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NOTATIONS 

a 

b 

t 

An, Bn 

k 

9, * 
V 

Major axis of meridian 
e l l i p s e  or r ad ius  of c i r c u l a r  
c y l i n d e r  

Minor axis of meridian 
e l l i p s e  o r  he igh t  of dome 

Constant she l l  th ickness  

C o e f f i c i e n t s  of series 
expansion for radial  deflec- 
t i o n  and stress funct ion ,  
r e spec t ive ly  

Lam6 parameters def ined  by 
equat ion (A71 

* 

P r i n c i p a l  r a d i i  of curva ture  
of the middle surface of a 
s h e l l  equal  t o  kav3 and kav, 
r e s p e c t i v e l y  

Radius of t n e  p a r a l l e l  circle 
of a she l l  

Middle su r f  ace coord ina tes  
1 

(1 + (k2 - 1) sin2c) ])i 

* 
The le t ter  "A" r e f e r s  t o  a n  equat ion of t h e  

Appendices. 

v i i  
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Differential operator defined 
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CHAPTER I 

INTRODUCTION 

The desire to reduce structural weight in missiles 

and space vehicles in order to increase payload hae 

resulted in thin-walled shell structures subject to 

elastic and inelastic buckling as one primary mode of 

failure. In many instances an adequate buckling analysis 

or experimental information is difficult to obtain. Con- 

sequently, very crude but hopefully conservative approxi- 

mations or idealizations are employed for analysis of the 

design. Often designers even avoid entirely particularly 

lightweight configurations because of the complete lack 

of experimental or theoretical information on potential 

instability problems. The results of the above situation8 

may be either the choice of a design which may not be 

near optimum or, perhaps even worse, a very expensive 

static test or flight test failure resulting in costly 

delays and vehicle modifications. 

1 
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2,,"This paper discusses  a s t a b i l i t y  problem of a 

m i s s i l e  l i q u i d  p r o p e l l a n t  tank.1 Pr imar i ly ,  t h e  buckling 

of missile s h e l l s  c o n s i s t s  of two factors: 

,U" I 

cl-' 

(a)  I n t e r n a l  pressure.  I n  shallow s h e l l s  of 

r evo lu t ion  ( i .e.  where t h e  r a t i o  r ad ius  of c y l i n d e r  "a" 

over  height of dome "b" i s  l a r g e r  t h a n f i  1 ,  t h e  i n t e r n a l  

p re s su re  can produce c i rcumferent ia l  compressive stresses 

of s u f f i c i e n t  magnitude t o  cause e las t ic  buckling of t h e  

knuckle p a r t  of t h e  shell .  I n  1964, Adachi and Benicek 

[ l J  made an experimental  i n v e s t i g a t i o n  on buckl ing of 
* 

bulkheads w i t h  toroidal t r a n s i t i o n s  between s p h e r i c a l  

caps and c y l i n d r i c a l  walls under  i n t e r n a l  pressure .  

(b) Axial tens ion .  In  deeper bulkheads of revo- 

l u t i o n  (i.e. a/b S C ) ,  t h e  i n t e r n a l  p re s su re  a c t i n g  on 

t h e  concave su r face  produces predominantly t e n s i l e  

stresses without  introducing t h e  p o s s i b i l i t y  of dome 

c i r cumfe ren t i a l  buckling. Then, the main cause of 

buckl ing of these k ind  of s h e l l s  i s  a x i a l  t e n s i l e  forces. 

This paper, however, d i scusses  buckling of t h e  

knuckle of t h e  j o i n t  between a c y l i n d r i c a l  s h e l l  and a 

* N u m b e r s  i n  bracke t  r e f e r  t o  t h e  l i s t  of re ferences .  
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semielliptical bulkhead under axial tension. Since the 

ratio of the length of major to the length of minor axis 
-\ 

of the shell considered is f i ,  internal pressure cannot 

produce circumferential compressive stresses to cause 

elastic buckling. The buckling of this type of shell is 

mainly due to axially tensile load (including liquid 

load and its inertial force). Viewed from testing patterns, 

the buckling of a shell of revolution under axial tension 
occurs primarily at the region where its curvature is 

largest. Thus, for simplicity, this type of shell may 

be replaced by a truncated semielliptical shell under 

axial tension to examine its buckling behavior by intro- 

ducing adequate boundary conditions. 

In 1963, Yao made the investigation on buckling of 

a truncated hemisphere under axial tension [21 .  

similar basic idea is employed in this paper, but the 

problem discussed in this paper is quite different from 

that of Yao's paper. 

A 

In the analytic work, Vlasov's small deflection 

theory and Galerkin's method are used. The numerical 

execution was performed by means of an IBM 709 computer. 



CHAPTER I1 

ANALYSIS 

Examing buckl ing t e s t i n g  p a t t e r n s ,  w e  know t h a t  a 

shell of revolu t ion  under axial t ens ion ,  as shown i n  

F igure  1, w i l l  buckle primarily a t  i t s  knuckle part. 

Thus it may be possible t o  examine the buckl ing behavior  

of a t runca ted  s e m i e l l i p t i c a l  she l l  of revolu t ion  (shown 

i n  F igure  2)  i n s t e a d  of that of a complete semielliptical 

one by in t roducing  adequate boundary condi t ions .  

1. Basic Equations 

"he fol lowing geometric r e l a t i o n s  are introduced: 

1 
V "  

[ l  + (kz - 1) s i n Z  

3 R,, = kav 

R2 = kav 

Ro 2= kav s i n $  

4 
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(a) Equilibrium equation. Using the middle surface 

coordinates 9 and 8 , as shown in Figure 3, we know that 

the equilibrium condition in the direction normal to the 

surface for an elliptical shell element can be expressed 

by the following equation ( 3 1  

where 

9 = stress function 

For derivation of these equations see Appendix A. 



The additional force components in the buckled 

shell wall are given by 

For derivation of these equations see the Appendix B, 

Equations (5), (6) and (7) approximately satisfy 

the equations of equilibrium for a shell element in both 

the meridional and the circumferential directions. 

(b) Compatibility equation. The stress function 

$ 

compatibility equation [3] 

and the normal deflection hr are then related by the 
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2. Normal Component of Stress Existinq Prior to Buckling 

In dealing with the problem of stability of a 

semielliptical s h e l l  of revolution, one must take into 

account the normal component of stress existing prior to 

buckling. 

From equilibrium equations [4] (see Figure 4) 

and relations (l), we obtain the following expressions 

for prebuckling forces 
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During buckling, because of curvature changes, 

these finite membrane forces contribute a normal 

component. 

soidal revolutionary shell can be evaluated to be 

Principal curvature changes of an ellip- 

For derivation of K1 and K2, see Appendix C. The normal 

component is 

Therefore, by substituting equations (12) , ( 1 3 ,  (14) 

and (15) into equation (161, and using relations (1) 

w e  obtain the following expression for the normal 

component t 



3 . Boundary Conditions 

We can assume that the upper edge of the trun- 

cated semielliptical shell of revolution which dis- 

places the complete semielliptical one is clamped and 

that its lower edge is simply supported, depending 

upon the following factsr 

(a) The upper edge of the shell is actually 

stiffened by the presence of a skirt which supports 

the tank. ($ee Figure 5). 

(b) The shell will buckle primarily at the 

region where its curvature is largest (see indicated 

buckling pattern in Figure 2 1 ,  and buckling does not 

arrive at both edges of the truncated semielliptical 

shell of revolution . 
These conditions may be expressed as 

at $=f- 
at +=$ 

= 0 leading to 

$0 

7r - T j = 3 e = o  at $=  and 

or, for  equations ( 5 ) ,  (6) and (71 ,  to 



4. The Method of Approximate So lu t ions  

A p o s s i b l e  method of solving the problem would be 

f i r s t  t o  assume an a r b i t r a r y  normal d e f l e c t i o n  func t ion  

t h a t  sat isf ies  the  normal d e f l e c t i o n  boundary condi t ions  

(18); then  equat ion (8) could be solved fo r  the stress 

funct ion  $ i n  terms of a p a r t i c u l a r  s o l u t i o n  involving 

U a n d  t h e  genera l  s o l u t i o n  of t h e  homogeneous equat ion,  

the cons t an t s  of i n t e g r a t i o n  being determined by the 

stress func t ion  boundary condi t ions.  F i n a l l y ,  the  

normal d e f l e c t i o n  func t ion  and the der ived  stress 

func t ion  can be s u b s t i t u t e d  I n t o  equat ion ( 2 ) ,  which 

then  would be solved by means of the Galerkin method [sJ . 
Because it is  d i f f i c u l t  t o  so lve  fo r  the stress funct ion  

i n  terms of t h e  normal d e f l e c t i o n  func t ion ,  however, 

t h i s  method of s o l u t i o n  can be rep laced  by the equi- 

v a l e n t  process  of choosing a r b i t r a r y  func t ions  t h a t  

s a t i s f y  t h e  appropr ia te  boundary condi t ions  for  both 

t h e  stress func t ion  $ and t h e  normal d e f l e c t i o n  func- 

t i o n  and so lv ing  both equations ( 2 )  and (8) by the 

Galerkin method. 

Thus * 
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* 
where &I* and @ are proper functions subjected 

to the boundary conditions given by equations (18) and 

(19) and s expresses the first variation. 

For convenience, the following substitutions 

are introduced: 

The boundary conditions (18) and (19) then become 

at x=O 1 
and 



I 12 

, Substituting the relations (22)  into equation (31, 
I 

w e  have 

I 
I Theref ore, 
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S ibstituting the relat ions (22 )  in to  equation ( 4 ) ,  c 

have 

Substituting the relat ions (22)  into  equation ( 1 7 1 ,  w e  

have 

i? * 
Suitable expressions for d and 2 which s a t i s f y  

the boundary conditions (23)  and (24)  may be taken as 



14 

i where 

I Therefore, applying the operator A n  [equation (2611 
x 

~ on the function [equation (2811, w e  obtain 
I 



15 

*L 
Applying the operator D ( - - - - - - 1  on 9 ( - - - - - - )  w e  

have 

* 
Applying the operator A on $ [equation PO)] 

w e  have 
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.*- 
Performing D on , one finds 
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Substituting equation (29) into equation ( 2 8 ) ,  we obtain 

! 

Substituting equations (311, (32) and (351, and 

relations (1) and (22) Into equation (201, we obtain 
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Substituting equations (33) and (34), and relations 

(1) and (221, into equation (21), we obtain 



20 

and (37) become 



21 



22 

t 

t 

t 

. _  

. 

( 3 9 )  

By i n t e g r a t i n g  equat ions ( 3 8 )  and ( 3 9 ) ,  w e  g e t  t h e  

fo l lowing  equations: 

where j =. 2,3,4 - - - - - - m  
In t roducing  t h e  r e l a t i o n  P = P, + (where P = 

e 

external axial load) i n t o  equat ions (38), w e  o b t a i n  the 

f o 1 lowing equat ions  



where J = 2 , 3 , 4 - - - - - ~  

For fnj, hnj, Qnj, gnj, dnj and enjt see 

Appendix D. 

For a nontrivial solution for An and Bn, the 

determinant of their coefficients in equations (42) and 

(43 )  must vanish, yielding an algebraic equation in the 

following f o m  

where fi(m) (i = 1, 2, 3)  are rational functions of m. 

Equation (44) can be solved for Pe, i.e. 

The minima of P, for various p are the critical values of 

the axially tensile loads (Pe). 



CHAPTER I11 

APPLICATION OF A SPECIAL PROBLEM 

The general characteristics of the special 

semielliptical shell of revolution made of aluminum 

alloy 2219 are (see 

a =  

b =  

t =  

h =  

1 =  

= 

E =  

P =  

Figure 1): 

198 in 

140 in 

0.163 in 

68 in 

cos $0 

0.647 

10.6 x lo6 lb/in2 

0.33 

B y  substituting the above values into equations (42)  

and (43) and taking one term in the summation (n = 2) we 

find that the determinant of the coefficients of equations 

(42) and (43) yields 

24 
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I 

Putting internal pressure p equal to 0 ,  5 ,  1 5 ,  

2 5 ,  3 5 ,  45 and 55 psi respectively,  w e  g e t  the buckling 

loads Pe f o r  various number of waves (m) ( see  Tables 1 

through 5 ) .  

The minima of these buckling loads are the 

c r i t i c a l  t e n s i l e  loads for  internal pressure 0 ,  5 1  1 5 ,  

2 5 ,  3 5 ,  4 5  and 55 p s i  respectively.  

The pertinent numerical execution was performed 

by means of an IBM 709 computer. 



CHAPTER IV 

CONCLUSION AND DISCUSSION 

It can be observed from Figure 5 tha t  the 

c r i t i ca l  load of t ens ion  increases  w i t h  the increase 

of i n t e r n a l  pressure .  This fact  i n d i c a t e s  t h a t  i n t e r n a l  

p re s su re  w i l l  decrease the degree of buckl ing of this 

type of shel l .  

Figure 7 shows tha t  there is an approximate l i n e a r  

r e l a t i o n  between c r i t i c a l  t ens ion  load and i n t e r n a l  

p re s su re  i n  t h i s  p a r t i c u l a r  problem. From the  equa- 

t i o n  (44) w e  know tha t ,  for m = mot a l i n e a r  r e l a t i o n  

between P, and p holds. mo i n d i c a t e s  the argument f o r  

which P e  is minimal for  a given p. Actual ly ,  f o r  a l l  
I 

I P the number mo is  p r a c t i c a l l y  the same, t hus  g iv ing  

the above mentioned l i n e a r  r e l a t i o n  shown i n  Figure 7.  

The subject problem is an i n t e r e s t i n g  one, as 

it is a p a r t i c u l a r  example t h a t  an e las t ic  system i s  

buckled by t ens ion ,  although the real  cause of the 

i n s t a b i l i t y  i s  the compressive hoop stress. Cer t a in ly ,  

I 
26 
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there remain many areas f o r  future s tudies ,  among them 

determination of the buckling load by large de f l ec t ion  

theory and consideration of i n i t i a l  imperfections. 
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TABLE 1 

BUCKLING F O X E S  FOR INTERNAL PRESSURE p = Opsi 

m P, lb/in 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 

11782 
4157 
2953 
2343 
2029 
1871 
1804 
1794 
1823 
1883 
1966 

TABLE 2 

BUCKLING FORCES FOR INTERNAL PRESSURE p = 5psi 

m P, lb/in 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 

13640 
5413 
4203 
3593 
3279 
3121 
3054 
3044 
3073 
3133 
3216 
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TABLE 3 

BUCKLING FOXES FOR INTERNAL PRESSURE p = 1SPsi 

m P, lb / in  

10 17357 
20 7 9 2 3  
30  6 7 0 5  
40 6094 
50  5779 
60 5 6 2 1  
70 5554 
80 5 544  
90 5573  

100 5633 
110 5716  

TABLE 4 

BUCKLING FORCES FOR INTERNAL PRESSURE p = 25psi 

m P, lb/ in 

10 
20 
30  
40 
50 
60 
7 0  
80 
90 

100 
110 

21074 
10434  

9206  
8 5 9 4  
8279  
8121 
80 54  
8044 
8 0 7 3  
8 1 3 3  
8 2 1 6  
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TABLE 5 

BUCKLING FORCES FOR INTERNAL PRESSURE p = 35 P s i  

m P, lbbin 

10 
20  
30 
40 
50  
60 
7 0  
80 
9 0  

100 
110  

24791 
12944 
11707 
11094 
10779 
10621  
10554 
10544 
10573 
10632 
10716  

TABLE 6 

BUCKLING FORCES FOR INTERNAL PRESSURE p = 45psi 

m P, lb/ in 

10 
20 
30 
40 
50  
6 0  
70 
80 
9 0  

100 
110 

28507 
15455 
14208 
13594 
13279 
13121  
13054 
13044 
13073 
13133 
13216  
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TABLE 7 

BUCKLING FORCES FOR INTERNAL PRESSURE p = 55psi 

rn P, &/in 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 

32224 
17966 
16709 
16094 
15779 
15621 
15554 
15544 
15573 
15633 
15716 
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f 
Liquid 

Figure 1. General sketch 
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3 3  

I 
/i 

/ I 

Figure 2. Truncated shell geometry and load 
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Figure 3 .  E l e m e n t  of the middle surface 
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Figure 4 .  Sketch of equilibrium conditions 
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Figure 5. Sketch of the upper-end 
support of the bulkhead 
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I 

psi 
p = 55 

/ 
psi p = 45 

p = 35 

- 
psi 

P =  1 5 ~ ~ 1  

/ 

psi 
p = 5  

Figure 6. Buckling axial force vs number of 
circumferential buckling waves for 
various internal pressures 
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We arrive at 



APPENDIX B 

DERIVATION OF ADDITIONAL FOFCE COMPONENTS IN 
THE BUCKLED SHELL (Tq , Te and T p  I 

From reference [3], p. 8 7 ,  w e  have 

The -4 parameters for e l l i p t i c a l  revolutionary 

s h e l l s  are determined by the expressions 

and the Codazzi-Gauss conditions [l] reduce to the 

re la t ion  
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Thus w e  arrive a t  , 
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APPENDIX C 

DERIVATION OF THE PARAMETERS OF THE CHANGES 
OF CURVATURE (K1 AND K2) 

Rejecting the displacements U and V, in the 

formulae for the parameters of the changes of curva- 

ture, one finds [ 31 

Substituting the following expressions 

into the above equations and using the relation [ 3 )  

one has 



APPENDIX D 

hnjl qnjl COEFFICIENTS fnj ,  

nl d and e gnj' nj 

1. Part I 
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2. Part I1 
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4. Part IV 
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5 .  Part V 



57 

6.  Part VI 
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