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THE DENSITY EXPANSIONS OF THE TRANSPORT COEFFICIENTS*

by
David K. Hoffman

University of Wisconsin Theoretical Chemistry Institute

Madison, Wisconsin

ABSTRACT 24 o4 (

The theory of transport phenomena in a gas is considered from a
statistical mechanical viewpoint; The theory is based on the Liouville
equation for the time evolution of an ensemble of systems and the
B.B.G.K.Y. equations which are integrals of the Liouville equation,
The B.B.G.K.Y. hierarchy is truncated by a factorization principle
which is a generalization of the molecular chaos assumption. For
purely repulsive potentials, the set of equations obtained by
truncating at %ﬁA’)is shown to give rise to the three body inter-
action term obtained by Hollinger and Curtiss and by a different
argument by Bogolubov. |

The two coupled equations obtained by truncating the B.B.G.K.Y;
hierarchy at 7ﬁ13)are considered in detail, An approximation to
these equations leads to a Boltzmann equation which is a soft
potential generalization of the Enskog dense gas equation.for rigid
spheres, This Boltzmann eqQuation includes both collisional transfer
and three body collision effects. . The equation is solved and .

expressions for the transport coefficients based on this solution

are obtained,

* This research was carried out in part under Grant NsG-275-62(4180)
from the National Aeronautics and Space Administration and in’
part under a grant from the National Science Foundation.
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Numerical calculations of the three body collision corrections
to the transport coefficients are made for a Lennard-Jones gas.
These calculations, along with the collisional corrections obtained
in a previous paper by Curtiss, McElroy and Hoffman, give in
approximation, the contribution of the non-bound states to the full
first density corrections. The calculations are compared with

experimental values.
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CHAPTER I

INTRODUCTION

In this study we consider one of the classic problems of
statistical mechanics, the determination of the transport coefficients

of a gas. Early research on this subject was carried on by some of the

. «truly great theoreticians such as Maxwell, Boltzmann-and Hilbert and

culminated in the now.classic book The Mathematical Theory of Non-

uniform Gases by Chapman and"Cowlingl. The problem_ has received

continued attention to the present day and still presents many
unanswered questions and avenues for further research.

The methods of both continuum mechanics and particle mechanics
have been used extensively in the theoretical study of gases. The
two approaches give complimentary descriptions., The continuum
approach yields relations (such as the relation between the
temperature gradient and the energy flux vector) which link
macroscopically observed properties. However, to complete the
description of any particular gas certain parameters characteristic
of that gas (for example, the thermal conductivity) must be specified.
In the continuum approach, these characteristic parameters can only
be determined empirically. However, by the methods of statistical
mechanics, they can be calculated, at least in principle, in terms
of the intermolecular potential.

. From the continuum view, a non-equiiibrium state of a gas
composed of a single chemical component is specified by the density,

temperature and stream velocity as functions of position. The

1



macroscopic state determined by these quantities evolves in time
according to the equation of continuity, the equation of motion,
and the equation of energy balance. These equations, which are
known as the equations of change, involve explicitly the flux of
Imomentum or pressure tensor, f , and the flux of energy, f .
Under conditions not too far removed from equilibrium, these fluxes
depend linearly on the gradients within the system, The coefficients
relating the fluxes and gradients are known as the transport
coefficients, It is thg role of kinetic theory to express these
coefficients in terms of the intermolecular potential.

At a point 2 in the gas, the dependence of the fluxes on the
gradients of the temperature, 7 , and the streamvelocity, « ,

can be written in the general tensor forms

pepmH @-»

and
.27
s- 4% @

where }_b, s é‘/ and 4 are isotropic tensors which depend only
on the density and temperature. By an isotropic tensor we mean a
tensor that is invariant under any rotation or inversion of the

coordinate system. The pressure tensor, ! , does not depend on

the gradient %—Z because there are no odd order isotropic tensors.
<. yu
Similarl does not d d = .,
Y, _g epend on 3z

All isotropic tensors of second order are scalar multiples of




the unit tensor, g » defined by

\

Uiy = S*.}. - (1 - 3)

: Hence, we have
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(1 - 4)

Fo

and

>

= AU © (- 5)

The coefficient f’ is the hydrostatic pressure and A is the
coefficient of thermal conductivity.
Every fourth order isotropic tensor is a linear combination

of the tensors @ , W and ‘:Jl__) which are defined by

Wifie = Sie S;a a-o

UU.;j‘lu = die J‘/,, | . (1-7
and
(l,/,U);J'u = Juy e ; (1 - 8)

The tensor. H can therefore be written
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This particular grouping of the isotropic fourth order tensors is

convenient because the tensors [ /2 (M + UU) UU]
( u UU) and UU divide the gradient 3“ , in
&1
equation (1 - 1), into its traceless symmetric, antisymmetric and

trace parts. For spherically symmetric intermolecular potentials,

it can be shown that the pressure tensor is symmetric; and hence

¥ =0 (1 - 10)

We restrict our attention to this case. The quantity 7 is the

coefficient of shear viscosity and ¢{ 1is the coefficient of bulk

viscosity,
If we write equations (1 - 1) and (1 - 2) in terms of the

hydrostatic pressure and the transport coefficients, we have

R N A B X 1% a -

and
= -y 27 (1 - 12)
¢ - iy
where

é’yz[:—g */%—;f:)*/’ Zs/)az,-‘-‘)__l,j (1 - 13)

The symbol # indicates a transposed temsor. The tensor 35 is
known as the rate of shear tensor.
The hydrostatic pressure is essentially an equilibrium property

since it is the only contribution to the pressure tensor at

L
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equilibrium, i.e., when there are no gradients within the system,

’In=1963.0insteiuz develéﬂed an exptéi‘ién fét the leéénd coefficient

in the virial expaulton of ,6 This and the oublequent development

..“,, #

éf limilat expteasion: far thc higher virtnl coefficieutc vere early

‘triumphs of thg ctatiltical nnchanical nethod.

The traneport coefﬂcients A, , and X ~cliepend on the one

and two particle hon-equilibrium distribution functions. A fundamental

' problem of kinetic theory has been to derive eqﬁations which govern

the time evolution of these distribution functionl.i in 1872
Boltzmann3 ﬁbtatned his now famous equation for the one particle
distribution function. This equation is valid for dilute gases
composed of molecules‘vhich undergo only binary colli;iona by
interacting, nccotding to.cléolical mechaniés, through a spherically

symmetric potential. Some forty>yeatl after the original derivation,

\ Chapman'4 and Enskogs, proceeding independently, obtained identical

solutions ofxﬁhe Boltzmann equation, From this lélution they
developed low density expresstbns for thé'tiansport coefficients.
In 1922 Enikogsproposed a modified Boltimanﬁ equation which
is applicable to a dense gas of rigid sphefél. His modification
takes into account two separate effects which ultimately contribﬁte
to all but the coﬁstant terms in the density expansions of the
transport coefficients. Pirnt, since rigid spheres are of finite
size, molecular collisions result in an 1n§tantaneoucbtrannfer of
momentum and energy between molecular centers. Second, sihce ﬁhe
molecules in a real gas are not restricted to binary céllisions,

higher order collisions affect the time evolution of the one particle




d;stribution function. Enskog allowéd for the second efféct in only
an approximate.mannér.

Subsequent effo;ts have been made to generalize tﬁe effects
Enskog considered'to soft potentials. Green7 has develdped
collisional contrib:tions‘to the Boltzmann equation, Bogblubov8’9
and Hollinger aﬁd Curti;slo have separately develobed corrections
to the Boltzmann eqﬁétion ih series expansions. These, iniprinciple,
are exact e;pansions; ;ut they are valid ohly fof'purely repulsive
potentials. The,results of Bogélubov and those of Hoilinger and
Curtiss are in agreement. 1In the lowest order they are identical
to the results of Green. Snider and Curtiss11 have solved the
Boltzmann equation with collisional corrections (as obtained by
Green), and from their solution have developed expressions for the
transporﬁ coefficients, Due to the complexity of multibody collision
terms in the ser;es expansions of the ﬁbltzménn equation, no
attempt has yet been méde to'develop higher order collisional
corrections to ﬁhe tr;ﬁsport coefficients on the basis of these
expansions. The restriétion to purely repulsive potentials eliminates
the contribution of bound states to the tfansport coefficients.
Bound states have not yet been treated in a satisfactory theoretical
manner, although approximate treatments have been éiven12

The study of the origin and genéralizaﬁion of the Boltzmann
equation is international. This is indicated By the men for which
a particular hierarcﬁ& of eﬁuations, known as the B.B.G.K.Y.

equations, is named. This hierarchy, which we discuss in detail later,

is named for Bogolubov of Russia, Born and‘Green13 who worked in

| (A

oL e 11




‘England, Kirkwood’l4 of the United States, and Yvon15 of France. The
works of these authors share as a common starting point the Liouville

:ﬁﬁquation for the ensemble distribution function, but vary considerably

16,17

4 concept and methodology. Choh and Uhlenbeck have considered

the Bogolubov development in detail. A somewhat similar development

has been given by M. S. Green 8,19

The rigid sphere gas has been
discussed by a number of authors from a variety of approaches -
particularly by Rice, Kirkwood, Ross and Zwanzigzo; Rice21; Dahler
and O'Toole22’23; and Livingston and Curti8524.

In the present work we develop equations which are formally
equivalent to the series expansions of the Boltzmann equation
mentioned above. We consider specifically the effect of three body
interactions and show that these effects, when considered in
approximation, lead to a soft potential generalization of the Enskog
equation. This generalized equation is solved; and expressions for
the transport coefficients are derived from the solution. Finally,
we reduce our expressions for the transport coefficients to a
computational form, and obtain some numerical results for a
particular intermolecular potential.

Our approach is not essentially restricted to non-bound states;

but the bound state problem is not considered in detail.




CHAPTER II
GENERALIZED BOLTZMANN EQUATIONS
In this chapter we develop a system of equations which govern
the time evolution of the lower order distribution functions., We
consider in detail the equations for the first two distribution
functions and an approximation to these equations which gives rise
to a generalization of the Enskog rigid sphere treatment to soft

potentials.

Section 1. Distribution Functions

The molecular description of fluids is a statistical problem
and is thus conveniently formulated in terms of distribution
functions; Let us consider a system containing a large number, N,
of identical molecules ( A is typically of the order 1023). Further,
let us suppose the forces between molecules in the system to be
limited to purely repulsive two body forces arising from a potential
of interaction which is spherically symmetric, The system is
completely specified by 34/ position and 3N velocity coordinates
or, equivalently, by a point in a ¢/ dimensional position-
velocity space. The probabilistic behavior of this system is
described by an ensemble of dynamically similar systems.

‘W)

Let us define the function fp on the A particle position-
velocity space equal to . A// times the probability density of
finding one system in the ensemble at a specified point in the 6‘A/
dimensional space. The factor A// in the definition of /)/A,i)s the
number of permutations of N molecules which give rise to the same

mechanical state of the system except for molecule interchange.

8




) W)
This normalization of f is such that integration of d over the

'enkire position-velocity space gives A// The ensemble is so chosen

tlgac f is 1nitially symmetric in all the molecules. This does

;:qpt:result in 4 loss of generality because properties which distinguish

‘one molecule from another are not of interest Si.nce the equations
of motion of any system in the ensemble are symmetri'c with respect

.
V. )

. to molecule interchange, remains symmetric in its time

evolution,

()

Because of the symmetry of / , lower order distribution

functions can be defined without ambiguity by the set of relations

LY X
/o= {/v—/:)/ // D ldaidnf  @1-p

where A=/ to w-/ and A, and 7, are respectively the

+

'v”positioﬁ”and-fvelocity of the P molecule The 1ntegrat10n is
understood to be over the entire range of the varlables "The 4 4
’order dlstrlbut‘lon‘functlon is proportlonal to the probability
densii:'y:of finding 4 - molecules with poeitior;s and velocities
corresponding to a point in the /zk: part_rc‘:lev posifionévelocity
space, without regard to the situation of the orher \/VI-—é molecules.
The AZ?.‘ order distribution function is.normaliied .tlo the factor

[ (‘./'///A/—A)‘/] which is the number of permutations of 4
molecules chosen.rfrom N v |

Sectlon 2 2 The Liouville Equation and the B.B.G.K.Y. Equations
},(AO

The time evolution of is governed by the Liouville

equation:
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Y/ : ) ,
3"._1' > [/'”: //’”’] =0 (2.2 - 1)

/) )
Here // is the Hamiltonian and [ J ] is the Poisson bracket

of an AN particle system. The Hamiltonian and the Poisson bracket

are defined by the relations

” ” . L4
2 / (<,4)
pe o S tmu) 2P 2.2 - 2)
L=/ 4,‘::/

and

[f’;;]“’ Z{?}-g—f - 3% ,op¢ } (2.2 - 3)

<'s/ Ilmi) ts Wmy)

where ,m 1is the particle mass, mry, is the momentum of the £ zZ4

(<,¢)
particle, ¢ 4 is the potential of interaction between molecules
< and j » and @ and ; are arbitrary functions of the
position and momentum of the particles, The Liouville equation is
the continuity equation for points in position-velocity space.

Equations for the time evolution of the lower order distribution

functions are obtained by integration of the Liouville equation:

(4) (4 Ar7) (ﬁf’)

Y, C4) ) (A)
)z 7 [7, ) ” "’-/42;, M.- .S—:r ’/:!Iu/o_’_ﬂu/(z'z -0

)
In thederivation of these equations, 7 is assumed to approach

zero rapidly as either 2. or Y. approaches infinity. This

set of equations form an interrelated hierarchy known as the

At iy Wl i 1)




Bkgﬁegg,Y. equations. . To solve any one equation exactly would .
:_g.qyigqna solution to the original Liouville equation.

! We wigh to determine the lower order distribution, functions. of

"tﬁe*system uniquely -in terms of the y@cgqscqpiquQatg¢,;In kinetic
,lﬁheory;the number density, stream velocity and -temperature, which,
when specified throughout space determine the macroscopic state,

are statistical. averages over »vrlqa. However, as we have seen,

the rgduced distribution functions which are solutions to the
B.B.G.K.Y. equations depend ultimately on 1’(A05 There are many
choices of the ensemble which give rise to the same macroscopic
state. Hence the solution we wish seems to be underdetermined.
This}#s a paradox which ultimately must be resolved in the statistics
of systems which are composed of extremely large numbers of molecules.
Thelrgsolution of this paradox has not been carried out completely
satisfactorily on a theoretical basis. Operationally the problem
can be solved by terminating the B,B.G.K.Y. hierarchy and solving
the resulting equa;fbﬁs on the basis of physically reasonable
assumptions ;bout the nature of the lower order distribution
functions, The effect of this procedure is to limit solutions for

the lower order distribution functions to a set of functions

determined by the macroscopic state.

Section 2.3 Molecular Chaos and the Boltzmann Equation

We now discuss a derivation of the Boltzmann equatiéﬁ from the

€r)
(’ B.B.G.K.Y. equation. The derivation involves terminating

the B.B.G.K.Y._hierarchy_by the so-called molecular chaos assumption.
: o 2) )
This assumption is that v factors into a product of / 's

11
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in those regions of the two particle position-velocity space which
correspond to pre~collision positions and velocities of two particles.
The rationale for this assumption is that in a realistic gas there
can be little correlation between two molecules prior to their
collision, That 18, they have very little influence on each other's
history prior to collisions. They, of course, have great influence
on each other's history after collision. The effect of this
differentiation between pre-collision and post-collision portions of

- the position-velocity space is to introduce irreversibility into

the equations.

(2)
It remaing to express /' everywhere in the two particle

2)

position-velocity space in terms of £ in pre-collision portions of

the position-velocity space. This can be done by a method used by
Hollinger and Curtiulo based on formal solutions of the B.B,G.K.Y.

74
equations. The A~ order B.B.G.K.Y. equation is

l.c Ar/)

(4) '
Y4 (&) (&) ;/ ths?)
Je il /, ] /.‘ A f ‘/4/..‘//0‘, (2.3 -1
which can be written
M) (4 (4) (A~
0’“ (//-‘-‘pf [277) 2.3 - 2)
/4)

Here 257z)t is the total time derivative considering position and

velocity coordinates to be implicit functions of time along an 1""""
) {‘-ﬂ)

order collision trajectory. The quantity ,)

notation for the right side of equation (2.3 - 1) and 8 1is an

b -
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13
ordering parameter which will ultimately be set equal to onme. |

4 |
We define an operator 7 ¢7) by the relations

7) (h)

4) A
7'1(2-’ = er[)”,] . (2.3 - 3)
and
(A) (4A)
v ALY S 7 2.3 - 4)

(4)
The effect of 7 (?) on a function is to transform the
position and velocity variables of the functioen to their value a
time 2 later on the 4 particle trajectory. We can then

CA)
integrate equation (2.3 - 2) and write the result in terms of 7—( ).

() (4 )—/ a)

~r otk
/ (e) = T ee-e5l # on "1,:)[.7 Vel et (2.3 - 5)

For clarity, we have indicated the explicit time dependence of the
operators and distribution functions in equation (2.3 - 5).

We now make use of the fact that the force between any two
molecules ig purely repulsive and hence there are no bound
molecular pairs. Then if #£-¢, 1is positive and sufficiently

large we can use the molecular chaos assumption to write

2y’ ( ) V2] ()
7 te-ay] /;] zﬁf-’f)[ Lewy £ o (2.3 - 6)

/70
where the subscripts on the / 's denote the particle to which

the functional variables refer, From equations (2.3 - 5) and
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(2.3 - 6) we have

a ez’ o )
£ ey = 7/# ) [/ vny £ ear]
(2.3 -17)

6 /7(t ¢) [Jm//'m '))]/f

/7)
Equation (2.3 - 5).esn.similar1y be used to express 1’(&0 in terms

{0

of A

/7:2) 7'(’:3 z:)[/m/ F/ffz: t)[Jm m'))]/z" (2.3 - 8)

From equations (2.3 - 7) and (2.3 - 8) we ﬁeve‘
z) 7 ’ o 2
/ (¢) = 7“ z:} 7‘(/’lf ) 7'?; ;)[/,'_/z) fft)/ (2.3 - 9)
¢ ! )
) , P ) "yrtd™ L), fe)
f 7'5‘:’./)[J //?z'))]/r‘ Ak /H]f/(/f-' t)[J )’]Jf
P 7)) (/) 7) )
—7(%‘ z;)[/(/z‘) 7/f. f)[]l(/'u’))//“'

> f )./ e - z‘)/f //7;' ))//t"/T/f. t}[,f“)//;:.,/)],/t}

Equation (2.3 - 9) can be expanded in an infinite power series in P

if we assume that all distribution functions factor into a product
ﬂ) .

of j’ 8 in pre collislon regions of ‘their respective position-

velocity spaces. We can use equation (2.3 - 5) to carry out the
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: 7 :
factorizations and transform the time dependence of the / S ina
manner similar to what we have done above.

We will be concemed with only the F‘ term of the expansion
2) i '

of /' 2). A11 ot:her terms contain compl.ex time integrations which

A

are extremely difficult to deal with If the intermolecular forces

I/)

'are short range, the operator 7 {t t‘.) 7 (¢~ t‘.) 7 /{ z‘.)

has a limit as €o~> ~°° which will be denoted by J'“). We can

'replace ;['/f) in the /f/) B.B.G.K.Y. equation by the Ba term
z)

of eq\iatlon (2.3 - 9). Then V1n terms of S we. have

I7a) {/z)
)7 (2dp 112 (2.3 - 10)
)7+U'J:/) ”’/M, m [i‘//' L

By straightforward manipulation equation (2.3 - 10) can be transformed
into the ordinary Boltzmann equation plus the ooliisional transfer
corrections due to Green7.

Equation (2.3 - 10) suffers from!two disadvantages as a
theoretical description of'gases. AFiret it takesbinto account only
binary collisions in the sense that it considers only the @0 term
of the series expansion for /ﬁ(Z). Higher terms in the expansion
require explicitly taking into account the dynamics of higher .order
collisions. ‘Second, since equation (2,3 - 10).is based on the
molecular chaos assumption, it tacitly ignores bound molecular pairs.
Theoretically this difficulty is overcome by considering purely
repulsive molecular forces. This, however, is not realistic. We
will now develop a formalism which overcomes the first disadvantage

of equation (2.3 - 10). The general formalism may also be adequate
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to treat bound molecular states. However, we will ldmit our considera-

tions to purely repulsive molecular forces.

Section 2.4 The Factorization Principle

Let us consider the first 4 B.B.G.k.Y. equations as a set to
be solved simultaneousiy for the first 4 distribution functionms.
We will terminate the hierarchy by approximat@ﬁg 7ﬁ/4f/in terms of
the first A  distribution functions. In order to truncate the
hierarchy and also to obtain boundary conditions on the solutions to
the truncated set of B.B.G.K.Y. equations, we introduce a factoriza-
tion principle. This principle, in the case of purely repulsive
forces, is sufficient to uniquely determine the A -~/ higher order
distribution functions in terms of /'/I . Let us consider regions
of the § particle position-velocity space (z 4 5 < A*/) where
the § particles can be divided into two groups which have not
interacted in their past history as determined by the § particle
trajectory. The factorization prinéiple states that in such regions

5)
£ is given by

¢s) (9) ,(S5-9)
Foe ply 4 (2.4 - 1)

where ? and J—Z are the numbers of particles in the two
groups. This principle is introduced as a physically reasonable
postulate,

In order to provide a satisfactory boundary condition on the
distribution functions, the factorization principle must be

consistent with the B.B.G.K.Y. equations governing the distribution
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functions. ‘This cdﬂsigéénéy can be shown by considefing Ehé'equatioh

‘s)
for /. ‘

) f,,) (s sfl) (.rf/)

()] ) ‘
LR, £ )/ PR
[ F7H ] ffu, 2 s lin Q- D)
43/ -
From equations (2.2‘- 2) and (2.2 - 3) it foll‘bws ’that, when the
groups of z and .r—l molecules are far enough separated so that
the potential of interaction between any molecule of one group with

any molecule of the other is zero, then

(2.4 - 3)

¢s)7¢5) /Z /Z) er-ply (5f)
#] = [+l 7

If equation (2.4 - 3) is substituted into equation (2.4 - 2) and the

‘5) (S#7)
7

factored expressions for and 7 are also introduced, then

equation (2.4 - 2) is

) 5 ‘) .- ‘s 5-9) 5=9) [Z) | P /9)
//z[ﬁ, /,/ g/‘ [/, f)/s/{77, 7/’/( I/};/*//,Z)ﬁ//{)/[/

(2.4 - &)
{_‘ Sr )
(< Sf/) (J'f/ ) (s- /Zf/)
__/(Z) __/‘Za’f 4 o f / Z/mfZ)/e s 0/44»5
- my = PAL )1} O/Jr/-/ Vsrs < )0; 2sry FESE/
Jsz‘/ — —
/69)
Equation (2.4 - 4) is the sum of the equations governing 7/' and

(s-9)
/ 4 . Hence the factorization principle is consistent with
the B.B.G.K.Y. equ uations.

In order to use the factorization principle to terminate the

: ’75)
B.B.G.K.Y. hierarchy, it is necessary to obtain a form for 7/,
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. . . 3
which is applicable in any factorization region. For example, 7
in any factorization region can be written

(@> pez) p¢2)
f.?)— //,Z_ 7‘;:3 /z,J‘ (2.4 - 5)

/ - 0 p 0 7 ' '
PR ¥

In the regions where molecule 3 1is separated from molecules 1 and 2,

equation (2.4 - 5) is

) 1) 20N g 20D p0)
(3) f/,(zz /// l’.,? )//; {: ) 71,(3)/,(/)
7= "’/”’/”’ = 7,7 (2.4 - 6)
AN
)
The expression for 7{,13 reduces in a similar way in any factorization

’5)
region. A general expression of this type for ; is

75) > s) 5-3) (3), (s-5)
s Vs st L s S
- P .- s .- £5) , 0576
P LI R

)
where the notation /7_‘.’ means the product of all combinations

of functions of the .5 molecules taken . at a time. For'

5 =3 , this equation is equation (2.4 - 5). Two other examples are:

/’")-.- /’,m/&'m (2.4 - 8)

and

/8 ‘r) 3) L) 10 A1) 927 pl7)
//4’). ’C,z,:r /:,z,/ //:.r/ /z,a,///’ z /:_é @6 - 9
) 2> z) 2y Jrz) 278) 2z) 4 -
//.z //,.r //,.y 7:,3 /z,a }:",l

We note that equation (2.4 - 8) is the molecular chaos assumption

discussed previously. In Appendix A we prove the validity of the
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(%+) i
/ 2 7_/4-//) /"

general equation (2.4 - 7).

Equation (2.4 - 7) provides us with a general expression for

(h+0) : oo Chrs)
£ in all factorization reglons.  We can relate A" in the
' (h$7)
entire k¥?/ position-velocity space to in factorization

regions by a series expansion similar to that developed in
Section 2.3, If we restrict ourselves to the lowest order term in

this expansion, we find

n.f/) 7y, /A)) /o”"’) (4-2) "‘9...
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— )} (2.4 - 10)
-2) p (4-3)
/‘*/) /‘_’) /‘_ ‘f/) [‘ 3) )
VAN e 7N e
' lh+r)
This expression for /' in terms of the 4 1lower order distribution

function terminates the B.B.G.K.Y. hierarchy. The resulting closed
set of coupled equations are to be solved simultaneously for the
A distribution functions. The factorization principle provides
boundary conditions on these solutions., In the next section we
compare the factorization principle with other methods of
terminating the B.B.G.K.Y., hierarchy; and we also show that, for

(2> /3)
purely repulsive forces, rp s / setc. are uniquely
/)

determined in terms of £ by the factorization boundary conditions.

Section 2.5 The Factorization Principle and other Termination

Procedures of the B.B.G.K.,Y, Hierarchy

Let us consider the set of equations obtained by terminating
the B.B.G.K.Y. hierarchy with the factorlzatlon approximation for
£3)
/ . These equations are:
{/ ,2) (2

)1//

JL;_‘;"/,o){_ [/:/,0//(:)/('): (Z)/jz 9 / /4 oA (2.5 - 1)
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and

@) (2)
cz) 2)
3—5[ r [#7A4 “7 |
(2.5 - 2)
' ) e 9 (2 7 ) z @ (z)
/ /} !_f(:‘g + ’_fu.?- f 7_”)" (7( ’/ ) ’*»: >/7- . o/a /v
= - iy 44 % 7’-/1)///0)/ 7:1)/;/1))/73.11)7509 =37 -

rey gt Tk )TN T2
(77N T A) (774 ")

If we consider purely repulsive forces, there are no bound molecular
states, and hence every trajectory has a pre-collision portion. The
factorization principle can thus be applied on a portion of every
trajectory, This allows us to formally integrate equation (2.5 - 2)
in a manner analogous to the procedure in Sec, 2.3. 1In terms of the
ordering parameter @ , introduced in Sec. 1.3, the result of the

integration is
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[z )./ )

‘ [I) -
/m/f) Tttty 0687, /" ”[/”) /f_)/ (2.5-3)

/ @ , z) ’ n.) (z)
/7' /t t’)[Jm 71”- /7 / /{))(7 /N J)(7 12 v
/ u)/ ) )}/7-10/(1) ))( (/y ) )

+

_.7'"’# 5)[/ /f)]/7 /f z")[J”//IZ) )]/t"

+

-7, e - r.)[/’ (t)]/7 (% -2') [J"’//"’,))]Jr

] ‘ ; B t
+ P‘-}'/ 7,_”)./{‘-t;,)[J‘{n//;gl))7"/t/t/7: ,}),s/—z’)[f, )(//‘é,))]/{}

By substituting equation (2.5 - 3) back on itself, we obtain
(z) ¢/)
/ as an expansion in terms of £ and powers of g . The
time dependences of the singlet distribution functions can be
¢s) ’
transformed to time f by the integrated /1 equation. This
2z)
equation has the form of equation (2.3 - 8). In this way, / is
¢7)
uniquely given in terms of /' . This procedure can easily be
generalized to a set of B.B.G.K.Y. equations truncated at any order.

2z)
The Hollinger and Curtiss series expansion for / was

discussed in Sec. 2.3. The lowest order term in this expansion,
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as can be seen from equation (2.3 - 9), is

7_/1)—/[ //)///,) /)]

The next order term depends on the lowest order approximation to 7ﬂ

)
Hollinger and Curtiss have taken 7[ in this approximation to be

)

f{;’) /J)[ 7//)71_ (/)/ //;/ ’7) 4/17 (2.5 - 4)

Z

By comparing equation (2.5 - 35 with equation (2.3 - 9), we see

that to lowest order, our expansion of ;’lt)is identical to that of
Hollinger and Curtiss. In order to show the equivalence in the next
term of the expansion, we must demonstrate that our approximate

72)
expression for /ﬂ . which is

(a?’ 7-”)_//7{2)//'&))/ /l;z)/' /Z)/7_/Z) )
= sy 7] 77y g7 (4
7T AN

‘(2.5 -5)

/

reduces in the lowest approximation to equation (2.5 - 4). If we
substitute equation (2.5 - 3) into equation (2.5 - 5) and retain
only the po term, we find

/3) /

= s, ) pts /Y
/ /7;1./)/,/)) /7;/17/2 ))/{(’1/;‘/’))

(2.5 - 6)

P S O

;7?’?3;;://”——-”) 01/;0) A?§7
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That is,

3 w0y 1D _in g0 p7) g 2.5 - 7
feey = [777F A 1OYAL J/t_)/ o )

Thus, if we terminate the B.B.G.K.Y. hierarchy by an approximation
¢4

for ’p ?

Hollinger and Curtiss, through the secord term in their expansion.

we formally have the same expansion as obtained by

Hollinger and Curtiss have shown that the Boltzmann equation obtained
8, is identical to second order to the Boltzmann

)
equation they derive from the /' equation and their expansion of

2)
£

The second order term in the Boltzmann equation derived by

by Bogolubov

Hollinger and Curtiss contains very complex time integrations
involving the dynamics of binary collisions, To date, no practical
calculations have been made on the basis of this term. Our approach,
however, is somewhat different in that we do not formally solve the

l’7) V75
Instead,we solve the 7” and

(z)
/ equation in terms of 7
)

f equations simultaneously. This can be done approximately and
gives rise to a soft potential generalization of the Enskog dense gas
treatment for rigid spheresG. That is, in the limit of rigid spheres,
the Enskog treatment and the approximate simultaneous solution of

7) /z) ‘
the 7” and ;l equations are identical. Thus, our treatment
provides a tie-in between two quite different approaches to the

problem of three body collision modifications of the Boltzmann

equation.
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Section 2.6 The Dynamics of Binary Collisions

In the present discussion we consider some general properties
of the dynamics of binary colliéions between elastic, spherically
symmetric molecules. Again, we restrict our attention to molecules
which interact through purely repulsiye forces. The detailed
dynamics of such collisions depend on an intermolecular potential
which is a function of the magnitude of £ . The quantity 2
is the radial separation vector. By formulating the problem in the
center of mass coordinates, the interaction can be viewed as that
of a particle with mass % being scattered by a symmetric force
center. The non-trivial part of the dynamics is the description
of the time evolution §f the three scalar quantities . ,‘? -and
'/"l'i . Here f is the velocity of the particle relative to
the scatterer. The dependence on 2 } in the Hamiltonian
occurs only in the rotational kinetic energy. By making use of the
conservation of angular momentum, we can express the rotational
kinetic energy as a function of 2 only. Thus, for a given
angular momentum, we can conveniently reformulate the problem as a
one dimensional problem. In the reformulation, a particle moves in
one dimension under the influence of a pseudo-potential which is the
sum of the true potential and the rotational kinetic energy written
as a function of 2 . Since the rotational kinetic energy and the
intermolecular potential are both monotonically decreasing functions
of A2 , the pseudo-potential decreases monotonically. This
precludes the possibility of bound states.

A typical collision is illustrated in Fig. 1.
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Fig. 1
Dynamics of a Molecular Collision
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A particle with initial velocity J’ approaches the ‘scatterer with an
impact parameter (or miss distance) 4 . It eventually passes
through a radial separation distance, § 5 which is the distance
of closest approach or turning point. Finally it leaves the field
of force ha\;ing been scattered through an #ngle 2 . We note that
the collision trajectory is symmetric about the apse line which is a
line through the force center and the point of closest approach.
This symmetry makes it necessary to examine only the incoming portion
of the collision trajectory in detail. The angle o between ..J?/
and /2 on the incoming portion of the collision trajectory
conveniently describes the trajectory. It follows from the differential

2
equations which govern the collision that 3

n /4
_ P () (2.6 - 1)
__—_.___'-"——’7
- (P -4
v {7/%'7"6')2) 27
The quantity o¢, 18 the largest value of o¢ and occurs when

225,

In order to perform certain numerical computations discussed in

-4

A
Chapter V, we need expressions for the scalar products j‘ e £ and

' jA’ -f_ where the symbol A indicates a unit vector. These
scalar products are conveniently determined in terms of the quantities
< 5, b , X , j s j/ and 22 which is the angle
between 4 and -5_ . These quantities can be written in terms
of the independent variables j' > £ and 4 . The variables
J/ and ¢ determine a trajectory and .2 determines a point on

either the incoming or outgoing portion of this trajectory. From the
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conservation of energy we find that J is given'by

g - [{f/JZ '///n)//’*)]//z (2.6 - 2)

and from the conservation of angular momentum that

b= £ [(q)°- 2 Jle) (2.6 -3
Jl[ j » ]

/
sente = -;—;2—5- (2.6 - 4)

and (for 12 on the incoming portion of the trajectory)

(2.6 - 5)

The angle of deflection, Z , is given by

2= Fezocm (2.6 - 6)

where o&(w 1is obtained from equation (2.6 - 1) by replacing the
integration limit 2 by §

On the incoming portion of the trajectory it follows from the

definition of o that

A
f’./z = - ¢cof « (2.6 - 7)

Ar A
The quantity 7 'j can be determined from geometry and a knowledge

of o« and @ by summing the appropriate angles. The fixed
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sign of the angular iiomentut’n mikes this summing unique. We find

Jf". j‘ = Cosec COSY # S® SemB . ()¢ g

The two scalar prddu;ts on the out"geit;g portion of the trajectory
can be written in terms of &« for the correspondihg point on the
incoming portion of the trajectory and X . This can be done
because of the symmetry of the trajectory about the apse line.

We find

cos (r2) (2.6 - 9)

"

]

and

/

1]

cosc +2Z )cosee 4 ek (ot )5 w2 (2.6 - 10)

1

, .
It is convenient to define a variable 2 by the relation

j

-/ S
) cz) //) -

= S =7, 77 —f) ‘ (2.6 - 1)
In words, fg' » is obtained from »~ and 3 by first transforming
2 back along the two particle trajectory until the two particles
are not interacting and then transforming an equal length of time
forward along single particle trajectories. We also note that

the initial velocity } satisfies the relation

z) (2.6 - 12)
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~
The coordinate and momentum transformation (2 y 2 }) — (jg /, _A!;l)
- F3
is cr:moni;cal26 since £/ and -2—'?' obey Hamilton's equations for

the Hamiltonian
/ b4

/ M ’)
= — — 2.6 - 13
// o /z ] o ( )
That 1is,

S’ 4 _-Lf/, (2.6 - 14)

N
A §
]
N
"
| 5%
~
My
Uy
-

and

S A A 2.6 - 15
Z/zy)""o ;—2‘/ ( )

Physically, the transformation can be seen to be canonical since it
is the result of two successive canonical transformationms.

These are the backward and forward transformations along the
trajectories mentioned above.

An important property of a canonical transformation is that its
Jacobian is unity. Integrations over the entire position-velocity
space can therefore be carried out equally well by integrating
over the entire domain of £ and } or the entire domain of

.f/ and ;/ . The coordinates 2~ ’ and }/ form a i:articularly
convenient set of integration variables because they allow us to
integrate over trajectories. The velocity }’(as discussed above)

is the initial velocity and is a constant of the motion. The

’
angles of ]_ fix the plane of collision. If we write 0/3/ in
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cylindrical coordinates with the 2 -axis in the direction of i,’

then
v'/!_/= 8 S5 oS> S (2.6 - 16)

The apgle & determines the orientation of the collision plane.
The impact par@eter, b, which is a constant of the motion along
with ]' , determines a trajectory in the collision plane. The
variable 2 specifies the position on the trajectory and is simply

related to the time by

Iz = 7’/# (2.6 - 17)

The Poisson bracket is invariant in form under a canonical
transformation, If we consider in particular the Poisson bracket
[ ) //] expressed in the systems (2 %' ?) and {é ’, %f;/)

we obtain the differential relation

[ )//]__},()3;’;_% :‘l{‘é;z,g ;'-{;’;_,,)}, (2.6 - 18)

If 2 " 18 expressed in the cylindrical coordinate system mentioned

above, and if }' is expressed in polar coordinates, then

"3 - o/ (2.6 -
} 5&')}/ . J(J});:b'e =(32'e)c:on§tant )

trajectory

Equations (2.6 - 18) and (2.6 - 19) show this well-known relation:

that the operator [ ) H] gives the implicit time derivative of

a function of 2 and f .
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For the computations discussed in Chapter V, we need expressions
/ A
for the scalar products A - A& and /z’,f . Let us define a
. (24 . ,
quantity 13' as the absolute value of the time required for a
‘particle to travel from thebturning point, ;P. , to the point £
on the trajectory. Let us also define fl%f as the difference
in the time required for a particle to travel from some pre-collision

point on the trajectory to the distance of closest approach, and

the time required to reach the distance of closest approach if no
AW

?/

derivative of the quantum mechanical phase shift, Further, let us

collision occurs. The quantity is related to the energy
define .é as the vector from the scatterer to the distance of
closest approach on the non-collision trajectory. Then, 5@‘/ on

the'incoming portion of the trajectecry can be written

'2/= (;Aw——w;)j/ r b (2.6 - 20)
and thus,
AR = (Aw—-ws—)(j”-/: L bR (2.6 - 21)
and
2" g =(Aw~w;3(f’-j)+é-f BRCIREL

On the outgoing portion of the trajectory we have

A/

_.g/s‘(awf-w()j + b . (2.6 - 23)
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PP A :
24 = (4w *“’f)(]"'*) +(42) (2.6 - 24)

and

‘e = (Aaw fwf)(f,-i) */éf) (2.6 - 25)

2’ g
a/

A A/ A
The scalar products J *2 and j '7 are given by equations (2.6 - 7),
(2.6 - 8), (2.6 - 9) and (2.6 - 10). We now give analytic forms for wf s
A A -~
dw , bek and & *J - The time, t,-»» required for a particle to go

~ 2
from 2 to A on the incoming portion of the trajectory is 7

Y
R T A4 B , (2.6 - 26)
RN 4’4’ 7 - i/—p/e _ _él
G e*
Hence,
4
WOe = f 7 (2.6 - 27)
5 Ffi-12m_ st
M/J’)" F‘
and

2 2 yz
- - - (2.6 - 28)
Aw = fm (R 57)
meg') F _

where A 1is a pre-collision separation distance. We can write

Awg/‘[/-f!;) 4 —‘7‘//‘ "['e“/""‘z)%/‘f (2.6 - 29)

H(J'}t e’-
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On passing to the limit AK-200, we have

- _ (2.6 - 30)
4w // - 19%) _]‘/(’ 5

m(q’)*
We can find the scalar products _é . /z and _é -O; - in a

A7 Q Ay
manner analogous to that used to find .j I and ] °j

the incoming portion of the trajectory

boh = bsiu (2.6 - 31)

and

65 - 4] cos (x) siniw) = sin(m) cos)] (2.6 -
On the outgoing portion of the trajectory
b3 < boinian) @6 - 29
and
b j‘ = é["‘coj[d#l’)J‘/‘”/ﬂ)*a‘&’n(p{f}’) w;(sz_)] - 34)
These relations dete:rming the scalar products ?’,A" and _AI. j\

on both the incoming and outgoing portions of the trajectory.

Section 2.7 The Truncation of the B.B.G.K.Y. Equations - The First

Order Approximaticn

The development in Sec. 2.4 provides a formalism for finding the

lower order distribution functions by solving a truncated set of




B.B.G.K.Y. equationms. In principle this procedure is very general

and should lead to expressions for the lower order distribution

functions to any desired accufacy. In practive, however, mathematical
and computational considerations limit this generality. We must
content outselves with very simple applicatioua of the fomiism.

The simplest application is to obtain an equation for /’”)by
approximating ;(z‘ in the first B.B.G.K.Y. equation. From equation

z)
(2.4 - 7) we see that f s approximated by

/113- 7 h) -/ /:)'///') /'/ J- "}/”/ (2.7 - 1)
- 2

Y] z

2)
This is the same approximation for 70 which we obtained in

Sec. 2.3 by assuming molecular chaos. Equation (2.7 - 1) leads to

10)
the / equation

/) , (IZ\ ) /,)7
r .fl,)
_’_”,‘ g/,.,/’ = "’,/Tf'ﬁ, /L by S 2T D
J¢ P i

From the identity

//z) I7%))

2 _f“) _ ) ’/ ) f (2.7 - 3)
s - J/I/

’°2 PY .u,_ J_ge

where Q = /z/_f_// # _y,_) , it follows that equation (2.7 =~ 2)
can be written
77 1 12)
)
RECRURRF W A | (’)f"/,p" 7 2.7 - &
J J 4. 1%
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It is convenient to introduce the notation .
/ (z) ' R
K2, 2o 0,0) = 5 Ala, 22,2, 0) @.7 - %)

where A is an arbitrary function of the variables &, , 4.,

-—
g

¢, and 7, . We note that special cases of this definition are
{(2)
2l S (2) (2.7 - 6)
and
(z)

;’: IS (;) | (2.7 - 7)

which is consistent with the notation of Sec., 2.6. Thus equation

(2.7 - 4) can be written

o (,2) y

/
7 ¢r) 7)
%*0/6701:5/‘%;.6‘;)67{)/;,4{; (2.7 - 8)

)/ - ;’{?/ /
/7)

We assume that /) at any point in the position-velocity space is
uniquely determined by specifying » , « and 7 everywhere in
)

the system, That is / is determined by the macroscopic state.
It then follows that ///) depends on space and time only through
the macroscopic state. If 2 , &« and 7 are assumed to be
analjrtic functions of space, then a knowledge of the macroscopic
state is equivalent to a knowledge of # , « and 7 and their
space gradients at a point, At equilibrium 2 , « and 7" are
constant throughout space. Thus, from equation (2.7 - 8), the

(/)
equilibrium equation for / is
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.lﬁl) /7
N ¢ /s 1p12)
o ot T _)3)9 /,’ 7£ A o/} (2.7 - 9)
‘The solution to equation (2.7 - 9) is

) 7,
- m_\"2 -2, :
/= "/7747‘) e **7 (2.7 - 10)

2

where _g; = v, -« . The quantity !9 is known as the peculiar
velocity.

As was discussed in the Introduction, the transport coefficients
arise from a linear approximation for the dependences of the energy
and momentum fluxes on gradients within the system. The linear
approximation is valid only when gradients in the system are not
too large, or, equivalently, when the system is close to equilibrium.
This suggests that equation (2.7 - 8) should be golved in a
perturbation expansion of some sort about the equilibrium solution.
The particular method of expansion we consider is due to Enskogs'.

On the one hand, it is based on physical intuition; and on the other,
on the satisfaction of certain mathematical requirements. The
expansion is convenient because it linearizes equation (2.7 - 8)

and thus makes it more tractable.

?7)
Let us assume that 7ﬁ is given by the expansion

o0 ,
1) 4 (/)

/' = € .7?47 (2.7 - 11)

o

where € is an expansion parameter which marks the order of
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/)
perturbation. In the final expression for 7[' as given by equation
(2.7 - 11), € will be set equal to one. The equilibrium state is
characterized by a lack of spatial gradients. Hence, it seems
reasonable that deviation from equilibrium should be marked by the

order of spatial gradients in the system. Therefore, we expand the

right side of equation (2.7 ~ 8) in a Taylor series about A, and

write successive orders in the gradient i proportional to the
/
corresponding power of € . This expansion of (2.7 - 8) yields
”)
()
g_f,,u,_«}, (2.7 - 12)
T ¢ = a7
(,2) —n’ —n’ -
2 [led ?-f (L) ]
)2 )f € #
"I/)' ——,/)/
/ 2
. (/-2 (5'»,7{ )/,z
+ ‘=’
=47
/ P
(4 =20 (3,7, )i

e ) ++ 0 Yoo

"/,)I “'/I)/
The bar over the functions /’ and /z_ indicates that the space
/

variable at which they are evaluated is A, . The left side of
equation (2.7 - 12) is written proportional to €& because the
operator {.32- 7/ J z is first order in the gradient

5 I P 2
Lo s 3
3, . tt =
5y That this is true for Jr follows from the fact that

/’m depends on time only through , , « and 7 and their

spatial gradients. From the equations of change, the time

derivative of these quantities is proportional to 2

Jﬁ/

If equation (2.7 - 11) is substituted into equation (2.7 - 12)
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we can write the result as a series of integral equations which are

the coefficients of the various powers of € . The € ¢ equation is

/

02 /=t
¥4 7
0= ‘%fﬂ .(33)—(’}{['].7;[01{'@&? (7 - 13)

As is to be expected (since our method of solution is a perturbation
expansion about the equilibrium solution) equation (2.7 - 13) is

identical to equation (2.7 - 9) and has the solution

- Iy _ 2
PO e a2 )/‘e 247 (2.7 - 1)
This equation states that to lowest order in the perturbation the

velocity distribution is Maxwellian. The quantities »# , &« and
7 are considered here to be local properties and are defined in

”)
terms of / by the relations

t7)
‘/'// S = (2.7 - 15)

) 2.7 - 16
VAN oo
and
v g _ an k7 (2.7 - 17)
//: v, /v < s

()
Since the equilibrium form of 7’; must also obey equations
(2.7 - 15), (2.7 - 16) and (2.7 - 17), these equations are satisfied
"

)
if we replace / by / . Hence, we require as additiomnal
1 Lo]

conditions on the perturbation expansion of equation (2.7 - 11) that



o

_ ¢r) : ‘
Z J Ly dv =0 (2.7 - 18)

b=/

t7)

Z//[U v, Jv, =0 E (2.7 - 19)

and

hat Z 2 |
Z///u] v oy =0 (2.7 - 20)
A=/

It is possible, however, to require the stronger conditions that

i/)
_ (2.7 - 21)
/»/izu Sv =

) . . o
, =0 (2.7 - 22)
J7 re; ¥ /Y
and

l7) z
//’/“] Vide, =o (2.7 - 23)

These conditions uniquely determine the perturbations in terms of

n , ¢« and 7" and also insure that equations (2.7 - 15),

?)
(2.7 - 16) and (2.7 - 17) are satisfied by 7” to any order of

approximation.

P4

' ’
The remaining equations corresponding to € , ¢ , etc. are

. [ , . ]
linear, inhomogeneous equations. The ¢ equation is

39
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) (’) J f’) »
ye //;q A Y Ao (2.7 - 24)
(,2) S =103 cen’ > "
_ 2 Iy A - € T . f
AR By :’)})_9 [/'ta A Aes v
*
€s) ll)
(2 "")"‘ [/'fq]/ta
+ I'4
.-”, 200
(ﬁz A') g,g,[/ [07/7{[07

28
It can be shown from the theory of integral equations that a
necessary and sufficient condition for the solubility of equation

(2.7 - 24) 1is that the inhomogeneity , J , defined by

¢ ¢
) 2,7 - 25
J = f——"”" NS, ( ‘

""I/)

“2) " 2 "n)
- 2104y B fstarlifdlen s i Bl

be orthogonal to the solutions of the homogeneous equation. These
)

solutions are the summational invariants }&/ R

2 (2.7 - 26)

/

7 (2.7 - 27
g = V. ’



and

(3) -
)/é/ A (2.7 - 28)

The orthogonality conditions are

(<)
/J;ﬂ/ S, = O (2.7 - 29)

and have been verified by Snider and Curtissll. Corresponding to
each solution of the homogeneous equation, there is an arbitrary
;oﬁstant in thé inhomogeneous equation solution. The conditions
of equations (2.7 - 21), (2.7 - 22) and (2.7 ~- 23) are sufficient
to uniquely determine these constants,

Snider and Curtiss haQe solved equation (2.7 - 24) and have
developed expressions for the transport coefficients in terms of
their solutions. In the subsequent sections we refer extensively

to their work.

Section 2.8. The Truncation of the B.B.G.KY.Equations - The

L3

Second Order Approximation
We now wish to examine the next application of the formalism

of Sec. 2.4. In this case we truncate the B.B.G.K.Y. hierarchy by

(3) : (z)
approximating /p , which appears in the ;[' equation, in terms
1) /2)

of /’ and £ °. This procedure is discussed in Sec. 2.5, and

results in the pair of equations (2.5 - 1) and (2.5 - 2). We can

write the Poisson brackets explicitly to obtain

%2) (z)

2 ) 7 2 o p -
;“ * Y %/}/’ = ,,,/:/4{;51 @})c]’f’:z (2.8 - 1)

41
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p) ) .2 __z,a_!’._a__
[Tt + Y o + % ix "o /J})gf/":‘ (2.8 - 2)

| | : ) | ‘213) '3 z z3) (8 |
. —//A /019/[5 45/ Py f'fts lz)f‘:z))( ()_h-?_l.(_hﬁ.l_)_

= Ir, U sz )95 / 7/11) ,,,l)(Z”f:”)j(g,” / ?

In Equations (2.8 - 1) and (2.8 - 2), ¢/, and 2, are the gross
velocity and position coordinates; whereas j and 4 are coordinates
relative to 4/ and A2, . Since the macroscopic state uniquely
‘z) /2>

determines /’ , it follows that the dependence of / on the
gross position and time only can be through the macroscopic state.

This result is more general than is stated above., It applies
to a distribution function of any order and is not dependent on how

the gross position coordinate is chosen. To see this, let us

consider an 4 particle system and the two general transformations

p= X e 2o = Y74 (2.8 - 3)

where “ =/ 7 A . Here _X and _’,/ are the gross position
coordinates in the two systems and the sets {,_Z"f and 254} are
sets of relative coordinates. The coordinates _,_Z, and é// are
taken as the linearly dependent pair and it is assumed that Z,
is not a function of X mor 4o of _LV . If the total s
undergoes a translation, only the gross position coordinates _/_(

and _)_/ are changed. That is, the coordinate sets [_Zlf and {}/,f
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remain unchanged. Thus, in the transformation equations any relative
coordinate 2{1~ must be a function solely of the set of relative
coordinates ;g;g and vice versa. From this it follows that if the
A particle distribution function depends on the gross position in
one coordinate system only through the macroscopic state, this also
must be true in the other system.

Let us consider the operator

A
[ ,zim[é/mv))] Zw"—— (2.8 - &)

1%
which appears on the left side of the AT order B.B.G.K.Y., equation.
It is straightforward to show that this operator is invariant in
form under any linear transformation. 1In particular, if we consider

one of the transformations of equation (2.8 - 3), we have

y b J
? UL d — ? __ (2.8 - 5)
“ * = = —_—
=/ Jﬁl’ X X _

where the dot above a position vector denotes the corresponding
velocity., Since the potential of interaction is a function of only
the relative coordinates ;‘Z{f’ it follows that the operator

14Y(4) A
[' , V74 which appears on the left side of the 4 order
B.B.G.K.Y. equation depends on the gross position and velocity only
through the operator /rt:)‘%—\’ . At equilibrium 2 , « and 7

are constant throughout space. Thus the equilibrium equations

for the distribution functions are written by omitting the operator
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A
L *5 -
.from the left side of the B.B.G.K.Y.zeqpa;ionl.

The equilibrium forms. of equationo (2 8 - 1) and (2 8- @)

,,Yt,he_n BYe e e

//z) ) |
. i/ (39, /e 2.8 - &)

and

| o
Y 1 J/(z “) (2.8 - 7)
Fo Y /J;)

/,/ 2 / ¢ 9 )f 1.7)" (7 7 ) /;fZ) A :Z),f:: 7(:) z,g)
m g E¥
aﬁg )tﬁ /7111)/’//)) / 71 u)/é(/))/z( )A ?

These coupled equations have the solutions

72 » - V’z
= f= N ., ZAT 2.8 -
- / s 2?47) e’ ( K
and
‘z) @ ) _
/ =!/: A (2.8 - 9)

vhere through first order in the density ¢ 1is given by
/l 2)

yenr= e ﬁ"[/ fn//a_,/e{o )/#

@3

‘_/)] (2.8 - 10)
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We note that 7" at equilibrium maintains the same Maxwellian
form as in equation (2.7 - 10). The function 0’/ depends only on
the magnitude of the radial separation distance. As defined in
equation (2.8 - 9), J is the radial distribution function.
Equation (2.8 - 7), however, is only an approximate equation for J .
This approximate equation yields the exact radial distribution
function to order # in the density (as given in equation (2.8 =~ 10)).
Livingston and Curtiss24 have examined higher terms in the solution
of the approximate equation for rigid spheres.

(z)
It is convenient to write / in terms of a function 9

defined by

‘z)

(l/ // -
/ _ 7//)/:” (2.8 - 11)

From equations (2.8 - 8) and (2.3 - 9) we find that ycog,the

equilibrium limit of ¥ ,is

6w 4,3 /z,3)

f/[.,] = e A7 ]/ = /4 ’l/"{/’«'ﬂ'—é/‘)/"‘%—‘/) (2.8 - 12)

Equations (2.8 - 1) and (2.8 - 2) are difficult to solve
7y
simultaneously, because in general the factor g as well as 7[)

in equation (2.8 - 11) is perturbed from its equilibrium value

when the system is not at equilibrium, However, it is possible to

77)
solve equation (2.8 - 1) approximately for / by assuming

Y = Yoo (R, 2) :
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Here the coordinate. 5 is the center of mass coordinate and is

defined by

Roe 2 t3s | (2.8 - 13)
Lo T2 ' : :

In our equilibrium approximation for the function f/ s the
quantities 2 and 7 in equation (2.8 - 12) are functions of this
gross position coordinate. The gross dependeﬁce is chosen in this
way in order that equation (2.8 - 11) retain its symmetry in
particles 1 and 2, We note that the lead tem. in the density of
«l./tﬂ is one, This lead term when substituted into equation
(2.8 - 11) gives rise to the molecular chaos expression for /,/z')
Setting ys ytq(g,/l) can be thought of as the first step
in an iterative solution of equations (2.8 - 1) and (2.8 - 2).
First under this approximation, equation (2.8 - 1) is solved for
/’”) . Then, this approximate expression for /’0) is substituted
into equation (2.8 - 2) which in turn is solved for 7 . This
solution is then substituted into equation (2.8 - 1) and the
iterative procedure is repeated. It should be pointed out, however,

that it is difficult to decide if such a procedure is convergent.

Section 2.9 The Rigid Sphere Limit and the Enskog Dense Gas Equation

Let us consider the approximation (7/ = %,9’3»4> for the
special case of rigid spheres. We now show that in this approxima-
tion and to the order in the density which S/ is given by
equation (2,8 - 12), equation (2.8 - 1) reduces to the Enskog

6
equation for dense gases . Thus our treatment can be thought of as
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a soft potential generalization of the Enskog treatment.

- U (e ; -1 is
1f y- /m/_ ,2) , then equation (2.8 - 1) is

p) .9 “ )¢ a [ (R, 2 o yef (2.9 - 1)
g:t Y ngg - '//J’ ‘Z ym )ffo %

In Sec. 2.6 the operator identity

(,,2)

| - 0sd /2 |
» 5/{0 /;;) = 7 I2 F (52,)6 _ (2.9 - 2)

was introduced. If equation (2.9 - 2) is substituted into equation

(2.9 - 1), then

R APV

In the case of rigid spheres of diameter 0 , it is seen from

equation (2.9 - 1) that there is no contribution to the integral
nz)
for A>@ since then /{n) =0 . On the other hand, for . > the

integrand is also zero since this corresponds to penetration of the

)
spheres.. This is impossible for rigid spheres and hence ;’ zo .

There is, however, a J~-function contribution to the integral on

the surface Z: defined by p =¢ . This contribution arises

P

from the gradient of (}' which changes discontinuously across the

surface 27 . The gradient fL ¢+ 1n equation (2.9 - 3) is taken

holding j/ fixed. Hence, only ,')?’A gives rise to the S -function

behavior. Making use of these conclusions, we can rewrite equation

(2.9 - 3) in the form
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}t . Y 4 f //4/;} m[ ym "’lz _I/}} (2.9 - 4)

which by Gauss' theorem 18

?;— ”/“"j a) /n /Z f[// v_)f:///:i,/;? 2.9 - 5

On the surface ) the vector g/ is equal to 2 because the

-

collision is instantaneous. Therefore, we have on the surface

222« o4 2.9 -6
and
A
R = A, +[/$)9-4 (2.9 - 7)

where A 18 a unit vector in the direction of 4 . By restricting
the collision integral in equation (2.9 - 5) to an integral over

the surface § -j 2 0 , we can write equation (2,9 - 5) in the

!

//f [ Tro7 ’*/zo"- ) 7’{/], ﬂ,)/;’;l*r‘ %)
j 2o

.,-

form

\v

(/)
>
v L
e 1 ¥ ){,,[)/: (2.9 - 8)

L=

(1) () 4
[‘Gm /v'b. ,7) /’(4, v ) //4,-71. 2:)



In equation (2.9 - 8) the explicit gross variable dependence of the
functions in the integrand is given as obtained from equations
(2.9 - 6) and (2.9 - 7).

The factor ngﬂvﬁ through first order in the density is
o

%f}‘r)* / * n(e) (—‘%) (2.9 - 9)

where & and C are respectively the second and third rigid
sphere virial coefficients. Equation (2.9 - 8) is the Enskog

dense gas equation to the order in the density of 543] given in

equation (2.9 - 9).
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CHAPTER ;II
SOLUTION OF THE 'rwucarzn'n.'n.c.k.v. EQUATIONS
In Sec. 2.8 we discussed an approximate method of solution of
the pair of equationn vhich ‘result from truncating the B.B.G K. Y.
hierarchy at f We now solve the # ll)eqt;ation in this

approximation,
77)
- Section 3.1 Linearization of the 70 Equation

(1)
If we approximate I by

Iz) m’ ! G.1-1)
= y[ » / /;

then equation (2,8 - 1) becomes

(,2)

m m (3.1 - 2)
/ft“'-’/l‘jﬁb}//m = ./"/" 7 ‘()j)[yfoz z

In analogy with the procedure in Sec. 2,8 we can expand equation
(3.1 - 2) about the equilibrium equation. This procedure linearizes
equation (3,1 - 2) and thus simplifies the problem of solutionm,

We again arrive at a series of integral equations. The lowest order

equation

”’ 2) u)

/
osﬁf./,oﬁ,-’:;()[%.,f,,, AP ¢ B

corresponds, of course, to the equilibrium equation (2,8 - 6), The

bar over a functifon indicates that the gross position variable of

~74)
that function is A, . The function /[,] has the form

50
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i . Z,V v
A ,z - . 1
7[[0] . (2}747 P (3.1 - &)

That is, to lowest order, the velocity distribution is Maxwellian.
The remaining equations in the expansion about equilibrium of
equation (3.1 - 2) are all linear, inhomogeneous integral equations.

The lowest order of the remaining equations is
¢s) a v '
2 4.2 /” (3.1 - 5)
Qe T A, 1 [o]

(,2)

= ,—3‘/0/_40/ :—2/(:—:—)9

7

/ YA J
2(7£(/) 7—/—,-(,) /(/) ]
[o] /[/] Z[’;] /[6] Z[/]

- /) -I/J/ .
(R - 2.) /u, Z’o/) /: Loy :o/
/- =/ —en’
7&7 (2, -2) Jh/f[’ )f * (8d-0) KV‘ ) f

Ner)

This equation.is to be solved for the function ngJ . If we
=)

assume that 4;7 can be written in a density expansion, then we

can write equation (3.1 - 5) in the general form

(3.1 - 6)
z
O = on » @2 P

where o , ‘Q s d etc. are density independent functions of
v, , « and 7 . Since 42 1is an arbitrary parameter of
the problem, we can replace equation (3.1 - 6) by the series of

equations

3.1 -7
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In order that the equation o =© be satisfied, we see from equat{on

-7
(3.1 - 5) that the leading term in the expansion of 7‘[,] must be

constant in the density. Further, we see from equation (3.1 - 5)

that @-.-.o u an equation for the term of orde: ”n qf 75[-,;) and

depends on the solution of the equation o =0 . A similar statement

can be made for each of the equations of (3.1 - 7)., 1If we limit

our attention to the constant and first order terms in the density
~¢s)

expansion of 7[[,] (and consequently to the equations o = o and

@ = o ) equation (3,1 - 5) can be simplifised to

&)

j Lorv 17,  ea-w

44 . :
“'II) .

<8/ a g il NN A
v .

- ~en'|
(4i-20. /M /’;:7 /:7 4 / £ "’)'/3' zvz) “ror |~
If we emav@ equation (3.1 - 8) with oqu.uon (2.7 - 24), we see
lihﬂt- &3¢ and the corresponding equation in tho Eensity expansion
of 6%%#% (2,7 = 24) ave identical. HNence the constant term in
the density of ;ﬁ-ﬁ? » a8 given by the twe equations is the same.
However, ¢he equiiom =0 and the correspording equatiom from the
expansion of eguatfer (2.7 ~ 4) are mot the same due to the first
oxder texm in the deagity of Zq . Hence the first order terms
PRl

for. /4,7 &iNes by the tvwe equations are diffevent.

Eha imhomogeneity, ] , In equatians: (2,7 ~ 4) amd (3.1 - 8) is



2
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U
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p— a /[OJ v 03— '
]__ :)_g ¢ U, iy 1 [od (3.1 - 9

(,2) ~ ¢ /')
_ 2 YA )
AL EL TN )g (2] -2 /am /(o1 fm

+
- 1) /

"{/)
"3’) (J/)/ 2[07)'/107_}

Snider and Curtiss have shown that part of J can be writtenu
//z>

f/;., B fer (sl wnbfiding . .,

mrE(ad _ &7“) QA7) ).
/”5%/f°7 * zarl i /zm /)4/ Jy/f‘g
Here B 1is the second virial coefficient given by

4,2)
2 /[( -£ _ ] (3.1 - 11)

and the tensor [ is defined by

R S AN s R

The time derivatives of XA , & and 7  which appear in J
/)
can be eliminated by the equations of change. Since /,[,J is the
)

equilibrium form /: s it follows that the pressure tensor and
energy flux vector which appear in the equations of change have

Z
their equilibrium forms. Thus, through terms of order Z in the

density,




p =aé7‘{/*ﬂ B)U fU (3.1 - 13)
and

vlq=o" - o (3.1 - 14)

Using these forms for the fluxes, Snider and Curtiss have shown

that

P
v 25 Aoy (3.1 - 15)

+ ./ag)
* {32,
.:L- -
ncy arv 3]/"‘ z)g
.’-
- /L - w? LOMT_ L.
{z ) L FpY; iir Y (f n47)
-, _
Here y_/,.‘ = z—:—‘;_) z—[_{‘ and (€, 1is the heat capacit:y. The

fourth order tensors W} and (/U are discussed in the
; = =z

=

Introduction. From 'equationé (3.1 _,10) and (3.1 - 15) we can write

"J (as given by equation 3.1 - 9) in the form

Js//'toz //*”8)/“’1 I)V')—Zir | 7
o+
2(r+28) w, W ¢ j—f, a am )V; (3.1 - 16)
’)[(/fﬂ&)/z\ ‘) ”Lr:g‘u’.g

2

-f'fr ;)4/ /hr}/.u/f)/-‘”/)] Z
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Let us define the temsors /£ , and A by the relation

N~

c - 3BT _ 42 2. u
J= —X° 55, £ e (3.1 - 17)

and the condition that Z is traceless. It then follows from

-
=

equation (3.1 - 16) that

z n% )
K= / [/*”‘9)[ “w )Y - vt (3.1 - 18)

=[ z//f/rd’) [o]w,u/, *.’1'-— //(___W ,{ (3.1 - 19)

and

) 2
- {._-—w, ){{/fﬂﬂ 2 - - "_‘_73_’_8 3.1 - 20
/1{'7 X CV Cv S (47 {g ¢ )

In the following sections, the use of tensor properties results in

considerable simplication of the integral equation to be solved.

Section 3.2 The Integral Equations for the Perturbation

Let us define a perturbation function @ by
=) > 07)
Frg = Frer ¢ | (3.2- D

In terms of 9‘ equation (3.1 - 8) is

//, z.) _u)_”,

& L BT L AR o

55
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Let us also define the linear dpétvator 4 which acés ‘on any'
function § = }'lw) by the rellatiio:n | |
l 2)

A(a’,)‘mfo’a )/s} ;yw (f {)} (3,2 - 3)

Equation (3.2 - 2) can then be written

(302 - 4)

Jz= a(Z)

The inhomogeneity, J , glven by equition (3.1 - 17) i8 a

linear function of

e} PR and‘. Q_ >
oA, ) )‘ ' )_/ -

It follows than that }5 must also be a linear function of these

quantities, Thus we can write
P"A') -8 '-C—’-‘l! (3.2 - 5)
- oL = _,’ I,

where [ 1is traceless. Equation (3.2 - 4) is equivalent to the

-—
-

set of equations

3.2 - 6
K= AlA) 29
- 3.2 -
é = 4/55') ( 7)
and
(3.2 - 8)



We now show that the summational invariants introduced in equations
(2.7 - 26), (2.7 - 27) and (2.7 - 28) are solutions to the

homogeneous equation
A(i)ga (3.2 - 9)
Let us consider the equation

ﬂ. 2)

0 m ge i), es)
a¥ =£/"/4 (Jf ;Z"J 7% zm/ £ {) (3.2 - 10)

l/'z) o (,)/ (’azs

/
- —ys) -—ﬂ) ;t/} - j
’ y”] and /;toj ﬁ[o] sre] 7207 € 7

are functions of only the scalar £ and so are unchanged by the

The quantities f

transformation _{l-—»-{)k. It follows from the conservation equations
of a two plrt’icle‘oyltem that the summational invariants obey the

relation

%14’:’ Y2 RPN ) ) (3.2 - 11)
AR AN AR S

z
" where
2,;;)) o (3.2 - 12)
2’7)) o (3.2 - 13)
J —
and

22 7 6.2 - 1)
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Hence the quantity ( / (:) >~ féz(j)} is a_lsq unchanged under
the transformationn . 2-—?-4 . The int_egtand in equation (3.2 - 10)
therefore switches sign under the_tra‘ns‘fqrma_t:lﬁ.on A P-A becguse
~the gradient %‘ -gwitches sign. Thus, 1if ye“integrate &er the
. angles.of A :1;- equation (3.2 - 10), we arrive at ﬁhg desired result:

al¥)=0 3.2 - 15)
/

| #
The transposed operator A4 can be defined by the relation

S5 ateydu = Jo, 85y 2019

which holds for aybitrary § = £ /%) and e, = (7(7_/,)
We now show that the summational invariants are also solutions to

the transposed homogeneous equation

d*/;)”" (3.2 -~ 17)

To do this we must establish that for arbitrary f
¢

/sz *(%lf,',)/z// _ /}é/b’)d/‘,’}/g/ -o (3.2 - 18)

From equation (3.2 - 3) and the identity of equation (2.6 - 18)
we have

/
A0~y

N (L, )T s /
'f:/,li}f %07 fu:oz 7;(0,7{!:: *Fz)}

(3.2 - 19)
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where > U -f- } is the velocity of the center of mass. The
first integral in equation (3.2 - 19) can be transformed to a
surface integral on a sphere of sufficient radius such that
f/zoz’ 4 on the surface. This integral is of a type which is
shown to be zero in the theory of the ordinary Boltzmann equat:ion29

Equation (3.2 - 9) can then be written

;/f’ A(z‘/’(‘)/y, (3.2 - 20)

d) , 7 bl 44
\//" (f JA Zg yfo][’fr,o; zl’o; II* f?-/)]}

We can write equation (3.2 - 20) in the symmetric form

(4)
/ﬂ NG AL | (3.2 - 21)

S-Sy L (BB T TR ()

If we make the variable transformation ( %, f) — /g’) i’)
/
as discussed in Sec, 2.6, and write 2 and j’ in the particular

coordinate systems given there, then we have

f(’, A7 ( %/4')) 12 (3.2 - 22)

) ( /=
= —;'/,//50/?40?79 é(’éJ ‘)‘7”[‘(/[0][76:]75;;(( +()j
The integration over Z 1is an integration over a particular
trajectory determined by J and 4 . The quantities (}‘,u‘)f- }&zl“))
and %.0] are the only functions of 2Z 1in the integrand. From

equation (3.2 - 11), we see that the integrand is a function of

only through the dependent variable -~ . If we choose 2Z =0
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as the center of symmetry of the trajectory, then

Al2) = A(-2) | ;(3.2 - 23)

The integrand of the integral in equation (3.2 “ 22) then switches

sign under the transformation ‘g-_) -2

5)} . Hence, if we integrate over 2

by virtue of the derivative

we obtain the desired
result:

Jo, 8CHY o

or, since c is an arbitrary function,

A7CF) = @.2 - 25

Since from equation (3.2 - 24) we have

J/‘é,(“ﬁ(/?/) o = o (3.2 - 26)

it follows that if ‘equation (3.2 - 4) is consistent, then

SET da =0

(3.2 - 27)

From equation (3.1 - 17) we can write the equivalent statements:

‘/'/(é""’:(_/ Jo =0 (3.2 - 28)

j%(J')g o/!/l -0

(3.2 - 29)



and

j’%l""ﬂ Sy =o (3.2 - 30)

We note from equations (3.1 - 18), (3.1 -719) and (3.1 - 20) that
the tensors _4’ ,,é and M are vector functions of only __V/

I1f we then change variables from <% to 39 in equations -

(3.2 - 28), (3.2 - 29) and (3.2 - 30) and integrate over the angles
of !; , the resulting integrals must be isotropic. Since there
are no isotropic odd order tensors and the only second order
isotropic tensor é{ is not traceless, ;qﬁatiéns (3.2 - 28),

(3.2 - 29) and (3.2 - 30) can be gimplified to

/V,_,{/_u - o (3.2 - 31)
/,«1/;/,—:0 (3.2 - 32)

and
/V,z/"l/i/, =0 ’ (3.2 - 33)

These integral conditions have been verified by Snider and Curtiss.
Equations (3.2 - 31) and (3.2 - 32) result from straightforward
integration; however, the condition in equation (3.2 - 33) is much
more difficult to prove, The problem involves the evaluation of

the integral

JZ :Y)w'ow,

This integral which also arises later on in the treatment is

evaluated in Appendix B, The integral equations we wish to solve

are thus consistent.
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Closely connected with the questibn‘of consistency of the
intégral equations is that of uniqueness of solution. We defer
a discussion of this important question until the next section
vhere it is answered in a natural mammer in the course of the
solution of the integral equations.

The integral equations (3.2 - 6), (3.2 - 7) and (3.2 - 8) can
be simplified by considering their tensor properties. Let us
consider a second order tensor 3r which 1s vectorally a function
of only the vector _\y, » The tensor 3‘ mugt be invariant to a
rotation about the axis of !ﬁ and hence can depend only on the
isotropic tensor g{ ahd the dyad W, W,, If we require in

addition that 3’ be traceless, it must depend on the particular

combination
‘ /}
W, w, =4 w,fU = W/W:LQ'//;):UQ/ (3.2 - %)

We can thus write

/
Y I TR B
where 7°(uj) is a function of the invariant scalar W, . Similar

arguments hold for a tensor of any order. The tensors in equations
(3.2 - 6), (3.2 - 7) and (3.2 - 8) depend vectorally on only the
vector Egﬂ and thus we can deduce their tensor forms. This allows

us to reduce the tensor integral equations to the scalar equations

K= A(A) (3.2 - 36)
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L = A//(B,) o 3 (3.2 - 37)

and
M= A(C) cow (3.2 - 38)

. The defining equations for A, , 8, K , and L and the

/ V4
. operators 4 ..and A are -

A, = A w, (3.2 - 39)

gz = 4, __,__,.'[ (:gj —{g)z:] | (3.2 - 40)

X =KW (3.2 - 41)
L =L:ww | (3.2 - 42)

AI/A/) = w,-A(A4,) T (3.2 - 43)

and

(3.2 - 44)

The quantities A, , B, , C, , K , L and M are functions

of the invariant scalar wj .

Section 3.3 Solution of the Integral Equations

- In the preceding section we showed that the summational
invariants are solutions to the homogeneous equation for the

operator A . We can find the solutions to the homogeneous
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equations that are functions of W, for the operators 4 , 4

and 41” from a knowledge of the general solutions to the homogeneous
equation for the operator 4 . We find that A has the homogeneous
écjitf;:ions 1 and V’)z , the"-épefat‘:bg | Ahha;s ‘the homogeneous
solution 1, and the operator zldl_has‘no thogenegus'polgg}qns.

The transposed operators also have these homogeneous solutions.

As we shall see, there is a one to one correspondence between the
solutions to the homogeneous equations and the arbitrary constants

in the solutions of the integral equations. There are just enough
arbitrary parameters in the solutions of the integral equations to
allow us to impose the integral conditions of équations (2.7 - 21),
(2.7 - 22) and (2.7 - 23).

Let us first consider equation (3.2 - 36). In order to solve
this equation we must invert the operator ‘AI . Howevér, Al can
not be inverted ih a straightforward manner because it is sinéular.
That is, the hqmogeqeous equation hasva solution. " This problem
can be avoided by writing equation (3.2 - 36) in ;'matrix
representation. Le; us expand IA{h/) in a complete set of Sonine
polynomials of order 3/2. The ,»122& polynomial of the set of

m)
Sonine polynomials of order 2 is represented by J‘n. and is

defined by
- P (mrn)/
'4 .
S e G ey

r=°

These polynbmials have theé orthogonality property

VA Lk
,)jfu/)/w, = ;—/-%;,‘;,‘)')Jm" (3.3 - 2)

{

-w® z”ﬂ 72
W,
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where /7 is the gamma function. In terms of the expansion coefficients

4, , we have

‘ o ) 2y
Alw) =ZQ"J_£'(W) (3.3 - 3)
L=o z

’
Since 4 1is a linear operator, equation (3.2 - 36) can be written

' = / t<')
,(/=ZQ;A(S,(W/2->) (3.3 - 4)
z

£ '=0

If we now expand X in this representation, we have for all J=°t° had

(4’)4' = /J;j}m')l/w (3.3 - 5)
2

oo . y : o
= ) es [5B0wn 81 S 0N des = [ AL a
“wo z 4 30

where

A;' .= /J;J'() w,")A,{ _.!,4‘}“/1:))/_‘:/, (3.3 - 6)

_
FA
Thus equation (3.2 - 36) is reduced to a matrix equation.

fc)
Since 2 [u/,z) =/ 1is a solution of the homogeneous

2
equation and also the transposed homogeneous equation, we have for

¢

all Jzo to «o
/

JO

/
= A, = O (3.3 - 7)

(4), = A ;

Equation (3.3 - 5) for {K)o is thus an identity. Further the

constant @, does not help to determine any of the (K)J‘ . Hence,
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’

we can ignore the first row and the first column of the matrix A%j‘f
‘

_ The new matrix AJ' " d ‘w/s to es .4:/ to ‘0‘ has no

zero eigenvalues and thus is non-singular and can be invgrted

~_Equation (3,3 < 5), when inverted, can be written for e/ to o

LI R A T A SRR LV

Z/A') L e e
J s/ C ) )

'Na . Y '¢ P
where {A )"‘J‘ is the .4’1 — element of the inverted matrix.

Thus A, is given by

/l) J, z‘)w)fe.j(w,‘J (3.3 - 9)

A= AlW)= Z/A)J Y 4

aJ"

where @, 18 an arbitrary constant. We fix @&e¢ by the relation

(:)
f /[/J V,/,,/ =0 | (3.3 - 10)

discussed in Sec. 2 7. Because of the orthogonality condition of
equation (3,3 - 2) the integral relation of equation 3.3 - 10)

requires
a. = O .‘ (303 - 11)

We can solve equations (3.2 - 37) and (3.2 - 38) by the same
technique. To solve equation (3,2 - 37), we use as expansion
polynomials the Sonine polynomials or order 5/2. The operator
‘has no solutions t;o its homogeneous equation, Hence, we can
immediately invert itavsb matrix representation and obtain the

expression for 8, :
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(+)
B, = 8(w)= Z (A”) < /[3/ Sy (wi®) (3.3 - 12)
“f=e £
To sélve equétion (3.2 - 38); we choose'as expansion polynomials

the Sonine polynomials of order 1/2. The operator A has two
solutions to its homogeneous equation. Theaé two solutions

/ ,]A42 ~can be written as a linear combination of the
first two Sonine polynomials: 5:/:/“42):/ and jll)fw,")

= / % -— w'z) . We obtain a non-singzular matrix
from the matrix representation of zﬁ”{by ignoring the first two

rows and columns of the matrix, We then obtain the expression for C,

122/

C,=C(w)= Z/A /M) sz, )fc,j‘ (w4 c,j{w‘)(3.3 - 13)
)J=‘

where (o and €, are arbitrary constants. These constants are

uniquely determined by the relations

172}
_ 3.3 - 1
/‘,fm./y, =0 | (3.3 - 14)
and
“ oz - 3.3 - 15
./\/:p] v sy = o ‘ ( ‘

which were discussed in Sec. 2.7. Because of the orthogonality

condition of equation (3.2 - 2) we have
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. Com 0 .. - o (343 - 16)

“and SR L

(3.3 - 17)

Section 3.4 Appfoximations to the Solutions

Equations (3.3 - 9), (3.3 - 13) and (3.3 - 15) are solutions to
équationé (3.2 - 36), (3.2 - 37) and (3.2 - 38). However, the
inversion of the operators a ., A-I and A” pres‘ents some.difficulty.
We, of course, mean by these operators the non-singular matrices
formed from the singular matrices by elimin;ting the appropriate
rows and columns as discussed in the last section. This difficulty
can be met by an approximate inversion technique which has been
discussed by Chapman and Cowling30

| Let us consider the operator AI and define a matrix AI(M’
as the first » rows and columns of the matrix ‘repre)sentationi
of ‘Al:. This fipite: matrix may be inverted by the method of |
minors., 1In-analogy with equation (3.3 - 8), we can néw write an
(m) ’

approximation to &,' which we will call a_, . For . <# ye

have

A//m)/
Z:(A ).s (K% /chy :(14-1)

and for ,4,'))'1 we have

a, =o ' (3.4 - 2)
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7{m) 7d{m)
In Equation (3.4 - 1), /A4 / is the determinant of 4 and

/(m)
/A :’/ is the determinant of the matrix formed from A”M)
)
by replacing the elements A/-; by (()J for all J':s /7 tom .

The determinant form in equation (3.4 - 1) results from the
1{m)
inversion of A by minors and is a standard form of solution

of a system of linear algebraic equations. We assume that

; [m)
LM a, = ay (3.4 - 3)
mn —» o0

In the slmpieut approximation, where m =, , we have

2!’ = .(57?.1- (3.4 - &)
! 4.

and for all ¢ #/

PLANN (3.4 + 5)

-
In an analogous manner, we find that the first approximation
to 6, (which 1in accord with the above digscussion we denote

by 6:") is given by

&3] L)o
bo = A” (3.4 = 6)
oo
and for 4 4o :
77)
6"1 = o (3.4 - 7)

Similarly, the first approximation to €2 ig




. Cvﬂ,’ = . /M)z (3.4 - 8)
4 A
22
and for £p¥2 :
=0 - 34 - %

Section 3.5 Components of the Nori-homogeheous Terms

We now evaluate the integrals {&’)l,' (£), and [/"{)’_ . Let us
consider {(), » which, according to equations (3.2 - 41) and

(3.3 - 5), is given by

(k), = /1 5 (W:z)/“" | 3.5 - 1)

z 2 '
/x({- wi)sw, = [£-w, (£-w’)s W
From the orthogonality condition given in equation (3.2 - 31) we have

(K/ —/_K'k{_/, WIZ/% (3.5 - 2)

If we substitute the expression for K given in equation (3.1 - 18)

into equation (3.5 - 2), we find
(X)), = ‘/’*"5>//,,J /z"“"’)l"-‘w/_‘:“ (3.5 - 3)

” ”/(.w, ]) W, w* o,

70



71

The first integral in this expression can be evaluated immediately
and the second can be rewritten by manipulating the divergence in

the integrand. Thus we have

(K), = .;:’/z (z-f-r-)(/»‘/zﬁ) (3.5 - 4)

’)—// 2, (2w wt) st - T )it -2 [Fe »

The integral of the divergence can be converted to a vanishing

surface integral yielding

(K), = ( /’*"3) | (3.5 - 5)

2 L / - |
2 (?%7)2///!-‘!)“"2/&4 refriwwosuf

We can evaluate (£ ). and [M)'_‘in a similar manner to obtain

l2)e = ‘J’z//*a&)/ 7..)'-
(3.5 - 6)

Z&T)[fz W/Wlo/W/ ——-f{] U)M S,

and

(M), = /24 )/f f/‘/] U)w,‘-/“’ +/{] U)W/u{'? (3.5 - 7

In Appendix B, the integrals f/_I ‘Y) w,® 7w, and
f (7: (/) w, ¥ o Wy are evaluated in terms of the second
x = -

virial coefficient, 8 , and its temperature derivatives, Thus,
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the problem of deterﬁlning ( K), and /l), is reduced to the evaluation
of the integral L - A L “
g/":zy: !$4 gyo o‘!f&‘; .;';uﬁi .

This 1p§:egggl must be evaiuated numerically because the integrand
depend; ;inl the -deﬁéiiéd- dyﬁamics of binary collisions. The numerical
problems involved in this integration will be considered in detail

in Chapter V,

Section 3,6 Evaluation ofr the Matrix Elements

: 7
We now evaluate the matrix elements A,, ’ Aco and 4 22+ Let

'
us consider 4,, , which is defined in equation (3.3 - 6) by

A// j‘y {“"lz) 41/5;)[“//‘)) 78 (3.6 - 1)
< : :

From -equation (3.2 - 43) we have

| ) /
A:/ “‘/5.:f“’fz) wi 'A(J,”rw,’) W ) oL s (3.6 - 2)
& ; Sz . .

and from the definition of A given in equation (3.2 ~ 3) we have

Il 2)

f/wa?/aft;'mz)wf 52 )ff)

(3.6 - 3)

(-',7 ‘"/ _0‘, () . ’ €s) »
z 2 /
§ Gt e K [ 350wt o 5 09l
z
We can rewrite this equation by making use of the identity of - =

equation (2.6 - 18). Thus
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I/) n)’ )
f/u/,?«/& 3 Jl [5 (W’)Z‘OJ /[o]f[c] J;(Mlz)y-j'l'.ly’

ts)

HEY Wy e Wi

4 (3.6 - 4)

rFa
+

f/’ e’ ¢, 2 W/I- ;
- fow, o, 472 3 / ){51“, Y £ e | Sz (¥ w. w

¢

J': (w)?) Wewi
The first integral of this equation can be converted to a surface
integral on a sphere of sufficient radius that ‘/:.5" on the
surface, This surface integral can be written in terms of the
‘*square brackets" discussed hy Chapman and Cowling:’} The square
brackets have been evaluated32 and from these results we find that

2 = xRN (TaTE e
(3.6 - 5)

..//W//o{o “2 g ) “ "'m -”’ ) 0 2 ]
i Rl | J_»'yro]f J_::_(M),[,] z[,][f () W W +J'(w )Wl W,
Here 0 1is an arbitrary constant with the dimensions of length.

It is conveniently chosen as a parameter of the intermolecular
(z,2)*
potential and is introduced to make i) dimensionless. The
2,5)%
reduced omega integral, 1 ) is defined by

l2,3) b _ ,
ﬂ = C"‘{J‘f/)/[/_ //7‘/-'/ // x)' ‘;;’ncost)‘/‘/x

N-J
(3.6 - 6)




14
vhere ¥ 6(7")‘ §  avd where 4 and Z are respectively the

:lmpact parameter aM the angle of deflection. Tﬁe ‘i";uaiitities b

a2
and ¥ are discussed in Sec. 2. 6 'rhe integrel N s a

" tabulated function of the temperature.

By the identity of equation (2.6 - 18) we have

/7 - -
i . (f}o %"J)Q = f 0(35;‘4 %-07) | (3.6 - 7)

Hence we can write equation (3.6 - 5) in the form;
*—
’ 747) %00
A” = --y/t v? / _R

(3.6 - 8)

) (II

-//M.?/Af (” f/m)ff (W )/,,7 ,,][J}{w )M Wi /-.S;( z)Wz LA/]}2

Let us make the variable transformation } d M/.L . J'l‘he Jacobian

of this tranafotmation is such that

. g
b = (5T)F S

(3.6 - 9)

If we then write the integral in equation (3.6 -~ 8) in a form

symmetric in particles 1 and 2, we have

’ 747YE _e,2)*
2, = -5 nter(fe Ve (TA7)E
3 (3.6 - 10)
_.../_/i_é_r\;: /‘ "I/j/ / hll)z...l_,. -7 r o) 2 I"l
z 7w/ /( /“/z d/'f (JA 9{0]} /[o]f[.] %‘M}"Yl j_;/“/;') Wi
P4

+ .

—

Z

f-
) ), /
5o wtwe| [ Syew )
Z
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Let us define the vectors /’ and ¥ by the relations

[s,’,——f{g’/.f’ u/,) (3.6 - 11)
and
LW, - W, _
¥ = ;r;(-' ,’) (3.6 - 12)
Then

1) ) )
S Wi wi + J, (W) e
z z

[{f Wi "Mzﬂl) * /_éf W "W:Wz)] (3.6 - 13)

= [Ets5-rv*) L - (x 2)x]
/
=)/ vl

and _/" the product //[o;p 450]

{t

~is given by

In terms of

mne)

r 3
-v:-r (3.6 - 14)
e e

"'”)I —Il)/ 2/ m 5? -—g
> M= 7
/:to] 2le] 27477 ¢

The Jacobian of the transformation /ﬂ/’. %)-—) /! , /") is unity

Hence, if we substitute equations (3.6 - 13) and (3.6 - 14) into

equation (3,6 - 10) we find
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/
i? ‘e, 2%

A:; = —8a "'z/ur) /7")

(3.6 - 15)

ﬂéd»f‘g‘/! //'(? ,m l:/toj) //7' ,-‘ X

[V"/-"“/’ 3 - 17 ﬁY][rf.f /’-—x)ﬁ )]

We can integrate over the angles of .{’ making use of the

fact that

//;/://" = 'f:‘(/ : (3.6 - 16)

wvhere Iﬂ is a unit vector in the direction of 1{1 . Thus we

have
4 Izz)*
Z/5 47 Yz
‘ p( ) //1’4 2 {2 ’
(3.6 - 17)

— - P
-%(2:7) //ﬁ/,,//v/’/; M‘y’) f’e g*- /’x

' 3 : 2
L , _ 2 - e 2y 12/¢.%’
[#(s-ra®¥s-rigyr*phts-rie )= fs-r=¢ 15003 I

If we write

R 4_’..‘.‘.7'),.2. (3.6 - 18)
Foa (w20
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and make use of the fact that.

/‘,‘/J = o (3.6 - 19)

. ) / .
where 3’ ‘is a unit vector, then our expression for 4, can be

simplified to
., = —Fn 0' //
Dy Z”’ (3.6 - 20)

e y 7\ L x5t
J;f‘{ﬁ') dr LY LS /!'E)Zt‘/m)“f’ e rxex)?

The integral over 7/~ can be carried out to yield

12,2)"
A:/ = "84 "z(zhr) (77‘&7‘) “
(3.6 - 21)

(z?’)‘ﬁ /ur

where
2
e[ e (1 Rl BT 0o

The integral A must be calculated numerically. We discuss
this calculation in detail in Chapter V.

- In a manner analogous to the above procedure we find that

/

A:’o = A, (3.6 - 23)
and

= L 2’ -
Az =7 4., (3.6 - 24)
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The evaluation of the matrix elements Au ’ Aoo and Au completes

) )
the detemJ‘natiqn of the coefficients aﬁ" . 5:" and c:

Expansion: of the Perturbation of t e

Section 3.7 The Den it

Digtfiﬁutlbn Functioﬁ

In_Seg,' 3.1 we restricted our attention to the cénéta’nﬁ ‘and
' I . e
linear terms in the dengity expansion of f[,, ~and simplified our
P22
equation for /},] accordingly., Equivalently, we are justified in
rs) ¢)

retaining only those terms of &, , &, and Cz which are of
order ";:" or constant in the density. We note that AR (as defined
in equation (3.6 - 22)) is density independent, if only,l the constént
and linear terms of %,J are used in its evaluat:!on. Similarly, we
note that zf and .(Z (defined respectively by equations

(3.1 - 12) end (3.6 - 6)) are also density independent. Then from
our formulae for /l} , /Z), and //‘1) ‘and the matrix ‘elements

!
A,, , Aoo and Azz. we can cast equations (3.4 - 4), (3.4 - 6)

) ) )
and (3.4 - 8) which determine Q, , 60 and €, 1in the general

form:

| 2
g = %2 207 | (3.7 - 1)
dn2+en’
o R ¢) o z
(For example we can write 2 = a, , on#+ gr = {,(), , -and
. /
($2% + ¢ n"j = A, . If we expand X in the density,
we find
Y. -’ ,dé) (3.7 - 2)
= (+) * 5 (6 S

through the constant term.



The present treatment differs from that of Snider and Curtiss
only in the terms in the matrix elements involving the integral X .
We can reduce the present results to those of Snider and Curtiss
by setting these térms, represented by € in e-q;xations (3.7 - 1)
and (3.7 - 2), to zero. Thus, if we represent the results of Snider
and Curtiss by (I)S.c.’ equation (3.7 - 2) can be written

- o € 3.7 -3
1‘/1)3.6. Tz (.7 )

In particular we have

a? = (aV);c, */;‘t (2 77‘)‘:[0'_(2“'2”72 G.7-4)
| 72
b',l) = {6:»)&" ”(2%7’) /Iﬁr)z [}-}2'%7;?]2 (3.7 - 5)
and
= (¢, (3.7 - 6)

There is no correction in equation (3.7 - 6); since «wo in /M) .

o /
For the same veason, C,; has no term,
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CHAPTER IV
TRANSPORT COEFFICIENTS ~~ * ~+  «-
)
In the last chapter we solved.an ‘approximate 7e equation. We

4 . . . a R

AR v > L .. . . 'g . e o ETRRT S
now derive expressions for the transport-coeffiecientg based on this
solution,

Section 4.1 Flux Vectors

The pressure tensor and energy flgx vector represent fluxes of
momentum and energy respectivgly. They arise from the transport of
these quantities within the fluid in two distincf waés.~lThe kinetic
contribution to the transport is due to the movement of the individual
molecules and the accompanying transfer of mome;tum and energy. Since
the kinetie contributiens to thg fluxes resuitifromﬁg uni-molecular
process, they can be expressed in terms*of:tﬁe distributibn

)

function {‘ . The collisional contributions, on the other hand,

"arise from the transfer of momentum and energy from one molecular

Y
)

center to another by interacfion thfough ﬁhe intermolecular potential.
Since tﬁis is a bi-molecular transfer process, thé collisional
. z2)

- contributions to the fluxes are given in terms of 7[ .

Irving and Kirkﬁood33 havéudeﬁeloped general expressions for
the kinetic andvéolliéional éontgibution§~to the fluxes., From their
expressions,. Snider and Curtiss11 have written the fluxes to first
order in a perturbation expansion.  The kinetic pqrtion of the
pressure tensor, ié s which we write .gpk , is

O R
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and the coilisional portion, f{ , 1

(l.t' (z)
Py TT ar 1% ._u-l/i]/,,/,,/u “.1 - 2)
iy Naks 27 S7=TS7TF

The total pressure tensor is

{Sf.« 1‘-&6’ CH

Similarly, for the energy flux vector "6 , we have

I~

)

]
A

3)

N
q
s
» -
'
i
n
o0
~
xJ
Nl
W
e
"
%
N
<<
L°Y
N
&
S
=

and

fsf' *z7 (4.1 - 6)

’”)
Thyrough first order in the perturbation expansion, /, is given by

(l) ir)
/ /[oj , /;[0.7 %

) /z) )
Similarly f and [/ ";"_/.' %' ] are given by

4.1 -17)

/ 2y 5 jea

[“‘['][/f};/ If y
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r ; = ['o] lf’]

/(1121_{:') /,/I) -m m[/ % %q *z)]

where terms of higher order than n? in the density have been

deleted.
7/} ) .
Since we have obtained /'[,] = 7{—,_—,}{ through order 2 in the

density, it follows from equations (4.1 - 1) and (4.1 - 4) that we

82

can write the kinetic portion of the fluxes to that order, Furthermore,

the constant term of the kinetic portion does not involve the integral
) ¢7) - :
R because the ;’_— terms of @, and &e do not involve K .
Similar reasoning shows that we can write the collisional . portion of
g %

2
the fluxes to order # and that to order »2 they are independent

of /e

Section 4.2 The Density Expansiors of the Transport Coefficients

The above considerations hold also for the transport coefficients
which are simply related to the fluxes as discussed in Chapter I.
Since the total transport coefficient is the sum of its kinetic and
collisional parts, it follows from the remarks of the last section
that if the kinetic part is non-zero, we can calculate the total
transport coefficient only through order a2 . This is the case with
the coefficients 7 and A . It also follows from the last section
that only the kinetic portion of the transport oefflciegt‘involves
the integral A to order 2 . Since the expression for the

collisional portion of the fluxes to order 7 can be written by
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letting g;,,*/ , it follows that our treatment to this order gives
expressions for the collisional portion of the transport coefficients
identical with those of Snider and Curtiss.

From equations (1 - 11) and (1 - 12) of Chapter I ,we see that Z
is the coefficient of a traceless second order tenmsor, /;/2/‘“)
is the coefficient of __(:/ and A is the coefficient of a first
order tensor. These tensor properties, along with the definitions of
A, g and C glven in equation (3.2 - 5), insure that ¢

(2] cr)
depends only on the coefficient §, , X depends only on C 2 ,

7)
and A on &,.

-

As wé. shall presently demonstrate, there is no kinetic
contribution to & . Thus } can be written to order 2
Since Cl‘n , a8 given in equation (3.7 - 6), does not depend on K
neither does ¢ . Also, since C:, has no 7‘{ term, we can
set Z—,;*I’ to calculate the collisional contribution to &€ to
order n* . Thus, our M 1is identical to that of Snider and
Curtiss.

Let us examine the kinetic portion of Z . To do this we

find !‘ from equation (4.1 - 1),

/) ¢r)
pem mf v v sm[h Bl Ay
(4.2 - 1)

17)

= - J 7’ . ¥ )
M) F g Vo Yo o, ,n//m # G 3E e 2 sl v sy
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From equation (2.7 - 23) we have
m AP ST |
}”'///&7% vy 0/1// ; __{/= o R

The term ianl\(i:_lflg“ A does not contribxfi:e to";t;k in é’qﬁéti%h
(4.2 - 1) since infegration over ¥/, yields a third order isotrqpig
tensor. The term involving (C also does not‘contribufe because
integration of this term over the angles of !C‘ yields,thg‘ﬁnit
tensor é/ , and, according to equation (4;2 - 2), the coefficient
of thisAterm is zero. Thus the perturbatipn of the distribution
function gives rise to only a traceless symmetric contribution to the
kinetic portion of the pressure tensor and, correspondingiyg there is
no kinetic contribution to 4 "

From equation (2.7 - 17) we have

pe il =ankT | (4.2 - 3)

-—

and hence, from equation (4.2 - 1), it follows that

fr=2 kTl - mf,l/[oy ’:5}) V. v, (42 - &)

= nk7Y - s v oW sn) [ - F 3y 9Vf

)
77U - z»zéréo w? } ) }



Let us consider the integration over the angles of W, ., If W, is
a unit vector in the direction of W/ , then, by symmetry of the

integrand, we have

-
-

pA A A 4
,/w,w,mW«/M-"“((l:Z/ WYV wa s
where & is a constant. Further,

U(/) ;/w,vvl W W AW, = 4T = IS (4.2 - 6)

Hence, from equations (4.2 - 4), (4.2 - 5) and (4.2 - 6) we have

¢7)

_ - L nk7 4, - w,?
f&"’"r-ﬁ/ 5 P F € w,/w,(z.f) 4.2 - 7)
where g is the rate of shear tensor defined by

=2£[§_fl am)] ’{_.. )U (4.2 - 8)

On integration over W, , we have
7805
pru=ab7Y - o 2 4.2 - 9)

From equation (1 - 11) it then follows that the kinetic portion of

/ , which we write as 7‘ , is given by

/ 7> .
/‘, = = 47 6o 4.2 - 10)

Starting with the expression for f( given in equation (4.1 - 4),
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we find in a;similar maﬁner_that‘ - IR
»
34L = Z dr 70 pc VC a/;o
. 4.2 - 11)
- _‘f,z,g/zév-z”m()?)
¥ /7 3L/
We then conclude from equation (1 - 12) that
s T S
= 2 2 z 4,2 - 12
A« 7 ”'{(7‘) 2, | ( ‘
We can now write the transport coefficients in terms of the
. : - T ¥
integral /e and the results of Snlder and Curtlss by making use
P
y )
of equations (4 2 - 10) and (4 2 - 12) and the expre331ons for ¢2
)
and (3 7 - 6)

b, and c of equations (3 7 - 4), (3 7 - 5)

!

We also make use of the fact that our treatment does not affect the
TR S ;

colllsiooal portions of the transport coefficients glven by Snider

. ® A
W

and Curtiss., Thus we have
. . SN IR
N R

[ ’ZZ’]) 4.2 - 13)

?7 (?V)Y c. /2‘877

kR
(Asc. — ,—/z)/ér) (7"*; ﬂtz.,z)]) (4 2 - 14)

and
(4.2 - 15

(¥#)s.c.
Here the subscript S.C. denotes the result of Snider and Curtiss.

It is convenient to write the density expansion of the'transport

coefficients in the form
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A= )\M(/ rinacd) By #(ne)iCh e ) (4.2 - 16)
= 7°C s rtae®) By #(nTY Y ) G
and

o= T ne ) G2 - 19

o) /%)
and #  are the constant terms in the density expansions

of A and f . The quantities 6’: , C,: , 5; , C; s

where /'

*
C o etc, are dimensionless and density independent and are
referred to as the reduced transport virtal coefficients., From the

density arguments given previously in this section, we note that

) L o
it is possible to calculate the quantities /\“’), ,/o sy 8p
*
5’; and ( o from our treatment. The quantities /\m) and f”)
) !
can be calculated from the ;/ terms of @, and 6:: and equations
(4.2 -10) and (4,2 »~ 12') We find that
A
70) __7_3,_(__,".__...——-* A7z
A = cy vIN AN Tom 4.2 - 19)
and
/
() ( d d)(m‘r z
{ = Py a_z.ﬂ/z,z.) 7 .2 - 20)

It then follows from equations (4.2 - 13), (4.2 - 14) and (4.2 - 15),

that
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+ * Y, S
§5 = (8])se. ~ fmgae @2 -
57 = /57):.6, § 752 4 (4.2 - 22)
and
+* « 4.2 - 23
Cp = (Cx)s.c, ( )

In Chapter V we consider the evaluation of these coefficients
for a particular molecular potential and compare the results of a

number of experimental measurements and theoretical calculations.

Coefficients.

We now consider the correction to the results of Snider and
Curtiss for the special case of rigid spheres. To do this we

evaluate the integral /? which is defined in equation (3.6 - 22) as

te)
- 2
2

= 1 77 -
K—nq’z‘/‘/é’o/j(!'j}'/z%aj)f“fc (§9) “%.3 -1

From the identity of equation (2.6 ~- 18) we have

-

/7y -
y.} . = ¥-2 4 4.3 - 2)

o

and hence (since ¥’ = §



;2

K”,,q- /'a/ﬁa/b'/d’ /ry) (x,’a”}z (4.3 - 3)

-—

We can rewrite R in the form

From the identity of equation (2.6 ~ 18) we have

7,2)

/2 NS
. = 5y = -~ a7 d
4 a,’[““) FET 3 54 (2

]

//‘Z) //JZ)
zéf/ y 3 L/ )

Thus, the integrand of the second integral in equation (4.3 - 4)

(/,2) ¢,2)
contains the quantity 3 f } -—Z;f‘
22 ¢
/1,2) ///, 2)
Since for AT (o 7y = o , and for L ST 9., -

(7,2) IA
and fﬂ has a discontinuity at 2 = ¢ ; this quantity has a

_ . . _ A,
5 function behavior at L =9 . We can thus replace {/{ﬂ =7, D)
by (2, V‘) in the integrand of the second integral in

ey~
equation (4.3 - 4). We then have

/ (- - -
R = -,1"‘7_2_//40/! é/’,_%/}(ae /I’X/)z/ 4.3 6)

/ , €
= 't//l P'e /, , - 3 /z
e[ L 0T = i) (xx0)
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Let us now make the variable transformation (2,5 )~> /_/_t:x’)
discussed in Sec. 2,6, From equations (2.6 - 16) and (2.6 - 19)

we have

2

, -— y
/ p - ’ ., 4
R ’i?z/"’!’/“‘/"/“’ ’ﬁfﬁtcz Yezrrod)e ’5-""/ .3 - 7)

Integration over Z# yields
Iz 4
(J -7
£ = a1 G50 ) 7 e s st e eotn ]
(4.3 - 8)

AL

r4
. 37 (2 @) ’ L2 =¥ 2
- ;—;z (%/[a:f/'v- —/)/“/’ SE(8) e "[/— cosx]

which from equation (3.6 - 6) is

*
z (2,2)
_ /57 / /A ,) ) (4.3 - 9)
R = (';T ) %o]./’V') /) 1
For rigid spheres
2,2\
2
N’ =/ (4.3 - 10)
and, from equation (2.9 - 9)
Y (ki T)—/1 = »n £
./ro:f' ) 8 4.3 - 11)

where f and C are respectively the second and third rigid sphere

virial coefficients., Thus we have

2% 4.3 - 12)
/e = 8/ E‘
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From equations (4.2 - 21y, (4.2 =~ 22) and (4.2 - 23), we have

#* X C ,
B, = (B )s.c. e .3 - 13)
o _C
@’; = /57)5@ 38 4.3 - 14)
and
v +#
Cw = /Cx>5.c. (4.3 - 15)

The Enskog dense gas equation for rigid spheres, which is given
by equation (2.9 - 8), differs from the ordinary Boltzmann equation
in two respects. First, in the ordinary Boltzmann equaticn, the
product of one particle distribution functions in the collision integral
are evaluated at the gross position 2, . Second, the factor

SGWJ in the ordinary Boltzmann equation is unity. Snider and
Curtiss34 have shown that the transport virial coefficients
/6;)5 ¢, s (5;)y( and (C:({):,c, ; in the special case of rigid
spheres, are identical to these obtained by direct sclution of the
Enskog equation when the deviation of 7}b] from unity is not
considered. Qur treatment in this limit gives rise to the full

transport virial coefficients obtained from the Enskog treatment

. . - C . s
through the inclusion of the correction vy in the coefficients
x o+
é;A and 695’ . This correction arises from the linear term in

Yre1 -




CHAPTER V
EVALUATION OF THE TRANSPORT COEFFICIENTS

In this chapter we consider the transport coefficients of a gas
composed of molecules which interact through a realistic potential
which is repulsive at short separations but is attractive at large
separations. The theoretical development in the preceding chapters
is applicable only to purely repulsive potentials, We can, however,
separately consider contributions.to the transport coefficients which
arise from bound states and non-bound states, The non-bound state contri-
butions can be treated formally in much the same manner as we have
discussed for purely repulsive potentials. The bound state contribu-~
tions have not been handled satisfactorily from a theoretical point

of view.

Section 5.1 The Reduction of the Integrals to Computation Form

A family of two constant potentials can be defined by
A
Prry = e//;) (5.1 - 1)

The function /A  is defined in such a way that the zero of the
potential occurs at g% =/ } and at the minimum of the potential
well F# = -/ . A typical potential of this type is the Lennard-

Jones potential defined by

(5.1 - 2)

Flz) = 77[[:;€z - }fiJ]

The Lennard-Jones potential is illustrated in Fig. 2.

92



F(3)

93:

<« O ———

Uy

4 Fig, 2
The Leidrnard-Johies Poteitial



9%

For convenience we define the dimensionless quantities:

*= 2 -
2 = | (5.1 - 3)
7. AT (5.1 - &)

2
J*z ([ 77)Fy = 2"/{-{)&(? (5.1 - 5)

* _ ad!
W, = — (5.1 - 6)
* _ 4w
a4 w = T (5.1 - 7)
and
| * £ (5.1 - 8)
£ = 5

These reduced variables are convenient since only one calculation for
the corresponding states of a series of gases is then necessary,
Since, in general, the potential is not purely repulsive, bound
states are possible. A typical pseudo-potential for a particular
angular momentum and energy is shown in Fig. 3. Depending on the
gy and angular momentum, there can be one, two or three turning .
points, Two turning points arise when the well in the pseudo-potential
is below the zero of energy and the energy is negative. . These. are

turning points on a bound trajectory. For energies, above zero,
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Fig. 3
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the outermost turning point is always on a non-bound trajectory.
When there are three turngng points, the energy and angular momentum
do not uniquely specify a sing1e trajectory. However, every choice
of 4 and J» correspoﬁds to one and only one non-bound trajectory.

Most of the discussion of Sec. 2.6 holds for the non-bound tra-
jectories of any potential. In the manner given there, we can define
the quantities :?/ and éz/ . The specific coordinate systems for
these quantities which were discussed in Sec. 2.6 are still valid.
Further, the identity equation (2.6 - 18) holds; and we can integrate
over the non-bound portion of the position-velocity space by
integrating over { # /, 5/) .

For purely repulsive potentials, the scattering angle Z  is
always positive. For a general potential this is not true. A
phenomona known as near orbiting occurs when theenergy and angular
momentum are such that the energy is approximately equal to the
maximum in the pseudo-potential. Under these conditions the particle
orbits the scatterer a number of times; and the scattering angle
is large and negative. If the energy is slightly greater than the
potential maximum, the radial velocity of an incoming particle falls
nearly to zero; but remains negative as the radial separation
approaches the maximum of the pseudo-potential. The particle thus
travels in a nearly circular orbit with a slight inward spiral.
Depending on how close the incoming energy is to that of the
potential maximum, the particle may make several such orbits. Finally,
the particle spirals in over the maximum, and the radial velocity

decreases then increases sharply to zero at the turning point.



The radial velocity then becomes positive and the particle spirals
outward on a trajectory symmetric to the incoming trajectory. If
the incoming particle has energy slightly less than the maximum in
the pseudo-potential, the particle undergoes a similar type of
orbiting but does not pass over the maximum. Near orbiting presents
no theoretical difficulties; but computationally it introduces
difficulties because the scattering angle and the duration of a
collision are very large.

The transport coefficient expressions of Snider and Curtiss
have been written in terms of five basic integrals over the two
particle position velocity space by Snider and McCourt35. (Only
three of these integrals comprise part of z?j s (?; and

Cj( . The other two give portions of C;‘; and C}) . One
of these integrals is closely related to df/ér i Z ey,)d/ng
which, as we have shown, arises in the solution of the integral
equations. The other four integrals arise in the evaluation of the
flux vectors. Our treatment leads to an additional integral, & .

The five basic integrals in the Snider and Curtiss treatment
have been evaluated for the Lennard-Jones potential by Curtiss,
McElroy, and Hoffman36. These integrals over the non-bound state
regions of the two particle position~velocity space are evaluated
by first transforming to the reduced variables mentioned previously.
The integrations over the three angles which determine the plane of
collision and its orientation in the plane can be carried out
immediately. The remaining variables determine a trajectory in the
collision plane and a point on the trajectory. If the integrationms

are carried out in the /4‘:3{") coordinate system, the: remaining
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three integrations are over /z" R J'r and the angle 2¢ between
_/,I’ and - J*_

By manipulating the 22 integrations we can transform the
integrals to integrals only over the incoming portions of the
trajectories. If we represent the integrand of a typical 22 integral
by7 ﬂ//t", ’, 22) , then the 22 integral is
:/' /6///2’) /:F, V) szt S22 . On the incoming portion of the

zfﬁ‘z

trajectory o z ; and at the distance of closest

approach, g2 = . We can write

2z
)/-, z . " . ’
/ ///A’:J’faa):nlzﬂ/a ‘—'////.A’; * )5t oSS fi////f‘)‘jfu):ww/zﬁ
o 0 ¥

z

=
7z
Z

Z ©
&
= /A//A’CJ":U):»;UZ /28 */A//n’f]': F—20) s e (7-V) A F-20)
(o4

k4
z

Z
= /[/V/A",J"st FH AN G P s e G

. VA .
The integral is over the domain of Z¥ from © to 7 and is
thus an integral over the incoming portion of the trajectory., The

integrand

[ﬁ’/n"jg‘fu) + H (2, J»’F, /’—zﬂ)]

contains equal contributions from the point (27 et ”) on
the incoming portion of the trajectory and the corresponding point
(through symmetry) ( A% J*’ 7-22) on the outgoing portion

of the trajectory.
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There are several choices of coordinates we can use to carry out
the integrations over the incoming portion of the trajectory, A
convenient choice is [J{jf, j;¥ and 2% . The coordinates g?’)*
and J specify a trajectory and zlﬁ'specifies a point on the
incoming portion of this trajectory. From equations (2.6 - 2) and
(2.6 - 3) we note that these coordinates have the advantage
numerically of specifying 6’# and J% without the necessity of
determining a root of an algebraic equation. The integration limits

+* * *
on A are § and infinity. The integration over C;’) and

SP* is restricted to the non-shaded areas of the first quadrant

in Fig. 4. The area A is excluded in the integration because
there the potential enexrgy at j’*i exceeds the total energy. The
area (3 1is excluded because it corresponds to bound states. Points
in the integration region which lie near the boundary curve of g
correspond to non-bound states with near-orbiting trajectordies. Those
points lying near the part of the boundary curve with positive slope,
correspond to collisions where the particle energy is slightly
greater than the maximum in the pseudo-potential; and those points
lying near the part of the curve with negative slope, cofreSpond to
collisions where thé particle energy is slightly less than the
pseudo-potential maximum. As mentioned previously, points near the
boundary curve of &  present computational problems because the
angle of scattering is large and the duration of the collision is long.

&
The Jacobian of the transformation /,&":J": w) > [4% (J a8 5‘)

is
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* 22, Y
)(a) ) - | 33-1" )(j,)ﬂ’
o8 1¢'Y)
> 9% P
8 "[/')’F : (»5.'1 - 10)
x SFUsT)
) f/j)* - o) - F5T f

.-_

[ e %= ] P[5 e ] dy ot )] £ Fp e

To evaluate the determinant in equation (5.1 - 10) we make use of

the relations:

L

’ 2 2
]# ) [(J - A (5.1 - 11)
# "z o ZL
v TV = Frsn]
6 - '(7’)"‘ (5.1 - 12)
z WA
: g” [og) =AD"
Sem s a* [/f',)xz _///z,,)]-,-f (5.1 - 13)
and #7 i /J\7>2f

éj‘;\‘Z[/J’_)’ri /72*)] -5 [r(‘j"/\i"f"(g /4§
ﬂ»‘[/i /)’!‘ ra » //A#)]/z

cos Y = (5.1 - 14)

which follow from equations (2.6 - 2 ), (2.6 - 3 ), (2.6 - 4 ) and



(2.6 - 5 ),

We can also write expressions for the quantities o , 27 ,
w; and Aw (which were discussed in Sec. 2.6) in terms of
the coordinates 7~ s /j/) f'ﬂ{ . Then, from equations

(2.6 =1, (2.6 -6 ), (2.6 - 27), (2.6 - 30), (5.1 - 11) and

(5.1 - 12), we have

/
,}Z * Fa
. _{iLg;L:_fi"_” o
[ ===
o = > £7%) (5.1 - 15)
A7 / f:.—/%lg [( i' % Z ]
(5") f’ cq’)

wf[/ff //f*)]{ 9/:0‘

7 = /7"2/ P"’Z/j')* _, (5.1 - 16)
( !»Z [/9' Y% A7¢D]
/- /7\’ ——;—Z_ /¥ 2.
( ) ¢ /J)
>
i 2 e (5.1 - 17)
w -
£ / Fre) _ €™ [ ’”/A’J
' rf«z - £, -[——L"Tv_z— 7
/J) e /,7)
and

. /I__ / ~7-/¢7,_ (5.1 - 18)
w = -
4 J ), —/f_/;t)l;)z_f Lo g
(7 P /j/),rz
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H From Sec. 2.6 we have, on the incoming portion of a trajectory,
: I A N
SRV + 4 b : :
/_./_z)={4"’ -y )J (5.1 - 19)
Ar A
J.,c = —cev (5.1 - 20)
A/ A - .
- S + Fem K Fen 2
j.J_wS““”—" 5 (5.1 - 21)
A A v
GA = et °C
4 7 (5.1 - 22)
and
2,3:@5’:’(:;«&&—-;&;0( eos 2 (5.1 - 23)
On the outgoing portion of the trajectory,
¥ Ay oAt * N
[./l/)'—‘([‘w‘#'w‘f)j » 4 4 (5.1 - 24)
7"/. /{‘ = cos ( wrX) (5.1 - 25)
Jj‘/ 'f"' cos (KrE) cosdl # Senfoc #L) 5 em 2 (5.1 - 26)
A A )
b h = sl #Z) (5.1 - 27)

4 .j = - cos(u+X)semtd * J'“;/nffl')asw (5.1 - 28)
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We now reduce the integral //__-_f S Wi W) ko a form
which is convenient for computation. From equation (3.1 -12) we

have

//] LW W) S (5.1 - 29)

lr2
//,z) !

- 17) 122 e

_.=__§_ ZAT) //2 /ﬂ//o//"/z W, w, f( }/)5 3/2 /lal/zo[a] o f)
mn* ¥

(52)

//,z> —tr) =l -
_z /:7‘) /,//z S S W ;%/)'A?)é//ﬂ/fE”-’j’é')/{’[o,f:[a;"7%/

M/t

4D
-r) ..—//)

///2_) , -£ )
- £ ZU‘) ///z/u///u/;/—— } ‘/W’W’ [f 16y 2[°J ¢ jl
Mﬂ

If we make the variable transformation /W/ , We )y — // R /7 )
which was discussed in Sec. 3.6 , then the first integral in

equation (5.1 - 29) is zero by Gauss' theorem. Thus,

//57.' W, l_«_f//)/@/, (5.1 - 30)

> 42) 42
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The quantity _l'_‘_/,l_'_‘_/l is given by
/
M/,W/=z/_/’_/7‘—/’é’-f,/'*z_¥> (5.1 - 31)

There is no contribution to //Z b W Z/l)/_';‘// from the term
Lrr

(3s)
z) /

/ . .
2z I __/’ and 7 _['_Z do not contribute after integration over

by virtue of the gradient Also, the terms

the angles of /7 . Hence,

/(,[:_V.'/"L‘/’)/‘!/ (5.1 - 32)

2

2 2 (20
- L (2»47‘) /7”)///:/1//1/},«/&‘1// ,’e“/e'/; 14,/

-

Integrating over /  yields

(//:] L We iﬁ//) iz (5.1 - 33)

7,2 2 ;g/"'z""
-y -1
= ';;’ zmr /‘/ v a [(“ ¥R ) (2 2N E !}‘ ¢ %7

Z (e}

_.7// (___ // /xﬂd{;mzﬂm ;/A INE2)F 22 /}20 e =

==

In the manner previously discussed, this expression for
‘/(/Z W, g{/,) /g_// can be transformed to an integral over the
incoming trajectories. If we use as integration variables the

s x> n¥ *
coordinates 2" , (7 ) and £ , we have
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‘//Z! W) Sw, | (5.1 - 34)

= ,z%/?;‘ ) /a//e"'// /‘o/f’r}/f—;)g,},) {7{)4'"'6?

s 3[4 3760 B eI rncqntn

traJectory
s ¢ , +
N w1 T2 (2SI 707
L% g I b R f?‘é%?é’é?gry

The integrand of the integral in equation (5.1 ~ 34) is a function
> It + *
of the reduced quantities 2 ;7 ) s, & and 7 only. The
various functional relations necessary to write the integrand in
this form are given by equations (5.1 - 10) - (5.1 - 28). The integral
itself is a function of only 77*‘ and is applicable to the
corresponding states of a series of gases.
The other four integrals basic to the results of Snider and
Curtiss can be reduced to a convenient computational form in a
similar manner. The numerical methods by which these integrations
were performed are discussed in detail by Curtiss, McElroy and
Hoffman36
The integral IQ which arigses in our treatment can be reduced
to a computatiomalformin a similar manner. We f1nd that
n(r*r'f/" 4 ﬁ?"'g—) ’“”J/J/” [ e %

(5.1 - 35)

[/7"’.)4)/ ,j) 1ncom1n ke /7 ‘A)/j‘ ‘j)outgoing ]
y

traJectory trajector
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The function 2 / {/[,3 -/ ) which appears in the integrand

is itself an integral. From equation (2.8 - 12, we have

: (r.:) -ffz,z)
7/(‘/[9] /) j{t’ - /)/f "‘r-—/) ﬁ//l.?

We can write this integral in confocal elliptic coordinates and

' (5.1 - 36)

perform the trivial angle integration to obtain

_ /”(ﬂ—z’» .f(%)fw)
/ / )
;/Z‘rj I/:/f /)(c - )P )/ oo’y (5.1 - 37)
If we then introduce the variable change
“_ 2T ) (5.1 - 38)
and
M 2" 5.1 - 39
275 = F(rp*?) (5.1 - 39)
we obtain
h{)‘l‘
pt i . F /)‘,) - /—'/Az )
! /7 __z//v" T )
3 /ny[oz— /J\ JJ’J °/ 223 (f )/t’ /)’QIJ’ Rz (5.1 - 40)
'9—/),_,/

The integral K can be computed numerically from this expression

for . //[07-/>

Section 5.2 Numerical Evaluation of ° /Q
se, from equations (5.1 - 35) and (5.1.- 40), that R is

and equation (5.1 - 35).

[ ]

We
a five-fold integral, Straightforward numerical integration of 4

is difficult because the time required (on even a large computer)

is prohibitively long. We,therefore, examine an approximate technique
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based on a curve fitted analytic approximation to L ( y - /)
n le]
/ -
The rigid sphere expression for ry / 7[07 —'I) gives some

indication of the type of analytic approximation which best fits the

soft potential curve. For rigid spheres in the range 0% /Z* £Z
we have

LG9 = LT, -2y 27 ]

n o7 3 y Je (5.2 - 1)

and for 2% 52

() o

This curve is simply related to the radial distribution function for

/l¥> / . The cubic polynomial in the range /< AY =2
assumes its largest value at ,4ﬁ;/ , and decreases monotonically to
zero at /f‘: 2 . This corresponds to the fact that two rigid
spheres at these separation distances cancexperiericeamore’’
collisions with a third molecule which force them together than
that separate them. However, as the separation distance increases,
this effect becomes smaller because less volume between the two
colliding molecules is excluded from a third molecule,

Analogous regions exist in the soft potential case; but the
demarcation between the regions is not sharp. The transition region
at roughly two molecular diameters is highly temperature dependent
for potentials which are attractive at large separations, At high
temperatures this transition region is relatively unimportant and

/ 7 '3 [ : » - s [
n { 9}‘]" /) is qualitatively similar to the rigid sphere
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curve. The molecular size is relatively smaller, however, due to
the increased penetration of two molecules in a high energy collision.
At lower temperatures, there is a maximum in the curve at roughly two
moleculaf diameters. This is due to the favorable packing of seéond
nearest neighbors. There is no analogous maximum in the rigid
sphere curve because there is no attraction to favor this separation.

For the purpose of curve fitting, the function ;%73 ['g}oj-—{]
was calculated for the Lennard-Jones potential at five widely
separated temperatures and for a number of separation distances.
The calculations were carried out on a CDC 1604; about 3-1/2 minutes
being required for a given temperature and separation distance. The
calculated results are given in Table 1. Included also (in
parenthesés) are a number of values obtained by de Boer and Michels37.
These results are illustrated in Fig, 5. For comparison, the rigid
sphere curve is also given.

The integrand of the A& integral heavily weights the region
of 2* between one and two molecular diameters. For smaller

- - £r*)

values of A~ , the factor o 7 makes the integrand effectively
zero; for larger values of /t* the gradient of the potential has
this effect. It is, therefore, most important to accurately curve
fit ,;—’;_J[ ‘—/-[03 ._/] in the region of /z-* between one and two
molecular diameters. The function can be well fitted in this region
by a cubic polynomial. From our rigid sphere analysis, such a
behavior is reasonable. For values of ,Jfk exceeding two molecular
diameters the function ;—;13[ y_[q - /] undergoes a decay to zero
with increasing A% . This decay to zero is approximated (purely

empirically) by an exponential function. As discussed previously,



TABLE I
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VALUES OF — [ 9&03-—{]
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25 ey 7%/ 7%z 7%2 7= 8 7t 30 7% s00
A 1.2472
.5 1.4183 1.0754
6 1.2108  0.9084
.7 3.1623 1.2064 1.2051 1.0134  0.7496
.8 | 2.3259 0.8225 0.9693  0.8285  0.6013
.9 1.6688 (1.652) (0. 501) 0.7547  0.6576  0.4655

1.0 1.1592 (1.204) (0.237) 0.5617 0.5024 0. 3438

1.2 (0.480) (<0.147) 0.2423  0.2445  0.1496
1.4 (0.182) (-0.362) 0.0167  0.0661  0.0313
1.6 | 0.1977 (0.178) (-0.425)  -0.1075 ~-0.0215 =-0,0068
1.8 (0.423) (-0.329) -0.1230 -0.029  -0.0071

2.0 (0. 886) (-0.103) -0.0708 -0.0167  -0.0039

2.2 (1.211) (-0.080) -0.0313 -0.0085 ~-0.0021

2.4 1.0221 ‘(0;999) 0.1168 ( 0.134) -0.0135 -0.0045 -0,0011

2.6 | 0.6948 ( 0.092) -0.0062 -0.0025 -0,0007

2.8 | 0.4513 0.0676 ( 0.065) -0,0031 -0.0015 -0.0004

3.0 | 0.2929 (0.281) ( 0.046) -0.0017 -0.0009

3.2 0.1927 0.0313 -0.0010

3.4 | 0.1290 0.0213 -0.0007

3.6 | 0.0880

3;8 0.0611
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there is a transition region ﬁhich is highly dependent on temperature
between the range of applicabiiity of these two approximations.
This transition region is more important at low temperatures than
at high temperatures; but even at low temperatures the contribution
to K 1is small. The curve fitted approximations at the various
temperatures are given in Table 2.

The numerical evaluation of the collisional contributions to
the transport virial coefficient has been discussed in detail by
Curtiss, McElroy, and Hoffman36. The computational problems
involved in evaluating the integral A& are quite similar to

those encountered in the earlier study.

Coefficients.

From equations (4.2 - 21) and (4.2 - 22) we have

* * * _ — /e ]
BA - /g*ﬂ)s,c. = ‘57 ‘(57)$c 8/720"3_(2{2'2)* (5.3 - 1)

X ) - d
This quantity along with /By s.c, and (6,\);,& (as given

36 * *
by Curtiss, McElroy and Hoffman™ ) ,and é% and éi& are given in

szz,z)*

Table 3. The values of are taken from Molecular

Theory of Gases and Liquids by Hirschfelder, Curtiss and Bird38.

The tabulated quantities are illustrated in Figs. 6 and 7.

Although Curtiss, McElroy and Hoffman considered rigorously
only the collisional corrections to the transport virial coefficients,
they corrected their results in an intuitive manner to account for

three body interactions. The correction is based on a method
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TABLE 2

LTy -
ANALYTIC APPROXIMATIONS FOR 03 [ %og f]

| . |
T* __Range of r , Approximation
l * *2 *3
1 0-2.0 11.657 - 17.603r + 8.1347r - 1.0122r
* *2 *3
2.0 - 2.6 -129.75 + 164.00r - 67.872r + 9.2667r
*
2.6 - o0 190, 64exp(-2.15%7r )
* *2 *3
2 0-2.0 5.1084 - 7.5927r + 2.9521r - ,22920r
SN S1
2.0 - oo (11,864 + 8,2291 —p=— - 6.2996
(r*-1.8) (r*-1,8)2
+.79720 .
(r*-1.8)3 Yexp( .1.9241r )
' * %2 *3
8 0- 1.8 3.3345 - 3.5777r + .66075r + .14427r
o *
1.8 - 2.0 -.59320 + .26120r
, %
2.0 - oo -248.43exp(-4.0816r )
’ * *2 *3
30 0- 1.6 2.5863 - 2.4615r + .14083r + .23685r
| ' 2
1.6 - 1.8 64644 - .93865r + .32867r
1.8 - o0 ~7.5857exp(-3.0859r )
%* *2 *3
100 0-1.5 2.0038 - 1.9103r - .019016r + .26942r
2
*
1.5 - 1.8 1.0899 - 1.2932r + .37987r "
*
1.8 - oo -1.5087exp(~2. 9777 )
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TABLE 3

VALUES OF THE SECOND VIRIAL COEFFICIENTS FOR VISCOSITY

AND THERMAL CONDUCTIVITY

7 1 2 8 30 100
*
/87 o] -1.2129 0.6942 0.8991 0. 6827 0.5156
L )
(B))s.c|  4.6662 3.0513 1.6967 1.1169 0.8008
R
STointd|  -1.226 -0.3512  -0.7737 -0.7804 -0. 6487
8 AT UL
*
8 -2.439 0. 3430 0.125%  =-0.0977  -0.1331
4
b )
4, 3.440 2.7001 0.9230 0.3365 0.1521
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suggested by Enskog for the approximate application of his work on
the rigid sphere-gas6 to a realistic system. Their corrected
x

coefficients are included in the figures, and are labeled (Z%?/L

-
and /5/\)c . Also illustrated in the figures are the results of
a theoretical study by Stogryn and Hirschfelder12 on the effect of
stable and metastable bound molecular pairs on the transport virial
coefficients.

Experimental points from two sources are included in the figures.

117

The circled points are taken from the paper by Stogryn and Hirschfelder,

The viscosity points in squares are recent values given by Flynn,
. 39 .
Hanks, Lemaire and Ross ~. The parameters used to reduce their values
to corresponding states values are given by Curtiss, McElroy and
36 ‘
Hoffman™ .
: x . A
Experimentally, Z? as a function of 7 is large and
X
positive at low 7 . As 7 is increased, the value decreases and
P o

becomes negative. The shape of the (}A curve is similar at low
temperatures; but, due to a lack of data, it can only be extrapolated
at high temperatures.

Both theoretical curves fit the data reasonably well at high

*
temperatures. In particular, (%7 is negative at high temperatures
and approaches zero asymptotically from below. This is in contrast
i
with the intuitively obtained quantity /@)( which approaches zero
7

from above. The deviation between theory and experiment at low
temperatures is probably due to the effect of bound states which

have not been treated in a satisfactory theoretical manner.
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CHAPTER VI

SUMMARY

The purpose of this study is the investigation of the density
expansions of the transport coefficients, We do this by formally
considering the equations which govern the time evolution of the
lower order distribution functicns. This approach leads us to a
derivation of a modified or gemeralized Boltzmann equation which
includes the effect of three body interactions. From the solution
of this equation, we obtain expressions for the transport coefficients.

In Chapter II we develop a factorization principle which is a
generalization of the usual molecular chaos assumption. This
principle is used to approximate the /A~f/)—' order distribution
function in terms of the é lower order distribution functions,
We truncate the B,B.G.,K.¥Y. hierarchy by the use of this approximation.
The truncation results in a closed but coupled system of equations
for the é lower order distribution functions. We compare this
set of equations with the formal expansion of the Boltzmann equation
given by Hollinger and Curtisslo.
The Hollinger and Curtiss expansion of the Boltzmann equation

(2)

)
is based on a formal solution for %ﬂ in terms of /ﬂ . This

(2) ()
expression for /’ , when substituted into the /o B.B.G.K.Y.
equation, yields a Boltzmann equation whose collision integral is
given as a series expansion. The first term in the expansion gives
rise to the ordinary collision integral plus the collisional

. 7 . .
corrections suggested by Green' . The second term in the expansion

of the collision integral describes three body collisional effects.
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This term involves the dynamics of two and three body collisions in

a very complex manner., We show explicitly that this three body

term also arises when the B.B.G.K.Y. hierarchy is terminated by the use
e Al

of-thé factorization principle for v .

Our approach differs from that of Hollinger and Curtiss, however,

cz)
in that we do not formally solve the fp equation. Instead we
() cz)
consider the 7” and )Z equations simultaneously. We approximate

cz)
the solution of the /ﬁ equation to derive a Boltzmann equation

vhich takes into account three body interactions in an approximation.
For the special case of rigid spheres, this equation reduces to the
Enskog dense gas equation. The Boltzmann equation derived in this
manner does not depend in detail on the dynamics of three body
collisions, This equation is solved;and from the solution expressions
for the transport coefficients are derived as density expansions.

The linear terms in the density expansions contain separate
collisional and three body contributions. The collisional contribu-
tions have been considered previously by Snider and Custissll. The
three body contributions are new to this work.

These results apply only to tﬁe non-bound state contributions
to the transport coefficients. Bound states have not yet been
handled properly in a theoretical manner; the application of the
present formalism to this problem will be considered in a later
study.

36

Recently Curtiss, McElroy and Hoffman have calculated the

collisional contributions to the transport coefficients of a gas

of molecules, which interact according to a Lennard-Jones potential,
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In Chapter V we complete these results by calculating the three body
collisional contributions. The theoretical results are compared with

experimental values,
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s)
Equation (2.4 -7) ’ gives the gene;al expression for ’p

in-any factorization region:

o PTIE) L, ).
(J)//,/J‘—Z)) /’)//f') /f::)/;lfs—‘)) Lo &

(A -1

We now establish the validity of this expression. It is sufficient
to prove that this statement gives the correct factorization when the
J  particles are divided into two groups A4 and B containing

a and 4 particles respectively. Any further factorization of

the two groups is trivial. Thus we must show that

/ (J)— / /a)/ /8) A - 2)
= A o
where aréd=3 . The method of proof is to compute the power
to which each term appears in the factored expression by computing
the total contribution of each set of combinations to that term,
(a)
Let us first consider the term 744 . The set of combinations

(s) (s5-s)
, - /'f? ,) contributes to the numerator through such

factorizations as

(5-7) ey (6-7)
= (A - 3)
/A,G‘/ - /; /8"'/

Since any of the é particles can be omitted in the set &-7/
s/
(6-0/

3

‘a)
there are = & terms of this type. The term /A appears

in the denominator through the factorization of the set of combinations
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(5) /”'l) h f t ] i ]
/o //' ) . Such a factorization is
5~2
(5-27) ‘e) (é6-2)
A -4
L AL 4o
¢
/6-2)
There are l’-/_,_ = ‘(____,_‘“/) different possible £ -
(6-212/ 2 6~z

By continuing this reasoning to show the successive contributions of
/s > (5-3) /5) (s-¢) :
// ) B /OJ -7 /, ) , etc., we find the

power, A2, , to which /A is raised in the factored expression is

b ‘
/ /
g, = ) ettt & - 5
A . (6-4')127
w =/ .
But since
’ ‘ (A -6
Z(/) hTa = (1= =0 )
.l =0
it follows that
”A = / (A - 7)
Similar reasoning shows that
nNg = / (A - 8)
/a,—/)
In a similar manner we find that any term of the type /A__,
b/
appears in the numerator 2—,—;/ =/ times from the factorization of
3) (5=/) s) (5-2)
the combination set .. /S 2 . The set A _, [/ )
contributes in the denominator - = 4 times. Continuing
(6-1)1 27

this reasoning we find the power N 4-, to which any term of the




(a~/)
type /4‘_/ is raised is

Rpa-1 = Z & ) (6-4)/+/

_‘-’.:0

In an analogous manner we establish that for

ﬂA‘J. -sﬂe,,/' = O

and, therefore,

(s /) (8)

/5/4 /J

"

(A -9)
(A - 10)
(A - 11)
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APPENDIX B

In this appendix, we evaluate the integrals f/]' i (/) y2 % z/_v_f/,
and f/[ ’ g) M/,//‘y}/, which arise in the solution of the integral

equations,

2
Let us consider the integral f/]'__U) W, /w, . From the

definition of / given by equation (3.1-12), we have

//g:su)mz/_z/_w (B - 1)

(1,2) 152)

2
- 2 247 \z 2 ,;/ ) ) =4y -4
T oatm (_7"— ) /‘/-{' AL W, Yy KT!) (Z/.A/[Io] 7{[0] d br)

/ )
(/,z) —pr) =10
= ”—:‘—— (Z—ir \///1 7y /[’ a/ J, ,.[ )/roJ 2507 € ]
“2) 2 —¢1) -—//) f{/’ 7
~ [da /3 2 "ﬁ - (3 f ’% 2 i orer © &7
where ¥ and _{7 are related to W, and Wz by the equations
7 77;?/45_//*'5‘_/:) (B - 2)
and
f’—"'”'l—,z‘/_z"‘i‘/’) (B - 3)
By Gauss theorem we have '
Jg ) Wi oo
) ) “4,2) 2 “2)

4 -
’(ié‘r) /z:?éf) In LY S i’{, -}!M?-/!/'!/}’_f'—/:‘

1}
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where we have made use of the relation

z
g _ ¥ _/’l

=17 g 4r) _ __ﬂ_
//[.,7 é[o] - ﬂz/zi'lj') e ° : (B - 3)

Z
The quantity W, is given by

wi= 4 (7250 »5%) (® - 6)
We can integrate over ‘Zq to yield
S(F d) ® -7
—1 o \F a/”’Z)a 2 Y -5 —22;”'2)
st (s e jon
From the identity of equation (2.6 - 18) we have
,2)
%f. i/x’) = —z2A7T ;’-j’;/(x*) B - 8)
Hence
S (7 Y)w? s
(B - 9)

/

3
2 A7/ M z / Py 2
= (G /.r!~;/_,f”)/r1o

P
oy
N
|
«
~
\‘\“

or equivalently

JZ :y)wsw
[ =
p; 2 /Z =5 (B - 10)
= L /m\z / 5 x’ol/ga Y
71 () CREIRRE. s
72

¥

Z -
- [oe S5 ¥ (8) e
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In the first integral in equation (B - 10) we make the coordinate

transformation (& , 2) — (I/) A’) and write ‘{?/ in the particular
coordinate system discussed in Sec, 2.6

We then have

J(7:0)w?sw

(B - 11)
r

//_a"//é Sz /b4 x'ﬁ;xl{x’z)ed?

= ! / m

7 {zér

™ \\

72
_/'/gz S5 v re)e |

i
\\

)
N

,/e Sz 4 /a’)"e“

/72

//»./x yi(y’) ) -7

f

/

J
7%

/ /2
2%7');///4 sy [ 3y - v‘/r')z]f'yf

62) (r,2) _ Z__j“n
/7 (247') }///’/x[r k7 {; )] "

-
=

We can integrate over ¥ to yield

J(r:g)w s

(B - 12)

4 I/,z) //’2) 2 (n2)>
Ly [ 2 ()]
247) - 2




But 2>
j//,z) _f_ {,2)
and
' )
(1,2) 2 _Z) 2 ("Z)
99 ) [7‘ /-27’3147-/)(3-14)
Hence

Z.L = (B - 15)

The second virial coefficient, Vel sis given by
(/,z)

//, kr_/>,a (B - 16)
Thus, we have

J(Z:Y)wiow,

(B - 17)
Ve 2 n 2
- -[/2Z%)z [ 2 52 29
- [kf) 2 797'5 *7—5}7.5]
By an analogous integration procedure we find that
/ N
J(Z:y)w
- (B - 18)

-2 [z2m)2 28 L 2 7308 , 99 5]
2 (&7 [707 57 * 57 552+ 7 55

it
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and, thus, the integrals j/_[ U) W,z/M and //[ ! U) w. ¢0/£gl
can be written in terms of the second virial coefficient, 4 , and

its temperature derivatives.
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