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ABSTRACT

Q4975

The Dyadic Green's Function pertaining to the electromagnetic
field in an infinite moving medium is derived, The derivation is based
on Minkowskifs theory and the method of Fourier analysis is used.
Also, a second derivation of the same result is given, which clearly
shows the connection between the Green's functions for a moving and a

stationary medium, W
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Page 1 of 14

THE DYADIC GREEN'!'S FUNCTION FOR AN
INFINITE MOVING MEDIUM

INTRODUCTION

In this report the Dyadic Green's Function pertaining to the electro-
magnetic field in a moving medium is found. The medium is assumed to
be of infinite extent in all directions and to be isotropic and homogeneous.
It moves with a constant velocity, which is assumed to be much smaller
than the velocity of light. The wave equation for the electric field is
derived for harmonic time dependence and is solved using an operational
method the same as has been used by Bunkin[1].

The problem of the electrodynamics of moving media was first
solved exactly by Minkowski[2] in 1908, and an excellent discussion
of his work has been given by Sommerfeld[3]. More recently, a
review of Minkowski's theory and a discussion of several current
writings on this subject have been given by Tai[4]. In regard to the
construction of the dyadic function, two other works worth mentioning
are those by Arbel[5] and Wu[6] on the related problem of radiation
in anisotropic media.

DERIVATION OF THE GREEN'S FUNCTION

Consider a homogeneous and isotropic medium of infinite extent
in all directions. Assume the medium moves with a constant linear
velocity, ¥V, with respect to a fixed coordinate system. We consider
only the case where the velocity 7] is much less than the speed of
light ¢, so that (l:l/c)z << 1. In this case the differential equations
governing the electromagnetic fields in the medium are [7, 8]

— ) — — -
(1) VX E=a ” [p.Ha(ep_-eop,o)vXE],
and

— 9 - ) - _] -j_
(2) 7 X H:E- [eE + (en - €oMo) VX HY + .
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where
E, H = the electric and rriagnetic fields,

€,0 = the permittivity and permeability
of the medium when at rest,

€os o = the permittivity and permeability
of free-space, and

J = the source current density, assumed
to be known,

In Egs. (1) and (2), all quantities are measured in the fixed
coordinate system. (MKS units are used.)

Equations (1) and (2) may be written

{ = 3 = =
(3) V-V =i xE=-2_(H),
\ at ; ot
and
/ N\
B — a — — —
(4) KV-V——)XH=—8——(6E)+J,
ot at
where
(5) V= (ep = eqpg) Vs

and then Eqs. (3) and (4) may be combined to yield the following
wave equation for E :;

6 =T oE [~ B8E\ _ [_ #'E)

IUX IX E « VUX X 7T aygX| VX — 4+ VXV X j

(6) at ot / atz )
92 E 8J

+ 3 = - _—
M e gy

| Fit It will be assumed that all field quantities have time dependence
eI , which reduces Eq. (6) to
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(7) VX TX E=joVX VX E = jovX (VX E)

~wiVX (VX E) =~k E = ~jopd,
where
Equation (7) may be solved for E using a method employed by
Bunkin[ 9], and subsequently by Chow[10], for the case of radiation

in an anisotropic medium. In a rectangular cartesian coordinate
system with axes x;, x,, x;, Eq. (7) may be written

3
(9) } qlJ EJ = -jwl‘-"‘]i’ i=12,3,
=1

where Qij is the differential operator;

K ./ 9 G , ,
(10) qjj =——— - ju | Vy 5= +Vj ~w? V{Vj= 8;; ¥
8)& 8XJ \ J axi p

+2jw B35V ¢V +w? V2B - k2 By,
with V¢ = VlZ + VZ2 + V32 and Bij' the Kronecker delta, defined by

(11) 6y; =
3

12) Bj=-den ) (T nu® IR 9 ®r
k=
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where t' indicates the volume occuﬁhed by the source J. On substituting
Eq. (12) into Eq. (9), and making use of the relation

3
(13) J; = § §§S Bk O(R | R) 3 (R') dr'
Kl T

where (R l _Ii') is the Dirac Delta Function, there results

3 3

(14) Z E U(yg a5 Tjx(® [R) 3 (® )

j=1 k=1

= i Sjg 6y DR |R") T (R1) dr' | .
k=

1 T
Since Eq. (14) must hold for arbitrary 3, it follows that

(15) a5 Tjic(R [R) = 5, BR |RY).

E e

Equation (15) may be solved by setting

(16) T; (R [R) = D, GR [RY) ,

where Djk is the differential operator defined by
(17) Djk = cofactor of qkj ,

and G(R lﬁ‘) is a scalar function, Then
3

(18) 435 Djk = D Bik
j=
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with D the determinant of the matrix {qij}’
(19) D = det {qij} ’

and the scalar function G(ﬁ II—K') must satisfy
(20) DGR |RY) = 5R [R") .

A function satisfying Eq. (20) may be constructed as follows:
First define

(21) P=p, %, +p, %, +p, X,
and
(22) Tr=R - R!

From Eq. (10), it may be seen that

(23) Q;; exP(=jp+ 1) = Pj; exp(-jp-r),
where
(24) Piy=- PiPj + B35 P * p ~w(V; pj + Vipy) + 2wbij Vi p = w? V;V
2 Ve Vak2 B
tw? B Ve V- k? By
Hence
(25) D exp(-j p * T) = det {Pjj} exp(-j p + R),

and therefore a solution for G(R !_ﬁ_') is

1691-3 5
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exp (-jp T )

- = 1
(26) GR |R") = ——— ggg dp, dp, dp,
(2m)? o det {Pij}

Next, it will be supposed that V lies entirely in the 3}3 ~-direction.
That is,

(27) V=V, %,

Since the orientation of the coordinate system is arbitrary up to this
point, this assumption involves no loss of generality. With this
simplification, it is found from Eq. (24), after considerable algebra,

(28) det {P;;} = ~k?(p, +wV, +\[ k?-p®-p?)? (p; +wV,-] k?=p?~p)? .

With Eq. (28) substituted in Eq. (26), the 1ntegrat1on on p, is easily
done by Cauchy!s Residue Theorem. For x3 > x;, the contour of
integration may be closed on an infinite semiw=circle in the lower~half p;~
plane., For x3 < x3 s it may be closed in the upper=half p;=plane, S1nce
the time convention is e+-]“°t, the (double=order) pole at p; = ~wV; +\|kz --pl -pz
may be considered as lying slightly below the real p;~axis, corresponding to
a small amount of conduction loss in the dielectric medium, Similarly, the

pole at p3 = ~wV3 = \, k?Z -plz -p3 is considered as lying slightly above the real
p3~axis. The residue of the pole at p; = -wV3 + \Ikz -p}? ~-p3 is

+j(x3 = x3) 1

(29). Res(-amV3+\|k2 -epz) = + —— + r 7

2
k® | 4(k? -p? -p7 )  4(x® -p% -p}

e"'j(xs - x3)(~wV3 +‘J k? «pf «p%) e‘jpz (x2= x2) e'-.ipl (x1 - x1)

so that for x, > x; ,

1691~3 6




JwVs (%3=x5) '

IR s -35) j
(30)  G(R |R") = - gg -
(2) K 4(k2 -p% =p})  4(k? -p} -p3 )

o~i(x3 ~x3) JK? -p -p2 oI (%o =x3)  _~jpy (%) = X))

dp1 dp, .
The residue of the pole at p; ==wV; - \] k? -pf -pg is

+j(x%;3 =x3' ) -1
(31) Res(~wV; - ,lkz ~-pf -p5) =+ 1 > 2 +

k2 | 4(k? ~p? =p}) 4(k? =p? -p? )3k

~j(%3 =%3' ) (-0 V; “\j k? -pf -p%)  -jpz (x2 =x3) ~jp1(x1 - x1)
e

€ e

and thus for x; < x; ,

o JwVs (%5 =x5") e - .
(32) G(R[R") = e S‘S‘ 1 (x3 =~ x3) J
(2m)? k? | 4(k? ~pf =pf)  4(k? -p? -p} )"

e+j(X3 ~X3 N k® -p{ -p3 e"jpz (x2-%2 ) e-jpl (x1 =x1)

dp dp.
Combining Eqs, (30) and (32) yields for any x;, x3',
o o TI0 V3 (%3 -x37) | x, %, [ j
(3%  GERI[RY = — ﬁ . ;
4(2m)° k kz ~p} (k? «pf ~p3)¥°

. 2 : ! .
o lx3 -%3' I sz "Plz “Pz  "IP; (%, =x,) e P (x; = x,)

dp,dp,.
which may be written
je+j‘°v3 (%3 -3 ) 5 (_00(, o) lxs ;' [ k? -pf -p3
(34) GRIRY = —— — :
4(27)% k ak -p;
- 00
. ! . t
omiP2 (k2 = %2) =jpy (5 = %) g o,

1691-3 7



Next, the change of variables

(35) . X, =X =T cos@,
(36) X, = X, =T sin 6,

(37) P, =p cosa ,

(38) p: =p sina, and
(39) dp, dp, = pdpda

is made, giving

. +jwV3 (X3 "'X3,) 0
— ) — e a

40) G(R [R") = . kN g
4(27)? K3 5k

2y
o =0

e—jpr cos (a-6)

p=0

&) |X3 - X3! I\J k? -p?

kZ _pl

p dp da

The integral on o is easily done[11], with the result

-ejwva (%3 "X3') e'j I X3 "X3' l ‘l k? "Pz

—_—p— 9 o
(4) GRIRY = . — { Topr) p dp ;
0

8k W

or equivalently

+v - ! e ¢] - - t Z_Z
o JwVs (%3 -x%3") ) e |x3 X3 I\lp k

(42) G(R|R') = - J,(pr) p dp .

3
8k 0k Jp? -k




The integral in Eq. (42) is Sommerfeld's integral[12]. Thus
Eq. (42) yields

o e+jh)V3 (X3 ‘X3l) a e-ij
(43) GR]|RY) = - - ,
87 k3 ok R ‘
where
(44) R=\r? 4 (x; - x3')? .

Performing the differentiation finally gives, for G(—P: ll—l') s

- . ' .
(45)  GR [R') =2 eTWVslm-x) -jkR
8w k3

From G(R IR '), the quantities T; k(R IR') in Eq. (12) may now
be computed., From Eqs. (17) and (10), it is found that for the case
where V;, =V, =0,

(46)
iz_.+k2 az 0 { 0 —jwV \ ‘I
Bxf 3x1 8x2 Bxl \8X3 3/1 l
52 2 ’ 9 d
[Djk] = —8—5- +k? —_—— —_]wV>
9x, 0%, 9%, 0x \8x3
/ 2
— =JwVil— [ T iV, ] —— -JwV
<8x3 . 3)8x1 <3x3 Jw 3) dx, (Bxg, Jo¥s
- vJ
2 2 2
9 + 8 + 9 -jwV; + k? .
ax? 9x2 8%,

Thus, Eq. (16) gives

47) TR [R HoVabox) 1 e . eIR
(R [RY) = | PR By | ———
K ) 4r k? ; 9x; 9% R

1691-3 9



or, from Eq. (5),

. ' .
- etiwlep = €guo) vi(x3-x3) = 4, o—JkR
(48) TR [R) = | + k2 Bji
4m k2 [axj 9% R

Notice that with v, =0, Eq. (48) yields the components of the free-
space dyadic Green's function (with €, replacing €, o). The effect of
the velocity is to change the phase constant in the direction of the velocity.
For example, if ep > egng and vy > 0, the phase constant in the region
X3 > x3 is decreased by an amount w(ep -cop o)Vvs; therefore the wavelength
and the (phase) velocity of propagation are both increased correspondingly.

In the derivation of Eq. (48), it was assumed that the velocity lies
entirely in the x; -direction. It is easy to surmise from the form of
Eq. (48), however, that in the general. situation where v is oriented
arbitrarily with respect to the coordinate system

_ oHiwlep =€ouo) ¥ R - R 52 o-JKR
(49) T, (R[R") = — t kP
! 4r K 8% 8%, . R

That Eq. (49) is indeed correct may be verified by substitution into Eq. (15),
or by subjecting Eq. (48) to a rotation of coordinates.

It is worth remarking that once the solution for T.k is known,
simpler '"derivations' of it can be recognized. One possible alternate
derivation is included in the Appendix. 1

\
CONCLUSIONS \

The Dyadic Green's Function for an infinite moving medium has !
been found. The solution of Eq, (7) for the electric field is given by |
Eq. (12), where the nine components T k(R {R } are given in Eq. (49). ‘
It is noted that the effect of the veloc1ty of the moving medium is to 1‘
change the phase constant in the direction of the velocity. "

Bunkin's method, which is systematic and straightforward, has
been used to derive the Green'!s Function. Of course, after the answer ‘
is known, simpler and more direct methods of deriving it can be found.
One such ""derivation' is given in the Appendix.

1691-3 10 ]
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APPENDIX

AN ALTERNATE DERIVATION
OF THE GREEN'S FUNCTION

Let T be the Dyadic Green's Function for the moving medium.
=
(The double overbar indicates a dyadic quantity; T has nine components

=
Tjk') T is required to satisfy the vector differential equation

(A-1) (V = juV) X (V = jwV) X T-x2T=¢8(R Ry,

where ¢ is the idemfactor, We write T as the produce of a scalar

function ¢ and another dyadic r:

=i

I
e
]!

(A=2)

where the scalar function is to be chosen in such a way as to simplify

Eq. (A-l); From the relation

(A~3) (V=juV) X o T =6 vXT+ (Ve - jusV) X T,
it is seen that if ¢ is chosen so that

(A-4) Vé - jwdV = 0,

then Eq. (A~-3) reduces to

(A-5) (V- JuV) X oI = oV X T ;

1691-3 12




and also
(A-b) (V = juV) X (V=jwV) X 4T =V X VX T . .

Equation (A~5) is easily solved., One possible solution is

(A-7) ¢=e+_]mV' R

Thus, the substitution of Eq, (A=2) into Eq, (A-~1l), with ¢ given by

Eq. (A~7), reduces Eq. (A«l)} to
(A-8) WV R [gxuxT-x¥F] =E5RI[RY,

or finally

(A-9) VX VUXT=-k!l= 28R [R') e7JoV * R

poll

. -i_.'\-{_}.. &
I) e o e

H
m 1l
o
bl
el

¥

The last equality in Eq. (A-9) follows from the properties of the Delta
function,

-jwVeR' .
Except for the constant factor e » Eq. (A-9) is the same
as the equation for the free~space Dyadic Greent!s Function (with k

replacing the free~space propagation constant ky), Hence the solution

to Eq. (A~9) is given by

= e_jwv : -ﬁ" = e"ij
(A-10) r= — (kP e+wW) R ;
47 k?

1691-3 13



and, therefore,

(A-11) T

1691-3
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