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Abstract

;5’007

‘ This paper considers the diffraction of random waves in a homogeneous
anisotropic medium. These random waves are produced, for example, by
reflection from a rough surface such as the moon or by transmitting through
the ionosphere containing irregularities. Dut to anisotropy both depolariza-
tion effect and the modification of spectral density functions of the wave

by the medium may occur. Both effects may be important in certain iono-
spheric applications. 1In the forward scatter approximation it has been

found that the sum of spectra of orthogonally polarized waves is uninfluenced

by the medium.
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Diffraction of Random Waves in a

Homogeneous Anisotropic Medium
1. Introduction

The study of wave propagation in the magneto-ionic medium is concerned

with solving the wave equation of.the form*

VXVX(F-B)-Q)Z}.LOGO_B = 0 (1)

where T: is the relative inverse dielectric tensor. In (1) the electfic
displacement vector.ﬁ is used rather than the usual electric field intensity
E since it is known that D is transverse while f'is, in general, not [1].
The plane wave solution of (1) has been studied quite extensively, especially
its refractive indices known as the Appleton-Hartree formula.

The present investigation is concerned with the study of propagation
of random waves in such a medium. Specifically the statistical properties
of the wave are given at an initiai plane. Through diffraction the fields
propagate in the half space. The statistical properties of the wave at
a plane parallel to the initial plane are desired. The method used is
similar to that used by others who assumed the medium to be isotropic [2].
Hence this study represents a slight generalization of the earlier work.
However, it is found that due to anisotropic nature of the medium the
additional effects such as depolarization of the wave and the modification

of spectral density of the field by the medium will appear.

%
exp jwt time dependence is assumed throughout. All quantities are in

rationalized MKS units.



where ?.is the identity matrix. The immediate conclusion when (3) is substi-
tuted into (4) is the vanishing of Dz, hence the electric displacement is
polarized entirely in the plane transverse to El With this simplification

the remaining equations expressed in the matrix form are ‘

[ 1 ‘”2“060 R | [ 5 ‘
1 - X k2 (1_X)2 X
. =0 (5)
e 1 9P b
L a-x)° 1-X K> J Y

In order for the equation to have non-trivial solution the determinant of
2
the coefficient matrix must vanish., If again Y and higher order terms

are ignored the following expressions for the refractive indices are obtained.
k2/ 2 € = 1 -X -~ XY cos © (6)
© kofo T +

where © is the angle between the propagation vector and the steady magnetic
field. The wave with the upper sign in (6) as the refractive index is desig-
nated as the ordinary wave and is circularly polarized in the left handed
sense; the wave with the lower sign is designated as the extraordinary wave
and is circularly polarized in the right handed sense. Now (6) is nothing’
more than the usual expression used in connection with the study of Faraday
effect and it is valid under the quasi-longitudinal approximation. Fuller
analysis shows that such approximation is valid for nearly all directions

of propagation except the region at which the direction of propagation is

but a few degrees from exactly perpendicular to the steady magnet field.

Later development assumes (6) is valid for all regions and such an assumption




makes sense only if the quasi-transverse region makes negligible contri-

bution to the total effect.
0) (X)

Let k and k denote the propagation constants of the ordinary
and the extraordinary waves respectively. Their mean and difference can

be found as

() x)

(k + k ]1/2

)/2

= Kk (7)

w[poeo(l-x) o

© & 2 ,
k k = @ Ho€o XY cos e,ko (8)

It is known that a wave of any polarization can be decomposed into two
characteristic waves, each will propagate independently in the medium with
its corresponding propagation constant and polarization. The resultant is
the sum of these two waves., In the present case the resultant wave is
particularly simple if it is assumed that the resultant is polarized linearly
at some initial position. The resultant wave will propagate with a propa-
gation constant equal to the mean of the propagation constants of the
characteristic waves and its polarization is kept linear with the plane

of polarization rotated continuously along the direction of propagation
(Faraday effect). As computed in (7) the mean of the propagation constants
is just the propagation constant of the corresponding isotropic medium

(i.e., in the absence of the steady magnetic field). The rotation of the
polarization is through an angle equal to one-half of the difference of

the propagation constants multiplied by the distance of travel. For a

plane wave propagating in z direction with the electric displacement polarized

in y direction at z = 0 the resultant takes the form



D, = - Dy sin 8. exp jlwt - ky2)
(9)
Dy = D0 cos § ¢« exp jlwt - koz)
where the rotational angle is
2 € XY cos ©
W ’
00
Q = i ¢ Z (10)

2k
0

In general if the wave is assumed to be polarized in yz~plane at z =0
and the direction of propagation has a polar angle a and azimuthal angle

f the field is given by

2 2 2 1/2 - -
D = -Dy(sin” B + cos” B cos a) " sin £ exp j(wu - k, 1)
. 2 2 2 ~172 .2 . . . -
Dy = Dy(sin f + cos f cos a) (cosa cos & + sin”"a sinf cos B 51nS1)epr(wt—k0vr)
sin a
2 2 2 ~1/2 -
D, = DO(sin B + cos B cos a) ’ (cos3 cggan;ﬁ £2 -sinp sina cos §) exp j(wt—ko-r)
(11)
For cases of small polar angles (1ll) can be approximated by
= - in $¢ Wt - k. T
DX D0 sin exp J(wt ko r)
— —
Dy = D0 cos $2 exp j(wt - ko o r) (12)
D = 0
z

The Faraday rotational angle {) appeared in (11) and (12) is the same as (10)
except z is to be replaced by r. Since Q2 plays an important role in the

diffraction its discussion will be postponed to a later section.



3. Diffraction of Random Waves

The problem assumes that the statistical properties of the fields are
given at some initial plane, say at z = O, Our interest is in learning the
statistical properties of the displacement vector at some plane parallel
to the initial plane after propagating in the kind of medium discussed in
section 2. This suggests the use of the notation Eﬁfi;z) which stresses
the fact that statistical properties are desired for various values of z
in the two dimensional space ;; = (x,y), when their properties at z =0
are known. The problem is explicitly posed when the following (boundary)
conditions are assumed.

1) D(;;;O) is polarized in yz-plane. However we are most interested
in the case of small polar angles, it will be assumed the approximate
expression (12) is valid for all plane waves. This means that at z = o,
the wave can be assumed to be polarized entirely along y-axis.

2) D(EL;O) is a complex homogeneous random fields [3] with known
correlation functions that are absolutely integrable over all ;io This
assures the existence of the spectral density functions,

4) As z — «, the retarded solution is taken.

The method used here follows that used in the theory of time seriés
analysis. Like the theory of time series analysis, the Fourier transform
of D(fi;o) does not in general exist because of the condition 3. This
difficulty can be overcome as done by Wiener [4] by truncating D(.r‘;_;O)°

Therefore, let

D(T, ;0) T €R
D (F,;0) = (13)
0 T €R




where R = { x,y| X/2 < x<~X/2, Y/2< y < - Y/2} .* Define in the mean

square sense the amplitude spectral density function™*

0 wd —
- -> =-JK - g
DR(K ;0) = ffDR(r_,_;O) e dr
{ -0
- -jFe T 2
= .[[D(r*;o) e *d r, (14)
R
Then through Fourier inversion
1 ¥ R T, 2
- ¢ I
D (F,;0) = ffn (%;0) & *d%k (15)
R 2 R
27 -0

Note that since DR(;l;O) is assumed to have zero mean, so is DR(? ;0).

The autocorrelation is obtained by

K(&,1;0) = < D*(x,y;0) D(x +§, y + 7;0) > (16)

where the angular brackets are used to denote the ensemble average. Since
K is assumed to be absolutely integrable over the infinite range there

exists a non-negative spectral density function defined by

° = JRE—— < ] K‘ v
S(K;0) lim XY DR(K ;0) DR( ;0) > (17)

X 00
Yo

*Note that here X and Y are specific values of x and y respectiively, not
those defined by (2).

**Fourier transform pairs are distinguished by their arguments, same symbols
are used here.




By Wiener-Khintchine theorem K(£,77;0) and S(E'ﬂn form a Fourier transform
pair [5]. 1In case D(;l;o) is additionally ergodic the autocorrelation

function defined by (16) can also be obtained through spatial average

[> o]
1
K700 = lim o :f;{ D} (x,¥;0) Dp(x +&, y +17;0) dx dy

X — o0 (18)
Y—

with probability 1.

The problem assumes that S(;?;O) (or equivalently K(E,n;o) is given
and the expressions of the spectral densities and the autocorrelations
for some finite values of z are desired. Now in the half space z > O,
the fields are given by the superposition of many plane waves of the form

(12). With exp jwt factor supressed, these are given by

2 2
- 1 . - “idkg Tk Z gk 7 o
DXR(r 1Z)y = = — JJ‘DR(kL;O) sin &2 (k ;z) e e d 'k,
(2r) -
(19)
2 2 - —
—ij -k z -jk -r
0 L + 2
D (r;2) = —— [[D (k;0) cos @ (x ;2) e e a“k,
Y (2m)
where El = (kx’ky)° Above expressions are certainly valid when z = 0 at

which, since £ = 0, (19) reduces to (15). This sets ¥ = EL, The first

property of Dx (;l;z) and DyR(;l;z) can be obtained by averaging (19) over

R
the ensemble, it concludes that both components have zero mean for any
value of z. As indicated earlier the case of interest is when all component

waves propagate in the forward direction like the consideration of Fresnel

diffraction problems. In other words, DR(kL;O) has appreciable value only



2 2
over the region k0 < k, (corresponding to evanescent waves) can be ignored.

Therefore, the elements of the spectral matrix are obtained as

Sxx(k*;z) = S(k, ;0) sin” &

Sxy(kL;z) = Syx(kL;z) = S(k_;0) cos § sin £2 (20)
- —-> 2

Syy(ki;z) = S(k ;0) cos” &

For the special case of isotropic medium (20) shows that there is no depolari-
zation effect; and the spectral density and hence also the autocorrelation
function are independence of z as found by others [2]. When the medium

is anisotropic these are no longer true. However, it is interesting to

note that the sum
iy o -
Sxx(k*;z) + Syy(kL;z) = S(k ;0) (21)

which is independent of z., This has some practical importance since it
means that the sum of spectral densities of orthogonally polarized waves
is uninfluenced by the medium.

Since the Faraday rotation angle plays a dominant role in determining

the spectral density functions it will be discussed in the next section.

4. Dependence of Rotation Angle

Let Qz be the Faraday rotation angle suffered by a wave propagating
in z direction. From (10)

2
w
IJ’060 X Yz z

2 = -
z 2ko (22)




For a wave propagating in a general direction with propagation constant

2

ko = (Ei, k0 ~ k; ), the polarization of the wave will rotate in the

right-handed sense from y-axis through an angle

2 — —
Qr o @ poeo X z k¢ - Y
(g 52) = z 2k

(23)
0 k2 - k

Note that for a fixed gz, Qz is a constant. Hence the dependence on E;of

the rotational angle is through the second term in (23). Because of the
appearance of the dot product it suggests that it is advantageous to rotate
the coordinates about z axis so that y'z ﬁlane is parallel to the plane

of magnetic meridian and #'z plane perpendicular to it. For this coordi-

nate system ﬁl °'¥ = ky' Yy,o Further;, consistent with the forward propa-

gation assumption k, can be ignored when compared with k.. This results

0

in an expression for the rotational angle which is only a function of k ,.

Let ¢ be the angle between the displacement vector at z = 0 and the magnetic

meridian plane. Then

2
w Fo€o X Yy,z

£2 . = Q- .
(ky,,z) = ¢ + 8 2 ky, (24)
0
Let
2 2
2

kO 2n0
Zc = 2 = X|Y I (25)

t

@ o€ x]Yy,| k vk

where kb is the spectral width of S(k ;0) in the plane of magnetic meridian

plane (i.e. y' component). Then (24) can be written as

=

\
Q(k ;2) = ¢ +8 + :— 3{—}’— (26)
y c b

10
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(26) indicates that in the region z << Z_s 9(ky,;z) is nearly constant

over the spectral width of interest and the spectral density of the field

is not affected appreciably by the medium. When z has the same order of
magnitude as zc or even larger than Z, the spectral densities of the fields

are expected to be strongly affected by the medium.

5. Correlation Functions

The elements of the correlation matrix can be calculated by taking
the Fourier inversion of the respective elements of the spectral matrix.
As seen from (20), since the spectral densities are given in the product
form the convolution theorem can be used to compute the correlation functions,
Assume that the approximate expression (26) is valid the convolution integrals

can be carried out easily, obtaining

j2@ + Qz)

1 1 1 1 o
Kx'x'(g"n';z) =3 K(g',n';0) - 3 K(E',n' + 2z/zckb,0) e

1 =32 (@ +52)
-2 K(&',n' - 2z/zckb;0) e

1 J2(9 +52)
Kx'y'(g',n';z) = Ky'x,(a',n';z) =2 K(£',n' + 2z/zckb;0) e
1 -j2(¢ + Qz)
-2 K(E,n' - 2z/zckb;0) e (27)
1 1 j2( + Qz)
Ky'y'(a',n';z) =3 K(&',n';0) + 7 K(&',n' + 2z/zckb;0) e
—J2( +5)

1
+3 K(&',n' - 22/z k ;0) e



By addition, it is seen that Kx,x,(ﬁ‘,n‘;z) + Ky,y,({',n';z) = K(&',n';0).

Since the Fourier transform is unique this is just the special case of (21).

6. Discussions

As an example take f = 20 mc, fp =10 mec, T =1 mec, and k

Hz = O.l/m,

b
the critical distance comes out to be approximately 1200 km. Hence it seems
that the effect of anisotropic nature of the medium may be important in
ionospheric studies of irregularities and in studies of moon reflections.

As suggested in section 3, one possible way of eliminating the influence

of anisotropic nature of the medium is through addition of spectra obtained
on orthogonal antennas as shown by (21).

The method described here can be extended to studying the scattering

from irregularities and from rough surfaces and other diffraction problems.

12
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