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I. SUMMARY OF PROGRESS TO DATE

A. DERIVATION OF BASIC EQUILIBRIUM AND STRESS EQUATIONS AND THEIR

FINITE DIFFERENCE ANALOGS

The QS;;vation of the basic equations in the appropriate coordinate
systems (sPheric;l and toroidal) for the general non-axisymmetric case has
been completed. The finite difference analogs to the partiasl difference
equations have been derived for the general case (given in Appendix A for
completeness). The above cited equations are based on the "thick-shell"
theory which ié appropriate for the overall thickness of the composite shell
structure. The existence of very thin layers - the bond and sandwich face
plates -f;ithin the structure are expected to cause numerical computation
difficulties in the mixed derivatives for the thin layers if the thick wall
formulation is utilized for these layers. Furthermore, such a treatment of the
thin layers will require an excessive number of nodes. The possibility of
adapting "thin-wall"” theory for these layers was suggested by Mr. F. H. Brady.
An analysis of this problem was carried out by Dr. D. H. Platus. This
approach requires only a two-dimensional solution of the displacement -
equilibrium equations at the median surface of the shell. The stress and
strain distributions throughout the shell thickness are then obtained using
the Kirchhoff bending hypothesis for thin shells. This effort method is

summarized in Appendix B for & flat plate using Cartesian coordinates.
B. THE SINGULAR POINT

The equations for the general non-axisymmetric case possess a
singularity oh the geometric axis-of-symmetry. Inasmuch as this singularity
is not an "essential-singularity”, it should in principle be possible to
formulate locally valid non-singular equations for this point. Since this
point is common to all meridian plenes, using it as a common node would reduce
the tbtal number of nodes considerably. An attempt was therefore made to
derive such & formulation.; A summary of this effort is presented in Appendix C.
The additional programm{;gjrequired to utilize this formulation and the-
complications introduced would probebly not justify the possible benefits
(reduced total number of nodes). It was decided to establish the "singularity

region” by the use of the simplified axisymmetric test case.
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I Summary of Progress to Date (cont.)

c. PROGRAMMING

;E;pgramming of the input data modeling and the equilibrium
coefficient evaluation/storage subroutines is about 50% complete for the two
media axisymmetric test case.) Techniques for reducing round-off error arising
in the use of the finite difference models of the partisl derivatives are
being studied in conjunction with an examination of the latest state-of-the-

art in relsxation methods.

II. PLANNED ACTIVITIES FOR NEXT REPORTING PERIOD

A. DERIVATION OF EQUATIONS

The completion of the derivation of the "thin-wall™ equations in
the spherical-toroidal coordinate system will be accomplished during the
next reporting period. The derivation of the finite difference analog of

these equations will be initiated.
B. FORMULATION OF BOUNDARY CONDITIONS

The effort will be expanded during this period in formulating

the boundary conditions for all cases under consideration.
c. PROGRAMMING

Effort will continue in programming the axisymmetric test case
with the latest input incorporated. The objective of this test case is to
establish optimum grid spacing, gain experience in the convergence problem
and to esteblish the optimum grid layout near the singular point. It should
be noted that the mejor part of the progremming already completed and that

- planned is directly applicable to the general case.

ITI. PROELEM AREAS

A.  BASIC EQUATIONS

Numerical computation difficulties (accuracy degradation) are
anticipated in the use of the "thin-shell" approximations for the bond and
face plates. These problems are due to fourth derivatives required in these

formulations. The extent of the difficulties and methods for their
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III Problem Areas (cont.)

alleviation will be investigated upon completion of the derivation of the

equeations in the proper coordinate system.
B. THE SINGULAR POINT

As pointed out previously, the "simple" axisymmetric test case
will be utilized to overcome this problem. The expected solution will be in

the form of an "optimum" grid around the singular point.
c. OVERRELAXATION METHOD AND CONVERGENCE CRITERIA

An extensive effort is planned in this area with the test case
providing the tool for testing approaches. Convergence criteria will be

developed specifically suitable to the present formulation.

Iv. PROGRAM CHANGES

The progress to date and the problems encountered during the last
reporting period meke it necessary to revise the original program schedule.
These modificetions are designed to assure timely achievement of the program
objectives. The revised program schedule is shown in Figure 1. Reference

to this revised program schedule will be made in the subsequent monthly reports.

Report No. @ 5654-01-1 ‘ Page 3
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APPENDIX A

Derivation of Equilibrium Equations in Terms of Displacements
in Spherical and Toroidal Coordinates

. 1

e ki o

’ Orthogonal curvilinear coordinates (ur1 s ogs On)
l Element of arc ds defined by
| 2 _

2 .
ds® = 1§1 8, de (1)

i e L P S

Vhere 84 are the metric coefficients

axis of symmetry-
R

axis of symmetry

:l .Spherical Coordinates Toroidal Coordinates
: a‘ R :
r' e ® ®
: % o )
! & 1 1
2 2
822 R r
Rains : ¢ RY-
‘3} sin P a+rTr Iil?)

g= m; 1221139 r(a + r eing)

' Note: Toroidal coordinates reduce to spherical coordinates in the limit as

a —-—-@'
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Devivation #f Bguilibrius Bguations in Terms of
Displasewente in Spherical and Toroidel Coordinates (cont.)

Equptions ef oquilihrim-zaith ‘zero body force:

& 2, -

I:aa (;g-ia) % 8., %a } =0 (2)
3= 3 1

Vhere g = %nﬂ. T4 and Ti;] are normal. and shear components of stress,

respectively.
Sabstituting the reapective components of "i'm"ii in Eq. (2) and performing

' 4he indicated differentiations and summations, there.are obtained the. fulleowing
- -oymtlibriun squations in terms of stresses for each eoord-inato sy:tq.

3T 3T, 9T 2T = T = 7T T ecot
N 4ot B8 _ER o 00 M " 0 (3
oR R 3¢ BRsing 36 R
ar dr T 3T, T - coty
-2 1 _o, 1 _ o0 %+(Lﬂi ® .o (&)
3@ "R 2y ! Rasing 28 | R
T, T AT 3T, + 2T _got
- Rg .1 1 Ba " “.q0 @
Toroidal Coordinates
T d dT
x —-"Tr + 1 Lo - (6)
& " r g (atrasing) 3¢ ' ’
" (at2rsing) " - (a+ruin¢)‘l’ - rsin, + T rcesg
+ I -ﬂt =0
r(urs:l.ng)
AT T AT
re, 1 1 nd
ar ' r e * a+reing 39
(2a+3rs + l'r - 1, lreo '
+ % ‘ .Q =0 (7
r(a+raing
Page A-;g




Derivation of BEquilibrium Equations in Terms of
Dimplacemeiits in Spherical and Toreidal Coordinates (coat.)

,‘ 3T T aT
=2+ 7 3 o e
‘t (u-}rni.n,)" + 27 gt" %%

+ r(u-r.in.) =0

Hoeke's Lav Including Tempersturs Terms-

Tgy=A0+ 2“011 - (3a+2y) fa(!)d'r

Ty

Tig ™ 2y

- where

i [ O Crrim e ;- amem . . e e R . S,

51t *tos

and Young's modulms E according to

A = ey

E
B = 200y

Strain - Displacement Relations

R Y. SRR T el T '
1 ¥y /By 28y e

¢ )

(9)

(10)

and ) and y are the Lame' conmstanmts defined in terms of Poissen's ratie v

(11)

(12)
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Derivation of Equilibrium BEquations in Terms of
" Digplacements im Spherical amd Toreidal Coordingtes (comt.)

I Y

1

L . _Q_
R o Do v IR )] rre o

Let u, v, w be ealpannnta of diasplacement in,tha three principal directiona
ror R, g and @. Then substitution of these. mmu in Eqs. (12). wad
(13), with the metric coefficients of page 1, yields the strain-dieplacement
relstions for the tyo coordinate systems: \

Spherical Coordinates

L s - R det

(1)

g
’

o
M
(Y

_‘.
)
D

1 l1 3 w v

®°Rp " 2| Reing 90 R * ¥R | )

TﬁroidalAGoordinates

: du
‘ ,?rr ¥

e a1
r

0'0’
a8

+
is
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Dewivation of BEguilibrius Eguations in Terms of
Digplacenenis in Spherical and Toroidal Coordinates (cont.)

b =

%00 " arrsing 00 ' asréisg T aersin®
e = l l 2! + a--;'- - Xi
r¢ 2|r dp  ar
(15)
il L 2 1 3  wcosw
.Q’ ® 2 asral AR a+rain¢)
(1 __ 2w 3w  weing
*re "2 a+raing 1RGN a+rsing

hpm:ing the. ntmd.n tarms of- mmwm . Hooloe:'s: Jea,
- Eqss (9) and (10), with-the strain-displacement relations, Egs. (14) and (15),
the eguilibrium equtiou, Eqs. (3) - (8), w be written in terms of diaplaco-
meicts in the form :

O O T .Y
E S 2 30, % 3
Ty de, dery 3 Each
2 2 ' -
-o-l'ka 303 eka‘—ql! + Hk% + Ik% + Jk'
T a"-v‘ : __BE! 22 3%y
Rl *nxhaa"ek%a*ﬁx:a.la.z*inaaa%
(16)
o oa onE g
ade "k 3 2 3a; x
2 = a2 2 2 2
+F Qv 3 v T 2w = _aw T Oy
LN a0&2 + B aaéz * 5% aa32 " dade, B du,de,
= 2 = E. g . = d =
*k&%ii;*“k&': *ﬁkaa; *Iki;'; * 9 v -
Oua ™) 8 35
Vo da,
) Page A-3



* Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)

TABLE I

COEFFICIENTS OF EQUILIBRIUM EQUATIONS

SPHERICAL COQRDINATES

(o #0)
k=1 k=2 k=3
A T2y 0
B u/ & 0 0
¢, w/ (R2ein’y) ° )
D 0 (x+n)/R °
x| o 0 0
o 0 ) (x+y) Reing
e - 2(a+2p)/R 0 ©
£ LY o 2(2w) /22 0
I ) 0 2(\2u)/Rsing)
A 2002w /32 0 0
A 0 B Y
‘ i o (he2u)/82 0
& )  u/(R%sin’y) )
b (en)/R 0 0
i;; ) 0 (1+u)/tnaaino)
F o 0 0
a (A+i)cote/R 2W/R 0
ik | -(\+3u)/R% (;+au)cotq/32 0
4 ) 0 (0 31) cotw/(R2ang)
3. | -Owzw)cotwr® -(2u)B%s1nY) 0
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* Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)

TABLE I

COEFFICIENTS OF EQUILIBRIUM EQUATIONS
SPHERICAL COORDINATES (cont.)

(o £ 0)

k=1 k=2 k=3

L o 0 "

2 -9 0 0 w/E
’ ?' e 0 0 (M 2m)/(e°gin’e)
P : : :

!. gk 0 (l-m)/(Rasino) _ 0

' £ (Mn)/(Bein®) ) 0

1 E 8 0 0 /R

| ;l B o o oot ®/B

Y| -OussPeine (3w cotw/ (FPaing) 0

i' 3; ) 0 - u/(R%s12%9)
f . TABLE II

- COEFFICIENTS OF EQUILIBRIUM EQUATIONS

x' TOROIPAL COORDINATES

3 k=1 k =2 k=3

J . | A A+24 0 °

' Bk ‘ Mrz' 3 ° , °

0 |  Wlesrsiaw) | 0 0

. D, o (a+)/r 0

| B 0 ) 0

i ' R, 0 :_ 0 (A+w)/(arratug)
l Gk (Mau)-(uara&m)/[r(urm 0 0

3 , Hk | ucosy/ [r(a+reino)J g(h-zu;rsinﬁ( M3u)a o

¥' ' r“(a+rsing)

‘ ‘Page A<7
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Derivation of Equilibrium Equations in Terms of
Displacements in Sphericel and Toroidal Coordinates (cont.)

TABLE II

COEFFICIENTS OF EQUILIBRIUM EQUATIONS
POROIDAL COORDINATES (cont.)

k=1 k k=2 ka3

R B NS P . - -

o o 2( ltgzegsm (A_ﬁg )a
x r(asraing) >

R A L TGS 2 < 5N AN S e

,. I -(x+a..)[1/r2+m2p/(;mm>2f<pau).mq/[ﬂamm) 4 K

i A 0 T » 0

B 0 | | (Ae2p)/r | o
L :

. & 0 W (asraing)’ o

l B, Ouw/r 0 o

L £ 0 0 Ceu)/[rlasraing)
' i‘k 0 0 o .

| &, (ow)ooey/ (asratag) ucum)/[rcmm)] | 0

X K ~(3p)/x? (wv2n) contfr (asraing) 0

. fk 0 o (A+5u)c°m/(c4;;im)-2
5 3 _L&.&M  (v2u)rPeuns Ou3w)argin 0 |
4' K| rewrsing? r2(asraing)

' LY o | ° b

, .Ek 0 o 0 w/r’

: [ o 0 (Me2y)/(asratag)?
' Page A—a‘
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" Derivation of Equilibrium Equations in Terms of

Displacements in Spherical and Toroidal Coordinastes (cont.)

COEFFICIENTS OF EQUILIBRIUM EQUATIONS
TOROIDAL COORDINATES (comt.)

TABLE II

k = l k = 2 k = 3
" 0 0 0
Ek 0 ( ).+g,)/[r( ursina)] 0
ik (A+u)/(a+rsing) 0 0
ak 0 ) u(a+2rsinv)/[r(a+rsin¢)]
ﬁk o 0 ucos(p/[r(ursinﬁ)]
I | -Ov3u)sing/(asrain®)? ~(\36) cony/(a+raing)? 0
b < 0 0 -/ (a’-tr.a:an)Z
TARLE III
COEFFICIENTS OF EQUILIBRIUM EQUATIONS
POLAR COORDINATES ~ FOR APPROXIMATE TWO DIMENSIONAL LOCAL
SOLUTION FOR ANY (8 = comstant) CROSS~SECTIONAL PLANE
A
B,
e N Y B AR F S s b
Dy (i p)/R
ar | 1) 3r
Gk (A+24)/R+ S% (M—ZM)"gﬁ R 37 S;
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Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)

TABLE ITT
COEFFICIENTS OF EQUILIBRIUM EQUATIONS _
POLAR COORDIRATES - FOR APPROXIMATE TWO DIMENSIONAL LOCAL
SOLUTION FOR ANY (® = comstant) CROSS-SECTIONAL PLANE

-' -
’
-

P (cont.)
%’l k=1 k=2
L Le B L RE - ot
‘ . I 138 8 . (vau)/e® Lo (e 5
i ' X o 8
| ' B 0 (he2p) /8
j B, (w)/R 0
g & shg Biewn
’. . 1RE- G i—&;}mwg
1 > Lk -

NOTE: Temperature dependent material property derivative terms
are also ineluded.;,Only applicable coefficients are listed. By
replacing R by r, the above coefficients are applicable ia the
torus cross-section region.
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Derivation of Equilibrium Equatioms in Terms-aof
Displacements in Spherical and Toroidal Coordinates (cont.)

Eguations for Siresses in Terms of Displscements
 From Heoke's law, Egs. (9) and (10),

R e RS T o L RDE R -

)
R PR [xe - 3\ + au)f o (T)dT]
T

Where Gij

61‘_’ = 1’

is the Kronecker delta defined by

1i=3

¢

=0, 1#]

Ome.. + e

1mtenten

Writing the strains in terms of displacements from either Egs. (14) or
(15) and shortening the nomenclature by defining the stresases

=T or T
rr

Te ™ Tro °F Tre _
Eq. (17) may be written.in terms of displacements accdrd‘.ins to
T
T+ Ay (31+2g)[a(1‘)d’!' = au, + Bug + yug + & u
° - - - -
oV, ¢+ BIVQ + Ypvg + ij (18)
+ ajwr + B'!'Q + vl'e + .3/('
Where
dg=1 if f=1,2,3

Page A-11
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Derivation of Equilibrium Equations in Terms of

Displacements in Spherical and Toroidal Coordinates (cont.)

TABLE IV
COEFFICIENTS OF STRESS EQUATIONS

SPHERICAL COORDINATES

(o #0)

P 1 2 b 5 6
o x+H2u A A 0 0 0
By v o 0 w/R 0 o
Y ) 0 0 0 o w(Rsing)
8 2)/R 20A+n) /R 2(A\+u) /R ] 0 0
551 0 o 0 M 4] 4]
B VR (M2y)/R VR ) 0 0
) 0 0 0 0 u/Rsing) 0
5 —"%’ Acot@/R (\+2y)cote/R -u/R ) )
& ° ) 0 0 0 "
B o 0 0 0 WR o
\/ V(R=ing) )AReing) (M2 )/(Raing) ) o °
LA 0 0 0 0 ~cotty/R -w/R
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Derivation of Equilibrium Equations in Terms of '
Displacements in Spherical and Toroidal Coordinates (cont.)

- PABKE V
COEFFICIENTS OF STRESS EQUATIONS

TOROIDAL COORDINATES

y/ 1 2 3 L 5 6

o " Mau A A 0 0 [t

8, ) 0 0 WR 0 3

7} (1) 5] 0 0 (4] v/ (evruing)

s u el ﬂ .t &*_(M 0 0 0

{ r{a+raing r a+rsing|r a+rsing

g o ) 0 " 0 3

By A/r (M2u)/r Mr 0 ] o

Y, o 0 0 ) W/ (a+rsing) 0

(\e24)co

| wereiss | mimemss | “emeng | W 0 0

& ° o 0 o ) "

[ ] o ) 0 0 wr 0

= ' A A+

Y,f V(“r’in’) a+rsing a+rsin® o ° 0

L)) ) 0 0 0 - ;ﬁ% - uia®
Page A-13
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Derivation of Equilibrium Equetions in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)

TABLE VI
COEFFICIENTS OF EQUILIBRIUM EQUATIONS
POLAR COORDINATES - FOR APPROXIMATE TWO DIMENSIONAL LOCAL
SOLUTTON-FOR ANT (@ = constant) CROSS-SECTIONAL PLANE

: | 2 I

) A+2% | A 0
b 0 0 W/R

R VR ) (M+20)/R o

i K. 0 . »

b VR (\+20)/R o
¥ ) 0 -#/R

“NOTE: Oaly mpplicable . valuss of A .and coefficients are
listed. By replacing R by r, the above coefficients are

applicable in the torus cross-section region.
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Derivation of Equilibrium Equations in Terms of
Dimplascesents in-Spherienl and Toroidal Coordinates (cont.)

at the Axis of:

Certain of the ceefficients in the displacement. .equilibrium.and. stress
oquations become singnlar at the axis of symmetry (@ = Q). For.the non-
eoxisl]ly-symmetric .case the.axis of sysmetry has ne speeisl phyeical sig-
nificance and this point can be avoided. For &a‘nﬂslly—amtria case,
howpver, the axis of symmetry is gemsrally guite impartant.and the singular
coefficients may be evaluated by the.wme of L'Eéspital's rule. For. example,
the coefficient Hl in he displacesent. equilibrium equations ia.spherical
coordinates is gentq/R .mhich becomes. infinite as @ approaches zero. From
Eq. (16), this term multiplies the displacement component +— du The conditiomns

[ U S ————

- mmpie i e s

f T
| ' for axial symmetry sre
' w(R,9,0) = g—:—- 0., where f is any function of R,e,9, (19)
‘ ' frem which it cak be shewn. tiat
Y-g-ﬂ_ =0 &t 9= 0. (20)
1
: ‘Hemee, szince %; approaches zer¢ vhile !11 appreaches imfinity, L'Kaapital‘s
g ‘,l rnle is applicable to the product
2 L

as 9-»0. Taking the limit, there is obtained

ou
3 lin 39 0% °

liw: peotg . 3w _

? 90 2 d g2 @0 _sin®
i 3_2 cos® - 0 sing®
_i lim 3¢
| " g2 ©+0 cos®

. .
!
; Rz a;n..

e

Page A-15



L4

Deriwvation of Equilibrium Equstions in Terms of

Displacements in Spherical and Toreidal Coordimates (cont.’
- Hience, for this case,_the coefficient H, becomes zere amd the coefficient

Bl which maltiplies _3_2 is increased byﬂ.u/Rz. Applying thia limiting process
to all the singular%gru the follawing:aets-of coefficients are obtained:

PABRLE VII
COEFFICIENTS OF EQUILIBRIUM EQUATIONS ON AXIS
OF SYMMETRY (g = 0) FOR AXIALLY - SYMMETRIC CASE

SPHERICAL -

& 1 2| 3 | «x 1 2 |3 x 1 2 | 3
M| M o o |K 0 o .0 A 0 o | o

B| 2/8 |o|o |§ 0 o|o]|% 0 o | o

Cy 0 oo [T 0 o| o Ek 0 0 o

D 0 ¢ |o [B [20m)/r |o | o]B 0 o | o

E 0 oo [E 0 ol o ’Ek 0 0 0

F 0 o | o [F 0 o|o|F 0 o | o

6 | 20w2u)/m o | o g, 0 o |ofG 0 o | o
B| o o] o H, | -20m30)/m0 | o i; 0 o | o

L |-. o 6| o 'ik ) o} o T.E ] 0 0

I |-2(ea)/m| o | o | T 0 ol o ?k 0 o | o
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Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Torcidal Coordinates (cont.)

TABLE VITI
COEFFICIENTS OF SYRESS EQUATIONS ON AXIS OF
smmm (¢-=.0) FOR AXIALLY - smmmlc CASE
SPEERICAL COORDINAYES

Y/ 1 2 3 k. b 6
o | A2 A x 0 0 0
By 0 o 0 w/R 0 0
V. 0 0 0 0 o 0
8 | 2\/R 2(141;.‘)/3 a(\y)/R 0 0’ 0
| o o o m 0 0
Bt | /R | 20)/R | 20p)/R 0 o 0
Yy 0 o 0 0 0 0
8¢ 0o 0 0 /R . 0 0
7] ) 0 0 0 0 0
ji./‘ 0 0 K 0 0 0
Yy 0 0 0 0 0 o
5y 0 0 0 0 0 0

Temperature Dependence of Elastic Constants

derivatives of these constants.

If, in addition to the coefficient of thermal' expansion, the elastic cen-
stants are strongly dependent on tempéra.ture, then additional terms must be
included in the displacement egquilibrium equations to account for the special .

Differentiating the stress componemt T

il

with

respect to coordinate @ , for example, from Equation (9), there is obtained

Page A-17



Dérivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)

T e,
ii i) ii 3
Y )\___*.es_.g.a‘r. 3115%;

i i
T
() e(m) - 3 - (3 +2u) | (D) ar
@+ %) ot 5a; 5o, ( +2“.f e
7,
s |
e o 9 ) 3
'3'&55"*2’115%5{'1"55@‘*2“,)5% a?T?d’f (21)
T
20 de,y
"'}‘ac"'a"‘aa -(3}.+2u)a('.r) s

vhere the first three {tsrms to the right of the equal slign have not been accounted
for in the coefficients of Equation (16). Representing the additional terms
by primed quentities, Equation (16) beccmes

/3% ’ 3%y -_(_BLA'O-%)G(T) T
(;Ak+AKA'?W+$Bk+B'k)WfI.“ v;k; e w; (22)
TH
—t A or ?) ar, k w1, 2,

'\/«g_kk (3 +2p)57;£ Toa() T 3

The coefficients A’ B',, ... orve tebulated below for spherical and toroidal
coerdinates, and for the special point in spherical coordinates on the axis of
symetry for the case of axial symmetry. :
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Derivation of Equilibrium Equations in Terms of '
Displacements in Spheriecal and Toroidal Coordinates (eont.)

TABLE IX

ADDITIONAL TERMS IN COEFFICIENTS OF EQUILIBRIUM EQUATIONS
FROM TEMPERATURE DEPENDENCE OF ELASTIC CONSTANTS
SPHERICAL COORDINATES (cont.)

4
.
.

kmwl k=2 k=3
' 1 dy T 1 dy oT
k 0 W aTVg 3T 50 ﬁ':ing)s%rv
=
J. A\ QF cotgp 1 AT QA 3T 1 du 3T _3__ oT
k| §TAR R 'i’é‘%ﬁ; §' aT 3p -RMAT 3R | 'ﬁ'Em;am— ) 57
=, L .
A 0 0 0
=
B 0 0 0
¢’y 0 0 0
=t
D', 0 0 0
=
B 0 0 0
F'k 0 0 0
=, 1 du T du oT
¢ k R sing OT 00 0 ﬁ." 3R
-, 1 du AT 1 3y 3T
By ° i sin¢=5%'a'€ ﬁ"S%SG
F 1 %a'r 1 3T 1 ? (A )aT
K R sing 8T aR W sing aT dp W sV 37 A7) §F
= 1 2udT . _cote 3y dT 12 3T ooty d ar
Ty " B sing BT 30 "W sing 3T 30 | R-S,'»fﬁ' S%-acp
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Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Torecidal Coordinates (comt.)

TABLE X
ADDITIONAL TERMS IN COEFFICIENTS OF EQUILIBRIUM EQUATIONS
FROM TEMPERATURE DEPENDENCE OF ELASTIC CORSTANTS

'~ TOROIDAL COORDINATES -

'
-
-

k=l ke2 k=3
0 o 0
0 0 0
5 0 )
0 0 0
0 0 0
o 0 0
3 3T 1 QA a7
BTQA&? r- % g_;} g_g. (a+rsing) 8T 30
1 9&'31' 1 3y AT
= 3% 5 T 81 8% °
la.+rsin¢ S.BT a0 (a+rsing)oT or
A\ OT
oF a8

%
z
%F’
=3
%
-
N o
7
| 2
454
12
F:154

®
-]

r{a+rsing T

3 e O T
atraing ﬁ?"’a"?ﬂ"’r

o ' ' 0

(= 2
o
(2]

0 0 0
0 0 0
0 0 0
0 0 0
13 2T 3 3T
T 3% 8y 3% b7 0
12T 12 ar 1 ok ar
T 3T dr ?ﬁ()'+a"‘ ® r{a+sing) T 30
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Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)

TABLE X

ATDITIONAL TERMS IN COEFFICIENTS OF EQUILIBRIUM EQUATIONS
FROM TEMPERATURE DEPENDENCE OF ELASTIC CONSTANTS

TOROIDAL COORDIXATES (cont.)

k=1l k=2 k=3
= ° 1 aT 1 oy 3T
k (adrsing)® 5% Y] r{e+rsing) oT 8¢
=+ | _cosg BN BT 1 3 T| cosp  3h2T_1 A AT cosp AT
Ty (@+rsimg) 8T or ™ 5% 3p|r{etrsing 3T 8 r % ar (a+rsing)¥ OT M2 )55
-, - - - A )
A K 0 0 0
=
B X 0 0 0
=
c =l 0 0 0
=
D X o 0 0
=
E'k ¢) 0 0
=l
Fo 0 0 Y
i 1 3T 0 3T
X +r8ing) 6T a9 or
"EI o 1 du T 19 3‘.!
k T a+rsimp5 5% ) ™ 3T ®
= 1327 1 3T =1 3ciy,a BT
k (a+rsing)3'r ’r ( a+rsing ) T 5; (a*frsin' 551:
==, 81ing y 3T co du oF 5% oT 3T cosyp
'?k " Tatrsing)® % X} "~ Tatrsing)® 5“%5'5 " (a+reing) a1t 0 T
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Derivation of Bquilibrium Equations in Terms of
Displecements in Spherical and Toroidel Coordinates (cont.)

Axis of Symmetry with Axial Smetn

The only non-aero terms in the coefficients of Table IX on the axis of
symmetry in the axia.lly-symetric case are the following:_

G;' 5—'(*'&&)
5! 2 9A 3T
1 "R3TIR
= ART
5 305

The integral term in Equation (22) is also non-zero for the equilibrium
equation corresponding to k = 1. ’

Finite Difference Formulation

The difference amalogs to the partial differential equations are constructed
on a grid network as shown in Figure 2, for which oy = constant lines are
ordered by the subscript i, ag = constant lines by the subscript j, 0 =
constant lines by the subscript k, and the intersection of grid lines (nodes)
by the triple subseript 1, J, k.

axis of ﬁymme’cry2

axis of symmetry

~. A-1
Figure 2. Grid Notation for Finite Difference Page A-23
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Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)

¥or the general case the grid spacing will be irregular and the increments
in the vieinity of & node will be designated by the following:

By o= )y, - (@), ey =), < (), ke o= (@), - (%)
by = (), -(®);  hes =(og),, - (o), heg=(a),, - (o),
R A S R T R S S IR OO
hu"(“:) (oa)i_, .-(d-) -(a.)i_, 4-(%) (aa)i_.

Let £ (o, o9, s ) be any functiom of the coordinates such that it and its
partial derivatives (up to any order required in the analysis) are continuous,
and expand the function about the point i, J, k. Using & new coordinate system
with origin at i, J, k and with §,, §g, &5 directed along o , Oy, %, respectively,
the function f (§,, &g, 8s) is written

(gz:gn:ga)-fiék+31_§1+3l§l + B a + By § Sg

*Bl§|§a+35§a§;+37§;'+13:§|'+35§a' ‘(23).
+Bio & Eg % + By 5y Ep® + By B L% + By §,°

+ B, By G+ ...

The first and second derivatives of f (& , o, as) with respect to oy, Uy, O
are obtained from Equation (23) according to '

of ar ¥t

vl = Bl a.f
aaﬁ. 1,3,k Tg; (0 0 :0) ’ aa; aa.

1,3, = B da,

1,3,k 2 B

3 a4 ) -1, 2 -

30y 1,4,k ag. (000" B 3oy 0m | 1,0,k " Sa¥ 1,0k "2 (B
3f_ . B, [ T 3y -2 Bu

30 iJk -g:(o;o;o) » 30y 004 | 1,3,k ~ "® 306%] 1,3,k

By considering the values of f (8, By, %) at the twelke nodes adjacent to
i,3,k, the constants Bi are evaluated in terms. of the ction at these nodes
‘and the grid spacings s showvn in Figure 3.

Paée f\-éh



| Derivation of Equilibrium Equations in Terms of
| Displacements in Spherical and Toroidal Coordinates (cont.)

' A §1(a1)
- Node Coordinate .
2 V ‘ (1,3,k) .
(i+1,3,k)
(i+2,3,k)
(1-1,3,%)
(1-2,3,k)
(1,3+1,k)
(1,3+2,k)
(1,3-1,%)
(1,3-2,k)
(1,3,k+1)
(1,3,k+2)
(1,3,k-1)
(1,J,k-2)

Figure 3, Coordinates

Note that the grid spacing increments h 13 do not, in general, have the dimen-

Blons of length but have the dimensions of & ; @ 3 and 0.
At points 1 and 3, Equation (23) becomes.
f(hu:o,o)=fi +B hy + B byt

) »d,k
f (-has 20 :0) = f - B s + By h13’~
) ] 1,3,k

(25)

vhere terms of higher order are deleted. Solving for B, amd B; from Equation (25)
gives for the first and second irregular central derivative with respect to &4 .

i 21 W R G UL RS VL
3 | 1,5k - hi s (yy +iys)
I | , - (26)
| y By £y, 90" (B *a) £y .+ 1y, T,k
' ) 8,7 |1,4,k = 2 S by s (B )
' Page A-25
.



Derivation of Equilibrium Egquations in Terms of / '
Displacements in Spherical and Toroidal Coordinates (eont.)

Substituting hyy = hys = h, into Equation (26) gives for the first and

second reguler central derivatives with respect to &4

3f - Tin .k 1,3,k
3, 1,4,k :

- . Tim,3k " afiii,k YT,k
84, % 1,4,k ﬂ

(27)

By a similar procedure the following first and second regular and irregular
central derivatives are obtained with respect to the coordinates dy and % :

First Regular Central‘Derivatives_ (hg = hgy =h 53, hg =hgy = hss )

Ty, 94,k " T4 9-1x
L, dh e L

ar )
dag/1i,3,k

3 _fan T Ty
0as |1,4,k 2he

First Irregular Central Derivatives

ar _ e fy gt Bt -heat) g bt
oy |1,k hyy hgs (hu + hea

df Bes? Ty * (e - Beat) 1y g TPt Ty
s [1,3,k hgy las (hsy +° haa) ‘

Second Reguler Central Derivatives (hg = hgy = h.a y g =gy = bas)

e TS Sl O P S W 0
ad' 1,3,k E'

f - 2f + f
3% o 1,9,k i,3,k i,3,k-1"
da¥)1,3,k hg

Second Irr_egplar Central Derivatives

aty [hﬂs £y 341, - (e +hes) £, R B, iLJ-l,JS]

1,4,k © + by hgs (hn + h.sj

(28)

(29)

(30)

(31)

(32)

(33)

(34)
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Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont. ) :

A [1‘” Ty,90m0 " - (by +1ea) £, Lk * h'l ,;Lk-l]
oV 1,3,k " ~hey hes (hsy + baa) ?35?

. Forward and Backward Derivatives

By applying the Bame procedure as esbove with respect to two nodes located
either forward or backward from the origin (i,J,k), the first ‘and second regular
and irregular derivatives are obtained in terms of the function f(0&y, oy, )
evaluated at these nodes. The results are summarized below for the three
coordinate directions:

J
First Irregular Forward Derivetives

ar - (ma® - byy?) 36t e’ 141,96 ~ By T142,1,x
5%’1:3’1‘ T Ty byg (hu hu) * . €36?
‘ - (bga® - hy,") £, + hgg® £ - he,*
dr - 1 i,J,k B T4 441, Y’ by 1 342,k
5%)1,3# - "hey hgs (hpg - hn) $37?
- (me® - Byy®) 2 + hop® £ - e, £
df - 1 i,3,k i,J,k+1 LI Y P 5.
3% [1,3,k = Ty o (s - Bey) (38)

First Regular Forward Derivatives

For equal "grid spacings in each of the three coordinate directions, de:jrinefl
according to '

by =hg/2=h
he, = hgg/2 = hg (39)
}hl = h@l/2 = g ) i

Equations (36) - (38) reduce to

-3f +4f -f
of i, )k i+l, 4,k i+2,4,k ’
3 1,3,k 2h, (+0)
aAf -3 fi x * y r - f
3] =t L0k 1,342,k (k1)

i,Jk 211.
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Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)

af _ o 3F sty g T Ty (42)
30y /1,],k 2hs *2)

Second Irregular Forward Derivatives

e LT R LR A T R T LA TN

50, ¥1,5,k = 2 [ By yg (Ba = By ' i (43)
_ . ) n

e - h.ﬂ fijj"']:lk + (h.ﬂ = ‘hﬂl) fij_i,k + bﬂl fiLJLQLk

¥ |1,3,k 2 B hay has (hgg - "hey ) i fhh?

ave -Maa £y 4oyt (bow - Bea) By vBau Ty,

55 ¥)1,3,k = 2 ] he; e (hss - Ray) I Fhs?

Second Regular Forward Derivatives

With equal grid spacing, according to Equetion (39), Equations (43) - (ks)
reduce to : T . R
\

abr =28k T e Y T2, 50k
- 242 242 h6
. 5“1 i,k h'.l.f ' (A )
3%r =20 et Tk T T ek .
337 |1,k L ” (47)

-2 fF + T + T

asr - i,3,k+l i,3,k i,d,k+2 48
%% 1,4,k ¥ ( )

First Irregular Backward Derivatives

® N ') £ - 2 ¢
af IR T T i L U R S M 55 PF 0
3¢ 1,3,k hys b, (g - hus) Fh9?
df T e M A T e i PRI (50)
dag i, i,k T Tigs Dgq (Day - Dga) 0
b R TR R R A T R Ll WA (51)
3 i,,j,k"' les hsy (Bsq - hes) .
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Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidel Coordinates (cont.)

by e : -
First .Reguler Backward Derivatives (s = - =h, eta.)

f +3f -4 f
af | _T1-2,3,k i,},k i-1,3,k
3o )i,a,k - (52)
i +3f S
df L _i,3-2,k 1,3,k 1,J-1,k
dag 1,3,k 2hy 93?
£ +3¢f -4 f
3f - i,,j,k-'a i)d)k i.nj:k"l
i - e >
Second Irregular Backwerd Derivatives
LD .hl.a fi-a,_i,k + (hl4 = haa) fi,J,k - h’.|.4 fi_l,&]
371,56 = % | hys By (Brg - Ba) ‘ (55)
e Y e WP (bas - bwa) 2y 5 - Pas Tl (s
%" j1i,J,k L hgs hgy (hgy - hgy) o
ane [P Ty yppt (Beg - Mes) £y gy - bea Ty ]
dpR i, ],k == .  hgg hac (h04 - haﬂ B J (57?
Second Regular Backward Perivatives
3%z f1o2,0 " Ta g "B i 5k
S ¥|4,4,k = LI fSB?
a.f fi:J"a;k »f‘fi;J;k - fi)J"l)k ¢
3a.¥%]1,5,k ip? 3 (59)
vy fy g k2t 81 gk " 2% 5k
80, ¥1,5,k ~ e ¥ | (60)

Mixed Derivatives

Tt can be shown from Equation (23) thet mixed derivatives require values
of the function at any six nodes in the vieinity of the point under consideration.

Figure 3 shows various combinations of mixed derivetives with respect to the
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Derivation of Equilibrium Equaiions in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)

Figure 3.

Irregular Mesh Intervels for Mixed Central, Forward Backward and

Corner Derivatives

Central
Forward
e) &1
)
—
bl?
Backward
by
}’23 b.?./
g)
Corner
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Derivation of Equilibrium Equations in Terms of

Displacements in Spherical and Toroidal Coordinates (cont.)

coordinate axes & and @y. It is noted that the mixed central derivatives
involve the four corner nodes as well as two adjacent nodes in elther of the
two coordinate directions. The various combinations shown in Figure 3 are
summarized below for the coordinate directions &; and ag:

Second Mixed Irregular Central Derivative With Respect to &4 and &

a) 2f
ey 30y

1
1,3,k ~ hgy hgs (by; + Dy3) (Bgy + Dgs)

8 L -
[h”' (F1s, 300, 7 Fa i) - e® - ey - 1 )

. (61)
- by (fi+l,J-l,k - fi-l,J-l,k]]

b) 33f
da, odg

|

1
1,3,k " By By (Byy + Dys) (hgy + Baa)

(62)
.t (fi-l,3+l,k - fi-l,j-l,k)] '

Second Mixed Irregular Forward Derivative with Respect to @, and oy

¢) 3%f
 day, oOdy

1
1,3,k ~ hgy bgs (g - Dyg) (hyy + Dgs)

-} -
[h'° (fi+1,j+l,k " T,k Tiee,ge,k t fi+2,3,k) (63)

. ) ) ,, |
bay® (2341, 51,5 = T2, 0,k fi+2,J-l,k+fi+2,J,k)]
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Derivation of Equilibrium Equations in Terms of '
Displacements in Spherical and Toroidal Coordinates (cont.)

A8 1 -
V) 5% 36 |1,3,k " B; Tra (bay - Tag) (Byy + Bys)
[’“}8' (142, 342, = T1 300, = Taan, oz * £3, 942,k (64)

f

) - -
by, (f1-1,3+1,k Ty, 340,k i-l,,j+2,k+fi,j+2,k)]

Second Mixed Irregular Backward Derivative With Respect to o and ap

. ,
e) o°f -1

3%, 305 1,4,k ~ Tigy Bas (Bys - Brg) (Bay * Dga)
[h”' (fi-l,3+l,k " Ty, * 12,k " Tio1, 0,k (65)

fi2,3-1,%* fi-a,a,k)]

- by, (fi-l,,j-l,k =i,k
3tr | _ -1
da, oag|i, i,k ~ hyy byg (bgs - B, ) (Byy + bya)

r)
]
[l‘" (f1+1,j-1,k - fi+1,j-2,k + fi,j-2,k - fi,,j-l,k) (66)

- . - -
Bya® (€400, 50,0 ~ 1,501,k fi-l,a-a,k*fi,a-e,k)]

Seeond Mixed Irregular Corner Derivative With Respect to & end ap

8) s = 1 )
" o 0ag Ty, Iyg hyy hes (hew - hey)

] .
[h" Bon® (f140, 542,k = 41,5,k - 1,340,k f1,3,x) (67)

- . - _
By bea® (f10 500y - Tian gk fi,,j+2,k+fi,3,k)]

Second Mixed Regular Derivatives

All of the sbove results can be reduced to regular derivatives with respect
to either o , &y or both coordinates by making the substitutions

Page A-32



Derivation of Equilibrium Equations in Terms of
Displacements in Spherical and Toroidal Coordinates (cont.)

my b
by = = = Eh (68)
. hea by, o
hyy =Dhgs =5 = -5 =Dy (69)
hy =hyg =h (70)

The various derivatives are summarized below for the case in which all grid '
spacings are equal (i.e., hy = hy).

Second Mixed Regular Central Derivative With Respect to & and ay
&), b)

s (f -f + 1
8% 3, 1,3,k ~F ’ 141,941k " T1e1,3-1,k T im0k Y Tia1,540,x)  (T2)

|

Second Mixed Regular Forward Derivative With Respect to &y and ap
o) 2L --‘-’L(f -f e P .
da, oag(i,J,k = 2 hy T141, 341,k 142, 3+1,k i+1,3-1,k i+2,3-l,k) (12)

-LEd -1 -
a) 594;“&. £,0k = T Fae1, 300,k ~ Taad, o2,k ~ Taed a1kt f1-1,342,x) (13)

Second Mixed Regular Backward Derivetive With Respect to &4 and o

[t 4 1 g
*) 5 5“")1’3»1‘ "2 (T, 0,k " Tre2, 30, 7 Taa, 01t f1-2,3-1,k) (m

et §

o ooy £

1 .
1,0, = 38 (T001,3-1,k ™ Taaa, 32,k ~ a1, 3-1,k * Tia,5-2,) (75)

f)a

Second Mixed Regular Cormer Derivative With Respect to & and oy

a'f

1
5? aq 3ag |1,4,k ™ Th“[ 8 (fi+l,3-hl,k " f1a1,0,k " Ta,00,0 * T, 50k (76)

- (fi+2,j+2,k - f1+2,.j,k - fi,J+2,k +fi,.1,k)]
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APPENDIX B

Singularities &t an Axis o =0

The equilibrium equations in spherical coordinates in terms of displace-

- ments are written in the form

38 )a »05
O+ 2) 3 + ?‘”‘:;ﬂ' v o Jo + SR B 2o o

2(A+2u) | A 3% (A4u)cose v A+3u dv
- T Ut TR My T R sing  OR © R¥ dg

X+ )@osgp S I AR T 3w _ (3A+au Jo(T) 3T
R¥sing TR sing 0RO ~ R¥sing 36 g1 3R

A4y 3%u 2@&-&1.) du %y . A+, v 3y
R ofdg = R 3:p+u‘atﬁf+ é;f mnch
g Bv U\+§)cosg av A+2 w

* R¥%sing ~ RPsin cp Sm:p cp

A+3u Juosg 3w Sj}ﬁé& Ja(T) 3T
RPsinfy 00 -\/ET' 3¢

Ay 3% 2£7\+g;_,23u A 3%y (M43 )cose dv
F sing 9700 * Wesing. 98 & Hsing 000p < MsinPg 80

Ry 3%y A+2u ¥ty s+ 3y cosp dw
*“’a‘ﬁ"*%ﬂ“a * _sin:p'ﬂ? R 3R 511‘:93:9

n w_3)\+ a(T) 3T
T R¥sinfg-" T )

(2)

(3)

The temperature terms on the right hand sides of Eguations (1), (2) and (3)

are eguivalent to body forces defined as
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Singularities at an Axis ¢ = O (cont.)

T
%%ML g ER RO r

TRl 8. (e 0)yE > ()

(Bau)a(a) 32 . 7, (5,0,0)4/53

If the elastic constants are temperature dependent the equilibrium equations
(1), (2) and (3) are written in the form

10

’ ) / ’
i‘:l [(Aki FA) Ut (B B V(G v e ki)wi]= F., (k = R,p,0) (5)

where

Agys Byys Cp; = functions of coordinates (R,9,0) and elastic constants

A and y
- A,ki’ B’ki’ clki = functions of coordinates (R,y,8) and elastic
constants A(T) and u(T), where T is the heat shield
temperature which is a function of the coordinate (R,¢,9)
U, Vv

;> Wy = functions of displacements u(R,9,8), v(R,p,0) and w(R,q,0)
and their respective derivatives of +the first and second

orders, respectively.

F, = body force expressed as (3A + 24) o (T) %%;

Equation (1) may be further shortened into the form

310
zl };L Gy * G pey) 8y = Fio (& = R,0,8) (6)
M= 1=

iaa;akl Ak" ki’ kl

7 / 4 7
G isamks TP kir Bkyr Oy

Qlﬁlssi = Ui’ Vi’ wi
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Singulerities at an Axis ¢ = O (cont.)

It is first considered that the elastic constants are independent of tempera-

ture. In this ease, Equation (6) becomes, deleting the symbol of summation,

Replacing the varisbles R, ¢, and 8 of Equation (7) by R-R’, ¢-p’ and 6-8',
respectively, and integrating the result with respect to the verisgbles

(R<R’, o@-p’, 8-8") over a finite volume V, gives

fff Gt Pms av’ = fff F av’ (8)
k

Yk

where dV’ = (R-R’)® sin (p~p') @ (R-R’) a (p-¢’) a (6-8') and the finite volume

V, is bounded as

k
Re, S R-R’ < Reo
iy < P9 = O
eKl < 68-8' < 9K2
et Ryo ay
I = f G ey (R-R’)® 4 (R-R')
Rt
Pxo
IR¢ - Jr Ip sin (¢=¢') d (p-0") > (9)
el

9K2

Iﬁgpe -[ IRAp 4 (6-,9') J
]
K1

Integration of the function G ., & . with respect to (R-R’) gives

mki mi
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Singularities at an Axis ¢ = O (cont.)

Ryo R Rgo

aami
f N (RR)'d(R»R)aI 2 l - [ IRa—(ﬁryd(RuR') (10)
R 1 Rx1

Integration of Equation (10) with respect to (¢-¢'), after multiplying both
o 7
sides by sin(p-p’ ), gives

Px2 Bxo
[ Tg 2y [ sinfo-0") 4 (p-9") -
@ Ry
Kl RK2 1 o
k2 a@ , ) RK2 (11)
fj RaRR sin(cp\-(p)d(R—R')d(cpw(p)=I.R:p§mi
Px1
1
.1 ] k2 RK2 X4
: mi v mi ’ ’ ’
_f ImSGQTd(W¢)~[ j I STRay ot (o') @ (RE') 4 (p=p')
P2 1 "ra |
Tntegration of Equation (11) with respect to (6-8’) gives
jjf mki m (R-R’)® sin (cpvcp a (R-R’) a (cp-cp’) a (e-8")
K2
£
RKE jK2 ani )
= Trot ¥mi - Tpeo 57857y 4 (8-€7)
,eK;L " | 2)
. ¥
gl
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Singularities at an Axis @ = O (cont.)

(nge

f f &P—(g—md(ww)d(ee)
Py ©

2 %2

K (12)
f f f Rmysin(cp-cp)d(R—B)d(cp—-:p)d(ee)
B % %k
At a point (RKC, Prc? eKC) , Bquation (12) becomes
J - 4 [- 7 - 4 4 - 4
T b s oo otn Gos') & (gD 2 oy @ (358"
eK2
[ Pk
Rgo %> ko -
7 mi ; ’ )
=IR¢e§mi j I_R‘pe de +f I_R(pa?r—dcp ae (13)
)
8y %1
-Px1
Bl
B %2 %o
f f [ Iy a—""'R sin (g ,~¢') aR'dp’as’
i %1 %
The right hand side of Equation (8) becomes
Bre %2 %k
f f [ T (RoR's ogo0’s 8e®") (RyR' Msin (gyp-o”) dR’dgp’ae’
B % (138)
By the definition of Kelvin's point force, diminishing the force field VK'
indefinitely always including a point (R' =0, ;p' =0, 8 = 0) gives
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Singularities at an Axis ¢ = O (cont.)

eKZ aémi /
Vl%l_l; o f IR:pe s-e-r— i’ = o
K eKl

¢ ko

BQ ,
1im I M gp'a8’ ~

V= 0 f /e R 37 ¥

%1 K1

I -—7—sin( ") ar'ap’ae’ = o
V R o]ff R OR Pke™® w

offf Fy (Ree=R*)* sin (g 0') dR'dp’ad’

’
ff[FKdV ’FKVK

k

But

and, hence,

o
FKC = FK VK

Hence, from Equations (13), (13a), (14) and (16), Equation (8) becomes

8o
Pxo
I, . & k2
'Bg\e‘r—gi' = Fg
K 8
K1 Bye
el Pxe
R ®ke

(14)

(15)

(16)

(17)
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Singularities at an Axis ¢ = O (cont.)

Where Qmi

may be found by taking the average of eight surrounding points.
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APFENDIX C

Thin-Shell Interface Conditions for Stress Analysis
of Thick Laminate Structures

Equations are derived for treating the stresses in a thick-shell
leminate structure in the neighborhood of a thin layer which, by itself, can
satisfy the Kirchhoff bending hypothesis for thin shells. It is shown that
the thin layer can be treated by an equivalent interface condition which
relates the displacements of the median surface of the shell to the discon-
tinuous normal and shear stresses on the adjoining surfaces._ From continuity
of displacements across the thin layer the interface stresses can be climated
to yield threebsimultaneous partial differential equations for the three
displacement components at the interface. The analysis is presented for a
flat plate using a system of Cartesian coordinates and will be generalized
later to the curvilinear coordinate systems of interest in the heat shield

analysis.

Consider & thin plate of thickness b with its median surface lying in
the x-y plane and the distance z measured from the median surface. The
temperature and, consequently, the coefficient of thermal expansion and
modulus of elasticity will be allowed to vary through the plate thickness so
that the median surface will not, in general, bisect the plate thickness.
With this generality, the thin plate itself can consist of a laminate of
different materials. According to Kirchhoff's bending hypothesis the strain-
displacement relations for a point (x,y,z) in the plate are given by

Reference (1).

du A%y \
S =8x " %5
dv by
ey-a—;—ZW P (l)
du . dv By
‘nyaﬁ'l's}z-aZﬁ'y
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Thin-Shell Interface Conditions for Stress Analysis
of Thick Laminate Structures (cont.)

Where u,v, and w are displacements of a point (x,y) on the median surface

and €. € and ny are the normal strains and shear strain, respectively in

y
the x-y plane. The stress-strain relations are given by

[e) = P;J(_%\ﬁp_z')' [(ex + Vv ey) = (l+\’) o (x,y,z) T (x)y)Z)J

= gé%jgzﬂl_ [(ey + Vv ex) - (1+v) @ (x,y,z) T (x’y,z?] (2)

y

Where oy and cy are normal stresses and""xy is the shear stress in the x-y
plane. The normal stress o, and shear stresses sz are usually small in
comparison with the stress components of Equation (2) and are neglected in
thin shell theory. For the problem under consideration, however, the thin
shell will be subjected to both normal and shear stresses over its lateral
surfaces and it is desired to relate the difference or discontinuity of these
stresses across the shell to the displacements of the median surface. These
relationships may be obtained from the equations of equilibrium expressed

in terms of displacements using the Kirchhoff bending hypothesis of Equation (1).

The equilibrium equations in terms of stresses are given by

acx aTxy asz )

ox T oy * 3z < 0
I |

ax T oy t3z " 0 (3)
asz aTyz Bcz

3x T oy t3z * 0 J

Writing the stresses of Equation (2) in terms of displacements using
Equations (1) and substituting the results in Equation (3), the equilibrium

equations in terms of displacements become
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Thin-Shell Interface Conditions for Stress Analysis
of Thick Laminate Structures {cont.)

. E(xy,z) 1 JE A

oA 1y (x,y) + T "é“l‘z ~22l £ (x,y) + i%'vT Q%L;M fa (x,y)

E aES Yo
- £ 1}.(\) g (X)Y) = Z' ai z) ga(x,y) - l%l' aEg;"y’z) & (x,y)

oT

E(
+ a}zcz = (iig’z) %; [a(x,y,z) T (x,y,z)]
E

+ l%\’ aa}(cX,y,Z) o (x,y,z) T (X)Y:Z)
Bet) £ (ey) + i BEIE) £ (,y) 4 2 W) £ () )

zEB(x,y,z y z_ JE(x,y,z)
= —l(ﬂ)_l & (x,y) - T-W 3%

oT E( ) d
+gp = ot 537[“ (ery,2) @ (x’y’z)J

1 3E(x,y,z)

IS oy

o (x,y,z) T (x,y,2)

asz BTyz Boz

3x+3y

Where

L

fa(x,y) = g—% + v %%

1=
B ) - 12 (3, 2]

3w

gi(x)y) '%V'*'Vs%;’f* (l-\))a%:a-??-sg"'

3w

XYY

g’ (x,y) - % 3—’“‘9‘4&—2& (x,7)
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Thin-Shell Interface Conditions for Stress Analysis
of Thick Laminate Structures (cont.)

B‘w

ga(x,y) = a—xr + Vv Yl

& (x,y) = (1-v) é;g—-

vf1 (x,Y)-S?-+v§:— l-v(%:_g_ %—) >
fﬂ,(x5Y) =5 ?rli g; )
fa (Xsy) = *“"' v gy;

, 3 . 3 3
g (g,y)u$+vg,%+(1-v)£n%-g§;’-+§.%

2
g’ (x,y) = (1) £

&'sl(x)y) - '?“ a' /

If the first two of Equations (1#) are integrated across the plate thickness

there results N

£, (x,y) B + falx,y) 5——32’ + fa (x,y) ag—-? - & (x,7) By - ga(x,y) g—g’-x
N,
Qo ‘ T
“&(X3Y)5%'+sz - T . =55

£,/ (6y) B + f'(x,y) 2 + 5 (x,7) g—% ~a (0¥ Dy - e (xy) S

3 oy

8 yz

) 3B
-~ & (x)y)ay + T

yz

(5)

g

Where the quantities Ih, Ty and N, are defined by

T
-1 -
L = T:\,Tfﬁ-(x,yﬂ) dz

D = Ii—?;;fz E(x,y,z) dz >

1

(M
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Thin-Shell Interface Conditions for Stress Analysis
of Thick Leminate Structures (cont.)

and sz , sz , etc. are the respective shear stresses on the two-surfaces
L]

of the plate. If the median surface is determined such that

D =0, (8)

which is, in fact, the condition defining the median or "neutral” surface,

then Equations (6) reduce to two expressions for the shear stress disconti-

nuities across the thin plate in terms of the median surface displacements;

i.e.,
Tl Tl e - 0o B - ) 3 - (o) 32
xz', B xz|1 *3x T VY T IB\R Y Fx T VY ay (9)
AN
T ! ! 9 ! QEL
Tyzg-'ryzlns&—-fi (x,y) b - £y (X,y)g%--fa (x,y) 3y

A third equation, which is necessary to define the three displacement
components u, v and w at the median surface, is obtained from a consideration
of equilibrium of forces normal to the plane of the plate. It is shown in

Reference (2) that this expression of equilibrium cen be written as

a!Mk aasz 2% My 3w 3w
8 ”2ax3y i ’NP'Nxs?-anyaxay-NyW ‘(10)
where p is the lateral pressure loading on the plate and the N's and M's

are sectional forces and moments defined by

N -fc dz , N -fc dz , N .f‘r dz

X X Yy Jy Xy Xy

M -.j; o . dz , M =fzoc dz , M =-]2T dz
X X y y Xy Xy

Substituting for o, cy‘and T, from Equations (2), with the definition,

(11)

Equation (8), of the median surface, the sectional quantities of Equation (11)

become
du v
Nx=“>(a—x+"a“§)'1"m
dv du (12)
Ny:]b(sy-i-\)s; -NT
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Thin-Shell Interface Conditions for Stress Analysis
of Thick Laminate Structures (cont.)

1-v v
Niy ) D:( dx
]
(12)
y"D-(—yf”?) My
v
My=_(l.-\))D.m )
Where 3
1
m’mﬁ. E(x:y)z) dz
1 (13)
My = 2 2 Bv,2) @ (0,2) T (09,2) a2
The lateral pressure, p, acting on the thin plate is simply the difference
between the normal stresses czI and ozlB acting on the two surfaces; i.e.,
1
p-c:z'-crz1 (%)
Hence, on substituting the sectional forces and moments defined by
Equations (12) in Equation (10), an expression is obtained analogous to
Equations (9) for the diséontinuity of normal stresses across the thin
plate in terms of the three displacement components at the median surface.
This equation is found to be -
al Ady Afw aﬂ
Gz[ﬂ - Uz|1 = [ (—? + Vv ?’ + 2(1-—\)) é;r -
30 AL, s 3%y du dv
+a-§r[D-(a‘§r+“s?“ (R E R N (15)

1l-v
S D

¥y au )] Ay [ dv . .. du

“2‘55"[ ax Yoy T e (| sy Y ax | et MM

If it is assumed that the displacements at the surfaces of the two media

in contact with the thin layer under consideration are equal to the displace-

ments in this layer at the median surface, then the surface stresses may be

expressed in terms of these displacements using Hooke's law with the
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Thin-Shell Interface Conditions for Stress Analysis
of Thick Laminate Structures (cont.)

respective material properties of the two adjoining media. Thus,

Equations (9) and (15) become three partial differential equations in the
three displacement components u, v and w at the thin-shell interface. These
equations will replace the general three-dimensional equations at the
"interface" nodes resulting in only one node at each such interface through
the thick laminate structure. Once the three displacement components in the
interface plane are determined, the stress distributions throughout the

thin layer are obtained from the foregoing thin-shell analysis.
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