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Abstract

Many nonlinear systems _.an be interpreted as linear transformations between vec-
tor spaces under appropriate definitions for the vector operations on the inputs and
outputs. The class of systems which can be represented in this way, is discussed here.
This class, referred to as the class of homomorphic systems, is shown to include all
invertible systems. Necessary and sufficient conditions on a noninvertible system such
that it is a homomgrphic system, are derived.

° A canonic representation of homomorphic systems is presented. This representa-
tion consists of a cascade of three systems, +Me first and last of which are determined

..... only by the vector space of inputs and the vector space of outputs, respectively. The
. second system in the canonic representation is a linear system. Necessary and suf-

ficient conditions are presented under which all of the memory in the system can be
concentrated in the linear portion of the canonic representation. A means for Classi-
fying homomorphic systems, suggested by the canonic representation, is discussed.
This means of classification offers the advantage that systems within a class differ
only in the linear portion of the canonic representation. Applications of the theory are
considered for a class of nonlinear feedback systems.
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I. INTRODUCTION

The analysis and characterization of linear systems rely heavily on the principle of

superposition which these systems satisfy. The superposition integral and system func-

tion representations, for example, are a direct consequence of the fact that the response

of a hnear system to each input in a set of inputs determines the response to any linear

combination of inputs in that set.

In contre_t, nonlinear systems do not satisfy this principle of superposition. The

determination of a means for representing nonlinear systems has been the subject of con-

siderable attention for many years. In 1887, Volterra 1 formulated a functional expansion

of continuous nonlinear operators in the form of a generalization of the Taylor's series

expansion of a nonlinear function. This expansion, applied to systems, provides a repre-

sentation of the system operator. A representation of time-invariant, realizable non-
Z

linear systems was presented by Wieners in 1958. In his theory, system response to

shot noise is used to determine the parameters of the representation. Wiener's formu-

lation is based on the expansion of the past of an input in terms of Laguerre functions,

which was first presented by Cameron and Martin. 3 The response of a realizable time-

invariant nonlinear system is expressed as a nonlinear combination of the coefficients

_: in this expansion. Cameron and Martin represented the nonlinear combination Of these

coefficients in termslof Hermite functions. An alternative representatio n of the non-

'i linear combination of the coefficients was developed by Bose. 4, in 1956. Much of the

i research being conducted, at present, on the representation of nonlinear systems is

based on Wiener's original ideas.

This report presents a different approach to the characterization of nonlinear sys-

tems, which is based on linear algebra. The fact that vector spaces of time functions

: can be Constructed under a variety of choices _or the definitions of vector addition and

. scalar multiplication permitE many nonlinear. Systems to be representable as linear

transformations between vector spaces. Specifically, ff fl(t) and fz(t) represent any

. _ two system inputs, let fl(t) o fz(t) denote the combination of t_ese inputs under a spec-

flied rule, such as addition, multiplication or convolution. If c is any scalar, let c>fl(t)

denotethe combination of the scalar c and the input fl(t). Similarly, let o denote a
rule of combination between any two outputs_ and / denote a rule of combinatic, n between

any scalar and any output. If the system inputs constitute a vector space when o is inter-

preted as vector addition and > is interpreted as scalar multiplication, _d if the system

operator _ has the property that

-- - [tl(t) o _ ,[fzct)] -
i

and

,[c>fl(t) ] : c/,[fl(t) ],

then it is representable as a linear transformation between vector spaces. In the case

I

I
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for which the operations o and o are addition and the operations > and / are multi-

phcation, the system is a linear Jystem. Otherwise, the system is in general nonlinear.

Systems representable in this way ar_. referred to here as homomorphic systems, a

term motivated by the algebraic definition of a homomorphic mapping between vector

spaces.

The algebraic fundamentals for the study of homomorphic systems are presented in

Section II. This presentation sets down the basic postulates of linear algebra and devel-

ops the algebraic theorems that are needed in the study of horn _morphic systems.

In Sections III and IV the properties of linear transformations are used to investigate

homomorphic systems. It is shown in Section DI that every invertible system is hc,mo-

morphic for any choice of the input vector space. For noninvertible systems, necessary ..

and sufficient conditions are derived under which the systems are homomorphic.

In Section IV a canonic representation for homomorphic systems is developed. This

representation consists of a cascade of three systems, the first and last of which are

detel.mined entirely by the i_put and output vector spaces, respectively. The second

system in the representation is" a linear system. Necessary and sufficient conditions

are derived in Section IV under which the first and last Lystems in the canonic repre-

sentation are memoryless. Section IV also includes a discussion of thc use of the can-

or.ic representation in treating a class of nonadditive feedback systems.

The canonic representation presented here offers a convenient means for classifying

homomorphic systems. Systems within a given class differ only in the linear portion of

their canonic representation and hence a comparison of systems within a class reduces

to a comparison of Hnear systems. Alternatively, the analysis of a homomorphic system,

when its class is known, reduces to the analysis of a linear system.

i
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If. VECTOR SPACES AND LINEAR TRANSFORMATIONS

Z.1 INTRODUCTION

The results presented in this report draw heavily on the notation,concepts, and

theorems of linearalgebra. Hence itis appropriate to introduce the fundamental prop-

erties of vector spaces and linear transformations, and to remind the reader who is

familiarwith vector spaces of the properties used here. Although proofs of alltheorems

have been included, itisthe theorems themselves that willassume primary importance.

For the reader who is familiar with linear algebra:,a quick review should be adequate

to convey the pointof view toward linear algebra which is used in this report. Many of
5-7

the theorems and proofs presented here have been published iv others. Some of

these were reformulated in terms thatwere more meaningful within the contextof this

report. The remainder of the theorems were formulated and proved _Jecificallyfor the

purposes of thisreport.

2.2 GROUPS, FIELDS, AND VECTOR SPACES

It is convenient to introduce the postulates of the algebra of vector spaces by intro-

ducing the postulatesof groups, which constitutea weaker algebraic system.

DEFINITION I: A group G is a collectionof objectsfor which a binary operation

. is defined, subjectto the followingpostulates:

I. If a and b are in G, then a.b is in G. _

2. If a, b, and c are in G, then

(a,b),c = a.(b*c). .

3. There exists a unique element e in G, called the identity element, suchthat for

-all a in G,

a.e=e,a= a.

4. For every element a in G, there exists a unique element a-1 in G, such that

a.a -1 = a-l*a = e.

If the group G has the property that for all elements a and b in G, a,b = b.a, then G

is referred to as a commutative or Abelian group. Often when discuss_g Abelian groups,

the binary operation associated with the group is denoted + to emphasize the fact that

the group operation is commutative. In this case, the identity element is referred to

as the zero element. This notation will be used now. Little confusion results when the

elements of the groups are abstract objects. When the group elements are real or com-

plex numbers o." functions, however, the reader should remember that the element a 1in the group is not necessarily the addition of the numbers (or functions) a and b. The

algebraic postulates can be satisfied, for example, if a+b is defined as the product of

the numbers or functions a and b.

3
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DEFINITION 2: A field F is a collection of objects" ar, soc._.ated with which there are

two binary operations. The first operation is denoted _-+b. The second operation is

denoted a.b. These operations satisfy the following postulates:

1. The field F is an Abelian group under the operation +.

Z. The nonzero elements of F are an Abelian group under the operation . . The

identity under this operation is denoted by 1.

3. For any a, b, and c in F,

a. (b+c) = a.b+a, c.

It should again be mentioned that the operations + and . , although satisfying the same

algebraic postulates satisfied by addition and multiplication of numbers or functions,

are not necessarily restricted to be these operations when the elements ¢,: the £1eld are

chosen to be real or complex numbers or functions.

DEFINITION 3: A vector space consists of

t. A field F of scalars;

2. A set V of obje=_s called vectors and a binary operation called vector addition

(to he denoted +) under which t!_:_ ._e:t V constitutes an Abelian group; and

3. An operation cal.[ed _ca!ar multiplication which associates with each scalar c in

F and vector v i,: V a vect.c,r cv in V called the !)roduct of c and v in such a way that

. (a) Iv = v ior every v in V

(b) (cI'cz)v= c!(CzV_ -

(C) C(Vl+-2_= cvI + cv2

(d) (c1+c2) _ = ClV +c2v. i

The inverse of a vector _:: is denoted -v. !._ " ..-: ,.'.,asily be verified that ]

(-l)v= -v
and •

"(0Jr= 0

DEFINITION 4: Let V be a vector sp_ce over the field F. A subspace of V is a t

subset V 1 of V which is itselfa vector space over F with the operations of vector _ad- i

itionand scalar multiplicationon V. I
A simple example of a subspace of V is the space consisting of the zero Vector I

t
alone. When verifyingthata subset of a vector space is a subspace we need not verify I

allof the postulatesof a vector space, since many of the postulatesare implied by the I

factthatthe set is a subset of a vector space. Ingeneral, itis sufficientto show that _

if v 1 and v2 are in V 1 , then any linear combination of v I and v 2 is also in V I. I
I

D'_.FINITION 5: A vector space can be extended to what is termed an inner product

space by definingthe inner product between any t_vo vectors in the spa_e. The inner I

' product assigns to each ordered pair of vectors v I, v_ in V a scalar {v I, v 2) in F in I

- 1such a way that

.. !

I
!
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I. (vl+vZ,v 3) = (vl,v 3) + (Vz,V3).

2. (CVl,V 2) = c-(vl,vZ). _....

3. (Vl,v2) = iv2,Vl), where the bar denotes complex conjugation.

4. (v,v) > 0 if v_0.

Two vectors having the proper' _' that _neir inner product is zero are said to be _-

onal. The length of a vector v in an inner product space is defined as the squa_e root

of (v,v) and is denoted llvll.A set of v_ctors that are orthogonal to each other and have

vnitlength as termed an orthonormal set.

Vector spaces can be constructed for which the elements are _unctionsof time, but

for which the operations of vector additionand scalar multiplicationdo not correspond

to additionof time functions and multiplication of time functions by scalars. For
nt

example, consider the set of alltime functionsof the form v = e , where n is a real

number. Ifwe associatewith this set the fieldof real numbors and definevector addi....

tion and scalar multiplicationas

nlt enZ t J
v l+v z=v l(t) vz(t) = e

and ...........

cv = Iv(t)]c= lent]c, _

then this set constitutes a vector space.

• Many of the impo_ant and useful theorems concerning vector spaces and linear

transformations between vector spaces stem from the 1act thaf a set of basis vectoxs

can always be found for a finite-dimensional vector _space. The notion of a basts is

: presented in the following definitions and theorems.

D_FINITION 6. Let V be a vector space over F. A finite subset S of V is said to

be linearly dependent if there exist scalars c I , c 2, ..., c n in F, not all. of which are 0, ......

and distinct vectors v 1 , vz, . .., vn in S such that

]
ClV I +CzV z+..,+cnv n= O. _

!

I A set that is not linearly dependent is called linearl_ independent. If a set _f vectors is

infinite, then it is said to be a linearly indep'_,_de,_t set if every finite subset of it is

t linearly independent. A set of vectors in V which is linearly independen_ and spans V,

that is, i_ such that any vector in V can be expressed as a finRe linear combinationS-of-

t 'the vectors in the set, is referred to as a bast___sfor V;

i It can be verified that any set containing the zero ,'ector is a linearly dependent set,• and that the representation for any v..-tor in terms of a basis is unique.

I THEOBEM I: Let V be a vector space for which the finite set of vectors v I, vZ,

1 "'" ' vn forms a basis. Then an:? other basis for V contains exactly n vectors.
!
t

i
I
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PJ;OOF: First, we shallshow that any set of vectors containingmore than n ele-

ments must Le linearlydependent. To this end, letWI' wz' """'Wm be a set of m vec-

tors from V with m> n. Since the set v1,v2.... ,vnis abasis, each of the vectors

w i is expressible as a linear combination of the vectors vI,v2, ..., Vn; thatis,

n

wi 5i -
j=l

Let k 1,k 2, ..., km be scalars from F. Then

m m n n I_l _

Sir.cem > n, the set of equations

in

c_iki = 0, j = l, 2, ..., n .-
i=1

has a nontrivialsolutionfor the unknowns k1, k2, ..., km. Thus a set of scalP_rscan

be found, not allof which are zero, with the property that
/

m
,r==_

kiwi --0.
i=1 _.-.

" " "J °'*' m _.-Hence the set w i w 2, w cannot be a linearlyindependent set; therefore, no tin-
: - "" early independent set in V, in particular,no basis for V can containmore than"n vec-

• ---:: tots. Now assume that there exists a basis with p vectors, where p < n. Then, by." _ . . -

.. ,virtueof the discussion above, there could.notexlsta basis with more than p vectors,

But the set of basis vectors Vl, v2, ..., vn has more than p vectors. Thus there could

not have existeda basis with p vectors, where p < n.

.- By virtueof Theorem I, we see that any basis for a vector space with a finitenum-

" ber of basis Vectors contains the same number of vectors. -It is this property of vector

spaces that permits the definition of the dimension of a vector space independently of

any particular basis.

DEFINITION 7: The dimension of V is defined to be the number of elements in a

basis of V. The dimension of a vector space V will be dencted dim V.

Many of the theorems of linear algebra center around finite-dimensional vector
2

spaces. Infinite-dffhensional vector spaces present special problems and many theorems

- cotAcerningthese spaces require specialrestrictionson the spaces.. Infinite-din-_.nsional

vector-spaces:wiZlbe considered. Befoce doing so, it.isiinportantthat the properties

of finite-dimensionalvector spaces be understood so thatthe extensions of these prop-

erties to infinite-dimensional spaces will be clearer.

i
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THEOREM 2: Let S be a linearly independent subset of a finite-dimensional vector

space V. Then S is part of a basis for V.

PROOF: Let W 0e the subspace of V spanned by S Then, by definition, S is a

basis for W. If W= V, then S is alsoabasis for V and the proof is complete. If W

is a proper subsp.ace of V (that is, contained in but not equal to V), let v I be a vector

that is in V but not in W. The set {Vl ,S} obtained by adjoining v I to S is linearly inde-

pendent, for if v I could be expressed as a linear combination of vectors in S, then v 1
would be in W.

Let Vl be the subspace of V spanned by {Vl,S }. If V 1 = V, then (Vl,S } is a basis

for V, since it is abasis for V I. If V 1 is aprope,- subspace of V, let vZ be avector

that is in V but is uot in V 1. Then the set {Vz,Vl,S } must be linearly independent. Let

this process b£ continued until the set {Vn,Vn_ 1 ..... v2,v 1,S} contains exactly dim V ele-

ments. Since these vectors are all linearly independent, the space Vn spanned by this

set must be all of V; otherwise, a vector Vn+ I that is in V but not in V could be -.-..- n

adjoined to this set, forming a linearly independent set wi_h more than dim V elements.

_ In the proof of Theorem I, however, it was shown that no Linearly independent set of V

could contain more th,_Lu dim V elements.

By the procedure above, then, the set S was extended to a basis of V and hence is

itself part of a basis.

It follows from Theorem Z that if V 1 is a proper subspace of a finite-dimensional

vector space V, then dim V 1 < dim V. This follows from the fact that any basis for V 1

: is part of a basis for V. Since V1 is a proper subspace of V, however, a set of vectors "o -:

must be adjoined to the set of basis vectors for V 1 to form a basis for V, these vectors
being chosen by the procedure given in the proof of Theorem 2.

The existence of a basis leads to a representation of a vector as an n-tuple of

scalars. This representation comes about by expressing ever T "_'ector in terms cf an

ordered basis for the space V. A one-to-one correspondence can then be drawn between

any vector in V and the n-tuple of the coordinates expressing this vector in terms of the

ordered basis. This is done formally by first defining a vector space, the. elements of

which are n-tuples having entries from the field F.

DEFINITION 8: Th_e vecto..__._rspace F n is defined to be the vector space having ele-

i ments of the form (al-,a2,..., an), where a I, aZ, . .., an are scalars from the field F.
i The vector addition of two vectors (a I , a2, ..., an) and (bI , b2,..., bn) in F n is defined as
i
I

i (al, a2,... , an) + (bl,b2, . bn) -- (al+b I a2+bz, .., an+bn) .
i

! The scalar multiplication of a vector (a I , a2, an) in Fn with a scalar c in F is

i -defined as .. -
! . .

• c(a l,az,...,a n )'= (ca I ,ca 2,...,can).
i

Let V be a finite dimensional vector space over F with

?
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dimV= n.

If v I , v 2, ..., v n is an ordered basis for V, then any vector v can be expressed in the
form

v= alv I +aZv 2+... +any n.

If we draw a correspondence between v and the n-tuple (al,a2,...,an) in Fn0 then this
correspondence will be one-to-one, since any vector v in V can be expressed in one

and only one way in terms of a given ordered basis.

Z.3 QUOTIENT SPACES

A concept that will have application in the discussion of linear transformations, and

also in the discussion of homomorphic systems, is that of a quotient space. The essence

of the idea is to divide a vectoi _ space V into sets of vectors, S1, Si, ..., Sn with the

property that the sets S 1, Sz, ..., Sn can themselves be considered as vectors in a
vector space.

DEFINITION 9: Let V 1 be _ -_ubspace of V, and v 1 be a vector in V. Let S 1 be

the set of all vectors in V which can be expressed in the form v 1 + w for some w in

V.,. Denote this set by v 1 + V 1. This set is called a coset of V generated by v I and

- V1. The set of all cosets generated by vectors v in V, and the sub.space V 1 is called

a quotient space of V, modulo V 1, and is denoted by V/V 1.

THEOREM 3:_ -Let-.V bc a vector space over F, and V 1 be a subspace of V. The

quotient space V/V1 is a vectnr space over F with the following definitions of vector
addition and scalar multiplicatiom

(Vl+V I)+ (Vz+VI) = [Vl+V2] + V I -.

c(v1+vI)= [cvl]+ v,.

PROOF: To show that V/V 1 is a vector space we must verify that allthe postulates
of a vector space as pr_ented in Definition 3 are satisfied. .

1. The set V/V 1 is an Abelian group, since

(a) If v 1 +V 1 and vZ+V 1 are any two cosets of V, then their Vector stun

(Vl+V z) + V 1 is also a coset of V, and

(Vl+V I) + (vz+V I) = (Vl+V z) + V 1

= (Vz + V I

= (vz+V 1)+ (vl+V1).

(b) Let vI+V I, vz+V l, and v3+V 1 becosetsof V; then

8
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[(vl _vl)+(vz+Vl)] + {v3+vI) = [(v1+Vz)+Vl] + (v3+VI)

= [(vF_Vz)+V3] + v I

= [Vl )]+ v I

= (Vl+V I) + [(v24Vl)+(v3+-Vi)].

(c) It can be verified that the coset (O+V 1) has the properties required for an

identity element in V/V 1.

(d) Let v+ V 1 be acosetof V; then (-v) +V 1 is the inverse of v+V 1.
Z. The fou=. properties required of scalar multiplication are satisfied.

(a) l(V+Vl_ = Iv + V 1 = v-+ V I.

(b) _Cl-C2}(V+Vl) = c I • cZv + V 1 = Cl[Cz(V+Vl)].

(c) c[(Vl+Vl)+(VR ���X�@�=c[(vl+v2) ��I]

= [(CVl+CVz)+V 1 ]

= (CVl+Vl) + (cv2+Vl).

(d) (Cl+C2)(v+VI)- [(Cl+C2)V+Vl].

= [ClV+C2v+V I ]

= (ClV+V I) + (CzV+VI):

To aid in understanding the concept of a quotient space, consider a geometrical two-

dimensional coordinate system _n the x-y plane. All vectors in this plane form a vector

space, which we can denote by V. Let Vl be the subspace of V consisting of all vec-
tors lying in the x direction. Let v be a vector in V having a component in the y

direction equal to Vy. Then the coset v + VI is the set .of all vectors in the plane having

: Vy. as.their y component. The quotient space V/V I is the set of all such cosets for ....... -: .

i different values of Vy.

THEOREM 4: Let v a + V i and v b + V 1 be any two cosets in V/V I. If these cos.ets
; have any element in common, then they are identical.

: PROOF: Let v be ony vector that is in v a�V 1 and also in vb + VI. Then there

exists v I in V I such that
:

v= Va + Vl_

and there existsv_ in V I such that. ....... -_

J

v= Vb + v_,

_L
9 "

.... - . -'..
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Hence,

V = Vb + (V_--Vl).a

Consequently,

va + V 1 = (Vb+V_-Vl) + V 1.

But v_ -v 1 is in V1; hence,

va + V 1 = vb + Vl,

2.4 LINJAR TRANSFORMATIONS

The properties of the class of nonlinear systems to be discussed in Sections III and

IV are based on the properties of linear transformations between vector spaces. The

theorems to be derived concerning these systems will be for the most part an interpre-

" tation of theorems presented here, placed in the context of the discussion of Sections HI

and IV.

DEFINITION 10: Let V and W be vector spaces over the field F. A linear _rans-

formation from V into W is a function T from V into W which maps every vector in

V onto a unique vector in W in such a way that

T(CVl+V2) = cT(Vl) +.T(v 2)

for all vectors v I and v 2 in V and all scalars c in F. A linear transformation is said

• " to be o__ne-to-one and onto iffor each vector w in W ther _-is one and .only one vector v
in v such that

T(V) = w.

A Linear transformation that is one-to-one and onto is invertible.

If a transformation is onto but is not necessarily one-to-one, it is sometimes

referred to as a homomorphic transformation. A transformation that is one-to-one and

onto is sometimes referred to as an isomorphic transformation, that is, an isomorphic

.... _ - transformation is-an invertible homomorphic transformation.

. DEFINITION 11: The domain of a linear transformation is the set of vectors V over

which the transformation T is defined. The range R of T is defined as the set of vec-

tors in W onto which vectors in V are mapped, that is, T[V] = 1t. The null _ N of

T is the set of vectors in V that map onto the zero vector in W, that is, TIN] = 0.

Anexample of a linear transformation iS the identity mapping I of V onto V so that

' I(v) = v, for every v in V. :

. '_ - The domain and rang e of i" '_e V. The null space of I is the zero vector. Another

simple example of a linear transformation is the zero transformation Z from V to W = :

_' defined as Z(v) = O; all v in V. _he domain and null space are both the space V. The

<!
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range of Z is the set containingonl7 +.bezero vector in W.

THEOREM 5: If T is a lineartransformation from V to W, then T{0) = 0.

PROOF: T{0) = T{0+0) --T(0) + T(0). Hence, T(0) = 0.

THEOREM 6: Let T be a lineartransformation from the vector space V intothe

vector space W. Then the range of T is a subspace of W, and the null space of T is

a subspace of V.

PROOF: Let R denote the range of T. Ifthe range contains only one vector, then

thisvector must be the zero vector, since by Theorem 5 the zero vector must be in the

range. But the zero vector alone is a subspace of W, and hence in this case R is a

subspace of W. If R contains more than one vector, then we must show that,for every

pair of vectors w I and w 2 in R, the vector ClW l +cZw 2 is it.R for any cI and c2.

l . But if w I is i.n R and w z is in R, then there are (not necessarily unique) vectors v1

and v2 in V such that

I Tlv11 =w I

T(v2) - w2.

The vector ClVI+c2v 2 is in the domain V for any cI and c2, since V is a vector

space. Hence T(ClVl+CzV2) is in R, that"is, ClW 1 + cZw Z is in R. Consequently, R
is a vector space.

To show thatthe nullspace N is a vector space, we must show either that N con-

_d sists0ft_e zero vector alone or ClV1 + c2v2 is in N.for eqery cI and c2, if v I and

• vz are in N.

From Theorem 5/the zero vector must be in N. Hence ifN contains only one vec-

tor, itmust be the zero vector and consequently N is a subspace of V. If N contains

: more than one vector, then letvI and v2 be in N, that is, T(vI) = 0 and T(v2) = 0. Then,

s T{ClVl È$•�à�2)= ciT(v l) + c2T{v_)

= Cl0 + c20 •

" O --_

_r

and hence clv I +c2v 2 is in N for any c I and c 2.m

THEOREM 7: Let V be a finite-dimensional vector space over i and __Vl,Vz,...,V'n.f

be a basis for V. Let W be a vector space over F, and {Wl,W2,...,WnJbe any vectors

in W. Then there is one and only one IL'_ear transformation from V into W auch thatt

T(vi)=w i, i= I, 2,..,,n. r -

o_ "- _°-. °

PROOF: vector v in V can be expressed as _

v: L cj,
j=]

?-

_-- %,

II :_
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x-"

where the coefficients cj are unique. If we define T(v) = ___, cjwj, then
j=l

T(v i) = w i, i = 1, 2, ..., n.

It can be verified that, with this definition, T is a linear transformation. To prove

uniqueness, let T 1 be any linear transformation with the property that

TI(V i) = w i, i= I, 2, ...,n.

Then

T 1Iv)= T 1 cj = cjT1(vj)= cjwj,
j=l j=l

since T 1 is linear. Hence T 1(v) = T(v) for all v; consequently, the transformation T
defined above, is unique.

THEOREM 8: Let V and W be vector spaces over F, and T be a linear trans-

formation from V into W. If T is one-to-one and onto, then the inverse ".ransformation

T -1 is a linear transformation from. W onto V.

PROOF: We must show that ff T-l(w 1) = v 1 and T-l(w2) = v 2, then T-l(cwl+w2) =

cv 1 + v 2. The fact that T(CVl+Vz) = cw 1 + w z follows from the linearity of T. Further-

more, cv 1 + v 2 is the only vector in V that maps onto cw 1 + w Z, since T is one-to-

one. Hence T -1 is linear.

DEFINITION 12. A lineiir ti-ansf0rmation T is defined to be nonsingular if the null

sp_ce of T consists of the zero vector alone.

THEOREM 9: Let T be a linear transformation from V into W. Then T is non-

singular if and only if T carries each liv.early independent subset of V into a linearly

independent subset of W.

PROOF: First, suppose T is Let the set {Vl, Vz, be a linearly

independent subset of V. If

ClT(Vl) + CzT(v2) CnT(V n) = 0,

then .

T(ClVl+CzV2+...+CnV n) = O. _

But T is nonsingular and hence

= !
cci+czvz+...+ n 0. {

"-" i
b,

•..,v ) is linearly independent, this then requires that c i = O, i = 1,- - Since the set ,..
jV_,

2, ...,n. Hence the set (vl),Tlv2),...,T(Vn)} is a linearlyindependent"sul_set_of-W._.-

._ _Next, -supposethat T maps every linearlyindependent sub.3etof V onto a linearly

_ _.

12 J
"6

4.

%-. . _

o_
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independent subset of W. Let v be any nonzero vector in v. Then the set consisting

only of the vector v is a linearly independent subset of V. Thus the set in W consisting

only of the vector T(v) must be a linearly independent subset of W and hence must be c

nonzero. Hence, T is nonsingular.

THEOREM 10: Let V and W be finite-dimensional vector spaces over F, with s

dim V = dim W = n. If T is a linear transformation from V into W, then the following a

are equivalent: v

(i) T is invertible. _"

(ii) T is nonsingular, f

(iii)If {Vl,V2,...,Vn)is any basis for V, then {T(Vl),W(v2),...,W(Vn)} is a basis c
for W. t

PROOF: It should be clear that (i) implies (ii), since the existence of an inverse

requires that the transformation be one-to-one.

(ii) implies (ii.i); for example, assume that T is nonsingular. If {Vl,Vz,...:Vn} is t

a basis for V, thenthe set {T(Vl),T(Vz),...,T(Vn) } is a linearly independent subset of

W. Hence it is part of a basis for W. But any basis of W must contain exactly n vec-

tors. Hence the set {T(Vl),T(vz),...,T(Vn) } mu_t be a basis for W.

To show that (iii) implies (i), we must show that for every vector w in W, there is

a unique vector v in V such that T(v) = w. Since {T(Vl),T(v2),..__ .,T(Vn)}__ is a basis for
W, the vector w can be expressed as

n

w= ....
j=l

n

the vector v = _ c.v.is such that T(v) = w. Ass_e thatthere is some other vec-Hence
L.a jj
j=l

for va in V such thatT(va} = w, Ifva is expressed in terms of the basis (Vl,Vz,...,Vn}as

n

va-
j=l

then

n

i T{Va) = W -
j"l

But the set {TlVll,Tlvz),...,T(Vn)} is a basis for W; hence, anYvector in W can be

expressed in one and only one way as a linear combination of vectors that form abasis. Hence,

!

.r 13
1
1

!
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aj=cj, j= l,Z,...,n;

consequently, va = v.

Theorems 7 and I0 together imply that if we have two finite-dimensionalvector

spaces V and W of the same dimension, then an invertibl,_linear transformation can

always be defined with domain V and range W, by mapping each vector in a set of basis

vectors for V, onto a differentbasis vector in W. When infinite-dimensionalvector

spaces are discussed, thisresult willbe extended to statethat an invertiblelinear trans-

formation between V and W can always be defined when a one-to-one correspondence

can be drawn between basis vectors of V and basis vectors of W, that is, thattwo vec-

tor spaces V and W are isomorphic v,henever a one-to-one correspondence can be drawn

between basis vectors of V and basis vectors of W.

THEOREM II: Every n-dimensional vector space V over the fieldF is isomorphic

to the space F n.

PROOF: Let {_,l,Vz,...,vn}__be a basis for V. Then every vector v in V is express-

iblein the form

n
V-"

v- > ckvk.LJ
i=l

:- Let T, a transformation from V to F n, be defined as

T(v) = (Cl,C2,...,Cn)

Itcan be verifiedthat T is linear, one-to-one, and maps V onto F n.

THEOREM IZ: Let T be a lineartransformation from V onto W with null space

N. Then the quotientspace V/N is isomorphic with W.

PROOF: Let v + N be a coset of V. Define the mapping _ from V/N to W as

T(v+N) = T(v).

We must first show that this mapping is well defined; that is, that _[(v+n)+N] = _(v+N)

.. for any v in V and any n in N. But -

_[(v+n)+N]- T(v) + T(n) = r(v) = T[v+N],

since n is in the null space of T. Hence, T is well defined. _ is linear, since

T[ClVl+N)+lvz+Nl]= _[(CVl+Vzl+N]

= cT(vl) + T(v2)

= cT[v I+N] + "_[vz+N].

The null space of _ is the coset (0+N); for example, assume that _(v+N) = T(v) = 0.

Then v is in N and hence is in the coset (0+N). Thus T is nonsingular and, by Theorem

10, is then invertible.

14
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Z. 5 INFINITE-DIMENSIONAL VECTOR SPACES

C

Many of the theorems that have been presented required that the vector spaces under

consideration be finite-dimens_.onal. In Sections HI and IV the primary concern will be

with hff_,_ite-dirnensional vector spaces and linear mappings between such spaces. In a

this section, therefore, infinite-dimr,_sional ___ctor spaces will be considered and some

of the important theorems previously discussed for finite-dimensional spaces will be

reformulated for the infiuite-dimensional case.

Many of the properties of finite-dimensional vector spaces relied on the fact

that such spaces, by definition, always possess a countable basis. Theorems such S

as Theorem 7, for .example, rely heavily on the fact that the basis is countable.

Although it can be shown in general that any vector space possesses a basis,

some of the properties to be discussed in the rest of the report will require

that the vector spaces under consideration have countable bases. Hence, the discus-

sion of infinite-dimensional vector spaces to be presented here w£U be restricted

to spaces of countably infinite dimensions, t_

Even with the restriction that the bases are countable, it is important to reconsider

the meaning of a linear combination of an infinite set of vectors: We wish:eventually to

carry over to the infinite-dimensional case a similar interpretation of the meaning of a

basis as a set of vectors spanning the space and providing a unique representation for

any vector in the space.

Many of the problems concerned with the extensions to the infinite-dimensional case

center around a precise definition of the equality of two vectors. When an inner product

is defined on the space, two vectors can be defined to be equal when their difference is

a vector of length zero. This definition enables many of the desired extensions to follow

in a straightforward manner. An infinite-dimensional inner-product space with certain

convergence properties is a Hilbert space. These spaces have been extensively studied

and are the most straightforward infinite-dimensional extensions of finite-dimensional C

vector spaces.

DEFINITION 13: Let H denote an inner-product space. H is defined to be a ....

Hilbert space if for any sequence of vectors in H, v 1, v2,..., Vn,... having the C
property that llVm-VnU _0 as m,n-*_, there exists a vector v in H such that

Ilvn-vll-0as
DEFINITION 14" A sequence of vectors v is called an orthonormal basis for an b

Hilbert space if it is orthonormal and has the property that the only vector in H which

is orthogonal to all vectors in the sequence is the zero vector. A Hilbert space with an

orthonormal basis is c'alled a separable Hi]bert space.

THEOREM 13: If vn is an orthonormal sequence of vectors in a Hilbert space and
n

1 1 ':

V

15 :-
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O0

converges to a limit v in H denoted v = _ kkVk.
1

PROOF: We must first show that the sequence wn has the property that I_vm-Wnll- 0
as m,n- oo. Letting m = n + p for some integer.- p, we have

p il2IIWn+p-Wn112= _kv_'
[[n+1

Since the sequence vn is an orthonormal sequence, however,

2

IF• kkVk = lXk[z.
n+ 1 n+ 1

But

_p _ n+l -

n+l 1 1 _,

eo

Since_ ]×k[z< _,.however.,we conc3".Ldethat. ,
1

_P [×klz - o as n - _o.
n+l

Consequently, Ilw_-wnll-0 as re, n-* oo; hence, there exists a vector v in H sv.ch that

[lWn-v II "*O as n--oo, that is, the sequence wn converges to the limit vector v.

.....--.-THEOREM. 14: Let vn be an 0rthogonal .sequence of vectors in a Hilbert space..._.
OO

Given any vector v in H, the scalars kk = (v,vk) satisfythe inequality_ Ikk[2< oo.
1

PROOF: /.et v I r.. •, vj be orthogonal vectors in H. By direct expansion, it can
be verified that for any v in H,

v (V,VR),k =ilvllz- i(v, vk)12, i

1 ... 1 ..... _

Since v- (y, VklVk must always be greater than or equal to zero, it follows that

c

_ 16
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llvll2 Icy,2.
!

Since this is true for any j, we have

oo o0

1 1

THEOREM 15: If v is an o.rthonormal basis for a Hi/bert space H, then each vec-
n

torv can be expressed as

o0

v = _ (V, Vk}Vk.
1

PROOF: We note, first, that the infinite sum is defined in Theorem 13, since the

sequence of scalars kfi = {v, vn) was shown in Theorem 14 to h,_ve the required pr,_p-
,D

erty of being square summable. Consider the vector w = v - Iv, Vk)Vk. We wish
!

to show that this vector is the zero vector. But (w, vj) = 0 for any j0 since

V-!V" V "consequently, the vector is orthogonal to eve :y vector in the sequence
"_ ..

vn. From Definition 14, however, the only vector orthogonal to each vector in an :'
orthonormal basis is the zero vector. Hence

oo

v- _ (V_Vk)Vk = 0
1 "

Or _--

v- _ (V,Vk)Vk. .
I

These theorems prov'de a framework for tl',einfLnite-dimensionalHi,bert spaces

thatare to be considered. Theorem 15 requires +.heexistence of an orthonormal basSs

for the spaces. This set of basis _.,ectorsspans H by virtue of Theorem I5. Itcan be

verlfiedthat this set of vectors is llneai_lyindependent, by virtueof the property th_

the only vector orthogonal to tile entire set is the zero vector. In general, it is not true

t_mt every Hi/bert space possesses an orthon_rmal basis.

An example of a Hllbert space that has an orthonormal basis is the up_,_: _c square

17
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integrable fmictions either on the infinite inter,:ul (-a0, +o0) or on the semi-infL__ite inter-

val {0, +oo). This space on the infinite interval is usually denoted LZ{-0o, 4oo), and on the

northonormal basis for L2(-o%+o0) is the set of

Hermite functions. An orthonormal basis for L2(0, +oo} is the set of Laguerre functions.

In both of these spaces, the inner product is defined as the integral over the interval of

the product of the functions.

In the previous discussion on finite-dimensional vector spaces, it was shown that the

domain of any linear transformation is a vector space. If the domain of the transfor-

mation is a Hilbert space, it is not true in general, however_, that the range will also be

a HUbert space. If continuity as defined below is imposed on the transformation, then,

as will be seen in the following discussion, the range of the transformation will be a

separable Hilbert space if the domain is a separable Hi/bert space.

DFFINITION 15: Let V a_d W be inner product spaces, and T be a linear trans-

formation from V onto W. T is said to be continuous at v if T(Vn} -_ T(v} as n -- oo if

v n -- v as n -- 0% where v n is a sequence of vectors in V. T is a continuous transfor-
mation if it is continuous at every v in V. Continuity of the transformation T is not a

severe restriction when T is linear, for it can be shown that T v, ill always be contin-

uous if it is bounded, that is, if there exists a constant M > 0 such that for every vec-

tor v inH, I!-<MIIvll.(See, for example, Berberian. 8) The set of theorems

that-follows is chosen to show that the range of a continuous linear transformation is a

separable Hilbert space if the domain is s separable Hilbert space. In ca:trying out the

proof the following preliminary results will be demonstrated.

(1) The null space N of T is a closed subspace of H, tha_ is, the limit of any

sequence of vectors in N is in N when this limit exists.

(Z) Frozn: (1), it follows that H can be decomposed into-two spaces M and N. The .

-- space N is the null space of T, and the space M is the space of all vectors in H which

are orthogonal to every vector in N. Any vector in H can then be expressed as a unique t

linear combination of a vector in M and a vector in N.

: (3) On the basis of (Z}, it will be shown that the quotient space H/N is a separable

Hilbert space, and that the linear transformation T from H/N to the range of T is a

continuous transformation, i

(4) It follows directly from (3) that the range of T is a separable Hi/bert space

Steps (l_-{'4_:will be stated formally in Theorems 16-19. -In each of these theorems H " .

• denotes a separable Hi/bert _pace, and T denotes a continuous linear transformation

with H as the domain. S

THEOREM 16: The null zpace N of T is a closed subspace of H. _ :

PROOF: Let n 1 , n_, ... be any sequence of vectors in N, and v in H be the limit i

of this sequence. We wish to show that v is in N. Since n 1,n_,... are in N, T(n 1) = _ E

T(n_) = ... = 0. The limit of any sequence in T[N] is in T[N] because T[N] = 0. Since I

T is continuoas, T(np) -- T(v) as p -* _, that is, T(v) is the limit of the sequence T(np) - ' t:
in T[H]. -Hence T(v) = 0, and v is in N. Thus N is-a closed subspace of H. '_ ..:-

18
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THEOREM 17: Let M denote the set of all vectors in H which are orthogonal to

every vector in N. Then every vector in H can be expressed in one and only one way t
as the linear combination of a vector in M and a vector in N. ¢

PROOF: Let v be any vector in H. It is stated without proof that there exists a vec- [

tor n o in N such that [IV-nol I -.< I[v-nl[ for all n in N. (The proof of this statement is n

found in Berberian. 9) Define m o = v - no. We must show that too_iS in M, that is, m o n

is orthogonal to every vector in N.

Let n be any vector in N, and k equal {m o, n). There is no Ioss in generality if

n is assumed to be unity, since, if m ° is orthogonal to every vector of unit length '-
in N, it is orthogonal to every vector in N. It can be verified by direct expansion that

tlmo-knN2= llmol[z- [klz. t_

Now, m o-kn= (v-n o) -kn= v- (no-kn}. But no+kn is in N; hence,

n

froL: *he choice of no. Hence " : R

IimolJ--<iim-_.nll _ fl
and therefore

"- : n

llmoll2-<Ilmoli2- I_.12. ; " a

Consequently, [ki 2= O, i.e. (too,n)= O. Thus m o i s in M. _ -

We see, then, that any vector v in H can be written as the sum of a vector-m in M

and a vector n in N. We must show, next, that for any vector v, m and n are unique.

Assume that m 1 and m z are in M,.n 1 and n 2 are in N, and

v= m I +n I = m Z+n2.• . . |

Then (m l-m2) + (nl-n2) = 0. But m 1 -m 2 is in M and n I -n 2 isiu N. Taking the

inner product of (ml-m 21 + (nl-n2) with (nl-nz), we have

- li%-nz>IIz=O. - 11_

Similarly, _ :

;- Ii(ml-mz)il - 0. . ._ ..- -. .z. . . . ....

Hence n l=n z and m I =m z. " ;" L

THEOREM 18: The quotient alsace H/N is a separable Hilbert space, and the linear _ _- n
• ,,_ _._;

-" transformation T from H/N to the rang_ of T is a continuous transformation. .. -- - i_ t

" ,.'- PROQF: To prove that H/N is a separable Hilbert space, we must first define an

._j :.

t-.
i,
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inner product m H/N. This can be done with the aid of the preceding theorem.

Let [v+N] be any coset in H/N. Since v can be written uniquely in the form v- m+n,

the coset Iv+N] is equal to the coset [m+N], since n is in N. Furthermore, any coset

of the form Ira+N] for _ome m is in H/N. Consequently the set of cosets of the form

[re+N] is equal to the quotient space H/N, that is, every coset has a representative ele-

ment in M. Furthermore, for every coset Iv+N] m H/N, there exists only one element

m in M such that

m+N=v+N,

since the component of v in ]VI is unique.

Let [ma+N] and [mb+N] be any two cosets in H/N, and define the inner product of
these cosets as

It can be verified that this inner product satisfies the required conditions stated in Defi-

nition 13. Let [ml+.N],. [m2+N],... denote any sequencei n H/N having the property that

_[mm+N]-[mn+N]H--0 as m,n--o0. But II[mm N]ll= _mm-mn_, and hence

-- _mm-mnH_. -* 0 as m,n- ao. Since H is a Hilbert space, there exists a vector v in H

: such that llmn-Vll -- 0 as n -- _. In particnlar, v is in M. This foLlows directly from

: the statement without proof, that if no is any vector in N, then (m n, no) --(v, n) as -"

n-- o0 (the proof of this statement foLlows from Berberian. I0) Hence U[mn N][[--0i

as _n -- _, and thus H/N is a Hilbert space.

To show that H/N is a separable Hilbert space, we must demonstrate that H/N has

" an orthonormal.basis.- Let v I, v 2, . .. be an orthonormal basis for H, and let

vj = mj +nji mj in M and nj in N.

/_y vector m can be expressed as a linear combination of the _, since

m= _ CkVk= _ Ckmk+ _ Cknk. : ],
I 1 I _

But m can bewritten in only one way as the sum of a vector in M and a vector in N;

-: hence, since m.'- m + o, it follows that I

-" 00

-_ m : Ckm k.

i: Let m_, m_,.., be the subsequence of the sequence ml, m2,.., consisting of all the
nonzero elements. Thez_ any vector in M can be expressed as a linear combination of

.... --t .... t. Let '-
"_- the vectors m I , m 2, ....

; 20
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m_ - m_/llm I II
n,

and

=s:kj- m ll"
as dictatedby the Gram-Schmidt orthogonalizationprocedure. Then the set m_, m_, .....
will be an or_honormal basis for M. It follows in a straightforward manner that the

cosets [roT+N],[m_+N],... are an orthonor_al basis for HIN. Hence, HIN is a sepa-
rable Hilbert space.

_ The finalstep in the proof of thistheorem isto show that _ is a continuous trans-

formation, thatis, we wish to show thatif

[re+N] - [re+N]- n--o0,

then .==

¥[mn+Nl- _[m+N] n-®.

; But

T[mn+N l = Tim n]

and .... .5
%

T[m+N] = T[m],

and,-since T is continuous, T[m n] --T[m] n--_o; .._.. -$-" ..... -. - ..... -_.- -

THEOREM 19: Let W denote the range of T. Then W is a separable Hilbert space. -_
PROOF: By virtue of Theorem 18, we need only demonstrate this result for the case

in which T is invertible. When T is not invertible we can replace H byLH/N, and T
t

by T. :_

Let w 1 and w 2 be any two vectors in W. Define the inner product of two vectors in
' W as

J

(:, :1 )' .(w_l,wz) = (Wl), (wz) . :-
w _i

We must show tha_this inner product satisfiesthe conditionsstatedin Definition5. i{-
._

(1} (Wl"l'wziw3} = (T-I(.wI+W2),T-I(w3)) " -.!

(El'-I(Wl) l(w21 T -llw31) -"=

= (T-l(wl >,T-I(w3>) , (T-I(Wz>,T-!(w3>)

• . .... ffi(Wl,W 31 + (wZ,w3). - --: _ _ .,_

-!
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(2) (CWl,W2) = (T-I(cwl),T-I(w2))

= (cT-I(wl), T-' (wz,)

_-
-- C(Wl, w2).

•. (31 (wl,wz)=(T-l(wl .T-l(w21)

= (wz,wl).

141 (Wl,Wll = (T-l(wll,T-1lwl I) > 0 if T-I(wl ) , 0.

----.. But T-l(wl ) _ 0 if w I ._ 0, and hence (Wl,W I) > 0 if w I _ 0..Thus, under_.. this inner
product, W is an inner product space. To show that W is a Hilbert space, we must

verify Definition 13.

Let w 1' w2,..., Wn,... be a sequence of vectors in W having the property that

llWm-WnH --0 as m,n "_oo. From the definitionof the inner product in W, llWm-W _ =:,i n

][T-l{WmI-T-l(Wn)ll. Hence the sequence T-I(Wn ) in H also has the property that

/ ]]T -llwm)-T-l(w . -*0 as m, n -*Qo. Consequently, since H is a Hilbert space; there

.......'._-- existsa vector v in H such that T-l(wn ) --v as n--co. Since T is.continuous,itfol-

_- lows that w n --Tlv) as n-* _o. Consequently, W is a Hflbert spa_e. We must show,

next, that W has an orthonormal basis.

To this end, let v 1 , v 2,. .. be an orthonormal basis for H and consider the sequence

TlVl), Tlv z),.., in W. The vectors inthis sequence are orthonormal, since

.? (T(vi), Tlvj)) = (v i, vj).

......_._ Furthermore, if w is anY`vector in W, then there exists a unique set of..scalars such
_': that
:(

._

:_ T-I (wl = CkVk

or ..

CkT Vk). " ."--" W-- { _.- _

_ 22
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Thus, the set T(Vl), T(v2),... is an orthonormal basis for W; consequently, W is a

separable Hilbert space. ,--

In Section IV, we shall be concerned with systems described by continuous transfor-

mations for which the inputs constitute a separable Hilbert space. The primary result

there will be the derivation of a canonic representation of such sys*_cms. The result

rests heavily on the fact that, by virtue of the preceding theorem, the set of system

3utputs also constitutes a separable Hilbert space. This fact, in conjunction with the

following theorem leads to the canonic representation.

THEOREM 20: Let H I and H2 be two infinite-dimensional Hi/bert spaces having

orthonormal bases. Then there exists an invertible linear transformation from H I onto

H2 •

PROOF: Let v 1, v2,.., be an orthonormal basis for HI, and Wl, w2,.., be an

orthonormal basis for H 2. DJfine a linear transformation T as

00

T(v) = _ (v,v k) wk.

We must show that T is linear and invertible, and that its range is all of W. The line-

arity is easily verified. To show that it is invertible, we must show that its null space

is zero, that is, T(v) = 0 implies v = 0, which follows directly from the linear indepen-

dence of the orthonormal basis for H2. To show that its range is all of w, we must

show that if w is any vector in H2, then there exists a vector v in H I such that

T(v) = w.

Since -Hz has an orthonormal basis, w can be expressed .in the form --- - -.'

w= _ (W,Wk) W k-
I

The sequence kk = (w,w k) is square summable, as was shown in Theorem 14. Hence,

from Theorem 13, the sum (w,w k) vk has a limit veotor v in HI, that is,

v -- }.
(w, Wk) vk •

I

But

2 -Tlv) = (w, w k) Tlv k) --
1

and fromthe definition of T, T(Vk) = w k. Hence,

23
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O0

T(v) = _ (W, Wk) Wk- w
I

which was to be shown.

The result of Theorem 20 also applies when H 1 and H2 are finite dimensional and

dim (H I ) = di_. (H Z) " ""

In the Appendix another result concerned with separable Hilbert spaces having time

functions as vectors is derived. This result plays an important role in the discussion

of Section IV. It is reserved for an appendix rather than developed here because it

relies on some of the notation and ideas discussed in Sections III and IV.

From the preceding theorems and definitions it should be clear that a separable

Hilbert. space is an inner-product space that can be approximated arbitrarily closely by

a finite-dimensional inner-product space. If the domain of a linear transformation is a

separable Hilbert space and the transformation is continuous, then the outputs can be

approximated arbitrarily closely by a flnite-dimensional approximation to the input

- space. Under the restrictions on a linear transformation and its domain, then, all of

the results derived for finite-dimensional spaces can be extended directly.

).4
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III. GENERALIZED SUPERPOSITION AND HOMOMORPHIC SYSTEMS

3.1 h_NTRODUCTION

In the past, the concepts of linear algebra have been applied to a restricted class of

systems, those that can be represented as linear transformations when vector addition

is defined as the sum of the time fur, ctions in the vector space of inputs and the vector

space of outputs. Because of the principle of superposition which these systems satisfy,

they are relatively simple to analyze. This principle of superpo.sition leads to charac-

t_-.rization by means of the superposition integral. This representation can be interpreted

as resulting from a decomposition of each of the inputs into a linear combination of infin-

itesimaJly narrow pulses. These pulses constitute a basis for the vector space of ir..p,,_._,

By virtue of the principle of superposition, the effect of the system on any function in the

vector space of inputs is determined from its effect on the basis functions, with the

result that the input and output are related through the convolution integral.

Alternatively, the set of complex exponentials of the form e st, where s is a com-

plex number, can be chosen as the set of basis functions for the input vector space.

Such functions are eigenfunctions of linear time-invariant systemS, and hence such sys-

tems have the effect of multiplying these functions by constants. Thus, when complex

exponentials are used as a basis for the vector space of inputs to a linear, time-invariant

system the system is described by the set of constants by which it attenuates these expo-

nentials, that is, it is described by its system function.

We have noted that vector spaces of time functions could be constructed with a variety

of definitions for vector addition. When advantage is taken of the generality afforded by

the postulates of vector a. dition and scalar multiplication, systems that are generally

considered to be nonlinear can be represented as linear transformations between vector

spaces. Formulated in terms of system theory, this procedure leads to a generalization

! of the principle of superposition. This principle, encompasses the class of linear sys-

i tems, as well as many nonlinear systems. In particular, it encompasses all invertible

systems, as well as many systems that are not invertible,

3. Z GENERALIZED PRINCIPLE OF SUPERPOSITION

A linear syste m with transformation T is characterized by the property that ff v 1(t)

and vz It) are any two system inputs, then

T[ClV 1 (t)+CzV 2 (t)] = c I r[v I (t)] + c2r[v 2 (t)]

for any scalars c 1 and c 2. From this definition, it is clear that the transformation _, ._ ,
defined as .i.

,[vltl] = evlt) (l)
is nonlinear, since:: " £_

-_..,:

-:._-

-- &_"
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c 1 c 2
@ [ClV1(t)+cZvz(t)]= [@(Vl)] [@(v2)] (Z)

The transformation of Eq. I does obey a form of superposition in the sense that its

response to the linear combination of a set of inputs is determined by its response to

each of the inputs in the set. The manner in which the individualresponses are combined

to produce the response to a linearcombination of inputs is defined by the right-hand side

of Eq. Z.

-, Ifthe set of inputsto the system of Eq. 1 constitutesa vector space under addition,

then the set of outputs constitutesa vector space under multiplicationand the transfor-

.d mation of Eq. I is an algebraicallylinear transformation between these spaces. Thus

this system fallswithinthe framework of linear algebra.

_. In order to avoid confusion with the more conventionalnotion of a linear system, sys-

e terns thatare algebraicallylinear will be referred to as homomorphic systems, since

they are represented by homomorphic transformations between vector spaces. The vec-

tor space of inputsto a homomorphic system will be denoted V, and the vector space of

outputswill be denoted W. The vector additionof two inputs v I and v2 will be denoted

v I o v2, and the multiplicationof an inputvector v with a scalar c willbe expressed as

(c>v). The operations o and > willbe referred to as the input operations of the homo-

morphic system. The vector addition of two outputs w I and w 2 will be denoted

at w Iu w 2, and the multiplicationof an outputvector w by a scalar c will be expressed

as (c/w). The operations o and / will be referred to as the output operations of the

system.

ty A homomorphic system with system transformation qbhas the ProPerty that

_[(Cl>Vl)O(Cz>Vz)]= [Cl/qb(Vl)]O.[cz/_(v2)] (3)

for any inputs vI and v2 and any scalars cI and c2. The property described by Eq. 3

willbe referred to as the generalized principleof superposition. In the particularcase

for which the operations o and o are chosen to be additionand the operations > and /

are chosen to be multiplication,Eq. 3 reduces to the principle of superposition as it

appliesto linear systems.

A homomorphic system with system transformation @, inputoperation o and output

operation o , will be denoted as shown in Fig. 1. An exarnple of a homomorphic system

is that system having the transformation specifiedby Eq. I. In this case, the operations

o, >, o, and / are chosen as
#

v I o v2 = v I + v2

;_ C>V = CV

. i

, w I o w Z = WlW Z

' (w)C•._"+, C/W = . _

z6
-_
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L) This system is thus represented as shown in Fig. 2°

S

to o o @ [ •

n. ! ?lside v : _ _ W V II W = • v : w

Fig. I. Representation of a homomor- Fig 2. Example of a homomorphic sys-
phic system withinput operation tern with addition as the input

s o, outputoperation o, and sys- operation and multiplicationas
tern transformation qb. the output operation.

'.ys-
Since homomorphic systems are represented by lineartransformations between vec-_-e

_c- tot spaces, algebraic theorems applying to such transformations can be reformulated

3f in terms ofhomomorphic systems. One ofthe objectiveshere willbe to discuss the

_d applicationof these theorems to homomorphic systems.

as -.-.
3.3 INVERTIBLE HOMOMORPH!C SYSTEMS

:d THEOREM 2.1:Let qb be the system transformation of an invertiblesystem {a sys-

tem for which the system transformation is invertible)for which the inputs constitute
Le

a vector space V .withoperations o and >. Then the :System can be homomorphic under,

at most, one choice for the output operations.

PROOF: We wish to show that ffthe system is homomorphic, then the output oper-

) ations are unique. Assume that there are two sets of output operations under which the

system is homomorphic; Let the firstset be denoted a and /, and the -second set be

3 denoted • and_/'. If w I and w_. are any two outputs, then we wish to show that
e " c/w = c/-w for a11 scalars c iv. the field F and all outputs w.

If we denote the inverse of _ by _-1, then ff @(v) = w it follows that v = @-l(w). By

it assumption, the system _ is homomorphic with input operations o and > and output

operations o and /. By virtue of Theorem 8, the inverse system, having system trans-

It formation _-I is homomorphic with input operations o and / and outputoperations o

.=m and>. Hence if w I and w 2 are any two outputs and c is any scalar in F0 we have
ns

,-l[wIo wz]=,'llwl)o ,-llwz) 141
and "

_-l[c/w I] = c>_-l(wl). (5)

By assumption, however, ¢-is also homomorphic wRh input operations o and > and

output operations m and _C. Hence _-I is homomorphic with inputoperations • and./"

and output operations b and >. Consequently,

27
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q_-l[w 1 • w Z] = _p-l(w 1) o q_-I (w 2) (6) :!

and '_

,-l[c_/-w 1] = c>,-1(wl). 17) 14

Comparing Eqs. 4 and 6, we have )_

--1 --l

¢ "[w1o wz] =, [w1 . wz]. 181 _}

H the vector in V givell in Eq. 8 is put through the system _, we have ,}

w I o w2 = w 1 • w 2 19) _

for all outputs w 1 and w 2. Similarly, comparing Eqs. 5 and 7, we find

¢-X[c/wl] = _-l[c_/-wl] If0)

.... or --

c/wI= c_/'wI Ill) '_

for alloutputs w I and allscalarg:_,

THEOREM 22: Let @ be an invertible system the inputs tc which constitute a vector

space under the operations o and >. Then there always exists a unique set of output

operations under which the set of outputs constitutes a vector space, and the system is _:

homomorphic. ... :,.

PROOF: Let W denote the set of outputs of _. If w I and w 2 are any two outputs,
let their vector sum be defined as

_[¢-iWl) -I )]. ....._,w 1 V w 2- ( " _ {w2 (12) _:

Similarly, let the scalar multiplication of any output w by a scalar C be defined as

c/w- _[c>,-_(w)]. (13.)

We need to verify only that under this choice of output operations, the system _ is

homomorphic. Theorem 6 then requires that the set of outputs constitutes a vector

space under these operations.

Let v I and v2 be any two inputs, and c I and c 2 be any two scalars. Then $ is
homomorphic if

¢[1cI>v11o (ca>vz)]= [ci/¢1vi)1o [Cz/¢(vzl]. 114)

Evaluating the right-hand side of Eq. 14 according-toEqs. 12 and 13, we have

28 _

1965015323AA-036



[Cl/#(Vl)]o = o

'_ I;] [_( 2)]=r = [_(Cl>V o c2>v

__ = 0 C V

._ or

a = 1)o (Cz>Vz)]. (15)
-I

.f

_. Hence, _bis a homomorphic system.

•Furthermore, for a specifiedinput space t.,cset of output operations tu.der which

_bis homomorphic is unique This is seen by a direct applicationof Tb.orer_ Zl.

Theorem 22 states that the class of homornorphic systems includes aliinvcrtible

systems. When the inputoperations and the system transformation are specified,the

output operations are given uniquely by Eqs. 12 and 13. In applying the theory of

homomorphic systems, itwould not be expected t_.m*,the output operations would be con-

• structedby m_ans of Eqs. 12 and 13, since thiswould require a precise characteri-

_ zation of the system transformation. Because of the uniqueness of the outpu.*- operations, _

however, we know that no mattsr how these operations are obtained, they must satisfy

Eqs. 12 and 13. Equations 12 and 13 allow uc to construct examples of _'_,momorphic

systems as:an aid to developing the theory. By virtue of the uniqueness ox the output

operations, examples constructed in thisway will not depend on a restricted choice for

_ the output operations of the system.

:_ As an example of the application of Eqs. 12 and 13, consider a linear, _avertible,

:_ time-invariant system. Let h(t) denote the impulse response of the syste_n, and h(t)

the impulse response of the inverse system. Let the set cf i_puts V be a vector space

under addition.Since the system was specifiedto be linear,we know, withoutapplication

_ of Eqs. IZ and 13 that the system is homomorphic if vector addition of the outputs is

_hosen as the sum of the time functions, and scalar multiplication on the output Set is

chosen as the product of the time function and the scalar.

Since this set of output operations is unique under the specified choice of input oper-

ations, application of Eqs. IZ and 13 must yiel_ this restdt. SpecificaUy,_ F_q. 12

• requires that if w I and w2 are any two outputs, then

w I o w 2 = h(+_)@ [_(ti @wl{t)+_(t)@wz(t)L (16)
I

where ® denotes convolution. Expanding Eq. 16,

u w2 = h(t)®_(t)®w)(t) 4-h(t)®_(t)@.w2(t),Wl

since convolution distributes over addition. The convolution of h(t) _nd _(t) is the unit

29
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impulse Uo(t); :.ence,

w I o w 2 = uolt) @ wilt) + Uo(t) @ Wz(t)

or

w 10 w2 = wilt) + w2lt).

• Similarly, Eq. 13 requires that

c/wlt) = hlt) @ [cleft) _wlt))]

or

.- c/_(t) = c[h(t) ® g(t) @w(t)]

and hence

c/wit) = cwlt).

As anGther example of the application of Eqs. 12 and 13, consider the system having

the transformation _ given by

w = ¢(v) = e v. (171

The transformation corresponding to the inverse system is - ""

v = _-llw) = lnw. (181

If the set of inputs is chosen as a vector space under addition with the field chosen as

the field of real numbers, then application of Eq. 12 requires that

w 1 o w 2 = exp[lnWl+lnw2] - ._

OF

-- w I "0-w Z = WlW 2 '- " (191

and Eq. 13 requires that "

c/w = exp[c lnw 1]
r.

f
or .,

c/w = [Wllc. _ (z0l .

The trans[ormation .of Eq. 17, however, is an invertible ti'ansformation under any input ._,.,

vector space. If we choose as the set of inputs, a vector space over the field of real :l

numbers with vector addition defined as the product of the time functions and scalar __

..... multiplication defined a_ the time function raised to the scalar power,- then the set of
output operations corresponding to the _ransformation of Eq. 17 will be different from

" those given in Eqs. 19 and 20. These output operations can, however, l_e determined "

,.
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through the use of Eqs. 12 and 13. Applyhlg Eq. 1?., the vector sum. of any two outputs

_1 and w2 is given by

1

[lnw 1lnwz]
WlO w2=e

or

Inw 2

Wl ow2= [e lnwl] .

Similarly, scalar multiplication in the set of outputs is given by .

c/w: e[lnwlc.

3.4 NONINVERTIBLE HOMOMORPHIC SYSTEMS

Theorem 22 guarantees that a system that is invertible for an input vector space V,

is homomorphic for this set of inputs. When a system is not invertible for a given set

of inputs we are no longer assured that the system will be homomorphic with_ respect to

these inputs, Theorems 6 arid 12, together with the properties of quotient spaces, lead

to necessary and sufficient conditions on the system transformation and the set of inputs

associated with a given system such that the system is homomorphic. Before proceeding

to a statement of the conditions in terms-of a theorem, it would be well to indicate the

direction which we take in this theorem:

Consider a system with transformation $ and input vector space V. By choosing -

any subspace N Of V, V can he divided into cosets. It is necessary that these cosets

be formed with respect to a subspace of V rather thah with"/-espect to any arbitrary set

:. of vectors in V, in order that these cosets be well defined.- If N i._ the null spaceof

the system, each vectorin a given coset will result in the same output. Furthermore,

it will be seen in Theorem 23 that if each vector in a given set of vectors in V maps

Onto the same vector and if the system is homomorphic, then this set of vectors must

be an element in the quotient space* .V/I_- - In particular, any coset in V/N which does

". not map onto the identity element in the vector space of-butputs cannot be a subspace
(

::! of V.

The approach to deriving necessary and sufficient conditions on a system in such a

:i " way that it be homomorphic, will be based on a consideration of conditions under which -

•:i . an invertible transformation can be defined from.a quotient space associated with V, to
:_ the set of outputs of the syr, tem. If such. an invel.-tible tr_,.nsformation can be defined,

7"_:: thenTheorem 22 can be employed to determine a set of output operations under which

I . the system is homomorphic. --THEOREM 23: Let $ be the transformation cf a system with an input vector space .-..

sl! " V. Let S i, , Sn be subsets of V with the properties thatoeol

-o

!
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(1) All elements in a given set Sj produce the same output. This output corre-

sponding to a set Sj will be denoted ¢ [Sj].

(2) If _[Si] is the output produced by the set of inputs Si end _[Sj] is the output

produced by tLe set Sj, all i and j, then _[S i] = _[Sj] implies that i = j.

Then, at most, one of the sets S1, S 2, ..., Sn can bea subspaceof V.

PROOF: Properties (1) and (2) imply that no two sets Si and Sj have an element in

common. For, assume that s is in S i and s is in Sj, then from property (1),

i]=,Hs)

and

_[Sfl = _(s),

and hence

_[S i] = _[Sj],

which by virtue of property (Z) requires that i = j.

Any subspace of V must contain the identity element in V. Hence if two of the sets

S 1, $2, ..., Sn are subspaces of V, they must both contain the identity element, and

hence would have an el0ment in common. Thus, at most, one 0fthe_ sets S 1, $2, ..., Sn
can be a subspace:of V. --

THEOREM 24: Let _ be the transformation of a system with an input vector space

V. Let S 1, S z, ..., Sn be subsets of V with the properties that

(1) All elements in a given set Sj produce the same output.

(2) If v is a vector in V, then _(v) = _[Sj] implies that v is in 5"

(3) The sets are distinct; that .is, if _[S i] = #[Sj], then i = j.

(4) The union of the Sets S 1, S z, ..., Sn is all of V.

If none of the sets S 1, S z, ..., Sn is a subspace of V, then the system cannot be
homomorphic. - " --

PROOF: Let e denote the identity element in V and let S e denote the set of ele-
ments such that

_(e) = _(Se).

If _ is homomorphic, then the element _(e) must be the identity element in the vector :-

space of outputs W by virtue of Theorem 4. Because of property (2) imposed on the sets

S I, $2, ..., Sn: the set S e contains all of the elements in V which map through $ to

the identity in-W. :Hence, by definition, S e is the null space of_V and Theorem 6

then requires that S e be a subspace of _V: _

Property (4) imposed on the sets S 1 , SZ, ... , Sn requires thaithis set of subsets of __"
V must contain the subset of all elements of V that map onto _(e) and hence must contain _ _

S e. If _ is homomorphic, then one of these subsets must be a subspaee of V; hence, ff
none of _I-.se subsets is a subspace of V, then the system cannot be homomorphic. _.
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Theorems 23 and 24 together require that a necessary condition so that a system

be homomorphic is that we can find one and no more than one subspace in V which con-

tains all of the elements that map onto a single element in the set of outputs. In general,

if the system transformation is well defined, then we are guaranteed that no more than

one such subspace can be found. If One such subspace exists, then it must contain the

identity element from V. Hence, if e denotes t.he identity element in V, then Theorem

24 can be reformulated to req":-e that a system with transformation _ cannot be homo°

morphic unless the set of all elements v in V such that _(v) = _(e) is a subspace of V.

As shown in Theorem 25, this condition, together with one other condition, provides

necessary and sufficient conditions on a system so that it will be homomorphic.

THEOREM ."5. Let _ be the system transformation of a system with input vector-... : .

" space V. Then necessary and sufficient conditions so that the system be homemorphic -

are

(1) The set of elements Se in V is a subspace of V, where S e is the set of all ele-

: ments s in V with the propez_y that _(s) = _(e), where e is the identity in V.

(Z) Consider the quotient space V/Se, where Se is a subspace of V. Let v o Se

be any coset in the quotient space. If v' is any element in v o Se, then
_(v') = $(v). (This condition requires that any given coset in _he quotient space

_- V/S e have a unique mapping in W, _ha t is, _[v o s e] will be well defined for -:

every v in V, and each coset will produce a different output. ) t

PROOF: To prove that these two conditions are necessary, we assume that the sys..

tern is homomorphic and show that this requires that conditions (1) and (2) hold.

Assume that the system is homomorphic. Then, by definition, S e is the null space

of _. Theorem 6 then requires that Se be a subspace of V. To show that condition (2)

is'implied by the assumvtion that the system is homomorphic, let W_denote the output

vector space with vector addition and scalar multiplication denoted by a and /, respec°

tively. If e is the identity in V, then $(e) is the identity in W. Let v o S e be any coset
._ . __ -.

in V/S e, and v' be an element in v o Se. Theh there exists some element s of Se such
that

VI=VOS.

Hence _(v) = _(v o _) = _(v) u _(s). But, since- s is in Se, _(s) is the identity element
in W. Consequently,

_(vI) = _(v) all v' in v o Se,

.- and therefore condition (2) holds. ".... _"-

To show that conditions (I) and (Z) are sufficient, we shall assume that these con-

_ ditions hold, and prove that the system must then be homomorphic. Condition (I) per-

mrs the construction of a quotient space with respect to the set S e, since it requires
_ that this set be a subspace of V. Condition (2) then provides an invertible transfor-

m. mation between the quotient space V/S e and the set of outputs W, since for any coset

': 33 .....
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v o S e in the quotient space V/S e th,-re exists a well-defined mapping to an element in

W given by

_[v o s e] = _(v}.

The _rar.sformation _ can then be considered as the system transformation associat"d

with an in,,ertible system with inputs that are elements in ttle quotient space V/.' e"

Theorem 22 requires that the system with transformation _ be a hom0morphic system

and that the set of outputs W be a vector Space. Specifically, vector addition in tile set

of outputs is defined by

- [ ]-- - w1 o wT.= _ _-l(w 1) o _-llwz) , (zl}

where w! and w 2 are any two elements in W. The elements _-l(w 1) and _-l(w 2) are

cosets in the quotient space V/S e. Scalar multiplication in W is defined as

c/w=_ [c>_-1(w)]. (zz)

It remains only to show that with this choice of output operations the system with system

": transformation _ and input vector space V, is homomorphic. Let v 1 and v 2 be any two
elements in V. Then

,(Vl)=_ Iv1o Se],

,(vz) = _'[vz o Se],

,Iv 1 o vz) = _.!(v1 o vz)-os_l.

" " From the definition of-vector addition in the quotient space V/S e as stated in Theorem
3, however,

(vI ov Z) oS e=-{vI OSe)O (vzoS e); _ ....... ,

hence, - -.: ._

¢blvI o v z) = _ [(v I o Sel c _(vz O Se)]. - : _"

-'----_ _ Since _.is homomorphic,-"- - ' " "

" !

-- _-_[(vI o.s,?o(vzos_)!.-___[_10Selo-_[va.0Se]. i

By defimtior_ Of _', however; :: - ,i

$'[viosel- ,(vp " " .- -:, -- i
.. {

I

-. "- t
J
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._[vz o Se] - _(Vz).

Consequently,

¢(vI or2) = @Iv I OSe] o _[v 2 oS el= ¢(vI) o *(v2). (23)

Next, let v be any element in V, and c any scalar in the field. Then

@(v)= @'Ivo Se]

' ,(c>v)=_[(c>v)oSe].

t From_ the definition of scalar multiplication in V/Se, however,

(c>v)o Se = c>(v o Se);

! hence,

,(c>v)= _[c>(vo Sell

: But, since @ is bomomorphic,

: @[c>(v o Se)]: c/_'(v o S e) _-

or

[c>(vo sel]= c/, Iv)
I

Therefore ':

_b(c>v)= c/@(v). 124) ..

-Equations 23 and 24 are sufficient for the system to'be homomorphic.-

THEOREM 26: Let @ be a hor_ornorpl'_c system with input vector-space .V and null

space N, Let the subset. S of V be defined by the properties

• '-' then @(Sl) _(s2).•; (I_ If sI and s2 are any two elements in _,, =

'12) If s is in S and v is in V, then @(s)= _(v) implies that v is in S.

j Then each such subset is a distinct coset L_. V/N. In part[culax., each subset S is the

_". coset s o N, where s is any element in S.

, PROOF: Let S be any subset of V having prope._.i=s(11 and (21. Consider the -.- -

d coset: s..oN, where s is in S. Let s o n be any erei_nt in this coset. Then _(s o n) =
-

,_ @(s) o _b(n), since _ is homomorphic. But _(n) is the identity in the output Set W, since
.i
_. n is _n the null space. Hence

._ :

i ,(so n)= ,(s);

i consequently, s o n is _n S by virtue of property (2). Thus the coset s o N is contained- _ in t_heset S. -- - .--

i ""
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We must show next that the set S is contained i.a the coset s o N. Let s 1 be any

element in S. Then s 1 can be expressed as

Sl = so (s-10Sl).

But s -1 os 1 is in the null space N, since

_(s)= _(Sl),

and the system is homomorpbic. Hence for any s 1 in S, there exists an n 1 in N such
that "_

s 1 = s 0 nl;

consequently, s 1 is in tbe coset s o NI Thus S is contained in s o N and therefore

S=soN.

The fact that each of Chese coset_ ts di_. act follows directly from property (Z)and
Theorem 4. ..

Theorems 25 and 26 provide a procedure for hwesLigating whether or not a given

system iS homomorphic. Specifically, according to Theorem ZS, we first find all ele-

ments in the input-vector space V which produce the same output as that produced by the i

identity element in V. If this set is not a subspace of V, then the system cannot be

homomorphic. If it is a subspace " V, we must then determine whether or not eve'y

coset constructed by adjoining each vector in V to .the null space has a unique output.

If each of these cosets has a unique mapping, then the system is homomcrphic. If no_,

" .____._. the system cannot be homomorphic. Alternatively, the second condition can.be refor-

mulated in terms of Theorem Z5. The input vector space can be divided into all of those

sets that produc _. unique, outputs in W. The system is only homomorphic ff each of these

sets is a coset in the space V/S e, where S e is the subspace of V defined previously.
As an example of the app!ication of this procedure, consider an invertible system

with input vector space V and system transformation _. --Since the system is invertible,

the set S e contains only the identi+y in v. The identi_y alone constitutes a subspace;

hence, the first condition of Theorem 25 is met. Each of the cosets ia the quotient

.._ - _ space V/S e when Se is the identity alone contain on!j a single vector; specifical_.y, the

coset v o S e contains only the vector v. Thus all of _he vectors in any given coset pro-

duce the same output and each coset is associated with a different output. Consequently

the second condition of Theorem 25 is satisfied. AiL_.rnatively, ff we interpret the

second condition of Theorem _-5 by means of Theorem 26, we car divide V into set_

defined by the property that any given set.contains all of the inputs that produce a given

output, . Again, since the system is invertible: each of these sets contains a single

" " - vector from V. These are the-cosets in V/Se: and henc.e by this interpretation, the
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second condition of Theorem Z5 is satisfied. It can be ascertained that when S consistse

of the identity _ 'one, which by Theorem 10 is a necessary and sufficient condition for z

homomorphic system to be invertible, Eqs. 21 and ZZ reduce to Eqs. 12 and 13. It

follows, then, that as we have already shown by other means, any invertible system is

homomorphic.

As another example of the application of Theorem 25, consider a system with trans-

formation _ defined as

2
= v .

Le_ us choose the input vector space V to be a space under addition and require that it

contain more than just the identity element. Since the identity element in V is the ele-

ment O, the set Se is the set of all elements s in V with the property that

= = 0.

From Eq. 25 we see that there is no element in V other than the identity which will

• produce zero output; hence, the set Se contains the identity alone. The identity is a
subspace of V; hence, the first condition of Theorem 26 is met. Because the set S

e

is the identity a!one, the coset v o S e in V/S e is the vector v.: Btit the coset v o S e .-:-_
and (-v) o Se produces the same output; hence, condition (2) Of Theorem 26 is not met.
Thus the given system is not homomorphic.

As a third example, consider the system with transformation _ defined by

1 dv
=V (z5)

Let the input vector space be chosen as -a-space under multiplication, in which case the

identity e in V is e = 1. The set S is then the set of all. elements s in V such that
e _-

1 ds 0: .....

which is the set of all constant inputs in V. It can be verified that this set iS a subspace

of V. Now, consider any coset v o Se. We must show that all elements of the form

v,c, where c is a constant, produce the same output, for any c. But

¢_(.. _) = I d 1 dvv-"g3[(v.c)=

and hence _{v.c):is independent of c, as required. We must then ascertain that each "-

distinctcoset is associatedwith a differentoutput. In Theorem 4 we noted that if two

cosets have any element in common, they are identicalcosets. Conversely, fftwo

cosets differby at leastone element, then they willhave no elements in common. Con-

sider two distinctcosets v I o S o and v2 o Se. Then :

dVl d
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and

1 dvz d [lnv2]"
#Iv z oS e] = v2 dt = d't

The system with the transformation of Eq. 25 will be homomorphic if and only if

4[v 1 oS el= _[v 2oS e] (Z6)

implies that v 1 o S e and v 2 o S e are identical cosets, i.e. that -v1 is a scalar multiple

of v 2. But Eq. 25 requires that

2
d
d--_[haVl] = _tt [inv 2]

or "_

Inv I = lnv 2 + c

for some constant c. Hence

-: Vl = ctv z _ (27)
._ . . . .

for some constar.: c'; therefore, we conalude that the system .is homomorphic.

In Theorem 22 we investigated the necessary and sufficient conditions on an invert-

ible system such mat a set of out[Jut operations could be selected to make the system

homomorphic. These output operations were shown to be unique. Similarly, in Theo-

rem 25 necess _a_y and sufficiep¢ conditions on a noninvertible system were given so that

the system was homomorphic. It was shown that when these conditions were met, and

the output .operations were chosen according to Eqs. 21 and 22, then "_,,,_ system would be

...... - homomorphic. As for an invertible system, it can be shown that the output operations :_--- __

chosen according to Eqs. 21 and 22 are a unique choice.

THEOREM 27: Let _ be the system trP_lsformati0n of a (not necessarily invertible}

system, with input vector space V. Then there is, at most, one choice for the output

operations under which the system is homomorph_c.

PROOF: Th.e desired result can be shown by assuming that the system is homomor- I

phic under more than one choice for the output operations, and from this deriving a con- i

tradiction, tl

Specifically, let W denote the set of outputs. Let N 1 denote the null space of the I

system when the output operations are o and /, and let N2 denote the null space of the

system when the output operations are • and .J'. If e denotes the identity in V, then

:_: N 1 contains all of the elements n in V, with the property that _{n) = _(e). Similarly,

. N_. contains all of the elements nfin V such that _(n') = _(e), Hence, N I = Nz, that is,

the null spaces under the two choices for the output operation are identical. Let N I and
q_

._: N2 both be denoted by N, and consider the quotient space V/N. Theorem 12 requires

:' that the system having the space V/_: a_ the input space and the space W as the output I
-_." .: - .

- :::,.,
: !

._-

i
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space be an invertible homomorphic systerr.. If the origin_ 1 system had more than one

choice for the output operations, however, this invertible system would also have more

than one choice for the output operations, which contradicts Theorem 2Z.

Because cf Theorem 27, the output operations of a homomorphic system which are

constructed according to Eqs. 21 and 22 represent a unique choice for these operations.

Consider, for example, the system having the transformation of Eq. 26, with the inpu _.

vector space being a space under multiplication. It has been determined that this system

is homomorphic. An element v o N in the space V/N, where N is the null space, is

: the set ,.'.f elements in V that are scalar multiples of v. The mapping _ from V/N to

W, and the inverse of _ are defined by

" _[cv]- I dv

and
--

-I (w) = e]wdt = [cv],
-7=

Using Eqs. Zl and Z2, we find that the output operations of.the system must be

Wla w2 = _[_-l(wl) _-l(w2) 1

d F} JWldt\/]wzdt\l

Lt, )to +w=
_d

d F/ SWldt\cl

o ) ]- OWl .....
- for any w 1 and w z in "W, r.-_d any scalar c in the field.

r
i
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IV. CANONIC REPRESENTATION FOR HOMOMORPHIC SYSTEMS

4. 1 INTRODUCTION

The class of homomorphic systems has been introduced. The generalized principle

of superposition which is satisfied by these systemq is similar in form to the principle " •

of superpositiondescribing a linear system; when the input and output operations of a _ I

homomorphic system are addition,the

system is linear and the generalized

• - principle of superposition reduces to --_

•, _b -----_-w the statement of superpositfon in its _
usual form.

A canonic -.,presentation for homo-
4

Fig. 3. Homomorphic system with multi- morphic systems will now be derived.
plJ.cation as t,_e input operation This representation amounts to a sub- i

and output operation, stitution of variables Which reduces the,

system to a linear system. For any

particular homomorphic system the input.and output variables that are chosen so that

the equivalent systemwill be linear, are dependent only on the input vector spaces, and

, not on the details of the homomorphic mapping between these spaces.

As an example of the form t_at the canonic representation takes, consider a homo=

morphic system having multiplication as both the input operation and the output opera-

tion, as indicated in Fig. 3. This system has the property that for any two inputs v 1 and c

v 2 and any scalar c,

[ 2] r ]c.*(v2)"-- ' "....¢ vlCv =,¢(v). =wlCwz,-- (z8) "

where w I ffi¢(Vl), and w z _-¢(v2). _ ¢
If we per£orm the _ubstimtion of variables

!
x = In v (29) I

and

" ---...y = Inw, ."_ _ (30) -- r

then the relationbetween x and y becomes

¢

ey = @(ex)

or _.

y = In [¢(eX)]m ¢'(x) (31) ¢

40
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But the transformation ¢' is linear because if x 1 and xz are any two inputs and c .is any
scalar

= c,t'(x,)+4,'(xz).

• Hence by the substitution of variables defined by Eqs. 29 and 30, *.be system has been

; reduced to a linear system. The system of Fig. 3 is thus representable "_'nthe form of

Fig. 4 where the linear transformation _' is defined by Eq. 31. In the representation

Lf- -.:

! j j j p, ¢ ]* " IY eY I _ w

l ...... -J

: Fig. 4. Equiwient representation of the system of Fig. 3.

1

in Fig. 4, the first and last systems depend only on the input and output vectgr sp_ces;

they do not depend on the details of the transformation _. We notice also for tbiz par-

; ticular example, that all of the memory in the system c; Fig_ 3 is concentrated in the "-

linear system _° of Fig. 4, since the first and last Systems in this representation are
i

memoryless. Here we shaB derive necessary and sufficient conditions under which this

can be done. = /

-- . . =.

4. 2 CANONIC REPRESENTATION :

In the example just presented, a homomorp_dc system was reduced to ailinear sys-

i tern by means of a substitution of variables. This essentially requires a mapping of the <_

vector space of inputs onto a vector space under addition, in a one-to-one manner.

Similarly, the vector space of outputs must also be ,napped onto a vector space under -_
, _=',

I addition in a one-to-one manner. Our objective n_w is to show that for any vector spaceI "-

i such a mapping exists, and to discuss the resulting representation.
• Let us restrirt 'the system inputs to constitute a _T_ilbert space with an orthonormal ::

basis, and restrict the s._stem transformation to be a continuous homomorphic transfor- '_ ;

mation. Under these restrictions, the system output, will also constitute a Hilbert space

with an orthonormal basis. This is equivalent to assumiug that the input and output

spaceL can be approximated arbitrarily closely by f_atite dimensional s;_aces. By virtue

of Theorem 20, both the input vector Sl_ce and the output _ector space are isomorphic

with m_, infinite dimensional Hilbert space having an orthonorrnal basis. In particular,

each of these spaces will be isomorphic with a Hi/bert space in which vector addition

is interpreted -3 the sum of t,,e corresponding time functions, for exam_.le, the space

of functions _r,j_ e square integrable. Thus we can always define an invertible

41J
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homomorphic system that maps the inputs onto a Hilbert space under addition, and an

invertible homomorphic system that maps the out_;,ts onto u _ilbert space under addition.

Copsider a homomorphic system, then, with input vector space V which is a flilbert

space with an orthonormal basts, output vector space W, and continuous system trans-

formation _. Let a ° denote the system transformation of an invertible homomorphic

[ I

v °rrT*l+w ° °r-r7 �.

1 i

Fig. 5. Equivalent z'epresentation of a homomorplzic system.
-..

:: system with V as the input vector space, and a vector space under addition, denoted by

V+, as the output vector space. Similarly, let a o denote th e .system transformation of

an invertible homomorphic system with W as the input vector space, and a vector space

under addition, denoted by W+, as the output vector space. Since the systems ao a'_d

..... I I
: -_ I Or----l+ +I-------I + +i - _a I

- j .i j J]
.I I

! ____j

Fig. 6. Canonic representation of a homomorphic system.

a o r "e invertible, the system ¢ can be represented in the form shown in Fig. 5. The

"_ystem_nctosed in the dotted lines, however, ts a lineEr system and hence the system

of Fig. 5 can be redrawn in the form of Fig. 6, where L is a linear system. W.e recog-

nize furthermore that the system of Fig. 6 is a homomorphic system with V as the input

vector space and w as the output vector space, for any choice of the linear system L.

The representation of Fig. 6 will be referred to as a canonic representation of homo-

morphic systems.

- An example of _he canonic, representation of a homomorphic _ystem was shown in

Fig. 4. in this case the h_momorphic system had multiplication as both the input and

output Operations. An example of such a _ystem is that system having "atransformation

. ¢ defined as

6(v) = vk. k a real number.

_n this case, the canonic representation takes the form of Fig. 7. To obtain any

4Z
-° .
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r 1

I x =_ v x Y ey I

,- . I .; i..w,I I
! --J

Fig. 7. Canonic representation of a homomorphic system with

, transformation _[v] = v k.

•. homomorphic system having the same input and output vector spaces as the system of

Fig. 7, we need only replace the amplifier of gain k with other linear systems,

= From the form of the canonic representation, we recognize it as a substitution of

variables which reduces a homomorphic system to a linear system, The particular

-: choice for the substitution of variables associated with any specified homomorphic sys-

tem.is governed only by the input vector space and output vector space associated with

the system. The details of the mapping between these spaces is then contained in the

linear system L. ._-

4.3 CLASSIFYING HOMOMORPHIC SYSTEMS

. . The canonic representation suggests & means for classifying homomorphic systems. _

Specificaily, let us classify, homomorph _ systems accor_ling to their input and output

spaces. Since t_e characteristic systems =o and a o are determined en{irely by the inpuL

vector space and Output space associated with the homomorphic system, all systems

within a specified class will have identical systems a o and a u in the cmlonic represen-
tation. The systems within each class will differ only in the-details of the linear sys-

tem appearingin this representation.

As a simple example of this means of classifying homomorphic systems, we would -

consider all linear systems as represen¼ing o_e class of homomorphic systems. Another

class of homomorphic systems would be the class having the characteristic systems that

appear in the t-epresentation of Fi E. 7. In this case vector addition is defined as multi-

plication of the associated time functions, and scalar multiplication is defined as the

associated time function raised to the sc _lar power.

4. 4 CONDITIOI_S ON A G-IOMOMORPHIC SYSTEM SUCH THAT THE

CHARACTERISTIC SYSTEMS ARE MEMORYLESS ""-- -

: - In the class of homomorphic systems characterized by multiplication as both the

input operation and the output operation, we observe that the characteristic systoms a 0
and = o are memoryless systems, i.e., that output of each at any _'ven instant of time

is dependent only on the input at the same instant of time. Hence, for this particular __

class of systems, all of the system memory can always be concentrated in the linear
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system in tLe canonic representation.

The quest,on arises as to the conditionson a class of homomorphic systems under

which the char_:cteristicsystems a° and ao are memoryless. Since these systems

represent inver.iblemappings from the inputand outputvector apaces respectivelywe

wish to determin _.the necessary and sufficient_,onditionson a vector space consisting

of time functions, such that a memoryless, invertible, homomorphi_-, mapping to a vec--

tor space under addition can be constructed. In the following discus_'_ion it will be shown

that the necessary and sufficient conditions are that the operations of vector addition and
_t

scalar multiplication must themselves be memoryless.

To show first of a.'l that these conditions on the vector space are n¢:cessary, consider

f an invertible homomoz phic system with transformation a o, input vector space V and

output vector space W. Let the operation of vector addition in- V- be denoted by o and

)f the 0peartion of scalar multiplication in V be denoted by >. Let W be a vector space

r under addition. Then by virtue of Theorem ZZ, vector addition and scalar multiplication

" in V must be expressible u._quely as
,ith

m l

le v I o vZ = a° [¢o(Vl)+ao(Vz)] (3Z)
f

C>V1 - a:l[ca0(vl)] (33)

for any v I and v 2 in V and any scalar c.. Let us denote the instantaneous value of a

s.- - vector v in V at a time tI by vltI. -Then we wish to determine wheter Eqs. 3Z an_d_ut

_ut 33 require that the operations o and > be defined on the instantaneous value of v 1

and v 2 if a° is memoryless. Consider first, Eq. 3Z. Since a° is memoryless, its inverse
Ls -I is also memoryless. Hence, the right-hand "side of (32) is defined on the instan- -

a O

taneous values of v I and v 2. •Hence, the-left-hand side- of (_3) must also be defiried onl"S _

instantaneous values of v I and v Z. We must next ascertain that

:r Iv I o vz]Itl=(Vlltl) o(vzltl ) . _ (34)

at But

v2]l.t I ={ }' (35)[v I o a:l[ao(Vl)+ao(VR) ] It Iie

and

(-,o i,,)-o;'[Oo(-,
But, since ao is memoryless, Eq. 36 becomes

(vii,)oC l,1)-
Since additionis memoryless0 we see that

i

i
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(_,it,)o(_,rt,):Oo'(_Oo%,+Oo_V,.,_,,).
Finally, since a° s memoryle.=.s,

Comparing Eqs, 35 and 37, we see that

whenever a° is a memoryless system. Similarly, we wish to show that the assumption

that a o is memoryless implies that > is memoryless, that is

.[o>(v,lt,)]. ..
Referring to Eq. 33, we- see that the operation > is defined on instantaneous values of

v 1, since a o is memoryless. To show that (38) is satisfied, we observe that because

scalar multiplication is memoryless and a ° is memoryless,

..But, the left-hand side of (39) is

,;'[OOo(V,i,i)]:
and the right-hand side of (39) is -

Comparing Eqs. 39 and 40, we see then that Eq. 38 is satisfied; consequently, > is a

_memoryles s operation. Hence, a necessary c.gndi)tion on the vector space V so that a

is a memoryless system is that the operations o and > must be memorylesa operations.

The next step is to show that this also constitutes a sufficient condition. To this end, let

V be a vector space with vector addition denoted o and scalar multiplication denoted >.

Elements of the vector space are time functions, that is, they are scalars indexed over

time t. Vector addition and scalar multiplication in V are assumed to be memoryless, /

that is,-at any value of.-t, _ ._ ..

_ _,_,ov,_-(v,l,)o(v,l,)-. ._ .,, -

•.(c>v_It%!v_Iti-- __ _4,._

for any v 1 and v 2 in V and any scalar c in F. Yet e denote the identity in V.
C'_nsider the set of all scalar values which the t_me functions in V can assume at an

i o.-
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instant of time t. Let this set be denoted St. Then the set St is itself a vector space, for

(a) Let _1 and-_2 by any scalars in ot" Then there is a vector v 1 in V and v2 in V

soo. It-  eotor o V;
hence, (v 1 o v2)lt is in St . But_ir_E_q. 4J, (v 1 o vz)lt= (_1 o 112); hence,

can_¢__een that 111 o _2 _2 o _i(_I o _2) is in St . By similar reasoning, it '--'- -. = -:"

and that (_I o112) o_3 = _II o (_2 o_3) for anY_l, _2 and 113 ln-Sc

(b) There is aunique element e t in St such that_oe t = _ for any 11 in St . To show

the existence of such an element, let v be an element in V such that v[t = TM If

e is the identity in V, then v o e = v. Hence (v o e)lt = vlt, or (vlt) o (elt)=vlt.

Since v It = TMwe have

_,o (elt!_-_.

Thus elt willbe an element in St sach that 11o-(e[t) = 11, that is, e t = elt. To show

that the element et iu St is unique, consider two elements e t and e_ in St with
the property that

o e t = 11 (43)

and

-. for all 11 in St. Then, by virtue of (43), - - -

' o e t ' -- (45)e t = e t

and by virtue of (44), " _.
.:=.:-. . _. _--_.

et o e_ = et. .. (46)

But we have stated that o was a commutative operation in St; hence,

• . _toei =_ioer

/ Therefore, from- EqS ."_45- and 46, e t = e_.

(c) Every element 11 in St has a unique inyerse in St. For, let v be the vector in,o.-

V such that vlt = _. Then, if v-I denotes the inverse 9f v in V, we have

v 01v -I = e; .hence, (vlt) o (v-l)l =o_ t, or 11o (v-l)l t = et, __DenOting tv-l)[tbY
...... 11- , we have qo-1 ffi et" To th that this inverse is unique, let v,'1 and

1
" _:. deno_etwoelementsinS tsuchthat_o -I = et and 11o111 = et. Then if .

. = vle n-l = v-lit and 1111= v-ll t' it follows that .... '

o o,;')I,. I

f
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-I -I -I
If v I is chosen by considering all possible values fox" t, then v o v = v o v I = e.

-i = v-I for all values of t; in particular,But the inverse of v is unique; hence v I
-I = v-I -I -I

-- Vl It Itor,l ='

(d) The final step in showing that St is a vector space is to show that scalar multi-

-. -- .plicationin St has the necessary properties.-If _ is any element in St, where

_ _ = vlt, then 1>_ = l>vlt = (l>v)Jt = vlt; hence, 1>_ = _. By a similar argument
it can be seen that

(ciCz)>_= cl>(Cz>11)

and

(c1+c2)>_= (Cl>Vl)o (cz>_),

for any c 1 and c2_ and
.

c>% o ,1z) = {c>,11)o (c>_z),

for anY_l and T12in St and my c.

If V is a separable Hilbert space, as we have assumed, the vector space St is iso-

morphic with the space F n, where n is the dimension of St {see the Appendix). Let this

isomorphism be denoted at. Define _ vector space W having elements that are n-tuples --_
indexed-over time, that is, if w is in W, then w-l--is representable in the form=it -:

(Cl? c 2 .... ,Cn), where c 1, c 2, ..., cr,' are.elements of the field. Then W-is a vector
-" space under addition,since n=tuples are added and multipliedby scalars according to

:.
the operations of additionand multiplicationin the field. Now, there is a mapping a

from V Onto W which is invertibleand homomorphic. Specifically,let a be defined by

the property that [a{v)]!t = at{vlt)for an:zvalue of t.- Then a is also a memoryless

:- transformation; consequently, it has the properties that we set out to derivd: Hence we

have shown that a sufficient condition on a vector space V so that a memoryless, homo=

morp2d¢, invertible transformation from V to a vec:t.or space under addition e_sts i_

that the operations-of vector- addition and scalar multiplication in V be mernoryless.

- To summarize, we see thatin the canonic representation of a'homomorphie system

the system ao can be memoryless ffand only ifthe operations o and > are memoryless

operations. Similarly, the system ao (or eq_.:valentlyao l)can be memoryless ifand

only ifthe operations o and / are mer.mryless operations..In the canonic rep,'esentation

for systems in a class Specifiedby memoryless inputand output operations;,all of the

memory in the systems can always be concentrated in the linear portion of the canonic -

representation. In contrast, ii either the set of_C.Im..t operations or the set of output

operations is not memoryless, then the memory of systems in such classes can never

- " be concentrated only in the linear portion of. ".he canonic representation, _ '-

Before proceeding to some examples of the construction of memory!ess inver_ble

homomorphic transformations from thu input and output vector spaces of a homomorphic

...... 47 ._
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system to spaces under additiun, it would be well to inw._stigate in more detail, the prop-

ties of these transformations and the consequences in terms of the canonic representation.

When the canonic representation was first presented, the linear system was inter-

preted as a system having a single input and a _ingle output. We have seen, however, that

when we desire the systems a° and a 0 to be memoryless systems, the input and output
of the linear syst_m may not be a simple time function, that is, they may not simply be

a set of scalars indexed over time. Specifically, consider a homomorphic system with

memoryless input and output operations. Consider this system in its canonic repre-

sentation with the systems c o and ae_ constructed to be memoryle_s. Then the output of

a° will be of the form (fl(t), fz(t},... ), where fl(t), f2(t) ... are each scalars indexed

o-rer time. Similarly, the set of inFJts to ao l w_.ll be of the form (gl(t)' gz(t),... ), where

: gl(t), g2(t) .... are each scalars h'ldexed over time. In this case, we would interpret

the system a° as a memoryless system having a single input and multiple outputs. For

ar_y input v the individual outputs would be the time functions fl(t), fz(t), ... corre-
sponding to the mapping of the input at any instant of time onto an n-tuple of scalars.

-1
Similarly, each output of a o would arise from the effect of a set of inputs gl(t), g2(t),
... that correspond at each instant of time to the representation of the output as an

m-tupl 9 of scalars. With this interpretation, the canonic representation of Fig. 6 would

'- "-- -f= gl

f2 g2 .

--'- V _ QO L -°" Qa _ w

fn gm

- Fig. 8. Canonic representation of a homdmorph._c system with ".
memoryless input and output operations.

appear in the form of Fig. 8. In this interpretation the system L has n inputs and m -

outputs. It is linear _.n the sense that, if gl' g_-' "" "' gm are the responses to a set of
" !inputs:l' f,_.... fn'andgi' gi' "'" gmaretheresponsostoa setofinputs f',.

Fn then*. e, ID

{gl+g_), (g2+g_.), ..., (gin+gin)
.°

-_- will be the responses to the.lnputs -_

.l+el) (fz+f_) (_+_n) . ' -_.-"-". J $ • e ° , , -

and' " -

cg 1, cg 2, ..., cg n ..

. °
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will be the responses to cf 1, cf 2, .... cf n for any scalar c and for any set of inputs.

If an inner product can bc defined on the vector space St, then the output of a ° at

time t can be described as the result of the inner product of v with each of the basis

vectors of St. Specifically, let the inner product of v I It and v2 It be denoted (v 1 It' v2 It ). -

Let _lt' _2t' " " " denote a basis of St. Then any scalar value vlt in St can be written

vlt = [(vlt, _lt)>_lt ] o [(vlt, _2t)>_2t ] o ....

The n-tuple representing v]t is, titan, (c 1, c 2, ..., Cn), where cj = (vlt, _jt ). In general,

for different values of t, the spaces St will differ; hence, both the inner product and the

set of basis vectors _lt' _2t' ' " ' will be functions of time. Let us denote the operation
of taking the inner product of the input at any instant of time t with the jth orthonormal ---

basis vectoi_in St by Hjlt(vlt), that is,

Hjlt(vlt } - (vlt , _jt }.

Then, as we consider all instants of time, we have constructed a function Hj(v) with the
property that

_- [Hj(v)]l t = Hj[tlvlt).

By referring to:the defh_ition of-the outputs of a o, we see, the.l, that

Hi(v) = lilt} j - 1, a, ..., n.

To construct the inverse of ,I-Ij, we observe that the inverse of-Hjl t corresponds, simply

to the combination of:Hi It(vlt) with the basis vector _j according to the operation of
:" scalar multiplication in the vector space V, that is,

Hence, the inverse of Hj is --

H_l[f{t)] = f(t)>_j(t),

- where _j(t) denotes the jth orthonormrJ basis vector in St as a function of t. Interpreting

Fig. 8 in the light of this discussion, then, we can replace . the systems a o and ao I a_
shown in Fig. 9. : - ''

__ As an example of the application .of these ideas to the construction of the systems ao

--- and ao 1, consider a homomorphic system with addition as the input operation and additJ.on

a_ the output operation, that is, a linear system. The operations of vector addition and

scalar multiplication on the input vector space are
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v I o vZ = v I + v2,

and
-... •. -

C>V -- CV.

Let St denote the set of all possible values that the input can assume at time t. We have

shown that St is a vector space. In particular, it is. a one-dimensional vector space.

GO (1_ i

.... J r I

--_- l ft(t)-j gt(t) i_ ._ --
; - I g i(t )/_1(t) I

I',,.. '.j I g2(t)/_2(t) II I
I L I " ___

v I_ l rl

-- I '°"'..... °°""4 '"-Hn(V) _ 1 gnltl/_n It) " I ;

-I ]

Fig. 9. Canonic representation of a homomorphic system with memoryless input
and output operations, illustrating the construction of the characteristic
systems.

For, choose any nonzer,9 value _ in St as a basiq vector,, then any value _1 in St can be .

-_:-- _. expressed in the form 11= c>13 = c0-for •some scalar c in the field. Specifically, .....

_1_1

where is well defined, since it is a nonzero scalar in the field, and hence has an

inverse under multiplication. Thus theyector 13 in St spans St. Let an trmer product

be defined in St as follows: if_ 1 and _Z are ans" _:;o vcctors in St, then the inner prod-e

uct'of 111 and _Z' denoted by (_1,_.) will be defined as

• , :121•.__

(,1l, n2) = n In'Z. •. '.'_:.._-,

If the field is the field of i-eal numbers rather than the field of complex numbers, then

( a ) n I n 2 '--" r ='I " .

• --* "'- W'" - "

/
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To verify that Eq. 47 defines an inner product, we refer to Definition 5. Let _1' _2' "

and _3 be any vectors in St. Then

(1) ((,h+_z), n3) - (nl+nz) _3 _---

and thus i
lave

((nl_nz),n3)= (n1,n3) + (nz,n31.

{z)(cnI,nz)=C_l_"z= c • (_I'_z)"

{3) %. nz) = {nz, _1) ---_

{4) {nl, n1) = nl_"1 > o, 'ql _ o.

An orthonormal basis for St under this choice for the inner product is the choice _ = 1.
1 must

We are guaranteed that the scalar 1 is in St; for, if _ is any scalar in St then

.- be a scalar in the field, and since St is a vector space, the scalar

1> .q =l.q = 1.q

must be in St .

= - : Since St is a one-dimensional vector space, the system a° has a single output. The - -- l

OperationHit(vlt) is given by ....

Hit(v/t) = (v/t, P)= vl e

be and hence_H(v) = v. Consequently, the system ao issimply the identitysystem, as would

- have been expected without recourse to this formalism. By a similar procedure, the

system a o and hence ao 1 is the identity transformation.

_ The choice of inner product specifiedby Eq. 47 is by no means a unique choice. As -

the inner product changes, the orthonormal basis also changes. In-terms of a different

I inner product, the systems ao and a o will be different. Consider, for example, the
an

! inner product (_1' _2 ) defined as
lct !

| . -

_i- (_I'_2) = k_IWZ

for some positivereal scalar k in the field. Itcan be verifiedthatthis inner product

has the properties required of an inner product. Under thisinner product,an.orthonormal

_is for St is the vector
_n

13" k-l/z. "...... <:, \
- _ _'\

#
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The operator HIt(vl t) is then given by

tIIt(vl t) = (vlt,_) = kl/2 v]t

and hence

kl/2H(v) = v.

Thus the system a is an amplifier of gain k 1/z. If this same Lmuer product is associated
o _, k_i/z.with the output vector space, then the system a o will be an amplifier of gain

Alternatively, different inner products can be associated with the input and output vector

spaces; the systems a o, L and ao 1 will depend in general on the manner in which these
inner products are defined.

As another example, consider the class of systerr_ having an input vector space V

with vector addition and scalar multiplication defined as i

v I ov 2= VlV2 _ ---- i

C>Vl-[v1 - ,ii

for all v 1 and v 2 in V and all scalars C in the field. Let the field be restricted to the :_

field of real numbers, and the time functions be restricted to have only positive values, i
Again, St will denote the set of values which the inputs can assume at time-t. St is a

one-dimensional vector space. For, let _ be any vector in St other th_ unity, then for

any vector _ in St there exists-a_scalar c in F such that

. = = - (4s}:-

Thisfollows from the fact that all scalars in St must be positive. Hence the natural

logarithms of p and 11 are defined, and the natural logarithm of _ is nonzero, since ii
_ ts not equal to unity° The choice of the scalar c in Eq, 48 is given by _.

In (11) _'_"

In (_) ..._.

In the previous example, the system ao was constructed by first defining an inner prod- !}_'Ii

uct. Let us instead, in this example, determine a0 by first constructing the inverse _

-1 We know that this approach can be used, since there is always some ironer prod-_0 "

uct under which the basis for St is orthonormal when the dimension of St is fil_ite, as it

is in this example. Hence we do not need to define an inner prcxiuct in St in order to _
determine an orthonormal basis-.forSt. From the previous discussion-we see-thatthe :_

system a; 1 iS described by " - --- i

" "1

t
1,

- 52 :,.

!;

1965015323AA-061



sol(x) = x>O -

where x = So(V) for eome input v. Since

x>_- [Hx,

we have

We recognize the in-. _.rse of this system as the logarithm to the base _ and hence

o[V]- logIv].

It would be instructive to determine the inner product under which _ is orthonormal. To

do this, consider the fact that with the above-mentioned choice of a o, the operator Hit
is given by

I HltCvlt) = log_ [vlt 1.
i Hence, from the definition of Hit,
l

I:_ (vlt, p)= logp[vtt].
!

ij: Consider the inner product of any two vectors 111 and _Z in St given by,: _.... .

!i (Vl1, vlz) = [logp (rll)][10gl5 (rlz)]. 149)
!i
i: Before showing that _ is orthonormal under this inner product, let us first verify that

L -• (491 does in fact define an inner product.

_' (1) (rtlVl2, rl3) = [logp ('qlViZ)][logl5('q3)]

= [log13nl+l°gl3 rlz][l°g p(r131]

= (logl3 _ll)(log _ _3) + (logp _12)(logp _13)

and thus

(_l_Z ' '13) = (_1' _3) + (_Z' '131"

(Z) ('qlc, ,1z) = c(logp Tlllllogp'qz) = c(_ll, 'qZ) }
!

(3) Property (3) does not have to be verified, since the field has been restricted to . i

the field of real numbers. .

--'.
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- (4) (_i,_Ii)- (log_l)2 > 0 " for 111@ 1 _.srequired.

It follows directly that the vector _ is orthonormal under this inner product for

O)= z= 1.

4. 5 AP_PLICATION TO NONADDITIVE FEEDBACK SYSTEMS ( .....

. The notion of homomorphic systems can be used to transform some systems with

nonadditive feedback _o systems with additive feedback. In certain special cases this

transformation has the effect of removing the system nonlinearities. In such cases,

stability Of the nonlinear feedback system can be investigated by using the techniques

available for the study of linear feedback systems.

i

?

J

Fig. 10. Homomorphic feedback system with i
nonadditive feedback.

Consider a feedback system of the form shown in Fig. 10. The inputs are assumed

to be a Hilbert space with an orthonormal basis, in which vector addition is the oper-

ation o. The system ¢ is a homomorphic system with input operation o and output

operation o. The system ¥ is a homomorphic system with input operation o and out-

" put operation o. The feedback operationis identicalto the inputoperation of _ and the

output operation of ¥. '

The first step in the transformation of the system of Fig. 10 is to replace _b and ¥

with their canonic representations. We recognize that since the input operation of _ is

identical to the output operation of ¥, the first system in the canonic representation for

$ ca:_ be chosen as the last system in the canonic representation for ¥. Similarly, since

the output operation of $ is identical to the input operation of _, the last system in the i

canonic representation for ¢ is identical to the first system in the canonic representa-

tion for ¥. When @ and ¥ are replaced by their canonic representations, the system of

Fig. 11 results. From Fig. I l we see that the input x2 to the linear system L 1 is
given by

o[VO: ]-. x2 = a a l(Y21 i

I"
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or, since a° is a homomorphic system,

x2 = ao(V)+ YZ"

The inputYl to the linear system L 2 is given by

Yl = ao a (x 3 . _-
--" -

Hence, the block diagram of Fig. 11 can be transformed to t_t shown in Fig. 12. From

the block diagram of Fig. 12 we recognize the feedback system as a cascade of ao, a

aG 1 .linear system, and Hence, it is a homomor:_hic system with o and o as the input

:t +

_ I �_

v__ \_o i L, I _ _wr

Fig. 11. Equivalent representation of a homomorphic feedback system.

i

', and output operations, respectively. The canonic representation for this homomorphic

system is, of course, the block diagram of Fig._ lZ. The linear portion of the canonic
"- -_ 7

representation is a linear feedback system having the linear po._ion of _ in the forward

_- path and the linear portion of- _ in the feedback path. "
-I

J The systems a o and a o in the system of Fig. lZ are determined by the classes to :

r 1

; 4 '+1 +,__+ I+r-'---'-I °i . -'l--
.__=_jI: I

I _
L .

' L I
?,

Fig. 12. Canonic representation of a homomorphic feedback system. _"

which the systems @ and_ belong. Hence, as @ and ¥ are varied within their respec-

tive classes, the systems ao and a o I remain the same; changes in _ and ¥ are repre-

sented by changes in the linear systems L 1 and L 2. Thus lhe behavior of the feedback

o
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system of Fig. 10 as the systeme _ and y are varied within their respective classes can

be studied by concentrating on the behavior of the linear feedback system enclosed in the

dotted line in Fig. 12.

The fact that the nonlinearities in the system of Fig. 10 can be removed from the

feedback loop depends on the fact that the feedback operation is identical to the input

operati_.n of _ and the output operation of y, and that the output operation of _ and the

input operation of ¥ are identical. Under

o o these restrictions, and the restriction
v I 1

v ___..__ -_---_e}- w that th _ system inputs constitutes a vec-

x" '_ _$ ' _" tor space under o, the system outputs

will constitute a vector space under o.

It can also be verified that the set of

inputs to ¢ is a vector space under o

and the set of outputs of ¥ is a vector

Fig. 13. Nonadditive feedback system with space under o.
homomorphic systems in the for- If we do not impose the restriction

ward and feedback paths, that the feedback operation be identical

to the input operation of _ and the output

: operation of _, we can still, in certain cases, transform the system to a feedback sys-
tem with additive feedback. The over-all system will no longer be a homomorphic sys-

tem; consequently, the feedback loop wiU _-_main nonlinear.

Specifically, consider the feedback system in Fig. 13. The system inputs constitute

• part of a Hilbert space under the operation o. It is assumed that the system of Fig. 13

is well defined, that is, the operation o is defined on all inputs to _ and the operation

o is defined on all the outputs of ¥. This woutd be true, for example, if _ and "_were

both linear systems andthe operation were multiplication.

Fig, 14. Equivalent representation of the feedback system of Fig. 13.

Since the system inputs constitute a vector space under the operation O, there exists

• an invertible homomorphic system aO, having O as the input operation and addition as
the output operation.

The input E to _ is glven by

-
i' :

I "
i- : 56
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E=VOX

or, equivalently,

Since a O is a homomorphic system, (50) can be rewritten

_-o 11%(v)+oo

Consequently, the system of Fig. 13 can be redrawn as shown in Fig. 14. When the

canonic representations for ¢ and ¥ are substituted in the block diagram of Fig. 14,

and appropriate blo.ck diagram manipulations are performed, the system of Fig. 14 can

T 1

Fig. 15. Equivalent representation of the feedback system of Fig. 13.

be transformed to that shown in Fig. 15. If the system ¥ is an invertible system, then

the system L 2 will also be invertible. In this case, the system for Fig. 15 can be

transformed to that shown in Fig. 16, fcr which

-1
a - aoa0

L = LIL_ I

If this feedback system is to be studied as the system _ is varied within its class, then,

the systems a and _ will remain invariant with changes in _. Hence, properties of

the feedback system of Fig. 13, as ¢ is varied within any one class, can be studied by
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Fm_ 1

i I

F]-] I _ r--] r_-! [37] I I_

I
I
I

Fig. 16. Eqaivalent representation of the feedback system of Fig. 13
for the case in which _ is invertible.

concentrating on the feedback system enclosed in the dotted line in Fig. 16. Although

this feedbark system is nonlinear, it is characterized by the property that it is a unity

feedback system in which the forward path contains a linear system inserted between

a nonlinear system and its inverse.

°

"..
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APPENDIX

Isomorphic Mapping of a Separable Hilbert Space into the Space F n
Ull i , , | . - i

In Section IV, we were cm,cerned with the construction of an isomorphic mapping

from the input and output spaces of a homom_;rphic System into spaces under addition.

Tile input and output spaces were restricted to be separable Hilbert spaces, i.e., Hilbert

spaces having orthonormal bases. When the operations of vector addition and scalar

multiplication were memoryless operations, the set of values which the associated time

functions could assume at any instant of time was shown to constitute a vector space. It

was then stated that an isomorphism could be defined which mappcd the set of values at

any instant of time onto the space F n. The purpose of this appendix is to carry out the

derivation of these results.

Consider a separable Hilbert space in which the orthonormal basis is denoted fl (t),

fz(t), .... Then ff f(t) is any function in the space, f(t) can be expressed in the form

f(t) = [(f(tl, fklt)l>fklt) ], . (A. 11
/-'¢1
O

where _. denotes the combination of the functions [(f(t), fk(t))>fk(t) ]according to the oper-

ation o. Let S denote the set of all values that can be assumed by the functions 'in the

space at any given tLrp.e to. If o and > are memoryless operations, then, from
Eq. A,t, --

• " f(t o) = [(f(t), fk(t))>fk(tn)].1
0

Consequently, for any scalar f(to) in S there exists a _et of scalars-:_ 1, k Z, .,. such
that

f(to) = kk > fk(to )"
1

0

The scalar kk is given by
o.

kk = (f(t), fk(t)).

The vector space S is spanned by the scalars fl(to), fZ(to),.., in the sense that any

scalar in S is the limJ.t of a linear combination of the scalars fl(to), fZ(to), .. under

the operations o and >. The set of scalars fl(to), fz(to), ... is a countable set, since
an orthonormal basis for a separable Hilbert space is countable. This set of scalars

may or may not constitute a basis for S, that is, they may or may not be h.dependent.

They contain, however, an independent set in terms of which auy scalar in S can be "--

59
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expressed as a (possiblyinfinite)linear combin_.tion,as the followingargument shows.

Ifthe set S contains only one scalar, then this scalar must be the identityin S

because S is a vector space. Since fl(to},fZ(to),... are each in S, they must allbe
equal to the identityin S. In thiscase, a_Lyone cf these scalars is a basis for S, and

hence the proof is complete.

Ifthe srt S contains more than one scalar, then the set fl(to},fZ(to),... must con-

tainat leastone scalar thatis not the identityin S. Let Sl, sz, ... denote the sequence

of allscalars from the sequence fl(to),f2(to),... which are other than the identityin S.

This sequence is nonempty by virtue of the comments .ustmade. Let S1 be the subspace

of scalars s in S which is spanned by s 1. Let s_ be the first scalar in the sequence

s 1 , s Z, ... winch is not in S1, and let S2 denote the subspace of S spanned by s_ and

- s_, where sl -Sl.- Continuing this process, we obtain a sequence of subspaces SI,
n

S 2, ... of S. Since S is the 1Lmit of the sequence of partial sums _1 [(f(t),fk(t))>fk(to) ],

the limit of the sequence of Subspaces S1, $2, ... is S. Hence the sequence sl, s_, ...
, " s' underspans S, since the space Sn can be expressed as a combination of s_ s_, .. , n !

the operations o and >. Furthermore, by the manner in which the sequence s_, s_, ... i
was generate:I,it.isindependent. This sequence forms a basis for the space S in the_

sense that itis independent and thatany-element in S can be expressed as the limit of _

i partialsums of scalars inthe sequence.

We wish to show next that S is isomorphic with F n for some n. Let s be any scalar

in S. Since the sequence s_, _, ... spans S and since this sequence is independent,

s can be expressed in one and only one way in the form

n

. -°

for a set of scalars {Ck} from F, where ck = [{flt)>fkltl)]. The isomorphism T from
S to F n is then defined as -

T(s) = (Cl,Cz,...). |
i

]
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