$-N 65-24975$

Automatic Comirels Microwave Circuits Terrain Investigations Wave Propagation

GPO PRICE \$

\qquad
 CTS PRICE (S) \$ \qquad

Hard copy (HC) \qquad
Microfiche (MF) \qquad
Antennas
Astronautics
Radomes

Echo Ara Studies EM Field Theory Systems Analysis Submillimeter Applications
Radomes Submillimar Appliaions
 INFINITE MOVING sEDUM
by
R. T. Compton Ir, and C. I, Tai Grant Number NBG-448

691-3
15 January 1964

Prepared for:

National Aeronautics \& Space Administration Washington 25 , DC.

Department of ELECTRICAL ENGiNEERiNG

THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION
 Columbus, Ohio

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The Government has the right to reproduce, use, and distribute this report for governmental purposes in accordance with the contract under which the report was produced. To protect the proprietary interests of the contractor and to avoid jeopardy of its obligations to the Government, the report may not be released for non-governmental use such as might constitute general publication without the express prior consent of The Ohio State University Research Foundation.

Qualified requesters may obtain copies of this report from the Defense Documentation Center, Cameron Station, Alexandria, Virginia. Department of Defense contractors must be established for DDC services, or have their "need-to-know" certified by the cognizant military agency of their project or contract.

REPORT
 by

THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION COLUMBUS, OHIO 43212

Sponsor National Aeronautics and Space Administration Washington 25 , D.C.
Grant Number NsG - 448
Investigation of Spacecraft Antenna Problems
Subject of Report
Submitted byR.T. Compton, Jr. and C.T. TaiAntenna LaboratoryDepartment of Electrical Engineering
Date 15 January 1964

ABSTRACT

$$
24975
$$

The Dyadic Green's Function pertaining to the electromagnetic field in an infinite moving medium is derived. The derivation is based on Minkowski ${ }^{i}$ s theory and the method of Fourier analysis is used. Also, a second derivation of the same result is given, which clearly shows the connection between the Green's functions for a moving and a stationary medium.

CONTENTS

Page
INTRODUCTION 1
DERIVATION OF THE GREEN'S FUNCTION 1
CONCLUSIONS 10
BIBLIOGRAPHY 11
APPENDIX 12

THE DYADIC GREEN'S FUNCTION FOR AN INFINITE MOVING MEDIUM

INTRODUCTION

In this report the Dyadic Green's Function pertaining to the electromagnetic field in a moving medium is found. The medium is assumed to be of infinite extent in all directions and to be isotropic and homogeneous. It moves with a constant velocity, which is assumed to be much smaller than the velocity of light. The wave equation for the electric field is derived for harmonic time dependence and is solved using an operational method the same as has been used by Bunkin[1].

The problem of the electrodynamics of moving media was first solved exactly by Minkowski[2] in 1908, and an excellent discussion of his work has been given by Sommerfeld[3]. More recently, a review of Minkowski's theory and a discussion of several current writings on this subject have been given by Tai[4]. In regard to the construction of the dyadic function, two other works worth mentioning are those by Arbel [5] and $\mathrm{Wu}[6]$ on the related problem of radiation in anisotropic media.

DERIVATION OF THE GREEN'S FUNCTION

Consider a homogeneous and isotropic medium of infinite extent in all directions. Assume the medium moves with a constant linear velocity, \bar{v}, with respect to a fixed coordinate system. We consider only the case where the velocity $|\bar{v}|$ is much less than the speed of light c, so that $(|\bar{v}| / c)^{2} \ll 1$. In this case the differential equations governing the electromagnetic fields in the medium are $[7,8]$

$$
\begin{equation*}
\nabla \times \bar{E}=-\frac{\partial}{\partial t}\left[\mu \bar{H}-\left(\epsilon \mu-\epsilon_{o} \mu_{o}\right) \overline{\mathrm{v}} \times \overline{\mathrm{E}}\right], \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \times \overline{\mathrm{H}}=\frac{\partial}{\partial t}\left[\epsilon \overline{\mathrm{E}}+\left(\epsilon_{\mu}-\epsilon_{\mathrm{o}} \mu_{\mathrm{o}}\right) \overline{\mathrm{v}} \times \overline{\mathrm{H}}\right]+\overline{\mathrm{J}}, \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
\bar{E}, \bar{H}= & \text { the electric and magnetic fields, } \\
\epsilon, \mu= & \text { the permittivity and permeability } \\
& \text { of the medium when at rest, } \\
\epsilon_{O}, \mu_{O}= & \text { the permittivity and permeability } \\
& \text { of free-space, and } \\
\bar{J}= & \text { the source current density, assumed } \\
& \text { to be known. }
\end{aligned}
$$

In Eqs. (1) and (2), all quantities are measured in the fixed coordinate system. (MKS units are used.)

Equations (1) and (2) may be written

$$
\begin{equation*}
\left(\nabla-\overline{\mathrm{V}} \frac{\partial}{\partial \mathrm{t}}\right) \times \overline{\mathrm{E}}=-\frac{\partial}{\partial \mathrm{t}}(\mu \overline{\mathrm{H}}), \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla-\overline{\mathrm{V}} \frac{\partial}{\partial t}\right) \times \overline{\mathrm{H}}=\frac{\partial}{\partial t}(\epsilon \overline{\mathrm{E}})+\overline{\mathrm{J}}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\mathrm{V}}=\left(\epsilon \mu-\epsilon_{\mathrm{o}} \mu_{\mathrm{o}}\right) \overline{\mathrm{v}} ; \tag{5}
\end{equation*}
$$

and then Eqs. (3) and (4) may be combined to yield the following wave equation for \bar{E} :

$$
\begin{align*}
& \nabla \times \nabla \times \bar{E}-\overline{\mathrm{V}} \times \nabla \times \frac{\partial \overline{\mathrm{E}}}{\partial \mathrm{t}}-\nabla \times\left(\overline{\mathrm{V}} \times \frac{\partial \overline{\mathrm{E}}}{\partial \mathrm{t}}\right)+\overline{\mathrm{V}} \times\left(\overline{\mathrm{V}} \times \frac{\partial^{2} \overline{\mathrm{E}}}{\partial \mathrm{t}^{2}}\right) \tag{6}\\
&+\mu \in \frac{\partial^{2} \overline{\mathrm{E}}}{\partial \mathbf{t}^{2}}=-\mu \frac{\partial \bar{J}}{\partial \mathrm{t}} .
\end{align*}
$$

It will be assumed that all field quantities have time dependence $e^{+j \omega t}$, which reduces Eq. (6) to

$$
\begin{align*}
& \nabla \times \nabla \times \bar{E}-j \omega \overline{\mathrm{~V}} \times \nabla \times \overline{\mathrm{E}}-j \omega \nabla \times(\overline{\mathrm{V}} \times \overline{\mathrm{E}}) \tag{7}\\
&-\omega^{2} \overline{\mathrm{~V}} \times(\overline{\mathrm{V}} \times \overline{\mathrm{E}})-\mathrm{k}^{2} \overline{\mathrm{E}}=-j \omega \mu \bar{J},
\end{align*}
$$

where

$$
\begin{equation*}
k^{2}=\omega^{2} \mu \epsilon . \tag{8}
\end{equation*}
$$

Equation (7) may be solved for \bar{E} using a method employed by Bunkin[9], and subsequently by Chow [10], for the case of radiation in an anisotropic medium. In a rectangular cartesian coordinate system with axes x_{1}, x_{2}, x_{3}, Eq. (7) may be written

$$
\begin{equation*}
\sum_{j=1}^{3} q_{i j} E_{j}=-j \omega \mu J_{i}, \quad i=1,2,3 \tag{9}
\end{equation*}
$$

where $q_{i j}$ is the differential operator;

$$
\begin{align*}
q_{i j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} & -j \omega\left(v_{i} \frac{\partial}{\partial x_{j}}+v_{j} \frac{\partial}{\partial x_{i}}\right)-\omega^{2} v_{i} v_{j}-\delta_{i j} \nabla^{2} \tag{10}\\
& +2 j \omega \delta_{i j} \bar{V} \cdot \nabla+\omega^{2} v^{2} \delta_{i j}-k^{2} \delta_{i j}
\end{align*}
$$

with $V^{2}=V_{1}^{2}+V_{2}^{2}+V_{3}^{2}$ and $\delta_{i j}$, the Kronecker delta, defined by
(11)

$$
\delta_{i j}= \begin{cases}1: & i=j \\ 0: & i \neq j\end{cases}
$$

A solution for Eq. (9) may be obtained by putting

$$
\begin{equation*}
E_{j}=-j \omega \mu \sum_{k=1}^{3} \iiint_{\tau^{\prime}} T_{j k}\left(\bar{R} \mid \bar{R}^{\prime}\right) J_{k^{\prime}}\left(\overline{R^{\prime}}\right) d \tau^{\prime}, \tag{12}
\end{equation*}
$$

where τ^{\prime} indicates the volume occupied by the source \vec{J}. On substituting Eq. (12) into Eq. (9), and making use of the relation

$$
\begin{equation*}
J_{i}=\sum_{k=1}^{3} \iiint_{\tau^{\prime}} \delta_{i k} \delta\left(\bar{R} \mid \bar{R}^{\prime}\right) J_{k^{\prime}}\left(\bar{R}^{\prime}\right) d \tau^{\prime} \tag{13}
\end{equation*}
$$

where $\delta\left(\overline{\mathrm{R}} \mid \overline{\mathrm{R}}^{\prime}\right)$ is the Dirac Delta Function, there results

$$
\begin{align*}
& \sum_{j=1}^{3} \sum_{k=1}^{3} \iiint_{\tau^{\prime}} q_{i j} T_{j k}\left(\bar{R} \mid \bar{R}^{\prime}\right) J_{k}\left(\bar{R}^{\prime}\right) d \tau^{\prime} \tag{14}\\
&=\sum_{k=1}^{3} \iiint_{\tau^{\prime}} \delta_{i k} \delta\left(\bar{R} \mid \bar{R}^{\prime}\right) J_{k}\left(\bar{R}^{\prime}\right) d \tau^{\prime}
\end{align*}
$$

Since Eq. (14) must hold for arbitrary \bar{J}, it follows that

$$
\begin{equation*}
\sum_{j=1}^{3} q_{i j} T_{j k}\left(\bar{R} \mid \bar{R}^{\prime}\right)=\delta_{i k} \delta\left(\bar{R} \mid \bar{R}^{\prime}\right) \tag{15}
\end{equation*}
$$

Equation (15) may be solved by setting

$$
\begin{equation*}
T_{j k}\left(\bar{R} \mid \bar{R}^{\prime}\right)=D_{j k} G\left(\bar{R} \mid \bar{R}^{\prime}\right) \tag{16}
\end{equation*}
$$

where $D_{j k}$ is the differential operator defined by

$$
\begin{equation*}
D_{j k}=\text { cofactor of } q_{k j} \tag{17}
\end{equation*}
$$

and $G\left(\bar{R} \mid \bar{R}^{\prime}\right)$ is a scalar function. Then

$$
\begin{equation*}
\sum_{j=1}^{3} q_{i j} D_{j k}=D \delta_{i k} \tag{18}
\end{equation*}
$$

with D the determinant of the matrix $\left\{q_{i j}\right\}$,

$$
\begin{equation*}
D=\operatorname{det}\left\{q_{i j}\right\} \tag{19}
\end{equation*}
$$

and the scalar function $\left.G(\bar{R} \mid \bar{R})^{\prime}\right)$ must satisfy

$$
\begin{equation*}
D G\left(\bar{R} \mid \bar{R}^{\prime}\right)=\delta\left(\bar{R}\left|\bar{R}^{\prime}\right\rangle\right. \tag{20}
\end{equation*}
$$

A function satisfying Eq. (20) may be constructed as follows: First define

$$
\begin{equation*}
\overline{\mathrm{p}}=\mathrm{p}_{1} \hat{\mathrm{x}}_{1}+\mathrm{p}_{2} \hat{\mathrm{x}}_{2}+\mathrm{p}_{3} \hat{\mathrm{x}}_{3} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\mathrm{r}}=\overline{\mathrm{R}}-\overline{\mathrm{R}}^{\prime} \text {. } \tag{22}
\end{equation*}
$$

From Eq. (10), it may be seen that

$$
\begin{equation*}
q_{i j} \exp (-j \bar{p} \cdot \bar{r})=P_{i j} \quad \exp (-j \bar{p} \cdot \bar{r}) \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
P_{i j} & =-p_{i} p_{j}+\delta_{i j} \bar{p} \cdot \bar{p}-\omega\left(V_{i} p_{j}+V_{j} p_{i}\right)+2 \omega \delta_{i j} \bar{V} \cdot \bar{p}-\omega^{2} V_{i} V_{j} \tag{24}\\
& +\omega^{2} \delta_{i j} \bar{V} \cdot \bar{V}-k^{2} \delta_{i j} .
\end{align*}
$$

Hence

$$
\begin{equation*}
D \exp (-j \bar{p} \cdot \bar{r})=\operatorname{det}\left\{P_{i j}\right\} \exp (-j \bar{p} \cdot \bar{R}) \tag{25}
\end{equation*}
$$

and therefore a solution for $G\left(\bar{R} \mid \bar{R}^{\prime}\right)$ is given by

$$
\begin{equation*}
G\left(\bar{R} \mid \overline{R^{\prime}}\right)=\frac{1}{(2 \pi)^{3}} \iint_{-\infty}^{\infty} \int_{-\infty} \frac{\exp (-j \bar{p} \cdot \bar{r})}{\operatorname{det}\left\{P_{i j}\right\}} \operatorname{dp}_{1} d p_{2} d p_{3} \tag{26}
\end{equation*}
$$

Next, it will be supposed that $\overline{\mathrm{V}}$ lies entirely in the \hat{x}_{3}-direction. That is,

$$
\begin{equation*}
\bar{v}=v_{3} \hat{x}_{3} \tag{27}
\end{equation*}
$$

Since the orientation of the coordinate system is arbitrary up to this point, this assumption involves no loss of generality. With this simplification, it is found from Eq. (24), after considerable algebra,

$$
\begin{equation*}
\operatorname{det}\left\{P_{i j}\right\}=-k^{2}\left(p_{3}+\omega V_{3}+\sqrt{k^{2}-p_{1}^{2}-p_{2}^{2}}\right)^{2} \quad\left(p_{3}+\omega V_{3}-\sqrt{k^{2}-p_{1}^{2}-p_{2}^{2}}\right)^{2} \tag{28}
\end{equation*}
$$

With Eq. (28) substituted in Eq. (26), the integration on p_{3} is easily done by Cauchy's Residue Theorem. For $x_{3}>x_{3}$, the contour of integration may be closed on an infinite semincircle in the lower-half p_{3} plane. For $x_{3}<x_{3}^{\prime}$, it may be closed in the upper-half $p_{3}-$ plane. Since the time convention is $e^{+j \omega t}$, the (double-order) pole at $p_{3}=-\omega V_{3}+\sqrt{\mathrm{k}^{2}-p_{1}^{2}-p_{2}^{2}}$ may be considered as lying slightly below the real p_{3}.axis, corresponding to a small amount of conduction loss in the dielectric medium. Similarly, the pole at $p_{3}=\omega \omega V_{3}-\sqrt{k^{2}-p_{1}^{2}-p_{2}^{2}}$ is considered as lying slightly above the real p_{3}-axis. The residue of the pole at $p_{3}=-\omega V_{3}+\sqrt{k^{2}-p_{1}^{2}-p_{2}^{2}}$ is

$$
\begin{gather*}
\operatorname{Res}\left(\omega \omega V_{3}+\sqrt{k^{2}-p_{1}^{2}-p_{2}^{2}}\right)=+\frac{1}{k^{2}}\left[\frac{+j\left(x_{3}-x_{3}^{\prime}\right)}{4\left(k^{2}-p_{1}^{2}-p_{2}^{2}\right)}+\frac{1}{4\left(k^{2}-p_{1}^{2}-p_{2}^{2}\right)^{3 / 2}}\right] \tag{29}\\
e^{-j\left(x_{3}-x_{3}^{\prime}\right)\left(-\omega V_{3}+\sqrt{\left.k^{2}-p_{1}^{2}-p_{2}^{2}\right)} e^{-j p_{2}\left(x_{2}-x_{2}^{\prime}\right)} e^{-j p_{1}\left(x_{1}-x_{1}^{\prime}\right)},\right.}
\end{gather*}
$$

so that for $\mathrm{x}_{3}>\mathrm{x}_{3}^{\prime}$,
(30)

$$
\begin{gathered}
G\left(\bar{R} \mid \bar{R}^{\prime}\right)=\frac{e^{j \omega V_{3}\left(x_{3}-x_{3}^{\prime}\right)}}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty} \frac{1}{k^{2}}\left[\frac{\left(x_{3}-x_{3}^{\prime}\right)}{4\left(k^{2}-p_{1}^{2}-p_{2}^{2}\right)}-\frac{j}{4\left(k^{2}-p_{1}^{2}-p_{2}^{2}\right)^{3 / 2}}\right] \\
e^{-j\left(x_{3}-x_{3}^{\prime}\right) \sqrt{k^{2}-p_{1}^{2}-p_{2}^{2}}} e^{-j p_{2}\left(x_{2}-x_{2}^{\prime}\right)} e^{-j p_{1}\left(x_{1}-x_{1}^{\prime}\right)} d p_{1} d p_{2}
\end{gathered}
$$

The residue of the pole at $p_{3}=\omega V_{3}-\sqrt{k^{2}-p_{1}^{2}-p_{2}^{2}}$ is

$$
\begin{array}{r}
\operatorname{Res}\left(-\omega V_{3}-\sqrt{k^{2}-p^{2}-p_{2}^{2}}\right)=+\frac{1}{k^{2}}\left[\frac{+j\left(x_{3}-x_{3}^{\prime}\right)}{4\left(k^{2}-p_{1}^{2}-p_{2}^{2}\right)}+\frac{-1}{4\left(k^{2}-p_{1}^{2}-p_{2}^{2}\right)^{3 / 2}}\right] \tag{31}\\
e^{-j\left(x_{3}-x_{3}^{\prime}\right)\left(-\omega V_{3}-\sqrt{k^{2}-p_{1}^{2}-p_{2}^{2}}\right)} e^{-j p_{2}\left(x_{2}-x_{2}^{\prime}\right)} e^{-j p_{1}\left(x_{1}-x_{1}^{\prime}\right)},
\end{array}
$$

and thus for $\mathrm{x}_{3}<\mathrm{x}_{3}{ }^{\prime}$,

$$
\begin{gather*}
G\left(\bar{R} \mid \bar{R}^{\prime}\right)=\frac{e^{j \omega V_{3}\left(x_{3}-x_{3}^{\prime}\right)}}{(2 \pi)^{2}} \iint_{-\infty}^{\infty} \frac{1}{k^{2}}\left[\frac{-\left(x_{3}-x_{3}\right)}{4\left(k^{2}-p_{1}^{2}-p_{2}^{2}\right)}-\frac{j}{4\left(k^{2}-p_{1}^{2}-p_{2}^{2}\right)^{3 / 2}}\right] \tag{32}\\
e^{+j\left(x_{3}-x_{3}^{\prime}\right) \sqrt{k^{2}-p_{1}^{2}-p_{2}^{2}}} e^{-j p_{2}\left(x_{2}-x_{2}^{\prime}\right)} e^{-j p_{1}\left(x_{1}-x_{1}^{\prime}\right)} d p_{1} d p_{2}
\end{gather*}
$$

Combining Eqs. (30) and (32) yields for any $x_{3}, x_{3}{ }^{\prime}$,

$$
\begin{align*}
& G\left(\bar{R} \mid \bar{R}^{\prime}\right)=\frac{e^{+j \omega V_{3}\left(x_{3}-x_{3}{ }^{\prime}\right)}}{4(2 \pi)^{2} k^{2}} \int_{-\infty}^{\infty} \int\left[\frac{\left|x_{3}-x_{3}^{\prime}\right|}{k^{2}-p_{1}^{2}-p_{2}^{2}}-\frac{j}{\left(k^{2}-p_{1}^{2}-p_{2}^{2}\right)^{3 / 2}}\right] \tag{33}\\
& e^{-j\left|x_{3}-x_{3}{ }^{\prime}\right| \sqrt{k^{2}-p_{1}^{2}-p_{2}^{2}}} e^{-j p_{2}\left(x_{2}-x_{2}^{\prime}\right)} e^{-j p_{1}\left(x_{1}-x_{1}^{\prime}\right)} d p_{1} d p_{2}:
\end{align*}
$$

which may be written

$$
\begin{align*}
& G\left(\bar{R}\left|\bar{R}^{\prime}\right\rangle=\frac{j e^{+j \omega V_{3}\left(x_{3}-x_{3}^{\prime}\right)}}{4(2 \pi)^{2}} \frac{\partial}{k^{3}} \frac{\partial}{\partial k} \int_{-\infty}^{\infty} \int_{-\infty} \frac{e^{-j\left|x_{3}-x_{3}{ }^{\prime}\right| \sqrt{k^{2}-p_{1}^{2}-p_{2}^{2}}}}{\sqrt{k^{2}-p_{1}^{2}-p_{2}^{2}}}\right. \tag{34}\\
& e^{-j p_{2}\left(x_{2}-x_{2}^{\prime}\right)} e^{-j p_{1}\left(x_{1}-x_{1}^{\prime}\right)} d p_{1} d p_{2}
\end{align*}
$$

Next, the change of variables

$$
\begin{equation*}
\mathrm{x}_{1}-\mathrm{x}_{1}^{\prime}=\mathrm{r} \cos \theta \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
x_{2}-x_{2}^{\prime}=r \sin \theta, \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{p}_{1}=\mathrm{p} \cos \alpha \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{p}_{2}=\mathrm{p} \sin \alpha, \quad \text { and } \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{dp}_{1} \mathrm{dp}_{2}=\mathrm{pdp} \mathrm{~d} \alpha \tag{39}
\end{equation*}
$$

is made, giving
(40) $G\left(\bar{R} \mid \bar{R}^{\prime}\right)=\frac{j e^{+j \omega V_{3}\left(x_{3}-x_{3}^{\prime}\right)}}{4(2 \pi)^{2} k^{3}} \frac{\partial}{\partial k} \int_{p=0}^{\infty} \int_{\alpha=0}^{2 \pi}$

$$
\frac{e^{-j \mid x_{3}-x_{3}} \mid \sqrt{k^{2}-p^{2}}}{\sqrt{k^{2}-p^{2}}} e^{-j p r \cos (\alpha-\theta)} \quad p d p d \alpha
$$

The integral on α is easily done[11], with the result
(41) $G\left(\bar{R} \mid \bar{R}^{\prime}\right)=\frac{j e^{j \omega V_{3}\left(x_{3}-x_{3}\right)}}{8 \pi k^{3}} \frac{\partial}{\partial k} \int_{0}^{\infty} \frac{e^{-j\left|x_{3}-x_{3}{ }^{\prime}\right| \sqrt{k^{2}-p^{2}}}}{\sqrt{k^{2}-p^{2}}} J_{o}(p r) p d p$;
or equivalently
(42) $G\left(\bar{R} \mid \bar{R}^{\prime}\right)=-\frac{e^{+j \omega V_{3}\left(x_{3}-x_{3}{ }^{\prime}\right)}}{8 \pi k^{3}} \frac{\partial}{\partial k} \int_{0}^{\infty} \frac{e^{-\left|x_{3}-x_{3}\right| \mid \sqrt{p^{2}-k^{2}}}}{\sqrt{p^{2}-k^{2}}} J_{o}(p r) p d p$.

The integral in Eq. (42) is Sommerfeld's integral[12]. Thus Eq. (42) yields

$$
\begin{equation*}
G\left(\bar{R} \mid \bar{R}^{\prime}\right)=-\frac{e^{+j \omega V_{3}\left(x_{3}-x_{3}^{\prime}\right)}}{8 \pi k^{3}} \frac{\partial}{\partial k}\left[\frac{e^{-j k R}}{R}\right], \tag{43}
\end{equation*}
$$

where

$$
\begin{equation*}
R=\sqrt{r^{2}+\left(x_{3}-x_{3}\right)^{2}} \tag{44}
\end{equation*}
$$

Performing the differentiation finally gives, for $G\left(\bar{R} \mid \bar{R}^{\prime}\right)$,

$$
\begin{equation*}
G\left(\bar{R} \mid \bar{R}^{\prime}\right)=\frac{j}{8 \pi k^{3}} \quad e^{+j \omega V_{3}\left(x_{3}-x_{3 .}^{\prime}\right)} e^{-j k R} \tag{45}
\end{equation*}
$$

From $G\left(\bar{R} \mid \bar{R}^{\prime}\right)$, the quantities $T_{j k}\left(\bar{R} \mid \overline{R^{\prime}}\right)$ in Eq. (12) may now be computed. From Eqs. (17) and (10), it is found that for the case where $V_{1}=V_{2}=0$,

$$
\left[D_{j k}\right]=\left[\begin{array}{lll}
\frac{\partial^{2}}{\partial x_{1}^{2}}+k^{2} & \frac{\partial^{2}}{\partial x_{1} \partial x_{2}} & \frac{\partial}{\partial x_{1}}\left(\frac{\partial}{\partial x_{3}}-j \omega V_{3}\right) \tag{46}\\
\frac{\partial^{2}}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2}}{\partial x_{2}^{2}}+k^{2} & \frac{\partial}{\partial x_{2}}\left(\frac{\partial}{\partial x_{3}}-j \omega V_{3}\right) \\
\left(\frac{\partial}{\partial x_{3}}-j \omega V_{3}\right) \frac{\partial}{\partial x_{1}}\left(\frac{\partial}{\partial x_{3}}-j \omega V_{3}\right) \frac{\partial}{\partial x_{2}} & \left(\frac{\partial}{\partial x_{3}}-j \omega V_{3}\right)^{2}+k^{2}
\end{array}\right]
$$

$$
\left[\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\left(\frac{\partial}{\partial x_{3}}-j \omega V_{3}\right)^{2}+k^{2}\right]
$$

Thus, Eq. (16) gives

$$
\begin{equation*}
T_{j k}\left(\bar{R} \mid \bar{R}^{\prime}\right)=\frac{e^{+j \omega V_{3}\left(x_{3}-x_{3}^{\prime}\right)}}{4 \pi k^{2}}\left[\frac{\partial^{2}}{\partial x_{j} \partial x_{k}}+k^{2} \delta_{j k}\right] \frac{e^{-j k R}}{R} \tag{47}
\end{equation*}
$$

or, from Eq. (5),

$$
\begin{equation*}
T_{j k}\left(\bar{R} \mid \bar{R}^{\prime}\right)=\frac{e^{+j \omega\left(\epsilon \mu-\epsilon_{o} \mu_{0}\right) v_{3}\left(x_{3}-x_{3}^{\prime}\right)}}{4 \pi k^{2}}\left[\frac{\partial^{2}}{\partial x_{j} \partial x_{k}}+k^{2} \delta_{j k}\right] \frac{e^{-j k R}}{R} \tag{48}
\end{equation*}
$$

Notice that with $v_{3}=0$, Eq. (48) yields the components of the freespace dyadic Green's function (with ϵ, μ replacing ϵ_{0}, μ_{0}). The effect of the velocity is to change the phase constant in the direction of the velocity. For example, if $\epsilon \mu>\epsilon_{0} \mu_{0}$ and $v_{3}>0$, the phase constant in the region $x_{3}>x_{3}^{\prime}$ is decreased by an amount $\omega\left(\epsilon \mu-\epsilon_{\mathrm{o}} \mu_{0}\right) v_{3}$; therefore the wavelength and the (phase) velocity of propagation are both increased correspondingly.

In the derivation of Eq. (48), it was assumed that the velocity lies entirely in the x_{3}-direction. It is easy to surmise from the form of Eq. (48), however, that in the general.situation where \bar{v} is oriented arbitrarily with respect to the coordinate system

$$
\begin{equation*}
T_{j k}\left(\bar{R} \mid \bar{R}^{\prime}\right)=\frac{e^{+j \omega\left(\epsilon \mu-\epsilon_{o} \mu_{o}\right) \bar{v} \cdot\left(\bar{R}-\bar{R}^{\prime}\right)}}{4 \pi k^{2}}\left[\frac{\partial^{2}}{\partial x_{j} \partial x_{k}}+k^{2} \delta_{j k}\right] \frac{e^{-j k R}}{R} . \tag{49}
\end{equation*}
$$

That Eq. (49) is indeed correct may be verified by substitution into Eq. (15), or by subjecting Eq. (48) to a rotation of coordinates.

It is worth remarking that once the solution for T_{jk} is known, simpler "derivations" of it can be recognized. One possible alternate derivation is included in the Appendix.

CONCLUSIONS

The Dyadic Green's Function for an infinite moving medium has been found. The solution of Eq 。 (7) for the electric field is given by Eq. (12), where the nine components $T_{j k}(\overline{\mathrm{R}} \mid \overline{\mathrm{R}}$) are given in Eq. (49). It is noted that the effect of the velocity of the moving medium is to change the phase constant in the direction of the velocity.

Bunkin's method, which is systematic and straightforward, has been used to derive the Green's Function. Of course, after the answer is known, simpler and more direct methods of deriving it can be found. One such "derivation" is given in the Appendix.

BIBLIOGRAPHY

1. Bunkin, F.V., "On Radiation in Anisotropic Media," Soviet Physics JETP, Vol. 5, No. 2, September 1957.
2. Minkowski, H., "Die Grundgleichungen fur die elektromagnetischen Vorgange in bewegten Korpern, " Gottingen Nachrichten, pp. 53116, 1908.
3. Sommerfeld, A., Electrodynamics, Academic Press, Inc., New York,1952.
4. Tai, C.T., "A Study of Electrodynamics of Moving Media," to be published in Proc. IEEE.
5. Arbel, E., "Radiation from a Point Source in an Anisotropic Medium," Polytechnic Institute of Brooklyn, Research Report PIB-MRI-861-60, November 1960.
6. Wu, C. P., "A Study on the Radiation from Elementary Dipoles in a Magneto-Ionic Medium, " Report 1021-20, 17 August 1962, Antenna Laboratory, The Ohio State University Research Foundation; prepared under Contract AF 33(616)-6782, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio. AD 284475
7. Sommerfeld, op. cit., Part IV.
8. Tai, loc. cit.
9. Bunkin, loc. cit.
10. Chow, Y., "A Note on Radiation in a Gyro-Electric-Magnetic Medium - An Extension of Bunkin's Calculation, ${ }^{\text {I }}$ IRE Trans., Vol. AP-10, No. 4, July 1962.
11. Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, p. 20, 1922.
12. Magnus, W., and Oberhettinger, F., Formulas and Theorems for the Functions of Mathematical Physics, Chelsea Publishing Co., P. 34, 1954.

APPENDIX

AN ALTERNATE DERIVATION OF THE GREEN'S FUNCTION

Let $\underset{\bar{T}}{\bar{T}}$ be the Dyadic Green ${ }^{\text {t }}$ s Function for the moving medium. (The double overbar indicates a dyadic quantity; T has nine components $\left.\mathrm{T}_{\mathrm{jk} \cdot}\right) \stackrel{\mathrm{F}}{\mathrm{T}}$ is required to satisfy the vector differential equation
$(\mathrm{A}-1) \quad(\nabla-j \omega \overline{\mathrm{~V}}) \times(\nabla-j \omega \overline{\mathrm{~V}}) \times \overline{\bar{T}}-\mathrm{k}^{2} \overline{\overline{\mathrm{~T}}}=\overline{\bar{\epsilon}} \delta\left(\overline{\mathrm{R}} \mid \overline{\mathrm{R}}{ }^{\prime}\right)$,
where $\overline{\bar{\epsilon}}$ is the idemfactor. We write $\overline{\bar{T}}$ as the produce of a scalar function ϕ and another dyadic $\overline{\bar{\Gamma}}$:
(A-2) $\quad \overline{\bar{T}}=\phi \overline{\bar{\Gamma}}$,
where the scalar function is to be chosen in such a way as to simplify
Eq. (A-1). From the relation
(A-3)

$$
(\nabla-j \omega \overline{\mathrm{~V}}) \times \phi \overline{\bar{\Gamma}}=\phi \nabla \times \stackrel{\times}{\bar{\Gamma}}+(\nabla \phi-j \omega \phi \overline{\mathrm{~V}}) \times \overline{\bar{\Gamma}},
$$

it is seen that if ϕ is chosen so that

$$
(\mathrm{A}-4) \quad \nabla \phi-j \omega \phi \overline{\mathrm{~V}}=0
$$

then Eq. (A-3) reduces to

$$
\begin{equation*}
(\nabla-\mathrm{j} \omega \overline{\mathrm{~V}}) \times \phi \overline{\overline{\mathrm{I}}}=\phi \nabla \times \overline{\bar{\Gamma}} ; \tag{A-5}
\end{equation*}
$$

and also
$(A-6) \quad(\nabla-j \omega \bar{V}) \times(\nabla-j \omega \bar{V}) \times \phi \overline{\bar{\Gamma}}=\phi \nabla \times \nabla \times \overline{\bar{\Gamma}}$.

Equation (A-5) is easily solved. One possible solution is
$(A-7) \quad \phi=e^{+j \omega \bar{V} \cdot \bar{R}}$.

Thus, the substitution of Eq. (A-2) into Eq. (A-1), with ϕ given by Eq. (A-7), reduces Eq. (A-1) to
(A-8) $\quad e^{j \omega \bar{V} \cdot \bar{R}}\left[\nabla \times \nabla \times \overline{\bar{\Gamma}}-k^{2} \overline{\bar{\Gamma}}\right]=\overline{\bar{\epsilon}} \delta\left(\overline{\mathrm{R}} \mid \bar{R}^{\prime}\right)$,
or finally

$$
\begin{align*}
\nabla \times \nabla \times \overline{\bar{\Gamma}}-\mathrm{k}^{2} \overline{\bar{\Gamma}} & =\overline{\bar{\epsilon}} \delta\left(\overline{\mathrm{R}} \mid \bar{R}^{\prime}\right) \mathrm{e}^{-j \omega \overline{\mathrm{~V}} \cdot \overline{\mathrm{R}}} \tag{A-9}\\
& =\overline{\bar{\epsilon}} \overline{\bar{R}}\left(\overline{\mathrm{R}} \mid \overline{\bar{R}}^{i}\right) \mathrm{e}^{-j \omega \overline{\mathrm{~V}}} \cdot \overline{\mathrm{R}}^{\prime}
\end{align*}
$$

The last equality in Eq. (A-9) follows from the properties of the Delta function.

Except for the constant factor $e^{-j \omega \bar{V} \cdot \bar{R} '}$, Eq. (A-9) is the same as the equation for the free-space Dyadic Green's Function (with k replacing the free-space propagation constant k_{o}). Hence the solution to Eq. (A-9) is given by
$(A-10) \quad \overline{\bar{\Gamma}}=\frac{e^{-j \omega \bar{V} \cdot \bar{R}^{\prime}}}{4 \pi k^{2}}\left(k^{2} \overline{\bar{\epsilon}}+\nabla\right) \frac{e^{-j k R}}{R} ;$
and, therefore,
(A-11) $\quad \overline{\bar{T}}=\frac{e^{j \omega \bar{V} \cdot\left(\bar{R}-\bar{R}^{\prime}\right)}}{4 \pi k^{2}}\left(k^{\iota} \overline{\bar{\epsilon}}+\nabla\right) \frac{e^{-j k R}}{R} \quad$.

