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COMMENTS ON SINTHESIS mmwﬁs ENPLOYING THE DIRECT METHOD

by R. V, Monopoli

Synthesis techniques based on Liapunov'!s direct method often reqire control
signals which are sign functions.'™ The argument of the sign function in each
case is a linear combination of systen states, Because l"‘lt';g&-Lot.z6 has shown
that the desired solution may not exist for equations which have sign fur:ticns
as forcing functions, authors customarily replace the discontinuous sign function
by a continuous function, usually the saturation function defined as

1 for 3>1/k
sat k =4 k ¥for -1/k K ¥<1/k (1)
-1 for ¥<-1/k
where kDo is a constant,

This avoids the theoretical difficulty discussed by Flage-Lotz, but, in
sone cases, leads to another concerning ;he validity of conclusions reached rerea—-
garding stability in the region where the saturation function has a amaller
megnitude than the theoretically specified sign function. This problen is in-
vestigated here in relation to the synthesis technique employing a model
refex‘em:e2 for control of single input, single output, linear tinme-varying plants
with parsceters varying in an unknown nanner within known, finite bounds, |

The class of plants considered can be described by the equation

x=(A+HA) g5+ Dbu (2)
in which x is the plant output, u its input (the control signal),
;_T = (x), x,, ...5\), X4y = ¥ fori=1,2, ...n-1, A 1s an rom constant
stable matrix (all its eigenvalues have negative real parts) of the form

Q 1 0 P 0.-1
4] 0 1 vee 0

A - see 0
0 oo i
-ﬂ, "32 oo "Qn

and T = fo,0,0, ceav, ]

It is assuned that OO > bn(max)?b > 4 ® (uin) >0, and that b,y is
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imown, The elenents of the natrix /A A(t) are the variations of plant
paraneters from their desired values wiich are the elenents cf the A matrix.
Because of the forns of A and 5, A A(t) is of the forn

p—

|

Q A(t)

;Aa,(t) uaz(t) e s o “ln(tzl

where the \ a.i'a may very in an unknown nanner within known finite bounds,

The desired behavior for the plant is given by the squation of the model

reference which is

B "Axgter (3)
where X, "'r 1 = x, which is the model t
B =1 Xa1> X2 occ Xan| 2 Xat < Xq which 1s output,
] : T _
Xy(341) = Xy fori=1, 2, .e.n=1, g" = [0, 0, O...cn] , and r is the
reference input to the systen.

An error for the systen is defined by

s=x,-x (4)
Subtracting (2) from (3) gives |
g=Ag+gr-bu- LA(t) x (5)
A function of quadratic forn
| v(g) -g’ Pe (6)
has tinme derivative
\;(g,r,u,;)-gT(ATP*PA)g+23TP[-t_au*gr-AA(t)§] (7)
1z
ATPemanq ®

and Q 18 a symetric positive definite matrix, then P is a syrmetric positive
definite matrix because of the assynptions on A.7 For convenisnce, let Q = 1,

the identity metrix,
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According to two thecrems given in Reference 8, the following statement

can be made concerning (5), If

n
c N na
u —-—Qr+\ ix.} sen (grad V) (9)
)‘ bn {-ﬂ bn 1 pax e n

then (5) is asymptotically stable, i.e, e—50 as t @O . But there is the
"
difficulty posed by Fluge-Lotz to contend with, so (9) rust be replased by
n
| e N\ Qa, i
Lr+ -;-J‘xi sat k (10)
n = n nax

where ¥ = (grade v )n

Now it no longer can be argued that (5) is asymptotically stable in the region
where
’ X } < 1/k (11)

since u as given by (10) may not have sufficient magnitude to guarantee that
\‘I< 0 in this region, What, then, can be said regarding stability? The
following discussion considers this question. It is to be undeestood throughoud
that u as given by (10) is being considered, not that of (9).

The tern —2 _e_.T P b u in (7) is always negative because of (10). Therefore,

neglecting 1:.hisn tern, v satisfies the inequality

. 2 - \
V<~ ;E e, + 6 ;.cnr- Pl Qai (xdi-ei)} (12)
T f=i
The variables x 43 and e, are introduced into the square bracket of (12) by

adding and subtracting /) A(t) X, within the square brackets of (7)., This
rernoves the components of x from the problem, The reason for doing this is

. explained below,

If -.r :- is bounded, then sn are the components of Xy since a stable
model is used. Thus n
- | <
c T 151 Q\aj X44 S M LD (13)
‘ =
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cxplains the reed for elininatirg components of x fron the protler,

raking the urwarrented assunption shat the syster: is stable.

(14):

This

Another

urper bourd whieh ¢an be esteblist.ed and wrich is useful is

n r.
N T
i N
! \a, e <| Na cie | < tina
i LAy 8 ‘ —-i Loy o PO O ]LS'
' ————
C 3=t i=]
1 \
] 1
where ’ D oa Er =Max\;‘_\ai‘ Py i=l, 2, L.
i Y

.2 . N
f. | _<_ ~tt + X '\h + k‘R
N 2. 04
where R = { e. ) %
and k, =¥ n f/\a'
' s nax
n the regior where i\( {('l/k
. -~ k“ X
V < 3% 4 e+ 2
- k K
Frop 17 it corn he seen trat
v e
everywr.ere ~utslic the spherical regiorn
K %, =z
“ O,
RA(k) € — + %° —) 4

By choosing k large enouph R (k)

It car he concluded that as
region corx o *o R (k, and "ﬁi <1/x .
shown in rigure 1,

cyclies may exist, tut can be
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(15)

(1€)

(17)

(18)

(19)

srall,

t -7y, u wili cause e to re within the

For r. = 2, the situation is as
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X\=0

\ B = ~1/k

Figure 1., Cross Habtched Area Indicating Where V May Be Positive
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