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ABSTRACT
28077

Solution to Maxwell's equations is given for source currents in an
unbounded magneto-ionic medium for which the dielectric tensor is uniaxial,
that is, diagonal with two elements equal, Three-dimensional Fourier trans-
forms technique is used because it gives the field solutions in a form which
rhows that the uniaxial fields may be obtained by a scaling of certain quan-
tities, These quantities are related to fields in free space due to an
e - 2]lent source current, The choice of the quantities to be scaled and
their respective equivalent source currents depend on how the uniaxial field
solution is arranged, For example, two methods of scaling are given for the
case of the source current perpendicular to the magnetostatic field, The
problems of an electric dipole parallel and perpendicular to the magneto-

static field are given as examples of such scaling, 4/4;b£¥(h/1,
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1., INTRODUCTION

The solution of Maxwell's equations in a upiaxial medium is important
because it forms a useful basis for the field sélution in an unbounded
magneto-ionic medium when Y, the ratio of gyro-frequency to signal frequency
hecomes very large, The fields in a uniaxial medium are also important as a
means of determining the reactive component of the impedance of an antenna
embesdded in a magneto-ionic medium, It has been shown in a recent paper1
that the very near field of a dipole in a magneto-ionic medium is independent
of the off-diagonal term of the dielectric tensor, This suggests that the
very near field, which is required for such impedance calculations, of a
current source in a magneto-ionic medium is fhe same as the very near field
of the corresponding uniaxial medium,

It is an advantage when trying to solve for the fields in a uniaxial
medium if they can be related to certain quantities that occur in the cal-
culation of fields in free space due to certain related current sources,
These quantitiés may already be known and then the uniaxial fields can be
obtained simply by a scaling of the free space quantities, Therefore, we
wish, given any general volume source in the uniaxial medium, to be able to
find equivalent sources in free space to which a scalar potential may be
associated such that the scalar potential may be conveniently scaled to give
the scalar potential in the uniaxial medium, Three-~dimensional Fourier
transforms method is used as it was found that the form of the solution for
the uniaxial fields obtained by this method permitted relationships between
certain free space quantities and the uniaxial quantities to be found,

A general volume source in this paper is treated as a superposition of
two components, One component of the source is taken parallel, the other
perpendicular, to the magnetostatic field, 1In Section 2 the formal solu-
tion of this general volume source is obtained,

The scaling, which is required when the current is parallel to the
magnetostatic field, is derived in Section 3, This turns out to be a rela-
tively simple case giving only one logical method for the scaling,

When the current is perpendicular to the magnetostatic field, the method

of scaling is no longer simple, Two possible scaling procedures are given



for this case, The first method is given in Section 4 and this corresponds
to a partial fraction expansion suggested by the form of the general solu-
tion, Another method is given in Section 5 by representing the uniaxial
field as a superposition of a TE (H-wave) and a TM field (E-wave). The TE
field corresponds to EX = 0 and the TM field corresponds to HX = 0,

The method of representing the uniaxial field as a superposition of a
TE and a TM field is also used by Clemmow,4 He confines himself to surface
currents and finds the uniaxial field by using the fact that to every vacuum
fis !, represented as the superposition of a TE and a TM field, there corres-
ponds a uniaxial field, represented as the superposition of a TE and a TM
field, The method in Section 5 is applicable to the more general case of
volume sources and stresses the converse: the uniaxial fields are found
by reference to the corresponding vacuum fields, No explicit use is made
of a TE and TM representation for the vacuum field,

The two examples of a dipole parallel and perpendicular to the magneto-
static field are solved by the scaling methods of Sections 3 and 4, Original
solution of these two problems is not claimed but rather they are used simply
as examples of the scaling that occurs, and reference is given to alternative

solutions in the literature.



2, FORMULATION OF THE SOLUTION TO MAXWELL'S EQUATION IN A UNIAXIAL MEDIUM

Jwt

Maxwell's equations for a uniaxial medium, using an e time connection,

may be written as

VxH= juE €E +J 1)
- VXE-= jmo'ﬁ (1-4)
where3
= X AA AA
€ = (1 - ﬁ) 42 + 99 + 22 2)
2

X=—° _  u=-1-3jz, z=2 (3)

2 w

€ mow

Equation (2) implies that the magnetostatic field is taken to be in the x-

direction, On eliminating E from Equation (1) using Equation (1-A), we have

——1 2 =—1_
VX € VxH-k H=vVxE€ J (4)
where
_ -1
€ =B RR + 9% + 22 (5)
U
P=v-x (6)

A solution for H satisfying Equation (4) is desired,

Let the three-dimensional Fourier transform of H be defined by H where

3 o0
~ k, -k _(#xtmy - nz)
H ({ ,m,n) = H (x,y,z) e dxdydz (7)
X,Y,Z » (2ﬂ)3 X,¥,2 37
Z0




and let the transforms 3‘ of J be similarly defined, Taking the
X,Y,2 X,V,2

transforms of Equation (4) yields

= -1 = -4 - — = -1 -~
k x € k xH +H = El (k x € J) (8)
o
k = 48 + m§ - n2 (9)
This gives in matrix form
2 2 B = —T
(I1-n - m) fm -{n HX
2 2 -~
+4m (1-n B -¢) ~-mnf Hy =
2 2 ~
- ~f{n -mnf3 A-m B - ¢ )_ L_Hz_
(10)
o n m
55 | -3y Gs |
F JX HB K Jy (o] :} M JZ [: J4 ]
o o o
-mB ¢ o
Solving for Hx,y,z (£,m,n) gives
~ i a2 2, 2 ~ ~
H (£,m,n) = kA A-pm + n) -2 ) (n Iy +m J) 1)
~ -j ~ 2 2 2~ ~ 2, 2 2
Hy([,m,n) = E;Z& {Jxﬁn (~14+¢ 4m" +n") + Jy(ﬁ-l) nfm + J 1 (-1+m B+f +n") (12)
~ -j - 2 2 2 o~ 2, 2 2 ~ .
H (£,m,n) = QA {Jxﬁm (-1+¢ +m 4+n") + I 4 (1-n B-g " -m") + J mfn(1-p) (13)

where

A= B (n2_n12) (n” - n_) (14)



n? =gt 1-4® - n? (15)

The fields as a function of position are obtained by inverting Equations (11),

(12) and (13), using the Fourier inversion integral

- . J'ko ({x + my - nz)
H (x,y,2) = (H , H , H ) e d¢dmdn (16)



3. FIELDS DUE TO THE CURRENT COMPONENT PARALLEL TO THE DIRECTION

OF THE MAGNETOSTATIC FIELD

Since the magnetostatic field is in the x-direction, this case corres-

ponds to the fields due to 3;0 By referring to Equations (11) to (16), the

fields are

1
’ Sz °
X y Jko z z

where

H = — — ., H =

1
Jko

jko(ﬂx +my - nz)

- “ 3;(1,m,n) e
mT(x,y,2) = — —
ks | I D N
_—w

In Equation (18) make the variable change

m

o]
m==——, =

B

df/dmdn

m
jk (lx + =2
o0 ~ ™o o © VB
Jx I — ,\[_ﬂ e
T(x,y,z) = -J g B
Y = X 2 2 2
o n -1+ 4 + m0

Let

= Z

v, e,
VB’

¥
'

Jko(lx +my - nozo)

* o
. J (#,m ,n) e
ﬂo(X v .z = -j X o o
oo’ Tk 2 2 2
o n -1+ 2 +m
o o
-0

dfdm dn
o o

(17)

(18)

(19)

2D

(22)



where

ﬂo(x’y(?zo) = m (X,yo ﬁ s ZO'\’ B ) (23)

~ 0
J (f,m ,n ) =
X (o] O

]
[
" 3
P
ey
3
Al
]
ijo
S——

m n
0 0 o
3 -jk ([x + y - z
k [e} [~ [~
= ° 3 Jx(x,y,z) e p p dxdydz
@m
—0
3 00
ko o -jko(fx t e T nozo)
= 3 J_(x,y ,z ) e dxdy dz (24)
m X o o o o
-—w

So

JXO(X’yo’Zo) =B Jx(x,yo VB, zo-\/ B ) (25)

o
Kl (x,ygzo) in Equation (22) is recognizable as the functional form of the
vector potential in free space with coordinates (x,yo,zo) due to the equivalent

source current J 0(x,y ,Z ). That is, ﬂo(x,y ,Z ) satisfied
x o’ o o’o

- — . o A
vV A+ kO A = Jko JX (x,yo,zo)x (26)
where

- o
A=T (x,yo,zo) X 27)



ﬁ:-v,’;A (28)
J (o]

The fields in the uniaxial medium are obtained once the ﬂo (X’yo’zo) due to

o . . .
Jx (x,yo,zo) in free space is known since

o
T(x,y,2z) = T (x,yo,zo)

; - X
° J'E' (29)
zZ

)

As an example of this case consider an infinitesimal dipole source

Jx(x,y,z) = I 86(x)8(y)é(=2) (30)
Then

320,y ,2) =B 18 sy of B .8z [B) =1 6(x)6(yo)6(zo)* (31)

X o?

The ﬂo(x,yo,zo) in free space due to JXO is well-known to be

. j/ 2 2 2"
-jk VX +y +z
ik I o o o
0

T (5,552, = 37 V2.2, 2 ] (32)
X4y +Z

So ﬂ(x,y,z) for the uniaxial medium is
-jk_T o IKR
T(x,y,z) = (33)
4TR

where

R = ~\/x2 + (1 - %) 52 + 25 (34)

ﬁ is taken as positive real for preciseness,




The actual field components are obtainable from Equations (17) and (1).
This simple example has been solved elsewhere in the literature, for

2
example, Clemmow , on page 463,
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4, FIELDS DUE TO THE CURRENT COMPONENT PERPENDICULAR

TO THE DIRECTION OF THE MAGNETOSTATIC FIELD

Tn this case we want to find the fields due to the current in the

y-direction, Referring to Equations (11) to (16), we may write

- +jko(£x + my - nz)
5 . J (L,m,n) e
2| 23 y dg¢dmdn (35)
2 2
o n -1+ 4

Jko(ﬂx + my - nz)

[o%e) ~
2 ) £ J (4d,mn) e
o= B 9 | g y dgdmdn (36)
y o 2 02dy k (nz_n 2, (nz . 2)
P o 1 2
-0
o0 - Jk (Ux + my - nz)
. . J (4 ,m,n)e
g 498 1 =3 y > dgdmdn | —
z k Ox k 2 2 2
o o n -1+ ¢ +m)
(37)
=00
jk (fx+my-nz)
(- _J JJ J (¢,m,n)e
- - d/dmdn
3 2 '—? 2
f3k jr (n-n ) (n—n22)
Obviously H cannot be derived from one single T as was done in the

P ]
previous case, However, note that HX is already related to a free space 7,

Equations (36) and (37) can also be written by a simple factorization as
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00
2
1 9 -J Y ~ 1
H =—5 3,57 = J_,mn) | ——s— -
. 2 sy : -
Y ko2 720y “o a-£7) (n2—1+£2+m2)
-0
1 jko(£x+my—nz)
- e df{dmdn (38)

nz‘ﬁ_l(l-12)+ m2

Jk (4x+my-nz)

i 9 _J J ({,m,n)e °
H = T 3% dfdmdn -
z ko ox d/f (n _1+£ *m )
w —~
) 82 -3 £ Jy(l,m,n) L i
k02 3Y2 kO 1'12 n2—1+£2+m2
-0 !

1 jko([x+my—nz) :
- - 5 5 e dfdmdn (39)
- B (1-2) + m
Or, using a simpler notation,
it R
=% 32 M (40)
fo}
2
1 0 . )
Ay = 2 0zdy (my = 73) “b
o
2
J 0 1 0
H =~ —7, ~-— — @, -1,) (42)
Z ko ox 1 Kk 2 ay2 2 3
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where Tys Tys and Ty are defined by comparing Equations (40) and (41) with
Equations (35) and (38), respectively, Equation (42) merely verifies that
the V-H = 0,

The function ﬂl(x,y,z) is obviously the solution of the scalar wave

equation in free space for a current Jy(x,y,z), that is,
2
Vgﬂ +k 7

1tk o= dkg Jy(X,y,Z) (43)

No scaling is required for 7. .

1
Now Ty is given by
2 o
. J oo (£,m,n) Jk_(£x+my-nz)
To (X,y,2) = J ki e dfdmdn (44)
2777 k 2 2 2
o n -1l+f¢ +m
—o0
where
~ O f —~
J ,d,mn) = — J_({,m,n) (45)
y2 1_-12 vy

Therefore, ﬂz(x,y,z) is the solution of the scalar wave equation in free space

o
for an equivalent source current Jy2(x,y,z), that is

2 . o)
V?nz + ko Ty = Jko Jyz(X,y,z) (46)

and

o 0 _ jk0(1x+my~nz)
J o (x,y,z) = —5 J_(,mn) e d¢dmdn 47)
y2 1_12 y

-0



or
o
o ! o)
Jyz(X,Y,Z) = _2 gy(f,}’,z) e d[
1-¢
—c0
where
0
~ ko —jkofx
= — J dx
4y o7 y(x,y,z) e
~c0
The function n3 is given by
00 Jk ({x+my-nz)
~ o
-3 ¢ Jy(l,m,n) e
Mo (X,¥,2) = — d¢dmdn
k 2 2 -1 2 2
3 o (1-4%) (- (1-4%)+m%)
—00

In Equation (49) make the variable change

Let = zO so that we may write

8

 Creer o o
) eJ O(lxrmOyO nOzO)

~ O

Jy3(l,m

n
oo

df{dm dn
2 2 2
(n  =14f 4+m ) ° o°
o o
-0

13

(48)

(48-4)

(49)

(50)

dfdm dn (51)
o o

(52)
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where
o
Ty (X,yo,zo) = nS(X,yo-V B, zo-d B D (53)
and
n
o £
I aym ,n) = —=— J «,

1-¢° w/—r

n
[0}

-3k, Uxt — - — )
L J (x,y,z) e V dxdydz
1- l (Zﬂ)
3 o0
k -jk ({x+m y -n z )

{ o 1 e} o’o0 "o o
= ——— J (x,y ,z ) e dxdy dz

1_£2 (2W)3[[ y o’ o o o (54)

b > 0]

1
Jy (X,yo,zo) = B Jy(x,yo VB, Z5 vV B ) (55)

‘<
N

4

if

Therefore ﬂso(x,y Z ) is the solution of the scalar wave equation in free
space with coordlnates (x,y Zo) due to the equivalent source current .

(X Yo1%,), that is

o 2 o . o
Vgﬂ3 + kg o= Jk I o (x,y

v3 z ) (56)

oo
and

= 1 Jko(£x+moyo-n z )

0O O
(X,y z) = (£,mo,n0) e dgdm dn (57)
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So
(v o]
o ) ~ Jk %
Jyg( Y02, = B 1—:;5 ? £,y ‘\/_' '\/__' ) e ds (58)
=00
o0
~ k —Jk x
ﬂyu,yo VB, 2 B ) =5 x,y [ B> 2,V B )e dx  (58-A)
-0

This gives WB(X,Y,Z) for the uniaxial medium

g = -
0] / 1
T4(%,y,2) = wg(X,yo,zo) B (59)
Z
&

*
As an example of this case consider an infinitesimal dipole source
Jy(x,y,z) =1 8(x) 6(y) 8(2) (59-A)
The solution for nl(x,y,z) is immediate from Equation (43)

\/ 2 2 2
—ik I —jko X +y +2

wl(X,y,Z) = 2 < (60)

w2z 2 2
X +Y +2

The equivalent current needed to calculate ”2 is obtained from Equation (48)

o -ik I -3k _x
J o (%,¥,2) = —5 6(y) 6(z) e , X >0
gk I jk_x
= 5 6(y) d8(2) e ,y X< 0 (61)

* :
B is again taken as positive real,
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Solving Equation (46) for nz(x,y,z) with the current as given in Equation (61)
means we have to solve the scalar wave equation for a phased line current and

this yields

- - 1
k 21 Tik x y Tik x -jk r
(x,y,2) = + —— |1n(p)e - Sesa °© 57X e ay~ | (62)
My iXs¥s = 41 P 1 1
p r
(o]
where: + for x > 0, - for x < 0,
2 2 2 1.2 1.2 2 1 -1 1
p =y +z, () = () +2°,a =Tan = (z/y),
1.2 2 2

(r)” = x" + (yl)z + z

The equivalent current needed to calculate ﬂso(x,yo,zo) is obtained from
Equation (58)
o —jko —jkox
JyS(x’yo’zo) =—5— 1 6(yo) 6(26) e , X> 0
+jk Jk x

° 1 &(yo) 6(zo) e ° , x<0 (63)

2

Solving Equation (56) for nso(x,yo,zo) with the current as given in (63) gives

. y=75
o
Mg (X,yo,zo) = WZ(X,Y,Z) (64)
zZ = Z
o
from which we obtain
1 - .
k 2I ' Fjk x ycosg, +jk x -jk r
( ) ° ; o __L -3 e ° 3 X ¢ 3 d 1 (65)
M3(%,¥,2) = + —— fin(py)e 1 + = y
p P3 T3
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where: + for x > 0, - for x < 0

p32 e aRn?) ® 1,2 _ 5 yH2ia2), ot

-1 1
3 3 = Tan "(z/y7),

(r31)2 _ 2. (psl)

2

The actual field components are obtained from Equations (40), (41), (42)

and (1), For example, the H components are
-jk r .
I . o z _ _
Hy =3 Jk, e 5 [1 'Ef?] (66-A)
r o
-1k xyz _Jkor -JkorS
H oo 2 e IR
- 2 2. 2 2 r r
Y ag(yT+z) ko(y +z) 3
- -jk
i B el i\ e o
+ 2 {1 - ) - (1 - ) (66-B)
r ( kor r ﬁrs kor3 r3
—ik _ .
2 2 IRT JK T3 _ Jk T
H - Ix (2" -y") e _ e - ik z2 (l o J ) e .
z 2 2 2 2 T T o kr 2 '
an(y +z ) (z +y ) 3 o r
_jkoy . e_Jkor3
+ T (1 - kJI‘ ) —"r——' (66—0)
P 3 o 3 3
where:
2 2 2 2 2 2 -1 2 2
r = x +y + 2z, rgo= X 4 B (y + z)

The H components as given in Equations (66-A), (66-B) and (66-C) may be
4
compared with expressions obtained by Clemmow on page 105, When comparing,

it is necessary to relate the coordinate system as used by Clemmow to the
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coordinate system used here and also to relate the symbols used for the
dielectric tensors, It is seen that the Hy and Hz components given here
differ from Clemmow's by a ko in one of the terms suggesting that a

printing error occurred in his paper,
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5. SCALING OBTAINED BY USE OF A TM AND TE REPRESENTATION FOR THE FIELD

The transformed fields in the uniaxial medium, given by Equations (11),
(12) and (13), may also be represented as the superposition of a transverse
magnetic (TM) field and a transverse electric (TE) field to the direction of
the magnetostatic field, For the TM field this implies HX = 0 and EX = 0
for the TE field, We wish to arrange Equations (11), (12) and (13) so as to
yield this representation,

For the case of a current component in the x-direction, the uniaxial
field is already TM as ﬁ; = 0 which implies Hx = 0. The scaling for this
case has already been given in Section 3,

Let the current component perpendicular to the magnetostatic field be
in the y-direction without loss of generality, . We now wish to express

- R _ ,
J = Jy y = Jl + Jz (67)

where Ei will generate a TM field and 32 will generate a TE field,

Let
= A A
Jl = Jyl y + Jz 4 (68-4)
- A A
J2 = Jy2 y - JZ z (68-R)
Obviously
J + J =Jd (69)

Using the fact that H_= 0 due to J. and E_= 0 due to J. in the field

1 2
equations for the uniaxial medium and using Equation (69% we obtain

-nm

z 2 2
n +m

Jy (¢ ,m,n) (70)
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2
[ d m ~
Jy1 = <53 Jy(f,m,n) (71)
n +m
~/ n2 o~
To =35 J,(,mmn) (72)
n +m

So the TM component of the uniaxial field may be written as

er =0 (73)
_J_ 9

Hoe = kB 9z Ty (74)
-3 0

Hoe = koﬁ 3y M4 (75)

The subscript e refers to an E-wave or TM field,

Also
2 2
1 o] d
Hen = 2 z2 ¥ T2 |7s (76)
k dy o0z
o
2
- 1 0
o
2
1 9
th =" K 2 9x0z WS (78)
o

The subscript h refers to a H-wave or a TE field,

The potentials ﬂ4 and 77_ are given by

5



21

o0
i J_(1,m,n) Jk_(£x+my-nz)
T, (x,y,2) = 22 ;”2 s — e ° dgdmdn  (79)
o (n+m’) (@"-B “(1-27) + m)
-0
and
o0 . jko(1x+my—n2)
iy n Jy(l,m,n) e
T (X,y,2) = —= 5 d/dmdn (80)
> ko (n +m2)(n2—1+l2+m2)
-00

ws(x,y,z) is recognizable as the solution of the scalar wave equation in

free space due to an equivalent source Jyg(x,y,z), that is,

2
\Y% Ty

2 . o
+ ko Ty = Jko Jy5(x,y,z) (81)

and

+jk_ ({x+my-nz)
[e] n ~ . o] , .
J (x,y,2z) = J ({,mn) e dfdmdn (82)
y5 A | n2+m2 y b

—o0

The scalar potential Ty can be written in a more convenient form by

making the following variable changes:

n = B n ’ m = B m (83)

y = ﬁ y , Z_ = §] z (84)
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~ o jko(lx+moyo-nozo)
Jy4(1,mo,no) e

° _ -3
Ty (X,yo,zo) =% 3 53 dzdmodn0 (85)
o} n_ -1l+¢ +4m
(e} O
—w
where
o]
Ty (X,yo,zo) = 1r4(X,yO w/ﬁ s Zg B ) (86)
and
~ o0 W/__ﬂ mof » mo no
J (4,m ,n) = B —F J ([ ) (87)
47270 2 _ 2 ) )
y © o no +mo y -\/-Ej '\/-F|

Therefore, 7 O(x,yo,zo), is-the solution of the scalar wave equation in free

4
space with coordinates (x,yo,zo) due to the equivalent source current
o .
Jy4(x,yo,zo), that is
1, +k27°%- ik 3%,y .z) (88)
Ty o Mg =J%, y4 »Yo9%,

where:

o
J =
y4(x’yo’zo)

(89)

o0
5 mo! f; , m n_ eJko(lx+moyo—noze) drdn dn
= v > o 9 ) ’
n02+m02 y [ ﬁl /ﬁ' o o
=00

The uniaxial potential is, therefore,

<«
It
© <

o
n4(x,y,z) =T, (x,yo,zo) (90)

ot
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The TE and TM components of the H-field are given by Equations (73) to (78).
The total field is then the superposition of the TE and TM components and most,

of course, agree with the original representation given by Equations (35),

(36) and (37),
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6. COMMENTS ON EQUIVALENT FREE SPACE CURRENTS CORRESPONDING
TO A GIVEN UNIAXIAL CURRENT

In Sections 3, 4 and 5, it was seen that the uniaxial fields could be
obtained by a simple coordinate scaling of a scalar function which was a
sokution of the inhomogeneous scalar wave equation in free space with a source
term that was related to the given uniaxial current, In Section 3 it was seen
that the uniaxial current parallel to the magnetostatic field transformed into
the free space source current by merely multiplying the uniaxial current by a
constant and scaling its coordinates, (Refer to Equation (25).) This means
that a dipole, for example, parallel to the magnetostatic field in the uni-
axial medium transformed into the free space source current that was also a
dipole (Equation 31),

The situation for the current perpendicular to the magnetostatic field
is more complex, In Section 4 the equivalent source currents Jyg and Jyg,
associated with the scalar functions Ty and ﬂ3o, respectively, for free space,
are related to the uniaxial source current by more than just a coordinate

° and Jy0 may be different than that

2 3
of the uniaxial source as seen in Equations (48) and (58), For example, if

scaling, The functional form of both Jy

the uniaxial source is a dipole, the equivalent free space currents become
phased line elements (Equations 61 and 63), It is interesting to note that
the equivalent free space current Jyz and Jyg, obtained in Section 5 by rep-
resenting the uniaxial field as a superposition of TE and TM fields, are
functionally different than those of Section 4, 1In Section 4 the equivalent
free space currents were functionally different from fhe uniaxial current in
one dimension only, namely x, In Section 5 the equivalent free space currents
are functionally different than the uniaxial source in at least two dimensions
as seen from Equations (83) and (89), Recalling that the uniaxial fields are
obtained from the solution of the inhomogeneous scalar wave‘equation in free
space with a source term given by these equivalent currents, the functional
difference between the equivalent currents becomes important, For instance,
it may be simpler to solve for the field by the method of Section 4 rather

than 5 because of the difference in the nature of the equivalent source terms,

This would depend on the functional form of the given uniaxial current,
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7, CONCLUSIONS

Given a uniaxial medium and a current source, the uniaxial fields are

expressed in terms of uniaxial scalar potentials that can be determined by

scaling the solutions of the inhomogeneous wave equations in free space with-

source terms that are related to the current source in the uniaxial medium,
Two possible methods of scaling are presented for the case of the uniaxial
curr=nt source perpendicular to the magnetostatic field, One is suggested
v the form of the solution 6btained by the three-dimensional Fourier trans-
forms technique, The other method is obtained by representing the uniaxial
field as a superposition of a TE and TM field, The choice of which method
to use depends on the given uniaxial current, This is a result of the fact
that Ehe equivalent currents that occur in each method are functionally de-
pendent on the uniaxial source but in a different manner, Therefore, one
equivalent source may be easier to work with than the other,

The advantage of being able t@ use the solution of the inhomogeneous
scalar wave equation in free space, to obtain the uniaxial fields, is
because of our previous knowledge gained from working. with this équation,

It may be that the solution of the inhomogeneous scalar wave equation with
a source term givgn by the equivalent current may already be known. How-
ever, if this is not the case, then a direct attack on the uniaxial fields,
as given by Equations (35), (36) and (37), may be best,

It is clear from the work in Sections 3, 4 and 5 that the scaling is
possible only because two of the three terms of the diagonal tensor are
equal, Thus, the scaling principle outlined here cannot be extended to the
general magneto-ionic medium,

One final comment about the possibility of 3 being negative or complex,
The latter case occurs if the plasma is lossy and the former occurs if X
(Equation (3)) is greater than unity (plasma frequency is greater than wave
frequency), Reference to the literature suggeststhat the solutions obtained
for B real and positive still hold if 3 takes on these values, although to

date this point is still controversial,
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