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I. Introduction.

A method for the computation of the pseudoinverse, and other.
related quantities, corresponding to an m x n matrix A of unknown
rank r, has recently been described [5]. The method determines the
pseudoinverse Af of A and a related matrix A#. The pseudoinverse
has the proéerty that given the linear system Ax = b, the solution
X, = A+b satisfies “Axm - b” < HAx - bH for all x, and meH < Hx“
for a1l x such that HAxm - |l = ||Ax - b]|]. The minimum basic solution
X, = A#b has the property that HAxb - bH < flax - bl forall x, and
X, has at most r non-zero elements.

The computational difficulty for this problem arises primarily
because the rank r is not known. In particular, it may be difficult
to assign the correct rank if one or more of the singular values of A
are small but non-zero [3 ]. Several other recent papers [ 1], [2],
[4], on the computation of the pseudoinverse have not considered this
important practical question.

The approach used here to handle this difficulty can be summarized

+ .
as follows. The desired matrices A# and A are formed from a matrix

B, which consists of linearly independent columns selected from A,
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We would like to determine B so that it spans the same space as A,
in which case B will contain r columns. Suppose we have a matrix
Bq with q linearly independent columns selected from A, (where q < r)
and the corresponding approximation A; to Af. Adding another linearly

independent column of A to Bq, giving B + should give an improved

qt+l’

. . + .
approximation A + to the pseudoinverse. However, due to roundoff error

gtl
in the calculation it may turn out for an ill-conditioned system that the

new approximation is actually worse in the sense that HAA;+1 - IH > “AA:._ IW
Such a test is made in the pseudoinverse determination with the result that
the effective rank of A (the number of columns in B) is the maximum
possible consistent with minimizing the error HAA* - IH.

A closely related aspect of the method used here to compute the
pseudoinverse is what mighf be called its "“smoothing" property. In many
practical situations one would like to obtain a solution to a linear
system which is stable in the sense that small changes in the matrix
elements do not cause large changes in the solution vector. In general,
the solution x = A%b, where A" is the true pseudoinverse, will not
behave smoothly. In fact, the norm of x will increase without bound
as a singular value of A approaches zero. This difficulty can be
eliminated by imposing a predetermined upper bound on the norm of (B‘B)_l.
This is accomplished by estimating the effect of adding a new column of
A to Bq and only adding this new column to Bq if it does not cause
any element of A;&l to exceed the bound. Details of this selection
procedure and the manner in which it depends on the choice of the bound

SUPER is discussed in the next section.



In Section 3 the use of the Algol program, written to perform this
algorithm, is described and suggested values for the input parameters
are given. The program use is illustrated by means of a sample problem.
A large number of problems have been solved using this program.

Several different kinds of tests have been performed:

a) Very ill-conditioned matrices like the segments of the Hilbert
matrix [6] have given a clear example of the smoothing property of the
method.

b) Random rectangular matrices of random sizes have been generated and
the pseudoinverse have been computed. The sizes were allowed to vary
between 1 and 25. In all the cases the results were satisfactory.

c) Same as in b) but with random ranks. In every case the rank was
correctly determined by the program.

a) Random matrices of specified size covering a range of values of m
and n were run in order to obtain time estimates for different size
problems.

e) A number of least-square problems, i.e., with m>>n and only one
right-hand side.

f) A variety of matrices for which an independent check on the
accuracy of the solution was available,

Tests b) through f) showed that in reasonable problems in which
the rank is well determined the program will work very well, while a)
has shown that in very ill-conditioned cases the smoothing property of

the method is effective.

These test results are discussed more fully in Section 4. The
notation used in [5] will also be followed here.
Details of storage requirements are given in Section 5.

A copy of the program appears in the Appendix.



IT. Program Description.

The method used to compute A# and A" from B 1is essentially that
given in Section 2 of [5]. For convenience we will repeat the key relations

here. The pseudoinverse of the m x r matrix B of rank r is given by

(2.1) Bt - (3'B)t B

The non-zero rows of the n x m matrix A# then consists of the corre-
+
sponding rows of B . An r x n matrix of rank r 1is also obtained from

B+ according to

(2.2)

(]
il

B A

Note that, if B contains all the independent columns of A, then A = BC.

Finally, A' is obtained from C and B' by
+ 4 4
(2.3) A" =c"(cc’) T B

The determination of B is based on the algorithm of Section 3 in [5],
using the more sophisticated selection procedure described below.

The program consists essentially of two parts. One part has all the
input-output and the other is a PROCEDURE called PSEUDOINVER which may also

be used separately as a part of other programs. The program solves the

matricial problem,

(2.4) A X = RES

where RHS is a matrix containing several right hand sides.
a) The first part of PSEUDOINVER normalizes the matrix A by scaling

each column so that its Euclidean norm is equal to one. The normalization

constants are saved in order to get back to the original problem.

N



The search for independent columns of A is then made to determine
the matrix B, according to the formulas described in section 3 of [5].

At this stage, the condition for a vector to be accepted as independent of
the ones already included in the basis is that «, the square of the norm of
the projection on the orthogonal subspace to that basis, be less than a
quantity ORTP, which is an input parameter. Later we will discuss the
appropriate choice of ORTP and the other parameters appearing in the
program.

As the columns chosen in this fashion might not necessarily be the
first columns of A, a record is kept of the column number of the accepted
vectors.

After all the columns have been inspected two situations can arise;
either all the n columns of A have been accepted or some have been
rejected. In the first case we have finished and the computations indicated
at the beginning of this section are performed to get Af, A#, Xb and
Xm. Other computed quantities are the residuals, NXM = HAXm - RHSH
NXB = lIAxb - RHS|| corresponding to X end X, and EST = IIBc - al.

EST would be zero if the computation were performed exactly; in
general EST will be very small for well-conditioned matrices and will
increase with the ill-conditioning or if an almost dependent column is
added to B.

If only g <n columns of A are selected for inclusion in B then
the basis thus constructed is called Bq and the second part of PSEUDOINVER
is called.

b) The projections on the subspace orthogonal to Bq are computed for

all the rejected columns. The Euclidean norm of each projection is computed,



I

(2.5) o, = (1 - B B)) 2 I

and the column corresponding to the maximum aj (the most independent one)
is stored in SAV.
c) A test is now performed which is based upon an estimation of the norm

that (B’,. B )_l would have if we were to include SAV in the basis.
g+l atl

n
The norm used is ||A] = max E:laij[ and the estimate is derived from the
i J=1

formula,

-1
B’ B 0 u
(7,207 |

p -1
(2.6) Bq+l Bq*l) =

q ’
+ Q — (uql -1)

0 -1

O
Q
+
l,_l

+
where uq = Bq SAV and « + is the square of the norm of the projection

a+l
of SAV on the orthogonal subspace to that spanned by Bq, Then

1 1 -1 -
(B! Bopp)ll < B8TDM = [l ) + oy (1 V)

If ESTIM is larger than SUPER (an input parameter) then SAV is re-
jected and Bq is taken as the final 3B .

This test avoids large elements in the pseudoinverse and gives the
smoothing property discussed in the introduction.
a) If the test in c) is passed then the PROCEDURE GARBG, which computes
all the matrices and quantities mentioned at the beginning of this section,
is called and a second test is made. GARBG is used again, now with the
basis B_  plus the column SAV . The test consists in comparing the
values of |[|Ax_-rus||, ||ax, -rus|| and |IBc-All obtained with one basis, with
the corresponding ones obtalned with the incremented basis. If all these

values for Bq+l are smaller than for Bq then SAV is definitely



accepted. After shifting all the useful quantities, part (b) is repeated
for the new basis Bq+l and so on, until either an exit is provided for
one of the tests or the columns of A are exhausted. All the scalar
products are performed in double precision. The block diagram in Fig. I
shows the most essential parts of the program.

It is worth noting that this strategy has been dictated by the
problem itself and achieves the best numerical pseudoinverse possible
using the method of [5] and taking into account the numerical roundoff
error of the computer being used. This strategy takes advantage of the
step by step algorithm for determining B, and constructs an independent
basis, the degree of independence being determined by the parameter ORTP.
By picking the most independent vector among the remaining ones, and
checking to see if this decreases the residuals (by taking this vector in
the basis) we are answering in a direct manner the two questions: how
many columns of A do we need to minimize the residual? and, among all

the possible sets of independent columns,which set gives the best rep-

resentation of the pseudoinverse?
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IIT. Program Use.

As described in the previous section, several parameters are
needed besides the matrix A . Now we will explain the use and pos-
sibilities of these parameters.

Input.

M (integer) number of rows in A ,

N (integer) number of columns in A .

T (integer) number of right-hand sides.

OPC (Boolean) If OPC is equal to 1 then the program will compute

the matrices A" and A# , and the right-hand side

RHS = I(m X m) will be automatically provided.
Moreover, OPC decides if in the test described

in Section 2,d) the quality of the representation

(A = BC) is controlled. That test is done only if

OPC = TRUE . If OPC is equal to FALSE then

RHS an M X T matrix has to be provided and the

+
program will compute XB = A#.RHS, and X, = A .RHS,

M

matrices that will be printed out instead of A+

#

and A" .

SUPER (real) It is the SUPER of Section 2,c). If an upper
bound for the elements of A+ is known then SUPER
can be set to this bound to take adVantage of the
sméothing property of this method; otherwise it is

suggested that ZLOlLlr be used. It should be

1L

noted that, in general, a larger value than 10



will increase computing time by throwing unnecessary
decisions into the test of Section 2,d), On the
other hand, much smaller values may completely
eliminate from further consideration some columns
which could be used to decrease the error.

ORTP (real) This parameter was described in Section 2, a). Small
values for ORTP (around lO-u) in general will accel-
erate the process because the first part (construc-
tion of a basis of strongly independent column) is
the fastest and as many columns as possible should be
accepted there. Nevertheless, there are at least
two cases in which a more careful choice of ORTP may
be important. If higher precision in the answers
is desired (at the cost of increased computing time),
then a larger value of ORTP should be used, say
0.05. This will allow the second part of the program
to choose "better" columns.

The other delicate case occurs when the matrix is
very ill-conditioned and the rank is therefore not
well defined. Here the use of a relatively large
ORTP is important. Again values around 0,05 are
recommended.

Summarizing, in a reasonable, well behaved problem a recommended

set of parameters is:

SUPER = 1011L , ORTP = 1o'b’ .

10



If the representation becomes very bad (HA - BCH too large), the problem
is not well behaved and more burden should be passed on to the second and
safer test by increasing SUPER and decreasing ORTP .

If the user has information that certain variables are more sig-
nificant than others, this information can be used by ordering the matrix
A  so that the columns of A corresponding to these variables appear
first. This will insure that these columns are considered first for
inclusion in the basis B .

If the complete program is used, then only the numerical data have
to be punched. This is done in the following way.

As all the read statements are in the FREE FIELD form, available
in the EXTENDED ALGOL for the B5000 at Stanford, no special format is
necessary. Numbers can be punched in any format, needing just one space
in between to separate them.
1st. card: M N T OrC SUPER ORTP

for instance 10 10 10 1 @1k 0.001

Next cards will contain the matrix A punched by rows. As each
READ asks for a whole row, care must be taken not to mix different rows
in the same card.

Finally, if O P C = O the right-hand sides (RHS) have to be
provided and are read by columns. FEach new column must be started on a
new card, so that there will be at least T cards required for the RHS .

If the PROCEDURE 1is used separately, then all these gquantities

are input parameters (with the same names as above).

11



A complete sample input is given by,

3 3 1 0 @14 0.001
1.3 2 -5

A L 1 0
-1 -1.3 @3

RHS 1 2 2.1

Output

All the matrices printed out by the program will have the follow-
ing format:

Eight columns per line, each number in floating point with 6 sig-
nificant digits. If the matrix is more than eight columns wide, then
succesgsive blocks will be printed in new pages. All the rows are
printed together.

The output is described now in the order in which it will occur.

First the matrix A 1is printed out.

Then, if O P C = 0 , the right-hand sides are printed out.

Norm of (BC - A) .

The residuals ”AX(;) - RHS(i)H , ”Axbi) - RHS(i)H

If OPC =1, then the matrix pseudoinverse is printed out with
the format explained above; also in this case the non-zero rows of the

matrix A# are printed, each of them with a heading: ROW NUMBER.... .

12



If OPC =0, then instead of these two last matrices, the
minimum and basic solutions are printed out. As an example, we give the
output for the problem:

9 21 1 0

21 kg 0 1

PSEUDOINVERSION OF THE MATRIX A, A IS 2x 2.

9.00000 @ + 00 2.10000 @ + 01
2.10000 @ + 01 4.90000 @ + 01
[ PAGE]
NORM OF (BC - A) 2.37582 @ - 12
RESIDUAL FOR XM
9.19145 @ - 01 3.93919 @ - Ol
RESIDUAL FOR XB
9.19145 @ - 01 3.93919 @ - O1
[ PAGE]
MATRIX APSEUDOINVERSE
2.67532 @ - 03 6.24314 @ - 0%
6.24381 @ - 03 lL.hs79h @ - 02
[ PAGE]
MATRIX ADAGGER
ROW NUMBER 1
1.72461 @ - 02 4,02332 @ - 02

END OF THE RUN

K KX X K KKK KKK K KKK KN KK

13




The PROCEDURE PSEUDOINVER.

The call for this PRCCEDURE. is,
PSEUDOINVER (M, N, TI, OPC, SUPER, ORTP, A, RHS, EST, NXM, NXB,
. APSEUDO, ADAGER, COF, XM, XB);
The first 8 parameters are input parameters and they have been des-
cribed before. The only detail needed is: A(double real array
[0:M, O:N]), RHS [0:M, 0:TI];

QUTPUT PARAMETERS:

EST (real) Contains |[BC - 4| .

NXM, NXB (single real arrays [0:TI]) . They contain the residuals
HAXm - RHS“ and “AXb - RHS“ respectively.

APSEUDO, ADAGER (Double real array [O:N, 0:M])

They contain the pseudoinverse of A and the matrix A# .

COF (Single integer array [O:N]) .

If COF[I] = O then both, the Ith row of A# and X are dif-
ferent from zero, otherwise they are zero and that means the program has
decided that the corresponding columns in A were linearly dependent
with respect to the current basis.

XM, XB (double real arrays, [O:N, O:TI])

They contain the minimum and basic solutions.

1k




Iv.

(1)

Test Problems.

Square segments of the Hilbert matrix have been tried, sizes
varying between 3 and 10,

For 5 < n < 10 the rank found in each case was 4 , The norm
of the pseudoinverses remained below lO5 while for the true
pseudoinverse (the inverse in these cases) the norms ranged be-

>

tween 10 for n=5 and lO13 for n=10 . The norm, “A - BCH

>

was around 10~ for all cases.

As is well known, the ill-conditioning of the Hilbert matrix seg-
ments increase with their dimension. However, because of the
smoothing property of the method a bounded and reasonably accurate
representation for the pseudoinverse was always obtained.

Eighteen random matrices with random dimensions varying between

1 and 25 were generated and pseudoinverted. The norm HA - BC”

9

was always below 10~ and the ranks were always found to be

equal to min(m,n),

Given three random integers m, n and r in the interval [1, 25]
a routine generated two random matrices, L (m x r) and

R (r x n) . Multiplying them we obtained a matrix A (m x n) with

I'(l) .

rank at most equal to With 20 matrices generated in this
way, the results were similar to b) . In every case the rank r
was correctly determined. For most of these cases the rank r was

less than min(m,n), and of course was unknown for the program.

This test was suggested by Professor Gene H. Golub.

15



d)

For each pair of values (m,n) several random matrices were

generated and pseudoinverted. Average values of ”A-BC” for these
matrices with m=10,20,30 and n=10,20,30 are shown in Table T.
For the same problems, average computation time on the Burroughs

B5000 at Stanford Computation Center are shown in Table II.

In all these matrices the rank was the maximum possible, i.e., rank =

min (m,n) and it was properly determined by the program.

TABIE T TABLE II
n n
o 10 20 30 o 10 20 30
-9 -9 -8
10 | 5x10 9x10 4,5%10 10 7.6 13.9 20.7
20 | 31070 | 12078 | 2.9x107" 20 | 16.5 49 o1
30 15.8x107°| 6.9x1077 | 2.6x1077 30 | 27.3 2.5 180.6
HA - BC” Comp. time in seconds

For a 40 x 4O matrix the answers were:
- _ =
t = 413 sec. la - Bcl] = 2.7 x 10

rank = 40

A common problem in many branches of applied sciences is the least
squares fit, and is therefore one of the most important applica-
tions for this program. A related feature of the program is that,
by ordering the variables, the user will be able to test their
independence and eventually to decide if his model is appropriate

to the phenomena being investigated. This is done by ordering

16



the matrix A so that the first coefficients correspond to the
more important variables. The program will attempt to use these
columns first to form the basis B . The necessity for such an
ordering is clear from the fact that if we have n columns in

A and the subspace spanned by these columns has dimension

(n-p) then we can construct with these columns as many as

(ngp) linearly independent sets.

In Figures II and III are shown the results obtained by running
the program with least squares type problems. Again the elements
of the matrices were generated randomly. Fig. II shows computa-
tion times on the B5000 for different valﬁes of m and n=5, 10.
Fig. III shows the norm HA - BCH for the same problems.
Matrices with exact known inverses were tried obtaining good re-
sults and accuracy. Of course this program should not be used to
invert a matrix which is known to be nonsingular and well-
conditioned, because it will be around four times slower than an
efficient matrix inverter. The program has also been used to
obtain the pseudoinverse of singular and almost singular matrices
steming from the discretization of integral equations of the first

kind, and problems in pattern recognition.

17
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V. Storage Requirements.

As all the array declarations are dynamical, the amount of
storage depends on several parameters. If M, N, T are as before, and
R is the final rank (number of accepted columns) then an estimate for

the storage used in the PROCEDURE PSEUDOINVER 1is,

Storage < N o+ 5MN + MR + 2NR + 2NT + max (R2, MN, MT)

the last term is present because in the PROCEDURE GARBG we have several
independent blocks, and the storage corresponding to certain arrays is
not simultaneously used.

If, as usual, R 1is not known, then it can be replaced by
min(n,m) . If the complete program is used then additional storage is
needed,

Addit. storage = 3MN + MT + 2NT

Computer time rapidly increases when abusive use of the drum 1s made.
From the experience cobtained with the test problems, it is suggested

that the total storage be less than 40,000 words.

19
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APPENDIX

AN EXTENDED ALGOL PROGRAM TO COMPUTE THE
PSEUDOINVERSE OF AN M x N REAL MATRIX

AND OTHER RELATED QUANTITIES.

21



BEGIN COMMENT PSEUDDINVERSE OF A MxN MATRIX OF UNKNOWN RANK}
INTEGER MsaN,Tlis1sd 7 REAL SUPERSEST,TPO,ORTP 3
BOOLEAN 1JPC 3 LABEL OVER,FIU;
COMMENT DRIVER PROGRAM. FIRST PARAMETERS ARE READ IN,
AND USED FOR FURTHER DYNAMICAL ARRAY DECLARATIONS:
DVERS: READ (MsN,TI,0OPC,SUPER,ORTP) L[FIUY}
BEGIN INTEGER ARRAY COFLOINIJ )
ARRAY ALOIMsO0INI»RHSLOSMsOITIISXM)XBLOIN»OSTI)»NXUsNXBLOITLI )Y
APSEUDO,ADAGERIOIN,OtMY 3 LABEL NOPR,NDPRY
FORMAT PRMAT(C BELU4LB)///)»
TITYC("2SCUDDINVERSION OF THE MATRIX A™///"A IS"»13,"%x",13/)»
TIT7("NORM OF (BC~AY"//X3,E15.5/"RESIDUAL FOR XM"/(BE15:5/))»
TITB("MATRIX A PSEUDOINVERSE"/)I»TITO("MATRIX A DAGGER™/)»
TITIOC(XGr XXMM/ TIT20(//7X6s"XB"/)pTITL3BC/"RON NUMBER",13/)e
TIT?77C/"RESIDUAL FOR XB "/(BE15+5/))»SDL(BE1546/)>»
ENDEC//"END OF THE RUNM"//X1B,"* * & % & & % » % %" ////})
PROCEDURE PRT(A,MsN)
INTESER MsN; ARRAY AlL0,01;
COMMENT PRT PRINT DUT THE MxN MATRIX A;
BEGIN FORMAT TITL46(/ BE14.5); INTEGER SE,K»R}
SE « N DIV 8 5 K ¢« N MOD 8
FOR Re0 STEP 1 UNTIL SE={ DO
BEGIN FOR I«1 STEP 1 UNTIL M DO
WRITE (TITL46,F0OR Jey STEP 1 UNTIL 8 DO A(1,8 xR+J1)}
WRITE ({PAGE])
T END 3 IF K#0 THEN FOR Iel STEP { UNTIL M DO
ARITECTITLUG6,FOR Jey STEP 1 UNTIL K DO A[1,8 xSE+J))}
WRITE ([PAGE))
END PRTY
PROCEDURE PSEUDOINVER (MsNsTI»SUPERsOPCs AsRHS2ORTPIESTS»NXM,
NX3,APSEUDD»ADAGERSCOF»XM»XB) 3
INTEGER MsN»TI 7 INTEGER ARRAY COFCOJ)) BOOLEAN DPC3
REAL SUPERSEST,QORTP
ARRAY AsRHS,»APSEUDDsADAGER, XM, XBLO»0)» NXM,NXBLO))
COMMENT PSEUDDINVER COMPUTES THE PSEUDOINVERSE OF A MxXN MATRIX A,
AND DTHER RELATED QUANTITIES, THE ESPECIAL WAY JF ROUNDING=OFF
AFTER DOUBLE PRECISION QOPERATIONS IS DUE TO
MR, PETER RUSINGER AND PROF, GENE GOLUBS
BEGIN INTEGER J,CONT,Q,K,TsBUENO,R,I»PE»MA; BOOLEAN SUITCH;
ARRAY BQ,AN[OSMsOSNI»INVR[OIN)OSNI,NRHS,UPI»DOPILOSTI)S
GrUD»SAVIOINI»X1,X2L0Ns0:TI)»BPS,API»ADILOSNSOIMY}
REAL CLUF»ALFAQ,BEQsAL»SUPALF»BsNXB1sNXM1sAAA»BBBsCCCo
UPI1,00PIL,ESTI,ASOsSUMIESHPERTUBSESTIMsTPOLMINIRS
MA ¢ 1IF M<N THEN N ELSE M 3
BEGIN ARRAY TRUC,TU,VQ,TEMPLOIMA); LABEL SECND,RFIN,
NONESsLOP»TRES,CUATRO,MAIS,CAS,FINI,OTRA,FORCED)
COMMENT TRMAVC ) MATRIMULSMULTIVECS»ESC» TRANSP AND VECSUM ARE
PROCEDURES PERFORMING MATRIX AND VECTOR OPERATIONS,
SOME OF THEM IN DOUBLE PRECISIONS
PROCEDUJRE TRMAVC (AsVrIsdeMseN);
ARRAY A[0»01,VI015 INTEGER IsJsMsN 3
BEGIN INTEGER K3
1F I=0 THEN FOR Ke¢i STEP 1 UNTIL M DO VIK]e ALK»J)
ELSE FOR Ke1 STEP 1 UNTIL N DO V(Kle A[I.K]
END TRMAVC 3}
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PROCEDJRE MATRIMUL (A»Bs»CsPrQs»R) 3
ARRAY A,B8,C[0»,0]1 3INTEGER P,Q,R 3
BEGIN INTEGER 1,J,X 3REAL AC,BC3
FOR ley STEP 1 UNTIL P DD FOR Jeil STEP 1 UNTIL R DO
BEGIN AC€BC«0]; FOR Kei STEP 1 UNTIL @ DO
DOUBLECALI»KI»0»BIKsJIsO0sxXp,ACsBCr+s¢»AL»BC)3
ClIsJ) « AC+BCRAC[12138)/5,49755813891811
END
END MATRIMUL 3
PROCEDJRE MULTIVEC (A,V1sV2,P,Q)}
ARRAY A[O0,01,V1,V2[0) ZINTEGER P,»Q3}
BEGIN INTEGER 1,J5 REAL AC,BCS
FOR le¢i STEP 1 UNTIL P DO
BEGIN AC+#8C«0; FOR Jei STEP 1 UNTIL Q@ DO
DOUSBLE CALI»J]s0,ViTJ)»0sxpACsBCr+,¢5ACBC))
V20L1)e¢ AC+RCBACI181!8)/5,49755813891911
END
END MULTIVEC 3
PROCEDJURE ESCCA»BsCsP);
ARRAY A,B8[0) JREAL € 3 INTEGER P3J

BEGIN INTEGER 1
Ce03 FOR Iei STEP 1 UNTIL P DD Ce ALI)x 3{I)+C
END ESC 3

PROCEDURE TRANSP (AsB,P»Q)
ARRAY A,8 [0,0) 3 INTEGER P,0Q }
BEGIN INTEGER 1,4}
FOR Tel STEP 1 UNTIL P DD
FOR Je¢l STEP 1 UNTIL Q DO BLJr1) ¢« All,J]
END TRANSP 3}
PROCEDUJURE VECSUM (A»B,CrALF»BETHIN)
ARRAY A,B,C[0)} REAL ALF,BET JINTEGER N 3}
BEGIN INTEGER I3
FOR el STEP 1 UNTIL N DO CCIJ+AlIIxALF+B{I)x BET
END VECSUM 3
PROCEDURE RSEUND (NQsALFQ,»UQ,Q) 3
ARRAY NQL[O0,01,UQLO0); REAL ALFQ3 INTEGER Q
COMMENT GIVEN (BQ"BG) INVERSE, PSEUDO CONSTRUCT (B(Q+1)"B(Q+1))
INVERSE
BEGIN REAL A3 INTEGER I»J 3}
ALFQ ¢ 1/ALFQ3
FOR Tel STEP 1 UNTIL Q DO FOR Jeil STEP 1 UNTIL @ 0O
DOUBLECALFQ»0,URLI),0,%XoUQLJY00s%XsNALTI»JIs0stse,
' NQLIrJI,Ad; QeQ+l 3 UQ[QJe =1
FOR Je¢t STEP 1 UNTIL Q DO
NQLJ,Q)+« NQIQ,»JI « =ALFQ x Yatyd
END PSEUDD '
PROCEDURE GARBG(MsNs»T»TI,COF,RQ»GsRHS»BPS,AsNRHS,»AAA,
NXMaNXBaNXM1,NXB1, APSEUDD» ADAGERS XM2XBLEST)
REAL NXM1,NXBL1,EST,AAA} INTEGER NsMsT»TI}
INTEGER ARRAY COFL[O01]/
ARRAY XMsXB, APSEUDO,ADAGER»BQ»RHS»BPS,AL0»0],
NXBsNXMpG,NRHSLO01}
COMMENT GIVEN THE BASIS BQt A PSEUDOINVERSE, A DAGGER» XM» XB»
NXM, NXBs AND NORM OF (A=BQC) ARE COMPUTED;
BEGIN INTEGER IsQrsJrRaMA 3 REAL BsPERsALFAQ 3

25




COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

ARRAY C{O:T,0NY»
IF  MsSN THEN MAeN ELSE

3EGIN ARRAY ANLO:T,0:

8QICL0IM,0TI,UQLOIN] 3
MA M 3
NY

BEGIN ARRAY INVQI[OIT,0:T)sTU,TEMPLOSMAYS

A DAGGER IS CALCULATED;

FOR let STEP 1 UNTIL N DO
BEGIN Q@ « COFLIY }

IF @70 THEN FOR

Jel STEP 1 UNTIL M DO

BEGIN BR1LJ,Q) « BQLJU,QI/GLIY 3

ADAGERLI»J]e
END
ENDS

BPS[0sJle BPSLO,JIX GLIY)

C AND C=PSEUDOINVERSE ARE CALCULATED:
MATRIMUL(BPS,A»CrTrMsN)}
TRMAVCC(C»TU»121»THN)S ESCCTUsTU,BAIN)I

INVQLIlL,11e 1/B;

FOR Q¢ 2 STEP 1 UNTIL T DO

BEGIN Re Q=13 TRMAVC(C,TU»QsQ,TaN)}
MULTIVECCC»TU»TEMP»RaN)J
MULTIVECCINVQI»TEMR,URLRHR)Y}
FOR 1«1 STEP 1 UNTIL N DO

BEGIN PERe 0}
FOR Jel STEP

1 UNTIL R DO

PERe PER+CLJ21] X URLJY; TEMP{I) « PER

END

VECSUMETUS TEMP»TEMP» 1o =1sN)}
ESCCTEMP,TEMP, ALFAQsN)Z
PSEUDDCINVQRI,ALFAQ,UQsR)

END MATRIMULCINVQL,CoAN»T»THN) J
ENDJ
BEGIN ARRAY BQRCLOIMALOQIN]

NORM OF (A=BC) IS COMPUTED]

TRANSPC(ANSBQC,»TH»N)

.
’

MATRIMUL{(BQC,»BPS,APSEUDDNN»T»M)}
MATRIMUL(BQ1,CrBQCH»MsTaNIS EST ¢ 03
FOR Iel STEP 1 UNTI{L M DO

BEGIN PERe 0;

FOR Jei STEP { UNTIL N DO
PERe PER+ABS(BQCLI»J1=AlL1,J1)3
IF PER2 EST THEN EST ¢ PER

END
END
END;
£ST « EST/AAAS

THE MINIMUM AND RASYIC SOLUTIONS ARE COMPUTED)
MATRIMULCAPSEUDO,RHS ) XMsNsMsTI)}
MATRIMULCADAGERIRHS» XBoNsMsT1))

BEGIN ARRAY AN[OIM,O03TI11J
THE RESIDUALS FOR THESE SOLUTIONS ARE COMPUTEDS
MATRIMUL C(A»XMpANIM,N,T1);
FOR Je)l STEP 1 UNTIL TI DO

BEGIN NXM1¢ 0}

FOR let STEP 1 UNTIL M DO
NXM1 ¢CAN[I,JI=RHSLI»JIIwW2+NXML3

NXM1+¢ SQRT(NXM1)3:

2k

NXMLJ] e NXM1/NRHS[J)



ENDJ

MATRIMULCAXBy ANSMsN,TI:

FOR Jet STEP { UNTIL TI DO

BEGIN NXB1e0;
FOR 1e1 STEP 1 UNTIL M DO
NXR1e(ANCI,JI"RHSII,J))*2 + NXBt 3
NXBle SORT(NXB1)3 NXBlJle NXBL/NRHS[J]

END 7 NXB1 ¢« NXM! ¢ 0;

FOR Te1 STEP 3§ UNTIL 71 DO

BEGIN NXB1l ¢ NXB1l+ NXB[IJ*2 ;
NXAML & NXM1+NXM[TI]) »2

END 5 NXMle SQRT(NXM1)3 NXBle SQRT(NXB1)S

END2
END GARBG

COMMENT PRJICEDURE PSEUDDINVER BODY J

MINIR «8=20; AAAeCCC*0

COMMENT NORM OF A AND NORM OF THE RHS)

FOR J+#i1 STEP { UNTIL N DD FOR l¢i1 STEP 1 UNTIL M DO
BEGIN BABe¢ ARSCALI,J1)5 IF 3BB>AAA THEN AAA+BBB
END 3 FOR Jel STEP t UNTIL TI DO
BEGIN CCC+03 FOR lei STEP 1 UNTIL M DD

2CCe CCC+RHSLI»JI% 2 3  CCCe SQART(CCCHS
NRHSLJ1¢ IF CCC>1 THEN CCC ELSE 1 3
END;  IF AAA<t THEN AAAe]
FOR 1¢1 STEP 1§ UNTIL N DO
BEGIN COF[Ile 03
FOR Jel STEP 1 UNTIL M DO ADICI,JI¢ADAGER(I,»J)e 0}
END 3
COMMENT THE MATRIX A IS NORMALIZED AND STORED ON AN
G CONTAINS THE NORMALIZING COEFFICIENTS 3
FOR Jel STEP 1 UNTIL N DO
BEGIN TRMAVCCA»TUSs OsJoMaN)}
ESCUTU»TUsCLUFIM) 3
GLJI€IF CLUF > 1,0 THEN 1,0/SQRT(CLUF) ELSE 1,0/
END 3 FOR Ie1 STEP 1 UNTIL M DO
BEGIN FOR Je1 STEP 1 UNTIL N DO
ANEI,JY & ALI,01% GLJ]
END 3
COMMENT THE CONSTRUCTION OF A BASIS OF STRONGLY
INDEPENDENT VECTORS IS STARTED)
CONT«1; SUPALFe 0 ; Q¢ Ke Te 13
COF[11¢ts INVQ[1,1)e 13 SUITCHe FALSE 3
FOR I«1 STEP 1 UNTIL M 00 80{Is11¢ ANCI»13)}

COMMENT SEARCH FOR INDEPENOENT COLUMNS OF A, WHEN THE COLUMNS

LopP

L

ARE EXHAUSTED AN EXIT IS PROVIDED TOo LABEL FINIs IN CONT
A RECORD IS KEPT ON THE WAY IN WHICH COLUMS ARE ACCEPTED)
IF Q=N THEN GD TO FINI 3
TeK 3 QeQ+1s KeK+l)

COMMENT PRIJECTION OF A COLUMN OF AN ON THE ORTHOGOVAL

CAS

SUBSPACE OF BQj
TRMAVC (AN VQ,00QsMaN)j
FOR 1¢1 STEP 1 UNTIL T DO
BEGIN ALFAQe+ 0}
FOR Jei STEP 1 UNTIL M DO
ALFAQe ALFAQ+BQCLU,T1IXVALJI} TEMPLIl¢ ALFAQ
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END
MULTIVECC{INVQ,TEMP,UQsT»T)Y3
MULTIVEC(BQ,UQ, TEMP,M,T);
VECSUMCVO, TEMP, TEMPs1s=1,M)}
ESCCTEMP,TEMP, ALFAQ, M)}
IF SUITCH THEN GO TD TRESS
COMMENT FIRST TEST FOR ACCEPTANCE AS AN INDEPENDENTY COLUMNS
IF ALFAQ < ORTP THEN GO T0O NONESS
IF CONT=2 THEN CONT+ 3 ;
COMMENT CONSTRUCTION OF B(R+1);
PSEUDD CINVRLALFAQ,UQR,T);
FOR Ie«1 STEP 1 UNTIL M DO BQCIl,X)e VQL[I];
COF [(Q)e K 3 GO TO LOP 3
NONES ¢ COFCO) € 05 Ke K=1 3
IF CONT # 3 THEN
BEGIN CONTe2 3 GO 7O TRES 3
END 3 GO TO LOP 3
COMMENT IF CONT#2 THEN THE REJECTED COLUMNS ARE REVISED IN ORDER
TO TAKE THE MOST INDEPENDENT WITH RESPECT TO THE BASIS BG,
CONT=1 MEANS THAT At | THE COLUMNS HAVE BEEN TAKEN IN THE
FIRST SWEPT, CONT=3 MEANS THAT A COLUMN HAS BEEN REJECTED
AND LATER ONsANDTHER HAS BEEN ACCEPTEDS
OTRA 1 Q¢ 2 5 SUPALFe 05 BUENDe 03
MAIS 3 IF Q=N+1 THEN GO TO CUATROD 3
IF COFIQI% O THEN
BEGIN Re¢ Q+1 ; GO TO MA1S 3
END GO TO CAS
TRES IF ALFAR 2 SUPALF THEN
BEGIN SUPALF + ALFAQD 3
FOR Te1 STEP 1 UNTIL M DO TRUCLI)e VQLI3:
FOR Ie¢1 STEP 1 UNTIL T DO
SAVII)e UGLIY 5 BUEND ¢ @
END 3 IF CONT=2 THEN GO TO LOP 3
IF 2=N THEN GO TO CUATRO 3
Q¢ 2+1; GO TN MAIS;
COMMENT If THE PROJECTION OF THE SELECTED COLUMN IS LESS THAN 8=20
THEN SAV IS REJECTED AND WE FINISHS
CUATRO ¢ IF SUPALF S MINIR THEN GO TO RFIN 3
AL €SUM € 03
COMMENT THE NORM OF (B(Q+1)"B(Q+1)) INVERSE 1S ESTIMATED,AND ITS
VALUE IS CONTROLLED;
FOR 1¢1 STEP 1 UNTIL T DO
BEGIN FOR Jet STEP § UNTIL T DO
SUM «SUM + ABSCINVOILI,J))}
IF SUM>AL THEN AL«SUM
END
ESTIM ¢ AL+(SQRT(T)+1.0)/SUPALF 3
1F ESTIM 2 SUPER THEN GO TO RFIN 3
COMMENT SAV HAS PASSED THE TESTS OF SECTION 25C). NIW IS USED
TENTATIVELY IN B8(Q+1) TO SEE IF THE RESIDUALS DIMINISHIS
FORCED 3 PSEJDOCINVQ,SUPALFsSAV,T)S
COFLRUEND)« T 3
FOR 1«1 STEP | UNTIL M DO BQLI1,Tle TRUCCI)
COMMENT NE CONSTRUCT NDW B=PSEUDO,C,A=PSEUDO AND ADAGGERJ
FINI 3 FOR I«1 STEP { UNTIL T DO FOR Jei STEP 1§ UNTIL M DD
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BEGIN ESe0s FOR PEet STEP § UNTIL T DO
£S &« ES + INVQII,PE] % BQLJPPE]) 3 BPSLIsJ) ¢ES
COMMENT AS WE WANT T0O COMPARE RESULTS FOR TWO DIFFERENT BASES,
SUITCH PROVINES A WAY TO DECIDE THE CALL OF GARBG
END 3 IF SUITCH THEN GO TO SECND 3
GARBG (MsN,T»TIsCOFsBR»GrRHSPBPSHA,NRHSsAAA,
NXM, NXByNXM1,NXB1,APSEUDD,ADAGER ) XM, XB,EST)Y 3
IF  T=N THEN GO T0O RFIN 3 SUITCH « TRUE
IF CONT = 2 THEN
BEGIN CONT « 13 GO YO CUATRO
END 3 GO TO OTRA
SECND ¢ GAR3G (MsNsT»TIsCOF,B9»GsRHS»BPS»AINRHS»AAA,
UPI,00PI,UPIL,D0PI1,API»ADI,X1,X2,ESTL);
COMMENT NOA THE TEST OF SECTION 2,D) IS MADE?
IF  NX312 DOPIY  AND NXM12UPI! THEN
BEGIN IF NOT D0°C QR EST2 ESTI THEN
COMMENT IF SAV IS5 ACCEPTED THEN ALL THE USEFUL QUANTITIES
ARE SHIFTED:
3EGIN NXM1eUPI13 NXB1e DOPIL1S ESTeESTI 3
FOR lel STEP 1 UNTIL N DO
BEGIN FOR Jet STEP 1 UNTIL M 0D
BEGIN  APSEUNDLI»JIe APILI»J) 3
ADAGERI[I,JI¢ANITI2J]
END?  FOR Jet STEP § UNTIL TI DO
BEGIN  XMOI,JYeX10I,J);3 XBLIaJle X2(10J)3
NXMOJIeUPILJ)S NXBLJUJeDOPICLJIS
ENDS
END 3 IF T=N THEN
BEGIN BUEND«D 3 GO TO RFIN
END 5 GO TO OTRA
END
END 3
RFIN COF[RUENDI« 03
END
END PSEUDQINVER
COMMENT 300Y OF THE DRIVER PROGRAM, THE INPUT=QUTPUT AND THE CALL
0F PSEUDDINVER ARE INCLUDEDS
FOR I«1 STERP 1 UNTIL M DO
READCFOR Jel STEP 1 UNTIL N DO ALI»ul):
WRITEC [PAGEY)S WRITECTITL,MsNIS PRT(A,MIN)J
IF NOT OPC THEN FOR Ie1 STEP { UNTIL TI 00
READC FOR J¢1 STEP 1 UNTIL M DD RHS[J»I11)
ELSE FOR el STEP 1 UNTIL M DO FOR J#1 STEP 1| UNTIL M DD
RHSCI»JIe IF I=J THEN 1 ELSE O
PSEUDDINVER(M,N,TI,SUPER,OPCPA»RHSHORTPHESTSNXMe
NXB,APSEUDDsADAGER,COF » XMy XB )3
WRITECTITZ7SEST,FOR I«1 STEP 1 UNTIL TI DO NXMLI)}
WRITECTIT?7» FOR lei1 STEP 1 UNTIL TI DO NXBCI))}
IF OPC THEN
BEGIN WRITECIPAGE])Y 5 WRITECTITS))
PRTCAPSEUDO,N,MY; WRITE (TIT9)3
FOR I«1 STEP 1 UNTIL N DO
BEGIN IF COF(I11=0 THEN GO TO NOPR }
WRITE (TITL38,1)3
WRITE (PRMAT,FOR Jei STEP 1 UNTIL M DO ADAGER[ILJY)
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NOPR: END
END £LSE
BEGIN WRITECIPAGE))? WRITECTITIO) /

FOR 1lei STEP 1 UNTIL N DO
WRITE(SOL,FOR Jei STEP 1 UNTIL TI DO XM(I»J1)3
WRITE CTIT20) 5 FOR le1 STEP 1 UNTIL N DO
BEGIN IF COF (1]=0 THEN GO TO NOPR1S
ARITECTITL3B8,1)3
WRITECSOLs»FOR Jei STEP 1 UNTIL TI DO XBUI,Jd))}
NOPR1 ¢ ENDS
COMMENT JUST BY ADDING NEW SETS OF DATAS MORE PROBLEMS CAN BE RUN3
END 5 WRITECENDE); GO TO OVER 3

END 3
FIU
END
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