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Abétract

Many nonlinear systems -an be interpreted as linear transformations between vec-
tor spaces under appropriate definitions for the vector operations on the inputs and
outputs. The class of systems which can be represented in this way, is discussed here.
This class, referred to as the class of homomorphic systems, is shown to include all
invertible systems. Necessary and sufficient conditions on a noninvertible system such
that it is a homomorphic system, are derived.

A canonic representation of homomorphic systems is presented. This representa-
tion consists of a cascade of three systems, the first and last of which are determined
only by the vector space of inputs and the vector space of outputs, respectively. The
second system in the canonic representation is a linear system. Necessary and suf-
ficient conditions are presented under which all of the memory in the system can be
concentrated in the linear portion of the canonic representation. A means for classi-
fying homomorphic systems, suggested by the canonic representation, is discussed.
Thic means of classification offers the advantage that systems within a class differ
only in the linear portion of the canonic representation. Applications of the theory are
considered for a class of nonlinear feedback systems.
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I. INTRODYCTION

The analysis and characterization of linear systems rely heavily on the principle of
superposition which these systems satisfy. The superposition integral and system func-
tion representations, for example, are a direct consequence of the fact that the respons-e
of a linear system to each input in a set of inputs determines the response to any linear
combination of inputs in that set.

In contrezst, nonlinear systems do not satisfy this principle of superposition. The
determination of a means for representing nonlinear systems has been the subject of con-
siderable attention for many years. In 1887, Volterra1 formulated a functionai expansion
of continuous nonlinear operators in the form of a generalization of the Taylor's series
expansion of a nonlinear function. This expansion, applied to systems, provides a rcpre-
sentation of the system operator. A representation of time-invariant, realizable non-
linear systems was presented by Wiener,z in 1958. In his theory, system response to
shot noise is used to determine the parameters of the representation. Wiener's formu-
lation is based on the expansion of the past of an input in terms of Laguerre functions,
which was first presented by Cameron and Martin.3' The response of a realizable time-
invariant nonlinear system is expressed as a nonlinear combination of the coefficients
in this expansion. Cameron and Martin represented the nonlinear combination of these
coefficients in terms__'_of Hermite functions. An alternative representation of the non-

linear combination of the coefficients was developed by Bose:4 in 1956. Much of the
" research being conducted, at present, on the representation of nonlinear systems is
based on Wiener's original ideas. ’ '

This repo'rt presents a different approach to the characterization of nonlinear sys-
tems, which is based on linear algebra. The fact that vector spaces of time functions
can be constructed under a variety of choices for the definitions of vector addition and
.scalar multiplication permite many nonlinear systems to be representable as linear
: txfanéformations between \_rector spaces. Specifically, if fl(t)' and fz(t) represent any
two system inputs, let f1 t) o fz(t) denote the combkination of these inputs under a spec-
ified rule, such as addition, multiplication or convolution. If c is any scalar, let c>f1(t)
denote the combination of the scalar c and the input fl (t). Similarly, let 0 denote a
..rule of combination between any two outputs; and / denote a rule of combinaticn between
é.ny scalar and any output. If the system inputs constitule a vector space when o is inter-
prete& as vector addition and > is interpreted as scalar multiplication, and if the system
operator ¢ has the property that ’

$1,(1) 0 1,(0]= 41, )] a o[f,)]
and .

d[c f, ()] = /e[t (0],

then it is representable as a linear transformation between vector spaces. In the case
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for which the operations o and 0 are addition and the operations > and / are multi-
plication, the systeni is a linear system. Otherwise, the sys‘em is in general nonlinear.
Systems representable in this way are referred to here as homomorphic systems, a
term motivated by the algebraic definition of a homomorphic mapping between vector
spaces, ‘

The algebraic fundamentals for the study of homomorphic systems are presented in
Section II. This presentation sets down the basic postulates of linear algebra ard devel-
ops the algebraic theorenis that are needed in the study of hom »morphic systems,

In Sections III and IV the properties of linear transformations are used to investigate
homomorphic systems. It is shown in Section I\ that every invertible system is hrmo-

morphic for any choice of the input vector space. For noninvertible systems, necessary

and sufficient conditions are derived under which the systems are homomorphic.

In Section IV a canonic representation for homomorphic systems is developed. This
representation consists of a cascade of three systems, the first and last of which are
deteirmined entirely by the input and output vector spaces, respectively. The second

system in the representation is a linear system. Necessary and sufficient conditions

are derived in Section IV under which the first and last cystems in the canonic repre-
sentation are memoryless. Section IV also includes a discussion of thc use of the can-
onic representation in treating a class of nonadditive feedback systems.

The canonic representation presented here offers a convenient means for classifying

homomorphic systems. Systems within a given class differ only in the lirear portion of

their canonic representation and hence a comparison of systems within a class reduces

to a comparison of linear systems. Alternatively, the analysis of a homomorphic system,

when its class is known, reduces to the analysis of a linear system.



II. VECTOR SPACES AND LINEAR TRANSFORMATIONS
2.1 INTRODUCTION

The results presented in this report draw heavily on the notation, concepts, and
theorems of linear algebra. Hence it is appropriate to introduce the fundamental prop-
erties of vector spaces and linear transformations, and to remind the reader who is
familiar with vector spaces of the properties used here. Although proofs of all theorems
have been included, it is the theorems themsclves that will assume primary importance.
For the reader who is familiar with linear algebrz, 2 quick review should be adequate
to convey the point of view toward linear algebra which is used in this report. Many of
the theorems and proofs presented here have been published i-v others.5'7 Some of
these were reformulated in terms that were more meaningful within the context of this
report. The remainder of the theorems were formulated and proved specifically for the
purposes of this report. '

2.2 GROUPS, FIELDS, AND VECTOR SPACES

It is convenient to introduce the postulates of the algebra of vector spac'es by intro-
ducing the postulates of groups, which constitute a weaker algebraic system. _
DEFINITION 1: A group G is a collection of objects for which a binary operation
x is defined, subject to the following postulates: T o
1. If a and b are in G, then axb is in G. ~
2. If a, b, and c are in G, then '

(a%b)*c = ax(b*c).

3. There exists a unique element e in G, called the identity eiement, s.uch‘ﬁhat for

-all.a in G,

ake = e*a = a,
4. For every element a in G, there exists a unique element a.'_1 in G, such that

a*a-l = a—l*a = e,

If the group G has the properiy that for all elements a and b in G, a*b = b*a, then G

is referred to as a commutative or Abelian group. Often when discussing Abelian groups,
the binary operation associated with the group is denoted + to emphasize the fact that
the group operation is commutative. In this case, the identity element is referred to

as the zero element, This notation will be used now. ~ Little confusion results when the
elements of the groups are abstract objects. When the group elements are real or com-
plex numbers o. functions, however, the reader should remember that the element a+b
in the group is not necessarily the addition of the numbers (or functions) a and b. The
algebraic postulates can be satisfied, for example, if a+b is defined as the product of

the numbers or functions a and b. ‘



DEFINITION 2: A field F is a collection of objects ansociated with which there are
two binary operations. The first operation is denoted 2+b. The second operation is

denoted a.b. These operations satisfy the following postulates:

1. The field F is an Abelian group under the operaticn +,

2. The nonzero elements of F are an Abelian group uncler the operation ¢ . The
identity under this operation is denoted oy 1.

3, Forany a, b, and ¢ in F,

a-(b+c)=a-b+a-c,

It should again be mentioned that the operations + and -, although satisfying the same
algebraic postulates satisfied by addition and multiplication of numbers or functions,
are not necessarily restricted to be these cperations when the elements c. the iieid are
chosen to be real or complex numbers or functions.

DEFINITION 3: A vector space consists of

1. Afield F of scalars; T

2, A set V of objecis called vectors and a binary operation called vector addition

(to be denoted +) under which tivi ¢et V constitutes an Abelian group; and
3. An operatior called zcalar multiplication which associates with each scalar ¢ in
F and vector v inn V a vecisor cv in V called the aroduct of ¢ and v in such a way that

. (a) 1lv=viorevery v in V
(B) (eyz,iv =< (c,v}
{c) c(vl-iuzl = cv1 + v,

(d) (cl+cz)‘v =0 +c,V.

2
The inverse of a vector v'is denoted -v. I .. «asily be verified that _
' (-1)v = =v ’ ‘
and
{Mv=20

DEFINITION 4: Let V be a vector spice over the field F, A subspace of Vis a
subset Vl of V which is itself a vecior space over F with the operations of vector aud-
ition and scalar multiplication on V, '

A simple example of a subgpace of V is the space consisting of the zero’ vector
alone. When verifying that a subset of a vector space is a subspace we need not verify
all of the postulates of a vector space, since many of the postulates are implied by the
fact that the set is a subset of a vector space. In general, it is sufficient to show that
if 4! and v, are in Vl. then any linear combination of 'vl and vy is also in Vl'

DEFINITION 5: A vector space can be extended to what is termed an inner product
space by defining the inner product between any two vectors in the space. The inner
produbt assigns to each ordered pair of veutors v Vo in V a scalar (vl.vz) in F in
such a way that

l'

P
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1. (v1+vz,v3) = (vl,v3) + (vz,v3).
;. (cvl,vz) = c-(vl,vz).
3. (v-l.vz) = (vz, vl), where the bar denotes complex conjugation.

4, (v,v)> 0 if v#£0,

Two vectors having the proper’ that ireir inner product is zero are said to be orthog-
onal. The length of a vector v in an inner product space is defined as the squat e root
of (v,v) and is denoted ||v]. A set of vcctors that are orthogonal to each other 2nd have
unit length 18 teriaed an orthonormal set.

Vector spaces can be constructed for which the elements are Jjunctions of time, but
for which the operations of vector addition and scalar multiplication do not correspond
to addition of time functions and multiplication of time functions by scalars. For
exampie, consider the set of all time functions of the form v = ent
numbex;.' If we associate with this set the field of real numbers and define vector addi-

, where n is a real

tion and scalar multiplication as

nlt nzt
v + Vv, = vl(t) vz(t) =e e

and
cv = IV(t)lc (™1,

then th1s set constitutes a vector space.

- Many of the important and useful theorems- concermng vector spaces and linear
transformations between vector spaces stem from the iact that a szet of basis- vectois
can always be found for a finite-dimensioral vector space. The notion of a basis is
presented in the following definitions and theorems.

DRFINITION 6: Let V bé a vector épacé’ over F, A finite subset S of V is said to
be linearly dependent if there exist scalars c,, Cor v Cp in F, qgt all of which are 0,

_and distinct vectors. Vit Vaseeey v in S such that

clvl + ¢V, +...+ cnvn =0,

A set that is not linearly dependent is called lméérly independent. If a set of vectors is -
infinite, then it is said to be a linearly indep.adeat set if every finite subset of it is
linearly independent. A set of vectors in V which is linearly independent and spans V,
that is, is such that any vector in V can be expressed as a finite linear combinatioa of-
the vectors in the set, is referred to as-a basis for V;

It can be verified that any set containing the zero. rector is a linearly dependent set,
and that the representstion for any v-._tor in terms of a basis is unique.

THEOREM 1: Let V be a vector space for which the finite set of vectors v,, v,,

cer Vg forms a basis. Then any other basis for V contains exactly n vectors.




~ Hence the set w

PLOOF: First, we shall show that any set of vectorse containiag more than n ele-
mernts must be linearly dependent. To this end, let Wi Wos ooy W be a set of m vec-
tors from V with m > n. Since the set TRITRE
LA is expressible as a linear combination of the vectors vl, Voo o Vi that is,

< Vy is a basis, each of the vectors

Let xl, Aoy ... m be scalars from F. Then

n m

m m
Aw. = 5\)\ v S‘ cx V..
Z 11 7/, ._Jc - i ¥

=1 i=1  j=1 j=1 \i=1

[ 5

Sirce m > n, the set of equations

m

/, ivi= 0 i=L2,...,n
i=1

has a nontrivial solution for the unknowns )‘1’ ) Xm. Thus a set of scalars can

be found, not all of which are zero, with the property that

m

z }iwi = 0.

=1 c .

1, ceea W cannot be a linearly independent set; therefore, no lm-

Vearly independent set in V, in partmular, no basis for V can contain more than n vec-
- tors. " Now assume that there exists a basis with p vectors, where p<n. Then, by
’ ' _.,vnttue of the discussion above, there could not ex1st a basis with more than p vectors.

- But the set of basis vectors Vie Vproees Vy has more than p ‘vectors.\ Thus there qould

not have existed a basis with p vectors, where p < n.

By virtue of Theorem 1, we see that any basis for a vector space with a finite num-
ber of basis vectors contains the same number of vectors. It is this property of vector
spaces that permits the definition of the dimension of a vector space indepehdefltly of

.any particular basis.

DEFINITION 7: The dimension of V is defined to be the number of elements in a
basis of V. The dimension of a vector space V will be dencted dim V.

Many of the theorems of linear algebra center around finite-dimensional vector
spaces. Infinite-dimensioral vector spaces present special problems and many theorems
concerning these spaces require special restrictions on the spaces. Infinite-dir- °nsional
vector spaces will be considered. Before doing so, it is iifprrta.nt that the properties
of finite-dimensional vector spaces be understood so that the extensions of these prop-
erties to infinite-dimensional spaces will be clearer.



THEOREM 2: Let S be a linearly independent subset of a finite-dimensional vector
space V. Then S is part of a basis for V.

PROOF: Let W be the subspace of V-spanned by S. Then, by definition, S is a -
basis for W, If W = V, then S is also a hasis for V and the proof is complete. If W
is a proper subspace of V (that is, contained in but not equal to V), let A be a vector
that is-in- V but not in W. The set {_vl,S} obtained by adjoining v, to S is linearly inde-
pendent, for if i could be expressed as a linear combination of vectors in S, then Vi
would be in W,

Let V, be the subspace of V spanned by {v S} If V, =V, then {vl,S} is a basis
for V, smce it is a basis for Vl' H V is a proper tubspace of V, let vy be a vector
that is in V but is not in V 1- Then the set {vz,vl ,S} must be linearly independent. Let

this process be continued until the set {vn,vn -Vy .vl,S} contains exactly dim V ele-

-1
ments. Since these vectors are all linearly independent, the space Vn spanned by this

_set must be all of V; otherwise, a vector Vil that is in V but not in Vn could be -
édjoined tc this set, forming a linearly independent set with more than dim V elements.

In the proof of Theorem 1, however, it was shown that no linearly independent set of V
could contain more than dim V elements.

By the procedure above, then, the set S was exiended to a basis of V and hence is
itself part of a basis.

It follows from Theorem 2 that if V’l is a prober subspace of a finite-dimensional

vector space V,-then dim Vl < dim V. This follows from the fact that any basis for Vl

. is part of a basis for V. Since V, is a proper subspace of V, however, a set of vectors -~

must be adjoined to the set of basis vectors for V., to form a basis for V, these vectors

being chosen by the procedure given in the proof olf Theorem 2,

The existence of a basis leads to a representation of a -vector as an n-tuple of
scalars. This representation comes about by expressing every vector in terms cof an
ordered basis for the space V. A one-to-one correspondence can then be drawn between
any vector in V and the n-tuple of the coordinates expressing this vector in terms of the
ordered basis. This is done formally by first defining a vector space, the elements of
which are n-tuples having entries from the field F.

DEFINITION 8: The vector space F;n is defined to be the vector spaée having ele-
ments of the form (al—.'az, oo an). where a1, 8y, ..y @y are scalars from the field F,

The vector addition of two vectors (al 135,...,2 n) and (bl’ bz' ..esb n) in F® is defined as

(al) 2,o.ooa ) + (blvbz.--cab ) = (a +b a +bzao-o,an+bn).

The scalar multlphcatxon of a vector (al. gseeerd ) in F? with a scalar ¢ in F is

-defined as

c(all z'oootan)':: (cal'ca2!---lcan)c 1

Let V be a finite dimensional vector space over F with



dim V = n,

If vl, v R vn is an ordered basis for V, then any vector v can be expressed in the

2) e
form

v.+a,v, +...+av

vEa, v, Tay, n'n’

If we draw a correspondence between v and the n-tuple (a1 @y, ..an) in Fn. then this
correspondence will be one-to-one, since any vector v in V can be expressed in one
and only one way in terms of a given ordered basis.

2.3 QUOTIENT SPACES

A concept that will have application in the discussion of linear transforma:ions, and
also in the discussion of homomorphic systems, is that of a quotient space. The essence
of the idea is to divide a vector space V into sets of vectors, Sl" S, v Sn with the
property that the sets Sl’ S
vector space, ) .

DEFINITION 9: Let V1 be 5 subspace of V, and v be a vector in V, Let Sl be
the set of all vectors in V which can be expressed in the form v + w for some w in
] Vi‘ - Denote this set by vt Vl. This set is called a coset of V generated by Vi and

“Vl. The set of all cosets generated by vectors v in V, and the subspace V1 is called

AREEY S n can themselves be considered as vectors in a

a quotient space of V, modulo V., and is denoted by v/Vv,.
THEOREM 3:_ Let .V bec a vector space over F, and V1 be-a subspace of V. The
quotient space V/Vl, is a vector space over F with the following definitions ova.ect.or
" addition and scalar multiplication:

(v #V)) + (v, +V)) = [v 4v,] + V)
clv,+V,)) = [cv1] tV,.
PROOF: To show that V/V1 is a vector space we must ‘ver_i_fy that all the postulates

of a vector spaée as pr-asented in Definitioa 3 are satisfied.
1. The set V/V1 is an Abelian group, since

(a) If v, + V1 and v, t V1 are any two cosets of V, then their vector sum

(v1+v2) +V, is also a coset of V, and

1
_(vl-l-Vl) + (vz+V1) = (vl+vz) + Yl

= (vz+vl) + Vl
= (vz+Y1) + (vl-l-Vl).

{(b) Let vy + Vl, vy + Vl' and £ + Vl be cosets of V; then

et mmee e an

P——
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[(Vlrvl)+(vz+Vl’;] t{vy¥V)) = [(vl+v2)+V!] +(vytV))
= [(v1+v2)+v3] +V,
= [v1+{v2+v3)] + V1
= (v #V)) + [(vz+vl)+(v3+,v~l)].

(c) It can be veriiied that the coset (0+V1) has the propertizs required for an
identity element in V/ v,
(d) Ilet v+ Vl be a coset of V; then (-v) + V1 is the inverse of v + Vl.
2. The fouw: properties required of scalar multiplication are satisfied.

(a) 1(v+’V1) =1lv+V, =v+ Vl.

1

(b) {cl-cz)(v«i»vl) ¢,V V= cl[cz(v«kvl)].

(© clv +V )1+Hv,#V )] = clv +v,)+V, ]

[(cvl+cv2)+V1]
= (cvl-i—Vi) + (c'/2+Vl)_
(d) (c te,)(viV)) = {(c1+c2)v+Vl],
= {c1v+czv+V1]
= (clv-l-Vl) + ((:zv+Vl ).

To aid in understanding the concept of a quotient space, consider a geometrical two-
dimensional coordinate system :n the x-y plane. All vectors in this plane form a vector
space, which we can denote by V. Let Vl be the subspace of V consisting of all vec~
tors lying in the x direction. Let v be a vector in V having a component in the y
direction equal to v_. Then the coset v + Vl is the set of all vectors in the plane having
v_ as ‘_tpgir y component. The quotient space _V/_Yl is the set of all such cosets for
different values of v_.

THEOREM 4: Let v_+V; and v, + V| be any two cosets in V/V,. If these cossts

~ have any element in common, then they are identical.

PROOF: Let v be any vector that is in v + V, and also in v, + V,. Then there
exists v, in V, such that ' ‘

~

v=v tv,

and there exists v} in V, such that

= L]

.
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Hence,

VoSV + (v'l-vl).

Consequently,

Va + Vl = (vb+v'

l-vl) +V

1-

[ HEEE .
But \51 v1 is in Vl’ hence,

2.4 LINLAR TRANSFORMATIONS

The properties of the class of nonlinear systems to be discussed in Secticns III and
IV are based on the properties of linear transformations between vector spaces. The
theorems to be derived concerning these systems will be for the most part an interpre-
tation of theorems presented here, placed in the context of the discussion of Sections III
and IV,

DEFINITION 10: Let V and W be vector spaces over the field F. A linear irans-
formation from V into W is a function T from V into W which maps every vector in

V onto a unique vector in W in such a way that

T(cvl-!-v = cT(vl) +.T(v2)

2)
for all vectors v, and v, in V and all scalars ¢ in F. A linear transformatzon is said

1 2
to be one-to-one and orto if for each vector 'w in W ther- is one and only one vector v

in V such that
T(v) = w,.
A linear transformation that is one-to-one and onto is invertible.

If a transformation is onto but is not necessarily one-to-one, it is sometimes
referred to as a homomorphic transformation. A transformation that is one-to-aone and

onto is sometimes referred to as an isomorphic transformation, that 1s, an isomorphic

transformation is an invertibie homomorphic transformation.

DEFINITION 1}: The domain of a linear transformation is the set of vectors V over’
which the transformation T is defined. The range R of T is defined as the set of vec-
tors in W onto which vectors in V are mapped, that is, T[V]= R, The null space N of
T is the set of vectors in V that map onto the zero vector in W, that is, TN]=0

~An-example of a linear transformation is the identity mapping I of V onto V so that

I{v) = v, for every v in V,

The domain and range of I are V. The null space of I is the zerc vector, Another
simple example of a linear transformation'is the zero transformation Z from VioWw
defined as Z(v) = 0; all v in V., 'T)e domain and null space are both the space V. The

10
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, But if Wy is in R and w, is in R, then there are (not necessarily unique) vectors v

range of Z is the set containing only the zero vector in W,

THEOREM 5: If T is a linear transformation from V to W, then T(0) = 0.

PROOF: T(0) = T(0+0) = T(0) + T(0). Hence, T(0) = 0.

" THEOREM 6: Let T be a linear transformation from the vector space V into the
vector space W, Then the range of T is a subspace of W, and the null space of T is
a subspace of V.,

PROOF: Let R denote the range of T. If the range contains only one vector, then
this vector must be the zero vector, since by Theorem 5 the zero vector must be in the
range. But the zero vector alone is a subspace of W, and hence in this case R is a
subspace of W, If R contains more than one vector, then we must show that, for every

pair of vectors W, and w, in R, the vector clwl + czw2 is ir R for any 3 and C,.

1
and vy in V such that
'I‘(vl) =Wy
. ‘I‘(vz) = W,

The vector c,v, +¢c,v, is in the domain V for any ¢, and c,, s_iﬁce V is a vector
space. Hence T(clvl+c2v2) is in R, that is, c¥, + C,W, is in R. Consequently, R
is a vector space.
To show that the null space N is a vector space; we must show either that N con-
sists of the zero vector alone or c,v, +c,v, is in N.for every ¢, and c,, if v, and T
v, arein N, _ : .
From Theorem 5, the zero vector must be in N, Hence if N contains only one vec-
tor, it must be the zero vector and consequently N is a subspace of V. I N contains
more than one vector_, then let vy and vy be in N, that is, T(vl) = 0 and T(vz)' = 0, Then

T(clv1+czv2) = clT(vl) + czT(V'z)

c10+c20 : . s

=0
and hence c;v, +c,v, isin N for any c, and c,.
THEOREM 7: Let V be a finite-dimensional vector space over i and {vl,vz, .o .,vn}

be a basis for V. Let W be a vector space over F, and {wl.wz. .. .sW_} be any vectors
in W. Then there is one and only one linear transformation from V into W such that

T(Vi):"wi, i=l"2’¢¢c,n-

»

PROOF: 'in\y vector v in V can be expressed as =~

n
v = Z cjvj,
=1

gl gl et T
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where the coefficients c'i are unique, If we define T(v) = L cjwj, then
=1

T(vi)=wi. i=1,2,...,n,

It can be verified that, with this definition, T is a linear transformation. To prove
uniqueness, let T1 be any linear transformation with the property that

Tl(vi)=wi, i=1,2,...,n
Then
n n n
Tl(v) = T1 Z cjvj = z chl(vj) = z cjwj,
i1 =1 =1

since T1 is linear. . Hence Tl(v) = T(v) for all v; consequently, the transformation T

defined above, is unique. . .
THEOREM 8: Let V and W be vector spaces over F, and T be a linear trans-

formation from V into W, If T is one-to-one and onto, then the inverse {ransformation

T} is a linear transformation from W onto V. .

PROOF: We must show that if T™'(w;) = v, and T (w,) = v,, then T (cw,+w,) =

cvy + Vo. The fact that T(cv1+v2) 1 + w, follows from the linearity of T. Further-

more, cv, + vz is the only vector in V that maps onto cw, + Wo since T is one=-to-

= Ccw

- one. Hence T is linear.

DEFINITION 12: A linear transformatmn T is defined to be nonsingular if the null
space of T consists of the zero vector alone.

THEOREM 9: Let T be a linear transformation from V into W. Then T is non-
singular if and only if T carries each lirearly independent subset of V into a linearly
independent subset of W. . g

PROOF: First, suppuse T is nonsingular. Let the set {vl, Voo .,vn} be a linearly

‘mdependent subset of V., If

¢, T(v)) + ¢, T(v,) +...+c T(v)) = 0,

then
T(c v +c2v2+. . .+c \'4 ) =0,
But T is nonsingular and hence

clv,1‘+ czv2 +...+ cnvn = 0.

Since the set {vl.vz, ceasV } is linearly independent, this then requires that ¢ = 0. i=1,
2, ..., n. Hence the set T(vl) T(vz), ey TV )} is a linearly mdependent subset of Ww.
Next, ‘suppose that T maps every linearly independent subset of V onto' a lmearly

12
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independent subset of W, Let v be any nonzero vector in v. Then the set consisting

only of the vector v is a linearly independent subset of V. Thus che set in W consisting
only of the vecter T(v) must be a linearly independent subset of W and hence must be
nonzero, Hence, T is nonsingular.

THEOREM 10: Let V and W be finite-dimensional vector spaces over F, with
dim V=dim W=n, I T is a linear transformation {rom V into W, then the following
are equivalent:

(i) T is invertible,
(ii) T is nonsingular.
(iti) 1f {v,,v,,...,v } is any basis for V, then {T(v,),T(v
for W,

PROOF: It should be clear that (i) implies (ii), since the exisience of an inverse -

requires that the transformation be one-to-one,.

)re.wTlv )} is a basis

(ii) implies (iii); for example, assume that T is nonsingular. If {vl,vz. .. .,-vn} is
a basis for V, then the set {T(vl),T(vz), ..o TV n)} is a linearly indépendent subset of
W. Hence it is part of a basis for ‘W. But any basis of W must contain exactly n vec~
tors. Hence the set {T(vl),T(vz), .. ..T(vn)} mu-t be a basis for W,

To show that (iii) implies (i), we must show that for every vector w in W, there is
a unique vector v in V such that T(v) = w. Since {T(vl),T(vz),. ..+T(v )} is a basis for
W, the ~ector w can be expressed as ’

. n N
= Tv.)..
w z cJ (VJ)
1

n

Hence the vector v = z cjv,. is such that T(v) = w. Assume that there is some other vec-

i -
=1

tor Va in V such that T(va) =w, Ifv a is expressed in terms of the basis {vl Voo .,vn} as

n o .
v, = Z ajvj," )
J=1 .

then

n
T(va) = W= zl ajT(vj).
J:

But the set {T(vl).T(vz), .o .,T(vn)} is a basis for W; hence, -any"-_vé-'ctbr in W can be
expressed in one and only one way as a linear combination of vectors that form a
basis. Hence,

13
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aj‘:cjt ' =L 2,...,n

consequently, Va= V.

Theorems 7 and 10 together imply that if we have two finite-dimensional vector
spaces V and W of the same dimension, then an invertible linear transformation can
always be defined with domain V and range W, by mapping each vector in a set of basis
vectors for V, onto a different basis vector in W. When infinite~-dimensional vector
spaces are discussed, this result will be extended to state that an invertible linear trans-
formation between V and W can always be defined when a one-to-one correspondence
can be drawn between basis vectors of V and basis vectors of W, that is, that two vec-
tor spaces V and W are isomorphic vhenever a one-to-one correspondence can be drawn
between basis vectors of V and basis vectors of W,

THEOREM 11: Every n-dimensional vector space V over the field F is isomorphic
to the space F".

PROCF: Let {\"l,vz. e .,vn} be a basis for V. Then every vector v in V is express=-
ible in the form

n
V= Z Cka.
i=1

[

Let T, a transformation from V to Fn, be defined as
T(v) = {¢4C5s...0€))

It can be verified that T is linear, one-to-one, and maps V onto Fn_

THEOREM 12: Let T be a linear transformation from V onto W with null space
N. Then the quotient space V/N is isomorphic with W,

PROOF: Let v+ N be a coset of V. Define the mapping T from V/N to W as

T(vN) = T(‘.r).

We must first show that this mapping is well defined, that is, that T[(v#n)+N] = T(v+N)
forany v in V and any n in N. But -

T[(v+n)+N] = T(v) + T(n) = T(v) = T[v+N],
since n is in the null space of T. Hence, T is well defined. T is linear, since

i"(c(v1+N)+(vz+N)1 = 'i“[(cvl+v2)+N]

cT(vl) + T(vz)

"

cT[vl+N] + ?[vzml.

The null space of T is the coset (0+N$; for example, assume that 'T(v-i-N) = T(v) = 0,
Then v is in N and hence is in the coset (O+N). Thus T is nonsingular and, bjr ‘Theorem

10, is then invertible,

14
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2.5 INFINITE-DIMENSIONAL VECTOR SPACES

Many of the theorems that have been presented required that the vector spaces under
consideration be finite-dimensional. In Sections III and IV the primary concern will be
with infinite-dimensional vector spaces and linecar mappings between such spaces., In
this section, therefore, infinite-dimr.isional vactor spaces will be considered and some
of the important theorems previously discussed for finite-dimensional spaces wiil be
reformulated for tbe infiuite-dimensional case.

Many of the properties of finite~-dimensional vector spaces relied on the fact
that such spaces, by definition, always possess a countable basis, Theorems such
as Theorem 7, for example, rely heavily on the fact that the basis is countable,
Although it can be shown in general that any vector space possesses a basis,
some of the properties to be discussed in the rest of the report will require
that the vector spaces under consideration have countable bases. Hence, the discus-
sion of infinite-dimensional vector spaces to be presented here will be restricted
to spaces of countably infinite dimensions, : \

Even with the restriction that the bases are countable, it is importén't to reconsider
the meaning of a linear combination of an infinite set of vectors. We wish"-eventixally to
carry over to the infinite~-dimensional case a similar interpretation of the meaning of a
basis as a set of vectors spanning the space and providmg a unique representation for
any vector in the space. ' '

Many of the problems concerned with the extensions to the infinite-dimensional case

center around a precise definition of the equality of two vectors, When an inner product .

is defined on the space, two vectors can be defined to be equal when their difference is
a vector of length zero. This definition enables many of the desired extensions to follow
in a straightforward manner. An infinite-dimensional inner-product space with certain

convergence properties is a Hilbert space. These spaces have been extensively studied

and are the most straightforward infinite-dimensional extensions of finite-dimensional
vector spaces.

DEFINITION 13: Let H denote an inner-product space. H is defined to be a
Hilbert space if for any sequence of vectors in H, Vi Vareoos vn.,. .. having the

property that |v - n" -0 as m,n-o, there exists avector v in H such that
"vnl-v" ~0 as n -,

DEFINITION 14: A sequence of vectors vh is called an orthonormal basis for a
Hilbert space if it is orthonormal and has the property that the only vector in H which
is orthogonal to all vectors in the sequence is the zero vector. A Hilbert space with an
orthonormal basis is called a separable Hilbert space,

THEOREM 13;: I Va is an orthonormal sequence of vectors-in a Hilbert space and -

®© n
. 2
A\, i8 a sequence of scalars such t.at Z kal < «, then the sequence W= Zkkvk
1 ‘ 1
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converges to a limit v in H denoted v = z xkvk.

1
PROOF: We must first show that the sequence v has the property that "wm-wn" -0

as m,n~o, Letting m=n+ p for some integer p, we have

Po

n+p 2

2
Pnsp=¥al® = 1), e
n+l

Since the sequence v n is an orthonormal sequence, however,

ntp nt+p
2
), e =2 I
n+l ! n+l
But

nip ntp ntl
2 2 ' 2

D Y INE =) I

00

_ Since Z kalz < @, however, we conclude that

1

ntp
Ihklz -0 as n = o,
n+l

Consequently, |lw_-w_|| =0 asm,n~ «; hence, there exists a vector v in H such that
||w ~v|| =& as n—w, that is, the sequence w,  converges to the limit vector v. |
. THEORENM. 14: Let Vo be an orthogonal sequence of vectors in a H11bert space., )

Given any vector v in H, the scalars A, = (v,v,) satisfy the inequality Z ]xk|z < oo,

PROOF: Let Vireoos Vs § be orthogonai vectors in H, By direct expansmn, it can
be veriiied that for any v in H, :

i _ | 2
V-Z {v, vk)vk =
1 .

2
VI - ), 1w P
1

Since v-}j (y,vk)vk must always be greater than or equal to zero, it follows that

16




i
z 0]
P> )l
1

Since this is true for any j, we have

o0 00
D wwit= ) P <.
1 1

THEOREM 15: I Vn is an orthonormal basis for a Hilbert space H, then cach vec-
tor v can be expressed as

o0
V= Z (v,vk)vk.
1

PROOF: We note, first, that the infinite sum is defined in Theor :m 13, since the
sequence of scalars hﬁ = (v,vn) was shown in Theorein 14 to have the required prop-

-0
erty of being square swinmable. Consider the vector w=v - Z (v, vk)vk. We wish
1
to show that this vector is the zero vector. But (w,vj) = 0 for any j, since

(W.vj) = (V.vj) - (v,vj) =0;

.00 - R 'l
consequently, the vector v—z (v,vk)ka is orth_ogonal to eve *y vector in the sequence

Vo From Definition 14, however, the only vector orthogonal to each vector in an

orthonorinal basis is the zero vector. Hence

o0
VA 2 (ngk)vk =0
1

or -

o0
v= Z (v,vk)vk.
|

These theorems provide a framework for the infinite-dimensional Hiihert spaces
that are to be considered. Theorem 15 requires the existence of an orthonormal basis
for the spaces. This set of basis vectors spans H by virtue of Theorem 15, It can be
verified that this set of vectors is linearly independent, by virtue of the pro;»erfy th.t
the only vector orthogonal to the entire set is tne zero vector. In generail, it is not tiue
tnat every Hilbert space possesses an orthonormal basis, - .

An example of ‘a Hilbert space that has an orthonormal basis is the spcce of square

17




integrable functions either on the infinite interv.l (-, +x) or on the semi-infinite inter-
val {0,+»). This space on the infinite interval is usually denoted Lz(-oo,+oo), and on the
sexi-infinite interval L2(0,+oo). An orthonormal basis for LZ(-w,+oo) is the set of
Hermite functions. An orthonormal basis for L2(0,+oo) is the set of Laguerre functions,
In both of these spaces, the inner product is defined as the integral over the interval of
the product of the functions.

In the previous aiscussion on finite~-dimensional vector spaces, it was shown that the
domain of any lincar transformation is a vector space. If the domain of the transfor-
rnation is a Hiltert space, it is not true in general, however, i;hat the range will also be
a Hilbert space. If continuity as defined below is 'imposed on the transformation, then,
as will be seen in the following discussion, the range of the transformation will be a
separable Hilbert space if the domain is a separable Hilbert space.

DFFINITION 15: Let V and W be inner product spaces, and T be a linear trans-
formation from V onto W. T is said to be continuous at v if T(vn) - T(v) as n - o if
vV,~Vasn-x, where Vi is a sequence of vectors in V. T is a continuous transfor-

mation if it is continuous at every v in V., Continuity of the transformation T is not a
;evere restriction when T is linear, for it can be shown that -T will always be contin-
uous if it is bounded, that is, if there exists a constant M > 0 such that for every vec-
tor v inH, || TV | < M|v|]. (See, for example, Berberian. ) The set of theorems
that follows is chosen to show that the range of a continuous linear transformation is a
separable Hilbert space if the domain is a separable Hilbert space. In carrying out the
proof the following preliminary results will be demonstrated.

~ (1) The null space N of T is a closed subspace of H, thai is, the limit of any
sequence of vectors in N is in N when this limit exists.

(2) From: (1), it follows that H can be decomposed into-two spaces M and N. The
sbace N is the null space of T, and the space M is the space of all vectors in H which
are orthogonal to every vector in N. Any vector in H can then be expressed as a unique
linear combination of a vector in M and a vector in N. -

' (3) On the basie of (2), it will be shown that the qﬁotient space H/N is a separable
Hilbert space, and that the linear transformation T from H/N to the range of T is a

continuous transformation. ,

"(4) It follows directly from (3) that the range of T is a separable Hilbert space.
Steps (1}=(4)will be stated formally in Theorems 16-19, -.In each of these theorems H
.denotes a separable Hilbert space, and T denotes a continuous linear transformation
"with H as the domain. '

‘THECREM 1l6: The null space N of T is a closed subspace of H,

PROOF: Let n,n,, ... be any sequence of vectors in N, and v in H be the limit
of this sequence. We w1sh to show that v is in N, Since n,, n,,... are in N, T(n ) =
T(nz) =

T is contuxuous, T(n ) -~ T(v) as p - o, that is, T(v) is the limit of the sequence T(n )
in T(H]. Hence [(v) = 0, and v is in N, Thus N is.a-closed subspace of H.

18

= 0, The limit of any sequence in T[N] is in T[N] because T[N] = 0, Since
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THEOREM 17: Let M denote the set of all vectors in H which are orthogonal to
every vector in N. Then every vector in H can be expressed in one and only one way
as the linear combination of a vector in M and a vector in N,

PROOF: Let v be any vector in H. It is stated without proof that there exists a vec-

tor n_ in N such that [lv-n_|| < [[v-n| for all n in N. (The proof of this statement is

-found in Berberian,’) Define m o=V N, We must shew that m is in M, that is, m

is orthogonal to every vector in N. -

Let n be any vector in N, and \ equal (mo, n). There is no loss in generality if
n is assumed to be unity, since, if m is orthogonal to every vector of unit length
in N, it is orthogonal to every vector in N. It can be verified by direct expansion that

2 2 2
fm Anl® = fm " - 2[5
Now, mo -An= (v-no) -An=v - (nO—Xn). But n, + An is in N; hence,
lv-n,lf < Jlv=tn trm) ]|

frow: the choice of n. Hence

fimyli < [lm-rnf

and therefore

g < mg % - ]2

-

Consequently, lxlz =0, i.e. (m_,n)=0. Thus m_ isin M.

We see, then, that any vector v in H can be wri&en as the sum of a vector m in M

and a vector n in N, We must show, next, that for any vector v, m and n are unique.

Assume that m; and niz arein M, n; and n, arein N, and ~ .

vV= ml +nl = mz +.n2._

Then (m z) + (n 2) = 0. But ml -mz isin M and n, -n, is in N. ’faking the
inner product of (m 2) + (n 2) with (n -nz), we have

J a0 ? = o.

Similarly,

" (,ml ~m,) ”2 =0

Hence n, = n, and m, =m,, :
THEOREM 18: The quotient space H/N is a sepuraole Hilbert space, and the linear

transformatxon T from H/N to the range of T is a continuous transformatlon. .
'PROOF: To prove that H/N is a separable Hilbert space, we must first define an

gt Bt e s R My By

it

I - Bl

P B o ===y

(4]



KR 5% S B G S e eyt e §

Zebrrdun s,

inner product in H/N. This can be done with the aid of the preceding theorem.,

Let [v+N] be any coset in H/N. Since v can be written uniquely in the form v=m+n,
the coset [v+N] is equal to the coset [m+N], since n is in N. Furthermore, any coset -
of the form [m+N] for some m is in H/N. Consequently the set of cosets of the form
[m+N] is equal to the quotient space H/N, that is, every coset has a representative ele-
ment in M. Furthermore, for every coset {v#N] in H/N, there exists only one ¢lement

m in M such that

m+N=v+N,

since the cornponent of v in M is unique.
Let [m +N] and [m +N] be any two cosets in H/N, and define the inner product of
these t_osets as )

([ma+N], [mb+N ]) = (m_,m).

It can be verified that this inner product satisfies the required conditions stated in Defi-
nition 13. Let [m1+NA],‘[mz+N], ... denote any sequence_it—x H/N having the property that
n[m +N]-[m +N]|| -0 as m,n - o, But | [m +N]-[m +N]|| = ﬂm -m ﬂ and hence
ﬂmm-m | -0 asm,n~ . Since Hisa Hilbert space, there exists a Vector v in H
such that "m —v" ~ 0 as n- o, In particular, v is in M. This follows directly from
the statement without proof, that if n, is any vector in N then (mn, n ) {v, no) as
n - » (the proof of this statement follows from Berberian,] ) Hence "[m +N]-{v+N]|| =0
as.n - o, and thus H/N is a Hilbert space.

To show that H/N is a separable Hilbert space, we must demonstrate that H/N has
an orthonormal basis.. Let Vs Vareo- be an orthonormal basis for -H, and let

vj=mj+nj; mjinMand-njinN.

Any vector m can be expressed as a linear combination of the mj. since

_ Q0 00 [ ]
1 1 . 1

But m can be’\\-rritt'eh in only one way as the sum of a vector in M and a vector in N;

hence, since m-= m + o, it follows that - >
- m = -
ms=s z ¢ m, .

1

Let m!, 2' ... be the subseqtiencé of i:he sequence m,, m,,... consisting of all the
nonzero elements, _Then any vector in M can be expressed as a linear combination of
the vectors m!, ‘in'z".;. .. Let . _ B
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n,

-t

A
||

: /llm I

and

j-1
- !, m?)y m?
o [ml 1 (mj, my) k]

j=1
m' - 2 ’.m'.m
| J 1

J

as dictated by the Gram~Schmidt orthogonalization procedure., Then the set mi', .
will be an orthonormal basis for M. It follows in a straightforward manner that the

cosets [mT+N], [m5+N], ... are an orthonormal basis for H/N. Hence, H/N is a sepa-
rable Hilbert space. '

The final step in the proof of this theorem is to show that T is a continuous trans-
formation, that is, we wish to show that if

[mn+N] ~[m+N] . ne=owo,
thgn _

T[mnﬂﬂ - T[m+N! . n =00,
But

"i"[mn-l-N] = T[mn] .
and

Tlm+N] = T{m],

and since T is continuous, T[m ] = T[m] D=
THEOREM 19: Let W denote the range of T Then W is a separable Hilbert space,

PROOF: By virtue of Theorem 18, we need only demonstrate this result for the case

in which T is invertible. When T is not invertible we can replace H by, H/N and T
by T.

Let w, .and w, be any two vectors in W. Define the inner product of two vectors in
W as

Awyewy) = (T wy), T ).

We must show that this mner product satlsfles the. conditions stated in Defuutlon 5.
1) (w tw,,wy) = (T— (?vl+wz),T' (w3))

= (17 T ), T Hwy))

y (T;i‘wl"T-l(W3)) + (T ) T )

= (Wywy) + (wz.w3).

21
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@ (ewp,wy) = (T Hew)), T (w,)

(cT"1 (wy), T (wz))

c(T‘l(wl), T‘l(wz))

[}

C(wl.wz).

31 wpwy) = (T w0, T wy))

(T w,p), 7w )
= (wa,wl).
@) (wy,w) = (T“(wl),'r‘l(wl)) >0 it T Hw,) #0.

But T_l(wl) #0 if w, #0, and hence (w,;,w,) >0 if w,
product, W is an inner product space. To show that W is a Hilbert space, we must

# 0. Thus, under this inner

verify Definition 13,

Let Wi Woyoos W be a sequence of vectors in W having the property that

n) oo o
ljwm-wn" ~0 as m,n -, From the definition of the inner product in W, "wm—wn" =
"_T-.l(wm)-T-l(wn) |. Hence the sequence T-l(wn) in H also has the property that

Tt ew m)-T"'l(wn)_" -0 2s m,n - . Consequently, since H is a Hilbert space, there

exists a vector v in H such that T-l(w n) -V as n-éoo. Since T is»coixtinuous. it fol-
lows that w, -~ T(v) as n ~», Consequently, W is a Hilbert space. We must show,
next, that W has an orthonormal basis.

To this end, let MTALIEEE be an orthonormal basis for H and consider the sequence
T(v,), T{v,),... in W. The vectors in this sequence are orthonormal, since’

(T(vi).T(vj)) = (vi.vj).

_Furthermore, if w is any vector in W, then there exists a unique set of scalars such
that T

(> o]
T—l(w) = Z Vi
1

or
0 : B o
1 . -
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Thus, the set T(Vl) T(v ),. .. is an orthonormal basis for W; consequently, W is a
separable Hilbert space.

In Section 1V, we shall be concerned with systems described by continuous transfor-
mations for which the inputs constitute a separable Hilbert space. The primary result
there will be the derivation of a canonic representation of such systcms. The result
rests heavily on the fact that, by virtue of the preceding theorem, the set of system
autputs also constitutes a separable Hilbert space. This fact, in conjunction with the
following theorem leads to the canonic representation.

THEOREM 20: Let Hl and H, be two infinite-dimensional Hilbert spaces having
orthonormal bases. Then there exists an invertible linear transformation from H1 onto
H,.

PROOF: Let Vis Vor.oo be an orthonormal basis for Hl’ and w
orthonormal basis for HZ' D.fine a linear transformation T as

12 Wore-o be an

T(v) = Z (v, vy} Wy

We must show that T is linear and invertible, and that its range is all of W, The line-~
arity is easily verified. To show that it is invertible, we must show that its null space

is zero, that is, T(v) = 0 implies v = 0, which follows directly from the linear indepen-
dence of the orthonormal basis for Hz' To show that its range is‘éll of W, we must

. show that if w is any vector in Hz' then there exists a vector v in H1 such that

T(Vv) =
Since ‘Hz has an orthonormal basis, w can be expressed in the_form

0

Z (w, wk)w

1

The sequence )‘k = (w,wk) is square summable, as was shown in Theorem 14. Hence,
w ,-'- T

from Theorem 13, the sum Z (w.wk) Vi has a limit veotor v in Hl' that is,

g 1

‘-t;'
But

00
T{v) = z (w,wy ) T{v )~
1

and from'\fch'e definition of T, T(vk) = W Hence,
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[* o]
T(v) = Z '(w,wk) W, =W
1

which was to be shown.

The result of Theore:a 20 also applies when H1 and H, are finite dimensional and

~

dim (Hl) = dim (H,)

In the Appendix another result concernsd with separable Hilbert spaces having time
functions as vecters is derived, ~ This result plays an important role in the discussion
of Section IV, It is reserved for an appendix rather than developed here because it
relies on some of the notation and ideas discussed in Sections III and IV,

From the preceding theorems and definiticns it should be clear that a separable
Hilbert space is an inner-product space that can be approximated arbitrarily closely by
a finite-dimensional inner-product space. If the domain of a linear transformation is a
separable Hilbert space and the transformation is continuous, then the outputs can be
a;;proximated arbitrarily closely by a finite-dimensional approximation to the input
space. Under the - restrictions on a linear transformation and its domain, then, all of
the results derived for finite-dimensional spaces can be extended directly.
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III. GENERALIZED SUPERPOSITION AND HOMOMORPHIC SYSTEMS

3.1 INTRODUCTION

In the past, the concepts of linear algebra have been applied to a restricted class of
systems, those that can be represented as linear transformations when vector addition
is defined as the sum of the time fur.ctions in the vector space of inputs and the vector
space of outputs. Because of the principle of superposition which these systems satisfy,
they are relatively simple to analyze. This principle of superposition leads to charac-
terization by means of the superposition integral, This representation can be interpreted
as resulting from a decomposition of each of the inputs into a linear combination of infin-
itesimally narrow pulses, These pulses constitute a basis for the vector space of irps«xs,
By virtue of the principle of superposition, the effect of the system on any function in the
vector space of inputs is determined from its effect on the basis functions, with the
result that the input and output are related through the convolution integral.

Alternatively, the set of complex exponentials of the form eSt, where s is a com-
plex number, can be chcsen as the set of basis functions for the input vector space.
Such functions are eigenfunctions of linear time-invariant systerris, and hence such sys-
tems have the effect of multiplying these functions by constants. Thus, when complex
exponentials are used as a basis for the vector space of inputs to a linear, time-invariant
system the system is described by the set of constants by which it attenuates these expo-
nentials, that is, it is described by its system function, . :

We have noted that vector spaces of time functions could be constructed with a variety
of definitions for vector addition. When advantage is taken orf the generality afforded by

the postulates of vector a. dition and scalar multiplication, systems that are generally
‘ considered to be nonlinear can be represented as linear transformations between vector
spaces. Formulated in terms of system theory, this procedure leads to a generalization
of the principle of superposition. This principle.encompasses the class of linear sys-
tems, as well as many nonlinear systems. In particular, it encompasses all invertible
systems, as well as many systems that are not invertible.

3.2 GENERALIZED PRINCIPLE OF SUPERPOSITION

A linear system with transformation T is characterized by the property that if v (t)
and v, (t) are any two system mputs. then

T[clvl(t)-!-czvz(t)] = 'clT{vl (t)] + czT[vz(t)]

for any scalars ¢y and ¢,. From this definition, it is clear that the transformation ¢, ¢
defined as '

olvi)] = '™ | (1)

is nonlinear, . since:
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The transformation of 1iq. 1 does obey a form of superposition in the sense that its
response to the linear combination of a set of inputs is determined by its response to
each of the inputs in the set, The manner in which the individual responses are combined
to produce the response to a linear combination of inputs is defined b; the right-hand side
of Eq, 2.

If the set of inputs to the system of £q. 1 constitutes a vector space under addition,
then the set of outputs constitutes a vector space under multiplication and the transfor-
mation of £q. 1 is an algebraically linear transformation between these spaces. Thus
this system falls within the framework of linear algebra.

In order to avoid confusion with the more conventional notion of a linear system, sys=-
tems that are algebraically linear will be referred to as homomorphic systems, since
they are represented by homomorphic transformations between vector spaces. The vec-
tor space of inputs to a homomorphic system will be denoted V, and the vector space of
outputs will be denoted W. The vector addition of two inputs \£) and v, will be denoted
ALY and the multiplication of an input vector v with a scalar ¢ will be expressed as
(c>v). The operations o and 5 will be referred to as the input operations of the homo-
morphic system. The vecior addition of two outputs Wy and w, will be denoted
w0 w,, and the multiplication of an output vector w by a scalar ¢ will be expljessed
as (c/w). The operations 0 and / will be referred to as the output operations of the
system.

A homcmorphic system with system transformation ¢ has the property that

dlle)>vlole,vy)] = [e) /otv))] o [ey/0(v,)] | - 3)

for any inputs v and vy and any scalars ¢, anq c,. The property described by Eq. 3
will be referred to as the generalized principle of superposition. In the particular case
for which the operations o and O are chosen to be addition and the operations > and /
are chosen to be multiplication, Eq. 3 reduces to the principle of superposition as it
applies to linear systems.

A homomorphic system with system transformation ¢, input operation o and output
operation 0, will be denoted as shown in Fig. 1. An example of a homomorphic system
is that system having the transformation specified by Eq. 1. In this case, the operations
0, > 0, and / are chosen as ) .

Vl OV2 = Vl + Vz
CyV = ¢V
Wl 0 Wz = wlwz

c/w=(w)° - s

26



to
ned
side

a,

'ys-

it

it

ns

it e e e -

This system is thus represented as shown in Fig. 2.

o o + L
R ¢ W Vel wzeV W
Fig. 1. Representation of a homomor- Fig 2. Example of a homomorphic sys-
phic system with input operation tem with addition as the input
0, output operation 0, and sys- operation and multiplication as
tem transformation ¢. the output operation.

Since homomorphic systems are represented by linear transformations between vec-
tor spaces, algebraic theorems applying to such transformations can be reformulated
in terms of homomorphic systems. One of the objectives here will be to discuss the
application of these thenrems to homomorphic.systems.

3.3 INVERTIBLE HOMOMORPHIC SYSTEMS

THEOREM 21: Let ¢ bé the system tx;ansformation of an invertible system (a sys-
tem for which the system transformation is invertible) for which the inputs constitute
a vector space V .with'operations o and ;. Then the system can be homomorphic under,
at most, one choice for the output operations. -

PROOF: We wish to show that if the system is homomorphic, then the output oper-
ations are unique. Assume that there are two sets of output operations under which the
system is homomorphic, Let the first set be denoted o and /, and the second set be
denoted @ and /. If w, and W, are any two outputs,. then we wish to show that
¢/w = c_/w for all scalars ¢ ir the field F and all outputs w.

If we denote the inverse of ¢ by <>-1, then if ¢ (v) = w it follows that v = ¢'l(w). By
assumption, the system ¢ is homomorphic with input operations o and 5 and output
operations 0 and /. By virtue of Theorem 8, the inverse system, having system trans-
formation ¢'1. is homomorphic with input operations @ and / and output operations o
and’,. Hence if w, and w, are any two outputs and ¢ is any scalar in F, we have

<l»'l[w1 ow,]= ¢'1(w1) o ¢'l(wz) : ' (4)
and - -

87 e/w 1= exe™ (W) | - (5)

By assumption, however, ¢- is also homomorphic with input operations o and 3 and
output operations @ and_/~. Hence ¢'l is homomorphic with input operations @ and_/"
and output operations o and ,. Consequently, R

27



o7 w, @ w,)= 07 w)) 0 7 w,y) (6)

and

87 e/ w 1= et iw)). (1)

Comparing Egs. 4 and 6, we have

<Qa_'1[w1 o wZ] = ci)-i[w1 e w2].

(8)

If the vector in V giveius in Eq. 8 is put through the system ¢, we have

W,ow, =W, 8w, (9

for all outputs w, and w,. Similarly, comparing Eqs. 5 and 7, we find

o7 e/w )= o7 e W)

(10)
- -.or‘n

c/w1 = c_/'w1 (11)

for all outpuis w; and all scalars~e,

THEOREM 22: Let ¢ be an mvertlble system the inputs t¢c which constitute a vector
space under the operations o and ., Then there always exists a unique set of output

operations under which the set of outputs constitutes a vector space, and the system is
homomorphlc

PROOF: Let W denote the set of outputs of ¢ bid Wy and w, are any two outputs,
let their vector sum be defined as

w0 w, = ¢[¢“(w1) ‘ ¢"(wz)]. (12)

Similarly, let the scalar multiplication of any output w by a scalar c be defined as

c/w = dless ™ (wil. (13)

We need to verify only that under this choice of output operations, the system ¢ is
homomorphic. Theorem 6 then requires that the set of outputs constitutes a vector
space under these operations, '

Let v and vy be any two inputs, and cy and c:2 be any two scalars, Then ¢ is
homomorphic if

#llc;5vy) 0 (e,5v,)] = [e)/6(v))] @ [e,/4(v,)].

(14)
Evaluating the right-hand side of Eq. 14 according-to Eqs. 12 and 13, we have
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[e,/¢iv)) © [c,/otv,)] = [¢(c1>¢”¢<v1))] o [¢(c2>¢“¢(v?_>)}

4{ (67 0te,>v)) o (¢"1¢(c2>:v2))]

or

[cl/¢(v1)] 0 [c2/¢(v2)] = ‘¢[(CI>V1) o (c2>v2)]' (15) -

Hence, ¢ is a homomorphic system.
Furthermore, for a specified input space w.c set of output operations urder which
¢ is homomorphic is unique This is seen by a direct application of Th_orem Z1,
Theorem 22 states that the class of homomorphic systems includes all invertible
systems, When the input operations and the system transformation are specified, the
output operations azre given uniquely by Egs. 12 and 13, In applying the theory of
homomorphic systems, it would not be expected tha* the output vperations would be con-
structed hy means of Egs. 12 and 13, since this would require a precise characterie
zation of the system transformation. Because of the uniqueness of the outpu* operations,
however, we know that no matter how these operations are obtained, they must satisfy
Eqs. 12 and 13. liquations i2 and 13 allow ug to construct examples of ‘*umomorphié
systems as-an aid to developing the theory. By virtue of the uniqueness o1 the output
operationis, examples constructed in this way will not depend on a restricted choice for
the output operations of the system., ‘
As an example of the application of Eqs, 12 and 13, consider 2 linear, :nvertible,
time-invariant system. Let h(t) denote the impulse respon=se of the syste.n, and Rt
the impulse response of the inverse system. Let the set ¢f irputs V be 2 vector space
under addition. Since the system was specified to be linear, we know, without application
of Eqs. 12 and 13 that the system is homomorphic if vector addition of the outputs is
shosen as the sum of the time functions, and scalar multiplication on the output set is
chosen as the product of the time function and the scalar. ,
Since this set of output operations is unique under the specified choice of input oper-
ations, application of Eqs. 12 and 13 must yield this result. Specifically,- Eq. 12

- requires that if Wy and w, are any two outputs, then

‘W, 0 w, = htt) ® [Rit) ® w, (+5(t) @ w, (1)), (16)

where ® denotes convolution, Expanding Eq, 16,

v)l o w, = hit) ®K(t) ®w, (t) + hit) @Rt Bw, (1),

since convolution distributes over addition. The convolution of h(t) and 'ﬁ'(t) is the unit
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impulse u0 (t); ..ence,

W0 w, =u(t) @wl(t) tu (t) @ w,(t)
or

w, 0w, = wl(t) + wz(t).

Similarly, Eq. 13 requires that

c/wit) = h(t) ® [c(hit) @wi(t))]
or

c/wit) = c[h(t) @ hit) ®w(t)]
and hence

c/w(t) = cw(t).
As ancther example of the application of Eqs. 12 and 13, consider the syst_em having

the transformation ¢ given by ; .

w=o(v)=e’. (17)

The transformation corresponding to the inverse system is-

v= é,fl(w) = Inw. (18)

If the set of inputs is chosen as a vector space under addition with the field chosen as

the field of real numbers, then application of Eq. 12 requires that

wyaw,= exp[lnw1+1nw2]

or
“;1 o w, = W,W, T _ (19)
and Eq. 13 requires that
¢/w = explclnw,]
or
(26)

c/w = [wllc.

The transformation of Eq. 17, however, is an invertible transformation under any input
vector space, If we choose as the set of inputs, a vector space over the field of real
numbers with vector addition defined as the product of the time functions and scalar
multiplication defined as the time function raised to the scalar power, then the set of
output operations corresponding to the wransformation of Eq. 17 will be different from

those given in Eqs. 19 and 20. These output operations can, however, be determined )

30

Cre e e - . o
. Ly Sl I AT UL sy Tt A8 L Taad
s .



P . .
. T TSR S R R . e ek A
" .

through the use of Eqs. 12 and 13. Applying Eq. 12, the vector sum of any two outputs

w, and w, is given by

1 2
[lnw1 lan]

WlD wz=e

or
lnwz

[ anI]
W, oW, = (e .

Similarly, scalar multiplication in the set of outputs is given by

c/w = e[lnw]c | -

3.4 NONINVERTIBLE HOMOMORPHIC SYSTEMS

Theorem 22 guarantees that a system that is invertible for an input vector space V,
is homomorphic for this set of inputs, When a system is not invertible for a given set
of inputs we are no longer assured that the system will be homomorphic with respect to
these inputs. Theorems 6 and 12, together with the properties of quotient spaces, lead
to necessary and sufficient conditions on the system transformation and the set of inputs

" associated with a given system such that the system is hoxiic;morphic. Before proceeding

to a statement of the conditions in terms-of a theorem, it would be well to indicate the
direction which we take in this theorem:

Consider a system with transformation ¢ and input vector space V. By choosing
any subspace N of V, V can be divided into cosets. It is necessary that these cosets
be formed with respect to a subspace of V rather that with respect to any a.rbitraiy set
of vectors in V, in order that these cosets be well defined. If N is the null sp‘ac;é"of'
the system, each vector in a given coset will result in the same output. Furthermore,
it will be seen in Theorem 23 that if each vector in a giv;n set of vectors in V maps
onto the same vector and if the system is homomorphic, then this set of vectors must
be an element in the quotient space. V/N, - In particular, any coset in V/N which does
not map onto the identity element in the vector space of -outputs cannot be a subspace

cf V.
The approach to deriving necessary and sufficient conditions on a system in such a

way that it be homomorphic, will be based on a2 consideration of conditions under which -

an invertible transformation can be defined from i quotient space associated with V, to
~ the set of outputs of the system. If such an inveitible trarisfbrmation can be defined,
_then Theorem 22 can be employed to determine a set of output operations under which
the system is homomorphic, N
‘THEOREM 23: Let ‘$ be the transformation of a system with an input vector Space
V Let S Sz, cees S be subsets of V with the propertles that
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(1) All elements in a given set S. produce the same output. This output corre-

sponding to a set S. will be denoted ¢[S 1.
(2) I ¢[S] is the output produced by the set of inputs S,
produced by the set S, all i and j, then ¢[Sl] = ¢[SJ] implies that i= j.
Sn can be a subspace of V.

and ¢[S.] is the output

Then, at most, one of the sets Sl’ Sz, cens
PROOF: Properties (1) and (2) imply that no two sets Si and Sj have an element in

common. For, assume that s is in Si and s is in Sj‘ then from property (1),

¢[S;1 = &(s)
and

¢[Sj] = $(s),
and hence

8151 = o[5).

which by virtue of property (2) requires that i = 3,
Any subspace of V must contain the identity element in V. Hence if two of the sets

S Sps ... S are subspaces of V, they must both contain the identity element, and
S

hence would have an element in common, Thus, at most, one qf the sets Sl’ Sz; cees Oy
can be a subSpace of V. ,
THEOREM 24: Let ¢ be the transformation of a system with-an input vector space
V. Let Sis 85, ..., S, be subsets of V with the properties that -
(N A11 elements m a given set 5. produce the same output,
(2) I v is a vector in V, then ¢(v) = [S.] implies that v is m__SJ..
(3) The sets are distinct; that is, if ¢[Si] = ¢[Sj], then i = j,
(4) The union of the sets Sl’ Sz' cees Sn isall of V.,
If none of the sets Sl’ Sz’ vees Sn is a subspace of V, then._the system cannot be

homomorphic, - BN .
. PROOF: Let e denote the identity element in V. and let Se denote the set of ele-

ments such that
dle) = 6(S,).

f ¢ is honiomorphic, then the element $(e) must be the identity element in the vector
space of outputs W by virtue of Theorem 4. Because of property (2) imposed on the sets
S the set S contains all of the elements in V which map through ¢ to

S,, S
1’ zl e e
the identity in- W -~ Hence, by definition, S e is .the null space of- V and Tleorem 6

then requires that S be a subspace of V.-
Property (4) 1mposed on the sets Sl' Sz’ ceed

V must contain the subset of all elements of V that map onto ¢(e) and hence must contain

Se' If ¢ is homomorphic, then one of these subsets must be a subspace of V; hence, if
none of t+ .se subsets is a subspace of V, then the system cannot be homomorphic.
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Theorems 23 and 24 together require that a necessary condition so that a system
be homomorphic is that we can find one and no more than one subspace in V which con-
tains all of the elements that map onto a single element in the set of outputs, In general,
if the system transformation is well defined, then we are guaranteed that no more than
one such subspace can be found. If one such subspace exists, then it must contain the
identity element from V, Hence, if e denotes the identity element in V, then Theorem
24 can be reformulated to req‘re that a system with transformation ¢ cannot be homo-
morphic unless the set of all elements v in V such that ¢$(v) = é(e) is a subspace of V.
As shown in Theorem 25, this condition, together with one other condition, provides
necessary and sufficient conditions on a system so that it will be homomorphic.

THEOREM 25. Let ¢ be the system transformation of a system with input vector

"space V. Then necessary and sufficient conditions so that the system be homcmorphic

are ;
(1) The set of elements Se in V is a subspace of V, where Se is the set of all ele-

ments s in V with the property that ¢(s) = $(e), where e is the identity in V.
(2) Consider the quotient space V/ Se’ where Se is a subspace of V, Let vo Se
be any coset_ in the quotient space. If v' is any element in vo Se’ then
¢{(v") = $(v). (This condition requires that any given coset in ‘he quotient space
V/S, have a unique mapping in W, that is, ¢[vo Se] will be well defined for
every v in V, and each coset will produce a different output. )
PROOF: To prove thst these two conditions are necessary, we assume that the sys..
tem is homomorphic and show that this requires that conditions (1) and (2) hold.
 Assume that the system is homomorphic. Then, by definition, Se is the null space
of ¢. Theorem 6 then requires that Se be a subspace of V. To show that condition (2)
is’implied by the assumbption that the system is homomorphic, let W_denote the output
vector space with vector addition and scalar multiplication denoted by @ and /, respcc-
tively. If e is the identity in V, then ¢(e) is the identity in W. Let vo S e be any coset
‘in V/S,, and v' be an element in v o S_. Then there exists some element s of Se such ~°
that

vi=vos,

Hence ¢(v) = ¢(v 0 38) = $(v) 0 ¢(s). But, since s is in Se,A ¢(s) is the identity element
in W, Consequently,

$v)=4v)  all v invos,

“and therefore condition (2) holds.
To show that conditions (1) and (2) are sufficient, we shall assume that these con-

ditions hold, and prove that the system must then be homomorphic, Condition (1) per-
mits the construction of a quotient sp:;.ce with respect to the set Se’ since it requires
that this set be a subspace of V. Condition (2) then provides an invertible transfor-
mation between the quotient space V/S e and the set of outputs W, since for any coset
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Vo Se in the quotient space V/ Se thrre exists a well-defined mapping to an element in

W given by
dvo Sl = ¢(v).

The ‘ransformation ¢ can then be considersd as the system transformation associat~d
with an invertible system with inputs that are elements in the quotient space V/¢ e
Theorem 22 requires that the system with transformation ¢ be a homomorphic system
and that the set of outputs W be a vector space. Specifically, vector addition in the set
of outputs is defined by

W ow,:> $[$‘1(w1) 0 $‘1(w2)], | ' | (21)

, are any two elements in W, The elements $'l(w1) and z-l(wz) are
cosets in the quotient space V/Se' Scalar multiplication in W is defined as

where W, and w

c/w = ¢ lcsd Hw)l. | ’ . (22)

It remains only to show that with this choice of output operations the system with system
transformation ¢ and input vector spacé V, .is homomorphic, Let vy and v, be any itwo

elements in V. Then _
$tv)) = $[v, 08,
$lv,) = ¢lv, 08 ],

v, 0v,) = g_[‘(vl‘o. v,) 0 sgj.

" From the definition ,of;veci:‘or addition in the quotient space V/Se as stated in Theorem

~.

3, however,

Sl

(vl [} vz) o Se = {vl o Se)_ o .(vz o Se); -~

hence,

#(vy ovy) = 3livy o S) e (v 089L - -

Since ¢ is homomorphic,

N $[(V1 o. Se) o (v, °~Se_)_] =$ [vl--o’ Se} Sofg[vzr‘o Se].

By definitiori of $, however,
_ 3;'_[vl 08,]= TUNEEE

~ -~
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¢lv, o Se] = $(v,).
Consequently,

$lv, ov,) = 4a[vl o Se]_ o ¢[v2 o Se] = é(v)) a $(v,). (23)
Next, let v be any element in V, and ¢ any scalar in the field. Then

¢(v) = $lvos])

dlesv) = ¢(cyv) 0 S,
From the definition of scalar multiplication in V/ So» however,
{csv) o Se =cy(vo Se);

hence,
¢(C>V) = $[C>(V (s} Se)].
But, since 3‘; is hbomomorphic,
Flestvos)i=c/Fvosy
or .
Flestv o Sl =c/éw
Therefore . .
dlcsv) = c/d(v). (24)

‘Equations 23 and 24 are sufficient for the systeni to be homomorphic.
THEQOREM 26: Let ¢ be a homomorphic system with input vector space V and null
space N, Let the subset S of V be defined by the properties
(1) If 8y and s, are any two elements in i, then ¢(sl) = ¢(sz).
"{2) If s isin S and v is in V, thea ¢(s) = ¢(v) implies that v is in S,
Then each such subset is a distinct coset in V/N. In partlcula:, each subset S is the
coget so N, where s is any element in S,
. PROOF: Let S be any subset of V having propertizs (1) and (2). Consider the
coset- 5.0 N, where s isin S. Let s on be any element in this coset. Then ¢(son) =

#(s) O $(n), since ¢ is homomorphic. But $(n) is the identity in the output set W, since
n is in the null space. Hence

¢(son) = b(s);

consequently, son is in S by virtue of prOperty (2). Thus the coset 8 o N _is contained
in the set S.
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We must show next that the set S is contained in the coset s o N, Let Sy be any
element in S. Then s, can be exsressed as

_ -1
sl-so(s osl).

But s ! o 8, is in the null space N, since

$(s) = ¢(sl).

and the system is homomorphic. Hence for any s, in S, there exists an n, in N such
that =

81180111;

consequently, 8, is in the coset s 0 N i Thus S is contained in s o N and therefore
S=soN.

The fact that each of .hese coset> (s dis. nct follows directly from property (2) and
Theorem 4. - .
Theorems 25 and 26 providé'a procedure fcr investigating whether or not a given
systern is homomorphic, Specifically, according to Theoremn 25, we first find all ele-
ments in the input-vector space V which produce the same output as that produced by the
identity element in V, If this set is not a subspace of V, then the system cennot be
homomorphic. If it is a subspace ° V, we must then determine whether or not eve y
coset constructed by adjoining each vector in V to the null space has a unique output.
If each of these cosets has a unique mapping, then the system is homomecrphic. If not,
the systein cannot be homomorphic, Alternatively, the second condition éan‘be refor-
mulated in terms of Theorem 25 The input vector space can be divided into ail of those
sets that produc~ unigu= outputs in W. The syastem is only homomorphic if each of these
sets is a coset in the space V/S e’ where S e 18 the subspace of V defined previously.
As an example of the application of this procedure, consider an invertible systern
with input vector space V and system transformation 4, -Since the system is invertible,
the set Sé contains only the identity in V, The identiiy alone constitutes a subspace;
hence, the first condition of Theorem 25 is met, Facih: of the cosets in the quotient
space V/S e when Se is the ident;ty alone contain on!y & single vector; specifically, the
coset vo S e contains only the vector v. Thus all of ¢ vectors in any given coset pro-
duce the same output and cach coset is associated with a2 different output, Consequently
the second condition of Theorem 25 is satisfied. Allernatively, if we interpret the
second condition of Thecrem 25 by means of Theorem 26, we car divide V into sets
defined by the property that any given set.contains all of the inputs that produce a given
output, - Again, since the system is invertible, each of these sets cont_ain‘s a single
. vector from V. These are the cosets in_\{/s e:.__.and. hence by this interpretation, the

~
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second condition of Theorem 25 is satisfied. It can be ascertained that when S e consists
of the identity ¢ ‘one, which by Theorem 10 is a necessary and sufficient condition for ¢
homomorphic system to be invertible, Eqs., 21 and 22 reduce to Eqs. 12 and 13, It
follows, then, that as we have already shown by other means, any invertible system is
homomorphic,

As another example of the application of Theorem 25, consider a system with trans-
formation ¢ defined as

#(v) = v2,

et us choose the input vector space V to be a space under addition and require that it
contain more than just the identity element. Since the identity element in V is the cle-
ment 0, the set Se is the set of all elements s in V with the property that

&(s) = ¢(0} = 0.

From Eq. 25 we see that there is no element in V other than the identity which will
roduce zero output; hence, the set Se coniains the identity alone. The identity is a
subspace of V; hence, the first condition of Theorem 26 is met. Because the set S
is the identity alone, the coset v o S in V/S is the vector v.. Bit the coset vo S
and (-v) o S produces the same output, hence, condition (2) of Theorem 26 is not met
Thus the gwen system is not homomorphic, -
As a third example, consider the system with transformation ¢ defined by

o =Ld | @9
Let the input vector spac'e be chosen as a space under multiplication, in which case the
identity e in V is e= 1., Theset S e is then the set of all-elements s in V such that

which is the set of all constant inputs in V., It can be verified that this set is a subspace
of V. Now, consider any coset v o Se‘ We must show that all elements of the form
vec, where ¢ is a constant, produce the same output, for any c. But

and hence ¢(v-c)- is independent of ¢, as required. We must then ascertain that each
distinct coset is associated with a different output. In Theorem 4 we noted that if two
cosets have any element in common, they are identical cosets. Conversely, if two

cosets differ by at least one element, then they will have no elements in common. Con-

sider two distinct cosets v1 o S and v, 0 S Then

' : B U - . -
Myosledk g = Giav] s
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and

v, 4
¢[V oS ]" —-2- gt = a‘{[lnvz].

The system with the transfocrmation of Eq. 25 will be homomorphic if and only if
¢lv, 08,1 = ¢[v, 08] . (26)

implies that v, o0 S e and v, 0 S e are identical cosets, i.e. that vy is a scalar multiple

of Vs But Eq. 26 requires that
4 <4
at vyl = g (nv,]

or

Inv =1nvz+c

1
for some constant ¢. Hence
-l :
v,=¢clv, - _ (27)

for some constarc c'; therefore, we con~lude that the system is homomorphic.

In Theorem 22 we investigated the necessary and sufficient conditions on an invert- .

ible system such that a set of output operations could be selected to make the system
homomorphic. These output opeirations were shown to be unique. Similarly, in Theo-~
rem 25 necessary and sufficient conditions on a noninvertible system were given so that
the system was homomorphic. It was shown that when these conditions were met, and
the output operations were chosen acco;ding to Eqgs. 21 and 22, then ihe system would be

homomorphic. As for an invertible systém,» it can be shown that the output operatioriéi\' ~

chosen according to Eqs, 21 and 22 are a unique choice,

THEOREM 27: Let ¢ be the system transformation of a (not necessarlly invertible)
system, with input vector space V. Then there is, at most, one choice for the output
operations under which the system is homomorph.c.

PROOF: The desired result can be shown by assuming that the system is homomor-
phic under more than one choice for the output operations, and from this deriving a con-
tradiction, ‘

Specifically, let W denote the set of outputs, Let N1 denote the null space of the
system when the output operations are 0 and /. ‘and let N, denote the null space of the
system when the output operations are ®@and _/, If e denotes the identity in V, then
N, contains all of the elements n in V, with the property that $(n) = $(e). Similarly,

. N2 contains all of the elements n' in V such that ¢{n') = ¢(e). Hence, N1 = Nz. that is,

the null spaces under the two choices for the output operation are identical. Let N 1 and
N both be denoted by N, and consider the quotient space V/N Theorem 12 requires
that the system having the space V/b. ce the inpui space and the space W as the output

38 ;
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space be an invertible homomorphic systen.. If the origina! system had more than one
choice for the output operations, however, this invertible system would also have more
than one choice for the cutput operations, which contradicts Theorem 22.

Because c¢f Theorem 27, the output operations of a homomorphic system whaich are
constructed according to Eqs. 21 and 22 represent a unique choice for these operations.
Cousider, for example, the system having the transformation of Eq, 26, with the input
vector space being a space under multiplication. It has been determined that this system
is homomorphic. An element v o N in the space V/N, where N is the null space, is
the set .»f elements in V that are scalar muliiples of v. The mapping ¥ from V/N to
W, and the inverse of ¢ are defined by '

Plevl=1 - w
.and
2w = efwat [ev].

Using Eqgs. 21 and 22, we find that the output operations of the system must be

w0 W, = 3[3-1(w1)$-1(w2)]

?-,%19[(.ejwldt)(efwzd§ ] Swytw,

and

c:./wl = %M[(efwldt)c] = cw,

~ for any w, and w, in 'W, c~d any scalar ¢ .in the field.

o ~a —
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IV. CANONIC REPRESENTATION FOR HOMOMORPHIC SYSTEMS

4.1 INTRODUCTION

The class of homomorphic systems has been introduced. The generalized principle
of superposition which is satisfied by these systemrs is similar in form to the principle
of superposition describing a linear system; when the input and output operations of a

homomorphic system are addition, the
system is linear and the generalized

. o .- principle of superposition reduces to
the statement of superpoeition in its
usual form.

- A canonic "« presentation for homo-
Fig. 3. Homomorphic system with multi- morphic systems will now be derived.
plication as the input operation This representation amounts to a sub-
and output aperation. stitution of variables which reduces the
system to a linear system. For any
particular homomorphic system the input and output variables that are chosen so that
the equivalent system will be linear, are dependent only on the input vector spaces, and
not on the details of the homomerphic mapping between these spaces.
" Asan example of the form that the canonic representation takes, consider a homo-
morphic system having multiplication as both the input operation and the output opera-
tion, as indicated in Fig. 3. This system has the property that for any two inputs Vi and

v, and any scalar ¢,

-
[

where w, = ¢(v,), anc w, = ¢(v2).
If we periorm the substitution of variables

x=lnv ’ E (29)
and

. y=lnw, . _ L o (30)
then the relation between x and y becomes

e = ¢(e¥)

or

y = 1n [6(e¥)] = ¢'(x) (31)

40
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But the transformation ¢' is linear because if 3! and X, are any two inputs and c is any

scalar
¢'fox +x,] = c'lx)) + ¢'(x,).

Hence by the substitution of variables defined by Egqs. 29 and 30, the system has been
reduced to a linear system. The system of Fig. 3 is thus representable in the form of
Fig. 4 where the linear transformation ¢' is defined by Eq. 31. In the representation

~

fo— b e— b e . |

I |
v._é__. dnv X ¢ y e’ __i__..w

b J.

Fig. 4. Equivaient representation of the system of Fig. 3.

in Fig. 4, the first and last systems depend only on the input and ouiput vector:spaces;
they do not depend on the details of the transformation ¢é. We notice also for thiz pare
ticular example, that all of the memory in the system <. Fig. 3 is concentrated in the
linear system ¢' of Fig. 4, since the first and last systems in this representation are
memoryless. Here we shall derive necessary and sufficient conditions under whici this
can be done. ‘ |

4.2 CANONIC REPRESENTATION

In the example just pi'esented, a homomorphic system was reduced to a linear sys-
tem by means of a substitution of variables. This essentxally requires a mapping of the
vector space of inputs ‘onto a vector space under addition, in a one-to-one manner.
Similarly, the vector space of outputs must alsc be mapped ontm a vector space under
addition in a one-to-one manner. Our objective now is to show that fcr any vector space
such a mappmg exists, and to discuss the resulting representation. ,

Let us restrirt the system inputs to constitute a Hilbert space with an orthonorm:-..
basis, and restrict the s: stem transformation to be a continuous homomorphic transfor--
mation. Jnder these restrictions, the system outputs will also constitute a Hilbert space
with an orthonormal basis. This is equivalent to assuming that the input and output ‘
spacer can be approximated arbitrarily closely by finite dimensional spaces. By virtue -
of Theorem 20, both the input vector space and the output vector space are isomorphic
with auy infinite dimensional Hilbert space having an orthonormal basis. In particular,
each of th,eée spaces will be isomorphic with a Hilbert space in which vector addition
is interpreted ~s the sum of tae corresponding time functions, for examgle, the space
of functions ns. . e square integrable. Thus we.can always define an invertible

4



homomorphic system that maps the inputs onto a Hilbert space under addition, and an
invertible homomorphic system that maps the out.ts onto « Hilbert space under addition.
Consider a homomorphic system, then, with input vector space V which is a Hilbert
s‘pace with an orthonormal basis, output vector space W, and continuous system trans-
formation ¢. Let a, denote the system transformation of an invertible homomorphic

- 7
o + |+ o o o o + |+ o
o ] -1 ® ! -1
V el o = ag %g 1 Sy [ w
I I
L _ J

Fig. 5. Equivalent representation of a homomorphic system.

system with V as the input vector space, and a vector space under addition, denoted by
v 4 28 the output vector space. Similarly, let a5 denote the system transformation of
an invertible homomorphic system with W as the input vector space, and a vector space
under addition, denoted by W + as the output vector space. Since the systems 25 and

Fig. 6. Canonic representation of a homomorphic system.

-

a4g ¢ 2 invertible, the system ¢ can be represented in the form shown in Fig. 5. The
system enclosed in the dotted lines, however, is a linear system and hence the system
of Fig. 5 can be redrawn in the form of Fig. 6, where L is a linear system. We recog-
. nize furthermoré that the system of Fig. 6 is a homomorphic system with V as the input
" vector space and W as the output vector space, for any choice of the linear system L.
The representation of Fig. 6 will be referred to as a canonic representation of homo-
morphic systems. ) ] . .

An exémple of W1e canonic répresentation of a homomorphic system was showirh in
 Fig, 4. In this case the homomorphic system had multiplication as both the input and
output operations. An example of such a system is that system having a transformation
¢ defiuedr as :

di{v) = vk_ k é real number.
in this case, the canonic representation takes the form of Fig. 7. To obtain any
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Fig. 7. Canonic representation of a homomorphic eystem with
transformation ¢[v] = vE,

~ homomorphic system having the same input and output vector spaces as the system of

Fig. 7, we need only replace the amplifier of gain k with other linear systemas.
From the form of the canonic representation, we recognize it as a substitution of
variables which reduces a homomorphic system to a linear system. The particular

- ~ choice for the substitution of variables associated with any specified homomorphic sys-A
_tem.is governed only by the input vector space and output vector space associated with

the system. The details of the mapping between these spaces is then contained in the

linear system L.

4.3 CLASSIFYING HOMOMORPHIC SYSTEMS

-

'The canonic representation suggests a means for c]asmfymg hamomorphu: systems.

’ 'vSpec1f1ca11y. let us clas51fv ‘homomorph’ . systems according to their input and output

spaces. Since the characteristic systems a o and e, are determined entirely by the input
vector space and output space associated with the homomorphic system, all systems
within a specified class will have identical systeins «a ° and a in the canonic represen- -
taticn. The systems within each class will differ only in the. details of the linear sys-
tem appearing in this representation. :

~ As a simple example of this means of claésifying homomorphic systems, we would -
consider all linear systems as representing oae class of homomorphic systems. Another
class of homomorphic systems would be the class having the characteristic systems that
appear in the representation of Fig. 7. In this case vector addition is defined as multi-
plication of the associated time functions, and scalar muitiplication is defined as the
associated time function raised ic the sc :lar power.
4.4 CONDITIONS ON A HOMOMORPHIC SYSTEM SUCH THAT THE

CHARACTERISTIC SYSTEMS ARE MEMORYLESS -

In the class of hombmorphic systems characterized by multiplicationl as both the

input operation and the output operation, we observe that the characteristic systems «a o

.and ag are memoryless systems, i.e., that output of each at any given instant of time

is dependent only on the input at the samé instant of time. Hence, for this particular
class of systems, all of the system memory can alwaye be concentrated in the linear
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system in the canonic representation.

The quest.on arises as to the conditions on a class of homomorphic systems under
which the char:cteristic systems a, and e, are memnoryless. Since these systems
represent inver.ible mappings from the input and output vector spaces respectively we
wish to determin» the necessary and sufficient conditions on a vector space consisting
of time functions, such that a memoryless, invertible. homomorphic mapping to a vec--
tor space under adilition can be constructed. In the following discusuion it will be shown
that the necessary and sufficient conditions are that the operations of vector addition and
scalar multiplication must themselves be memoryless. )

To show first of a.l that these conditions on the vector space are ncecessary, consider
an’ invertible homomozr ohic system with transformation e, input vector space V and
output vector space W. Letl the operation of vector addition in- V- be denoted by o and
the 6peartion of scalar multiplication in V be denoted by >. Let W be a vector space
under addition. Then by virtue of Theorem 22, vector addition and scalar multiplication
in V must be expressible uniquely as A

v ov,=a! [etv) e g(v,)] (32)

eV, = agl[ca‘-)(vl)] - o | : (33)

~. -

for any v, and "vz in 'V and any scalar c.” Let us denote the instantaneous value of a
vector v in'V at a time t; by v) ¢ - Then we wish to determine wheter Eqs.- 32 and
1

33 require that the operations o and > be defined on the instantaneous value (_)f vy
and v, if a, is memoryless. Consider first, Eq. 32. Since « o is memoryless, its inverse

a ol is also memoryless. Hence, the right-hand side of (32) is defined on the instan- -

taneous values of \£} and Ve Hence, the left-hand side of (33) must also be defined on

. instantaneous values of &1 and Voo We must next ascertain that

[v1 0 vz]ltl =-(v_1'tl) O(VZ;tl) . ' ] ) (34)
But - o

[Vl o V?-]l.tl ={a;1[¢o(v1)+ao(vz)]}itl . ‘ . 7 {25) '
and ‘ ' ’ . _

("ﬂil) o._(‘i?l',tl)=a;l[ao(vl,tl)ﬂo(vi!'tl)]i_ o o .‘3‘.’)

But, since e is memoryless, Eq. 36 becomes

" (Viltl). ° (Velt,) “;l[“o‘%)’tl*“o(vz)]tl]‘ ' - | ‘

Since addition is memoryless, we see that
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(v lltl) ( Z,tl) "’ol(“ ‘Vl)“o("z)]'tl)‘
Finally, since a memorylees.

( 1|t1) ( thl) = a [oylvy)ta (V?_)]'tl- (37)

Comparing Egs. 35 and 37, we see that

ol = (1) ° (2l,)

whenever a, is a memoryless system. Similarly, we wish to show that the assumpticon

that e o is rnemoryless implies that > is memoryless, that is

[,V ] -[ (1|t1)] . (38)

Referring to Eq. 33, we see that the operation > is defined on instantaneous values of
vy since a, is memoryless. To show that (38) is satisfied, we observe that because
scalar multiplication is memoryless and e, is memoryless,

a;l[cao(vl ,tl)] = {a:’l[c%(vl)]}ltl.‘ , B (39)

..But, the left-hand side of (39) is

‘f;l[cao(vl l t;)}j °>("1 ltl)

and the right-hand side of (39) is - _
-1 ) .
{“o ["."‘o("l)]}ltl = [°>("1)]ltl‘ o (40

Comparing Eqs. 39 and 40, we sée then that Eq. 38 is satisfied; consequently, > isa -

‘~memoryless operation. Hence, a necessary condition on the vector space V so that a,
is a memoryless system is that the operations o and > must be memorylesa operations.
The next step is to show that this aiso constitutes a sufficient condition. To this end, let
V be a vector space with vector addition denoted o and scalar multiplication denoted >.
Elements of the vector space are time functions, that is, they are scalars indexed over
time t. Vector addition and scalar multiplication in V are assumed to be memoryless,
that is, at any value of - t. -

ey =c, v lti - 42

for any \£} and v, in V and any scalar ¢ in ¥, Jet e denote the identity in V,
C,asxder the set of all scalar values which the time functmns in V can assume at an
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instant of time t. Let this set be denoted St‘ Then the set St is itself a vector 3pace, for
(a) Let ql’andd\,z by any scalars in St' Then there is a vector v, in V and 3 in V
such that v, ,t =n, ana vl = My Since V is a vector space, v,0v,is in V;

R
hence, (v ov )'t is szt But f?cm«Eq 4], (v ov ),t = (nl onz); hence,
(nl o nz) 1s in bt By smnlar reasoning, 1t can“\z -seen that nl om, =n, 0n,
and that (nl o nz) ony =m0 (nz o 113) for any Ny M, and n3 in- ., |

(b) There is a unique element e, in S such that n o e = for any 1 m St' To show
the existence of such an element, let v be an element in V such that Vlt =7, If
e is the identity in V, then-vo e =v., Hence (v o e)]t = v]t. or (v,t) o (elt)=v't.

Since v]t = 1, we have

Thus e,t will be an element in St sach that n o~(e|t) = n, that is, e, = e|t. To show
that the element e, iu S, is unique, consider two elements €, and ei in St with

the property that ' '

noe =1 , , (43)
and

n0e} =g . _ T . (44)

for all m in §,. Then, by virtue of {43),

e;;oet=ei . . . (45)

and by virtue of (44),

e, o e;; = e (46)

\‘“ -

But we have stated that o was a commutative operation in St; hence,

.

f = al
etoet-etoet.

Therefore, from Eqs. 45and 46, 2, = el
(c) Every element n in S has a unique inverse in S For. let v be the vector in
V such that v't = n. Then, 1f vl denotes the inverse of vin V, we have
vov lze. hence, (v,t) o(v )|t =e|p orno (v )lt" e,... Denoting v )l by
q-l. we have non = e,- Tc show that this inverse is umque. let v and
! denote two elements in S such that non -1 e, and 10 'ql = e Then if

.n.-:v’t. q-l-v 'tandﬂl =v It’ 1tfollowsihat

wor s (rovi)
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If v;l is chosen by considering all possible values for t,then v o v_l =v o v;l =e.
But the inverse of v is unique; hence v’il = v"l for all values of t; in particular,
-1 ~1 -1 -1
vily=viljormy =n,
(d) The final step in showing that St is a vector space is to show that scalar multi-
- .plication in S, has the necessary properties. - If n is any element in St’ where
= vl = = - . = il
= Vi then 1>n = l>v]t = (1>v)lt = v,t, hence, 1>11 =71n. Bya similar argument
it can be seen that

(eycpdyn = ¢, (e, 0n)
and

(c,*e,)on = (e n) o (c, . n),
for any 3 and Cyi and

c(ny om,) = (e .n)) o ie )

for any ) and n, in St and any c.
If V is a separable Hilbert space, as we have assumed, the vector space St is iso-
mornphic with the space F % where n is the dimension of St {see the Appendi:;). Let this

isomorphism be denoted «,. Define s vector space W having elements that are n-tuples

t .
_ indexed- over time, that is, if w is in W, then \_{(—{;— is representable in the form

{c)2€ys ... )y Wherec,, c,, ..., c 'are-elements of the field. Then W.is a vector

space under addition, sir:ce n-tuples are added and multiplied by scalars according to
the opex;ations of addition and multiplication in the field. Now, there is a mapping a
 from V onto W which is invertible and homomqrphic. Specifically, let ¢« be defined by
the property that [a(v)]! . at(vl ¢) for any value of t.- Then e is also a memoryless
transformation; consequently; it has the properties that we set out to derivé. Hence we
have shown that a sufficient condition on a vector space V so that a memdryless. homo-
morphic, invertible transformation from V to a vector space under addition exists is
that the 6pe~rations -of vector addition and scalar multiplication in V be memoryless.

To summarize, we see that in the canonic representation of a-homomorphic system
the system a o can be memecryless if and only if the operations o and > are memoryless
operations. Similarly, the system e, (or eq: ‘valently a;l) can be memoryless if and
only if the operations o and / are merioryless operations. In the canonic representation
for systems in a class specified by memoryvless input and output operations; all of the
memory in the systems can always be concentrated in the linear portion of the canonic
representation. In contrast, it either the set of “input operations or the set of output
op'erationé is not memoryless, then the memory of systems in such classes can never
--be concentrated only in the linear portion of the canonic representatibn. -

‘Before proceeding to some examples of the construction of memoryless inveriible
homomorphic transformations from the input and output vector spaces of a homomorphic



system to spaces under additiun, it would be well to investigate in more detail, the prop-
ties of these transformations and the consequences in terms of the canonic representation.
When the canonic representation was first présented. the linear system was inter-
preted as a system having a single input and a single output. We have seen, however, that
when we desire the systems e, and ¢ to be memoryless systems, the input and output
of the linear system may not be a simple time function, that is, they may not simply be
a set of scalars indexed over time. Specifically, consider a homomorphic system with
memoryless input and cutput operations. Consider this system in its canonic repre-
sentation with the systems 2, and e constructed to be memoryless. Then the output of
a, will be of the form (f (t),f {t)y...)s wherelf (t), f (t) ... are each scalars indexed
over time. Similarly, the set of inpats to a 5 will be of the form (gl(t), gz(t), .».)s where
gl(t), gz(t), ... are each scglars indexed over time. In this case, we would interpret
the system. a,asa memoryless system having a single input and multiple outputs. For
ary input v the individual outputs would be the time functions fl(t). fz(t), ... coOrre-
sponding to the mapping of the input at any insiant of time onto an n-~tuple of scailars.
Similarly, each outpui of aBl would arise from the effect of a set of inputs gl(t), gz(t),
... that correspond at each instant of time to the representation of the output as an
m-tuple of scalars. With this interpretation, the canonic representation of Fig. 6 would

= T ~
f2 | 9%
=TV — Qo : L T Q}: ———— W
fn Im

I Fig. 8. Canonic representation of a homomorphin gystem with
memoryless input and output operations.

- —

~

appegr in the form of Fig. 8. In this interpretation the system L has n inputs and m -
outputs. It is linear in the sense that, if gyr 81 cees g are the responses to a set of
inputs fl' for o0 fn’ and gl’ gz. ceos gm are thg responses to a set of inputs f',. !,
ceos f'n._ then

"(gl+g'1). (g,+8h)s s (g +gl )

will be the responses to the inputs ] . : —_

£+ ) £, +f' ) RPN (fn+f'n). !
and’ o ‘
Cgl, cgzo coas cgn
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will be the responses to cfl. cfz, RN cfn for any scalar ¢ and for any set of inputs.
If an inner product can be defined cn the vector space St. then the output of a, at
time t can be described as the result of the inner product of v with each of the basis
1 ,t 2 ,t be denoted (v
Let ﬁlt' ﬁzt’ ... denote .. basis of St' Then any scalar value V,t in S

vectors of St' Specifically, let the inner product of v, |, and v

1,t' Vzlt)‘

¢ can be written

V,t = [(v]t. plt)>'31t] o [(V't' pzt)>‘32t] Ovuun

The n-tuple representing vlt is, then, (cl, Coreves cn). where cj = (v’ In general,

1B
2 t" it
for different values of t, the spaces St will differ; hence, both the inner product and the
set of basis vectors ﬁlt' ﬁZt’ ... will be functions of time. Let us denote the operation
of taking the inner product of the input at any instant of tlme t with the j th orthonormal .

basis vector in S by H ] (v ] t)’ that is,

Then, as we consider all instants of time, we have constructed a function Hj(v) witb the
property that

(]l = Bl v,

Tz

By referring to the definition of the outputs of a 6. we see, thea, that

H.(v) = f(t j=1, 2, ..., D
51V) = £,(0) j

To construct the inverse of H., we observe that the inverse of- HJI corresponds. sunply
to the combination of’ H;.lt(v, ) with the basis vector ﬁl according to the operation of
scalar multiplication in the vector space' V, that is,

11 : - .
Hj,t_~-[?_1__= c5Pite _ S

Hence, the inverse of Hj is -

-1 _

where ﬂl(t) denotes the jth

Fig. 8 in the light of this discussion, then, we can replace the systems a, and col as

orthonormel basis vector in S as a function of t. Interpreting
shown in Fig. 9. -
As an example of the application of these ideas to the construction of the systems a o
and a;l. consider a homomorphic system with additicn as the input operation and addition
as the output operation, that is, a linear system. The operations of vector addition and

scalar multiplication on the input vector space are
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v, ov, =v, +v,,

and

V = CV.
C> C

Let St denote the set of all possible values that the input can assume at time t. We have
shown that St is a vector space. In particular, it is a one~-dimensional vector space.

@o ag
R —— e o |
! H, (v) ; u t ; 9 (1V/B,(1) :
y | ¢.(1) g (1) | l
| |2 A |
: Ha(v) 7| : Oz(f)/Bz(f) W I
. . / 4
| L ! . I
v—T ! i YT

| . | | ) . \\~ :
| | |
| ! | ‘ g
! —— [t~ Go(t) | - N
{ oV [ = 9,(1)/7B8,(1) :

| b - ‘
P | S J

Fig. 9. Canonic representation of a horriomorphic system with memoryless input
and output operations, illustrating the construction of the characteristic
~systems.

For}_ choose any nonzers value $ in St as a basis vector, then any value 1 in St can be
expressed in the form n = c>ﬁ_ = cp-for some scalar ¢ ir the field. Specifically,

c= %(ﬂ)'

where 1 is weli defined, since it is a nonzero scalar in the field, and hence has an
inverse under multiplic_:ation. Thus the vector B in St spans St’ Let an inner product
be defined in St as follows: if n 1 and n, are any wvo vcetors in St’ then the inner prod-
uct ‘of n and Ny denoted py (nl.'qa) Will be defined as

“"ltﬂz) = 'll'lz- - - o "'.-t\',::i,‘:' ’

If fhe field is the field of real numbers rather than the field of complex muﬁbers. fhen

3

(nysmp) =y, R




To verify that Eq. 47 defines an inner product, we refer to Definition 5. Let Ny Ny
and Ny be any vectors in St’ Then

(1) (ny¥n,),m3) = (n,+n,) 7y

and thus
l1ave
(2) (em)smy) =cnym, = ¢ - (n;,n,).
(3) (nys1y) = (ny,m)) .
(4) (nppmy) =nm, >0, n, #0.
An orthonormal basis for St under this choice for the inner product is the choice g = 1.
We are guaranteed that the scalar 1 is in St; for, if n is any scalar in S, then 1 must
. be a scalar in the field, and since S, is a vector space, the scalar
1 1
— =—n=1 .
TR -
must be in S,. T T
.~ - Since S 18 a one-dimensional vector space, the system e, has a single output The -
operatmn H | t(v] t) is given by .
Hl (vl = (v{t. B = vl
be o and hence H(v) =v. Consequently, the system a, is simply the identity system, as would '
’ : have been expected without recourse to this formahsm. By a simi_la%rt p_rocedure. the
system a4 and hence < 01 is the identity transformation. —
i The choice of inner product specified by Eq. 47 is by no means a unique choice. As
the inner product changes, the orthonormal basis also changes. Interms of a different
: inner product, the systems a o and ag will be different. Consider, [or example, the
an " inner product (111. 'qz) defined as
1ct l
id= - -
for some positive real scalar k in the field. It can be verified that this inner product
has the properties required of an inner product. Under this inner product, an orthonornial
v sis for St is the vector
m

/2

51

r

e P

S Ak et s——

Cae W n et T S



_The operator H| t(v] ¢) is then given by

vl = vl o0 = 12 o),
and hence
H(v) = kl/z V.

Thus the system e is an amplifier of gain kl/ 2‘1 If this same inner product is ass;:/céate_d\
with the output vector space, then the system a, will be an amplifier of gain k
Alternatively, different inner products can be associated with the input and output vector
spaces; the systems @, L and aa will depend in general on the manner in which these
inner products are defined.

As another example, consider the class of systemr< having an input vector space V
with vector addition and scalar multiplication defined as

v, 0v, =V v, ~ ' -

vy = I _ - -

for all vy and vy in V and all scalars c in the field. Let the field be restricted to the
field of real numbers, and the time functions be restricted to have only positive values.
Again,- St will denote the set of values which the inputs can assume at time t. St is a
one-dimensional vector space. For, let B be any vector in St other than unity, then fo_r

any vector in St there exists.-a _scalar ¢ in F such that . .

c.p=[p]=n (48)

" This follows from the fact that all scalars in St must be positive. Hence the natural
logarithms of B and n are defined, and the natural logarithm of p is nonzero, since
§ is not equal to unity. The choice of the scalar ¢ in Eq. 48 is given by

In (n) \ . : -
In (B) ' ‘

cs

In the previous example, the system a_ was construcfed by first defining an inner prod-

0
uct. Let us instead, in this example, determine a_ by first constructing the inverse
a;l. We know that this approach can be used, since there is always some inner prod-

uct under whickh the basis for St is orthonormal when the dimension of St is finite, as it
is in this example. Hence we do not need to define an inner product in St in order to
determine a.n orthonormal basis.for St From the previous discussion we see that the
system ¢ ! is described by B .
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"Hence, from the definition of Hlt’

bR

ag (x) = x,p

where x = ao(v) for gome input v. Since

we have
o' tx) = [B]*
o .
We recognize the in. erse of this system as the logarithm to the base § and hence
ao[v] = log‘3 [v]

It wbuld be instructive to determine the inner product under which g is orthonormal. To
do this, consider the fact that with the above-mentioned choice of a. the operator H ¢
is given by

: Hlt(vlt) = logg vl

(vlt. B) = log‘3 [V‘t]'
Consider the inner product of any two vectors n, and n, in St given by
(nyemy) = [logy (n))][logg (n,)] N __ 49)

Before showing that B is orthonormal under this inner product, let us first verify that
(49) does in fact define an inngr product. -

(1) (nlﬂa. 113) = [log‘3 (nlqz)][logp (113)]
= [logg, +logg m, Jllogg (ny)]

= (logﬁs n l)(logﬂ n3) + (log[s nz)(log‘3 n3)
and thus

(n1150M3) = (nyr My) + (0, M)
(2) (1% ) = clloggn,)loggny) = cln;s my)

(3) Property (3) does not have to be verified, since the field has been restricted to
the field of real numbers. '
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(4) (nl.nl) = (logﬂnl)Z >0 for " #.1 as required.
It follows directly that the vector g is orthonormal under this inner product for
2
(B, B) = [logﬂ(ﬂ)] =

4.5 AEPLICATION TO NONADDITIVE FEEDBACK SYSTEMS

The notion of Homomorphic systems can be used to transform some systems with
nonadditive feedback iv systems with additive feedback. In certain special cases this
transformation has the effect of removing the system nonlinearities. In such cases,
stability of the nonlinear feedback system can be investigated by using the techniques
available for the study of linear feedback systgms.

F1g 10. Homomorphxc feedback system with
nonadditive feedback.

AConsitiier a feedback system of the form shown in Fig. 10. The inputs are assumed
to be a Hilbert space with an orthonormal basis, in which vector addition is the oper-
ation o, The system ¢ is a homomorphic system with input, operation o and output
operation o. The system Yy is a homomorphic system with input operation o and out-
put operation o. The feedback operatioh is identical to the input operation of ¢ and the
output operation of Y. '

The first step in the transformation of the system of Flg. 10 is to replace ¢ and vy
with their canonic representations. We recognize that since the input operation of ¢ is
identical to the output operation of y, the first system in the canonic representation for
¢ caa be chosen as the last system in the canonic repr.esentati'oxi for y.- Similarly, since
the output operation of ¢ is identical to the input operation of y, the last system in the
canonic representation for ¢ is identical to the first system in the canonic representa-
tion for y. When ¢ and y are replaced by their canonic representations, the system of
Fig. 11 results. From Fig. 11 we see that the input X, to the linear system L1 is

given by
. .. _1
X, = dol_' oa, (yz)]
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or, since a, is a homomorphic system,
X, = ao(v) + Yoo

The input Y, to the linear system Lz is given by
. -1 »
¥y, = ao[ao (x3)]. .

Hence, the block diagram of Fig. 11 can be transformed to that shown in Fig. 12. From

the block diagram of Fig. 12 we recognize the feedback syst;in as a cascade of a o @
linear system, and aal. Hence, it is a homomorphic system with o and o as the input

o
X *2 L 3 -1

°o SRS

o + +! + + o

Fig. 11. Equivalent representation of a homomorphic feedback system.

and output operations, respectively. The canonic representation for this homomorphic
system is, of course, the block diagram of Fig. 12. The linear portion of the canonic
representatmn is a linear feedback system havmg the linear po"’uon of ¢ in the forward
path and the.linear portion of y in the feedback path.

The systems a o and aBl in the system of Fig. 12 are determined by the classes to

Fig. 12. Canonic representation of a homomorphic feedback system.

which the systems ¢ and y belong. Hence. as ¢ and y are varied within their respec-

tive classes, the systems ¢ _and a,:l remain the same; chmges in ¢ and y are repre-

o

sented by changes in the linear systems Ll and Lz' Thus the behavior of the feedback -
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system of Fig. 10 as the systems ¢ and y are varied within their respective classes can
be studied by concentrating on the behavior of the linear feedbaqk system euclosed in the
dotted line in Fig. 12.

The fact that the nonlinearities in the system of Fig. 10 can be removed from the
feedback loop depends on the fact that the feedback operation is identical to the input
operativn of ¢ and the cutput operation of y, and that the output operation of ¢ and the

input operation of y are identical. Under
o o these restrictions, and the restriction
v —-—@-ﬁ— ® - that th= system inputs constitutes a vec-
tor space under o, the system outputs

x ] will constitute a vector space under o.
o o It can also be verified that the set: of

4 - inputs to ¢ is a vector space under °
and the set of outputs of y is a vector

Fig. 13. Nonadditive feedback system with space under o.

homomorphic systems in the for- If we do not impose the restriction
ward and feedback paths. that the feedback operation be identical
to the input operation of ¢ and the output
operation of y, we can still, in certain cases, transform the system to a feedback sys-
tem with additive feedback. The over-all system will no longer be a homomorphic sys-
tem; consequently, the feedback loop wil’ i'emain nonlinear.

Specifically, consider the feedback system in Fig. 13. The system inputs constitute
part of a Hiibert space under the operation & . It is assumed that the system of Fig. 13
is well defined, that is, the operation o is defined on all inputs to ¢ and the operation
© is defined on all the outputs of y. This would be true, for‘exam.ple, if ¢ and Yy were
both linear systems and.the operation were multiplication. '

Y

‘ ‘ -1 € T
V e no —-——b(}D-—v- ao & > W

a |e——— v |
o

F1g 14. -Equivalent representation of the feedback system of Fig. 13.

Since the system inputs constitute a vector space under the operation ¢, there exists
an invertible homomorphic system « X having ¢ as the input operation and addition as

the output operation.
The input € to ¢ is given by

56



€E=VOX

or, equivalently,
_ =1
€=ag [ao(v o x)).

Since a4 is a homomorphic systein, (50) can be rewritten

€ = g [a, (V)+a, (x)].

Consequently, the sys’tein of Fig. 13 can be redrawn as shown in Fig, 14. When the
canonic representations for ¢ and y are substituted in the block diagram of Fig. 14,
and appropriate block diagram manipulations are performed, the system of Fig. 14 can

r —————————————————————— A
! !
v—= o ———-{-» u;‘ —! a, Ly a'n SE——
| |
I
| -1 1
l uo - Uo L2
! —_—
b J

Fig. 15. Equivalent representation of the feedback system of Fig. 13.

be transformed to that shown in Fig, 15. If the system vy is an invertible system, then
the system L2 will also be invertible. In this case, the system for Fig. 15 can be
transformed to that shown in Fig. 16, fcr whicha

-1

a=a., -
L=1L,L7}
152
S S
ﬁ-—ao L2 aoao.

if this feedback system' is to be studied as the system ¢ is varied within its class, then,
the systems a and P will remain invariant with changes in ¢. Hence: properties of
the feedback system of Fig. 13, as ¢ is varied within any one class, can be studied by



1
!

Fig. 16. Equivalenl representation of the feedback system of Fxg 13
for the case in which vy is invertible.

‘concentrating on the feedback system enclosed in the dotted line in Fig, 15. Although
this feedback sysiem is nonlinear, it is characterized by the property that it is a unity
feedback system in which the forward path contains a linear system inserted between

a nonlinear system and its inverse.
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APPENDIX

Isomorphic Mapping of a Separable Hilbert Space into the Space ™

In Section IV, we were coiicerned with the construction of an isomorphic mapping
from the input and output spaces of a homoni.rphic system into spaces under addition,
The input and output spaces were restricted to be separable Hilbert spaces, i.e., Hilbert
spaces having orthonormal bases, When the operations of vector add#ion and scalar
multiplication were memoryless operations, the set of vaiues which the associated time
functions could assume at any instant of time was shown to constitute a vector space. It
was then stated that an isomorphism could be defined which mappecd the set of vaiues at
any instant of time onto the space F®. The purpoée of this appendix is to carry out the
derivation of these results. 4

Consider a separable Hilbert space in which the orthonormal basis is denoted f 1 ‘),
f2 (t), ... . Then if £f(t) is any function in the space, f(t)} can be expressed in the form

> ]
f(t) = zl [(£), £, (£, 8, (8], ) ~ (A1)
= .

where ;‘ denotes the combination of the functions [(£(t), fk(t))>fk(t)]‘according to the oper-

ation o, Let S denote the set of all values that can be assumed by the functions ‘in the
space at any given time to' ¥ o and > are memoryless operations, then, from
Eq. A.1, o

0
flt,) = 21 [, £ 001 (e )]
- o

Conseguently, for any scalar f(to) in S there exists a _et of sc.alars‘-kl, )\2, ... such
that ' h

-
ft) = }: AN
o

The scalar xk is given by

M = (), £ ().

The vector space S is spanned by the scalars fl‘to)’ f (to). «.. in the sense that any
scalar in S is the limit of a linear combination of the scalars f1 (to), fz(t o). .. under
the operations o and >. The set of scalars f,(t ), f,(t ), ... 18 a countable set, since
an orthonorymal basis for a separable Hilbert space is countable. This set of scalars
may or méy not constitute a basis for S, that is, they may or may not be irdependent,
They contain, however, an independent set in terms of which aay scalar in S can be
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expressed as a (possibly infinite) linear combinution, as the following argument shows.
If the set S contains only one scalar, then this scalar must be the identity in S
because S is a vector space. Since f (t ), f (t ). ... are each in S, they must all be .
equal to the identity in S, In this case, any one cf these scalars is a basis for S, and
hence the proof is complete. ’ '
If the s~rt S contains more than one scalar, then the set fl (to), fz(t o)’ ... must con-

tain at least one scalar that is not the identity in S. Let s 1’ S . denote the sequence

2
of all scalars from the sequence f (t ) f (t ), ... which are other than the identity in S.

This sequence is nonempty by v1rtue of the comments Just made. Let S1 be the subspace

of scalars s in S which is spanned by s,. Let s'2 be the first scalar in the sequence

1

81185 ... which is not in Sl’ and let S2 ‘denote the subspace of S spanned by si and
s'z, where s'l =8 Continuing this process, we obtain a sequence of subspaces Sl,

, n
Sps-.. of S. Since S is the limit of the sequence of partial sums =, (e, £ (£, (¢ ),
o o

the limit of the éequence of subspaces _Sl. S,, ... is S, Hence the sequence 5'1’ s'z,

spans S, since the space S can be expressed as a combination of s! .+ 8! under

s 85, ..0

the operations o and >, Furthermore, by the manner in which the 1seqlzlence sl?sz, ce
was generate:i, it is independent. This sequence forms a basis for the space S in the’
sense that it is independent and that anfelement in S can be expressed as the limit of .
partial sums of scalars in the sequence,

" We wish to show next that S is isomorphic with F" for some n. Let s be any scalar
in S. Since ihe sequence Sl’ “z' ... spans S and since this sequence is mdependent

s can be expressed in one and only one way in the form

S=zlck>sk

for a zet of scalars {c, } from F, where ck [(f(t) (t))] The isomorphism T from
Sto F® is then defined as : 7 ~ - )

T(s) = (cl.cz... ..
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