GENERAL MOTORS CORPORATION

STRUCTURES I

THE RESPONSE OF BEAMS AND RINGS TO HIGH-INTENSITY, SHORT-DURATION LOADING

Sponsored by
NASA HOUSTON
Contract No. NAS9-3081

R. E. SENNETT
D. E. SKAAR

GM DEFENSE RESEARCH LABORATORIES
SANTA BARBARA. CALIFORNIA

AEROSPACE OPERATIONS DEPARTMENT

ABSTRACT

Computer programs are given for determining the response of beams and rings to impulsive loads, with their use described in detail.

Two sample problems illustrate the input and output data formats, as well as various output options.

CONTENTS

page
Abstract ii
Introduction 1
Theory 1
Program Description and Use 2
Beam Input Data 3
Determination of Input Data for Sample Beam Problem 3
Input Data Format 5
Beam Problem Output 5
Sample Ring Problem 6
Ring Program Output 7
References 8
Appendix ς

ILLUSTRATIONS

Figure 1 Coordinate System and Internal Forces
Figure 2 Idealized Thickness Model
Figure 3 Beam for Sample Problem
Figure 4 Lumped-Mass Beam Approximation
Figure 5 Sample Beam Input Format
Figure 6 Suggested Program Control (Columns 1, 15, 29, 43, and 57 are blank)

Figure $7 \quad$ Sample Ring Input Format
Figure 8 Ring Geometry

INTRODUCTION

In recent years, many investigators ${ }^{(1-4)^{*}}$ have attempted to determine responses of various structural elements to blast or impulsive loadings. Symonds, ${ }^{(5)}$ for example, has developed a "rigid-plastic" theory of deformation in which it is assumed that no elastic deformation takes place, so that all the energy imparted to the system is channeled into plastic deformation of the structure. This type of analysis has two major disadvantages:

1) The energy input to the system must be much greater than the elastic strain-energy that can be stored by the structure.
2) Only permanent deformations are obtained; i.e., no time-history of the response can be found.

The most recent technique which is not subject to these limitations was developed by Witmer, et al, ${ }^{(6)}$ at the M.I.T. Aeroelastic and Structures Research Laboratory. This technique is now described briefly.

THEORY

The dynamic equilibrium equations for the structural element shown in Figure 1 can be written

$$
\begin{align*}
& \frac{\partial}{\partial S}(N \cos \theta)-\frac{\partial}{\partial S}(Q \sin \theta)+F y-m \ddot{v}=0 \\
& \frac{\partial}{\partial S}(N \sin \theta)+\frac{\partial}{\partial S}(Q \cos \theta)+F_{z}-m \ddot{w}=0 \tag{1}\\
& \frac{\partial M}{\partial S}-Q=0
\end{align*}
$$

[^0]where
\[

$$
\begin{aligned}
& \mathrm{m}= \text { mass per unit length of structure } \\
& \theta= \text { slope of structural element } \\
& \mathrm{N}, \mathrm{Q}, \mathrm{M}= \text { normal force, shear force, and bending moment at } \\
& \text { a given cross section } \\
& \ddot{\mathrm{v}}, \ddot{\mathrm{~W}}= \text { accelerations in the horizontal and vertical directions } \\
& \mathrm{F}_{\mathrm{y}}, \mathrm{~F}_{\mathrm{z}}= \text { forces per unit area in the horizontal and vertical } \\
& \text { directions }
\end{aligned}
$$
\]

In the derivation of Eqs. (1), the effects of shear deformation and rotatory inertia have been neglected. In the case of impulsive loading, F_{y} and F_{z} are zero, and the beam is considered to have an initial velocity.

Equation (1) may be phrased in finite difference form and interpreted as describing a lumped-parameter model consisting of masses connected by weightless, straight links. (These equations, as well as a complete description of the model, can be found in Reference 6.)

Equations (1) and the corresponding strain-displacement equations have been programed for an IBM 7040 digital computer using Fortran IV language. The remainder of this report describes the use of this program.

PROGRAM DESCRIPTION AND USE

Two program listings will be found in the appendix. The first, 'Blast-Loaded Beams," calculates the response of a clamped-ended beam to an impulsive load. The beam may be pre-tensioned, if desired. Sample output data are also presented.

The second, "Blast-Loaded Rings," calculates the response of a circular ring to impulsive loading. The ring need not be complete.

Both the beam and the ring are of rectangular cross section, and the crosssectional area is distributed among six "flanges," as shown in Figure 2.

Definitions of the quantities contained in the programs are given at the beginning of the listings.

BEAM INPUT DATA

CMT classification data (up to 72 characters)
DT Time interval (sec)
This must be smaller than the time required for a longitudinal wave to traverse the distance between mass-points; otherwise the solution will be unstable.

E Young's modulus for the beam material ($\mathrm{lb} / \mathrm{sq} \mathrm{in}$.)
EP strain-hardening modulus (lb/sq in.)
S1G1 yield stress of material (lb/sq in.)
TI readout time (sec)
B width of beam (in.)
H thickness of beam (in.)
WIN input displacement (in.)
The method for computing WIN is described in the sample problem.
SM mass of a single mass-point ($\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}$.)
T starting time (generally initialized at zero)
TF time of termination of solution (sec)
LN length of beam (in.)
XMAX, XMIN maximum and minimum limits of transverse displacement (in.)
SIGO pre-tension stress (lb/sq in.)
fion (total number of plots (less than or equal to 10)
fixed K1 the number of the first mass-point that has non-zero input point displacement

K2 the number of the last mass-point that has non-zero input displacement
TP(J) plotting time (sec)

DETERMINATION OF INPUT DATA FOR SAMPLE BEAM PROBLEM

Consider the response of a beam 20 inches long, $1 / 2$ inch wide, and $1 / 16$ inch thick, made of 7075-T6 aluminum alloy pre-tensioned to 50% of the yield stress and subjected at time $\mathrm{T}=0$ to a uniformly distributed impulsive load over a 1 -inch length at the center of the beam. The beam is shown in Figure (3).

It is desired to obtain the response of this beam for a total time of $200 \mu \mathrm{sec}$. Thus, $\quad \mathrm{TF}=200 \times 10^{-6}$.

The yield stress for 7075-T6 aluminum is approximately 71,400 pounds per square inch. Therefore, $\mathrm{S} 1 \mathrm{G1}=71,400$. Since this aluminum is not a strainhardening material, EP=0.

Because the beam is pre-tensioned to 50% of the yield stress, \quad SIGO $=35,700$. As specified, $\mathrm{LN}=20, \mathrm{~B}=1 / 2, \mathrm{H}=1 / 16$. It is desired to read out the required data at intervals of $20 \mu \mathrm{sec}$; thus $\mathrm{TI}=20 \times 10^{-6}$.

Since there are 60 mass points representing the total mass of the beam, then

$$
\mathrm{SM}=\frac{(\mathrm{B})(\mathrm{H})(\mathrm{LN}) \rho}{60}
$$

where ρ is the mass density of the beam material. In this example, $S M=0.27 \times 10^{-5}$. Referring to Figure 4, we notice that mass points 30,31 , 32 , and 33 will be loaded by the impulse. Thus, $\mathrm{K} 1=30$, and $\mathrm{K} 2=33$.

A time interval DT of 0.5×10^{-6} seconds is found to satisfy the necessary criterion for a convergent solution.

We assume that the velocities at which the loaded mass-points begin to move have been computed from impulse-momentum relations. Suppose these velocities are constant and equal to 1,030 inches per second. The input displacement WIN is therefore $1,030(D T)=0.515 \times 10^{-2}$ inches. That is, we assume that for the first time increment DT , the loaded masses move without restraint.

Since mass-points $30-33$ received the initial load, the greatest strains will occur in this vicinity. Therefore, the output codes L1, L2, L3, and L4 are assigned the values 29, 31, 32, and 34. A non-zero integer must always appear for these output codes.

Plots of the beam profile are desired at $50-u s e c$ intervals from zero to 200 $\mu \mathrm{sec}$. Thus, NP $=5$ and $\mathrm{TP}(1)=0, \mathrm{TP}(2)=0.5 \times 10^{-4}, \mathrm{TP}(3)=0.1 \times 10^{-3}$, $\mathrm{TP}(4)=0.15 \times 10^{-3}$, and $\mathrm{TP}(5)=0.2 \times 10^{-3}$. Because no more than five plots are required, $T P(6)$ through $T P(10)$ need not be specified. The quantity IP is set equal to 1 to obtain a plot of the center displacement vs time.

INPUT DATA FORMAT

With the exception of cards 1 and 5 , all cards consist of five fields, 14 columns wide. Card 1 uses the first 72 columns for data identification, and card 5 has eight fields, two columns wide for fixed-point constants. Figure 5 shows the layout of the data fields on a data sheet. If $\mathrm{NP}=0$, cards 6 and 7 must be omitted and if NP is less than six, only card 7 must be omitted.

Possible sources of error in the input deck are the odd field widths on all cards except 1 and 5 . To minimize the occurence of these errors and to facilitate the preparation of input decks, the program control feature of card-punching equipment is strongly recommended. This program control card (Fig. 6) will enable the user to prepare data without using the numeric shift key. Use of the shift key anywhere on the card will cause it to advance to the first column of the next numeric field. To avoid skipping, the ALPH shift key should be depressed whenever a minus sign is to be punched.

BEAM PROBLEM OUTPUT

A listing of the input data appears at the beginning of the output for each set of data, followed by a set of header lines which identify the output in three basic groups: Line 1 contains the time, centerline displacement, and the transverse acceleration at the center; line 2 has the strain at flange 6 of the links specified by the output codes; line 3 contains the strains in the links at flange 1 . These three output groups are printed beginning with the starting time T, and the printout interval TF .

Supplementary data can be obtained at the printout time by using the sense switch options. This information is printed on tape unit No. 4. If sense switch 3 is on, the following data is printed for mass points $1-31$: acceleration in the horizontal direction, acceleration in the transverse direction, total transverse displacement of the mass points, and horizontal coordinates of the mass points. When sense switch 4 is on, the strain in flange $J(J=1, \ldots 6)$ of link I ($\mathrm{I}=1, \ldots 32$) is printed. If the sense switches are left on for an entire run, the total run time is increased by 50%.

SAMPLE RING PROBLEM

Input Data

	DT	time increment (sec)
	E	Young's modulus ($\mathrm{lb} / \mathrm{sq}$ in.)
	EP	strain-hardening modulus (lb/sq in.)
	S1G1	yield stress ($\mathrm{lb} / \mathrm{sq}$ in.)
	TC	readout time (sec)
	B	width of ring cross section (in.)
	H	thickness of ring (in.)
	ALFA	defined in Figure 8 (rad)
	SM	mass of a single mass-point ($\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}$.)
	T	starting time (generally initialized at zero)
	R	radius of the ring (in.)
	TP	plotting time interval (sec)
	TF	time of termination of solution (sec)
	(NP	ring profile plot code (non-zero for plots)
fixed point	K1	the number of the first mass-point which has non-zero input displacement
	K2	the number of the last mass-point which has non-zero input displacement

Figure (7) is a sample data sheet for the ring program.

Calculation of the input data for the ring proceeds in the same manner as that for the beam; only the calculations which differ are described here.

The angle of the clamped supports from the vertical is defined by ALFA (Fig. 8) expressed in radians. For a complete circular ring (sample problem) ALFA equals π. Notice that for this case mass-points 2 and 62 occupy the same position, as do 1 and 61 .

The quantity RIN is analogous to WIN in the beam program. A displacement toward the center of curvature is a positive input displacement.

The radius of the ring in inches is R. In the sample problem a complete ring is uniformly loaded radially over a central angle of 120 degrees by an impulsive load which imparts initial velocities of 5,460 inches per second to the loaded mass-points. Mass-points 22 (K1) to 41 (K2) are loaded.

The ring material, 6061-T6 aluminum alloy, is considered to be elastic-perfectly-plastic. Thus, $\mathrm{E}=10.4 \times 10^{6}, \mathrm{EP}=0$, and $\mathrm{S} 1 \mathrm{G} 1=41,400$.

To complete the specification of the physical properties of the ring, $R=3 \mathrm{in}$, $H=1 / 8 \mathrm{in}$., and $B=1 \mathrm{in}$.

Since output is desired every $100 \mu \mathrm{sec}, \mathrm{TC}=0.1 \times 10^{-3}$ and $\mathrm{TP}=0.1 \times 10^{-3}$. This produces a plot of the ring deformation every $100 \mu \mathrm{sec}$. The final time TF is $300.5 \mu \mathrm{sec}$ to insure output data at $300 \mu \mathrm{sec}$.

RING PROGRAM OUTPUT

A listing of the input data appears at the beginning of the output for each data set. Beginning with the starting time T and continuing at printout intervals TC , the following data is presented: horizontal and vertical coordinates for mass-point I ; strain in link I for flanges 1 and 6 ; $(\mathrm{I}=1, \ldots, 31$).

Figure 1 Coordinate System and Internal Forces

Figure 2 Idealized Thickness Model

Figure 3 Beam for Sample Problem

Figure 4 Lumped-Mass Beam Approximation

Figure 5 Sample Beam Input Format

| 14 | 15 | 28 | 29 | 42 | 43 | 56 | 57 | 70 | 71 | 80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 14 |
| :---: |
| ++++++++++ |

Figure $6 \quad \begin{aligned} & \text { Suggested Program Control } \\ & \text { (Columns 1, 15, 29, 43, and } 57 \text { are blank) }\end{aligned}$

Figure 7 Sample Ring Input Format

Figure 8 Ring Geometry

REFERENCES

1. H. H. Bleich and M. G. Salvadori, 'Impulsive Motion of Elasto-Plastic Beams," Transactions of the American Society of Civil Engineers, Sep 1953
2. M. M. Chen, P. T. Hsu, and T. H.H. Pian, 'Impulsive Loading of Rigid-Plastic Curved Beams," Fourth U. S. National Congress of Applied Mechanics, 1962
3. M. F. Conroy, 'The Plastic Deformation of Built-In Beams Due to Distributed Dynamic Loading" (paper presented at the Summer Conference of Applied Mechanics Division, American Society of Mechanical Engineers, Jun 9 - 11, 1964, Boulder, Colorado)
4. P.E. Duwez, D.S. Clark, and H.F. Bohnonblust, "The Behavior of Long Beams Under Impact Loading, " J. Appl. Mech., Mar 1950
5. E. H. Lee, and P.S. Symonds, "Large Plastic Deformations of Beams Under Transverse Impact, " J. Appl. Mech. Vol. 19, 1952
6. E. A. Witmer, H. A. Balmer, J.W. Leech, and T. H. H. Pian, "Large Dynamic Deformations of Beams, Circular Rings, Circular Plates, and Shells" (paper presented at the AIAA Launch and Space Vehicle Shell Structures Conference, Apr $1-3$, 1963, Palm Springs, Calif.)

APPENDIX

1. Beam
a) Listing
b) Output
2. Ring
a) Listing
b) Output

500 FORMAT (5E14.8)
501 FORMAT (12A6)
502 FORMAT (812)
510 FORMAT (49H1 DEFORMATION PROFILE OF AN IMPACT LOADED BEAM.42X.
1 A2.1H/,A2.1H/,A2.6X5HPAGE $14 / 5 \times 12 \mathrm{H}$, 1
511 FORMAT 1 HO. 8×14 HT 1 ME INTERVAL $=, E 14.8 .4 \times 16 H Y O U N G-S$ MODULUS $=.9 X$. 1 E14.8.4X13HYIELD STRESS = E $144.8 / 9 \times 14$ HINITIAL TIME = $E 14.8 .4 \times$. 2 25HSTRAIN-HARDENING MODULUS = .E $14.8 .4 \times 6$ HWIDTH $=.7 \times E 14.3 / 9 \times$ 3 14HFINAL TIME = \quad E14.8.4X25HINITIAL DISPLACEMENT = •E14.8. 4 4 413 HTHICKNESS $=\quad . E 14.8 / 9 \times 14$ HREAD-OUT TIME $=. E 14.8 .4 \times$ 5 25HMASS OF A MASS-POINT $=$ •E14.8.4X7HLENGTH $=.6 \times E 14.81$ 512 FORMAT (7HOLINE 1.7X4HTIME, 15X7HCLDISP.. $15 \times 3 H W D D / 7 H$ LINE 2.5X $1.4(4$ HEPS $(12,3 H, 6) \cdot 11 \times) /, 7 H$ LINE $3,5 \times 14(4 H E P S(, 12,3 H \cdot 1) \cdot 11 \times 1)$

1 5H 2.4X4(E15.8.5X)/5H 3.4×4(E15.8.5X))
514 FORMAT 5 HO $1.4 \times 3(E 15.8 .5 X) / 5 H \quad 2.4 \times 4(E 15.8 .5 \times) / 5 H \quad 3$.
$14 \times 4(E 15.8 .5 \times))$

516 FORMAT ($10 \times .4 E 17.8$)
517 FORMAT (GHOTIME=, E12.5/9X1HI.6(4XGHEPS (I..11.1H).5X))
518 FORMAT (8X.12.6E17.8)
519 FORMAT $19 \times .45 H I N I T I A L$ DISPLACEMENT EXTENDS FROM MASS-POINT $\cdot I 2.1 \times$.
1 14HTO MASS-POINT .12)
CALL PLOTS (DATA.800)
CALL PLOT ($0.0 .0 .0 .0-3$)
CALL FPT (.TRUE••O)
CALL DATE (ID1,1D2.ID3)
NPGN=1
$N P G A=1$
$1 N P=0$
1 READ (5.501) (CMT)
WRITE (6.510) 101=102.103.NPGN.CMT
READ (5.500) DT.E.EP,SIG1,TI.B,H,WIN,SM,T,TF,LN,XMAX,XMIN,SIGO
READ (5.502) NPL,K1,K2.L1,L2.L3.L4.IP
WRITE (6.511) DT.E.SIG1,T,EP,B,TF,WIN.H.TI,SM.LN
WRITE (6.519) K1.K2

```
    WRITE (6.512) L1.L2.L3.L4.L1.L2.L3.L4
    NPGN=NPGN+1
    LC=12
    TC=T!
    IF (NPL.LE.O) GO TO 2
    READ (5.500) (TP(J).J=1,NPL)
    JP=1
    1 PLOT=1
    GO TO 4
    2 1PLOT=2
    4 AF=B*H/G.
    D=H/6.
    F=LN/60.
    G=0.
    VO(1)=0.
    DO 3 1=1.61
    80 VO(1+1)=VO(1)+F
        DO 3 J=1,6
        SIGO(I,J)=SIGO
    3 EPO(1,J)=S1GO(I,J)/E
        DO 20 J=1.5
        FJ =\
20 PSI(J)=D*(FJ-((6*+1•)/2•))
    DO 86 1=1.62
81 WO(I)=0.
82 V1(I)=VO(1)
    W1 (1)=0.
    IF (I\bulletGE.KI\bulletAND.I\bulletLE.K2) WI(I)=WIN
86 VOP(I)=VO(I)
    V1(1)=0.
    V1(62)=LN+LN/60.
    DO 24 1=1,S1
21 DSI(I)=SGRT((ABS(VI(I+1)-V1(I)))**2*+(ABS(W1(I+1)-W1(|)))**2*)
22 S(I)=(W1(I+1)-W1(I))/DSI(I)
23 C(I) =(VI(I+I)-VI(I))/DSI(I)
24 El(I)=(DSI(I)-F)/F
    DT1(1)=0.
    E2(1)=0.
    E2(62)=0.
    DO 27 I=1.60
    25 DTI(I+1)=S(I+1)*C(I)-C(I+1)*S(I)
    26E2(I+1)=(DTI(I+1)-G)/F
    DO 27 J=1.6
    27 EPS(I,J)=E1(I)-PSI(J)*E2(1+1)+EPO(1,J)
        DO 271 J=1.6
271 EPS(61.J)=EPS(60.J)
    WRITE (6,513) T,EPS(L1,6),EPS(L2,6),EPS(L3.6),EPS(L4.6),EPS(L1,1).
```

LC=LC+5
DO $29 \mathrm{I}=1.61$
DO $29 \mathrm{~J}=1.6$
28 SIG(I,J)=E*EPS(1,J)
1F(EPS(I.J)) 32.31 .30
29 CONTINUE
68 DO $38 \quad 1=1.61$
FNOR(I) $=0$.
BMOM (I) $=0$.
DO $38 \mathrm{~J}=1.6$
37 FNOR(I)=AF*SIG(I, J)+FNOR(I)
38 BMOM(1) =AF*SIG(I.J)*PSI(J)+BMOM(1)
DO $391=1.60$
$39 Q(1+1)=(\operatorname{BMOM}(1+1)-\operatorname{BMOM}(1)) / D S I(1+1)$
$Q(1)=Q(2)$
$Q(61)=Q(60)$
DO $45 \mathrm{I}=1,60$
$40 \operatorname{VOD}(I+1)=(F \operatorname{NOR}(I+1) * C(I+1)-F \operatorname{NOR}(1) * C(I)-Q(1+1) * S(I+1)+Q(1) * S(1)) / S$
1 M
41 WDD $(1+1)=(\operatorname{FNOR}(1+1) * S(1+1)-\operatorname{FNOR}(I) * S(I)+Q(1+1) * C(I+1)-Q(1) * C(1)) / S$
1 M
$42 \operatorname{VIT}(I+1)=\operatorname{VOO}(1+1) * D T * * 2 \bullet+2 \cdot * V 1(1+1)-V O(I+1)$
$45 \mathrm{WIT}(I+1)=W O D(1+1) * D T * * 2 \bullet+2 * * W 1(1+1)-W O(1+1)$
VIT(1)=0.
VIT(62)=VO(62)
WIT(1)=0.
$W I T(2)=0$.
$W 1 T(61)=0$.
$W 1 T(62)=0$.
DO $471=1.52$
43 VO(1) $=V I(I)$
$44 \mathrm{VI}(1)=\mathrm{VIT}(\mathrm{I})$
46 WO(1)=W1(I)
47 W1 (1) =W1T(I)
DO $511=1.61$
$48 \operatorname{DSI}(1)=S O R T((A B S(V I T(1+1)-V I T(I))) * * 2 \bullet+(A B S(W I T(I+1)-W I T(I)) * * 20)$
49 S(I) =(WIT(1+1)-WIT(1))/DSI(1)
$50 C(I)=(V I T(I+1)-V I T(1)) / D S 1(I)$
51 E1 (1)=\{DSI(I)-F)/F
DT 1 (1) $=0$.
E2(1)=0.
E2 $(62)=0$.
Do 54 ! = ! : 60
$52 \operatorname{DT}(1+1)=S(1+1) * C(1)-C(1+1) * S(1)$
53 E2 $(I+1)=(\operatorname{DTI}(1+1)-G) / F$
DO $54 \mathrm{~J}=1.6$

```
    54 EPST(I,J)=E1(I)-PSI(J)*E2(I+1)+EPO(I,J)
    DO 541 J=1.6
541 EPST (61.J)=EPST (60.J)
    DO 58 1=1.61
    DO 58 J=1.6
    55 DEPS(1,J)=EPST(I|J)-EPS(I,J)
    56 EPS(I,J)=EPST(I|J)
    SIGT(I.J)=SIG(I|J)+E*DEPS(I|J)
57 SIG(I,J)=SIGT(I,J)
    IF(DEPS(1.J)) 61.60.59
58 CONTINUE
    T=T+DT
    GO TO (150,151).IPLOT
150 IF (T.GE.TP(JP).AND.JP.LE.NPL) GO TO 66
151 IF(T.GE.TC)GO TO 72
    70 IF(TF.GT.TIGO TO 68
    IF (IP.NE.O) CALL GRHI (TIMX,CLDIS.INP)
    69 GO TO 1
    72 IF (LC.GE.52) GO TO 87
    88 WRITE (6.514) T,WIT(31).WDD(31),EPS(L1.6),EPS(L2.6),EPS(L3.6),
        1 EPS(L4.6), EPS(L1,1),EPS(L2.1),EPS(L3.1),EPS(L4.1)
        LC=LC+4
    CALL SSWTCH (3.JSS)
    CALL SSWTCH (4.1SS)
    IF (JSS.EQ.2) GO TO 90
    WRITE (4.510) ID1,ID2.1D3.NPGA.CMT
    NPGA =NPGA+1
    WRITE (4.515) T
    WRITE (4.516) (VOD(I),WDD(I).WIT(I).VIT(I),I=1.31)
90 IF (ISS.EQ.2) GO TO 89
    WRITE (4.510) ID1.ID2.ID3.NPGA.CMT
    NPGA =NPGA+1
    WRITE (4.517) T.(J.J=1.6)
    WRITE (4.518)(1,(EPS(I,J):J=1,6),I=1.32)
89 INP={NP+1
    TIMX(INP)=T
    CLDIS(INP)=WIT(31)
    TC=TC+TI
    GO TO 7O
    30 S1GC1(I.J)=S1G1+EP*EPS(1,J)
    IF(SIG(I,J)-SIGC1(I,J))33.33.34
33 SIG(I,J)=S1G(I,J)
    GO TO 29
34 SIG(I,J)=SIGC1(1,J)
    GO TO 29
31S1G(1,J)xSIG(I,J)
    GO TO 29
```

```
32 SIGC2(I.J)=-SIG1+EP*EPS(I,J)
    IF(SIG(i.J)-SIGC2(I,J))35.36.36
35 S1G(I!J)=SIGC2(I,J)
    GO TO 29
36 SIG(I|J)=SIG(I|J)
    GO TO 29
59 S1GC1(I|J)=S1G1+EP*EPS(I\bulletJ)
    IF(SIG(1,J)-SIGC1(I.J))62.62.63
62 SIG(l,J)=SIG(I.J)
    GO TO 58
63 S1G(I,J)=SIGC1(I.J)
    GO TO 58
60 S1G(I:J)=S1G(1,J)
    GO TO 58
61S1GC2(I,J)=-SIG1+EP*EPS(1,J)
    IF(S1G(1,J)-SIGC2(1.J))64.65.65
64 S1G(1.J)=S1GC2(1.J)
    GO TO 58
65 S1G(I.J)=S1G(I.J)
    GO TO 58
87 WRITE (6.510) 101.102.103.NPGN.CMT
    WRITE (6.512) L1.L2.L3.L4.L1.L2.L3.L4
    NPGN=NPGN+1
    LC=6
    GO TO 88
66 JP=JP+1
    Y(1)=0.0
    Y(2)=F/2.
    Y(32)=10.0
    DX=(XMAX-XMIN)/7.0
    X(1) = (WIT(1)-XMIN)/DX
    X(2)=(WIT(2)-XMIN)/DX
    X(32)=(WIT(32)-XMIN)/DX
    DO 67 1=3.31
    Y(1)=Y(1-1)+F
67 X(I) =(W1T(I)-XMIN)/DX
    CALL AXIS (0.0.0.0.28HPOSITION COORDINATE (INCHES).+28.10.0.90.0.
    1 0.0.1.0)
    CALL SYMBOL (0.2.10.05.0.14.23HBEAM PROFILE AT TIME = .0.0.23)
    TIME=T*10.**6
    CALL NUMBER (2.96.10.05.0.14.TIME.0.0.1)
    CALL PMU (3.80.10.05.0.14)
    CALL SYMBOL (3.92.10.05.0.14.4HSEC.00.0.4)
    CALL LINE iX:Y:32::!
    CALL AXIS (O.0.0.0.21HDISPLACEMENT (INCHES).-21.7.0.0.0.XMIN.DX)
    CALL PLOT (8.5.0.0.-3)
    GO TO 151
```


END

```
$IBFTC GRHI LIST.REF
    SUBROUTINE GRHI (T.D.N)
    DIMENSION T(1).D(1)
    CALL SCALE (T.N.S.O.XMIN.OX.1)
    CALL SCALE (D.N.8.O.YMIN.OY.1)
    CALL PLOT (1,0.1•0.-3)
    CALL AXIS (0.0.0.0.4HT1ME.-4.6.0.0.0.XMIN.DX)
    CALL AXIS (0.0.0.0.12HDISPLACEMENT.12.8.0.90.,YMIN.OY)
    CALL LINE (T.D.N.I)
    CALL PLOT (7.5,-1..-3)
RETURN
END
```

offormation profile of an impact loaced beam

DEFORMATION PROFILE UF AH IMPACT LUADED BEAM
BEAM DOCUMEVIATIUN RUV JUMBER I (PRETEVSION)

LINE	1	time	CLOISP.	WOD	
IINE	2	CPS(29,6)	Ers $(31,6)$	FPS (32,6)	EPS $(34,6)$
line	3	EPS (29,1)	EPS(31,1)	-PS(32.1)	EPS (34.1)
1		0.10049992E-03	0.54534278 E 00	-0.154551]7i On	
2		0.64233384E-01	0.397912185-01	0.724715311-(1)	$0.21243035 \mathrm{E}-31$
3		0.53233023E-01	$0.22479732 E-01$	0.39492178E-01	$0.236769105-01$
1		0.11049991E-03	$0.56043593 E 00$	-0.24415915E De	
2		0.61286731E-01	0.39817491E-01	$0.644542735-01$	0.27838976E-01
3		$0.56218530 E-01$	$0.23360434 E-01$	0.52603171:-01	0.228100965-21
1		$0.12049939 \mathrm{E}-\mathrm{C} 3$	0.5721033 CE 00	-0.26697114t Cb	
2		$0.61253313 \mathrm{E}-01$	0.3991515 UE-01	0.69C05479E-01	0.36583008E-j1
3		0.57044958E-01	$0.25117156 E-01$	$0.63705686 . E-01$	0.22465199E-01
1		0.13049786[-03	0.58122613 E 00	-0.21004185E 08	
2		0.62305239E-01	$0.40223042 \mathrm{E}-01$	$0.70102549 \mathrm{E}-01$	0.426.41914E-01
3		0.56170483E-01	0.27402029E-01	¢.6296948CE-O,	0.22474546[-u1
1		$0.14049783 \mathrm{E}-03$	0.58820878 E 00	-0.26679288E 08	
2		0.62537328E-O1	0.41802179E-01	0.7U571tioe-01	0.42526639E-01
3		$0.56967502 E-01$	0.31247472E-01	0.63512445E-01	$0.23858818 E-01$
1		$0.15049980 \mathrm{E}-03$	$0.59243707 E 00$	-0.37634535E 08	
2		$0.61100421 \mathrm{E}-01$	0.41862575t-01	$0.58915951 E-01$	0.37905427L-01
3		0.59219767E-C1	0.3202439 SE-01	$0.65133123 E-01$	0.21128845E-01
1		0.16349976E-03	$0.59334112 E 00$	-0.11254053E 08	
2		0.56471098E-01	$0.38631101 \mathrm{E}-01$	0.05371403E-01	0.34491496E-OL
3		0.57422047E-01	0.29501167E-01	$0.64614302 t-01$	0.29600673E-01
1		$0.17049973 \mathrm{E}-03$	$0.54263613 E 00$	-0.81162471E 07	
2		$0.56695994 E-01$	$0.37690774 E-01$	$0.6505829 C E-D 1$	0.34483311E-01
3		0.58191044E-01	$0.30317263 \mathrm{E}-01$	$0.64507404 \mathrm{E}-01$	0.27934735E-01
1		0.18049970[-03	0.57152424200	-0.54582206E 07	
2		0.58C19782E-01	$0.373904645-01$	$0.66435523 \mathrm{E}-01$	$0.37533132 \mathrm{E}-01$
3		0.58845608E-01	0.3244059GE-01	$0.64730153 \mathrm{E}-01$	$0.26193920 E-01$
1		0.19049966 E-03	O.5896768YE 00	-0.25700086E 07	
2		0.57951638E-01	$0.37224101 E-01$	0.66327078E-01	$0.37700960 \mathrm{E}-01$
3		0.59268496E-01	$0.34189314 \mathrm{E}-01$	0.65164062E-01	0.26349590E-01
1		J.20349963E-03	0.58757044 E 00	-0.50023666E 06	
2		$0.56776492 \mathrm{E}-01$	$0.36270502 \mathrm{E}-01$	0.65161595L-01	$0.34535626 E-31$
3		$0.60187636 \mathrm{E}-01$	$0.34542679 E-01$	0.65218626E-01	$0.28581718 \mathrm{E}-01$

BEAM PROGRAM

Memory Required
Object Program (30552) 8
I/O Buffers $\quad(1530)_{8}$
Time for Execution (sample problem)
11 min

Routines Required (those not included with IBM's IBSYS)
BEAM
PMUZ
GRHI
DATE
FPTMOD


```
$IBFTC RING LIST.REF
            COMMON PSI(6),VO(62),WO(62),V1(62),W1 (62),BETA(31),CBETA(31).SBETA
    1(31),ROISP(62),WRDIS(62),VRDIS(62),WOP(62),VOP(62),DSI(61).
    2 S(61),C(61),DSIU(61),SO(61),CO(61).DT1O(61).E1(61).DT1(61).
    3 E2(62),EPS(61.6́),FNOR(61).BMOM(61),O(61),VDD(61),WDD(61).
    4 VIT(G2).WIT(62).EPST(61,6).DEPS(61,6),S1GT(61.6).S1GC1(61.6).
    5 SIGC2(61.6),CMT(12),TP.S1G(61.6),R,T,DP,TF,TG
    DIMENSION DATA (EOO)
    500 FORMAT (SE14.8)
    501 FORMAT (12AG)
    502 FORMAT (712)
    5 1 0 ~ F O R M A T ~ ( 4 9 H 1 ~ D E F O R M A T I O N ~ P R O F I L E ~ O F ~ A N ~ I M P A C T ~ L O A D E D ~ R I N G . 4 2 X . ~
    1 A2. \H/.A2.1H/.A2.6X5HPAGE | 14/5X12A6)
    511 FORMAT (1HO,8X,4HDT =, E15.8,3X.3HE =,E15.8,3X,6HS1G1 =.E15.8.3X.
        1 AHTC =, E15.B/9 44HTF=, E15.8.3X,3HH=,E15.8,3X.GHALFA =.E15.8.
    2 3X4HSM =.E15.8/9X4HT =, E15.8.3X.3HB =, E15.8.3X.GHRIN =.E15.8.
    3 3X4HEP = .E 15.8/9X4HTP =, E15.3.3X.3HR =.E15.8)
5 1 2 ~ F O R M A T ( 1 H O . 8 X 4 H T I M E , 1 4 X G H W I T ( 1 ) , 1 4 X G H V I T ( 1 ) . 1 4 X . B H E P S ( 1 . 6 ) . 1 2 X . , ~
    1 BHEPS(I,1), 7X,1H1)
513 FORMAT (2HO .5XE12.6)
514 FORMAT (19X.4E20.8.2X12)
5 1 5 ~ F O R M A T ~ ( 8 \times 1 1 H ( C O N T I N U E D ) ) ,
516 FORMAT (9X.45HINITIAL DISPLACEMENT EXTENDS FROM MASS-POINT . I2.IX.
    1 14HTO MASS POINT . 12)
    CALL FPT(.TRUE.0O)
    CALL SSWTCH (3.JSS)
    CALL PLOTS (DATA.800)
    CALL PLOT (0.0.5.0.-3)
    CALL DATE (IDI.ID2.ID3)
    NPGN=1
    1 READ (5.501) CMT
    3 WRITE (6.510) 101.102.ID3.NPGN.CMT
    READ (5,500) DT,E,EP,SIG1,TC,B,H,ALFA,SM,T,RIN,R,TP,TF
    READ (5.502) NPL.K1.K2.L1.L2.L3.L4
    TI=TC
    TG=TP
    WRITE (6.511) DT,E,SIGI,TC,TF,H,ALFA,SM,T,B,RIN,EP,TP,R
    WRITE (6.516) K1.K2
    WRITE (6.512)
    NPGN=NPGN+1
    LC=10
    IF (NPL.EQ.O) GO TO 6
    RC=0.
    DO 4 1=1.10
    RC=RC+S.
    IF (R.LE.RC) GO TO 5
    4 CONTINUE
```

```
    5 DP=1
    6 AF=B*H/6.
        D=H/6.
        DO 20 J=1.6
        FJ=J
20 PSI(J)=D*(FJ-((6\bullet+1\bullet)/2.))
    SALFA=SIN(ALFA)
    CALFA=COS(ALFA)
    DO 600 1=1.62
    RD1SP(1)=0.0
    IF (I.GE.KI.AND.I.LE.K2) RDISP(I)=RIN
600 CONTINUE
    DO 601 1=1.31
    FI=1
    BETA(1)=ALFA*(1.05-FI/30.)
    CBETA(1)=COS(BETA(I))
    SBETA(I)=SIN(BETA(I))
    K=63-1
    WO(I)=R*(CBETA(I)-CALFA)
    WO(K)=WO(1)
    VO(1)=R* (SALFA-SBETA(1))
    VO(K)=R* (SALFA+SBETA(I))
    WRDIS(1)=-RDISP(I)*CBETA(I)
    WRDIS(K) =-RDISP(K)*CBETA(!)
    VRDIS(1)=RDISP(1)*SEETA(1)
601 VRDIS(K)=-RDISP(K)*SBETA(1)
    DO 602 i=1.62
    VI(I)=VO(I)+VRDIS(I)
602 W1(I)=WO(1)+WRDIS(1)
    V1(62)=VO(62)
    V1(61)=VO(61)
    V1(1)=VO(1)
    V1(2)=VO(2)
    W1(1)=WO(1)
    W1(2)=wO(2)
    W1(61)=WO(61)
    W1(62)=WO(62)
    00 608 I=1,62
    WOP(I)=WO(I)
608 VOP(1)=VO(I)
    DO 21 i=1.61
    DSI(I)=SORT((ABS(VI(I+1)-VI(I)))**2+(ABS(W1(I+1)-WI(I)))**2)
    S(I)=(WI(I+1)-WI(I))/DSI(I)
    C(I)=(VI(I+1)-VI(I))/DSI(1)
    DSIU(I)=SORT((ABS(VO(I+1)-VO(1)))**2+(ABS(WO(I+1)-wO(i))j**E)
    SO(1)=(WO(1+1)-WO(I))/DSIU(I)
    CO(I)=(VO(I+1)-VO(I))/DSIU(I)
```

```
    21 El(1)=(DSI(1)-DSIU(1))/DSIU(I)
    DO 611 1=1.60
    DTIO(I+1)=SO(I+1)*CO(1)-CO(1+1)*SO(1)
    DTI(I+1)=S(I+1)*C(I)-C(I+1)*S(I)
    E2(I+1)=2.*(DTI(I+1)-DTIO(I+1))/(DSIU(I+1)+DSIU(I))
    DO 27 J=1.6
27 EPS(1,J)=E1(I)-PSI(J)*E2(1+1)
611 CONTINUE
    DO 271 J=1.6
271 EPS(61,J)=EPS(60,J)
    DT1O(1)=0.
    DT:(1)=0.
    E2(1)=0.
    E2(62)=0.
    WRITE (6.513) T
    WRITE (6.514) (WIT(1).VIT(1),EPS(1.6).EPS(1.1),1,1=1.31)
    LC=LC+33
    DO 29 I=1.01
    DO 29 J=1.6
    SIG(I.J)=E*EPS(I|J)
    IF (EPS(I.J)) 32.31.30
29 CONTINUE
68 DO 38 I=1.61
    FNOR(I)=0.
    BMOM(1)=0.
    DO 38 J=1.6
    FNOR(1)=AF*SIG(I,J)+FNOR(I)
38 BMOM(I)=AF*SIG(I,J)*PSI(J)+BMOM(I)
    OO 39 I =1.60
39Q(I+1)=(BMOM(I+1)-BMOM(I))/DSI(I+1)
    Q(1)=Q(2)
    Q(61)=Q(60)
    DO 42 1=2.61
    VOD(1)=(FNOR(1)*C(1)-FNOR(1-1)*C(1-1)-Q(1)*S(1)+Q(1-1)*S(1-1))/SM
    WOD(1)=(FNOR(1)*S(1)-FNOR(1-1)*S(I-1)+Q(I)*C(I)-Q(I-1)*C(I-1))/SM
    VIT(I)=VDD(I)*DT**2 +2.*V!(I)-VO(I)
    42 WIT(I)=WOD(1)*DT**2 +2.*W1(1)-WO(I)
    VIT(1)=VOP(1)
    VIT(2)=VOP(2)
    VIT(61)=VOP(61)
    VIT (62)=VOP(62)
    WIT(1)=WOP(1)
    WIT(2)=WOP(2)
    WIT(61)=WOP(6i)
    WIT(62)=WOP(62)
    DO 47 I=1.62
    VO(1)=V1(I)
```

```
    V1(1)=V1T(1)
    WO(1)=W1(1)
47 W!(1)=W!T(I)
    DO 51 1=1.51
    DSI(I)=SORT((ABS(VIT(I+1)-VIT(I)))**2+(ABS(WIT(I+1)-WIT(I)))**2)
    S(I)=(WlT(I+1)-W!T(1))/DSI(1)
    C(I)=(VIT(I+1)-VIT(I))/DSI(1)
51 El(l)=(DSI(I)-DSIU(I))/DSIU(I)
    DTI(1)=0.
    E2(1)=0.
    E2(62)=0.
    DO 54 1=1.60
    DTI(1+1)=S(1+1)*C(1)-C(1+1)*S(1)
    E2(I+1)=2**(DTI(I+1)-DTIO(I+1))/(DSIU(I+1)+DSIU(I))
    DO 53 J=1.6
53 EPST(I|J)=E1(I)-PSI(J)*E2(I+1)
54 CONTINUE
    DO 541 J=1.6
541 EPST (61,J)=EPST (60,J)
    DO 56 i=1.61
    DO 58 J=1.6
    DEPS(1.J)=EPST(I|J)-EPS(I.J)
    EPS(1,J)=EPST(I,J)
    SIGT(I\bulletJ)=SIG(I!J)+E*DEPS(I|J)
    SIG(I,J)=SIGT(I\bulletJ)
    IF (DEPS(1.J)) 61.60.59
58 CONTINUE
56 CONTINUE
    T=T+DT
    IF (NPL.EQ.O) GO TO 151
    IF (TG.GT.T) GO TO 151
    CALL GRHR
151 IF (T•GE.TC) GO TO 72
    70 IF (TF.GT.T) GO TO 68
    69 GO TO 1
    72 IPGE=1
        LC=LC+4
            IF (LC.GE.54) GO TO 87
            LC=LC-2
73 WRITE (6.513) T
            IPGE=2
            DO 74 1=1.31
            LC=LC+1
            IF (LC.GE.54) GO TO 87
    89 WRITE (6.514) WIT(I),VIT(I),EPS(I.6).EPS(I.1).I
    7 4 \text { CONTINUE}
            TC=TC+TI
```

GO TO 70
87 WRITE (6.510) ID1.ID2.ID3.NPGN.CMT
WRITE (6.512)
WRITE (6.513) T
LC=6
NPGN $=$ NPGN +1
GO TO (73.88). IPGE
88 WRITE (6.515)
$L C=L C+1$
GO TO 89
30 SIGC1(1,J)=S1G1+EP*EPS(I,J)
IF(SIG(1.J)-SIGC1(1, J))33.33.34
33 SIG(I.J)=SIG(I•J)
GO TO 29
34 SIG(I.J) =SIGCI (I.J)
GO TO 29
31S1G(1,J)=S1G(I.J)
GO TO 29
32 S1GC2(1, J)=-SIG1+EP*EPS(1, J)
IF(SIG(I, J)-SIGC2(I.J)) $35 \cdot 36 \cdot 36$
35 SIG(I•J)=S1GC2(1,J)
GO TO 29
36 SIG(I.J)=SIG(I, J)
GO TO 29
59 SIGC1(I, J)=S1G1+EP*EPS(I,J)
IF(SIG(I.J)-SIGCI(I.J))62.62.63
62 SIG(I,J)=S1G(I, J)
GO TO 58
$63 S 1 G(I \cdot J)=S 1 G C 1(1 \cdot J)$
GO TO 58
60 SIG(I.J)=SIG(I, J)
GO TO 58
61 S1GC2 (I, J)=-S1G1 +EP*EPS (1, J)
IF(SIG(I.J)-S1GC2(I, J)) 64,65,65
64 S1G(I.J)=SIGC2(I.J)
GO TO 58
65 SIG(I•J)=SIG(I•J)
GO TO 58
END
\$IBFTC GRHR LIST
SUBROUT INE GRHR

1 (31),RDISF(ǴG), WRDiS(52):VRDIS(62),WOP(62).VOP(62).DSI(61).
2 S(61),C(61).DSIU(61).SO(61).CO(61).DTIO(61).E1(61).DTI(61).
3 E2(62), EPS (61.6), FNOR (61), 日MOM(61). O(61),VDD(61).,WDD(61).
4 VIT (62).WIT (62), EPST (61.6), DEPS (61.6).SIGT(61.6).SIGC1(61.6).
5 SIGC2(61,6),CMT(12),TP,S1G(61,6),R,T,DP,TF,TG

```
    DIMENSION X(62):Y(62)
    RAD=R/DP
    XCO=RAD*2.
    CALL SYMBOL (RAD,0.0.0.14.3.0.0.-1)
    CALL SYMBOL (RAD.0.0.0.12.4.0.0.-1)
    CALL CIRCLE (XCO.0.0.0.0.360.,RAD.RAD.-.5)
    DO 2 I=1.62
    Y(I)=VIT(I)
2 X(I)=WIT(I)
    IF (R.LE.5.O) GO TO 4
    DO 3 I=1.62
    X(1)=X(I)/DP
3 Y(I)=Y(I)/DP
4 DO 5 1=1.62
5 \text { CALL SYMBOL (X(I).Y(I).0.10.3.0.0.-1)}
    CALL SYMBOL (.02.-2.54..14.6HTIME = .270..6)
    TIME=T*10.**6
    CALL NUMBER (.02.-3.26..14.TIME.270..1)
    CALL PMUY (.02.-3.98..14)
    CALL SYMBOL (.02.-4.10..14.4HSEC..270..4)
    TG=TG+TP
    IF (TG.GT.TF) GO TO 8
    RIP=2\bullet+2**R/DP
7 CALL PLOT (RIP,0.0.-3)
    RETURN
8 RIP=1*02+2.*R/DP
    CALL SYMBOL (RIP.4.44..21.44HDEFORMATION PROFILE OF AN IMPACT LOAD-
    1ED RING.270.*44)
    RIP=0.98+RIP
    GO TO 7
    END
```


	- $0.14505846 \mathrm{E}-02$
	-. $14866235 \mathrm{E}-02$
	336772 AI
	0.481
	0.71857439
	0.122882
	-.20364607
	0.248885
	0.54
	0.3325
	50
	.1101943
	0.43323598
	. 371024
	-0.2867545
	3374
	45459
	5383515
	. $57009852 \mathrm{E}-01$
	18

VIT(I)
-0.21961675E 01
-0.24359*05E 01
-0.2654CACSE 0.1
-0.28481329E OL
-0.30173184E 01
-0.31636908E 01
-0.32679252E 01
-0.33347156t 01
-0.33543645E O1
-0.33173926E O1
-0.32032227E O1
-0.30244655F 01
-0.27468841E 01
-0.24424!387E 01
-0.21392856E 01
-0.18887301E J1
-0.16604426E OL
-0.14409805E 01
-0.12089104E 01
-C.9621247YE OO
-0.69853511F 90
-0.42233184E-C0
-0.13647829E-00

RING PROGRAM

Memory Required

Object Program	$(13523)_{8}$
Blank Common	$(10264)_{8}$
I/O Buffers	$(1125)_{8}$

Time for Execution (sample problem) 9 min

Routines Required (those not included with IBM's IBSYS)

RING	CIRCLE
GRHR	FPTMOD
PMUY	DATE

[^0]: * Raised numbers in parentheses indicate references at the end of this report.

