\frac{f_{i, j-2, k}+3 f_{i, j, k}-4 f_{i, j-1, k}}{2 h_{i}} \tag{53}\\
& \left.\frac{\partial f}{\partial \alpha_{k}}\right|_{i, j, k}=\frac{f_{i, j, k-2}+3 f_{i, j, k}-4 f_{i, j, k-1}}{2 h_{B}} \tag{54}
\end{align*}
$$

Second Irregular Bachrard Derivatives

$$
\begin{align*}
& \left.\frac{\partial^{n} f}{\partial \alpha_{2}}\right|_{i, j, k}=2\left[\frac{h_{13} f_{i-2, j, k}+\left(h_{24}-h_{23}\right) f_{i, j, k}-h_{14} f_{i-1, j, k}}{h_{13} h_{14}\left(h_{14}-h_{13}\right)}\right] \tag{55}\\
& \left.\frac{\partial^{g} f}{\partial \alpha_{B}}\right|_{i, j, k}=2\left[\frac{h_{2 a} f_{i, j-2, k}+\left(h_{m 4}-h_{23}\right) f_{i, j, k}-h_{24} f_{i, j-1, k}}{h_{83} h_{4 i}\left(h_{94}-h_{33}\right)}\right] \tag{56}\\
& \left.\frac{\partial B_{f}}{\partial \alpha_{3}{ }^{3}}\right|_{i, j, k}=2\left[\frac{h_{33} f_{i, j, k-2}+\left(h_{34}-h_{33}\right) f_{i, j, k}-h_{44} f_{i, j, k-1}}{h_{33} h_{34}\left(h_{h_{4}}-h_{33}\right)}\right] \tag{57}
\end{align*}
$$

Second Regular Baciward Derivatives

$$
\begin{align*}
& \left.\frac{\partial^{f_{f}}}{\partial \alpha_{i}}\right|_{i, j, k}=\frac{f_{i-2, j, k}+f_{i, j, k}-2 f_{i-1, j, k}}{h_{i}} \tag{58}\\
& \left.\frac{\partial^{f}}{\partial \alpha_{R}}\right|_{i, j, k}=\frac{f_{i, j-2, k}+f_{i, j, k}-2 f_{i, j-1, k}}{h_{m}} \tag{59}\\
& \left.\frac{\partial^{\prime} f_{f}}{\partial \alpha_{B}}\right|_{i, j, k}=\frac{f_{i, j, k-2}+f_{i, j, k}-2 f_{i, j, k-1}}{h_{B}} \tag{60}
\end{align*}
$$

Mixed Derivatives

It can be shown from Equation (23) that mixed derivatives require values of the function at any six nodes in the vicinity of the point under consideration. Figure 3 shows various combinations of mixed derivatives with respect to the

Figure 3. Irregular Mesh Intervels for Mixed Central, Forward Backward and Corner Derivatives
Forward

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)
coordinate axes α_{1} and α_{0}. It is noted that the mixed central derivatives involve the four corner nodes as well as two adjacent nodes in either of the two coordinate directions. The various combinations shown in Figure 3 are summarized below for the coordinate directions α_{1} and α_{1} :

Second Mixed Irregular Central Derivative With Respect to α_{1} and α_{2}

$$
\begin{align*}
& \text { a) }\left.\frac{\partial^{2} f}{\partial \alpha_{1} \partial \alpha_{1}}\right|_{i, j, k}=\frac{1}{h_{12} h_{03}\left(h_{12}+h_{13}\right)\left(h_{12}+h_{133}\right)} \\
& {\left[h_{103} \mid f_{i+1, j+1, k}-f_{i-1, j+1, k}\right)-\left(h_{m 3}-h_{01}\right)\left(f_{i+1, j, k}-f_{i-1, j, k}\right)} \\
& \left.-h_{1}\left(f_{i+1, j-1, k}-f_{i-1, j-1, k}\right)\right] \tag{61}
\end{align*}
$$

b) $\left.\frac{\partial^{2} f}{\partial \alpha_{1} \partial \alpha_{3}}\right|_{i, j, k}=\frac{1}{h_{11} h_{13}\left(h_{11}+h_{13}\right)\left(h_{11}+h_{93}\right)}$

$$
\begin{aligned}
& \left.\left[h_{13} \mid f_{i+1, j+1, k}-f_{i+1, j-1, k}\right)-\left(h_{13}-h_{11}\right) \mid f_{i, j+1, k}-f_{i, j-1, k}\right) \\
& \left.-h_{11}:\left(f_{i-1, j+1, k}-f_{i-1, j-1, k}\right)\right]
\end{aligned}
$$

Second Mixed Irregular Forward Derivative with Respect to α_{1} and α_{1}
c)

$$
\begin{align*}
& \left.\frac{\partial^{2} f}{\partial \alpha_{1} \partial \alpha_{1}}\right|_{1, j, k}=\frac{1}{h_{81} h_{n 3}\left(h_{1} 1-h_{19}\right)\left(h_{11}+h_{83}\right)} \\
& {\left[h_{n 3}\left(f_{i+1, j+1, k}-f_{i+1, j, k}-f_{i+2, j+1, k}+f_{i+2, j, k}\right)\right.} \tag{63}\\
& \left.-h_{k i} \cap\left(f_{i+1, j-1, k}-f_{i+1, j, k}-f_{i+2, j-1, k}+f_{i+2, j, k}\right)\right\}
\end{align*}
$$

Derivation of Equilibrium Equations in Terms of Displacements in Spherical and Toroidal Coordinates (cont.)

$$
\text { a) } \begin{align*}
&\left.\frac{\partial^{2} f}{\partial \alpha_{2} \partial \alpha_{1}}\right|_{i, j, k}=\frac{1}{h_{12} h_{13}\left(h_{12}-h_{11}\right)\left(h_{12}+h_{13}\right)} \\
& {\left[h_{1} s=\left|f_{i+1, j+1, k}-f_{i, j+1, k}-f_{i+1, j+2, k}+f_{i, j+2, k}\right|\right.} \tag{64}\\
&\left.-h_{12} *\left|f_{i-1, j+1, k}-f_{i, j+1, k}-f_{i-1, j+2, k}+f_{i, j+2, k}\right|\right]
\end{align*}
$$

Second Mixed Irregular Backward Derivative With Respect to α_{1} and α_{n}

$$
\begin{align*}
& \text { e) }\left.\frac{\partial^{1} f}{\partial \alpha_{1} \partial \alpha_{0}}\right|_{i, j, k}=\frac{-1}{h_{n 1} h_{m 3}\left(h_{13}-h_{14}\right)\left(h_{n 1}+h_{n 3}\right)} \\
& {\left[h_{m 3}\left(f_{i-1, j+1, k}-f_{i-2, j+1, k}+f_{i-2, j, k}-f_{i-1, j, k}\right)\right.} \tag{65}\\
& \left.-h_{n 1}\left(f_{i-1, j-1, k}-f_{i-1, j, k}-f_{i-2, j-1, k}+f_{i-2, j, k}\right)\right] \\
& \text { f) }\left.\frac{\partial \|_{f}}{\partial \alpha_{1} \cdot \partial \alpha_{11}}\right|_{i, j, k}=\frac{-1}{h_{12} h_{13}\left(h_{n 3}-h_{14}\right)\left(h_{21}+h_{13}\right)} \\
& {\left[b_{2 j}\left|f_{i+1, j-1, k}-f_{i+1, j-2, k}+f_{i, j-2, k}-f_{i, j-1, k}\right|\right.} \tag{66}\\
& \left.-h_{1, i}\left(f_{i-1, j-1, k}-f_{i, j-1, k}-f_{i-1, j-2, k}+f_{i, j-2, k}\right)\right]
\end{align*}
$$

Second Mixed Irregular Corner Derivative With Respect to α_{1} and α_{1}

$$
\text { g) } \begin{align*}
\frac{\partial \rho_{f}}{\partial \alpha_{1} \partial \alpha_{m}}= & \frac{1}{h_{11} h_{1}: h_{11} h_{m g}\left(h_{m i n}-h_{11}\right)} \\
& {\left[h_{1:} h_{m g}\left(f_{i+1, j+1, k}-f_{i+1, j, k}-f_{i, j+1, k}+f_{i, j, k}\right)\right.} \tag{67}\\
& \left.-h_{11} h_{h_{1}}\left(f_{i+2, j+2, k}-f_{i+2, j, k}-f_{i, j+2, k}+f_{i, j, k}\right)\right]
\end{align*}
$$

Second Mixed Regular Derivatives
All of the above results can be reduced to regular derivatives with respect to either α_{1}, α_{n} or both coordinates by making the substitutions

Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)

$$
\begin{align*}
& h_{12}=h_{13}=\frac{h_{1}}{2}=\frac{h_{14}}{2}=h_{1} \tag{68}\\
& h_{12}=h_{13}=\frac{h_{11}}{2}=\frac{h_{14}}{2}=h_{1} \tag{69}\\
& h_{2}=h_{n}=h \tag{70}
\end{align*}
$$

The various derivatives are sumarized below for the case in which all grid spacings are equal (i.e., $h_{1}=h_{m}$).

Second Mixed Regular Central Derivative With Respect to α_{1} and α_{1}
a), b)

$$
\begin{equation*}
\left.\frac{\partial^{2} f^{\prime}}{\partial \alpha_{2} \partial \alpha_{3}}\right|_{i, j, k}=\frac{1}{4 h^{2}}\left(f_{i+1, j+1, k}-f_{i+1, j-1, k}-f_{i-1, j+1, k}+f_{i-1, j-1, k}\right) \tag{71}
\end{equation*}
$$

Second Mixed Regular Forward Derivative With Respect to α_{1} and α_{n}

c) $\left.\frac{\partial^{\prime} f}{\partial \alpha_{1} \partial \alpha_{j}}\right)_{i, j, k}=\frac{-1}{2 h_{m}}\left(f_{i+1, j+1, k}-f_{i+2, j+1, k}-f_{i+1, j-1, k}+f_{i+2, j-1, k}\right)$
d) $\left.\frac{\partial \mu_{f}}{\left(\rho_{p} \partial \alpha_{j}\right.}\right)_{i, j, k}=\frac{-1}{2 h^{j}}\left(f_{i+1, j+1, k}-f_{i+1, j+2, k}-f_{i-1, j+1, k}+f_{1-1, j+2, k}\right)$

Second Mixed Regular Backward Derivative With Respect to α_{2} and α_{n}
e) $\left.\frac{\partial^{2} f}{\partial \alpha_{1} \partial \alpha_{2}}\right|_{i, j, k}=\frac{1}{2 h^{2}}\left(f_{1-1, j+1, k}-f_{i-2, j+1, k}-f_{i-1, j-1, k}+f_{1-2, j-1, k}\right)$
f) $\left.\frac{\partial^{2} f}{\partial \alpha_{1} \partial \alpha_{1}}\right)_{i, j, k}=\frac{1}{2 h^{m}}\left(f_{i+1, j-1, k}-f_{i+1, j-2, k}-f_{i-1, j-1, k}+f_{i-1, j-2, k}\right)$

Second Mixed Regular Corner Derivative With Respect to α_{1} and α_{2}

$$
\left.-\left(f_{i+2, j+2, k}-f_{i+2, j, k}-f_{i, j+2, k}+f_{i, j, k}\right)\right]
$$

The equilibrium equations in spherical coordinates in terms of displace. - ments are written in the form

$$
-\frac{(\lambda+3 \mu) \cos \varphi}{\mathrm{R}^{8} \sin ^{8} \varphi} \frac{\partial W}{\partial \theta}=\frac{(3 \lambda+2 \varphi) \alpha(T)}{\sqrt{8 \theta}} \frac{\partial T}{\partial \varphi}
$$

$$
\frac{\lambda+\mu}{R \sin \varphi} \frac{\partial \varphi}{\partial r \partial \theta}+\frac{2(\lambda+3 \mu)}{R^{\beta} \sin \varphi} \frac{\partial u}{\partial \theta}+\frac{\lambda+\mu}{R^{\delta} \sin \varphi} \frac{\partial^{\theta} v}{\partial \theta \partial \varphi}+\frac{(\lambda+3 \mu) \cos \varphi}{R^{\sin } \sin ^{\bar{B}} \varphi} \frac{\partial v}{\partial \theta}
$$

$$
\begin{equation*}
=\frac{\mu}{R^{6} \sin ^{\theta} \varphi} W=\frac{(3 \lambda+2 \mu) \alpha(T)}{\sqrt{B 33}} \frac{\partial T}{\partial \theta} \tag{3}
\end{equation*}
$$

The temperature terms on the right hand sides of Equations (1), (2) and (3) are equivalent to body forces defined as

$$
\begin{align*}
& \frac{\lambda+\mu}{R} \frac{\partial^{8} u}{\partial R \partial \varphi}+\frac{2(\lambda+2 \mu)}{R^{B}} \frac{\partial u}{\partial \varphi}+\mu \frac{\partial^{s} v}{\partial R^{B}}+\frac{\lambda+2 \mu}{R^{B}} \frac{\partial^{8} v}{\partial \varphi^{B}}+\frac{\mu}{R^{s} \sin ^{g} \varphi} \frac{\partial^{s} v}{\partial \theta^{8}} \\
& +\frac{\partial \mu}{R} \frac{\partial v}{\partial R}+\frac{(\lambda+2 \varphi) \cos \varphi}{R^{\top} \sin \varphi} \frac{\partial v}{\partial \varphi}=\frac{\lambda+2 \mu}{R^{5} \sin ^{8} \varphi} v+\frac{\lambda+\mu}{R^{\mathrm{s}} \sin \varphi} \frac{\partial^{\theta} w}{\partial \theta \partial \varphi} \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \left(\lambda+\alpha_{\mu}\right) \frac{\partial^{2} u}{\partial R^{m}}+\frac{\mu}{R^{8}} \frac{\partial^{\theta} u}{\partial \varphi^{g}}+\frac{\mu}{R^{8} \sin ^{5} \varphi} \frac{\partial u}{\partial \theta^{g}}+\frac{2(\lambda+\hat{\mu})}{R} \frac{\partial u}{\partial R}+\frac{\mu \cos \varphi}{R^{B} \sin \varphi} \frac{\partial u}{\partial \varphi} \\
& -\frac{2(\lambda+2 \mu)}{R^{B}} u+\frac{\lambda+\mu}{R} \frac{\partial^{a} v}{\partial R \partial \varphi}+\frac{(\lambda+\mu) \cos \varphi}{E \sin \varphi} \frac{\partial v}{\partial R}=\frac{\lambda+3 \mu}{R^{B}} \frac{\partial v}{\partial \varphi} \tag{1}\\
& -\frac{(\lambda+3 \mu) \cos \varphi}{R^{2} \sin \varphi} v+\frac{\lambda+\mu}{R \sin \varphi} \frac{\partial^{B} w}{\partial R \partial \theta}-\frac{\lambda+3 \mu}{R^{\Phi} \sin \varphi} \frac{\partial w}{\partial \theta}=\frac{(3 \lambda+q \mu) \alpha(T)}{\sqrt{g_{1}}} \frac{\partial T}{\partial R}
\end{align*}
$$

$$
\begin{align*}
& \frac{\left(3 \lambda+\alpha_{1}\right) \alpha(T)}{\sqrt{g_{11}}} \frac{\partial T}{\partial R}=F_{R}(R, \varphi, \theta) / \sqrt{g_{11}} \\
& \frac{\left(3 \lambda+\partial_{h}\right) \alpha(T)}{\sqrt{g_{\theta \beta}}} \frac{\partial T}{\partial \varphi}=F_{\varphi}(R, \varphi, \theta) / \sqrt{g_{\theta \beta}} \tag{4}\\
& \frac{\left(3 \lambda+\mu_{4}\right) \alpha(T)}{\sqrt{g_{33}}} \frac{\partial T}{\partial \theta}=F_{\theta}(R, \varphi, \theta) / \sqrt{g_{33}}
\end{align*}
$$

If the elastic constants are temperature dependent the equilibrium equations (1), (2) and (3) are written in the form

$$
\begin{equation*}
\sum_{i=1}^{10}\left[\left(A_{k i}+A_{k i}^{\prime}\right) U_{i}+\left(B_{k i}+B_{k i}^{\prime}\right) V_{i}+\left(C_{k i}+C_{k i}^{\prime}\right) W_{i}\right]=F_{k}, \quad(k=R, \varphi, \theta) \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{k i}, B_{k i}, C_{k i}=\text { functions of coordinates }(R, \varphi, \theta) \text { and elastic constants } \\
& \lambda \text { and } \mu \\
& A^{\prime}{ }_{k i}, B_{k i}^{\prime}, C^{\prime}{ }_{k i}=\text { functions of coordinates }(R, \varphi, \theta) \text { and elastic } \\
& \text { constants } \lambda(T) \text { and } \mu(T) \text {, where } T \text { is the heat shield } \\
& \text { temperature which is a function of the coordinate }(R, \varphi, \theta) \\
& \mathrm{U}_{\mathrm{i}}, \mathrm{~V}_{\mathrm{i}}, \mathrm{~W}_{\mathrm{i}}=\text { functions of displacements } u(\mathrm{R}, \varphi, \theta), \mathrm{v}(\mathrm{R}, \varphi, \theta) \text { and } \mathrm{W}(\mathrm{R}, \varphi, \theta) \\
& \text { and their respective derivatives of the first and second } \\
& \text { orders, respectively. } \\
& F_{k}=\text { body force expressed as }\left(3 \lambda+\alpha_{\mu}\right) \alpha(T) \frac{\partial T}{\partial \alpha_{k}} \\
& \text { Equation. (1) may be further shortened into the form } \\
& \sum_{m=1}^{3} \sum_{i=1}^{10}\left(G_{m k i}+G_{m k i}^{\prime}\right) \Phi_{m i}=F_{k},(k=R, \varphi, \theta) \tag{6}
\end{align*}
$$

where

$$
\begin{aligned}
& G_{i, 3}, k_{i}=A_{k i}, B_{k i}, C_{k i} \\
& G_{1,3}^{\prime}, k_{i}=A_{k i}^{\prime}, B_{k i}^{\prime}, C_{k i}^{\prime} \\
& \Phi_{i, 3 i}=U_{i}, V_{i}, W_{i}
\end{aligned}
$$

Singularities at an Axis $\varphi=0$ (cont.)

It is first considered that the elastic constants are independent of temperatore. In this case, Equation (6) becomes, deleting the symbol of summation,

$$
\begin{equation*}
G_{m i k i}(R, \varphi, \theta) \Phi_{m i}(R, \varphi, \theta)=F_{k}(R, \varphi, \theta) \tag{7}
\end{equation*}
$$

Replacing the variables R, φ, and θ of Equation (7) by $R-R^{\prime}, \varphi-\varphi^{\prime}$ and $\theta_{0} \theta^{\prime}$, respectively, and integrating the result with respect to the variables ($R \infty R^{\prime}, \varphi-\varphi^{\prime}, \theta_{\infty} \theta^{\prime}$) over a finite volume V_{k} gives

$$
\begin{equation*}
\iiint_{V_{k}} G_{m k i} \Phi_{m i} d V^{\prime}=\iiint_{V_{k}} F_{k} d V^{\prime} \tag{8}
\end{equation*}
$$

where $d V^{\prime}=\left(R-R^{\prime}\right)^{\theta} \sin \left(\varphi-\varphi^{\prime}\right) d\left(R-R^{\prime}\right) d\left(\varphi-\varphi^{\prime}\right) d\left(\theta-\theta^{\prime}\right)$ and the finite volume V_{k} is bounded as

$$
\begin{aligned}
& R_{K I} \leq R-R^{\prime} \leq R_{K 2} \\
& \varphi_{K I} \leq \varphi-\varphi^{\prime} \leq \varphi_{K 2} \\
& \theta_{K I} \leq \theta-\theta^{\prime} \leq \theta_{K 2}
\end{aligned}
$$

Let

$$
\begin{aligned}
& I_{R}=\int_{R_{K l}}^{R} G_{m 2 l}\left(R-R^{\prime}\right)^{2} d\left(R-R^{\prime}\right) \\
& I_{R \varphi}=\int_{\varphi_{K l}}^{\varphi_{K 2}} I_{R} \sin \left(\varphi-\varphi^{\prime}\right) d\left(\varphi-\varphi^{\prime}\right) \\
& I_{R \varphi \theta}=\int_{\theta_{K l}}^{\theta_{K 2}} I_{R \varphi} a\left(\theta-\theta^{\prime}\right)
\end{aligned}
$$

Integration of the function $G_{m k i} \Phi_{m i}$ with respect to ($R=R^{\prime}$) gives

Singularities at an Axis $\varphi=0$ (cont.)

$$
\begin{equation*}
\int_{R_{K 1}}^{R_{K 2}} G_{m k i} \Phi_{m i}\left(R-R^{\prime}\right)^{d} d\left(R-R^{\prime}\right)=I_{R} \Phi_{m i} \int_{R_{K 1}}^{R}-\int_{R_{K 1}}^{R_{K 2}} I_{R 1} \frac{\partial \Phi_{m i}}{\partial\left(R-R^{\prime}\right)} d\left(R-R^{\prime}\right) \tag{10}
\end{equation*}
$$

Integration of Equation (10) with respect to ($\varphi-\varphi^{\prime}$), after multiplying both sides by $\sin \left(\varphi \sim \varphi^{\prime}\right)$, gives

$$
\begin{align*}
& \int_{\varphi_{\mathrm{Kl}}}^{\varphi_{\mathrm{K} 2}} \mathrm{I}_{\mathrm{R}} \Phi_{\mathrm{mi}} \int_{\mathrm{R}_{\mathrm{Kl}}}^{\mathrm{R} \mathrm{~K} 2} \sin \left(\varphi-\varphi^{\prime}\right) d\left(\varphi-\varphi^{\prime}\right)- \\
& -\int_{\varphi_{K 1}}^{\varphi_{K 2}} \int_{R_{K I}}^{R_{K 2}} I_{R} \frac{\partial \Phi_{m i}}{\partial\left(R-R^{\prime}\right)} \sin \left(\varphi-\varphi^{\prime}\right) d\left(R-R^{\prime}\right) d\left(\varphi-\varphi^{\prime}\right)=\left.I_{R \varphi \rho} \Phi_{m I}\right|_{\varphi_{K 1}} ^{\varphi_{K 2}} \tag{11}\\
& \begin{array}{l}
\varphi_{\mathrm{KI}} \\
\mathrm{R}_{\mathrm{KI}}
\end{array} \\
& -\int_{\varphi_{K I}}^{\varphi_{K 2}} I_{R \varphi} \frac{\partial \Phi_{\text {mi }}}{\partial\left(\varphi-\varphi^{\prime}\right)} d\left(\varphi-\varphi^{\prime}\right)-\int_{\varphi_{K I}}^{\varphi_{K 2}} \int_{R_{K I}}^{R_{K 2}} I_{R} \frac{\partial \Phi_{m i}}{\partial\left(R-R^{\prime}\right)} \sin \left(\varphi-\varphi^{\prime}\right) d\left(R-R^{\prime}\right) d\left(\varphi-\varphi^{\prime}\right)
\end{align*}
$$

Integration of Equation (11) with respect to ($\theta-\theta^{\prime}$) gives

$$
\begin{aligned}
& \iiint G_{m k i} \Phi_{m i}\left(R-R^{\prime}\right)^{\mathrm{a}} \sin \left(\varphi-\varphi^{\prime}\right) d\left(\mathrm{R}-\mathrm{R}^{\prime}\right) d\left(\varphi-\varphi^{\prime}\right) d\left(\theta-\theta^{\prime}\right)
\end{aligned}
$$

Singularities at an Axis $\varphi=0$ (cont.)

$$
\begin{align*}
& -\int_{\varphi_{K I}}^{\varphi_{K 2}} \int_{\theta_{K I}}^{\theta_{K 2}} I_{R \varphi \theta} \frac{\partial \Phi_{m i}}{\partial\left(\theta_{-\infty} \theta^{\prime}\right)} d\left(\varphi-\varphi^{\prime}\right) d\left(\theta-\theta^{\prime}\right) \tag{12}\\
& -\int_{R_{K I}}^{R_{K 2}} \int_{\varphi_{K I}}^{\varphi_{K 2}} \int_{\theta_{K l}}^{\theta_{K 2}} I_{R} \frac{\partial \Phi_{m i}}{\partial\left(R-R^{\prime}\right)} \sin \left(\varphi-\varphi^{\prime}\right) d\left(R=R^{\prime}\right) d\left(\varphi-\varphi^{\prime}\right) d\left(\theta_{-} \theta^{\prime}\right)
\end{align*}
$$

At a point ($\mathrm{R}_{\mathrm{KC}}, \varphi_{\mathrm{KC}}, \theta_{\mathrm{KC}}$), Equation (12) becomes

$$
\begin{aligned}
& \iiint \dot{G}_{m K i} \Phi_{m i}\left(R_{K C}{ }^{\omega R^{\prime}}\right)^{\boldsymbol{a}^{\sin }} \sin \left(\varphi_{K C}-\varphi^{\prime}\right) d\left(R_{K C}-R^{\prime}\right) d\left(\varphi_{K C}-\varphi^{\prime}\right) d\left(\theta_{K C}-\theta^{\prime}\right) \\
& \theta_{K 2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{KI}} \\
& -\int_{R_{K I}}^{R_{K 2}} \int_{\varphi_{K 1}}^{\varphi_{K 2}} \int_{\theta_{K I}}^{\theta_{K 2}} I_{R} \frac{\partial \Phi_{m i}}{\partial R^{\prime}-} \sin \left(\varphi_{K C}-\varphi^{\prime}\right) d R^{\prime} d \varphi^{\prime} d \theta^{\prime}
\end{aligned}
$$

The right hand side of Equation (8) becomes

$$
-\int_{R_{K 1}}^{R_{K 2}} \int_{\varphi_{K I}}^{\varphi_{K 2}} \int_{\theta_{K I}}^{\theta_{K 2}} F_{K}\left(R_{K C}-R^{\prime}, \varphi_{K C}-\varphi^{\prime}, \theta_{K C}-\theta^{\prime}\right)\left(R_{K C}-R^{\prime}\right)^{n^{\prime}} \sin \left(\varphi_{K C}-\varphi^{\prime}\right) d R^{\prime} d \varphi^{\prime} d \theta^{\prime}
$$

By the definition of Kelvin's point force, diminishing the force field $V_{K}{ }^{\prime}$ indefinitely always including a point ($R^{\prime}=0, \varphi^{\prime}=0, \theta=0$) gives

Singularities at an Axis $\varphi=0$ (cont.)

$$
\begin{align*}
& \lim _{\mathrm{K}} \lim _{\lim _{\mathrm{Kl}}}^{\theta_{\mathrm{K} 2}} \mathrm{I}_{\mathrm{R} \varphi \theta} \frac{\partial \Phi_{\operatorname{mi}}}{\partial \theta^{\prime}} d \theta^{\prime} \approx 0 \\
& \mathrm{~V}_{\mathrm{K}}^{\lim ^{\mathrm{im}} \rightarrow 0} \int_{\varphi_{K l}}^{\varphi_{K 2}} \int_{\theta_{K 1}}^{\theta_{K 2}} \mathrm{I}_{\mathrm{R} \varphi} \frac{\partial \Phi_{\mathrm{mi}}}{\partial \varphi^{\prime}} d \varphi^{\prime} d \theta^{\prime} \approx 0 \tag{14}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{Vim}_{\mathrm{K}}^{\lim _{\longrightarrow}} \iiint \mathrm{F}_{\mathrm{K}}\left(\mathrm{R}_{\mathrm{KC}}-\mathrm{R}^{\prime}\right)^{\mathrm{n}} \sin \left(\varphi_{\mathrm{KC}}-\varphi^{\prime}\right) d R^{\prime} d \varphi^{\prime} d \theta^{\prime}={ }^{\circ} \mathrm{F}_{\mathrm{KC}}
\end{aligned}
$$

But

$$
\begin{equation*}
\iiint_{V_{K}} F_{K} d V^{\prime}=F_{K} V_{K} \tag{15}
\end{equation*}
$$

and, hence,

$$
\begin{equation*}
{ }^{o_{\mathrm{FC}}}=\mathrm{F}_{\mathrm{K}} V_{\mathrm{K}} \tag{16}
\end{equation*}
$$

Hence, from Equations (13), (13a), (14) and (16), Equation (8) becomes

Singularities at an Axis $\varphi=0$ (cont.)

Where $\Phi_{\mathrm{mi}} \left\lvert\, \begin{aligned} & \theta_{\mathrm{K} 2} \\ & \varphi_{\mathrm{K} 2} \\ & R_{\mathrm{KI}} \\ & \theta_{\mathrm{KI}} \\ & \varphi_{\mathrm{KI}}\end{aligned} \quad\right.$ may be found by taking the average of eight surrounding points.

Abstract

APPENDIX C Thin-Shell Interface Conditions for Stress Analysis of Thick Laminate Structures

Equations are derived for treating the stresses in a thick-shell laminate structure in the neighborhood of a thin layer which, by itself, can satisfy the Kirchhoff bending hypothesis for thin shells. It is shown that the thin layer can be treated by an equivalent interface condition which relates the displacements of the median surface of the shell to the discontinuous normal and shear stresses on the adjoining surfaces. From continuity of displacements across the thin layer the interface stresses can be climated to yield three simultaneous partial differential equations for the three displacement components at the interface. The analysis is presented for a flat plate using a system of Cartesian coordinates and will be generalized later to the curvilinear coordinate systems of interest in the heat shield analysis.

Consider a thin plate of thickness b with its median surface lying in the $x-y$ plane and the distance z measured from the median surface. The temperature and, consequently, the coefficient of thermal expansion and modulus of elasticity will be allowed to vary through the plate thickness so that the median surface will not, in general, bisect the plate thickness. With this generality, the thin plate itself can consist of a laminate of different materials. According to Kirchhoff's bending hypothesis the straindisplacement relations for a point (x, y, z) in the plate are given by Reference (I).

$$
\left.\begin{array}{l}
\varepsilon_{x}=\frac{\partial u}{\partial x}-z \frac{\partial^{n} w}{\partial x^{2}} \tag{1}\\
\varepsilon_{y}=\frac{\partial v}{\partial y}-z \frac{\partial^{n} w}{\partial y^{2}} \\
\gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}-2 z \frac{\partial^{n} w}{\partial x \partial y}
\end{array}\right\}
$$

Page C-I

Thin-Shell Interface Conditions for Stress Analysis of Thick Laminate Structures (cont.)

Where u, v, and w are displacements of a point (x, y) on the median surface and $\epsilon_{x}, \epsilon_{y}$ and $Y_{x y}$ are the normal strains and shear strain, respectively in the $x-y$ plane. The stress-strain relations are given by

$$
\begin{align*}
& \sigma_{x}=\frac{E(x, y, z)}{1-\nu^{y}}\left[\left(\epsilon_{x}+\nu \epsilon_{y}\right)-(1+\nu) \alpha(x, y, z) T(x, y, z)\right] \\
& \sigma_{y}=\frac{E(x, y, z)}{1-\nu}\left[\left(\epsilon_{y}+\nu \epsilon_{x}\right)-(1+\nu) \alpha(x, y, z) T(x, y, z)\right] \tag{2}\\
& \tau_{x y}=\frac{E(x, y, z)}{2(1+\nu)} \gamma_{x y}
\end{align*}
$$

Where σ_{x} and σ_{y} are normal stresses and $\tau_{x y}$ is the shear stress in the $x-y$ plane. The normal stress σ_{z} and shear stresses $\tau_{x z}$ are usually small in comparison with the stress components of Equation (2) and are neglected in thin shell theory. For the problem under consideration, however, the thin shell will be subjected to both normal and shear stresses over its lateral surfaces and it is desired to relate the difference or discontinuity of these stresses across the shell to the displacements of the median surface. These relationships may be obtained from the equations of equilibrium expressed in terms of displacements using the Kirchhoff bending hypothesis of Equation (I). The equilibrium equations in terms of stresses are given by

$$
\begin{align*}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}=0 \\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau}{\partial z}=0 \tag{3}\\
& \frac{\partial \tau}{\partial z}+\frac{\partial \tau}{\partial x}+\frac{\partial \sigma_{z}}{\partial y}+\frac{z}{\partial z}=0
\end{align*}
$$

Writing the stresses of Equation (2) in terms of displacements using Equations (1) and substituting the results in Equation (3), the equilibrium equations in terms of displacements become

Thin-Shell Interface Conditions for Stress Analysis of Thick Laminate Structures (cont.)

$$
\begin{aligned}
& \frac{E(x, y, z)}{1-\nu^{巴}} f_{1}(x, y)+\frac{1}{1-\nu^{2}} \frac{\partial E(x, y, z)}{\partial x} f_{2}(x, y)+\frac{1}{1-\nu^{2}} \frac{\partial E(x, y, z)}{\partial y} f_{3}(x, y) \\
& -\frac{z E(x, y, z)}{1-v^{W}} g_{2}(x, y)-\frac{z}{1-v^{G}} \frac{\partial E(x, y, z)}{\partial x} g_{0}(x, y)-\frac{z}{1-v^{W}} \frac{\partial E(x, y, z)}{\partial y} g_{0}(x, y) \\
& +\frac{\partial \tau_{x z}}{\partial z}=\frac{E(x, y, z)}{1-\nu} \frac{\partial}{\partial x}[\alpha(x, y, z) T(x, y, z)] \\
& +\frac{1}{1-v} \frac{\partial E(x, y, z)}{\partial x} \alpha(x, y, z) T(x, y, z) \\
& \frac{E(x, y, z)}{1-\nu^{\prime}} f_{1}^{\prime}(x, y)+\frac{1}{1-\nu^{2}} \frac{\partial E(x, y, z)}{\partial x} f_{n^{\prime}}^{\prime}(x, y)+\frac{1}{1-\nu^{\top}} \frac{\partial E(x, y, z)}{\partial y} f_{3}^{\prime}(x, y) \\
& -\frac{z E(x, y, z)}{1-\nu^{\prime 2}} g_{i}^{\prime}(x, y)-\frac{z}{1-\nu^{\prime \prime}} \frac{\partial E(x, y, z)}{\partial x} g_{a^{\prime}}(x, y)-\frac{z}{1-\nu^{^{\prime}}} \frac{\partial E(x, y, z)}{\partial y} g_{a}^{\prime}(x, y) \\
& +\frac{\partial \tau}{\partial z}=\frac{E(x, y, z)}{1-\nu} \frac{\partial}{\partial y}[\alpha(x, y, z) T(x, y, z)] \\
& +\frac{1}{1-\nu} \frac{\partial E(x, y, z)}{\partial y} \alpha(x, y, z) T(x, y, z) \\
& \frac{\partial \tau}{\partial z}+\frac{\partial \tau}{\partial z} \partial{ }^{\prime}+\frac{\partial \sigma_{z}}{\partial z}=0
\end{aligned}
$$

Where

$$
\begin{align*}
& f_{1}(x, y)=\frac{\partial^{2} u}{\partial x^{p}}+v \frac{\partial^{9} v}{\partial x^{\partial} y}+\frac{1-v}{2}\left(\frac{\partial^{a} u}{\partial y^{2}}+\frac{\partial^{2} v}{\partial x^{2} y}\right) \\
& f_{B}(x, y)=\frac{\partial u}{\partial x}+v \frac{\partial v}{\partial y} \\
& f_{3}(x, y)=\frac{1-v}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \tag{5}\\
& g_{q}(x, y)=\frac{\partial^{3} w}{\partial x^{3}}+v \frac{\partial^{3} w}{\partial x \partial y^{3}}+(1-v) \frac{\partial^{3} w}{\partial x \partial y^{2}}=\frac{\partial^{3} w}{\partial x^{3}}+\frac{\partial^{3} w}{\partial x \partial y^{3}}
\end{align*}
$$

Page C-3

Thin-Shell Interface Conditions for Stress Analysis of Thick Laminate Structures (cont.)

$$
\begin{align*}
& g_{g}(x, y)=\frac{\partial^{8} W}{\partial x^{8}}+v \frac{\partial^{8} W}{\partial y^{8}} \\
& g_{s}(x, y)=(1-\nu) \frac{\partial^{a} w}{\partial x \partial y} \\
& f_{1}^{\prime}{ }^{\prime}(x, y)=\frac{\partial^{8} v}{\partial y^{8}}+\nu \frac{\partial^{8} u}{\partial x \partial y}+\frac{1-v}{2}\left(\frac{\partial^{2} v}{\partial x^{8}}+\frac{\partial^{8} u}{\partial x \partial y}\right) \tag{5}\\
& f_{z}^{\prime}(x, y)=\frac{1-v}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \\
& f_{3}{ }^{\prime}(x, y)=\frac{\partial v}{\partial y}+v \frac{\partial u}{\partial x} \\
& \mathrm{~g}_{\mathrm{I}}{ }^{\prime}(x, y)=\frac{\partial^{3} w}{\partial y^{3}}+\nu \frac{\partial^{3} w}{\partial x^{3} \partial y}+(I-\nu) \frac{\partial^{3} w}{\partial x^{3} \partial y}=\frac{\partial^{3} w}{\partial y^{3}}+\frac{\partial^{3} w}{\partial x^{3} \partial y} \\
& g_{n}^{\prime}(x, y)=(1-\nu) \frac{\partial^{\prime} w}{\partial x^{\partial} y} \\
& g_{3}^{\prime}(x, y)=\frac{\partial^{n} W}{\partial y^{\prime \prime}}+\nu \frac{\partial^{n} W}{\partial x^{\prime}}
\end{align*}
$$

If the first two of Equations (4) are integrated across the plate thickness there results

$$
\left.\begin{array}{l}
f_{1}(x, y) D_{0}+f_{2}(x, y) \frac{\partial D_{0}}{\partial x}+f_{3}(x, y) \frac{\partial D_{0}}{\partial y}-g_{1}(x, y) D_{1}-g_{0}(x, y) \frac{\partial D_{1}}{\partial x} \\
-g_{3}(x, y) \frac{\partial D_{1}}{\partial y}+\left.\tau_{x z}\right|_{x z}-T_{2}=\frac{\partial N_{T}}{\partial x} \tag{6}\\
f_{1}^{\prime}(x, y) D_{0}+f_{a}^{\prime}(x, y) \frac{\partial D_{0}}{\partial x}+f_{3}^{\prime}(x, y) \frac{\partial D_{0}}{\partial y}-g_{1}^{\prime}(x, y) D_{1}-g_{e^{\prime}}^{\prime}(x, y) \frac{\partial D_{1}}{\partial x} \\
-g_{3}^{\prime}(x, y) \frac{\partial D_{1}}{\partial y}+\left.\tau_{y z}\right|_{:}-\left.T_{y z}\right|_{i}=\frac{\partial N_{T}}{\partial y}
\end{array}\right\}
$$

Where the quantities D_{0}, D_{1} and N_{T} are defined by

$$
\begin{align*}
& D_{0}=\frac{1}{1-V^{v}} \int E(x, y, z) d z \\
& D_{1}=\frac{1}{1-V^{N}} \int z E(x, y, z) d z \tag{7}\\
& N_{T}=\frac{1}{1-\nu} \int E(x, y, z) \alpha(x, y, z) T(x, y, z) d z
\end{align*}
$$

Thin-Shell Interface Conditions for Stress Analysis of Thick Laminate Structures (cont.)

and $\left.T_{x z}\right|_{\mathcal{I}},\left.\tau_{x z}\right|_{\text {e }}$, etc. are the respective shear stresses on the two surfaces of the plate. If the median surface is determined such that

$$
\begin{equation*}
\mathrm{D}_{1}=0, \tag{8}
\end{equation*}
$$

which is, in fact, the condition defining the median or "neutral" surface, then Equations (6) reduce to two expressions for the shear stress discontinuities across the thin plate in terms of the median surface displacements; i.e.,

$$
\left.\begin{array}{l}
\tau_{x z}-\tau_{\left.x z\right|_{2}}=\frac{\partial N_{T}}{\partial x}-f_{1}(x, y) D_{0}-f_{1}(x, y) \frac{\partial D_{0}}{\partial x}-f_{3}(x, y) \frac{\partial D_{D}}{\partial y} \tag{9}\\
\tau_{y z}-\tau_{\left.y z\right|_{2}}=\frac{\partial N_{T}}{\partial y}-f_{1}^{\prime}(x, y) D_{0}-f_{B}^{\prime}(x, y) \frac{\partial D_{0}}{\partial x}-f_{3}^{\prime}(x, y) \frac{\partial D_{D}}{\partial y}
\end{array}\right\}
$$

A third equation, which is necessary to define the three displacement components u, v and w at the median surface, is obtained from a consideration of equilibrium of forces normal to the plane of the plate. It is shown in Reference (2) that this expression of equilibrium can be written as

$$
\begin{equation*}
\frac{\partial^{B} M_{x}}{\partial x^{3}}-2 \frac{\partial^{a} M_{x y}}{\partial x \partial y}+\frac{\partial^{a} M_{y}}{\partial y^{g}}=-p-N_{x} \frac{\partial^{a} w}{\partial x^{g}}-2 N_{x y} \frac{\partial^{B} w}{\partial x \partial y}-N_{y} \frac{\partial^{a} w}{\partial y^{n}} \tag{10}
\end{equation*}
$$

where p is the lateral pressure loading on the plate and the N 's and M's are sectional forces and moments defined by

$$
\left.\begin{array}{l}
N_{x}=\int \sigma_{x} d z, N_{y}=\int \sigma_{y} d z, N_{x y}=\int \tau_{x y} d z \\
M_{x}=\int z \sigma_{x} d z, M_{y}=\int z \sigma_{y} d z, M_{x y}=-\int z \tau_{x y} d z \tag{11}
\end{array}\right\}
$$

Substituting for σ_{x}, σ_{y} and $\tau_{x z}$ from Equations (2), with the definition, Equation (8), of the median surface, the sectional quantities of Equation (11) become

$$
\begin{align*}
& N_{x}=D_{0}\left(\frac{\partial u}{\partial x}+v \frac{\partial v}{\partial y}\right)-N_{T} \\
& N_{y}=D_{0}\left(\frac{\partial v}{\partial y}+v \frac{\partial u}{\partial x}\right)-N_{T} \tag{12}
\end{align*}
$$

Thin-Shell Interface Conditions for Stress Analysis of Thick Laminate Structures (cont.)

$$
\begin{align*}
& N_{x y}=\frac{1-v}{2} D_{0}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) \\
& M_{x}=-D_{m}\left(\frac{\partial^{B_{W}}}{\partial x^{N}}+v \frac{\partial^{a}{ }_{W}}{\partial y^{W}}\right)-M_{T} \\
& M_{y}=-D_{m}\left(\frac{\partial^{B} W}{\partial y^{2}}+\nu \frac{\partial^{8} W}{\partial x^{8}}\right)-M_{T} \tag{12}\\
& M_{x y}=(1-\nu) D_{D} \frac{\partial^{\lambda} W}{\partial x^{\partial} y}
\end{align*}
$$

Where

$$
\begin{align*}
& D_{1}=\frac{1}{1-\nu^{d}} \int z^{2} E(x, y, z) d z \\
& M_{T}=\frac{1}{1-\nu} \int z E(x, y, z) \alpha(x, y, z) T(x, y, z) d z \tag{13}
\end{align*}
$$

The lateral pressure, p, acting on the thin plate is simply the difference between the normal stresses $\left.\sigma_{z}\right|_{1}$ and $\left.\sigma_{z}\right|_{\text {e }}$ acting on the two surfaces; i.e.,

$$
\begin{equation*}
p=\left.\sigma_{z}\right|_{g}-\left.\sigma_{z}\right|_{2} \tag{14}
\end{equation*}
$$

Hence, on substituting the sectional forces and moments defined by Equations (12) in Equation (10), an expression is obtained analogous to Equations (9) for the discontinuity of normal stresses across the thin plate in terms of the three displacement components at the median surface. This equation is found to be

$$
\begin{align*}
& \left.\sigma_{z}\right|_{m}-\left.\sigma_{z}\right|_{i}=\frac{\partial^{n}}{\partial x^{s}}\left[D_{n}\left(\frac{\partial^{n} w}{\partial x^{s}}+v \frac{\partial^{s} w}{\partial y^{s}}\right)\right]+2(1-v) \frac{\partial^{n}}{\partial x \partial y}\left(D_{m} \frac{\partial^{n} w}{\partial x \partial y}\right) \\
& +\frac{\partial^{B}}{\partial y^{s}}\left[D_{\mathrm{B}}\left(\frac{\partial^{n}}{\partial y^{m}}+v \frac{\partial^{B}}{\partial x^{m}}\right)\right]-\frac{\partial^{s} W}{\partial x^{s}}\left[D_{0}\left(\frac{\partial u}{\partial x}+v \frac{\partial v}{\partial y}\right)-N_{T}\right] \tag{15}\\
& -2 \frac{\partial^{n}}{\partial x \partial y}\left[\frac{1-v}{2} D_{0}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right]-\frac{\partial^{a}}{\partial y^{s}}\left[D_{0}\left(\frac{\partial v}{\partial y}+v \frac{\partial u}{\partial x}\right)-N_{T}\right]+V_{T}
\end{align*}
$$

If it is assumed that the displacements at the surfaces of the two media in contact with the thin layer under consideration are equal to the displace. ments in this layer at the median surface, then the surface stresses may be expressed in terms of these displacements using Hooke's law with the

Thin-Shell Interface Conditions for Stress Analysis of Thick Laminate Structures (cont.)
respective material properties of the two adjoining media. Thus, Equations (9) and (15) become three partial differential equations in the three displacement components u, v and w at the thin-shell interface. These equations will replace the general three-dimensional equations at the "interface" nodes resulting in only one node at each such interface through the thick laminate structure. Once the three displacement components in the interface plane are determined, the stress distributions throughout the thin layer are obtained from the foregoing thin-shell analysis.

REFERENCES

1. H. S. Tsien, "Similarity Laws for Stressing Heated Wings", Journal of the Aeronautical Sciences, Vol. 20, No. 1, January 1953.
2. S. Timoshenko, "Theory of Plates and Shells", McGraw Hill, 1940, p. 300 .
