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I. INTRODUCTION

In this report we develop expansion theorems for classical

solutions of the equations

(1) dulx,t) _ (-1)9* QEELELEI , a=2j, 4§=1,2
ox

at e o0 ,
and

+1
(11) a—uéim“ ('l)'j Ai'u(r:t): =12, ..., n= 2,3, ...

Here, Ah denotes the radially symmetric Laplacian operator. The
coefficient (-l)jfl is needed to ensure the convergence of
certain integrals which arise through the methods we employ. Theo-
rems are developed which relate expansions of classical solutions,
in terms of two basic solution sets, to i) a Huygens' principle
and ii) the entireness properties of initial data and solution
functions. By a Huygens' principle for a solution, we essentially
mean that the solution at time t + t' can be obtained from the
solution at time t. We will meke our meaning more precise later.

We obtain expansion theorems for solutions of Equation I

in terms of the two basic solution sets: (i) the set {Vﬁ(x’t)}k=0

-]
of generalized heat polynomials, and (ii) the set {wﬁ(x,t)}k=o

of associated functions. The polynomials are defined to be the

solutions of Equation I which satisfy the initial conditions

vﬁ(x,o) = %7 , k=0,1,2, ... . They are a subset of a special
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set of polynomials first considered by E. T. Bell [2] and are
related to a set investigated more recently by H. W. Gould and

A. T. Hopper [10]. The set of associated functions is defined in
terms of iterated derivatives of the fundamental solution Kq(x,t)

of Equation I. The function Kq(x,t) here is defined by

® . q
1 ~-ixs-ts
Kq(x,t) =3 [,, e ds, t>0.

The results of J. Steinberg [17] are instrumental in developing
the properties of the associated functions. His method of analy-
sis is used to show that the sets {vz(x,-t)} and {wﬁ(x,t)} are
biorthogonal on |x| <® for t > 0.

We also examine solutions of Equat%on II which have conver-

-]
gent cxpansions in terms of either the set {R? n(r,t)}k o of
3y t—

«©
generalized radial heat polynomials or the set {Sg n(r,t)}k_o
, =

of associated radial functions. These sets are analogous to the

sets {vg(x,t)} and {wﬁ(x,t)} defined above. Furthermore, tne

sets {R?)n(r,-t)} and {S?’n(r,t)} form a biorthogonal systcm
on 0<r<wo for t>0.

For both problems I and II, one of the more important results
is the decomposition of the kernel in the Poisson integral repre-
sentation of solutions in terms of the basic solution sets. Fer

example, it is shown for problem I, that

T - k k ]
K (xz-y,t+t ) = I Vv (x:t)w (Y:t ) )
q k=0 q q




in an appropriate time strip. It is this result which allows the
passage from the integral representation of a solution to a series
representation of the desired type.

Series of polynomials, in general, are shown to be convergent
in finite time strips, while series of associated functions con-
verge in half planes. A typical theorem concerning expansions
of solutions of Equation I in terms of the generalized heat poly-
nomials is: Let the initial data, ¢(z), be an entire function

a2
‘which satisfies |9(z)| < B exp(MIzlq'l ) . Then the solution,

u(x,t), has the series representation

> x
u(x,t) = ki;.oakvq(x,t)

. 1 M
which converges for |x| <=, |t]| < aﬁ.(a:%

The results are extended in a number of ways to include a
larger class of related problems. With suitable restrictions, we
find that the admission of strictly increasing time dependent co-
efficients leads to no significant changes in the theorems.

Those results which do not depend on the Huygens' principle remain
valid even if we admit continuous time dependent coefficients.
Extensions to Euclidean n-space are also considered.

P. C. Rosenbloom and D. V. Widder [16] have made a detailed

study of necessary and sufficient conditions for the validity of

expanding solutions of the heat equation
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2
1) du(x,t) _ 3%u(x,t)
( ot 8x2

in terms of two sets of special solutions. The first of these is

- <]
the set {vk(x,t)}k=o of heat polynomials. They are given ex-

X
plicitly by v (x,t) = (-t)° (_?x ), k=012 ...,

where Hk(x) is the usual Hermite polynomial of degree k. The

(-}
second is the set {wk(x,t)}k_o of associated functions where

wk(x,t) is the Appell transform [1] of vk(x,t). The wk(x,t)

are given explicitly by

(2) Wk(X,t) = K(x,t)Vk(%, - %): k=0,1,2 ...,

where K(x,t) denotes the fundamental solution of (1),

The biorthogonality of the sets {vk(x,-t)} and {wk(x,t)}
on |x| <® for t >0 follows from the orthogonality relation
for the Hermite polynomials. A Huygens! principle and entireness
properties of the initial data and solution functions take on an
important role in the development of their expansion theorems. A
number of procedures are given for determining the coefficients
in these expansions.

In a more recent paper, L. R. Bragg [6] has obtained similar

results for solutions of the generalized heat equation

(3) 2ot o Al



where A = 3%/ar® + B 3/ar, > 2.

The solutions of Equation ( 3) are expanded in terms of two basic
sets of solutions which are related to the generalized Laguerre
polynomials. The entireness properties demanded of the solutions
being represented give rise to certain differences in the theorems
developed by Bragg and those developed by Rosenbloom and Widder.
A genersl theory for the expansion of solutions of certain
linear homogeneous initial value problems on finite intervals
has been developed by W. J. Davis [T7]. His approach makes use of
basic solution sets obtained through the application of formal
solution operators to Boas-Buck type generating functions [h].
The convergence of expansions in terms of these sets is examined
by means of the radical test. Both generalized and classical
solutions can be represented by series of the indicated type.
There are important differences in the theorems we develop
and the theorems of Rosenbloom and Widder and those of Bragg.
First, refined asymptotic bounds, as are known for the Hermite
and Laguerre polynomials, are not known for the special solution
sets we use. We therefore find it necessary to use somewhat
imprecise bounds which are obtained from the results of 0. A.
Ladyzhenskaya [13]. Moreover, we are unable to give an explicit
relationship between the sets of special solutions as was done
in [6] and [16]. This is because, as far as the author knows,
there is no Appell-type transformation associated with Equations

I and IT when J = 2,3,
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Finelly, we should point out that the expansion theorems we
obtain for solutions of Equations I and II are structurally the
same. The methods used to prove analogous results preliminary to
the expansion theorems are quite different. The corresponding
expansion theorems, however, are proved in a similar manner. For
these reasons, Sections 1 through 4 treat expansion theorem pre-
liminaries for problem I, Sections 5 through 8 treat analogous
results for problem II, and the expansion theorems for both

problems are developed jointly in succeeding sections.
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II. EXPANSION THEOREM PRELIMINARIES FOR EQUATION I

1. The Fundamental Solution of Equation I.

Consider the initial value problem related to the parabolic

Equation I:
du(x,t) _ ( l)j+l a%u(x,t)
dt TN q
(1.1) ox

u(x)O) = (P(x): a=2j, Jj=11L2, ....

Define the Fourier transform of a function @(x) by
m 3
B0 = et [ gs)e™ s
-

Using the method of Fourier transforms, developed by Ladyzhen-
skaya [13] and I. Gelfand and G. Silov [9], it can be shown that
if the initial data satisfies suitable growth conditions, then a

solution of (1.1) has the integral representation

(1.2) aet) = [ K Gyt -

Moreover, this solution is unique in a class of functions which
can be determined by the growth conditions on ¢(x). The kernel,

or fundamental solution, Kq(x,t), is defined by
! q
(1.3) Kq(x,t) = (2n) 3 -tx , 120, |x] <= .
An alternate, but formal, derivation of the fundamental
solution which is more suited to our purposes will now be given.

The Heaviside or Mikusinski operational calculus [14] associates
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(-1)j+ltD§
with problem (1.1) the formal solution operator e '
which we interpret by

j+1,..q .
(-1)"+D - k(j+1),k
(1.4) e *opm) = B Lt gy
k=0 k!

whenever a meaning can be attached to the series. In particular,

if o¢(x) 1is a polynomial, the expression (1.4) defines a classical
solution of (1.1).

Assume now that o(x) has a Fourier transform o(x). Then
—
if '@(x) is absolutely integrable on |x| < ®», we have, by the

Fourier integral theorenm,
1[®re is(x-y)
o) = @) [ [ otyeriel Vs o,
-0 -0

A formal application of the solution operator (1.4) yields

(-1)9*¢pd
u(x,t) = e * o g(x)
- f"’ o(y) {(2*1)-1 fw S UN P

= f cp(y)Kq(X-y,t)dy

" ! q

where, as before, Kq(x,t) = (211)'* o~ tx
It was this type of formal development which led I. I.
Hirschman and D. V. Widder [12] to define the formal differential

2
operator eth by means of the Weierstrass transform. That is,
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th

R
e Toop(x) = 1lim Jf K(x-y,t)o(y)dy,
R—w

whenever the limit on the right exists. The function K(x,t) is
the fundamental or source solution of the heat equation (1). If

f(x)*g(x) denotes the convolution integral

f £(x-y)e(y)dy,

then convolution integrals of the form Kq(x,t)*¢(x) are gener-
alized Weierstrass transforms. We will find that many of the im-
portant properties of the usual Weierstrass transform, discussed'
in [12], carry over to our more general situation.

If we denote the inverse Fourier transform of ¢(x) by
t;z;sz and observe that Kq(x,t) = Kq(-x,t), we see that (1.3)

may also be written
q°
(1.5) K, (x,8) = (2m)7E &7

Furthermore, it is a well known fact that integrals of the form

(1.3) represent entire functions of x for t> 0 .

2. The Generalized Heat Polynomials and Associated Functions

E. T. Bell [2] has defined the polynomials ® s by

g =2 (+,853), ¥ 120, n=0,1, ...

J
ht he _ hw

)

where j > 0 1is an integer, p denotes an infinite sequence of

independent variables, and % is an ordinary variable. Here
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he | : . = " .
e is used as a symbolic notation for I ;F-Qn(t,B;J).
n=0 ’

Bell was mainly interested in (i) the e (t,83;3) as functions
of t and (ii) certain ordinary differential equations (with res-
pect to t) which these polynomials satisfy.

Gould and Hopper [10], by using the differential operator

(1.4), have defined the set of polynomials

np?
q x k . .
(2.1) gk(x,h) =€ C X, Qa=2j, J=112, ...,

k=0,1,2,

It is easily shown that the gﬁ(x,h) are a special case of the
B (+,B35). The authors were mainly interested in obtaining

operational identities connected with the polynomials gg(x,h).

In terms of the gg(x,h), we now define the set

@©
{vﬁ(x,t)}k=o of generalized heat polynomials, by

k 1 j+1 RN
(2.2) v t) = 7 g6 (-1)°7), a =25, § = 1,2,

Since the generalized heat polynomials play an important
role in our development, we now summerize a number of their basic
properties which follow from Bell's results. The polynomials are

given explicitly by

k
(] 0 (s
q (5+1),. 0 k-qf
(2.3) HKxt) = ¢ L) t X T q=2§,3=1,2
b 0=0 Lt (xk-qg)!

and form an Appell set in the sense that
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avﬁ(x,t) o1
(2.)4-) S = Vq (X,‘b), k=12, ...

Finally, we have the generating relation

g+, q ©
A zkvg(x,t)
k=0

(2.5) JZX + (-1
In order to see that the generalized heat polynomisls satisfy
Equation (1.1), differentiate both sides of (2.5) with respect to
t to obtain

@ -4 . Y

L 2D vi(xt) = £ (1) I o Bxg)

k=0 q L=0 4

A comparison of coefficients of zk gives
k j+1_k- j+1.q k
(2.6) D (x) = (-1)TWE U t) = (1)l ()

The final equality follows by q applications of (2.4).

Of necessity, the associated functions must be obtained in
a manner quite different from that in [6] or [16], where the Appell
transform was available. For the purpose of developing these
functions, let S denote the space of infinitely differentiable
functions f(x) on |x| <« which, together with all of their

derivatives, tend to zero more rapidly than any power of TET
X

as |x| —> o . Let A(z) generate the Appell set of poly-

=]
nomials {pn(x)} in the sense that A(z)e®** = = znpn(x) and
n=0

Dxpn(x) = Pn-l(x)' Further, let A(z) be regular in a neigh-
borhood of the origin (A(0) = 1) and let 1/A(iz) ¢ S. Stein-

berg [17] has shown that the function
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-1 ® -iyx
a(x) = (2m) f Emﬂ dy 1is in the space S. Moreover, the
-®

functions q (x) = (-1)"Da(x), n = 0,1,2, ... , satisfy the bi-
Y AL

orthonormality relation f me(x)qn(x)d.x = sm,n. Here, sm,n is

the usual Kronecker delta.
In view of the above discussion, (2.4), and (2.5), we ob-

serve that the set {vl;(x, -t)} is an Appell set of polynomials

Je,d J q]-1
generated by o(-1)7tz . Moreover, since q = 2j, [:e('l) t(iz):l -

-tz4 .
e bz is an element of the space S for t > 0. Since

o q
1 -ty *-iyx
Kq(x,t) = f eV dy ,

-

) )
we are led to define the element wg(x,t) of the set {wﬁ(x,t)}k =0

of associated functions by

(2.7) wlé(x,t) = (-l)kaqu(x,t), £>0, a=2j, §=21,2, ..

It is not, however, immediately clear that the sets
{vlé(x, -t)} and {w};(x,t)} form a biorthogonal system on
|x| <® for t> 0. This is because it is not obvious that the
integral

f vlc‘;(x,-t-,)w(iL (x,t)ax, >0,

-

is independent of t for all values of X and k. For this reason,

we will give a direct proof of the biorthogonality relation. The
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proof is essentially Steinberg's [17].
Lemma 2.1. For -o<x<® and t > 0, the sets

{vﬁ(x,-t)} and {wﬁ(x,t)} satisfy the biorthogonality relation

® x )
(2.8) f vq(x,-t)wq(x,t)dx =8 1 2,x =0,1,2,

-

Proof. By the Fourier integral theorem and the fact that
K (x,t) = K (-x,t) , we have
q q
tyd ® i
(2.9) e = f Kq(x,t)elyxdx, t>0 o
-0

Upon differentiating both sides of (2.9) n-times with respect to

¥, we obtain the relation

(2.10) 5 Ce)(ay®n f m(ix)neiny (x,t)dx
' k=[n+q-l] k!(qk-n)!? L » Q™ .
q

At y =0, (2,10) reduces to

© o, if n # agm for some integer
(2.11) f (ix)an(x,t)dx =/ m
- _-t m qm 1}
3 if n = qm for some

integer m.

Since wﬁ(x,t) € S, we have, after successive integration by

parts,

(2.12) f ovlé(x,-t)wi(x,t)dx = f ) Dﬁv];(x, ~£)K, (x, t)ax.

- -

Q
Clearly, if L >k, valé(x, t) = 0 and our result follows. If
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- -
L=k, v&'l‘(x,-t) =1, and k/‘ Kq(x,t)dx =1 by (2.11) with

- 0
n=0. Finally, if I < k, we need only show that K (x;t) is
orthogonal to all vz(x,-t), k=1,2, ... . Upon substituting the

explicit form (2.3) of the polynomials into the integral on the

right in (2.12), we have

(£ .
N K q 1 JQt L © k-qﬁ
J vt Gutiax = B S | A moe

- 0

= (_l)m(j+l) £ g
me. R=o

E) (—1)Q= 0 .

We have made use of the fact that the integrals inside the
sign of summation vanish unless k = qm for some integer m, by
(2.11).

In addition to the explicit form (2.3) of the generalized
heat polynomials, we are able to prove the following Poisson inte-
gral representations:

Theorem 2.2. For t20, - ® < x<®, the generalized

heat polynomials have the representation

k ® k
(2.13) Vﬁ(x,t) = Kq(x,t) * e = u/\ Ky (x-¥,%) L ay .
k! k!

Proof. By the definition of the convolution integral,
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Tk f Kq(y,t)yﬁdy-

-0

The integral under the sign of summation vanishes unless Q= qm,

m=0,1,2, ..., by (2.11). Thus, this last sum is equal to

1 [g.] k k-qm (-l)m(j+l)tmkqm)!
kT mzo (qm X m'
(=]
g m(j+41) _tBHET x
= mio (-1) AT (ko) = vq(x,t), by (2.3).

Since the kernel is not defined when t < 0, (2.13) does not
hold for all t. Nevertheless, we can obtain the following complex
representation.

Theorem 2.3. For 0<t<w, -®»< x<®, the generalized

heat polynomials have the representation

®
k 1 k
(2.24) Ao = [ e
in (g-1)im
=ed - q
where A =e and Q, =e

Proof. The integrand of the integral (2.14) is an entire

function of z =y + O.tlx. We may, therefore, apply Cauchy's

integral theorem to show that

T HEEN "N BN TN TS W T Gl I S T EEe " T T T e e = —_—
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= f K (r+ax,t) (0, vy = 5 f Ky (v, t) (x+py)¥ay

- - ®

for any fixed x. When (x%—aey)k is expanded by the binomial
theorem and the resultant series is integrated term by term, the

last integral is found to be equal to

k . pe
1 K| k- i
T on (& )x Jf K (v, 0)(ay) ™4
=) Ly YW
1 q (—102) k ' k-
= X mE-O m' qm (qm)-("t)mx an
[g] (-l)m(j+l)(_t)mxk-qm X
= I )" = vg(m-t)

We have applied (2.11) in the above reduction.

3. Growth Bounds for Solutions of Egquation 1

In order to develop the expansion theorems, we need infor-
mation concerning the behavior of the functions vi(x,t) and
wﬁ(x,t) for large k. To this end we make use of some basic re-
sults of 0. A. Ladyzhenskaya [13]. Her results are discussed be-
low but are restated in a form which fit our immediate needs.

Let x denote the point (xl,xe, ceey xn) of Euclidean

n-space E, and let X oy denote the usual scalar product

n - 3 -
L x.y.. Let r=(xox) =||x|| and let
. ivi
i=1
ax = dx,dx, ... dx . Consider the equation

Tl
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(3.1) WEe) o (1) ap)ulzt), 5 =12

cee
where A(y) is a polynomial of degree q = 2j, Jj = 1,2,
Further, let A(y) satisfy the conditions i) A(ly) = cA(§F) and
. . - -1 -1
ii) ll’T?f A(y) > 0. Let p = qg-1) and v = (g-1)7" .
yii=1

Define the numbers A and m (both positive) by

a) 2v = inf A(y)
7] =1
(3.2)
b) -m = min Re [A( + iW) - A||g||%],

the minimum taken over all £ and all W satisfying ||W||= 1.

VY
Let K(%,t) = (2m)™ ¢ tAK)

denote the fundamental solution of
the equation under consideration.

For t>0 and X € En’

- = TR T
(3.3) Ik(z,8)] <ct 2T

where
a) C= % (mg)™
(3.4)

b) ¢ =X

Qs

(2")-n\/“E e-A(Ilﬁll)di .

With the same restrictions on ¢t and X,

k+n
)

e { —— 1-
(3.5) |D§5c (x,t)| s ct q ot

Here C 1is given by (3.k4a), while
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k+n

-(==) -
(3.6) C3 = (2.")'1'1 @ L Ilﬂ Ik e-A(I |Y| I )di .
n

_, M
M| |x] |

Next, let |o(X)| < Be where B and M are con-

stants. Then for X e E and 0<a<1, it results that

Mr P

-3t £y B }

G K * 9@ < 6 exe]

-1
in the interval 0< t< a (% 4 . The constant Ch is given by

n
(3.8) C) = BC, [c(r-a* ‘l)] ”‘f e'A(HyH)d{r

E
n

while the constants C and C, are given by (3.4). Finally, we have

Lemma 3.1. Let A >1, p=gq(a-1)"5, a>0, b>0,

and 9 =2j, j=1,2, ... . Then
(3.9) (a4b)* < raf 4+ (AT YTHH |

The above results apply directly to problem (1.1), where

n=1, Aly) =y%, and 1 = 3. The desired growth bounds for the

vz(x,t) and the wl(;(x,t) will become clear by the following
elementary lemmas.

Lemma 3.2. For t >0, -*2<x<o®,

k+1

—_— RS
X 1 kel 1yv7a _-clx[Mt
(3.10) lvg(®t)| < ZTERGE) * e )

where C is given by (3.4a) and p.zq(q,-l)'l
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® q
Proof. Since f Iylk e"IYI dy = -i— I‘(-]%-J—') and

w};(x,t) = (-1)“D§Kq(x,t) by (2.7), the result follows by (3.5).

Lemma 3.3. For -o < x< o, 0L<t<=»

a1 E oy x
(3.11)  |vEGot)| <A k%[(m)(‘c?ﬁ)q }q O ) I

for any @ O0< a<1l, and any 5> 0. Here C is given by
(3.4a), o= Q(Q-l)-l, v = (q-l)'l, and A 1is a constant inde-
pendent of k.

K
Proof. Recall that for t > O, vlé(x,t) = K (x,t) * &7 ,

by (2.13). Further, for any M> 0, |x | < ( )“' Mlxl as can
e . k -Mxp‘
be seen by maximizing the function y = x e for x> 0. By
k

(3.7), with B = kl-,-( E W | ye see that

k
= 1)
k 1l ko M| x|
di(x,'G)Iﬁ AfT (E) exp T ¢ Bl
[l-(g) 3

-1
in O$t<a(-—§-—) ; |x| <, for any @, 0< a< l. Here

- - ™ q v
A=Cy [c(l-a“"l)] H f eV dy. Upon choosing M = c(-ti‘—s) ’
(-]

we find that
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k t4+d k M a.q-1
g = [‘T’ XZn ]q T T T
-G 3l

The resulting bound (/3.11) is then valid for 0<t<®, 0<&8< >,
and any @, 0< @< 1.

In order to obtain a bound on the generalized heat polynomial
vlt;(x,t) when t < 0, we first prove the following extension of
(3.7).

Lemma 3.4. Let z = z) + iz, z, and z, real. Let

M| z|*

3
9(z) satisfy |p(z)] < Be where |z| = (zi + zg) , B and

S q-1 !iTT

M are constants, and M > 0. Then, with 012 = e 1 s

b
Mlx|
-1, w1l

q
- &l

(3.12)

® !
[ oo | < 0,
R
for 0<t<a (ﬁ) and 0< @< 1l. The constant C, is
given by (3.8).

Proof. By hypothesis and (3.3) we have

| [ x ety

1
- 1- "
< fw 5Ot q e-clylut bt Mx + oyl ay

1 W B 1
- — [+2] -
s BC b ¢ f MUxl+lyl) - cly["e™™ 4

- 0

n
An application of Lemma (3.1) to (|x|+|y|) in the last member
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of this inequality gives

- i g\ 1- n
o @ Mty le“f“’ Ja-ct™ ) y]

- O

IIl < BCl dy ,

l-p
for A >1. Iet A = (%) where 0< Q<1 . Then A >1

q-1

whenever 0< t < o (%) . For t in this range we find that
-3 M|x|" ® ettt |yl
7] < Bt 2| exp X e” - Y gy
- 71 c 1-q £ w-1
0-( 3l -

The desired result follows by introducing the change of variables
1 1 1

E=c* ¢t ¢ (1-a¥ 1)“’y in the integral on the right.

Lemma 3.5. For 0<t<=, |x| <=, 0<a<1, and

0<d<®,

k VM

a-172 () |x|
(313)  Ivy(x-t)l <A gy [(“5)( ]q e °
Here C is given by (3.ka).
im gg-lZin
Proof. Let 01==ecl and 02=e q . For t>0,

(3.14) o0 = g [ K (e, ) (o) ¥ey

=& Ky

-

by (2.14) and an application of Cauchy's theorem. For any M > 0,
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L3 m
|x"'a2y|k < (|x|+]y] )k < (Elé%;)u eM(|x|+|yi) . Therefore, the hy-

potheses of Lemma (3.4) are satisfied. The result follows by
L
o )q-l

choosing M = C(m

4, A Huygens' Principle and a Kernel Decomposition Theorem for
Equation I.

Let us now recall the convolution theorem for Fourier trans-

forms. That is, if f(x) and g(x) belong to L(-»,») and are

the Fourier transforms of F(x) and G(x), respectively, then

) J —
v2r F(x) 6(x) ¢ L(=,») and ﬁﬂ-r}?(x) G(x) =rF(x)*E}(x) . Since
‘ q
Kq(x,t) = (211)'% e~ bx , we have,
(k.1) Kq(x,t) * Kq(x,t') = Kq(x,t+t')

for |x| <=, t> 0, and t' > 0.
In the case of the heat equation, (q = 2), it is known that

the source solution K(x,t) satisfies the identity

(4.2) f K(y-l-ix,tl) K(iy-v,tz)dy = K(x-v,ta-tl)

-

whenever 0 < tl < t2, [12, p. 177]. It is this result which
allows Rosenbloom and Widder to obtain the decomposition relation
for K(x,t) when t is negative. Our next result extends this

identity to the more general kernel Kq(x,t).

31 Sg-l!i’ﬂ
Theorem 4.1. Let ®=e % and a, =e 4

0O<t'<t, |x|] <», and |v| <=,
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(4.3) f Kq(y+a1x,t' )Kq(aey-v,t)dy = Kq(x-v,t-t')

Proof. By Cauchy's integral theorem and the definition of

Kq(x’ t):

w7 e tr (o ey

-

= f Kq(Y;t' )Kq(X-V+G ey,t)dy

- ®

® ® -t q_'( ~-v)s-i s
=f Kq(y,tf)(en)‘lf Y e ay

1 © -tsq-i(x-v)s © -iazsy
- [ [ xGene % ay)as.

The interchange of the order of integration is valid since all of
the integrals involved are absolutely convergent in view of the

bound (3.3) as applied to Kﬁ(x,t). In fact, the integral

o -iaésy
(4.5) u/\ Kq(y,t')e dy
-
converges uniformly in lIm.(aés)I S p<® for any p which
satisfies the inequality. Therefore, (4.5) represents an analytic
function of @,5 in lInx(aés)[ < ®, The theory of analytic con-
tinuation shows that this is the only function analytic in the
AP

strip which assumes the values e vhen z = abs is real.

The last member of (L4.4) then reduces to

e
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for |x| <o, |v] <=, 0<tt<t.
We now define the Huygens! property in agreement with Rosen-

bloom and Widder.

Definition. A function u(x,t) e H; in a<t<bif
(1) u(x,t) e cd, (ii) wu(x,t) satisfies the equation (2.1), and
(iii)
(4.6) | u(x,t) = Kq(x,t-t') * u(x,t') ,

the integral convergingfor all t and t' in a< t'< 1t <b.
By (4.1), Kq(x,t) € H"q* for 0< t<®. We now show that
the elements of the sets {vﬁ(x,t)} and {wz(x,t)} also belong

to the class H; in eppropriate time strips.

Theorem 4.2. For |x|<w®, k=0,1,2, ... ,
(&.7) vlé(x,t) = Kq(x,t-t') * vlé(x,t') for |t] <=
and V
(4.8) wlé(x,t) = K (x,t-1) w{;(x,t') for 0<t<m .

Proof. We prove (4.8) first. By the definition (2.7) of

w;[(x,t') we have

(h9) WGt = () = em RS VR

The last equality follows from the definition (1.3) of Kq(x,t').
Since the last integral is absolutely convergent for any t!' > 0,
we may apply the convolution theorem for Fourier transforms to

obtain
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_J p ./
r 11,3 1,3
Kq(x,t-t') * wlg(x,t') = (211)'l e'(t"t )x * (-ix)ke"t_'x

1

= (211)-* (-1'.x)k e W o wz(x,t) for 0<t'<t<m,

The proof of (4.7) proceeds in a different manner. In the
right side of (4.7), replace v](;(x,t') by its explicit form (2.3).
Then,

(4.10) xq(x,t-tf) * vlé(x,t')

- £ . |
=f K (x-y,t-t*) % ('l)’Q(Jfl)(t')& yk-ql
e 2=0 Qv (k-q )

dy

R('+l) & D

q )

= 2 (-l) QJ t (t' Vl‘;-q (X,t’t'), q = 23) J = 112’
,Q=O

We heve used Theorem (2.13) to obtain the final sum. By (2.6),

(4.11) Joad (x,t-t') = (-1)£

a uﬂ)D%vE(x, t-tt) .

The series (4.10) is, therefore, equal to
k
[‘-1'] Y Lk
t
z v (x,t-t°
L E, (@) Tyrglot-tt)
when t-t*> 0. This last sum is just the Taylor's series repre-
sentation of vﬁ(x,t) about t'.

Our next two results will be stated without proof since their

proofs are identical to those given in [16] for the case q = 2.

-]
Lemma 4.3. If u(x,t) =f Kq(x-y,t)da(y), the integral
‘- OO

converging absolutely in 0 < t < ¢, then u(x,t) ¢ H;' there.
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Lemma 4.4, If u(x,t)eH'; in a<t<b and

v(x,t)eH; in a< ~-t<b, andif

f lu(x,t)lf Ky (v 81-t) [ v(y, -t ') |dy ax < =

for a<t< t'<b, then

(4.12) _/m u(x,t)v(x, -t)ax

- 0
is independent of t for a <+t <b.

We now have the following kernel decomposition theorem.

Theorem 4.5. For |x| <=, |y| <=, and

- min(t*,At'/m) < t < At'/m,

(4.13) K (x-y,5+t7) = T vo(x, 605y, 87) .
q _ k=0 q q

The constants A and m are defined by (3.2a) and (3.2b),

respectively.

L
Proof. We first prove the result in the range 0< t < :‘l—t» .
By (h'l),

(4.14) Kq(y-x,t'+t) = Kq(y-x,t')* Kq(x,t)

whenever t'> 0 and t > 0. Since Kq(y-x,t') is an entire
function of x for any t' >0,

k

B (1D (v, t")

(.15) Kot = £ 5

@«
z
k=0
o K

X k
z T v (th')
k=0 ¥* 4
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Upon substituting this series representatim d.’Kq(y-x,t') into
(%.14) we have, formally,

P
X k
Kq(y-x,t'+t) = Kq(x,t) * kzo £ Vg (vst')

k
= 2 (K (x:t) * — k' ) w (Y;t') = E v (x:t)w (Y:t') .
k=0
The reduction to the last series follows from Theorem (2.13), which
is valid since t > 0. A sufficient condition for the validity of
the formal term by term integration is

k

(4.16) k§0|wq(y,t')| Lm Kq(x-s,t) -l%l!—- ds < = ,

Using the estimates
1

i
P onk 2 + ==
@) @ & <re) < @ @ PP 12
(see for example, Hille [11, p. 235]) and the bounds (3.10) and
(3.11), it follows that series (4.16) is dominated by
ktl 1

k = .
® q-17 = q
] 1 [,t+5 g  k+l
18 reoyer) E o |GRROEED) e e

k41
. eR(k) - (T)

for 0<a<l 0<bd<w=. In (4.18),

R(k) = =3 + and F(x,y;t,t!)

denotes all factors which are independent of k. By applying the

ratio test to series (4.18) and using the fact that
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- iq 1
(Ceun) =e % (mq)? , we have

T |-

L ok ome

o (t48)m Y k4l P ka2, € R(k+1)-R(k)-1
1 § ) &%)
k_f;n Q[ o) (% k+1 €

1

[g t+5 Zm]a
art?

o=

]
This proves that series (4.16) converges provided t + & <<1At

Since @ 1is arbitrary in (0,1) and & is arbitrary in (0,»)
we may choose @ suitably close to 1 and & sufficiently small
to obtain the desired result.

The addition formula (4.1) fails if t < 0 and we must pro-

ceed differently in order to prove (4.13) in the range

1
~min(t',§§- ) <£<0. By Theorem (4.1),

(4.19) Kq(x-y,t'-t) = f: Kq(s+<zlx,t)Kq(<12s-y,t')ds,

inm gg-léin
for 0<t<t!, with c11===eq end Q) =e 1 . Upon ex-

panding Kq(aéé-y,t') about the point y and substituting the

resultant series into the integral (4.19), we find that, formally,

(4.20) Kq(x-y,t'-t)

® (a S)k
- f K (849 x,t) >: z (-1) (ox, (v,£1)) ds

- @ k?
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= z ( 1) DkK (y,t') JF 4 (s+0&x,t) SS?:- ds

= z v (x,-t)w (y,t*)
k=0

We have used the definition of wz(y,t') and Theorem (2.3) to ob-
tain the final series. The interchange of the order of summation
and integration is valid if

k
® |ats|
(4.21) k§O|w (y,t")| :/; qu(s+Oix,t)l — ds<e .

In view of the bounds (3.10) and (3.13) this series is bounded by
the series (4.18), which converges in 0< t < H . However, if
ﬁf > t', the complex addition formula (4.3) is not valid in this
larger interval. We have therefore proved (4.20) only in

'kt)

0 <t < min(t But this is just (4.13) with -t substituted

for t and the proof of the theorem is now complete,
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5. The Poisson Integral Representation

Let X denote the n-vector (xl,xe, v xn) and let

n
X . y denote the usual scalar product ¥ x.y. . Let
j=1 * 7

r=(x - X) and T denote the transformation from Cartesian
coordinates (xl,xg, ceny xn) to spherical coordinates

(r’el’e2’ R en-l) where 0<r<=, 0<9, <m i=1,2,...,0-2
and. 0< en_l < 2m . The required transformation is given

explicitly by x, = rCos ©

1 1 X rSin 6181n 62 «++ Sin ei_

1
Cos Bi, i=2, ..., n-l, and X = rSin GlSin 82 «+++ Sin en-l'
When we say that a function vl(i) is radially symmetric we mean
that under the transformation T: ¢l(i)=ﬂ> (r(x)) = §(r) .

We now prove a lemma which we will use in this and subsequent
sections.

Lemma 5.1. Let ml(i) be radially symmetric and, further,

assume that @l(i) exists for all X € E - Then for n > 2 (an

integer ) n n
1- =

51 H@®=r 2 [ o)k ()
0 5 -1

Here J\(x) denotes the Bessel function of order v of the first
kind.
Proof. Let € = (s . 5)% and introduce the coordinates

~=
(§,91,62, cees an_l) into the integral defining wl(x). Then

n
— ~z [® pEmopm T i(®F)
(5.2) w.(x) = (2n) (8)e |1}ae;.-a8 _, 4g,
#1 q[; L/; k/o u/; ® 1 "ol
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where y = (€ Cos el,g Sin elCos 62, «eey § Sin elSin 62...Sin %bl)

end |1| = €" 510" o 51n"3 6, ... sin 6, , denotes the

Jacobian of the transformation T. Integrating first with respect

to 61, we must evaluate the integral

n .
1 = \/‘ gipP2 0 e-1§(xlCos 81+yoSin 07) 9. where

0

1l
Vo = X, Cos 92 + x3 Sin 02 Cos e3+ ces + X, Sin 92---Sin en_l.

Upon expanding the exponential and integrating term by term, we ob-

) 9.
oo T ) g
S Rl R Pl 2

Next, integrate with respect to 62. Then we must evaluate the

tain

) .

integral

™ D-Eml
I, =\/; (XQCOS 92+y381n 92) de,,

where y3 = x3 Cos 93 + e + X, Sin 93 ese Sin en-l . By an

application of the binomial theorem and term by term integration,

we obtain
e
2 Q- 2n A2(m+m.) 2m+1 - 2m -2m4n-1
L= =z (ix,) 2ty T Cp(—e— X 2T
m,=0 2m,

Through a repeated application of the above procedure we find that
(5.2) reduces to
-1
(-1) (%)

n
—~= _ 13 tre n-1 3
.3 = — z T ——————. .
(5.3) o (x) = () j; (e )e 120 e 2) dg
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1. B
The series in (5.3) is just (%i) 2 I (r¢) and we obtain
3 -1
— l"é ® %
n®=r 2 [ oxts (s
0 5 -1

Let us now consider the equation
du, (x,t) . n :
1 +1 2,J . ,
(5')"’) Tt = (‘l)J ( z D'i) . ul(x:t): J = 1,2peyn=2, 3,---,
where D, = a/axi, i=12, ..., n. Expansion theorems for
solutions of (5.4) when j =1 (the n-dimensional heat equation)
have been given by Widder [18]. If we assume that ul(i,t) is
radially symmetric, then under the transformation T, Equation

(5.4) transforms into

(5.5) —a_ué%t-l: (-l)j+l Aiou(r,t), =112, ..., n=2,3,

..y

where A = 82/6r2 + Eii d/dr is the radially symmetric Laplacian
operator.

Analogous to our treatment of Equation (1.l1), it can be
shown that the fundamental solution of Equation (5.4) is given by

——

.2 - -
2 e-t(x-x)

(5.6) Fj(i,t) = (2m)

The Poisson integral representation for a solution of (5.4), subject

to the initial condition ul(i,O) = wl(i), is given by

(5.7) mG@o) = [ 5@ @D 3 =12

n
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n

e 3 T TR
(5.11) [ alyy? [ BB ATEG 5
0 E 2

(V(E-E)ﬁ)d§ dy .
-1

The inner integral (5.11) is the n-dimensional Fourier transform

of a radially symmetric function. We can now apply lLemma (5.1) to

obtain
(5.12) u(r,t) = f P(¥)K, o (r,¥s5t)ay
0

This is the desired Poisson integral representation with kernel

(5.13) KJ o(oyst) =" r f se I &S)Jn (ys)ds.
b o -2-—1 5-1

The initial data ¢(y) must be restricted to ensure the conver-
gence of (5.12).
We define the Hankel transform of order v of a function

o(r) by

(5.28)  o(x) =H, (r,0(r)) = fo sq(s)i, (re)as

Observe that Lemma (5.1) then gives a direct connection between
the n-dimensional Fourier transform of a radially symmetric

function @l(i) and the Hankel transform of order % -1 of

o(r), r= (fcii)é In particular, we should note that by (5.8),

n

i} % 1- % 3 1 42
(5.15) Py n(mt) = (am) S xSl L)
2

for t > 0. Further, (5.13) can be written as either

n,_ 1

2J
(5.16) Ky olm:¥3t) = ¥r %4 e

(ry))
5 -1 g -1
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or
n n
= 1. = 23
2 2 -t
(5.17) K. (r,y5t) = y° r (r,e™™ 3 (ry)) .
J)n 2 - _f_l. -l
2
Finally, let us note the interchange property
(5.18) K, (nyst) = (/r)2 L K, _(r,r5t)
' : Jont7772 J,nt’?

6. The Generalized Radial Heat Polynomials and Associated Munctions

Associated with problem (5.5) is the formal solution

1, J
operator e("l)J 4y which we will interpret by
(-1)3*ead ® !
(61) ® e ote) = = R gl o)

whenever we can attach a meaning to the series on the right.

We define the generalized radial heat polynomial Rg n(r,t) to be
2

2k
the classical solution of (5.5) which satisfies R? n(r,O) = %. .
, '

The explicit form of the polynomials is readily obtained by applying

(-1)3*¢a :

the formal operator e to r2k/k! and using the

definition (6.1). Thus,

@ 0(5+1) e
(6.2) Rl;’n(r,t) =}Q20 ﬁi)jc_ tQ [AﬁJ'iT

® Q(5+1) k ' s
=Qz %—tQ (GO (k-Qj ’aeﬁi ﬂl [2(k-i)+n]§ 2k b3)

=0 i=1

(5] oyt 2(s-13)
2 Leo

L (e-03)r B + x-03)




When j =1, (6.2) is, except for a constant factor, the radial
heat polynomial R (r,t) studied by Brage [6].

Although the polynomials R (r,t), k = 0,1, ..., do not
form an Appell set in the usual sense it can be shown by induction

that they do satisfy the relation

hmr(£+ k) o

k
(6.3) Azkj,n(r’t) = 1-.(_ + k-m) J n

(r,t), m<k.
In order to see that the le( n(r,t), k=0,1, ..., are
2

solutions of Equation (5.5), we differentiate the explicit form
(6.2) with respect to t to obtain

(6.4) Dth’n(r,t)
[_O.

C =0 pt(k-g-d)T(G + k-3- 25 )

y(@#1) (311),3U41) 4 2(k-5-15)

(- l)g+lu3r(§ +k )Rk J(r £) = (-1)7* Aij (r,t)
(3 + k-3)

2 r o~

The final equality here follows from (6.3) by teking Jj = m.

We define the associated function Sj n(r,'l:) by the relation
>

k
(6.5) 8§ (r) =47 - F (5,6), T>0, £>0, k=0,1,2
By making use of the well known recurrence relation
2v Jv(z) = ZJ\)-l'l(z) + ZJ\)—l(z) ’

it can be shown by induction that
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1._ n 1.8
6.6 ap-lr Zu (1= (V e 2 GE),
zt 2™t

From definition (6.5), relation (5.8), and (6.6), we then have

the more useful determination,

X - E’. 1- .1-1- -] E 't 2,:]
61 & w0y a2 [T,

(= )d§}
5-1

n n n ' .
-=1l.= o = + 2k 2j
- (Dfem) 2 [ ey e
0 =-1
2
The indicated operation can be carried out under the sign of in-

tegration since the final integral is absolutely convéi'gent.

k
Theorem 6.1. For t > 0, the sets {R.j,n(r"t)}kso and

[--)
{Sl‘;’n(r,t)}k -0 Satisfy the biorthogonality relation

(6.8) f: Wn(r)Rg,n(r,-t)S‘;’n(r,t)dr

f o 1 p#a,

n
2q9 + % -1
o @ rg+q) if a=p.

The weight factor Wn(r) is given by

o
2 Nel
) r

(6.9) W (r) = (am

Proof. We will prove this result in essentially the same way
we proved (2.8). By our definition of the Hankel transform, (6.7)

can also be written
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% -2- + 2q-l
(r,r

traj
e

n
21
(6.10) (-1)%(2m)? 2 Sg,n(r,t)=77/

n
2

This implies, by Hankel's inversion formula, that

20 -t§2 n 1- 2
(6.11) g% e f (-1) (emr ) E s n(r,t)Jn (rg)ar .
5-1

By an application of the differential operator
(32/352 4+ 2= n-l

of the result at § = O we obtain the relation

3/3€)° to both sides of (6.11) and an evaluation

(6.12) f p28in-1 sq L t)ar
0

O if either q> s or g<s and
5-q ¥ Jm for some integer m,

= (-l)j(m-'-l) tm22s+ é’ -1
w! (2m)?/2

q<s and s - q = jm for some integer m.

st 1"(% +8) if

Now substitute the explicit representation (6.2) of the
polynomial Rf]’ o(%,-t) into the integral (6.8) to cbtain
2

(6.13) 4 f wwn(r)Rg’n(r; -t)S?’n(r,t)dr

0

[P-]

(1) I )k _2(p-kj)4n-1 ]
= I'(= Z S t)dr .
G F K (o-k9) '@ +p-k3) f a(%)

The result follows by (6.12) and an analysis of the possibilities

P>q, p<g, or p=q.
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Theorem 6.2. For 0<r<wo, t 2> 0, the generalized radial

heat polynomials have the representation

@ 2k
(6.14) ng,n(r,t) =£ Ky o(oy3t) e dy, k=0, 1,2, ...

Proof. By Hankel's inversion formula, (5.16) implies that

23 1-% ® 1-5
(6.15) e GE) % (xe) = fo KBt 08) 9, (o,
.27

Now, by (6.6),

-3
(6.26) (2%/252 + Bk aa¢) f TGO 21 (e
a.
® 1-24+om1-2
[ vty T2 e A ey
o ¥ z-1

The last member of (6.16), when evaluated at £ = O, reduces to

n
-] ®
6an (PG =k [k vy, m=ole, ...

n
FE) 0

n-l

Upon applying the operator (32/a§2 + == a/ag) to the left

member of (6.15) we have
T -3
(6.18)  (3%/at® + BLafar)” . e T(xe) 2 (re)
5-1
5]

1YY e (- 1) mvr(—-+p3+k)h w2k (A3 '
,dbrasga (03+i-m)

rols

= (3) Tz J+k-m
9 =0 k=m-§J JI'k'I‘(-— + k)r( +)J +k-m)

At ¢ =0, the last member of (6.18) reduces to

s -1
(6.19) 3° (D)% mt ==& (), m=01,2, ....
F(§) ?
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The result follows by equating (6.19) and (6.17).
Using a similar type of reasoning, we can also prove

Theorem 6.3. For O0<r <« and t > 0, the generalized

“radial heat polynomials have the representation

(6200 B (r,-t) = & f K, o(@rv56) (o) ey

1n geg-lzln
where ql = e 23 and Qb = e 2J

T. Growth Bounds for Solutions of Equation II

The growth bounds for the generalized radial heat polynomials
and the associated set {S?}n(r,t)j can be obtainea Oy us.iuyg
the‘results of Ladyzhenskaya discussed in Section 3. Recall, by
Lemma (5.1), that Fj(i,t) = Fj,n(r’t)’ We can, therefore, apply
Ladyzhenskaya's result (3.3) to obtain

n

- 37 . 1-n
(7.1) LARCRNETR 25 o-Cr't

where p = 2j(23-1)'l. The constants C, and C are given by
(3.4).
By applying Lemma (5.1) to relation (6.7) we see that in

Cartesian coordinates S? n(r,t) has the representation
2

-

- E.r——* .3
(7.2) s5(,8) = (-0%em) % (&%) £ o t(x %)

In the same way that Ladyzhenskaya proved (3.5), we can show that

n+2k

: 1-
(1.3 I8} (0] < ol (B ) RS
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The constant C5 depends onlyon n and J while )\ is defined
by (3.2a).
The needed bound on the polynomial R (r,t) can also be

obtained from our previous work. For t > O we have

- -k
e - [y e G

2k

k TR
Since |y.¥y| = (ﬁﬁ-—“ ' forany M>0, y = (7F), we can

reason as in the proof of (3.7) that

L
x  2i-1
k 1 |, 448y, 2k 2]-L T -+
[4 - () "O'
(7.4) IRj’n(r:t)l SAp (T)(c_ep.') J e :

for £>0, 0<85<w, 0<a<1, and u =2j(2j-1)"1 . Here
C is given by (3.4a) and A is a constant independent of k.

Similarly, we have
1
2j-1

k
o123 1]:1 c@® r*
e

(15) | (m-) <Ay [(t*ﬁ)(

Cen
|
for t>0, 0<8<w, 0<a<1l, and u = 2j(2j-1) ~ . Again

A 1is some constant independent of k and C is given by (3.4a).

8. A Huygens' Principle and a Kernel Decomposition Theorem for
Equation II

Let us first show that the time translation property holds for
the kernel Kj,n(r,y;t).

Theorem 8.1. For r>0, y>0, t>0, and t' >0,
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1) K (mwswe) = [k g0k, (5yita
0

Proof. From (5.13), the definition of K, o(8:¥;5t), the
J

integral (8.1) is equal to

n
2

® 1- 35 [ -tn
©2) [ x (mesw [ w5 ms (sman e
0 ’ 0 §'-l 1

© 2J - ® Jo =
- f ne”®" 3, ([ & QK‘.j o(rs85t)9,  (§n)ag) an
0 2-1 0 ’ -1

The interchange of order of integration 1s Justiriea vy ine au-
solute convergence of the integrals involved. By Hankel's in-
version theorem, as applied to (5.16), we have

n

8 ) 1-1‘;:]( 2-tn)
@3 [ 8 B eemr, Guear 2T )

5 3-1

The value of the integral (8.3), when substituted into (8.2),

yields
n n
=S ® ' 23
88 FPr 2 [ eIy eman
0 §--l §-l
= Kj’n(r,y;t+t')
in (24-1)ix

Theorem 8.2. Let @ = e2a and a, =e 23

Then
(8:5) K, (rystr-t) = fo K, (%r,850)K, (a8,y5tr)as

for »>0,y>0, t'>0, and 0< t < t'.
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Proof. Upon substituting the integral representation (5.13)

of KJ n(aag,y;t') into the integral (8.5), we obtain,
2

@ 1- an @® ' J
(8.6) f K, o(@rgse)(ag) 5 f et 7y G137, (@Er)anas
o 0 2 2

@ 1~
2 : *
o [ @) B (@K @ gseee an
0

a
2

n

=f °t,T\e't'ﬂa‘j:fEJn

0 31

The interchange of the order of integration is valid since all inte-
grele sra shanlutely convergent. The inner integral of the second

member of (8.6) can be evaluated as follows. Substitute the series
expansion for the Bessel function into the integrand and formally

integrate term by term. By (6.3), we obtain,

@ ]_-E
1) [ (@8 2 (agK, (ngtlas
0

(

5 -1

1w (5O
z

k=0 1‘(52‘- + k) (z,-%)

k
Jrn

A The term by term integration will be valid if
= 1 nE1 [ , 2k

(8.8) = —=— (P g7l | K (arge)ETeE]| <= |
k=0 T'(% + k) Y

By (7.5) and the ratio test, (8.8) converges absolutely for all
N>0 and t> 0. If we now substitute the explicit form (6.2)

of the Rg n(r,-t) into the second member of (8.7), we have
2



3]
2.1a (-1)k ny2 J 2(5+1) ) 2(k-93)
@©.9) @P® = ___ﬁ.ie_’_ PG+ x) B (-1) _ (-49t)" r
k=0 Iz +k) At T(5 + k-13) (k-5
k 03 1 _

Cafts 3o ™ D) gt

= =0 x=0 2! k! T(3 + k)

1-2 2
ey 2 I (rn) .

2.

Vold
V]

g, g, (rvjan
0 5 -1 5 -1

= Kd’n(r,y;‘c'-t) s 0< t <tY,

| For problem (5.5) we will define the Huygens' principle as
follows: A fuﬁction u(r,t) belongs to the class H; in
a<t<b if (i) u(r,t) e ¢%, (i1) u(r,t) satisfies Equation
(6.5), and (iii) if

Nno

(8.11) wrt) = | Ky (nyse-tt) u(y,et)ay,
0

the integral converging for a < t'* < t <b.

Theorem 8.3. For r> 0, y> 0, and k = 0,1,2, ...,

k ® , k -
(8.12) %mhﬁ)=J;gm&J¢¢W%mW¢W@Aﬂ< ,
and
(8.13) 8 a(rt) = f K, o(0,¥36-t)KS (7,47 a7,0< t <o

0
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Proof. From the definition (6.5) of s (y,t ), the

integral (8.13) is equal to

w—+2k 'Ej
R ety f e, G0 e

(em)2 -z
| @5+ 2k .2 k pe 1- 5
[(g2 " Tt j—i-'ir?; f v %Ky o(nystett)d) GE)ay a.
v 0 n 0 » a4
‘ (em)2 2

The interchange of the order of integration is justified by ab-
| solute convergence. The inner integrel of the second member of
(8.14) rcan he evaluated by Hankel's integral theorem,as applied to
(5.16), to give the desired result.
The proof of (8.12) differs but slightly from the proof of (4.7).
The next two results can be proved in an obvious manner.
Lemma 8.%. If u(r,t) e H; in a<t<b and

v(r,t)eH; in a<-t<b, and if

- -] o

(8.15) f la(r, )] f I, (7m0 vz, 6 |dz ar < o
0 0

in a<t<t'<b, then

(8.16) fﬂ rn-lu(r,t)v(r, -t)dr
0

is constant in a<t <b.

Lemma 8.5. If u(r,t) = f: Kj,n(r,y;t)da(y), the integral
converging absolutely in 0 < €t < ¢, then u(r,t) € Hg there.

We are now in a position to examine the decomposition re-
lation for Kj,n(r,y;t). We will have need of the following
lemma which is, in fact, a special case of the theorem we wish to

prove.
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Lemma 8.6. For t>0, y> O,
Z-1 o _ 257 o (st
©.17) K. (r,y5t) = B w.(y) =) 5%t
| 3, 2 Tt @)

The function Wn(y) is given by (6.9).
Proof. In the integral (5.13) for KJ n(r,y;t), substitute
: }

the series representation of J_ (r§). Then, integrating term
2
by term,
n

1-33 r e
(86) Xy Gwst) =r [ €™ 5 (o) ()
’ 0

g_l 5-1
24
1-38 o 23 o (1) (X2
=r J ge ™5 JJn (yg)(-i)2 % —(—-)——(-)—- ag
0 5'- £ =0 ,Q!I'(é' +4)
1 -‘21 -1 ® 2y sf (y,t)
= (-2') W) = (g) -‘1’-&}7——
A =0 4t 1"('2' +{)

The formal term by term integration is valid if

(8.17) () ——— | 87 )l o .
J2==o(2 per(3 +!)‘ 3,00 %)]

The series (8.17) is observed to be dominated by

n+2,0
(8.18) c.t ‘c'-"utl-u; 2 PG

f=0 kt/) Q!h r(§ +!2)’

by (7.3). By the ratio test, the series (8.18) converges for all
r>0 and t>0.
We should observe that r may be complex in the above proof.

The series (8.16) then has an infinite radius of convergence.
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Theorem 8.7. For r >0, y >0, and

-m1n(——,t)<t<)\t ’

(8.19) (r,y,t+t ) = (5 )-2“ lW L) T o ni t)s not") .
L= L I'('é +/Q)

The constants A and m are defined by (3.2a) and (3.2b),

respectively.

Proof. For 0 < t < t', we have, by (8.1) and Lemma (8.6),

(8.20) Ky  (r,yst4t!) = foKj,n(r,gst)Kj’n(‘é,y;t')d§

®© 1 g-l @ g 2% S;!n(y’t')

= J; Kj,n(r’g;t)(-é) wn(y),?zo (4-2-) ’Q!F(% .|.,Q) e
n_4 )t S 8!

-2 v § LD

4=0 L2 F(§+/Q)

For % < 0 we will use the complex addition formula (8.5)

and Lemms (8.6) to obtain

@a) x st = [ g @ngox (asyea

n
l§ ® rQRS (y,t')
= (= , s
&2 W (y)‘/‘ JWCEATOR: < e "
'E‘ r, S A
=(-:]2:)2 lW(y) ( 2 (yt),in 0O<t<tt.

s u r(-2-+52)

The proof can be completed in the usual way by using the

bounds (7.3), (7.4), (7.5), end an application of the ratio test.



IV. EXPANSIONS OF SOLUTIONS IN TERMS OF THE BASIC SETS

9. Representations in Terms of the Polynomials

In this section we will examine series of the form:

w
k
I. t)= X t
u(x,t) Koo Bkvq(x: ) s

(9.1)

=]
k
II. u(r,t) = = bR, (r,t) .
k=0 k'J,n

The designations I and II refer here, and throughout the re-
mainder of the report, to the problems (I) and (II), respectively.
Analogous results for the two problems will be stated in a single
theorem by using this notation. We will prove only one of the
results contained in each theorem. The proof of the second result
is entirely similar.

We now prove a lemma that will be of frequent use.

®

Lemma 9.1.I. If u(x,t) = 120 akvi(x,t) converges at

(xo,té) where X, >0, té = (-1)J+l to ty > 0, then
K
eq'l q
ak=0[k!(————-—)] as k—>», q=2j.
gt k31
0

@®
II. If u(r,t) = Z b B (r,t) converges at
k=0 ¥ I8

(ro,t'o) where r, > 0, t = (-l)j+lto, ty > 0, then

0
J-1J
bk = 0[(——-——3—3—_‘1) ] as k—> >, 3§ =1,2, ...
jt bk
0
Proof. We prove I. Define the polynomial Vﬁ(x,t) by the
- 48 -
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relation
(9.2) HExt) = T o8 vElxt)
k=0

Then Z A (x,t) = Z :? Vﬁ(x,t). By (2.3) and (9.2), we see

k=0
that at the point (xo,ta)

q

-k '
(9.3) Vd(xo,to) = }EO TEa)r’ 2= 2j, J

k
[=] vid k-q{
k.to xo

Since this is a sum of positive terms,

q
t, x2 (mg+s)!
~mg+s 00
(9.4) vq 2 m! s!?

=1,2,...

for m=0,1,2, ..., and s=0,1,2, ..., g-1. By hypothesis, for

all k sufficiently large and a suitable constant M, |

lv (x:t)l
We may now use Stirling's formula in (9.4) to obtain
Ms! m!
(9.5) I mq+s”< (
(mats)t! = xg tg(mq+s)!
., m+(—1- eq m+-§-
<M (=) ( )
tye (mq+s)?
eq'l mg+s
<M* ( q-l) 4 ’ M = M*(XO:Q) .
at,(ma+s)
By setting k = qmt+s, (9.5) reduces to
k
(5.6) o] < Wt ()"
9. < M1 ( ,
% qt kq -1

for all k sufficiently large.

I
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M. Bocher [5] and Rosenbloom and Widder [16] discuss the
fact that, in general, a series of heat polynomials converges in
a strip |t| < 0. This behavior was also noticed by Bragg [6] for
series of radial heat polynomials. Our next result shows that

this is also true for series of the form (9.1I) and (9.1II).

® ,

a/k 1
Lemma 9.2. I. If lim sup |a | (9-) =
—_—— K—> o % o'm

then 2 A (x,t) converges absolutely for |t| <o
k=0

j-1

L}

II. If lim sup |b khj(%

k—>

<o,

| L
X om

then 2‘. b R (r,t) converges absolutely for |t| <o . In both
k"O

I and II above, m is the constant given by (3.2b).
Proof. Let us prove the second part of this ILemma. By

hypothesis, for any 6, 0 < 0 < 1, there exists an integer
k

-1
N(6) such that for all k> N, |b |< (----———l)J For
j49omexd”

N

t > 0 we can use the bound (7.4) and the left half of in-

equality (4.17) to show that
k 1

® 2
k °° t+8
kENIka le,n(r;t)l <A I o 3 (2:tk for 0 < a< 1,

0<B8<w», and 0<08<1l. By the ratio test, the last series
converges for 0< t <o .

The proof of Lemma (9.2II) for t < O follows in pre-
cisely the same way. This is due to the similarity in the bounds

on the polynomials when t < O.
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oK
Theorem 9.3. I. If u(x,t) = I akvk(x,t) converges for
k=0 © 4

|x| <=, |t| <o, then wu(x,t) satisfies Equation (1.1) for
|x| <= eand |t| < min(c,2) .
Xk

.-}
II. If u(r,t) = Z bR, (r,t) converges for
k=0 k cj)n

0<r<w, |[t|] <o, then u(r,t) satisfies Equation (5.5) for
0<r<e and |t| < min(o,o/m). The constant m is given by
(3.2b).

Proof. We will prove Theorem (9.3I). If we formally differ-

entiate u(x,t) term by term, we obtain (by (2.4))
s k

(9-6) Dialx,t) = £ ey qvg(0t)

while (by(2.6))

(9.7) polxt) = (1 T A CIONEEE NS R

The proof will be complete when we show that, for any

L= 0,1, ..., q, the series
(9.8) E vk(x t)
B4y g

converges uniformly in every closed rectangle (|t| < T,|x| <R)
contained in the strip |t| < min(o,o0/m) .

o ‘to satisfy 0< t,<o. Then, by Lemma (9.11)
k
-1 =
.._Eq_.)q
qtokq-l
t

0<T< min(to, —ﬁq) and let R be any finite positive number.

Choose t

] as k—> = . Now choose T so that

a = olk!(

Then, by (3.11) and (3.13),
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o(®) R

Q-1
et g age [(T“*’)(ceu }

Q2

in the closed

rectangle |t| < T, |x| < R. Here, A is a constant independent
of k while @ and & are arbitrary in (0,1) and (0,»), res-
pectively. By the M-test, series (9.8) will, therefore, converge

uniformly wherever
k+ k k
s ko X(q)
© q-1 q T q q
.9 ( e (k+ 51) T+
(9:9) Iy qto(k+,Q)q'lg FEHOED &)

converges. We have used the fact that for any 6, 0< 8 < 1,
k
a1 a

there is an integer N = N(8) such that Iak] < k¥ {(————)

qtokq‘le

for all k > N. The ratio of the (k+1)St to the kth term of

(9.9) 1is observed to be

1 Kk kit 9 1
48)m\ 2 k+1 ¢, k4 Pkt 2412 -1 .
&t)>< ) () (—Efo, w=a(@1) . The limit
of this ratio as k—> ® is (-—o‘é——l , which is less than one
O
provided (T+8) < (ot 8 Jm -1 Upon choosing & arbitrarily close
to zero and @ and 9 sufficiently close to one, we see that series
%o %, %
(9.9) converges if T < = - Since T< mn(to, E—) S s we

have shown that (9.8) converges wniformly in |t| < T< min(to,-ig-) s

|x| < R. The desired result now follows by allowing to to
approach o.
The next theorem relates the Huygens' principle to expansions

of the form (9.1I) and (9.1II).
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Theorem 9.4. I. If u(x,t) e H'; in |t| <o and if

© i . 1-p
(9.10) f luty,e0)] e CIYL 18117 4

-

converges for - min(o, %’-k ' < )‘—:- , then

2 k . A
u(x,t) = ¢ akvq(x,t) for - min(o, l:'nq) <t< -T;x" .
k=0
The coefficient ay has the determination,
= k
(5.12) = | -ty
- @

@«
Moreover, if u(x,t) = akvk(x,t) converges for |t| < o,
ke0 — 4

then u(x,t) e H'; in |%| < min(o,0/m) .

II. If u(r,t) eH; for |t| <o end if

© o . L~
012) [ aGenlwmetIE T oy
0

converges for - min(o,l;lg) <t < %’- , then .

[} ' .
u(r,t) = =z bknlg,n(r,t) for - min(o,A%) < ¢ <22
=0
The coefficient bk has the determination
_ . .
= .1 Sk
® 2 (Y:t)
(9.13) f @ W () B u(y,-t)ay.
0 ¥T(5 + )

-]
Here, W (y) is given by (6.9). Moreover, if u(r,t) =3 %R;( (r,t)
n k=0 © 970

converges for |t| < o, then u(r,t) e H; for |t| < min(c,%) .

Proof. We will prove Theorem (9.4II). Let us suppose that

in |t| <o,
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(928 u(et) = [ Xy (rystetuly,e0)ay.
0

Choose t' so that - ¢ < t'<0. Then, by Theorem (8.7),

n
sty = GF ) 5 Salral )

K r,y;t-tt?) = (= W (y

om0 e k0 B rE+ k)

for -min(|t'], M,-:-:-L )<t< 1‘-}:—'1- In this interval,

x P'- © ﬁ( )tsk :"t'
- [Tatren@2 T § b ia )

(9.15)  u(r,t) . k=0 TG +k)

o ezl ST (gt uly,tr
-5 [P T2 ) g o)

k=0 Yo 2 n hkr‘(§+ k)
00
k
= 2 b R. (I‘,t) .
k=0 © 98

The formal term by term integration is valid if

2 -1 © ] ' 1-p
(9.26)  ci(3)? (fo W @)l sMe ST I gy g s <

where

- n+2k
.k +2k, (A t*]) 23

(9.17) 5= ¢ R _(r,t)Ir(ES) :
k=0 9’0 2] K€ + x)

The integral (9.16) converges by hypothesis. The series S is

dominated by

(B2 Kk k(2j-1)
w DG |tr]) & 3 3
(9.18) &, % —BL (Lel+oy” 2k
IR T2 + x)K! @ 7 e ’

by (7.4). We have also used (7.4) to obtain (9.16) and (9.17).

By the ratio test, series (9.18) is observed to converge for
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. .
ltl < M:—L . If %> 1, however, the kernel decomposition theorem

(8.7) is not valid in so large an interval. Thus, we have obtained

t ]
the desired result in -min(|t!|, M%-L) <t< M;—L . The co-
efficient bk was obtained in the course of the proof. That bk

is independent of t follows from the fact that both wu(y,-t) and

x rl(y,'l:) are in the class H; and therefore satisfy Lemma (8.4).

In order to prove the second part of Theorem ( 9 .4II),

- -]
suppose that u(r,t) = = kal.{ (r,t) converges in |t| < o.
k==O J’n
Choose t' to satisfy 0 < t'< min(c,%) and form the integral
-]
(9.19) f Kj,n(r)YSt*t' hu(y,-¢')dy .

0
Now substitute the series for u(y,-t') into (9.19) to obtain

(9.20) f ,n(Tsystett) Zbk o(¥s-t")dy
0 j,

-] ©
k
= . ' R ]
z b] f Kj, (r,y;t+t )Rj, (y,-t")ay

K
bRy (r,t) = ulr,t) .

We have used the fact that R? n(r,’c) € H"’J‘ in the reduction to
J

the final series. The formal term by term integration is valid

provided
(9.21) z : Iy |f A )| () |y <

for t* in (O, min(o,%)). The series (9.21) is bounded by



- 33 -

We must, of course, suitably restrict wl(i) to ensure that (5.7)
converges.

The fundamental solution of (5.5) can be obtained from (5.6)
— o ~t(x-x)3
by an application of Lemma (5.1). That is, since e

is radially symmetric, we have, by Lemma (5.1),

"3 ME 7 5 e
(5.8) 7 ) =(em) Zr 2 [ ey (rghas
’ = -1
0 2

The Poisson integral representation for solutions of (5.5) is not
as readily obtained. 1In the integral (5.7), introduce the co-

ordinates (y,el,ee, cees en-l)’ y = (i-i)i, to obtain

(5.9) RSB

n

n .
- — -] ——J.--
= (2n) 2 L/‘ ¢(y)yn’lh/\ e't(s's) 'lx'SIldE dy .
0 E

n

2n pn n is-y
1., . n-2 .. Nn-3
Here Il =‘/; k/; ---\/; e Sin 91 Sin 62...Sin en_edqr«den_l

and il = (yCos 615 ¥8in 6, Cos 6 Sin 6,....5in @

+ey ¥Sin el oo n-1"

2)
We can evaluate Il in the same way that we evaluated the integral

(5.2). After carrying out the indicated reduction we find that

a ,n 5
(5.10) I, = (en)(sy) %1 (sy), s = (5F)

n
-é-—l

The second member of (5.9) is then equal to
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£ Hey-1)
@ !
(9:22) % vy B -1l

o]
@ C(g)vlﬂu
where I = h/‘ Kj n(r,y;t+t')e dy. We have made use of
0 2

(7.5) to obtain the dominating series.

v
@) ly|*

If we consider the function e as initial data, it

is clear that the integral I results from transforming the integral

/2

(9.23) Fj(i-i,t+t')d§

aV,. - P
c(® 3-¥)
[ e
E
n
by means of the spherical transformation T. We can apply (3.7)
to the integral (9.23) to show that the integral I converges for

<t <t acg). Here 0<Q<l, 0<p<1, and 0< < .

t
0 o
] 1 v -
Choose t, so that 0<t'< mln(to, m.) < min(o, m) .
Then, 0< t,<o and by Lema (9.111),
k
d-1 J
b = 0[(———=) ] as k—>=. The series (9.22), therefore,

is dominated by the series

L3
3

k=N kt jetothJ -1 o Cen
where N = N(8), 0 < 8 < 1. This series converges provided

at 0
£ 4+ 5 < -—é}-, as can be seen by applying the ratio test. Letting

5—> 0, a—> 1, 8§ —> 1, and choosing to sufficiently close
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to o we find that
®

(9.24) u(r,t) = t/; Ks n(mystttuly,-t*)dy
for |tl< t' < min(c,%). Since (9.24) is an absolutely convergent
Poisson-Stieltjes integral, we can apply Lemms (8.5) to obtain the
proof of the theorem.

Let us now examine the growth properties of initial data.
The following definition will make our meaning precise. For ex-
ample, see [3,p.8].

Definition. An entire function f£(z) is of growth (p,T)

/x

p
. . . k
if and only if l}l{m_iug ) [a.k| < 7. The numbers ak(kao,l, ved)

are the coefficients in the Taylor's series representation of

£(z) about the origin.

a
k .
Theorem 9.5.I. If u(x,t) = 120 a,kvq(x,t) converges in
|t| < o,then
a) u(x,t) = Kq(x,t) *@(x) for 0<t< min(o,%)
and

b) u(x,-t) = f ® Kq(y+ alx,t)(p(azy)dy for 0< t < min(cr,%)

-V
for some ‘entire function ¢(z) of growth (p,u.'l(qc) ).
-]
II. If u(r,t)=Z b R (r,t) converges in
k=0 & 908

|t| < g, then

a) u(r,t) =J:) Kj’n(r,y;t)t(y)dy for 0< t < min(a,%)

and



- 58 -

b) u(r,-t) =A°Kj,n(%r,y;t)¢(ag)® for 0 < t < min(o,%)

for some entire function ¥(z) of growth (2,;1. (230) ) in zo.

:ut ( q-1 zm

Inboth I andII, & =e ,a=e 9 | and q = 23,
=212,

Proof. We will prove Theorem (9.5I). For t > 0,

k
vg(x,t) = Kq(x,’c)* %— by (2.13). Formally then,
- -] [~ -]
Kk %y K
(9.25) Zav(xt)= T —K(x,t) *x
koo K @ k=0 &' ¢
= Kq(x:t) * p(x) ,
> & ok .
where o(x) = 71 X . The interchange of the order of summation

and integration will be permissible if the final integral (9.25) is

sbsolutely convergent. By (3.7), if ¢(x) has growth (u,7), then
c,d!
Kq(x,t) * ¢(x) 1is absolutely convergent in 0 < t < B(;) for

any B, 0<B<1.
t

Choose %, so that O < min(t,, ;3) < min(o, I) . By
2t %
Lemma (9.1I), gy =0 k! (—————) . Thus,
-1
qtok
L
w/k w/k q-1
lim sup — I akl € lim sup (-—)M (-E-) (%)
K—> o K—> @ R

-1 v -1
<w (atg) 5, v=(g-1)

-1 -V
That is, ¢(x) has growth (u,p (qto) ) . By our earlier remarks,

t
the final integral (9.25) converges absolutely for O <t<p 7‘-19- ’
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0 < B <1l. By choosing B sufficiently close to 1 and allowing

to > ¢, we obtain the proof of the theorem.

We must proceed differently when t < O. By Theorem (2.1k4),

vﬁ(x,-t) = E%-\/\wxq(y+aix,t)(05y)kdy for £>0 with
im (g-1)im
o =e % .nd a, = e 1 . Then, formslly,
® X ® *® k
(9.26) kioakvq(x, -t) = kzo R Kq(yfalx,t)(aey) dy
= [Tk Gom telomay

%

-]
where q;(aey) = Z 7 (azy)k. It is clear that @(z) is of growth
k=0 )

(u.,u-l(o'm)-v). We can apply Lemma (3.4) to show that

® t
f Kq(y+alx,t)cp(aey)dy converges absolutely for 0 < t < B(}?') ,

-

0 < B< 1. Here, as before, t. has been selected to satisfy

0

t. o
0< min(to, -mi) < min(o,i) in order to apply Lemma ($.1I). Th

m

desired result now follows by choosing £ sufficiently close to

1 and to sufficiently close to o.
To conclude this section, we will show to what extent the growth

properties of the initial data determine the time strip in which a
series of the form (9.1I) or (9.1II) converges.

-]
Theorem 9.6. I. Let the initial data, o(z) = Ckzk be an
k=0
entire function of growth (p.,M) ;, M> 0. Then the solution corres-

o0
ponding to ¢(x) is u(x,t) = Zoakvlé(x,t) which converges
k=



1-q
1
absolutely for |x| <=, |t] < Tﬁm‘) . Here, a_=kig,.
. ® . .2k
II. Let the initial data, ¥(2) = o2 be an entire

function of growth (u/2,M) in 2z°. Then the solution corresponding

® k
to ¢(r) is u(r,t) = & bR, (r,t) which converges sbsolutely
k=0 X o7

1-2j
1
for 0<r<w=, |t| < E(Mu.) . Here, b =k!d and

<l -1
po=2j(25-1)"".
M x|
Proof. We prove Theorem (9.6I). By hypothesis, |¢(x)| < Be
for a suitable constant B. For initial data with these growth
properties, Ladyzhenskaya [13] has shown that the unique classical

solution of problem (1.1) has the representation

1,21
u(x,t) = K (x,t) * @(x) for |x| <=, 0gt< i%(ﬁﬁ) , 0<pB< 1.

In this time interval,

@ ' k
(9-27) a(r8) = Kylt) * 9(x) = T KIG(x,0).

The last member of (9.27) follows from (2.13). The formal term
by term integration is valid wherever

® L k
(9.28) T kt!|c lf X (x-y,t)| Lyjdy <= .
k=0 k q k!

By hypothesis, for any 6, 0 < 8 < 1, there is an integer
k

N = N(8) such that for all k>N, |G| < (‘—‘E—el’-')“ . The series
(9.28) is, therefore, dominated by

e@’|x" 1 w-l
5 @ [ t+5, M tmg " 4
Ae T | ( S ) Y

k=0 2]

|

(9.29)
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for 0<®<®, 0<aA<1l, 0<8< 1. We have used (3.11) to obtain
(9.29). The series (9.29) converges by the root-test provided

q-1
t+8< !% (fd%) . Since @, 5, and © are arbitrary in their res-

pective intervals, we have proved the desired result for
1 1-q
0gt< o (Mp) .

In order to prove Theorem (9.6I) when t < 0, form the integral

[+ ]
(9.30) wGe6) = [ K (5 6dp(eaylay, o> o.
- 0
(g-1)in
As usual, @, =e q . By Lemma (3.4), the integral converges

-1
absolutely for |[x| <=, 0< t< ;l%(h%ﬁ 1 when o¢(z) has growth
(w,M). Upon substituting the series for cp(x+agy) into the inte-
gral (9.30) and formally integrating term by term we obtain
[+ o k
(5.31) K, (y,;t) T C (x+a,y)dy
q k 2
g™ k=0

® k
= Z k!ICV (x,-t) .
k=0 4

The last series is obtained by applying (2.1k4). Wi;gh the bound

k

(3.13) on vg(x,-t) and the fact that |G| < (¥, 0<o<,

we can show in the usual way that the formal term by term inte-

1-q
gration is valid for 0 < t < ;'—q(Mp )y .

10. Representations in Terms of the Associated Functions

We now examine series of the form:
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I. u(x,t) = ; akw{;(x,t) ,
(10.1) k=0
II. u(r,t) = Z b S (r,t)

Here, as in Section 9, the designations I and II refer to Equations
(I) and (II), respectively. We begin with a series of elementary
lemmas.

Lemma 10.1. I. For |x| <= and t >0,
20 +1

» 2—(’ -k
(10.2) WE(xt) = D" (B, (0 G T @

IT. For r> 0 and %t >0,

n £ na2k+20 | (m+2kt2)
(10.3) Sk A(x5t) = ﬁil (TI') = (1) F(J ) ) Pt S
tmo 3t r(4+ 3% 2

Proof. We will prove Lemma (10.1I). Recall that
i —
T2 -txt

K, (x,) = (am) ; 8> 0, [x] <=,

by (1.3). Formally,

(10.4) K (x,t) = f ‘ts +1xs 4

nl=o ( 2 )2' &f 21 -tsqu

2{ +1
ol ex to
1@ box 1, q 20 +1

= (U aor & ety
The term by term integration can be justified by the ratio test, the
final series converging absolutely for all t > 0 and |x| < =.

From the definition (2.7) of wl;(x,t), we have,
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(10.5) we(,t) = (-1} (x,t)
20+
)f @ 20 -k 2l
=L‘§L1-?k+1]('l) crmE ' e

The formal term by term differentiation can be justified by any of

the standard tests.

x
k..
Lemms 10.2. I. If k§o Iakllwq(lx,t)l converges at (x,,t,),

X

k
o > 0, to > 0, then toqe 21'
a8 k —> = ,

lay i = 0(

II. - kK .
If kEJbKI ISJ.,n(lr,t)I converges at

(ro,to), ry > 0, ty > 0, then

0 X

tode d
lbkl =O(-—k—) as k—> = .,

Proof. Let us prove Lemma (10.2II). By (10.3), we observe that

Q (n+2k+2&)
n 2

6 K in o %o n+2g+2Q .
(10.6) ISJ,n(lro to)l (r) Q—Of'h . %) ( 23 )

Upon choosing the term corresponding to Q.: J, we have,

n+2k+2]
n 2Jt -( 2] )
K. 1,2 Yo %o n+2k
(10.7) Isj,n(er’tO)IZ-(E—) M5+ 1)

M5t rG+ D)
k k
> M ()T >t (2

23toe Jt e)

By hypothesis, for a suitable constant M and all k sufficiently large,



X

1 Jtge
(10.8) | lbklgulsﬁ’n(iro,to)l M*(———)J

While series of the form (9.1I) or (9.1II), in general,
converge in strips (|t| < o), our next result will show that series
of associated functions, in general, converge in half planes
(0 <o< t). This behavior was noticed in [6] and [16] for problems

I and IT with j = 1.

[fe]

Lemms 10.3. I. If limsup-—-laklk =g >0, then
k—éo

k7j A

@
u(x,t) = = a.kwk(x,t) converges sbsolutely for 0 < < < t.
k=0 4 | : = A
4
II. If lim sup —- Ib Ik =g > 0, then
k—> =
u(r,t) = )3 b S (r,t) converges sbsolutely for 0 < < s,

k=0
Here and in I, A is the constant defined by (3.2a).
Proof. We will prove Lemma (10.3II). By hypothesis, for any

8, 0< 9 <1, there exists an integer N = N(8) such that for all
k
k >N, Ib I < ( )J . Thus, by'(7~’3)1

—Cr“t( ) @ x nzgk) n+2k
z( gleying) 23 p(RIZK),

(20.9) kiNlbkllslg,n(r,t)l < Cge

If we use the right half of inequality (4.17) to estimate

n+2k )
23

solutely, by an application of the ratio test, provided t > =«

r(

in the last series, the resultant series converges ab-

ex )
The proof of the lemma now follows by choosing 6 sufficiently

close to one.
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@® .
Theorem 10.4. I. Let o(x) = Z a.; x* be an entire function
k=0

of growth (9,0), o0 2 0. Then

q

s
-ty
p(x)e

(10.10) u(x,t) = (o)

is a solution of problem (1.1) for le <®, 0< o< t. Moreover,

u(x,t) has the series representation

w
(10.11) u(x,t) = z%ﬁumxlﬂ<a,o<c<t
q —
k=0
The coefficients & are given by & = (-i)'kal'{, k=0,1,2,

- -}
II. Let 4(r) = = birak be an entire function
k=0
of growth (j,o) in r2, o> 0. Then

1. 2 n_

1 23
(10.12) u(r,t) = r zoyln (r, 2  y(r)e tF J)

2
satisfies Equation (5.5) for r >0, 0 < g < t. Moreover, u(r,t)

has the series representation

w
(10.13) u(r,t) = £ b8 (r,t)
k=0 * 40
for 0< o< t, r>0. The coefficients are given by

n
b, = (-l)k(2n)2b£, k=012, ... .
Proof. Let us prove Theorem (10.4I). For a suitable con-

ol x| 4 .
stant B, |p(x)| < Be , by hypothesis. Then,

r.,
-ts -ixs

)] =& | [ ele)e asl

B ® (t-0)s?
s o f e ds.
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Thus, u(x,t) is defined by a uniformly convergent integral for

0SS 0<%, |x| <. Similarly, the integrals

-] . q
(10.14) f b, fp(s)e X545 14
- D
and ® q
(10.15) : f Di{cp(s)e'lxs'ts lds, k = 0,1,2, ...,q,
- O

converge uniformly for 0< o< t, |x| <® . As a result,

Dtu(x,t) = él;f“ sqm(s)e-ixs-tsqu

)J+l f (_18)%(3) -:l.xs-'l-.sq

= (-1)3"':L Diu(x,t), |x] <=, 0<o<t.

In order to prove the second part of the theorem, we observe

that, formally,

_. o 4 e
1 -ixs-t k
(10.16)  u(x,t) = —2-,;er IS e

™ o . q
5 e.;( %.ﬂ_ f ske—lxs-ts ds
=O - 00

- -
= L (-i)'ka' wk(x,t) .

The reduction to the final series follows from (2.7). The term by
term integration will be valid wherever

D q ®
(10.17) f et 3 |a'Hs|kds <w
k
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® 1.4 :
But, by hypothesis, = IaL lls[k < Be® ®  for every o' > ¢ ‘and
k=0

a suitable constant B. The integral (10.17) is, therefore, bounded

by B fme-(t-o")sq
: ds for every o' > o and converges whenever
- 0

t> o' > 0>0.

(-]
Theorem 10.5.I. Let I lakllwk(ix,t)l converge for
k=0 4

t>020. Then

-txq

o«
k R !
(10.18) u(x,t) = & a.kwq(x,t) =5 p(x)e
k=0
for 0< o - t, where @(x) is an entire function of growth (q,0).
hod k
II. Let = |b ||S, _(ir,t)| converge for
k=0 & 90

0< o< t. Then

2 K
(10.19) u(r,t) = kio kaJ-,n(r,t)
n n n .
o= 1-= = -1 23
=(em) Zr BH_ (rr® 4@ )
2.

in 0< o< t, where y(r) is an entire function of growth
(j,0) in 2,
Proof. We prove Theorem (10.5II). It is clear that

@D
T b s& (r,t) converges at each point (r,t) where
k=0 % Js0

x
z |v ||s¥ (ir,t)| converges. Choose o' > ¢ > 0. Then by Lemma
k=0 & o -

(10.211), K

(o d
b | = o(&52)"  as Kk —>a.



Now, formally,
(10.20) u(r,t) = kﬁo bksg"n(r,t)
) - 1 1- n 2 + 2k 2J
= T 0%em 2 [ %s (e
0 3"
.2, -2 2j
= (en) % @ f 2% T (e8)u(e)aE.
0 3 -1
k
J

Here, #(5) = T (-1)kbk§2k. since |b,| < M(%"E) for a suitsble
k=0 '

constant M and all k sufficiently large, ¢(§) is of growth

(j,0) in §2. That is,
k

tsn T
lim sup 31‘; [(-@‘--1-;1‘3)3]k < o' for all o%g 2 O.
k—>»

| 23
For a suitable constant B, |y(§)]| < BeUlgl and

l‘% % tgej
r f £%e” |Jn (r8)||¥(E)|aE <= for t> o> 0. This
0 = -1
2

Justifies the formal interchange of the order of summation and

integration performed in (10.20).

-]
k
Coroll .I. If T w (ix,t converges for t > o> 0
Corollary | k__golakll (1 t)] > 0,

© .
then u(x,t) = = a.kwk(x,t) belongs to the class H¥ there.
k=0 q q

o
II. If = lbkllsl.i (ir,t)| converges for
k=0 J-n

@
t>0>0, then u(r,t) = Zb sk n(r,'t:) belongs to the class H;
- ’

there.
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Proof. By Theorem (10.5II),

(0.21) [ K, (ryse-ttuly, e )ay
O 2

N -833:.2 2 2j
=[x e 2 [ et e, (s a,
o ¥ 0 5-1
' HE
where ¥(§) satisfies |y(E)| < Be° . In view of this bound,

we can interchange the order of integration in the final integral

(10.21). The last member of (10.21) is then equal to

o n 2] ® 2 1 3
-t - -
| f 8275 Ty (e f (2r) % %, (ryst-t1)3,  (vE)ay &g
| 0 0 ? 5 -1

n, n

® _E-—l-
= [ e F T Bee s, (medas = u(et)
0 ..2...1 .

2j

for 0< o< t' <t . We have used the inverse Hankel transform

relation as applied to (5.16) in order to obtain the last integral.

Theorem 10.6. I. If u(x,t) ¢ Hf for 0< o< min(t,%)

' and if

@Iyl
@ 5 ly
(10.22) f lu(y,t)]e ° 7 ay

-

converges for 0< o< t', 0<Qa< 1, 0<% <=, then
pod k . At
(10.23) u(x,t) = £ aw (x,t) for 0< o <min(t,37).
k=0 * ¢ = m
The coefficients 8 have the determination

©
k
& = f Vq(y:‘t')u(th')d-Y) k=0,1,2, ...
- ® ’
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II. If u(r,t) ¢ B} for 0<o< min(t,A%) ana 1f

B
&’ |y|

(10.24) f Iu(y,t')le W (y)dy
converges for 0 <o <t', 0<a<1l, 0< ®<w, then

(10.25) u(r,t) = z 1:>ks‘1 n(r,t) for 0<o < min(t,

The coefficients b have the determination

k
._ + 2k-1 @
b BP0 22— [ @ ety
k r(-rél_ + k) 0 n J,n
Here, Wn(y) is given by (6.9).
Proof. We prove Theorem (10.6I), By Theorem (4.5),

K (x-y,t-t') = £ v5(y,-t' )w (x,t) for 0 < &' < min(t,
q =0 @

Since wu(x,t) ¢ H* )‘t

a for 0<o<m1n(t,

(10.26) u(x,t) = f QKq(x-y,t-t')u(Y,t')d\Y

- ®

- [ atmtn) E -t ey
k=0

=k§o wq(x,t) :/; Vﬁ(y,-t')u(y,t')dy-

The formal interchange of the order of summation and integration is

valid if

(10.27) kéolwg(x,t)ll-f; [uly, 60 1¥E(y, -t ay <= .
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The series (10.27) is dominated by

alt

® CCg) |Y|
with I =f [u(y,t')| e dy . We have used (3.10) and

k
» . -1
(10.28) ¢’ kzo[ (&2 (c@wqL } r) .1

(3.13) to-ou';ta.in (10.28). Here, 0<a<1l, 0<5<1, and C!
consists of all factors which are independent of k. The integral
I converges by hypothesis while the series (10.28) converges by
the ratio test for t' < min(t,A%). fhe coefficients

8y k =0,1,2, ..., ﬁere obtained in the course of the proof.




V. COMPARISONS AND GENERALIZATIONS

11. Comparisons with Known Results

We now indicate to what extent certain results of the pre-
ceding sections compare with the results of Rosenbloom and Widder
[16] and Bragg [6] for the case j = 1. The principle differences
are in the intervals in which certain results are valid. Thus, for
example, in [16, p.227] it is shown that

P
(11.1) K (x-y,t4t') = I vlg(x,t)wg(y,t')
k=0
for -t' <t < t'. If we evaluate the constants AN and m, by

(3.2a) and (3.2b), respectively, we find, when j = 1, that A = =

2
and m = 1. Then, when J = 1, Theorem (4.5) reduces to (11.1) but
] ]
only for - g- <t< %~. It would, therefore, appear that our re-

sults are somewhat more restrictive than necessary. This difference
arises from the bounds (3.10). (3.11), and (3.13).

We now indicate how these bounds can be strengthened in the
case Jj = 1. The proof is that given by Ladyzhenskaya in [13] ex-
cept for the change indicated.

Recall that

® q,.
(11.2) K, (x:t) = Eln'f e BETHXE £ >0,
- O

v
Introduce the change of variables s = 6B, 8 = ﬂ(l%L) , Wwhere 1
is a constant to be fixed later and v = (q-l)'l, a=23, J=1,2,...

Then (11.2) is just

-T2 -
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b q
(11.3) Kq(x,t) = —29; f e_tqu B .

Let o=r*t" " with r= |x|. Then,
(11.4) -40%% + 1x08 = - o(n%? - LB,

and the integrand in (11.3) is observed to be an entire function of
B. By an application of Cauchy's integral theorem, the integral
(11.3) can be evaluated by integrating along any path parallel to
the real B axis. Thus we may replace B by B + iw where

W= 3;- . The exponent is then equal to
(11.5) - o {nq[(a PEILEVTIASIEEL B2 DRSS VIR

where Ladyzhenskaya defines A to be the constant (3.2a.).
Let us modify her proof at this point by letting A be any

positive number to be fixed later. Now let

Q = N(B+iw)? - xlalq] - i Z;E +7M and let Q = (a+iw)q-x|e|q. Then

(11.6) Re @ = M%Re @ + M 2 -mn? + 7

where - m = min Re Q1 The minimum is taken over all B and all
w such that |w| = 1. Observe, at this point, that

Re Q; = (1-1)82 + P(B), where P(B) is a polynomial of degree q-2.
Hence, -m will be finite provided 1 - A > 0. However, when
q=2, P(B) = -1 and -m=-1 for all A, 0< A< 1. In the case
q = 2, therefore, we will choose A =1. For q =2j, jJ=2,3,...,

we will choose A, as Ladyzhenskaya did, to be the constant (3.2a).
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When q = 2, we have,

il

(11.7) Re @z - 1° + 1 = g(n) .
If we choose T to maximize g(n) (M = %) and let C denote the

maxo (g(m)) = %7 then

1>
(11.8) -oReQ-htlsqu-f:c-tIslq
e 1 'é ® _ts® 1 ‘é
(11.9) |k, (x, )| < = e f, e" "% ds = = e

It is interesting to note that the last member of (11.9) is the
fundamental solution of the heat equation, in addition to being the
bound (3.3) when @ =2 and A=m= 1. In this sense, the bound
(3.3) is the best possible.

When q = 2, the same modification, choosing A = 1, can also
be made in the bounds (3.10), (3.11), and (3.13). In this way, we
are able to extend the interval in which Theorem (4.5) is valid
to -t' < t < t!'. Similar modifications allow many of our results
pertaining to the radial problem (5.5) to be reduced to the analo-

gous results in [6] when p =1 > 2 is an integer.

l2. Generalizations and Extensions

Let us briefly indicate several ways in which the preceding
theory can be extended to more general equations. Since the proofs
will, for the main part, be similar to those already given we will
omit them and emphasize points of difference.

We first alter Equation (1.1) by admitting a time dependent
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coefficient. ILet a(t) be a continuous function of t and con-

sider the problem

bugtzt)z 1) a(t) aq;i:zt)

(12.1)
u(x,O) = (P(x): qQ=2j, j =12, ...

t
Let b(t) =u/\ a(s) ds and define the set P by
0

(12.2) P = {t|b(t) > 0} .

For simplicity, 1let us further assume that P is a connected
subset of |t| < =.

The formal solution operator associated with problem (12.1)
is

(12.3) e(‘l)j+lb(t)n% ’

q=2j’ j=l,2, s e o
We will interpret this operator in the usual way. Using the work
of Gelfand and Silov [9], it can be shown that the fundamental

solution of (12.1) has the representation

(12.14) K (6b(8) = (m) 2 eP(t)x o

The solution polynomials are defined by
(-1)j+lb(t)D: k

k

(12.5) vq(x,b(t)) = e "%T , k=0,1,2, ...,
and the associsted functions are defined by

(12.6) wﬁ(x,b(t)) - (-1)kD§Kq(x,b(t)), teP.

The sets {vz(x,-b(t))} and {wﬁ(x,b(t))} can be shown to be bi-

orthogonal on |x| <® for t e P in the same manner that we
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proved (2.8) and (6.8).
We may use reasoning similar to that given in Section 11 to
develop the needed growth bounds. A semi-group property for the

fundamental solution assumesthe form

(22.7) Kq(x,b(t)-i-b(t')) = Kq(x,b(t))* Kq(x,b(t')).
for t and t' in the set P. This relation can be proved by
applying the convolution formula for Fourier transforms.

It is clear by now that the main changes which will occur will
simply be the replacement of t by b(t) and the intervals in which
the various results are valid. A difference of more significance
occurs in the Huygens' principle.

Let us further restrict b(t) to be a strictly increasing
function on some interval a < t < b contained in P. We will then
say that a function wu(x,t) is a member of the class ﬁa* on
a<t<b if (i) u(x,t)ec?, (ii) u(x,t) satisfies Equation
(12.1), and (iii) if

(12.8) u(x,t) = Kq(x,b(t)-b(t')) * u(x,t")

for al1 t and +t' satisfying a < t' < t < b. The restriction
that b(t) be strictly increasing is needed to ensure that
b(t)-b(t') > 0 when t' < t. Otherwise, Kq(x,b(t)-b(t‘)) is
not necessarily defined for all t and t*' in the interval.

It is easily verified that the elements of the sets
{vg(x,b(t))} and {wi(x,b(t))] belong to ﬁ: in appropriate in-
" tervals. Results similar to those in Sections 9 and 10 can be

derived in the obvious manner.



Let us now consider extending our results to En’ n-
dimensional Euclidean space. There are several ways to consider ex-
tensions of Equation (1.1) to En and we will restrict our attention
to two such ways. Our notation for the calculus of n-variables
will be consistent with that given in Section 5.

First, consider the initial value problem

du(z,t) = (1T 8 (8) 2 - ulhb)
ot k=1 ax]

(12.9)
u(x,0) = (x), q=2§, j=1,2, ... .

We require each ak(t), k=1,2..., n, tobe a continuous function

of t. Widder [18] has considered an expansion theory for solutions

]

of Equation (12.9) when q = 2 and each ak(t) 1.

Let b, (t) = ft & (s)ds and let P_= {t|b (t) >0} .

0
n
Let P'= n Pk and assume that P! is a connected subset of
k=1

|t] <». Let B(t) = (b, (£), by(t)s ..o bn(t)) and D, = 5 .
1

The formal solution operator associated with Equation (12.9)

is 41, D
(-1 (T b (80D

(12.10) e o q(x)

n (-l)jﬂ‘bk(t)Di i
e »(x)) .

k=1

We will interpret the operator by the second member whenever

-1 (00
e o @(x) is meaningful for each k = 1,2, ..., n.

The kernel or fundamental solution can be obtained in the
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usual way and is given by
J

_n’_ %b(thﬁ
(12.11) Ky (%, B(t)) = (2n) 2o k=L KTTR 4o b

Here we have the n-dimensional Fourier transform with respect to x .

Observe that Kq(i,ﬁ(t)) is related to the kernel (12.4) by

n
(12.12) Kq(x,b(t)) = kII; Kq(xk,bk(t)) .
Let k denote the multi index (kl,ka, cees kn). Let
k k, k, k
x denote the product X "Xy e xnn and let k! denote the
product kl! ka! ‘o kn! . Similarly, DE shall denote the
kl ka kn
differential operator Dy D2 D" and |k| shall denote

kl + k2 + k3 + e kn

With this notation, we define the set of solution poly-

nomials by n
. ] q -
- (-1)*" 2o (¢)0 -
(12.13) v‘z L(EB(t)) = k=1 KTk X
)

)
]
.

=

The polynomial vﬁ h(i,ﬁ(t)) is related to the polynomials (12.5) by
2

Ky

- n
(12.14) vy n(B(t) =A]T vy (xy,by (4))
=1

We define the associated set of functions by

(12.15) wﬁ’n(i,ﬁ(t)) = (-1)|E|D§ Kq’n(i,ﬁ(t)), t ¢ P!
Here,

- n
(12.16) wﬁ)n(i,i(t)) E.QITi wz%xﬁ, b, (t))

where wzfn(x »bp(t)) is given by (12.6). From (12.1k4) and
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(12.16) we can easily deduce the biorthogonality of the sets

E - = E /- -
(vg,n(6-0(t)} and (W (%,5(t))} for X e¢E and teP'.

The growth bounds can be obtained either directly from Lady-
zhenskaya's results or by using relations (12.1%) and (12.16) in con-

junction with the growth bounds on the functions v? (xﬁ, b, (t)) and
k

WqL(XQ, bj_(t)).

A semi-group property for Kq n(i'c,t':(t)) is given by
2

(12.17) Kq’n(i,ﬁ(t)) * Kq’n(i,ﬁ(.t')) = Kq’n(i'c,ﬁ(t) + B(¢'))

for any t and t' in P'. We will say that u(x,t) satisfies
the Huygens' principle on a<t<b if (i) u(x,t) e c%,

(i1) wu(x,t) satisfies Equation (12.9) there, and (ii1) if
(12.18) w(x,t) = K (%B(t) - B(t)) * u(x,t')

for a< t'<t<b. Each bk(t) must be a strictly increasing
function of t on the interval a <t <b contained in P'. On
appropriate intervals, we can show that the kernel, the polynomials,
and the associated functions satisfy relation (12.18) for suitably
restricted bk(t), k=12, ..., n.

The kernel decomposition theorem and expansion theorems similar
to those previously discussed can be developed by arguments an-
alogous to those we have used before. The time intervals in which
these results are valid will depend strongly on properties of the
functions bk(t).

Finally, let us consider the problem




L) o (M A ()
S n

(12.19)

u(J-C,O) = Cp(i), J‘ = 1,2, e ey ns= 2,3, e DY
where Ah is the Laplacian operator in n-dimensional Cartesian co-
ordinates. We have discussed this problem in detail under the assumption
of radial symmetry. However, in the absence of radisl symmetry, it is
not entirely clear how one should proceed.

The fundamental solution of the equation is

n- 3
(12.20) Kj’n(i,t) = (om) 2 o b(X-X) , t>0,
and the formal solution operator is
41, 3
(-1)9*¢a » k(j+1).k . )
(12.21) e Ropx) =z LMLt ATk o).
k=0 :

We must be careful to restrict our interpretation of A§<:¢(i)

according to whether or not the order of differentiation of ¢(x)

with respect to the variables X: 5 i=12, ..., n, is commutative.
Define the solution polynomial v?}n(i,t) by

1., .
(12.22) kK oz (-1,
. vj’n(x,t) = e 0

?sl |><|

and the element w? n(i,t) of the associated set by
2

_ 1§ -
(12.23) wg,n(i,t) = (-1) D})-:Kj’n(i,t) :

The explicit form of the polynomials is
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. 9. (3+1) ¢ JA ]
(12.24) v (Re) = 3 I Ty o
J,n aisﬂ.issi '91 : ERCYRRED (k-20)?

i=1,2,...,n

where (k-2%) = (kl-23 91-292,112-2?2-2?3,...,kn-2,Pn). In the
notation for the calculus of n-variables, the results for the present
problem have the same appearance as the results developed for problem
(1.1). The proofs are also similar in the reasoning involved but
can be described as cumbersome at best.

As an example, let us consider the proof of the biorthog-
onality of the sets {VR (x,-t)} and {wk (x,t)} for

J)n Jsn

X € En and t > 0.

Since w? n(i,t) —> 0 as x—> », we have, after
2

successive integration by parts,

(12.25) fE Jn(x,-t)w (%, t)a

£ -1 - = yas
s\/; Vi (x,-t)Kj,n(x,t)dx .
n

If D‘i >k, for any i =1,2, ..., n, then v% -1 (x,-t) =

and we have the desired result. If Jli =k, forall i=1,2,...,n,

then
(12.26) fE Jn(x, t)w (%, t)ax

- fE X, (Gt)aE
n

By Fourier's integral theorem,
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JF K, (% t)ak u/\ iy. xK o (%, t)ax l

G s

§=0

To complete the proof; we need to show that all v§,n(i,-t)
are orthogonal to K (x,t) Upon substituting the explicit form
of the polynomials into the second member of (12.25) we observe that
we must evaluate integrals of the form
(12.27) fE 2, (5, )

n

We do this in the usual way. Thus

7| 2 4=z 2 (o7
(12.28) JF i x TelY xx (% t)ax = Dle ~4(y-¥)
En ¥
o (o)y5E K L Jk
= I }: b Z . z X k
. y e
k=T0 kl=Tl k2=72 kn-l 1 n~1

(23k-2kl)!(2kl-2k )!...(2k o2k )!(2kn_l)!

3 - [ ] - - - - 1]

(23k-2kl rl).(2k 2k, r2 (2k 1 rn) '
2jk-2kl-rl 2kl-2k2-r2 . 2kn_l-rn

Yy Yy Y, .

The lower limits of summation, T;) are computed by ensuring that

the factorials which appear in the denominator are well defined. Thus,

r +1 r.+l+r.+2+...+rn+l
n-1 =[ ] and Ti=[1 12 ], 130,1, coey n-1.

The series (12.28) vanishes identically at y = O unless
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2jk-2kl-rl = 0, 2ki-2ki+l i'l'l 0’1B l 2, 00y n-2, 8.nd

2kn_l-rn = 0. These conditions imply that each ry is even and also
n

that z r = 2jk. With this information it is easily shown that we
i=1 *

obtain a non-zero contribution from the series (12.28) only when

k = To’ ki = Ti’ i = 1,2, s ey n"lo Thus,

lrl -r _ _
(12.29) fi x K, (x,t)ax
J,n

E
n

0 if a)r #2s i=1,.

or b) 2 ry # 2j0 for some integer [ R
1—1

L -
- iL)r(r)r .
COGES o o,

n
and b) = r, = 2j) for some integer I
i=1l

By (12.29) and after some simplification, we observe that

(12.30) fE P K, (5 t)ak

L (j+1)4k 0 o k
Jk n-2 s s
£ (1) Y (k)1 L-5k)r = .- 2 =
k=0 k! st(L -k)!? k=0 k Jk-k; [\k -k,

We may reduce the inner sums by using the well known Vandermond con-

volution [15]. Thus,
kn-2 s
z

kn-l=o kn-2'kn-l kn-l kn-2

+s
n-1 n\_| nl"n

L
~-
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é; ( 5, ) 52+s3+...+sn)
kl=0 kj - kl kl

The series (12.30) is, therefore, equal to

b D(5+1)4+x R
(1)  (gk)(gh-gk)t
ko0 kY (L-k)! ik

e
M=

L(541) 2 ]
= (1) b (9 3 ()8 ( )= o,

rt L1 k=0 k

which concludes the proof of the biorthogonality.
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