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ABSTRACT

291 36

Laminar boundary layer hcat transfer and shear stress predictions

{rom existing similarity solutions are extended in an approximate way

to perfect gas flows with a large free-stream velocity gradient parame-

ter [-3 and variable density-viscosity product ppu across the boundary
layer resulting from a highly cooled wall. The dimensionless enthalpy
gradient at the wall g’. to “vhich the heat flux is related, is found not

to vary appreciably with 8. Thus, the application of similarity solutions

on a local basis to predict heat transfer from accelerated flows to an

arbitrary surface may be a reasonable approximation involving a mini-

mum amount of calculation time. Unlike g’ , the dimensionless velocity

gradient at the wall f, to which the shear stress is related, is strongly

dependent on f3.

I. INTRODUCTION

In reviewing the vast literature on laminar boundary
layer heat transfer and shear stress predictions from simi-
larity solutions for perfect gases, one finds an incomplete
treatment of large free-stream velocity gradient effects
when the walls are highly cooled. When the ratic of wall
to total enthalpy, g., does not appreciably differ from
unity, similarity solutions like those of Cohen and
Reshotko {Ref. 1) for a perfect gas with constant density—
viscosity product pp across the boundary iayer and an
assumed Prandil number of unity are available. Cohen
and Reshotke's caleulation, in which the Stewartson trans-
formation was employed, covered free-stream velocity
gradients up to that corresponding to infinite flow accel-
cration. Levy (Ref. 2) also obtained closely related simi-
larity solutions for p; constant across the boundary layer,
g from 0.6 to 2, Prandtl numbers of 0.7 and 1.0, and a
smaller range of free-strcam velocity variations than
investigated by Cchen and Reshotko. The inadequacy of
Cohen ard Reshotko's predictions, in which pp was evalu-

‘aid at the wall over the range of g, from 0 to 2, has
be  pointed out by Probstein (Ref. 3) for highly cooled
walls, i.e., g, = 0, by way of an application to stagnation
point heat transfer. Probstein found the heat transfer rate
for a realistic variation of pp to be significantly lower
than that calculated by using the wall value of pu. It
should be pointed out that limitations apply as well to
those solutions of the integral form of the boundary layer
equations that depend on the similarity solutions in which
the wall values of pp were used, e.g,, Cohen and Reshotko
(Ref. 4) and Reshotko (Ref. 5). A better approximation
of the heat transfer rate is from a method employed by
Lees (Ref. 6) who took the group C = pu/peps = 1 across
the boundary layer and set pup. = pepee in the heat flux
expression, Lees, who used the combined Levy-Mangler
transformation, included predicted heat transfer rates for
values of the free-stream velocity gradient parameter 8
from 0 to 2 and g, from 0 to 1. Whereas for accelerated
{lows over bhunt-nosed bodies this range of § is usually
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adequate (e.g., at the stagnation point, B = 1% and 1 for
a body of revolution and circular cylinder, respectively)
for internal flows, such as through supersonic nozzles,
local values of £ can be much larger as will he scen. For
supersonic flows over flat-nosed bodies. local values of 3
may also exceed 2, e.g., see Kemp et al (Ref. 71.

In this paper Lees’ approximate soluiion is extended to
large values of 3 by the help of Coles’ (Ref. 8) limiting,
solution as f — o. In c0 doing note is made of the inter-
relation of the similarity reqquirements if solutions are to be
obtaired over the entire speed range 0 < u?/211, < 1.0.
Because the interelation requires taking both the Prandtl
nummber and C equal to unity, suitable corrections are
made to allow application to perfect gases for which vis-
cosity is not proportional to temperature and the Prandtl
number is different from unity.

The extension of Lees” approximate method is accom-
plished by interpolations from existing solutions by Cohen
and Reshotko from 8 = 2 to Coles’ limiting solutions as
B8 = «. The interpolations are made in the representa-
tion of Coles’ results, so that existing solutions are joined
smogthly and both heat transfer and shear stress parame-
ters are obtained. The heat transfer interpolations com-
pare closely with those intcrpolations by Beckwith and
Cohen (Ref. 9). Since Beckwith and Cohen’s interpola-
tions were made ditferently, they did not obtain the shear
stress parameter for large values of 8. Finally, the utiliza-
tion cof the similarity solutions in predicting heat transfer
to arbitrary surfaces is discussed.

The analysis is for perfect gases at high temperatures,
but not exceeding those temperatures at which dissocia-
tion, ionization or radiation effects become important.

Il. SIMILARITY CONSIDERATIONS

For axisvmmetric flow of a perfect gas the laminar boundary layer equations,
in which both the velocity and thermal layer thicknesses are assumed small com-
pared to either the body radius r for an external f.ow or the channel r»dius for an

internal flow, are the continuity equation:

5

0 . C
2 ) il (o) =0 (1
™ (pur’) +r y (pr) (1

with j = 1 for axisymmetric. {low; the momentum equation:

du ou d 2 du
Pl"’P—+PUT=—TF"+T‘(#'T) 2)
x fy ax oy oy

and the energy equation:

U —— + pv
P TP T Ty

oH, oH, 2 [p. oM,

Pr 2y

(-2 5] o

The analysis is applicable to tlow over a plane surface if j = 0. As was done by
Lees, the boundary layer eqnations are transformed from the x, y coordinate
system by the combined Levy-Mangler transformation:

riu, [’
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v

; €= / pepreticr? dx “4)




R T

T

L i

o o i

B . TP IR

2L TECHNICAL REPORT NO. 32.728

Assuming that the velocity and tetal enthalpy profiles are similar in terns of 4,

ie,u/u, = f(y), H/H, = g(v), and that H,. = H,, = constant, the transformed
momentum and energy equations are:

-

(7| =0 (5)

0
T

¢
p

(; g’>, +fa o+ 2—:17[2c <1 - _P%f) 7 f"]’z 0 (8)

where C = pp/pepe and B = (2¢/u,) (du./d"). The primes denote differentiation
with respect to . The surface is assumed impervious to flow and at a specified
temperature so that the enthalpy at the wall is known. The boundary conditions
are thus:

(Cfll)l + ff!l + ;3[

f(0) = £(0) =0 g0)=go atp=0
f(n)—1 g1  asp->

The heat flux te the wall is

2 <—6_T_‘ _ e (3_’1_) (_d_g_) _ (Heo— Hy) (Peuc)l: e ](Pw#;o)(_f:o_) (8)
7= B \oy )w T Pr " \oy /e \dy /e Pr (26)72 I\ pepe /' \1 ~ g

The wall sheer stress is

3 (E‘_) — u <377_> (-(..1.{:.) - ,‘2[ T’Me ](Puﬂ“«w)f’, 9)
T o ET Haolde W /e d77 y b Y (291/2 -Pe#e w (

Similarity solutions are possible if the following requirements are satisfied:

(&) go = constant

(b) either Pr = Pr(y), or a constant and

u®
0, low speen flow limit
2H,,
(10)
u, q
-1, high speed flow limit
oM., ghsp o
orPr=1

(c) C = C{y), or a constant

(d) B ['o—; -~ (f’)“] is independent of ¢

I3
3
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By assuming that these req iirements are satisfied, ihe
solution of the coupled Eq (5) and (6) depends on g,
Pr, u‘j/2H,”, C. and B. Some of these terms, however,
are interrelated. To illustrate these relationships, a con-
sequence of requirement Eq. (10d) is that 8 = constant,
from which the free-stream velocity distribution must be
of the form u, = b¢b’t with b = constant. The ratio of ki-
uetic to total energy then is dependent on £,

u, _ b
oH,,  2H .

Thus, if Pr £ 1, similar solutions are only possible for
either of the limiting cases of low and high speed flow
as can be secn in the energy Eq. (6); for intermediate
values. similarity solutions are not possible since u?/2H
depends on ¢ (the obvious exception would be a constant
free-stream velocity flow, 8 = 0). However, it appears
that by assuming Pr = 1, similarity solutions are possible
over the entire flow speed range 0 < u2/2H, < 1, since
the term in which «?/217  appears in Eq. (6) vanishes.
Though this seems correct, further restrictions are im-
posed by the requirement that C = C(5). This can be
seen by writing

C = pt T, o < T, )Lm _ (T,/T:,,)"“’
Pefte T me \T ~\'1/T,,
In order to obtain an explicit relation, a perfect gas with
a constant specific heat and paT¥ is considerad, although

these restrictions would not change the conclusions that
follow. By using the relations

H T «
., T, -8 W \am,
and that g = f = 1 1n the free-stream

u’ 1w
1= on

u’
.

g =) —

2H,,

By observation C is independent of ¢ only if either
o = 1, ie., poT or at the low speed flow limit. It thus
appears that to obtain similarity solutions over the entire
flow speed range one must take Pr = C = 1. About all
that can be done then is to make corrections that allow
application of the solutions to gases with » and Pr not
equal to unity.

Flows in the physical plane that correspond to
B = cons.ant are determined from

2 du. _ 2 1 du.
B u, dé d¢ u, dx
dx

fpc,u.el((.)"“" dx
0 1 du,

=2 n. dx (12)

{’eiieuer‘”

'The v -iation of the free-stream velocity along the sur-
face is seen to be dependent on r and pexr, in a compli-
cated way. Even for a perfect gas with assumed paT, for
which 1.+ ariviion ot peu. along the surface can he
pypresced in tepus of the static pressure and thus the
free-streamm velocity, u, still depends on r. Although a
general solution is not possible. *wo special cases are
considesed to indicate the vange of 2 that need be inves-
dgated: 1) Le - (Ref. 2), for plane {iow j = 0, assumed
pette = constant along, the surface {o vhich substituting
the velocity distribution u, = ' i Eq. (12) gives
B = °m/(m + 1); 2) for low spee-' internal, axisym-
metric, one-dimensional flow for v.. ch the mass flow
raie is pett {7r*) the relationship i« =~ = 2m. To investi-
gate the eatire flow acceleratic:. +4+ ;¢ fromm = 0 to w
i *he first case, the correspond ™.+ < .nge of 8 from 0 to 2
andy needs to be investiginest . tevy has pointed out,
these currespond o vhe we oo lows treated by Hartree
(Ref. 10). However forsh ccond case, similarity solu-
tions are needed fo, a baryer f range.

PTT L TTeTRe ma  NTT ww -
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Ill. VARIABLE pr IN STAGNATION POINT HEAT TRANSFEP

Before investigating the effcet of large B the effect of
variable C needs to be considercd. To indicate its
variation for a highly cooled wall, e.g.,, g. = 0.01, the
low-speed value « I C at the wall from Eqg. (11) is
C, = (1002, thus for » = 0.73, C increases from its
frec-stream value of 1 to 3.2 at the wall.

The cffect of C varying across the boundary layer can
be iuvestigated by using Bade’s (Ref. 11) solutions for a

body of revolution (8 = 14} and a monatomic gas with
Pr= 2, p = pRT, H = ¢,T, and viscosity-temperature .
relation peT® over a range of 05 € o < 1.0 and -
0.01 < ¢, < 08 It is useful to compare these exact
solutions, in the sense that the variation of C acioss the
boundary layer was taken into accourt, to approximarte
ones in which C is assumed invariable across the bound-
ary layer and is evaluated at a reference temperature,
ie., C = C.oy = To/pels/T),er. The results in Fig. 1

8.0 ? | T T T N T
TABLE OF EXACT VALUES OF % FROM BADE (REF.")
» ]
- ,
o ‘ w |g,=0.01!lg,=020{g,=0.4¢|g,=080
1}‘ C.50 | 0.0533 |0.2245 | 03075 | 0.4185
| -
| 070 | 0.1487 |0.3100 | 03670 | 0.4360
| b
6.0 i 100 | 04205 |0.4298 | 04387 | 04545
j
| ! 1
|
!
! | |
x| o '(C"’)FREE-STREAM TEMP, ]
NS L (c ()
N ref] £\LM TEMP, Verer
S " (“ref
< s WALL TEMP.
A ' _

\
S—— ~—
_
1.0 —2'S
ﬁ(—’ " - o
Ausors
w=0.75
0.5 (.- 050 }(q)=
0 I | |
o 0.l 02 0.3 04 05 0.6 0.7 0.8 .9 1.0
Hy T .

Fig. 1. Comparisons of appreximate to exact stagnatic n point heat transfer predictions (8 = B = ") for
a monatomic gas (Pr = 23} with uaT®
The points were datermined from the exact values of Bade ‘Ref. 11) and the curves were faired
through the points. All the ratios are equa, to unity for @ = 1 2,
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clearly show the limitation of these approximate solu-
tions for highly cooled walls. Note in particular, the
higher predictions with C,, i.e., pu evaluated at the wall
temperature.

Although the C.,, method fails, arother method in
which ¢ /(1 — g ) is determined from a sclution with
C = 1 and p.p. is taken equal to p.pu. in the heat flux
expression Eq. (8} dces provide good agreement with
the exact values as seen in Fig. 1 by the near-uaity ratios.
This method was employed by Lees (Ref. 6) as an
approximation to the actual case. This avpproximate
method, however. would rot be expected to apply if the
arbitrany choice of p.p. in £, Eq. (4}, and in C were evalu-

With a small correction factor which is essentially
independent of - the predictions for C 1 can be
adjusted to better agree with the exact values

Qeract == ( )M (@)

Tabie 1. Comparison of approximate to exact stagration
point heat transfer predictions

(q)(': 1 (

Propi
Pelle

(13

Puby

Table volues are the -afio: Pekie

ated at a reference condition different from the free- (qQ)occe
stream cne. For a discussion of this point see Fay and o
Riddell (Ref. 12). The near-unity ratios also indicate the < 9.=001 | g.=020| g. =040 g. =080 |
weak dependence of the predicted heat transfer coeffi-
cient h = q/(H. — H,) from Eq. (8) with H,, = H, on 05 0.99¢ 0.928 0943 0.982
the wall to free-stream temperature ratio. as shown by the 075 1.004 0554 0.971 0991
small variation of the group g /(1 — g_),._, tabulated in 1.00 10 10 1.0 1.0
Fig. 1,i.e., for». = 1.0.
P2
1.0 w=1.0
075 —
o—T —1
5 0.50 l.
- s 08 —
— 8§ o— | B
P
Y
‘ii TABLE OF EXACT VALUES OF f, FROM BADE { REF Il)
26
R w |gw=001 | g,7020] 4,%040 |g,=080 |
© ~N
w } . Q: 0.50 0.0736 ]0.3447 | 0.5137 0.7969 ]
<
— 0.4 0.70 0.1999 104649 | 0.6027 | 0.82862
1.00 05533 |0.6303 | 0.7083 ; 0.8566 |
0.2
o
0 ol 02 03 0.4 05 06 07 0.8 0.9 i0
9' = i’!:i
W oHe T

Fig. 2. Comparisons of approximate to exact stagnation region friction coefficient-Reynolds number predictions
(B = B = ') for a monatomic gas (Pr = 4) with paT*

The points ‘were determined from the exact values of Bade (Ref. 11) and the curves were faired through the poirts. The distance

x is measured from the stagnation point.
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Table 1 shows the correspondence to be within 17 at
g, = 0.01. The same factor is also indicated by the Fay

and Riddell {Ref. 12) predictions in which the Sutherland
viscosity Jaw was vsed.

Shown in Fig. 2 to be as nearly a good approximation
as for the heat flux is the friction coefficient—Reynolds
number group. Predictions with C,.; are not shown since
they exceed the exact values. similar to the heat flux.

\Whereas the heat transfer coefficient is insensitive to wall
cooling, the group (:/p’u'j) W diminishes with
wall cooling. The accuracy of the following approxima-
tion is similar to that for the heat flux shown in Table 1.

. foux (p'_ u(,)"’: _ ,p'u'.\]
pfu: ‘u'.— cxaet Pr'&r P’u; J i, LA

(14)

IV. EFFECT OF LARGE VALUES OF THE FREE-STREAM VELOCITY
GRADIENT PARAMETER S

To investigate the ef{ect of large values of 8 over the
entire flow speed range, previous considerations require
taking C and Pr cqual to unity. From the preceding
section a correction for the actual variation of C across
the boundary layer for low speed flow can be made with
Eq. (13) and {14). Sirictly speaking, for higher speed
flows, from Eq. (11), taking C = 1 implies that uaT;
however, the -orrection of Eq. (13) and (14) may still be
a fair approximation for actual gases where pu is not pro-
portional to 7, as can be seen in Eq. (11} where C would
vary less across the boundary layer as u?/2H, increases.
The assumption that Pr = 1 should not impose a serious
limitation since a correction for the actual Prandtl num-
ber can be made, and this is discussed in the following
section. If the specific heat is assumed constant, then
since the total enthalpy in the free stream is constant,
the group involving the free-stream velocity gradient in
Eq. (5) can be written as

s|Z-vr] =5[e-0r] o

where

With these assumptions, Eq. (5) and (6) become
fo+ i+ Ble—(fr1=0 (16)

g +fe=0 (17)

These equations and boundary conditions Eq. (7) with
¢, = constant are in the same form as those solved by -
Cohen and Reshotko (Ref. 1) for B to 2 and by Coles
(Ref. 8) for B — x. However, in both of these analyses
the Stewartson transformation was used, so that 8
and theii independent variables, like » and ¢, are defined
differently in terms of the flow variables. Cohen and
Reshotko’s solutions were obtained by a method of suc-
cessive approximations, while Coles used a singular ex-
pansion procedure in which an inner (near the wall), and
an outer series expansion was required to cbtain a uni-
formly valid solution throughout the boundary layer. The .
results of the analysis by Coles, in which an approximate
sclution of two differential equations (Ref. 8, Eq. 92 and
93) has been improved by an exact solution as described
in Appendix A, is shown by the straight lines in Fig. 3 in
a representation identical to that of Fig. 6 in his paper.
Cohen and Reshotko’s values are shown by the points
through which lines have been drawn.

Rather than solve Eq. (16) and (17) for2 < 8 < «, a
task more difficult to do numerically for large values of
B, ar approximation of g /(1 — g ), adequate for cal-
culation purposes, may be  -ained by interpolating
between the values of Cohen .. 1 Reshotko and those of
Coles shown in Fig. 3 with a third-order polyncmial
which matches the slope and value of the function at the
end points; the dashed curves indicate the interpolations.
The error in the interpolation is difficult to determine,
but due to the way the solutions are smoothly joined
when plotted in terms of 1/7/B in Fig. 3, it is expected
to be small; in particular, Beckwith and Cohen'’s (Ref. 9)
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Fig. 3. Literpolation of heat transfer parameter (l/\//?)g:r/(l —glfor2 <f< o, Pr=1,C=1

solutions of Eq. (16) and (17) for values of 8 to 4.4 are
within 0.5% of the interpolated values. Values of
g /(1 — g,) so obtained are shown in Fig. 4, together
with Coles” limiting values and the values of Cohen and
Reshotko. Of note in Fig. 4is thatas § > o0, 2’ /(1 — g)
remains finite; however, like Coles’ analysis where the
wall heat flux vanishes as 1/7/B, it can be shown that
the heat flux in Eq. (8) also approaches zero as § — .
In addition, Table 2 includes a few numerical values of
g /(1 — g,) obtained from the interpolation procedure
shown in Fig. 3. Beckwith and Cohen’s interpolated
values of g/ /(1 — g,) for g_= 0 and 1.0 and about
B > 4 are within about 1% of the values shown in
Table 2.

Fromn Fig. 4, the effect of infinite flow acceleration is
seen to increase g /(1 — g ) by 25% above the zero
free-strearn velocity gradient value for a highly cooled
wall, g == 0; for smaller amounts of wall cooling, the
effect is larger.

Cohen and Reshotko (Ref. 1) have also obtained solu-
tions to Eq. (16) and (17) for flow Aeceleiation, 8 < 0;
their values of g,,/(1 — g ) are show. in the inset in
Fig. 4. Compared to the accelerated flow values the

2

decelerated flow ones are strongly dependent on 3,
especially near the predicted separation point (note the
different B scales). The prediction: are also double-vained
near separation, the physicai significance of which is
discussed in Ref. 1. In addition, for decelerated flows
over highly cooled walls, the effect of variable C has not
been studied so that the correction in Eq. (13) for an
accelerated flow may not apply. In view of these observa-
tions, one must be careful in applying the predictions to
decelerated flows.

The effect of large free-stream velocity gradient on
wall shear stress is obtained in an approximate way
analogous to the heat flux. Values of f7 for 2 < B <
were obtained by interpolating between the results of
Coles (Ref. 8) (corrected as in Appendix A) aud Cohen
and Reshotko (Ref. 1) with a third-order polynomial in
powers of 1/\/;3:, as shown by the dashed curves in
Fig. 5. In particular the interpolations are within 0.1%
of solutions to Eq. (16) and (17) b’ Jonn Klineberg for
values of B to 500 and g, = 1.0.° The values of 7 ure
shown for 0 < B < 100 in Fig. 6. Unlike g/ /(1 ~ g )

°®Private communication, John Klineberg, California Institute of
Technology.
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Fig. 4. Variation of the heat transfer parameter g’ /(1 — g ) with B and g forPr=1andC=1
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Table 2. Interpolation prucedure resuits

- . -9 . -2 . S .
- 1 — ge 1 — g« 1 — g 1 — ge
8 1
ge =0 g. = 02 g. = 0.6 gv = 1.0
—_—t
o 0.4¢96 4696 0.4696 0.4596 0.4696 0.4696 0.4696 0.4696
0.5 0.4948 0.5806 0.5038 0.6547 0.5225 0.7947 0.5395 0.9277
1.0* — —- — -— — e 0.5715 1.2326
150 — — 0.5326 0.8639 - - - - -
2 0.5203 0.7381 0.5414 0.9480 0.5769 1.3329 0.6064 1.687¢
3 0.530 —— 0.556 1.076 0.598 1.577 0.631 2.042
4 0.537 - - 0.565 1.188 0.612 1.784 0.647 2.346
5 0.542 —- 0.572 1.273 0.623 1.967 0.660 2.614
9 0.553 — 0.590 1.557 0.649 2.564 0.689 3.486
1o 0.561 —— 0.605 1.918 0.669 3.348 0713 4.635
25 0.567 -— 0.615 2.274 0.683 4133 0729 5.786
36 0.570 — 0.622 2.632 0.692 4919 0.740 6.937
4 €573 - 0.627 2976 0.699 5.706 0.748 3 08g
64 0.575 - 0.631 3.325 0.703 6.492 0.753 9.244
100 0.578 —= 0.636 4.021 071 8.065 0.762 .55
ot 0.5901 — 0.6590 0 0.7408 © 0.7979 0
*Cohen ond Reshotho’s values (Ref. 1).
bColes’ values (Ref. 8) corrccted as in Appendix A.
‘a T _//LWIO which remains finite, f/ ~ s as 8 — o. This result
B follows directly from Coles’ solution_as shown in Fig. 5
12 ———q] = . . = . -
=== o6 where f:,’/\/,; remains finite as 1/\/[3——> 0,ie,as 83— 0.
V// However, although fl = c« as 2= =x,itcan be shown
10 , . P
_oT s 02 from Coles’ analysis that the wall shear stress is finite.
il f ] Of note in Figs, 5 and 6 is that values are shown for
el ]
ug °° = = g. = 02, 0.6, and 1.0. Coles did not include values
8 VM J for ¢ = 0 since as B > , f:,’/\/[-?_—> 0, but the slope
v P N ) o .
e 0 //7 ] T da(f” /\/,‘é-)/d(l/\/,(?) — . An attempt was made to
z & 0 © COHEN AND RESHOTKO obtain #” for a small value of g = 0.01; however, it led
R | __soLuTions 0<B<2 (RER. 1) e . w .
v ~7 " INTERPOLATED GURVE 2<B < | to an unrealistic polynomial approximation as a result
COLES LIMITING SOLUTION AS of the large slope of Coles’ prediction relative to that of
- R . AJ
o2 B lner 8) [CORRECTED AS __, Cohen and Reshotko for a small valuc of g, .
[ ] - ’
N R T | I T .. From Fig, 6_the values of f” are seen to be strongly
* dependent on 8. Even for g = 0.20, where the variation
of f! with 8 is least, there is about a five-fold increase in
Fig. 5. Interpolation of wall friction parameier f at B = 20 ahove the zero free-stream velocity gradient
¢ /\Fror2 < f< w,Pr=1,€=1 value.
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Fig. 6. Variation of dimensionless velocity gradient at the wall, £/, with B and g forPr=1andC =

stress for § < 0.

The remarks made previously with regard tc ‘he calcu-
latior of the heat transfer apply as well to the wall shear

»ou
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V. HEAT TRANSFER AND WALL FRICTION SPECIFICATICN

Having treated separately the effects of variable C and 8, the combined results
from Eq. (8) (with Pr = 1 and pepe = oepe) and the correction of Eq. (13), the
approximation of the heat flux to the wall is

r ri!Lc Picllic o oy g:r ) (18)
- _ H ‘ r—2 3
q = (Haw — Hu) (petse) L(gs):/z Pelie 1—g,

This relation can be cast in a familiar form by introducing a length % defined by

I
f pepetter® dx
§ 1]

= = : (19)
popreticr?! Pepretict™’

Then the Stanton number becomes

g"o 0.1 Peue; -1/2
st=d_ 1 < )(”"”‘"’ ) Pres (20)
(IIatc - I'Ixc)ﬁeue \ﬂ 1-—- 8ic Pclle Me

The group g’ /(1 — g, ) is determined from Fig. 4 for values of § and g, The
prediction in either Eq. (18) or (20) was corrected for a Prandtl number other than
unity by multiplying by the factor Pr-*/3, indicated by the low speed flat plate
flow solution of Pohlhausen (Ref. 10) (other factors have been found, e.g., Fay
and Riddell (Ref. 12) give Pr¢). Even for the high speed flow limit this correc-
tion is in good agreement with the similarity predictions of Gross and Dewey
(Ret. 13) for variable pu and values of 8 from 0 to 1.0, when the wall is highly
cooled. The separate Prandtl number correction is also supported by the simi-
larity predictions of Kemp et al. (Ref. 7) for variable pu and values of 8 from
0 to 2.0 which indicate that at a given Prandtl number (0.71 in their analysis) for
highly cooled walls, the group g’ /(1 — g,) was only slightly affected by values
of u?/2H, ranging to 3, and mainly affected by 8.

To be consistent with the Prandtl number correction the enthalpy difference
(Hi — H,,) has been replaced by the difference between the adiabatic wall and
wall enthaipies (Ha. — H,,). For highly cooled walls, where the wall temperature
is much lower than the adiabatic wall temperature, the difference between these
driving potentials is small. The adiabatic wall enthalpy can be calculated from

Haw-Hc 1/t 21
R—m—l‘r - (21)
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Kemp et al (Ref. 7) found this recovery factor R depen-
dence on 1.andtl number to be valid for high speed
tlows with pu variable for values of 8 = 0 and %,

Although these latter considerations have been directed
towards highly cooled walls, either of the relations Eq.
(18) or (20) should provide a good approximation for wail
cooling over the range of g, from 0 to that corresponding
to «he adiabatic wall condition.

Vi. APPLICATION OF

In predicting heat transfer from laminary boundary lay-
ers to arbitrary surfaces, free-stream and boundary con-
ditions usually are such that requirements Eq. (10) for
similarity solutions are not satisfied. Of these require-
ments only a constant wall enthalpy car be nearly
realized in practice by wall cooling. One must then rescrt
to solutions of the integral form of the boundary layer
equations, finite difference numerical techniques or other
methods (e.g., Hayes and Probstein, Ref. 14). Alterna-
tively, the approximation of local similarity can be em-
ployed and known similarity solutions utilized. In the local
similarity method the boundary layer profiles at a posi-
tion along the surface are assumed identical to the similar
profiles which would exist for the local free-stream ccn-
dition. To justify this method the free-stream conditions
should vary slowly along the surface. or.if these variations
are not small, the dimensionless er:thalpy gradient at the
wall, to which the wall heat flux is related, should be
rather insensitive to the free-stream velocity gradient
parameter ,5

The criterion that the variation of g/ along the surface
be small compared ‘o g, itself is usually satisfied for
flows over blunt-nosed bodies since values of g are not
large. Kemp et al. (Ref. 7), by considering the nonsimilar
terms that would appear on the right side of Eq. (5) and
(6) if the distributions f and g also depend on ¢, express
this as 2¢ d(g' /Pr)/dt < < g, /Pr. Lees (Ref. 6), noting

The inclusion of values of ¢’ /(1 — g,_) in Fig. 4 for
g, = 1 thus allows interpolation for intermediate values
of 2 less than .

By combining the results from Eq (9) with ppw = pepe

and the correction of Eq. (14), the approximation of the
friction coefficient is

f:; (pu o o Pcu¢; “i/2
= — 23
VE \ bk, ~, &)
From Fig. 6, f/ can be determined for values of B
and ¢ .

Cy T
2

peli

SIMILARITY SOLUTIONS

this small variation in ¢, selected an average value of
@ /(1 = g ) = 050 for which reasonably good agree-
ment was found by Kemp et al. (Ref. 7) by comparison
to their heat transfer measurements on the front side of

blunt-nosed bodies in supersonic flow.

For internal flows, however, values of ,§ can be quite
large. To indicate the magnitude and variation of B
for supersonic nozzle flow, values are shown in Fig. 7 for
circular-arc-throat conical nozzles. It is seen that values
of B vary greatly through the nozzle and reach values as
large as 20 near the throat. If the nozzle wall is highly
cooled, ¢ == 0, then the variation of g’ from Fig. 4 over
the range of U < 8 < 20 is less than 15%. Details of the
calculation of 8 for one-dimensional isentropic flow and
its dependence on nozzle configuration are given in
Appendix B. Though deviaidons from one-dimensional
flow, especially in the throat region, have been found
experimentally in circular-arc-throat conical nozzlzs
(Ref. 15), the influence on g’ would be small because of
the weak dependence on # when g is large, as can be
seen in Fig. 4.

The previous example illustrates a flow in which g is
large; in fact, the analysis of this report was motivated
by interest in predicting heat transfer from a laminar
boundary layer to a cooled supersonic nozzle wall.

13
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Fig. 7. Variation of free-stream velocity gradient
parameter 3 with axial distance for two nozzles

Though similarity requirements are generally not satis-
fied for nozzle flow, the less than 15% v:riation of g/
in particular for the nozzles shown in Fig. 7 may still
not be large enough to invalidate the use of similarity
solutions on a local basis to predict the wall heat flux
[for special nozzle shapes the solutions of Coles (Ref. 8)
and Lam (Ref. 16) are available]. An appraisal of the
approximate method, which involves a minimum amount
of calculation time, rests in comparison with experimental
results.

In comparison with experimental results an important
consideration in the application of the similarity solutions
is where the prediction is started. Some insight on this, as
well as supporting the direct application of the similarity
solutions, is provided by a solution of the energy equa-
tion in the von Mises form, simplified by the slug flow
approximation, i.e., the local velocity is taken at its free-
stream value, For Pr = 1l and C = 1 the energy Eq. (3) is

14

8 _ o8 (24)
8e P

The new variable ¢ is identical to that in the combined
Levy-Mangler {ransformation Eq. (4) and y is the stream
function. From the solution

‘[/

g=1-(1~gyerfc (2—\79 (25)

the heat flux to the wall, assumed isothermal down-
stream of where cooling begins (¢ = 0), is identical to
that from the similarity solation of Eq. (8) except that
V2/= = 0.7979 replaces g/ /(1 — g ). The constant
0.7979 is the penalty for neglecting the actual velocity
distribution and how it varies mainly with free-stream
velocity gradient and wall cooling. As noted, £ is related
to the cooled length, ie., ¢ = 0 at the location x = 0
where cooling begins.

It is well known for low-speed, constant property flow
over a flat plate that the heat flux predicted by assum-
ing slug flow exceeds the actual value by the ratio
(1/\/7)/9.332 = 170 for Pr = 1 (e.g., see Eckert and
Drake, Ref. 17, p. 299). With flow acceleration the
velocity distribution becomes steeper near the wall (e.g,
see the Hartree wedge flows, Ref. 10) so that the slug
flow approximation becomes more realistic, as indicated
by the value 0.7979 compared to those values of
g /(1 — g,) shown in Fig. 4 for large values of 8. In
fact, Coles (Ref. 8) in treating the case where g — oo
found that the ratio of thermal to velocity layer thickness
is of order \/B. For such a situation the slug flow approx-
imation becomes very good, and this undoubtedly leads
to the general correspondence between it and Coles’ solu-
tion as 8 - oo; for g, = 1.0, the solutions are identical.
Since wall cooling reduces the steepness of the velocity
distribution near the wall, the slug flow approximation
becomes worse; this trend is also observable in Fig. 4.

Unlike ¢’ in the heat flux expression, the dimension-
less velocity gradient at the wall f, to which the wall
shear stress is related, is strongly dependent on 8. Thus,
the local similarity method does not appear to be appli-
cable in predicting the wall shear stress unless, for the
particular range cf 8 of intevest, the predicted variation
of {7 is small.

- g —
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VIl. CONCLUSIONS

Laminar boundary layer heat transfer and wall shear
stress predictions from similarity ¢ 'utions have bven
obtained in an approximate way over a large range of
values of the free-stream velocity gradient parameter 8
and wall cooling. The solutions indicate that the appli-
cation of the similarity solutions on 2 local basis to pre-
dict heat transfer to arhitrary surfaces. as has been

demonstrated by Lees for lower § flows, may be a
reasonable approximation over a larger range of g for
accelerated flows, like these attainable in supersonic
nozzles. In this regard comparisons to experimental results
are needed. The local similarity method, however, does
not appear to be applicable in predicting the wall shear
stress, except for tflows where the variation of E is small.

NOMENCLATURE

C dimensionless function, pu/pepe
¢, friction coefficient, ¢,/2 = +/p.ut.
¢, specific heat at constant pressure

f dimensionless velocity, u/u
f/ gradient at wall

g dimensionless total enthalpy, H JH,
g gradient at wall

H static enthalpy
H, stagnation enthalpy, H + 42/2
k thermal conductivity
M Mach number
m mass flow rate
p static pressure
Pr Prandt]l number
g heat flux to wall
r body or channel radius
r. uozzle throat radius of curvature
r  nozzle throat radius
R gas constant or recovery factor
St Stanton number
T static temperature

T, stagna'i.. temperature

components of velocity parallel and normal to wall

x distance along wall

X length defined in Eq. (19)

y distance normal to wall

B free-stream velocity gradient parameter,
(2¢/u.) (du./dg)

B free-stream velocity gradient parameter,
B(T+./Te)

y specific heat ratio

n dimensionless coordinate normal to wall, Eq. (4)
p  viscosity

£ coordinate along wall, Eq. (4)

p density

r wall shear stress
¢ stream function

o exponent of viscosity-temperature relation

Subscripts

aw adiabatic wall condition
o conditions at free-stream edge of boundary layer
» reservoir condition

» wall condition

15
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APPENDIX A
SOLUTIONS FOR 3 — ~v

In the limiting case as 8 — «, Coles’ (Ref. 8) wall ho+1=(f)>=0 or f.=Vh, +1 (A-3)

heat transfer and shear stress parameters are specified in
terms of his zero-order functions g,, h, and f, W+ f i o= (A-4)

I'(0) 1 h,(0) and boundary conditions
", T B H.
\/‘_8— (A-1) f“(()) =0, /'“(0) =gt or ]1“’\':/) =g - 1

(A-5)

1
G"(0) = g7(0) + \—/—E f7(0)

In our nomenclature these parameters are

’

_ro _ 1 &
Hu' ,E 1 - gvt‘
and
fr
¢ = g

alsoH, =g, — 1.
An exact solution for g, was obtained by Coles from

which
g”(0) = \/f g0

3 (A-2)

The remaining two functions h, and f, satisfy the differ-
ential equations

Shown in Table A-1 are values g’ /(1 — ¢ ) and f’(0)
obtained from Coles’ approximate solution of Eq. (A-3)
and (A-4) with boundary conditions Eq. (A-5) (note that
R (0) = ¢ ). Also shown in Table A-1 are exact solu-
tions of these equations obtained by Beckwith and Cohen
(Ref. 9) for g, = 0, ¥4 and 1 and, by us for intermaediate
values of g. = 02, 0.6, and 0.8, as weli as for g, = 0
and %. An exact solution is possible for g, = 1.0 for

which
a’l‘ =
B /E = n1em9

1 =

Our calculations were made on an IBM 7094 computer
by numerical integration with a variant of the Gill Modi-
fication (Ref. 18) of fuurth-order Runge-Kutta used; the
step size was Ap = 0.0005. By comparisou in Table A-1,
Coles’ approximate solution yields values of ¢’ /(1 — g,
and j”(0) which are larger than the exact values as ¢
decreases.

Table A-1. Results as 8 > <o

Coles’ approximate Exact Beckwith and Cohen Coles’ approximate Exact

solution (Ref. 8) solution {Ref, 9) solution (Ref. 8) solution

g
9.’ /(1 — g} £."(0)

0 0.652 0.5901 0.58928 e o
0.2 0.695 0.6590 — 0.624 0.5894
0.5 0.741 0.7234 0.72302 0.262 0.2558
0.6 0.754 0.7408 - - 0.195 0.1913
0.8 0.777 0.7717 - 0.0870 0.0863
1.0 i 0.7979 0.7979 0.7979 0 0

16
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APPENDIX B

CALCULATION OF /} FOR AXISYMMETRIC NOZZLE FLOW

For orie-dimensional isentropic flow the exps ssion for

£ from Eq. (15) is

- A!ez) He Ti‘
(B-1)

The rirst factor in Eq. (B-1) is the familiar relation ob-
tained from the combined continuitv and momentum
eguations and the second factor was obtained from
Eq. (4) for one-dimensioral flow.

£ = m / .,Lt,dx (B-2)

The calculations shown in Fig. 7 were initiated at the
nozzle inlet (i.e., £ = 0, 3 = 0) with x the distance along’
the nozzle wall. The viscosity-tempe-ature relation was
taken as paT"* and the specific heat ratio, y = 5/3.

_ Since B is a maximum near the throat, the throat value
Bn 15 of particular interest. The quantity

dr
“dx
1- M2

is indeterminate at the throat where M, = 1, dr/dx = 0;
however, by expanding r/ry, and AM* in Taylor serics
about the throat, the following throat expression is
ouined

|-. da 7 o ~
—_(Ec_ J _ 1 B \/;Th
th - \/

L3 — M. 2y + 1) re

where ,,, is the throat radius and r. the throat radius of
curvature. By ising

and Fq. (B-3) the throat value is

Xth

Zo(y + 1)——'%—.—

Bn = v (B4,

Tta

where %, is an effective length to the nozzle throat, and
is given by the sccond factor in Eq. (B-1). From Eq.
(B-4), B is seen to increase with small r./r;; and large
X/t Thus values of By, shown in Fig. 7 are nearly
equal, since X/rqy is about the same for the two nozzles
which have identical values of r./r .
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