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SUMMARY
9.914 

A combined theoretical and experimental investigation has been carried

out to determine the elastic behavior of various excised human and canine

arterial segments. The specimens were subjected to the combined loads of

internal pressure and axial tension, and measurements were made of the inner

diameter, outer diameter, and length for each loading condition. Arteries

tested included the human brachial, external iliac, superior mesenteric and

splenic, as well as the canine femoral and thoracic aorta.

The results indicate that, for all specimens tested, the arterial wall

behaves as a nonlinear, homogeneous, anisotropic, compressible material and

can be described by six elastic constants for each level of strain. Both the

circumferential and axial stiffness are found to increase with internal pres-

sure and both approach the value for the collagenous fibres at very high in-

ternal pressure and axial weight, respectively. The radial stiffness is found

to be essentially independent of either internal pressure or axial loading.

The relationship of this behavior to the presence and orientation of the

collagen fibres is discussed in detail.

The length of the arterial segment increases with pressure at low axial

stress, but decreases with pressure at high axial stress. At in-vivo levels

of internal pressure and axial stress, the artery length remains essentially

unchanged, independent of loading. Further, at in-vivo levels, the artery

behaves as though it were transversely isotropic, with equal stiffness in the

circumferential and axial directions. ____2
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THEORETICAL AND EXPERIMENTAL STUDY OF THE ELASTIC BEHAVIOR OF

THE HUMAN BRACHIAL AND OTHER HUMAN AND CANINE ARTERIES

i. INTRODUCTION

Understanding the physical structure and physiological behavior of

blood vessels has long been the subject of serious study in the biological

sciences. It has become increasingly clear that mathematical analysis and

interpretation of such physiological phenomena as the pulse wave propaga-

tion, structural effects of aging and disease, and auscultatory blood

pressures are greatly handicapped by the lack of quantitative data on the

elastic behavior of arteries. Consequently, a number of investigators have

performed varied tests on living, excised, and simulated parts of the arte-

rial tree in order to deduce the elastic behavior or at least to understand

the role that the elastic properties of arteries play in these phenomena

(Refs. 1 through 24).

With regard to auscultatory blood pressures, the results of recent

experiments in a simulated arterial system (Ref. 24) clearly indicated

that auscultatory blood pressure readings exceed direct pressure readings

by an amount which depends largely upon the elastic behavior (in particu-

lar the buckling pressure) of the vessel in question. Ordinarily, the

vessel involved is the human brachial artery, for which elastic data appear

to be virtually nonexistent. Therefore, the present investigation was

initiated, primarily, to furnish such data. However, it became apparent

during this study that past analytical treatments of arterial specimens

have been inadequate because of the complex structure of arteries in gen-

eral. The present report therefore presents a general treatment of the

elastic behavior of arteries, with particular emphasis on the human brachial.

Most of the earlier mathematical analyses on elastic behavior of

arterial specimens have been based upon the assumptions that the material is

homogeneous, isotropic, and incompressible. It will be shown in this

report that these assumptions are not justified, and that such an approach

does not agree with the experimental evidence. A general nonlinear theory

for thin-walled anisotropic tubes will be presented which permits the

extraction of the six elastic constants for excised arterial specimens.

The results of experiments on various human and canine arteries will

also be presented along with the values of these constants as obtained with

the present theory.
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2. THEARTERIALWALL

2.1 Structural Composition

The arterial wall is a very complex structure which surrounds the
lumen (flow passage) of an artery. This wall is composed of several dis-
tinct annular layers, which themselves are comprised of various biological
materials such as elastin, smooth muscle, collagen, and connective tissue

(see Refs. 25 through 27).

Generally speaking, the arterial wall is thought of as consisting of

five distinct laminas. These five layers are shown schematically in Fig-

ure 1 and are known, from the lumen outward, as the endothelium, internal

elastic lamella, media, external elastic lamella, and adventitia (Ref. 25).

The relative thickness of each lamina varies throughout the arterial tree

so that, for some arteries, one or two layers may comprise nearly all of

the wall thickness, while the remaining layers may be entirely missing.

Figures 2, 3, and 4 present microphotographs which show this variation for

three different arteries. The human brachial artery (Fig. 2) has a very

thick media which constitutes nearly 75 percent of the total wall thick-

ness. The canine femoral artery shown in Figure 3 has two equally thick

layers (mediam and external elastic lamella) which comprise almost the

entire wall, but the thoracic aorta (Fig. 4) has as its thickest layer

the external elastic lamella, which makes up about 60 percent of the wall.

The internal elastic lamella is virtually nonexistent in this particular

artery.

The innermost lamina is the very soft endothelium which is a very

thin layer, probably one cell in thickness. It cannot be seen under Xl00

magnification because it is only i000 Angstroms thick (Ref. 26). The

internal elastic lamella surrounds the endothelium, and it, too, comprises

very little of the wall thickness of the larger arteries (see Ref. 25).

This layer is primarily composed of elastin, with some connective tissue

interspersed (see Ref. 28).

The next two laminas, the media and external elastic lammela, respec-

tively, constitute the bulk of the arterial wall (see Refs. 25 through 29).

The specimens already discussed (Figs. 2, 3, and 4) displayed this charac-

teristic quite well.

The media is primarily composed of smooth muscle, but is striated

with elastin and some collagen. On the other hand, the external elastic

lamella, like the internal elastic lamella, has virtually no smooth muscle

whatsoever. It is made up of elastin and increasing amounts of collagen,
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so that its outer edge becomes completely collagenous and blends into the

adventitia.

The adventitia, the outermost layer, has a high percentage of collagen

and is most unique. K. J. Franklin (Ref. 30) reports that this lamina is

made up of very stiff collagenous fibres, which form a double-crisscross,

waveless, spiral network around the inner layers, as shown schematically

in Figure 5. As indicated in the figure, their behavior is very comparable

to that of the well-known "Chinese finger puzzle," in which an increasing

axial load causes a thinning of the wall and a rotation of the fibers to

a more nearly axial orientation. It is not known whether this structure

is typical of other layers where collagen is present.

In summary, the arterial wall consists of several laminas which are

composed of fairly elastic materials, elastin and smooth muscle, and the

stiffer collagen fibres which form helical rings around the inner layers.

The arterial wall is, therefore, clearly inhomogeneou% primarily in the

radial direction.

2.2 Elastic Behavior

The importance of the elastic characteristics of living blood vessels

has long been recognized by physiologists, and many attempts have been made

to determine those characteristics by both static and dynamic elastic tests.

For the larger arteries, the mathematical problem is that of an elastic

cylindrical tube which is subjected to an elevated internal pressure, a

longitudinal or axial force, and a periodic variation in internal pressure,

with certain external constraints applied to the tube. Physically, this

means that the artery, which has become stretched along its axis during

early growth and is constrained by surrounding tissues and muscles, is

subjected to an internal pressure pulse superimposed on a mean pressure

which is normally about i00 mm Hg. above atmospheric pressure. The question,

of course, is what are the corresponding deformations of the vessel wall,

and what are the associated elastic constants.

Perhaps the earliest systematic elastic tests of arterial specimens

were carried out by Roy (Ref. i), who found that arteries exhibit the

properties of that class of materials now known as elastomers. In particu-

lar, they exhibit

(a) A large elastic range (i.e., large deformations with subsequent
return).

(b) A nonlinear stress-strain relation (stiffness varies with strain).

(c) A relaxation time (i.e., strain under constant stress varies with

time).
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(d) Anomalous thermal behavior (material contracts when heated while

under tension).

Since Roy's investigations of aortic strips, many experiments have been

performed to determine the variation of elastic modulus with strain for

various intact vessels, both excised (Refs. 1 through 17) and in-vivo (Refs.

18 and 19). In general, all of these experiments show a nonlinear variation

of diameter with pressure for the intact vessel, and in 1957, Roach and

Burton published an "explanation" of this behavior (Ref. 13), which they

attributed to the character of the various component materials discussed

above (see Section 2.1). By differential digestion of the collagen (by

formic acid) and the elastin (by crude trypsin), Roach and Burton were able

to test each component material and found values of Young's modulus for

elastin to be about 80 psi, as compared with the much stiffer collagen with

a value of about 1500 psi.

It is interesting to note that in no case was the material volume mea-

sured. It is generally assumed that the material is incompressible, which

is more or less true of rubber-like materials. Previous investigators have

also generally assumed that the material is homogeneous and isotropic, and

can therefore be characterized by a single value of Young's modulus for any

given loading. This seems to be a particularly bold assumption, in view of

the complex physical structure discussed above.

As a check on the assumption of isotropy, Lawton (Ref. 6, p. 160) tested

arterial strips cut longitudinally, circumferentially, and at various angles

to the tube axis. The results of these tests indicate that there is no sig-

nificant effect of orientation. Lawton therefore concluded that the arterial

wall is isotropic. However, since the collagenous fibres actually form a

helical net around the intact arterial wall, it seems apparent that cutting

this net would not only alter the elastic properties of the vessel but would

remove the very mechanism of anisotropy i and yield results which have the

appearance of isotropy. Hence, elastic tests of arterial strips cannot be

used to demonstrate the elastic behavior of intact specimens. As a matter

of fact, the work of Fenn (Ref. 15) strongly suggests that arteries are

anisotropic.

iAn anisotropic material is one whose elastic constants are directionally

dependent; that is, it is one which possesses a different modulus of

elasticity, Poisson's ratio, and shear modulus along each of the three
orthogonal axes.
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The question of homogeneity is a somewhat different matter. First, it
is clear from the microphotographs discussed in Section 2.1 that the arte-
rial wall is not really composed of a homogeneous material. On the other
hand, if we seek a mathematical model which will predict the elastic be-
havior of an artery when subjected to various loads, we may be able to
represent the cylindrical tube as made up of an equivalent homogeneous
material, provided that it exhibits a different elasticity in each of
three orthogonal directions, and we permit the elastic "constants" to vary
with the loading. The mathematical model need not necessarily remain at
constant volume, provided that we make sufficient measurements so that the
volume can be determined under each loading.

The purpose of the subsequent sections of this report will be, first,
to set up a mathematical model whose elastic constants may be expected to
describe the elastic behavior of an artery under arbitrary loading, and,
second, to set up and carry out experiments by which these constants can
be determined for a given specimen. In so doing, of course, we shall find
out whether the arterial wall can be described as nearly homogeneous, iso-
tropic, and/or incompressible.
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3. THEORETICALCONSIDERATIONS
The primary aim of the analysis to be presented here is to enable one

to determine the elastic constants of a given arterial specimen from mea-

sured values of the applied forces and pressures and the corresponding

deformations. Because the material in question is likely to be anisotropic

and exhibits nonlinear deformations, a mathematical analysis is not a

simple task. In fact, the arterial wall must be considered to be character-

ized by at least six elastic constants (corresponding to one value of Young's

modulus and one value of Poisson's ratio for each of the three coordinate

directions). Furthermore, these "constants" are expected to depend upon

the level of strain and are therefore not really constant at all. Conse-

quently, we shall characterize the material of the arterial wall as aniso-

tropic and consider large deformations, so that the elastic constants in

question will refer to the local behavior of the wall at a given strain

level.

The mathematical problem to be treated here is that of a thin-walled,

cylindrical tube of finite length which is subjected to the combined loads

of an elevated internal pressure and an applied axial force. The assumed

model and the appropriate cylindrical coordinate system are shown in Fig-

ure 6.

The thin wall assumption is used so that the stresses and strains can

be assumed to be uniform throughout the material. In other words, the

arterial wall is treated essentially as a membrane.

Large deformation theory is required to represent the static elastic

characteristics of arterial materials because these materials exhibit a

nonlinear stress-displacement relationship (see sketch below). This non-

linear curve means that the modulus of elasticity (local slope of the

stress-displacement curve) varies with the loading. Hence, we shall employ

large deformation theory to determine the nonlinear equation relating stress

and displacement and, from this equation, determine the local elastic con-

stants from the local slopes.
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Stress, o

0
1.0

Nonlinear material

E x_ Linear material

Nondimensional displacement, A

Large deformation theory is based upon the existence of a unique strain
energy potential, W, which represents the elastic energy (per unit volume)
stored in the material when it is brought from the unstrained configuration
to its strained condition. We note that the elastic potential is a posi-
tive quantity for all real strains and has a value of zero (W = 0) at the

unstrained condition. Various tests (Refs. 31, 33, or 34) show that, if

the loadings are performed isothermally, an elastic potential may exist

and, if so, is a single-valued function of the state of strain of the de-

formed body, as well as of the geometrical and elastic constants. Further,

if the material is inviscid and nonplastic and if the aforementioned elas-

tic potential exists, then the material is said to behave as an ideally

elastic continuum. The real material does exhibit some viscosity and plas-

ticity, but these are considered minimal for the low rates of loading

experienced during the present static tests.

Next, we shall assume that the material is elastically homogeneous.

Earlier in this report, it was pointed out that the arterial wall was defi-

nitely inhomogeneous. However, we now assume that the mean elastic behavior

of the wall can be represented by an equivalent homogeneous material.

Mathematically, this assumption demands that the elastic coefficients at

any given load are independent of location in the specimen (see _ _i

p. 156 for more details), and the elastic potential has the same form

throughout the material.

In summary, the elastic tube representing the artery is assumed to

be

(i) A circular cylinder (axisymmetric)

(2) Thin-walled (quasi-membrane)
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(3) Ideally elastic
(4) Initially unstressed and unstrained
(5) Deformed isothermally
(6) Elastically homogeneous (properties uniform throughout)

Since we are dealing with large deformations, it is convenient to

represent the deformation in terms of extension ratios (hl,Za,Z s) which are

defined relative to the unstressed dimensions as follows:

_i = li/li o

A2 = 12/12 0

As = 13/13o

The subscripts i, 2, and s refer to the coordinates selected, and the zero

subscript denotes the unstressed dimension.

The above ratios are directly related to the corresponding strains

(6ii) for small displacements so that

kl 1 + 61i

(i)

= 1 + 6 (2)
2 22

Z s 1 + 633

The strain energy W is, in general, a function of all six components

of the strain tensor; that is, it is a function of the normal strains

(611, 622, and 633) and the shear strains (612, el3 , and 623). However,

because of the membrane assumption, the normal strains are assumed to be

uniform throughout the material. Hence, for the axisymmetric tube being

considered, a pure axial tension combined with a uniform pressure loading

cannot produce any shear strains. Therefore, the shear strains are zero

and the strain energy function W becomes a function of only the three

normal strain components or the three extension ratios hi, ha, and Z 3.

That is,

W = W (Ai,_ e, and A3 )
(3)

It will be noted that the extension ratios depend upon the selection

of coordinates, as well as upon the loading, and that the W function de-

fined by Equation (3), therefore, does not uniquely characterize the strain
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energy of the material in question. On the other hand, it can be shown
(Ref. 32) that there exist three strain invariants which are independent
of the coordinate system chosen. These invariants are expressible in

terms of the extension ratios of any particular coordinate system chosen.

For our case, since the tube wall thickness is assumed to be very small

compared with the tube diameter, we have a Cartesian coordinate system, and

one can express the three invariants as follows (Ref. 31) :

a Za e
11 = h i + + h s2

= 2 2.2
I s klkaA s

The extension ratios can be defined in terms of the tube dimensions shown

in Figure 6. Thus we have

h i = rm/rmo (circumferential)

he = L/L ° (axial)

s h/h ° (radial)

Hence, we can write the strain energy function W

(5)

J

in its proper form

W = W(Ii,Ia,Is) (6)

so that the stored energy is uniquely defined for any loading of the given

material in any coordinate system in terms of the strain invariants.

The invariant 13 has a simple physical interpretation which can be

seen by noting that the volume V of the thin tube is given by

V = 2_ r hL
m (7)

Similarily, the initial volume V is
O

V = 2_ r h L
O mo o O

(s)

SO that Equations (4), (5), (7) , and (8) yield
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1
3 2= Z2 aZ2 rm L _h_o V

Thus we see that I represents the square of the volume ratio, which is
3

clearly independent of the coordinate system, and is a direct measure of

the compressibility of the material. A value of I s = 1 for all loadings

would represent incompressibility. The remaining two invariants, I l and

I e, can be shown (see Ref. 31) to be mathematically constant under proper

transformations, but do not have a simple physical interpretation. All of

the invariants are functions of the material and the applied loads.

The stress-strain relations are obtained by differentiation of the

energy function relative to the strains, so that, for small deformations

we have the familiar form (Ref. 33 or 35)

(9)

oii = OW/06ii (i0)

For the case of an isotropic material, where W is given as

I 2 2E e + £ + 6 + 2_( £ + £2a6W = 2(1 - 2_) (i + b) (l-b) (£ii a2 33 ) ell aa ss

Equation (i0) yields Hooke's law in the form

_ (l-b)E
@ll -- (i--2_) (i+_) ell + (i--2 H) (i+_) e2a + (i-2_) (l+_i) esS

_E (i-_) E

gee - (i-2_±) (i+ b) 611 + (i-2_) (i+_) 62a +

_E

(i-2_) (i+_)

bE _E (l-u) E

c33 = (i-2_) (I+u) ell + (i-2_) (i+_) 62e + (I-2u) (i+_) 6

33

33

(12)

For the more general case of an anisotropic material with large deformations,

an analogous differentiation (Ref. 32) yields (for the case of no shear

strains)
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2 2 2Gzz = hie + Z l(h a + _ ) _ + P

2 2 2 2

022 -- A2¢ + ha(h a + h a ) @ + P

= 2 _ \2 + he) _ + P

oij : 0 i _ j

where the quantities ¢, _, and P

the W function with respect to the three invariants,

given by

2 _W

3

depend upon the partial derivatives of

I , Iaj I as1 3

2 6W

3

P = 2 _s _W6I
3

Furthermore, it can be shown that Equation (13) reduces to Equation (12)

for isotropic materials.

If the quantities ¢, _, and P, which are functions of the partial

derivatives of W, are known, then Equation (13) permits one to compute

the stresses in terms of the extension ratios or vice versa. On the other

hand, if these functions are unknown (as in the present study) but the

extension ratios are known instead, then Equation (13) can be used in a

different form to determine the unknown partial derivatives. Thus, solving

Equations (13) for the three partial derivatives, we have

(13)

6I l 2 ¢- 2D Oll'l -- _ + 022h 2 -- + OSSl s - l

6I 2 _ - 2D dl S 2/+ -- >' + 0 -
2. 1 -- 0"22 33 "l_J

(14)

OW

T--
3

where

3

_212 f o o'_]

(15)
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It can be seen that static tests in which the three stresses and

strains are measured for a given loading provide the necessary information

to calculate the three partial derivatives (@W/@Ii). The W function can

then be determined by mapping these partial derivatives over all loadings

and then generating the energy function W which satisfies the data. In

order to do this, we shall assume that

c3aW
@I._I : 0; i _ j (i,j : 1,2,3)

l 3

(16)

on the basis of experimental work performed on rubber-like materials

(Refs. 36 through 39). This last assumption, along with that of an initial

zero value of W, permits us to write W in the functional form

W = f1(ll - 3) + fa(la - 3) + fs(Is - i) (17)

where the functions fl' fa' and fs are unspecified except that they must

pass through the origin; that is, the unloaded condition corresponds to

values of If, Ie, and I s of 3.0, 3,0, and 1.0, respectively (see Eq. (4)).

For the present study, we shall represent the function W by a power

series expansion of I - 3, I - 3, and I - i. That is,
1 2 3

W = BI(I I - 3) + Ba(I I - 3) a + ... + Bn(I I - 3) n

+ Cl(I e - 3) + Ce(I 2 - 3) e + ... + Cn(I a - 3) n

+ DI(I s - i) + D2(I 3 - i) e + ... + Dn(I 3 - i) n (18)

Experimentally, we find that n = 3 is sufficient to describe the behavior

of all arteries tested.

The coefficients of the W function in Equation (18) can be determined

from the stress-strain data, since the partial derivatives of W are re-

lated to the stresses and deformations by Equations (15). Thus, if the

partial derivative bW/_I i obtained from Equation (15) using the experi-

mental values of stresses and extension ratios can be fitted by a second-

order curve to yield

_W + A (I I - 3) + A (I i - 3) 2 (19)_ : A1 2 3

1
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then the corresponding coefficients of the W function are given by

J _W - 3) +W : _ d(l I
f(Ia,I 3) (20)

so that substitution of Equation, (19) gives

A

W = AI(I I - 3) + _ (I l

A

- 3) 2 + _ (Ii - 3) s + f(Ie,I s) (21)

Hence, from Equations (18) and (21), we see that

B l = A I; B 2 = A /2; B 3 = As/3 (22)

The remaining constants of Equation(18) are found in a similar manner from

the derivatives _W/_I e and _W/@I s so that W is defined over the test

domain.

At a given strain level, the elastic constants are determined from

the local slopes of the stresses; that is, the change in stress at a given

strain level can be expressed as

/3 A <@) / °iA

where the subscript p means that the derivatives are taken at a fixed

pressure level. This expression can also be written in the form

and we observe that dkl/h I is simply the change in strain; that is,

dR dk d?_
i = _ 3

delx - )_ ' d62a k ; dgss - A (25)
1 2 8

Hence, substitution of Equation (25) into Equation (24), yields the pertur-

bation stress-strain equation,
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where

Equation (27) is then a perturbation Hooke's law for a nonlinear, aniso-

tropic material. The remaining two equations are determined in exactly

the same manner, so that the stress-strain equation takes the form

dOik = 8ijdejjDik (i,j,k = 1,2,3)

where 8ik is the Kroenecker delta defined as

1 0 0

6ik = 0 1 0

0 0 1

From these equations, we define each coefficient of the 8.. matrix as

follows: 2 13

(27)

(28)

(29)

80 80 80
ii ii ii

611 = hz _h ; _x2 = ha 3h ; 6z3 = ha dh

_O

6al = ha Sh
l

_o2a 6_22

; _a2 = ha 6h ; B2s = h3 6h
2 3

(30)

33 33 33

• ; Bse = _m dhm ; 6 = ha631 = hl 6h 1 33 Oh a

The elastic coefficients are therefore determined by partial differentia-

tion of the stress Equation (13) in terms of the known extension ratios

and the W function constructed from the experimental data. The expanded

form of the 6's in terms of measured quantities and the coefficients

of the W function is not presented here, owing to its length, but is

presented in Appendix A.

The final determination of the $'s, in reality, satisfies our initial

requirements; that is, we are now able to determine the local elastic

constants from the original displacement and pressure data and to write

these in terms of a usable Hookean equation (Eq. (26)). (Appendix B provides

2Note that these coefficients represent a rather special case, since the

shear coefficients (_ik i=1,2,3 and, k=4,5,6;see Ref 34) do not appear.
This is a consequence of the symmetric loading treated here and of the

thin-wall (membrane) assumption (see p. 6). It should also be noted that

the nine _'s of Equation (30) actually reduce to six independent constants,

owing to reciprocity (Ref. 33) since _ij = _ji"
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an example of their use.) If desired, one can also calculate the more

familiar Young's Modulus E i and Poisson's ratio _ij from the computed

8ij for the three coordinate directions 1,2,3 (_,z, and r). For the

assumed material, these quantities are given by (see Ref. 34)

E i = i/_ii; _ji =-_ij/_jj (31)

where _ refers to the coefficients of the stress-strain equation
13

when written in the form

d ik= [ ij]d°ii

Comparison of this equation with Equation (28) shows that the s-matrix

is the inversion of the _-matrix; that is,

(32)

° --1

Therefore, Young's Modulus E i and Poisson's ratio _ij are extracted

by inverting the B-matrix of Equation (30) and applying Equation (31).

For an isotropic material, we would, of course, find that

E_ = E e = E s and

(33)

(34)
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4. EXPERIMENTALTESTSANDAPPARATUS

The purpose of these experiments was to determine the geometric and
elastic properties of various human and canine arteries. Both static and

dynamic tests were carried out, but the latter are not reported herein.

4.1 Selection and Preparation of Test Specimens

In all, 14 different arteries were actually tested. (See table below).

ARTERY SPECIMENS

Human Canine

Brachial (4) 3 Thoracic Aorta (2)

Mesenteric (2) Femoral (2)

Splenic (2)

Iliac (i)

Femoral (i)

All arteries were tested within a few hours after death, and in only one

case was a specimen accepted for study that was not pathologically normal.

The normality of each specimen was checked by the assisting pathologists

and by Vidya's medical consultant, Dr. D. L. Bruns, who is a cardio-vascular

specialist.

Table I lists the clinical information on each arterial segment, as

well as the time elapsed from death to excision and testing. About one-

half of these arteries were excised and tested within 6 hours after death,

and the remainder were excised within 6 hours and tested within 2 days.

During this time, they were placed in normal saline and kept refrigerated

at i0 ° C. The in-situ length of each artery was measured prior to excision

so that the natural extension ratios could be calculated.

All of the branch arteries of the excised specimen were cut long in-

tentionally (approximately i/4-in.), so that they could be ligated (i.e.,

tied off) at some distance from the main artery being tested. Ligating the

branches at their tips proved very useful throughout the tests, because it

minimized the local stress concentrations at their junctions with the test

specimen. Figure 7 shows this effect for two different thoracic aortas,

one of which was tied off at the tip of the branching vessel and the other

near the junction. The differences in the local tube expansion at the

juncture of the branch are apparent in the photographs. The branches on the

specimen at the left were ligated at the juncture, and the specimen is con-

siderably deformed under pressure. On the other hand, the branches of the

3The number in the paranthesis refers to the number of specimens tested.
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specimen on the right were ligated near their outer extremities, and the
specimen remains essentially a cylindrical tube.

Prior to testing, each specimen was cleaned of all the surrounding

tissue by carefully stripping away the excess material until the adventitia

was exposed. Next, the branch arteries were ligated and the plexiglass end

pieces were fitted to each end of the artery. One of these plexiglass

pieces was hollowed for pressurizing the specimen. The other end piece was

a solid plug. After installation of the plugs, the artery was pressurized

with air and placed in saline to check for air leaks. If any leaks developed,

they were corrected by retying the leaky branch. Sometimes, excessive leak-

age could not be corrected by this technique because the leaks were too

close to the arterial wall. It was then necessary to shorten the test

specimen by removing the faulty section. All samples were kept in normal

saline at i0 ° C until testing began.

4.2 Static Tests

A photographic technique was employed to determine the static elastic

characteristics of various human and canine arteries. Each test specimen

was exposed to soft X-rays at various internal pressures. The physical

arrangement of the experimental setup is shown in Figure 8. The developed

film furnished all the information required for direct measurement of the

three pertinent dimensions: length, radius, and thickness. Figures 9, i0,

and Ii show the positive contact prints of the X-ray negatives for a series

of pressure-displacement tests for three different arteries.

Prior to testing, the specimen was removed from the refrigerator and

brought up to room temperature by placing it in a large container of warm

saline (21 ° to 25 ° C) and held there for 5 minutes. All tests were per-

formed at room temperature (21 ° to 25 ° C).

Since the artery wall thickness was to be measured by X-ray photography,

and since water, blood, and saline all have roughly the same density as the

arterial wall, it was decided to pressurize all test specimens with air, and

all saline was carefully removed from each specimen just prior to testing.

This procedure insured sufficiently high resolution of the inner artery

wall on the X-ray film to permit accurate measurements of the wall thickness.

The specimen was then placed in its holder (see Fig. 8) and oriented

so that it lay flat against the vertical film. This was necessary for the

unweighted tests, because some specimens were curved (see Fig. i0) so that

their projected length on the film would otherwise not agree with their

centerline length. Addition of axial weights straightened the artery and

eliminated the problem.
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Each specimen was initially pressurized to 300 mm Hg. and deflated to

zero several times. This cycling eliminated hysteresis in the pressure-

displacement data and yielded repeatable experimental data. Bergel (Ref. 7)

and Remington (Ref. 17) have observed and discussed this phenomenon in

their reports.

The actual tests were a simple matter of X-raying the specimen at var-

ious internal pressures with a fixed axial weight and, then, repeating with

other axial weights. Generally, three or four axial weights were used. A

i- to 2-minute paus_ was taken between X-rays in order to insure that

relaxation effects had subsided and that true static data were obtained.

Periodically throughout the tests the specimen was bathed with saline

to keep it from drying out.

The final step in testing was to stretch and fix each specimen at its

in-situ length, and retake the pressure-displacement data.

Although the specimens were kept in normal saline solution and refrig-

erated, some tests were repeated at 2-day intervals to ascertain whether

rigor mortis effects might change the elastic behavior.

4Zatzman, et al. (Ref. 40) and our own observations indicated that nearly

all relaxation effects in arterial segments subsided after 1 minute.
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5. INSTRUMENTATIONANDCALIBRATION

5.1 Aneroid Manometer

The aneroid manometer used to measure internal pressure was a standard
medical Tycos Aneroid Manometer. It was calibrated (statically) against
a column of mercury and found to be within the manufacturers specifications

(_i mm Hg. at 300 mm Hg.).

5.2 X-ray Apparatus

The X-ray assembly used in these studies was a Westinghouse dental

X-ray product. The settings required to obtain proper film exposures, when

the film and test specimen were placed 25 (_i/16) inches away, was found

to be 60 mAs at 42 kV. The film used throughout the tests was Kodak Indus-

trial Film, Type AA.

6. DATA REDUCTION

The exposed X-ray films, along with the recorded values of internal

pressure and axial weight, served as the raw data. In the interests of

increased accuracy, each negative was magnified approximately 15 times on

an Itek 18.24 Reader-Printer, which furnished 2- by 4-foot positive prints

for measurement purposes. A full-scale portion of such a print is shown

in Figure 12. Note that the inner and outer edges of the artery wall are

clearly discernible. A reference cylinder of known diameter was included

in the picture to give the exact magnification of the specimen. Because

the test specimens are not always straight cylindrical tubes, the inner and

outer diameters were usually determined by using a planimeter to measure

the inner and outer cross-sectional areas over a considerable length of the

test specimen. This length was taken as the largest length over which the

diameters are relatively unaffected by presence of the two ligatures used

to mount the specimen to the end plugs. In cases for which the specimen

was very nearly cylindrical, the inner and outer diameters were read directly

at several positions and averaged over the length. The length measurement

used to determine axial extensions was taken to be the centerline axial

distance between these two ligatures.
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7. TECHNIQUEFORDETERMININGTHE ELASTIC PARAMETERS

If the three components of stress and strain could be measured directly,

then the determination of the strain energy function W and the associated

elastic constants from the experimental data would be a relatively straight-

forward, though lengthy, procedure as outlined in Section 3. However, as

the stresses and strains cannot be measured directly, it is necessary to

deduce them from the experimental data. One of these stresses, o (some-
ll

times referred to as the "hoop stress"), is simply related to the measured

pressures and displacements _nly for the case of zero axial weight)by the

hoop stress equation. This equation can be derived by taking the limit of

Equation (B-18) as the wall thickness approaches zero. The remaining two

stresses are approximated by the mean axial stress (end force over cross-

sectional area) and mean radial stress, (-p + 0)/2. Hence, for the zero

weight case, the stresses are written as:

Oil = pa/h (35a)

q = paa/2r h (35b)
aa m

033 = -p/2 (35c)

Therefore, for the unweighted case, we can indeed determine all of the

stresses and displacements and, from these, determine the strain-energy

function W through its partial derivatives by use of Equations (15),

(18), (19), and (22). With axial weights, however, Equations (35a) and

(35b) no longer hold, because they become functions of the weight as well

as the pressure.

It will be recalled that the energy function W must apply for arbi-

trary loadings of a given material. Hence, if the W function determined

from the unweighted data is to be used for extracting the elastic constants,

that same function must be valid for the weighted specimen as well. There-

fore, we shall first determine a W function for the unweighted specimen

by curve-fitting the displacement data as a function of internal pressure

as follows: _

a = a I + aap + azpe

b = b + bap + bzp e

L = z I + Zap + zzp 2

(36)

It was found that a least-squares, second-order curve fit was sufficient
for all data taken in these tests.
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where a, b, and L refer to the inner and outer radii and the measured
axial length, respectively, and the subscripted quantities are the desired
curve-fit constants. By using these curve fits, the associated extension

ratios, and the simplified stress Equations (35), the W function is

obtained from its partial derivatives in the manner described previously

(see Eqs. (15) to (22)).

By using this W function, the stresses 022 and _3s for the

weighted cases are calculated (using Eq. (13)) and compared with the approxi-

mated membrane stresses, which are determined by the mean axial force

(W t + _aep) per unit area, and the mean radial stress and are given as

2 Wt i

_ a _ + 2_rmh
_22 2rmh (37)

O3z = -p/2

where W t is the axial weight. If the deviations of these two stresses

are outside of the experimental accuracy, the W function constants

(Bs, C3, and D3) are readjusted and the stresses for all loadings, includ-

ing the unweighted case, are recalculated until satisfactory agreement is

obtained. In this manner, the final W function constants were developed

for each specimen, from which the elBstic constants can be extracted.

About one-half of the final W function constants were determined on the

first curve fit. The remainder required anywhere from 2 to i0 iterations.

STEP 1 - CURVE-FITTING THE DISPLACEMENT DATA

It was not always possible to approximate the displacement data with

Equation (36) (even for zero weight) to the specified tolerances (see table

of uncertainties below) over the entire range of internal pressures; there-

fore, the data were curve-fitted over most of the test domain and limits

(maximum and minimum pressures) were placed on these curve-fit equations.

EXPERIMENTAL UNCERTAINTIES

Pressure Diameter Length I Thickness

(mm Hg.) (in.) (in.) I (in.)
!

! 0.002 I _0.004±! ±o.oo2
i

In general, these pressure limits are widely separated (approximately from

70 to 240 mm Hg.), so that the data are fitted over the range of pressures

ordinarily measured on the arterial side of the human and canine vascular

systems. Table II shows all the constants and the acceptable pressure

limits for all specimens tested.
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STEP2 - DETERMININGTHE UNSTRESSEDDIMENSIONS

The partial derivatives of W for the zero weight tests are calcu-
lated from the stress-displacement equations (see Eq. (15)). In order to
define the extension ratios appearing therein, we must know the dimensions

(ao, bo, and Lo) of the unstressed specimens (at p = 0 and Wt = 0).
Generally, this information was obtained directly from the X-ray film for
the unloaded condition, but sometimes at this condition, owing to the lack
of internal pressure, the tube was not of circular cross section. Hence,
it became necessary to define equivalent dimensions by extrapolating from
the lowest pressures at which the tube was cylindrical. In such cases,

the tube length L° was assumed to be unaffected by the oblateness, and
was taken to be the measured value. This leaves the unstressed radii, a

O

and b o, to be determined by extrapolating from the low internal pressure

(i0 to 50 mm Hg.) data. The final values of a o, b o, and L o are also

tabulated in Table II for each specimen. After the initial displacements

were determined, the partial derivatives of W were computed in the pre-

viously described manner. Next, these computed derivatives were fitted

with a second-order, least-squares curve. A comparison between the com-

puted derivatives as given from the experimental data and Equation (15) and

the curve-fit derivatives, is shown in Table III. The W function con-

stants (for the unweighted case) are generated by equating the derivative

curve-fit constants to the corresponding W function constants, as shown

in Equation (22). The finalized values which are applicable between cer-

tain limits of the invariants (If, I and I ) are given in Table IV.2' 3

STEP 3 - DETERMINATION OF THE ELASTIC CONSTANTS

After the W function has been fixed (see Table IV), the _'s, _'s,

E's, and _'s are calculated for all loadings. This is done by first

computing the _ matrix as indicated in Appendix A. The e matrix is

determined by inverting the computed _ matrix, and the customary elastic

constants (E's and _'s) are calculated from Equation (31).

Certain additional checks can be made on the finalized _ij and

W function, and a discussion of these is found in Appendix C.
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8. EXPERIMENTALRESULTSANDDISCUSSION

8.1 Experimental Displacement Data
The measured values of internal and external radii and axial length

for some typical test specimens are plotted in Figures 13 and 14. The
observed variations of artery dimensions with internal pressure have been
approximated by second-order, least-squares curve-fits (see Section 7.1),
as shown in the figures. Since the analysis of Section 3 requires a know-

ledge of the unstressed dimensions (ao, bo, and L o) for each specimen at

zero pressure and zero axial weight, these quantities are indicated by the

darkened data points.

Other test specimens yielded similar curves not shown in these fig-

ures. Rather than presenting all such plots for each specimen subjected

to several axial weights, the resulting curve-fit constants (ai, hi, zi,

i = 1,2,3), and the unstressed dimensions (ao, bo, and Lo) are tabulated

for each specimen in Table II with the appropriate pressure limits between

which the curve-fit equations are valid. These pressure limits are necessary,

because it was not possible to fit all the data within the experimental

accuracy with a single, second-order curve. However, the data were success-

fully fitted from pressures of 40 to 270 mm H_., which covers the normal

operating range of pressure in both the human and canine arterial systems.

At first glance, some of the coefficients appear to be quite small

(see Table II), but it should be remembered that these coefficients are

multiplied by the square of the pressure. Further, it will be noted that

the slopes of the curves of radii versus pressure (Figs. 13 and 14) become

very small at higher pressures and that a zero slope infers infinite stiff-

ness. Hence, a small change in the slope of the curve fit produces a large

change in calculated elastic constants.

With no axial weight applied to the specimen, the radii and length

continually rise with increasing pressure, but the wall thickness decreases

with increasing pressure. Figure 15 shows this decrease in thickness

clearly. It can be seen from Figures 13 and 14 that the rate of change of

dimensions is greatest over the first 60 mm Hg. and becomes quite small at

the highest pressure levels. In general, the distentional behavior of all

the specimens within the first 60 mm Hg. are similar with the possible

exception of the thoracic aortas. The thoracic aortas exhibit more of an

"S" shaped radius versus pressure curve, commonly referred to as a sigmoid,

as shown in Figure 14(a). This type of behavior results in an inflection

point in the radius and length data at about 50 mm Hg. However, for pressures
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above this inflection point, the thoracic aorta behaves in the same manner
as the other specimens. Therefore, the thoracic aorta data were curve-

fitted only for pressures above the inflection point. Since the sigmoid
effect is evident only below 50 mmHg., it is considered to be of no con-

sequence in describing the elastic behavior of arteries.

If the arterial wall were composed of an incompressible, isotropic

material, as suggested in the literature, and does not experience an axial

force, then the length of a specimen should not change with pressure (see

Ref. 15). However, for zero axial weight condition, it is seen from Fig-

ures 13 and 14 that the length increases with internal pressure for all

specimens. Hence, we conclude that arteries are not incompressible, iso-

tropic materials. It will be noted that, generally, the length approaches

the in-situ length as the internal pressure becomes very high. In some

cases, such as Figure 13(a), this does not appear to be true. However, it

should be mentioned that we have no way of placing experimental tolerances

on the in-situ measurements, so discrepencies of I0 percent, such as those

found in Figure 13(a), are possible.

The addition of an axial weight to an unpressurized specimen results

in lengthening the artery and decreasing its radii and thickness. Most

specimens were exposed to a range of axial weights which stretched them to

values greater than their in-situ length. In some cases, excessive

weights caused such a decrease in radius that the specimen developed axial

wrinkles. In such cases, the displacement data were rejected, since the

specimen was no longer a cylindrical tube. (Such was the case for all of

the canine femoral arteries.)

The pressure-displacement data for the weighted specimens (Figs. 13

and 14) were also curve-fitted with a second-order curve, and, in general,

all of the weighted specimens exhibited an increase in radii and a slight

decrease in thickness (Fig. 13), but a decrease in length with increasing

pressure. The fact that the specimen becomes shorter with increasing

pressure may seem somewhat surprising, but is associated with the aniso-

tropic nature of the arterial wall. (The physical reasons for this behavior

will be discussed later in this section). It will also be noted that the

length of the weighted specimens tends to approach the in-situ length with

increasing internal pressure, so that the artery length of both the un-

weighted and weighted specimens approach the same value at the highest

tested pressure levels (300 mm Hg.). Such observations are not new.

McDonald (Ref. 6) noted a similar result for unweighted specimens.
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Since the unweighted specimen increases in length toward the in-situ

value and the heavily weighted specimen decreases in length toward the in-situ

value, it follows that there will be some intermediate weight for which the

length of the specimen will be constant at the in-situ lenqth (see Fig. 16).

Therefore, this weight for which the length remains constant must corres-

pond to the axial tethering force in the body. Hence, we conclude that

length changes in arteries in vivo are minimal. As a check on the above

reasoning, the weight required for zero change in length with pressure (the

nulling weight) was obtained for each specimen (by cross-plotting the experi-

mental data), and these weights were compared with those required to stretch

the specimen to its in-situ length. This comparison is tabulated below,

and it can be seen that the agreement is quite close, except for Brachial If.

COMPARISON OF THE TETHERING FORCE AND THE NULLING WEIGHT

Specimen

Brachial I

Brachial II

Brachial III

Brachial IV

External Iliac

Splenic I

Thoracic Aorta I

Thoracic Aorta II

Superior Mesenteric

Femoral I

Femoral II

Femoral III

Tethering Force

(grams)

45

200

16

20

21

45

94

130

28

5O

5O

2O

Nulling Weight

(grams)

41

20

20

22

20

5O

150

32

52

20

(It is now suspected that an error was made in the length measurement for

that specimen, either before or after excision, but the specimen was un-

fortunately discarded before this suspicion could be verified.) These

results appear to clarify Lawton and Greene's (Ref. (14) observation that,

in some cases, an artery contracts in length during systole. This behavior

would be quite typical of a specimen exposed to a tethering force somewhat

greater than the "nulling weight," and it seems reasonable to assume that

such was the case.

Although the absolute wall thickness in all cases decreases signifi-

cantly over the first 80 mm Hg. of pressure, it becomes nearly constant

(see Figs. 15 and 17) for all higher pressures, irrespective of the axial
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weight. This constant value is roughly given at i00 mm Hg. as 0.019

!0.005 inch for all specimens except the canine femoral arteries, which

were not included owing to their smaller diameters. Such a figure may

prove useful in future analyses where knowledge of the wall thickness is

required. The nearly constant wall thickness does not necessarily imply

that the radial modulus of elasticity is infinite, because the radial

modulus of elasticity, as determined from the analysis presented in Sec-

tion 3, is extremely sensitive to very small changes of the wall thickness,

especially for specimens with thin walls.

8.2 Comparison of Dimensional Data

It would be highly desirable to compare the dimensional displacement

data presented herein, whenever possible, with similar data found in the

literature in order to check the validity of the measured wall thickness,

diameter, and length. However, such information is nearly nonexistent in

the literature, since most investigators who performed static elastic tests

on whole arteries did not measure all of these quantities. Instead, some

have measured the inner volume, others have determined the outer diameter

and length, still others did not present their raw displacement data. To

our knowledge, no one previously has measured the variation of radius,

length, and thickness, simultaneously, with loading. Generally, most

investigators would measure two of the three dimensions and make an assump-

tion about the third. Invariabily, the assumption concerns the behavior of

the most difficult item to measure, that is, the variation of wall thick-

ness with pressure. Consequently, it is of interest to compare the wall-

thickness measurements with the limited data which are available.

Apparently, Bergel (Ref. 7) was one of the investigators who did mea-

sure the wall thickness and outer radius for various specimens at _ one

pressure (i00 mm Hg.), but he did not tabulate each quantity. Instead, he

tabulated theratio of thickness to outer radius, at the one pressure, for

many canine arteries. This can serve as a useful nondimensional comparison.

Fenn (Ref. 15) also has published values of wall thickness and radius

at one pressure (0 mm Hg.), so his data can also be compared to the equiva-

lent test data presented herein. Table V shows these comparisons of h/b

for both FennTs and BergelTs data.

In general, we note that, whenever direct comparisons are possible,

the data presented herein are in excellent agreement with Bergel's data

(_5 percent), but they do not check Fenn's data at all. In fact, Fennls

data exceed those presented here by about 50 to 80 percent. However, since
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the number of comparisons per type of artery are limited to one or two, and
since the arterial dimensions are known to vary from person to person, one
cannot place much importance on these observations or make of any positive

conclusions. Further comparisons are impossible, owing to the lack of

similar data.

The in-situ extension ratio (the ratio of the in-situ length to the

excised length) is also presented in Table V. Again, the data taken in

the present study agree quite well with Bergel's data for the specimens

which can be compared.

8.3 Volume of the Arterial Wall

We have already discussed the fact that much of the earlier experi-

mental and analytical work concerning arteries was based upon the assump-

tion that arteries are incompressible. The analysis of Appendix B indi-

cates that such a material must be characterized as an isotropic material

with a Poisson's ratio of 0.50, or a transversely isotropic material in

the r, _ plane. No other type of material (i.e., either isotropic with

_ 0.50 or anisotropic) can exhibit a constant volume under load. Since

the radius, thickness, and length of each test specimen were all measured

in the present tests, we can calculate the volume of the material at each

load and determine the compressibility of the material by comparing that

volume with the volume at the unloaded condition. The results of these

calculations revealed that, in nearly every case, the material volume

changed by a significant amount (20 to 40 percent) when the specimen was

exposed to loads comparable with those experienced in the body. Figure 18

shows the arterial wall volume as a function of pressure for several speci-

mens at various axial weights.

The volume of the wall depends upon all three normal stresses (oe, Oz,

and Or) and, if the material is anisotropic, upon the six local elastic

constants. Various combinations of these stresses and elastic constants

can cause either an increase or a decrease in volume. For example, con-

sider the loaded specimen to be anisotropic and, for the sake of discussion,

let the values of Poisson's ratio be very small. The local strains in the

wall will then depend upon the ratio of the three stresses to their corres-

ponding moduli of elasticity, so that

z r (38)
c_ = E--_; Cz = E--; Cr - E

u z r
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The change in volume is given by the sum of these strains, that is

AV/V = e e + e z + 6 r (39)

For a positive internal pressure and a tensile axial load, two of these

terms (6@ and 6 z) are positive because o_, az, E_, and E z are all

positive. But the radial strain e r is negative because or is negative

(i.e., the wall is in compression). Therefore, the relative magnitudes of

(6 e + 6z) and 6 r will dictate whether the change in volume is positive

or negative. Hence, both increases and decreases in volume can occur, and

such was the case with some of the specimens tested herein.

In general, the volume decreases, which means that the radial strain

dominates the volume expression. However, the radial stress is smaller

than the circumferential or longitudinal stresses. Hence, the elastic

modulus in the radial direction must be much smaller than in the other two

directions.

8.4 Elastic Constants

8.4.1 Young's Modulus

The nonlinear theory developed in Section 3 enables one to extract the

six elastic constants (the _Ts) from the experimental data. By proper

manipulation (see Section 3), these elastic constants can be used to deter-

mine the three Young's Moduli of elasticity (one modulus for each of the

three orthogonal coordinates, r, e, z) and the corresponding Poisson's

ratios. The resulting moduli are plotted as functions of pressure in Fig-

ures 21 through 34 for each artery tested.

For the tests with no axial weight (Figs. 19 through 34), we see that

the circumferential modulus of elasticity E e increases with pressure.

With the single exception of Figure 20(a), the axial modulus E also in-
z

creases with pressure, while the radial modulus E r stays roughly constant.

Generally, E_ is greater than Ez, and both of these are greater than E r.

For Brachial II (Fig. 20(a)), we see that the E and E decrease with
z r

an increase in pressure. The reasons for this apparent trend are not known.

However, we note that this particular specimen has the highest h/rm, so

that perhaps the membrane assumption is not quite as valid as with other

specimens.

The general trends of the elastic constants can be associated with the

presence of the individual biological materials in the wall. It was pointed

out in Section 2 that arteries are composed of annular layers of material of
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nearly the same elasticity, with the exception of the much stiffer collagen-

ous fibres. These fibres form a double criss-cross helical net around the

inner layers and can be characterized by the "finger puzzle" effect (see

Fig. 5). Since increased internal pressure causes a larger increase in

circumferential (hoop) stress than in longitudinal (axial) stress (see

Appendix B for exact equations), the net result of increased internal

pressure is to reorient the fibres in the direction of maximum stress so

that they tend to align themselves circumferentially, thereby making the

material effectively stiffer in that direction. Hence, E e increases more

rapidly with pressure than does E z (see Fig. 21(a)). The high internal

pressure tends to compress the inner layers so that the actual tube thick-

ness is diminished considerably. The collagenous fibres, which are thin

chords acting in the _-z plane, do not affect either the radial compres-

sion 6
or the radial elastic modulus, E r. (See Figs. 19 through 34.)

For all specimens, we find that, at low pressures, all three elastic

constants appear to have, roughly, the same low Young's Modulus, (20 to

i00 psi). We also note from Reference 7, that this is approximately the

value of Young's Modulus of elasticity for elastin and smooth muscle.

Therefore, it would appear that, near the unloaded condition, the elastic

moduli of arterial specimens take on the nearly isotropic characteristics

of elastin and smooth muscle, and the material is said to behave as an

isotropic material. McDonald (Ref. 6) has speculated that, under such

conditions, the stiff collagenous fibres are slack and do not affect the

elastic behavior.

With the addition of axial weight, it can be seen from Figure 21(b)

that the axial modulus E z increases. This increase is presumably associ-

ated with the orientation of the collagenous fibres toward the axial direc-

tion, but, as the internal pressure is increased, these fibres tend to

rotate back toward the circumferential direction, and E G increases (see

Fig. 21(b)). Hence, at some internal pressure (the "crossover" pressure),

E@ becomes equal to E z. The crossover pressure increases with axial

weight, as seen in Figures 21(b) and 21(c), since a higher pressure is

required to reorient the fibres from a more nearly axial alignment. It

would seem reasonable that, at the crossover pressure, the collagenous

eThis is analogous to compressing a large block of rubber with a flat piece

of metal in the middle, normal to the applied load. One must compress the

rubber to nearly the thickness of the metal before noticing its presence.
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fibres are svmmetrically arranged at 45° to the z-axis, so that the material
would behave identically in the axial and circumferential directions.

A comparison of the stresses and extension ratios at the data points

taken closest to the crossover pressure (as determined from crossplots)

indicates that both the stresses and the extension ratios are essentially

equal in the axial and circumferential directions (see Table below).

COMPARISON OF
AND Oz' AND h I AND _2 NEAR THE CROSSOVER

PRESSURE FOR SEVERAL SPECIMENS

Vessel

Splenic IB

Brachial IIA

Brachial IIIA

Brachial IVA

W t

(grams)

20

20

i00

20

5O

32.4

55.9

P

(nun Hg.)

i00

ii0

230

i00

150

i00

130

_e

(psi)

9.7

8.5

21

21

27

17

26

O z h I 12

(psi)

P

crossover

from

crossplots

(mm Hg.)

9.5 1.20 1.20 100

7.8 1.13 1.17 120

24 1.12 1.19 226

20 1.23 1.21 96

28 1.24 1.25 155

16 1.30 1.30 i00

26 1.31 1.31 132

It should be noted from Figures 19 to 34 that the radial modulus of

elasticity is relatively unaffected by either internal pressure or axial

weight. This suggests that the stiffer collagenous fibres, which lie

essentially normal to the radial direction, do not affect the elastic

constant in the radial direction.

When a specimen is exposed to a very high axial and/or circumferential

stress, one would expect that the corresponding elastic constants E and/or
Z

E e will gradually approach the values of the collagenous fibres themselves

as the fibres become aligned with the direction of stresses. Figures 20(d),

22(c), and 23(b) are test cases with high axial stresses and much lower

hoop stresses, and Figures 24(c), 33, and 34 are other test cases with the

opposite characteristics, that is, high hoop stress and low axial stress.

From these figures, we note values of E z vary from 400 psi to 2000 psi

and E@ from 300 psi to i000 psi. Various investigators (see Refs. 6 and

7) have tabulated elastic constants for the collagenous fibres and found

values of Young's modulus varying from 400 to 1500 psi. In general, we

see that, for very high loadings (stresses), the moduli of elasticity do

approach these established values of collagenous materials.
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In summary, the general behavior of the anisotropic elastic moduli
seem to be associated with the orientation of the collagenous fibres.

Arteries appear to be initially isotropic, with a modulus of elasticity

equivalent to that found for elastin and smooth muscle (about 60 psi).

For the in-vivo loads where 0@ approximately equals o z, the specimens

behave as transversely isotropic materials. For other loads, where o_

does not equal °z' the test specimens behave anisotropically, having a

greater elastic modulus in the direction associated with the higher stress.

The radial modulus is the lowest of the three and is essentially constant

for all loadings, being unaffected by the orientation of the collagenous

fibres.

8.4.2 Poisson's ratio

It is difficult to say much about the various Poisson's ratios (_)

presented in Figures 19 through 34, except that, in general, their values

are realistic. A realistic value of U falls between +i.0 and -i.0.

These limits can be established by considering the bulk modulus of elas-

ticity for a special anisotropic material, one which possesses identical

values of Ui j in all planes, (_rz = _zr = _re = _er = _@z = _ze )" By

considering the two limiting values of the bulk modulus (0 and _), one

finds that the corresponding values of _ are given as -i.0 and +i.0,

respectively. Although we normally do not think of a Poisson's ratio as

being negative,for an anisotropic material it simply indicates that a

positive normal stress in one direction can generate a positive normal

strain in one of the other two orthogonal directions.

In some instances, the _'s do not fall within realistic limits over

portions of the pressure range. The reason for the unrealistic _'s can

be shown from the approximate form of _ij

- ijl ii i / j  i,j,= 1,2,3) (40)

We note that, when _ii becomes small, the _'s exceed a realistic limit

_ i n _ ....... +1_, +_ =_ =_=I I _=_s _ the p_==,,_ _g_ 4_ w_

the value of _ cannot be calculated; such was the case for Brachial II,

20-gram weight (see Fig. 29(b)). For this reason, it is perhaps better to

use the well-behaved, though less familiar, _'s, rather than the more con-

ventional E's and u's. Figure 35 shows the variation of the elastic

coefficients _.. with internal pressure for two different specimens.
13
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8.5 Transverse Isotropy
A cursory glance at any of the Young's Moduli shown in Figures 19

through 34 shows that arteries generally behave as anisotropic materials.

There are, however, conditions at which E e becomes equal to Ez, and

_r@ becomes approximately equal to Ur z. When this occurs, the material

can be said to be transversely isotropic. 7 Such conditions are character-

ized by equal circumferential and longitudinal stresses and extension

ratios, (see Table on p. 30) which cause the collagen fibres to make a

45 ° angle with respect to the longitudinal axis. When an additional axial

weight is added at this condition, the fibres reorient themselves toward

the axial direction, and the material becomes stiffer in that direction.

However, by increasing the internal pressure again, a new condition of

transverse isotropy can be found which corresponds to a higher internal

pressure for each larger axial weight. If the pressurization were to

continue, the elastic moduli and stresses would cross over one another so

that the circumferential stress and elastic modulus would exceed the

corresponding longitudinal stress and modulus. Hence, it is possible to

construct a plot of the "crossover" pressure as a function of axial force

acting on each specimen, which in reality gives us the conditions for trans-

verse isotropy.

Figure 36 shows the conditions for transverse isotropy for three

different arterial specimens. These curves are intended to indicate the

particular combination of pressure and axial weight that will cause the

material to behave as transversely isotropic. If a particular combination

of axial force and internal pressure places the load point to the left of

this curve, then the material is anisotropic and E z > E e. Loads to the

right of this curve cause the material to be anisotropic, but, in this case,

E 0 > E z •

It is interesting to note that, in all cases, the crossover pressure

which corresponds to the axial force necessary to stretch the specimen to

its in-situ length (see Fig. 36) falls within the normal in-vivo arterial

pressure range, namely pressures of 80 to 120 mm Hg. This observation is

also true of the other specimens tested, which are not plotted in Figure 36.

7Strictly speaking, transverse isotropy also implies that all the shear

moduli _ik (i = 1,2,3 ; k = 4,5,6) are identically zero. This point has

not been clearly demonstrated.
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Hence, excised arteries subjected to in-vivo loadings seem to behave as
transversely isotropic materials. It should be noted that, for the con-
dition of transverse isotropy, arteries can be represented by four elastic

constants rather than six because _1i = _2a and _13 = _as" Further-

more, for this condition, the axial length remains constant with variations

in internal pressure (see Fig. 16 and Section 8.1).

8.6 Age Effects

There are many parameters which affect the elastic characteristics of

arteries. One such parameter which has been studied extensively (Ref. 20)

is the artery calendar age. Although we cannot furnish quantitative data

on this subject, we have been able to study four normal brachial arteries

from people of different ages. A comparison of these brachial data is

shown in Figure 37, which displays the variation of the three anisotropic

moduli of elasticity as functions of the internal pressure for specimens

stretched to their in-situ lengths. These specimens were considered to be

pathologically normal. From Figure 37, we note a consistent trend with age;

namely, that the values of Ee, E , and E at any internal pressure abovez r

80 mm Hg. increase with age. This effect seems to indicate that an aging

process takes place in the elastic and smooth muscle and not the collagen.

8.7 Change of the Elastic Constants of Excised Arteries With Time After

Removal From the Body

One of the items studied during this program was the effect of time

after removal of the specimen from the body. To study this aspect of the

problem, static-elastic tests were performed on several specimens with a

2- to 6-day waiting period between tests. The specimen was kept in a normal

saline solution at i0 ° C during this period.

The table below shows the specimens which were tested at more than one

time after Heath. The letter A or B which modifies the specimen number indi-

cates the first or second test, respectively.

TIME AFTER DEATH TO THE STATIC-ELASTIC TESTS

Specimen tested

Brachial IVA

Brachial IVB

Splenic IA

Splenic IB

Femoral IIA

Femoral IIB

Thoracic IIA

Thoracic IIB

Time after death to test

(hr)

6

151

40

94

2

54

3

55
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In general, no measurable change was detected in the elastic constants
with time after death. In many cases, the W function determined from the
first test also satisfied the data for the second test (see Table IV for
the W function constants). For the cases in which the first W function
constants would not satisfy the data for the second test, such as with

Brachial IVA and Brachial IVB, it was found that the W function constants

did not change significantly, and, more importantly, that the various

moduli were nearly identical.

In summary, although the first test was generally within 1 or 2 hours

after death, it was found that the elastic constants do not change signifi-

cantly with time, at least for times up to 6 days, if the specimen is kept

in normal saline under refrigeration.

8.8 Shortcoming of the Analysis

In some special cases, the analysis presented in Section 3 was not

successful. That is, the strains calculated from the computed elastic

constants, using a thick-wall tube analysis, did not check the measured

strains (see Appendix B). Those specimens which did not yield satisfactory

elastic data were the human femoral artery and the canine femoral arteries

under high axial loads. Both specimens gave similar difficulties in extract-

ing the anisotropic elastic constants, namely, those of inaccuracies in the

experimental data (see Section 7). Since the nonlinear analysis is extremely

sensitive to the input displacements, a small error in input data produces

large errors in the resulting elastic constants. Owing to the small dimen-

sions of the canine femoral arteries, the heavy axial weights reduced the

wall thickness to about 0.010 inch, producing a ±33-percent measurement

error. The human femoral artery was highly sclerosed and was so stiff that

its displacements were too small to generate enough variation of the strain

invariants to obtain a proper W function curve fit.

In any case, it is felt that the problem lies with accuracy of the

measurements rather than with the analyses.
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9. CONCLUSIONS
Experiments have been carried out and an analysis has been developed

for determining the elastic behavior of excised human and canine arterial

segments subjected to combined internal pressure and axial tension. The

dimensional measurements taken to deduce the elastic behavior included the

inner diameter, outer diameter, and length of each specimen for each load-

ing condition. Arteries tested included the human brachial, femoral,

external iliac, superior mesenteric and splenic, as well as the canine

femoral and thoracic aorta. The results of the present investigation

lead to the following conclusions:

(i) In all of the arteries tested, the elastic behavior of the arterial

wall can be represented by a nonlinear, homogeneous, anisotropic, compressible

material.

(2) A description of this elastic behavior requires six elastic con-

stants at each level of strain. These correspond to three values of Young's

Modulus and three values of Poisson's ratio.

(3) The anisotropic behavior seems to be associated with the presence

of the collagenous fibres which form a double criss-cross network around

the inner layers and change their orientation with loading.

(4) The circumferential stiffness approaches that of the stiff col-

lagenous fibres at very high internal pressures, irrespective of axial

loading, and the axial stiffness also approaches that of the collagenous

fibres at very high axial stress, irrespective of internal pressure.

(5) The radial stiffness is essentially unaltered by loading and

remained roughly at the value of elastin and smooth muscle.

(6) The three values of Young's Modulus (radial, circumferential, and

axial) all appear to increase with age.

(7) The artery length may increase or decrease with increasing in-

ternal pressure, depending upon the applied axial stress.

(8) At in-vivo levels of internal pressure and axial stress, the

artery length is evidently independent of the internal pressure.

(9) At in-vivo levels of internal pressure and axial stress, the

arterial wall behaves as though it were transversely isotropic, with the

same value of Young's Modulus in the axial and circumferential directions.

(I0) The elastic behavior of excised arteries was found to be unaffected

by time after death when they were kept in normal saline under refrigeration.
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i0. RECOMMENDATIONSFORFUTUREWORK

The present investigation has yielded the static elastic behavior of
various excised human and canine arteries. Although this information is

only a first step toward a full understanding of the dynamic elastic

behavior of the living cardiovascular system, it does lay the groundwork

for a systematic approach to that goal. In particular, the following

recommendations are offered for future work in this area of research:

(i) During the present experimental program, oscillatory test data

on a number of excised specimens were obtained but were not analyzed, since

such an analysis requires the results of the static analysis. Now that the

static analysis is complete, it would seem appropriate to analyze the

dynamic test data, which requires extending the present analysis to oscil-

latory internal pressures.

(2) The question of the difference between the elastic behavior of

excised arteries and arteries in vivo remains unanswered. It is therefore

recommended that experimental studies be undertaken on sacrificial animals,

such as dogs or sheep, to make elastic tests of various arteries in vivo

and repeat the tests after excision. The measurements to be made would be

internal pressure, the axial stress, the artery length, and its inner and

outer diameter. The force measurements could be made by exposing the

artery, employing strain gages, and measuring the compressive axial stress

required to cancel the natural tethering stress. Various axial loads could

then be applied, and the internal pressure could be varied by injecting

drugs into the anesthetized animal.

(3) As a diagnostic technique, it would be highly desirable to deter-

mine the elastic behavior of the arteries of a human patient without

resorting to surgery. Perhaps the most promising approach for such a tech-

nique lies in the measurement of pulse-wave velocity. However, the mathe-

matical expressions for pulse-wave velocity along a realistic artery have

not yet been developed. Since the present study indicates that arteries

in vivo behave as transversely isotropic, thin-walled tubes, one can treat

them as having a single Young's Modulus by ignoring the radial elastic

effects. However, that single modulus is a function of the internal pres-

sure. This effect produces waves which change their shape along the tube

and travel at a different velocity from that of classical theory. It is

therefore recommended that a theoretical analysis of this problem be under-

taken.
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(4) It is known that the elastic behavior of veins is quite different
from that of arteries, and that veins are essentially collapsible vessels

whose internal volume varies greatly and comprises the "venous reservoir."

In view of the importance of this behavior with regard to such conditions

as venous pooling of blood, and in view of the general dirth of knowledge

regarding venous elastic properties, it is recommended that the present

study be extended to veins in order to determine their elastic behavior.
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TABLE II

DATA CURVE-FIT CONSTANTS

BRACHI

AXI

A×I

nL I A

AL WEIGHT : 0 P(MAX)=302 P(MIN)= 79

A(O): 4,050-2 A(I )= 4,268-2 A(2) = 2,253-4

F3(O)= 7,055-2 B( I )= 7,055-2 B(2) = 1,432-4

L (0)= 7, 132-I Z(I ) = 7,242-I Z(2) = 5,299-4

AL WEI6HT = 50 P(MAX)=300 PCNIN): 60

A(_)= 4,05Q-2 AC ] )= 6,627--2 A(2)= 3,279-5

B((3)= 7,055-2 B(I) = 8,133--2 B(2) = 3,452-5

[ (©)= 7, 132-I Z(I )= 9,244-I Z(2)=-I,165-4

A(3)=-4,032-7

B(3)=-2,546-7

Z(3)=-9,264-7

A(3)=-I,306-8

B(3)=-3,497-8

Z(3)= 1,691-7

_._R AC H I

AXI

A×I

AL I! A

AL WEIGHT = C PIMAX)=298 P(MIN)= 20

A(O): 7,500-2 All): 9,381--2 A(2) = 7,329-5

8(0)= 1,125-I B(I ) = 1,231-I B(2)=-5,212-6

LfC)= 1,220+0 Ill )= 1,271+0 Z(2) = 8.159-4

AL WEIGHT : 20 P(MAX)=3_O P(_IN)= 20

A(O)= 7,_00-2 A(1 )= 8,497-2 A(2)= 9,744-5

R(C)= 1,12%-I B(I )= 1,I 15--I B(2) = 6,210-5

I (0)= 1,220+0 Z(I )= 1,431+0 Z(2) = 4,596-5

A(31=-1,21 I-7

B(3)= 9,059-8

Z(3)=-1.060-6

A(3)=-I,597-7

8(3)=-9,680-8

Z(3)= 1,410-7

AXI AL WEIOHT =100 P(MAX)=300 P(MIN)= 59

A(O)= 7,_00-2 A(I )= 6,862-2 A(2)= 1,790-4

B(O)= 1,125-I B(I ) = 1,003-I B(?)= 5,735-5

L (O)= _ ,220+0 Z (l }= 1,499+0 Z(2)=-I,010-4

AXIAL WEIGHT = T P(MAX)=2B6 P(MIN)= 60

A(O)= 7,500-2 A(1)= 6,055-2 A(2) = 3,165-4

B(O)= _,12_II B(1) = 8,064--2 B(2) = 2,466-4

L (O)= 1,22C+0 Z(l ) = 1,311+0 Z(2)=-4,663-4

A(3)=-2,644-7

B(3)=-1,098-8

Z(3)=-1,099-8

A(3)=-6,724-7

B(3)=-5,078-7

Z(3)= 1,250-6

Example: The displacements (a, b, and L) are given by

2

a = al + a p +2 asP

b = b I + b p + b3p22

= + z p+ z3pL z 1 2

where

A(1) = a = 4.050
1

A(2) = a 2 = 4.268

Etc.

- 2 = 4.050XI0 -2 = 0.04050

- 2 = 0.04268 inch/(mm Hg.)

inch/mm Hg.

2
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TABLE II.- CONTINUED.

IAL IlIA
IAL WEIGHT= 0 D(MAX)=292 P(MIN)= 3g
A(O)= 6,500-2 A(1)= 8,438-2 A(2)= 6,721-5
B(0)= 8,800-2 B( I )= c),940-2 B(2) = 5,423-5

I (0)= I,O00+O Z(I )= 1,016+0 Z(2): 1,032-3

AXI AL WEICHT = 20 P(MAX)=308 P(MIN)= 20

A(O)= 6,500-2 A(1 )= 7,687-2 A(2)= 1,465-4

B(O)= B,80Q-2 B(1)= 8,905-2 B(2) = 1,437-4

L (0)= I ,000+0 Z(] )= 1,252+0 Z(2)=-5, |61-4

AXIAL WEIGHT = 50 P(MAX)=300 P(MIN)= 19

A(O)= 6,500-2 A(1 ), 6,841-2 A(2) = 1,981-4

B(©)= 8,80D-2 B(l )= 8,035-2 _(2) = 1,964-4

L (0)= l,O00+O Z(1)= 1,343+0 Z[2)=-a,965-4

AXIAL WEIGHT : T P(MAX)=299 P(MIN)= 60

A(O)= 6,500-2 A( I )= 7,298-2 A(2)= 1,376-4

B(O,= 8,800-2 B(I )= 8,296-2 B(2)= 1,379-4

I (0)= l,OOO+O Z( 1 )= 1,305+0 Z(2) = 1,592-8

A(3)=-9,244-8

B(3)=-9,650-8

Z(3)=-1,734-6

A(3)=-2,964-7

B(3)=-3,071-7

Z(3)= 1,138-6

A(3)=-3,794-7

B(3)=-4,016-7

Z(3)=-7,681-7

A(3)=-2,305-7

B(3)=-2,533-7

Z(3)=-5,307+0

BRACHIAL IV A

AXIAL WEIGHT = O D(NAX)=300 P(MIN)= 27

A (0)= 7,810-2 A(I )= 1,050-I A(2)= 7,666-5

RIO)= 1,045-I B(I,= 1,248-! B(2)= 3,302-5

L (0)= 1,628+0 Z(I )= 1,789+0 Z(2)= I,g03-3

A(3)=-g,734-8

B(3)=-2,057-8

ZI3)=-3,756-6

AXIAL WEIGHT=32,4 P(MAX) =300 P(MIN)= 20

A(O)= 7,810-2 A(I )= 1,019-1 A(2)= 1,316-4

B(O)= 1.045-I BlI )= 1,167-I B(2)= 1.040-4

L (0)= 1,628_0 Z(l )= 2,199+0 Z(2)=-I,006-3

A(3)=-2,737-7

B(3)=-2,078-7

Z(3)= 2,141-6

AXIAL WEIGHT=55,9 P(MAX)=300 P(MIN)= 50

A(O)= 7,810-2 A(I )= 9,053-P A(2) = 2,368-4 A(3)=-4,894-7

B(O)= I,r45-I B( 1 )= 1,123-I B(2)= 1,260-4 B(3)=-2,297-7

L (0)= 1,628+0 Z(I )= 2,]76+0 Z(2)=-4,053-4 Z(3) = 7,690-7
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TABLEII.- CONTINUED.

B_ACHIALIV
AXIAL WEIGHT= 0 P(MAX)=251 P(MINI= 52

A(O)= 7,810-2 A(I )= 9,129-2 A(2)= I ,257-4
D(O)= 1,045-I _(l )= 1,130-I _(2) = 6,975-5

L (0)= 1,628+0 Z(I )= 1,681+0 Z(2) = 1,960-3

AXIAL WEIGHT = 20 P(MAX)=250 P(MIN)= 46

A(O)= 7,810-2 A(I )= 9,150-2 A(2) = 1,580-4

B(O)= 1,045-I 5(I) = 101]2-] 5(2) = I,0]4-4

[ (©)= 1,620+0 Z(I )= 1,950+0 Z(2) = 1,744-6

AXI AL WEIGHT = 50 P(_AX)=251 P(_IN)= 60

A(O)= 7,810-2 A(1 )= 9,274-2 A(2)= 8,73]-5

B(O)= 1,045-I 8(1)= 1,096-1 8(2) = 5,840-b

L (0)= _,628+0 Z(I ) = 2.090+0 Z(2)=-7,885-4

AXIAL wEIGHT =100 P(MAX)=250 P(MIN)= 64

A(©)= 7,810-2 A(I )= 8.131-2 A(2)= 2.230-4

D(O)= 1.045-1 _(1 )= 9,962-2 8(2)= ],780"-4

L(O)= 1,628+0 Z(1 ) = 2.173+0 Z(2):-2,465-4

A(3)=-2,196-7

5(3)=-6,059-8

Z(3)=-3,670-6

A(3)=-4,281-7

B(3)=-2.582-7

Z(3) = 3,442-7

A(3)=-1,364-7

B(3)=-4,314-8

Z(3)= 2.459-6

A(3)=-5,184-7

B(3)=-3,884-7

Z(3)=-9.551-8

ILIAC

AXI

AXI

AXI

AXI

AX

EXTERNAL I

A[ _IEIGHT = 0 P(MAX)=306 P(MIN)= 20

A(O)= 7,250-2 A(I )= 8,960-2 A(2) = 2,306-4

_(©)= 1,110-I _(1)= 1,204-I _(2) = 1,475-4

L(O)= O,_()O-I Z(] )= 1,003+0 fiR) = 2,054-3

AL WEIGHT = 20 D(MAX)=302 P(MIN)= 20

A(O)= 7,250-2 A(I)= 9,686-2 A(2)= ],484-4

N(C))= I.I 10-I B(I )= 1,219-1 B(2) = 1,060-4

t (O)= 9,_30-1 Z (I)= 1,226+0 Z(2) = I ,5_3-4

AL _._tE[GHT = 50 P('4AX)--260 P(_4IN)= 52

A(O)= 7.000-2 A(1 )= 8.448-2 A(2) = 7,279-5

9(0)= 9,_500-? 5CI )= 1,002-I B(?) = 7,892-5

LID)-- 6,700-I Z(I )= 7,899-I Z(2)=-2,632-4

A(3)=-5,010-7

B(3)=-3,096-7

Z(3)=-4,440-6

A(3)=-2,718-7

_(3)=-I,703-7

Z(3)=-I,025-8

A(3)=-8,751-8

B(3)=-I,390-7

Z_3) = ] ,048-6

AL WEIGHT =lO0 P(MAX)=294 P(MIN)= 80

A(O)= 7,2_0-2 A(I )= 9,468-2 A(2)= 1,272-4 A(3)=-1,991-7

RIO)= l.llO--I 5(I )= 1.165--1 8(2) = 1.177-4 B(3)=-1.926-7

L (O)= o,500-| Z( i )= I ,384+0 Z(2)=-2.501-4 Z(3) = 4,457-7

IAL WEIGHT = T P(MAX}=305 P(MIN)= 20

A(O)= 7,250-2 A(1)= 9.793-2 A(2) = 1.698-4

_(0)= 1.110-I B(I )= 1.184-I 5(2) = 1.290-4

L(O)= 9.500-1 Z(1 )= 1.269+0 Z(2)= 1.338-8

A(3)=-3,430-7

_(3)=-2,584-7

Z(31= 0,000+0
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TABLE II.- CONTINUED.

Hi;MAN SPLENIC IA

AXIAL WEIGHT = 0 P(MAX)=300 P(MIN)= 20

A(O)= 7.000-2 A(I )= 8.471-2 A(2) = 1,129-4

B(O)= 9,500-2 B(I )= 1.053-I B(2): 8.284-b

t(O)= 6,700-I Z(I )= 7,141-I Z(2)= 6.695-4

AXIAL wEIGHT = 50 P(MAX)=260 P(MIN)= 52

A(O)= 7,000-2 A(1)= 8,448-2 A(2)= 7,279-5

B(O)= 9,500-2 B(I )= 1,002-I B(2) = 7,89Z-5

L(O)= 6,700-1 Z(1)= 7,899-I Z(2)=-2,632-4

A(3)=-2,b34-7

_(3)=-1,633-7

Z(3)=-1,685-6

A(3)=-8,751-8

B(3)=-1,390-7

Z(3}= 1,048-6

HtJ_AN SPLENIC I B

AXIAL WEIGHT = C P(MAX):251 P(MIN)= 90

A(O)= 7,000-2 A(I )= 8,221-2 A(2) = 1,305-4

_(0)= 9,500-2 B(I )= 9,741-2 B(2) = 1,637-4

L(©)= 5,540-I Z(l )= 5,929-I Z(2) = 4,69@-4

AXIAL WEIGHT = 20 D(MAX):350 D(MIN): 54

A(O)= 7,000-2 A(I )= 7.324-2 A(2) = 2,301-4

8(C)= 9,_00-2 8(I )= 9.078-2 _(2) = 2.130-4

k(O)= 5,540-] Z(l ): 6,706-I Z(8)=-9.137-5

THORACIC AOPTA I A

AXIAL WEIGHT = 0 P(MAX):I84 P(MIN)= 40

A(O)= 1,300-I A(_ )= 1.06_-I A(2): 1.288-3

B(O)= 1,553-i B(I ) = 1.361-I _(2) = 1.069-3

L(O)= 3,670-I Z(I )= 3,456-! Z(2)= I .244-3

AXIAL WEIGHT = 50 P(MAX)=200 PfMIN)= 40

A(O)= 1,300-I A(I )= 1.129-1 A(2): I.I 18-3

B(O): 1.553-1 B(I ): 1,405-! B(2): 8.847-4

L(C)= 3.67t-! Z(I )= 4.612-1 Z(2)=-3.705-4

A(3)=-2,842-7

B(3)=-4,033-7

Z(3):-9,262-7

A(3)=-4,472-7

B(3)=-4.639-7

Z(3): 2,161-7

A(3)=-3,880-6

B(3)=-3,121-6

Z(3)=-3.990-6

A(3)=-3,165-6

B(3)=-2.306-6

Z(3)= 3.984-6

TrIO_ACIC AOPTA I B

AXIAL wEIGHT =

A(O}= 1,30_-I

B(O)= 1,600-I

I (0)= 5,500-I

0 P(MAX)=200 P(MIN)= 50

A(I )= 1.187-I A(2): 8.912-4

B(I )= 1,485-I B(2) = 7.327--4

Z(I )= 5,535-I Z(2) = I .304-3

A(3)=-2.060-6

B(3):-I,637-6

Z(3)=-3,813-6

THORACIC AORTA II A

AXIAL WEIGHT = 0 P(MAX)=260 P(MIN)= 50

A(O)= 1.220-I A(] )= 1,31_-I A(P)= 1.132-3

B(O)= 1,820-I B(I )= 1.762-I B(2): 9.129-4

L (0)= 2.600+0 Z(I )= 2,362+0 Z(2): 1,169-2

AXIAL WEIGHT = 50 D(MAX)=300 P(MIN)= 50

A(O)= 1.320-I A(I ): 1.154-I A(2) = 1.345-3

F3(O)= 1.82._-1 B(I )-- I .503-I [9(2) = 1.150-3

t(O)-- 2.600+0 Z(1)= 2,51240 Z(2): 1,t42-2

A(3):-2,17B-6

B(3)=-1,775-6

Z(3)=-2,311-5

A(3)=-2,702-6

B(3):-2,270-6

Z(3}:-2,262-5
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TABLE II.- CONTINUED.

HUMAN

AXI

AXI

SPLENI

AL WEI

A(O)=

B(O)=

I(0)=

C IA

GHT = 0 P(MAX)=300 P(MIN)= 20

7,000-2 A(I )= 8,471-2 A(2)= 1,129-4

9,500-2 B(I )= 1,053-I 8(2) = 8,284-5

6,700-i Z(l )= 7,141-1 Z(2) = 6,695-4

AL WEIGHT = 50 #(MAX)=260 P(MIN)= 52

A(C)= 7,000-2 A(I ): 8,448-2 A(2)= 7,279-5

R(9)= 9,500-2 8(1 )= 1,002-I 8(2) = 7,892-5

t (©)= 5,700-1 Z(1 )= 7,899-1 Z(2)=-2,632-4

A(3)=-2,534-7

B(3)=-1,633-7

Z(3)=-I.685-6

A(3)=-8.751-8

8(3)=-I,390-7

Z(3)= 1,048-6

HUMAN SPLENI

AXIAL WEI

A(O)=

8(0)=

L(O)=

AXIAL WEI

A(O)=

F_(O)=

I (0)= 5,540-1

THORACIC AORT& I A

AXIAL WEIGHT =

A(O)= 1,300-1

B(O)= 1,553-I

L(O)= 3,670-I

C I B

GHT = 0 D(MAX)=251 P(MIN)= 90

7,000-2 A(I )= 8,221-2 A(2) = 1,305-4

9,500-2 H(l )= 9,74]-2 B(2) = 1,637-4

5,540-I Z(I )= 5,c)2cJ-I Z(2)= 4,6c96-4

GHT = 20 P(MAX)=350 P(MIN)= 54

7,000-2 A(I )= 7,324-2 A(2)= 2,301-4

9,500-2 8(1 )= 9,078-2 8(2)= 2,130-4

Z(I )= 6,706-I Z(2)=-9,137-5

0 P(MAX)=184 P(MIN)= 40

All )= 1,064-1 A(2)= 1,288-3

8(I )= 1,361-I B(2) = 1,069-3

Z(I )= 3,456-I Z(2)= 1,244-3

AXI

A(3)=-2,842-7

8(3)=-4,033-7

Z(3)=-9,262-7

A(3):-4,472-7

B(3)=-4,639-7

Z(3)= 2,161-7

A(3)=-3,880-6

8(3)=-3.121-6

Z(3)=-3,gQo-6

AL WEIGHT = 50 P(MAX)=200 P(MIN)= 40

A(O)= 1,300-1 A(I )= 1,129-I A(2) = 1,118-3 A(3)=-3,16b-6

B(O)= 1.553-1 B(I )= i ,405-I 8(2) = 8,847-4 B(3)=-2,306-6

L (©)= 3,670-I Z(I )= 4,613-1 Z(2)=-3,705-4 Z(3) = 3,984-6

T_ODACIC AODTA I

AXIAL. WEIGHT = 0 P(MAX)=200 P(MIN)= 50

A(O)= 1.300-1 A(I)= 1,187-I A(2) = 8,Q12-4

_(0)= 1,6OO-I 8(I)= 1,485-I B(_)= 7,327-4

L(O)= 5,500-I Z(I )= 5,535-I Z(2) = 1 ,304--3

A(3)=-2,060-6

U(3)=-1,637-6

Z(3)=-3,813-6

THQ_tACIC AO_:TA i i ,_

AXIAL WEIGHT = 0 P(MAX)=260 ID(MIN)= 50

A(O)= 1,320-1 A(I )= 1,314-] A(2)= 1,132-3

D(O)= 1,820-1 [:3(1 )= 1,7bP-1 B(2) = 9,129-4

L(O)= 2,600+0 Z(I )= 2,362+0 Z(2)= 1,169-2

AXIAL WEIGHT = 50 P(_AX)=300 P(MIN)= 50

A(O)= 1,320-I A(1 )= 1,154-1 A(2)= 1.345-3

B(O)= 1,8?0-1 B(l )= 1,503-I 8(2)= 1,150-3

L(O)= 2,600+0 /(I)= 2,512+0 Z(2) = 1,142-2

A(3)=-2,178-6

8(3)=-I,775-6

Z(3)=-2,311-5

A(3):-2,702-6

8(3}=-2,270-6

Z(3):-2,262-5



-47-

TABLE II.- CONTINUED.

THORACIC AORTA II B

AXIAL WEIGHT : 0 P(MAX)=250 D(MIN)= 50

A(O)= 1,230-I A(I )= 9.565-2 A(2) = 1,722-3

B{O)= 1,730-I 8(I )= 1,418-I 8(2) = 1.460-3

L{O)= 2,120+0 Z{I }= 1,826+0 Z{2} = 1,156-2

AXI AL WEIGHT = T P(MAX)=250 P(MIN)= 50

A(O)= 1,230-I A(I ): 9.380-? A(?)= 1.764-3

B(O)= 1,730-I 8(I )= I .363-I B(2) = 1,541-3

L (O)= 2,120+0 Z(I )= 2,739+0 Z(2)-- 2.0?6-3

A(3)=-3.965-6

8(3)=-3,382-6

Z(3)=-2,504-5

A(3)=-4,227-6

8(3)=-3,727-6

Z(3)= 1,055-6

HUMAN SUP MESENTERIC

AXIAL WEIGHT = 0 P(MAX)=300 P(MIN)= 60

A(O)= 9,600-2 All)= 1,094-I A(2)= 1.696-4

E_(O)= 1,250-1 8(I)= 1,355-1 8(2) = 1.284-4

L(O)= 5,500-I Z(I )= 5,949-I ZIP__)= 1.828-4

AXIAL WEIGHT = 20 P(MAX)=259 P(MIN)= 21

A(O]= 9.600-2 A_I)= 1.119-! A(2) = 1o283-4

RIO)= 1,250-I B(l )= 1.3%2-I B(2)= 1.209-4

L(O)= 5,500-I Z(1) = 5o_4_-I Z(2) = 8o548-4

A(3)=-2.367-7

8(3)=-1.844-7

Z(3)=-4.682-7

AI3):-3,408-7

8(3)=-2.907-7

Z{3)=-2,247-6

FEr,_O_AL I A

AXIAL WEIGHT = 0 Im(MAX)=250 P(MIN)= 2_3

A(O)= 5,400-2 A(I )= 5.332-2 A(2) = 1.716-4

E3(O)= 6,680-2 13(i)= 6,657-2 [-5(2) = 1,232-4

[ (0)= 9,280-I Z(l .= 8,936-| Z(2) = 1 .5_@5-3

A(3)=-4,532-7

B(3)=-2,982-7

Z(3)=-3.226-6

FEMORAL II n

AXIAL WEIGHT = 0 P(MAX)=301 PIMINT= 80

A(O)= 6.200-2 A(1)= 8.024-2 A(?)= 7.336-5

B(O)= 7.500-2 B(] )= 9,77a-2 B(2)=-I.031-5

L(O): 8.300-I Z(I )= 6,67g-I Z(2) = t,823-3

A(3)=-I.130-7

_(3) = 3,42-9-8

Z(3)=-1,466-6

FE#4ORAL II R

AXIAL WEIGHT = 0 P(MAX)=2-O0 P(MIN)= 50

A(O)= 5.700-2 A(I)= 7,227-2 A(2) = 1,836-4

8(0)= 7,800-2 B(l )= 9,261-2 _(2) = 7,750-5

L (0)= 7,200-I Z(I )= 6,245-1 Z(2) = 2.627-3

AXIAL WEIGHT = 20 P(MAX)=300 P(MIN)= 50

A(O)= 5,700-2 A(I )= 7,377-2 A(2) = I .39_-4

R(©)= 7.800-2 B(1 )= 8.41Q-2 B(2) = I, l 12-4

L(O)= 7.2_0-I Z(l )= 1.022+0 Z(2)=-1.206-4

A(3)=-4,063-7

8(3)=-I,62_0-7

Z(3)=-3,906-6

A(3)=-2,779-7

B(3)=-2.304-7

Z(3)= 6.499-7
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TABLE II.- CONCLUDED.

HUMAN FFMORAL I I I

AXIAL WFIGHT = 0 D(MAX)--?O0 P(MIN)= 50

A(O)= A(I )= I ,171--1 A(2) = 5.014-5

B(O)= B(I )= 1.471-I B(2)= 1.271-4

t(O)= l.OSO+C Z(l )= 1.073+0 Z(2) = 8.346-4

AXIAL WEIGHT = 20 P(MAX)=200 P(MIN)= 50

A(O)= A(I)= 1.098-I A(2)= 1.315-4

B(C)= B(l )= 1.580-I B(2)=-2.790-5

L(C)= 1.050+0 Z(1)= 1.136+0 Z(2) = 3.7_30-4

AXIAL ?,/EIGHT --" 50, P(MAX):200 P(MIN)= 49

A(O)= A(I )= 1,146-I A(2)= 2.975-5

B(O)= B(1 )= 1,561-1 B(2) = 5,558-5

b(O)-- 1.050+0 Z(I)= 1.180+0 Z(2): 1.6a8-4

AXIAL WFIGHT =I00 P(MAX)=200 P(MIN)= 50

A (0)= A(I ]= I .134-_ A(2) = I .335-4

F3(C)= B(I )= 1 .473-I B(2) = 1.537-4

L(O)= 1.050,0 Z(I )= 1.215+0 Z(2)= 8.790-5

A(3):-5.045-8

B(3)=-I.708-7

Z(3)=-2.133-6

A(3)=-_.754-7

_(3) = 2.797-7

Z(3)=-5. 199-7

A(3)= I • 16_-7

_(3)=-1.535-7

Z(3)=-2.814-7

A(3)=-3.487-7

B(3)=-5.20b-7

Z(:3)=-3.622-7
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TABLEIII

COMPARISONOF THE COMPUTEDANDCURVE-FIT
PARTIALDERIVATIVES

Curve-fit constants

B(] )= 9,4437712£+00

P

8,O000000E+O1

1,O000000E+02

1,2000000E+02

1,3000000E+02

1,5000000E+02

1,9000000E+02.

2,2000000E+_2

2,6300000E+02

Curve-fit constants

C(I )=-3,5674805E+00

P

8,0000000E+0!

1,0000000E+02

1,2000000E+02

1,3000000E+02

1,5000000E+n2

1,9000000E+02

2,2000000E+02

2,6300000E+02

Curve-fit constants

O(l )=-|,5817267E+0!

P

8,0000000E+01

1,0000000E+02

1,2000000E+02

1,3000000E+02

1,5000000E+02

1,9000000E+02

2,2000000E+02

2,6300000E+02

used to compute _W/_I
l

8(2)=-2e6532887E+O! 8(3)=

I _W/_I
1 1

3,1294099E+00 6,3733320E+00

3,|754404E+00 8,2578011E+00

3,2166439E+00 1,0_16174E+0!

3,2353849E+00 1,1216134E+01

3,2690527E+00 1,32431 lIE+0!

3,3206904E+00 1,7320726E+01

3,3452673E+00 2,0302322E+01

3,3587815E+O0 2,4281831E+01

used to compute 6W/6I
2

C(2)=-ge2478551E+O0

I _W/_I
2 2

2,8833054E+00 -2,3070669E+00

2e9498764E+00 -3,0630928E+00

3,0079971E+00 -3e8544077E+00

3,0337420E+00 -4,2588998E+00

3,0783371E+00 -5,0773690E+00

3,1387572E+00 -6,7095095E+00

3,1578850E+00 -7,8844960E+00

3, |45|68|E+00 -9,4|88080E+00

used to compute _W/_I
3

D(2)=-4e0867958E+01
/

I s _W/_I

6,8739370E-0!

6,9066190E-0!

6,8991550E-0!

6,8805440E-0!

6,8141750E-01

6,5703640E-0!

6,2985990E-0!

5,7964090E-01

-4,6821624E-0!

-3,8458|84E-0|

-2,6874055E-0!

-2,0345684E-0l

-6e6079810E-02

le9888270E-01

3-5344204E-01

4,5161913E-01

8,4045130E+0!

_W/_Ii(curve-fit)

6,7990263E+00

7e894449BE+00

9,7812636 00

1-0922716E+0!

1,3418200E+01

1.8356278E+01

2.1178830E+01

2.2860671E+01

C(3)=-2,5272090E+01

_W/_I2(curve-fit)

-2e4415689E+00

-2,8308879E+00

-3,7202412E+00

-4,2778812E+00

-5,48|6424E+00

-7,5936264E+00

-8e3775986E+00

-7,8502025E+00

O(3)=-3,4|4544_E+0|

_W/_Is(curve-fit)

-2,7645900E-01

-3,3537330E-01

-3,2172560E-0!

-2,8819300E-01

-Ie7439000E-O!

1,6620400E-01

4,0231800E-0i

4e4048900E-01

Example:

where

8W/SIl(curve-fit ) = B l + 2B2(Ii-3) + 3B3(II-3) 2

B = B(1) = 9.4437712E + 00 = 9 4437712×10 ° = 9.4437712
1

B = B(2) = -2.6532887E + 01 =-2.6532887×i0 _ = -26 532887
2

Etc.
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TABLEIV

W-FUNCTIONCONSTANTS

Vessel

_DACHIAL IA

Constants I (max) I (min)

B(I )= 4,263+0 B(2)=-3,12(>+0 B(3)= 3,6484-0 I (I)= 4,0

C(I )=-1.076+0 C(?): 9,508-I C(3):-2.265-! I (2): 4,3

D( 1 )=-] ,106+0 DIP)= 4,221+0 D(B)=-I, IQO+I I (3)= O,g

3,2

3,2

0,7

8_ACHIAL I IA B(l ): 1,440+I B(2): 2,064+I 8(3): 3,g31+I I (l)= 3,4

C(] ):-1,391+i C[2):-I,026+I 6(2):-2,451+0 I (2): 3.4

D(I )= 9,92g+0 D(2): 4,88_+0 D(3)=-2,270+0 I (3)= 0.9

2,9

2_.4

0,4

BDACHIAL. Ilia B(1): 9,444+0 B(2)=-2,653+I 8(3): 8,405+I I(1)= 3.2

C(1)=-3,567+0 C(2)=-g,2aS+O C(3)=-2,527+! I(2)= 3,1

D(I ):-I.'DFI2+I D(2)=-4,087+I D(3)=-3,415+I I (3)= 5,8

3,4

2.8

4,3

B_ACHIAL IVA 8(I )=-l,7?g+] B(2)= 7,358+0 B(3): 2,84g+! I (l)= 3,7

C( ! ): 3,502+I C(2)=-4,063+1 C (3): 8.836+0 I (2): 3.8

D(I ): 2,600+0 D(2)= 1,1 :_+0 D(3)=-3.926+0 I (3): 1,0

3,4

3.6

0,6

_ACHIA! IVB 8(I ) = 1,267+0 B(2)= 5,1734-I 8(3)=-1,563+1 I (i)= 3,b

C(! ):-6,886+0 C(2)=-I,861+t C(3)= 8,365+0 I (2)= 3,5

D(I )= 8,404+0 D(2)= 6.814-2 D(3)=-5,025+! ! (3): I.I

3,1

3,0

0,7

EXTFQNAL

I! IAC I

B(I )= 7,459+0 8(2)=-I,6%1+I B(3)= 2,52g+i I(I)= 4,1

C(1):-2,%79+0 C(2): Z,IIO+O C(3)=-3,824+0 I(2)= 4,7

D(1)= l,SLlg*O D(2)= 3,020+I D(3): 7,6t44--1 I(3): 1,1

3,2

3,4

0,6

£Pl. EN I C

IA AND IF_

8(1 )= 2.g66+0 B(2)=-7.101+0 8(3)= 3.687+I I (1)= 3.6

C(I )= 3,430+0 C(2):-1,090+! C(3): 1-756+0 I(2)= 4,3

D(! )=-9,%70-2 D(2)= 7.8R2+0 D(3)= 8,233-I I (3)= 1.3

3.1

2.9

0.7

THOP_CIC

AOPTA I A

B(l )= 1,792+i B(2)=-1,242+1 B(3): 6,241+0 I (I)= 4,9

C(1)=-1,224+1 C(?)= 8,853+0 C(3)=-R,39440 I (2)= 6.8

O(] )=-2,623+0 D(2)= 5.485+0 DIS): 1,282+I I (31= l,g

Example: The W function for Brachial IA is given as

W = Bl(Ii-3 ) + B2(II-3) 2 + B3(iz-3) 3 + CI(I 2 _ 3) + C2(I2-3)

+ C3(I2-3) 3 + Dl(I3-1) + D2(I3-I) 2 + D3 (I3-i) 3

where

B(1) = B
l

c(1) = c
l

= 4.263 + 0 = 4.263×10 o = 4.263

= -1.076 + 0 = -i.076×i0 ° = -1.076

Etc.

3.2

3.3

1.0
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TABLE IV.- CONCLUDED.

THODACIC

AORTA I

B(1 )= 3,091+I B(2}=-2,837+I B(3) = 1,358+I I (I)= 4,0

C(1 )=-2,089+I C(2)= 1,848+I C(3)=-5,872+0 I(21= 4,3

D(I )= 1,320+I D(2)= 1,348+2 D(3) = 3,643+2 I(31= 1,0

3,1

3,1

0,8

THORACIC

AORTA II

B(I )= 9,_,71+0 £i(21:-2,932+0 B(31= 1,092+0 I (I 1= 5.6

C(l )=-I,909+0 C(2)-- 1,258-I C(31=-2,31c)-2 I (2)= 7,8

D(I )=-8,051-I D(21= 1,452+0 D(31=-6,617-I I(31= 1,0

3,1

2,7

0,5

THORACIC

AORTA II B

B(1)= 1,844+I B(2)=-6,572+0 B(3)= 1,131+0 l(1)= 6,2

C(I )=-1,695+0 C(21= 2,819-I C(3)=-2, 117-2 112)= 9,5

D(I)=-1,733+0 O(21= 2,344+0 D(31=-I,461+0 I (3)= 1,2

3,3

3,4

0,9

&UPFQIO_

_KmFNTFRIC

8(I )=-6,279+0 8(21:=-1,538+I B(31= 8,382+I I (1)= 3,5

C(1 )= 81,471+0 C(21=-4,262+0 C(3)=-8,313+0 I (2)= 3,g

D(I )=--7,098+0 D(2): 1,717+I [9(3) = 2,2a0+0 I(3)= I, _,

3.0

2,9

0.9

FEMORAL ! A R(l )= 1,171+I B(21= 3,804+I 8(31= 4,594+I I (1)= 3,5

C(I )=-5,609+0 C(2)=-2,791+I C(3) = 2.030+0 I (21= 3,7

D(I ) = 3,281+0 D(21= 1,140+2 D(3)=-2,109+2 I(3)= 1,2

3,0

3,0

1,0

FFMORAL II A 8(I )= 3,812+1 8(21=-1,018+2 B(3)= 1,128+2 I (I)= 3,8

C{I )= 1,767+I C(21=-2,176+I C(31=-7,347+0 I (2)= 4,0

D(I )=-5,392+0 D(2)= 2,014+0 0(3) = 2,757+I I(31= O,g

3,4

3,b

0,6

_E#ORAL II B B(I )= 2,564+I _(21=-4,927+I B(3) = 3.400+I I (I)= 4,2

C(I )=-4,083+0 C(2)= 7,837+0 C(3)=-b,520+0 I(2)= 4,7

D(I )=-I,IO0+O D(2)=-4,290+I D(3)=-0,430+I I (3)= 1,0

3,3

3,4

0,4
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TABLE VI

COMPUTER OUTPUT OF THE ELASTIC CONSTANTS FOR BRACHIAL III

PC'F55UPt'.--- l'q0,,OO MM HG WE|GHT= O,00 GWAMS

#. = o,,'I7:_4YIP-02

i JMnF, A I = I ._(,917

"'= "_,/14%7©7]E +-00

R = 1,0385758E-01 L = I,I014_88E*00

_30= B,8000000E-02 LO= 1,0000000_+00

I AMBDA 2= I o]OI_A LAMBDA 3= ,59496

W(CHFCK)=3,O561319E+OO

ul TA { ] , I )- 7,RPP_Q_14E+O]

F';: _-A (p, 1 )---=,._2'_ :'_']'qr: +C !

[%F T h ( I • P ) ---6,48C_2066E+O I

F!ETA(P,2)=-B,22Cc)395E+O]

,F_5-T A ( 3,2 ) ---o, QO_8770E +0 I

BEfA(I ,3)=-9,_RT. OI79F +0!

FgE.TA (2,3)=-I ,©680_36E+OP

BETA (3,3)---7,:_7487_I F _'Ol

ALFA

AL;-A

AI _-A

1 ,l )= 8,20060%0F-03

?, 1 ) =-8,672z_OO6L-03

3,I )= P, la 7420©_-02

ALFA( 1 ,2)--'-9, ] 6P4657E-O.3

ALFA(2,2)= 2o5531076E-02

AL FA ( 3,2 ) =-2,4006696E-02

ALFA(] ,:_)= 2,15toO:3iDL--O:_

ALFA (2 , .3 ) =-2 ° 5) 3_-_P__#_,OE: - O2

ALFA(3,3)= I , 8 35'-)4Ht4k - 02

"-_L'I_= ] °04q7Oi2E+C3

Mtiq] =-- I ,!7"_Te7qF-Ol

F (T)= I,_2047313L+()? E _Z)=

MU 13 = - P, 5870869E- 01 MU23 =

MU32= ] ,,T_RPtS_4B6E+O0 MU21=

3,9167953E+01

9,aO28922E-C1

3,SB87502E-q]

:_F:!A (I , I )= 7,#_2.qORl/_F+Ol

_ETA (p, ! )=-0, 1%Tba40E*Ol

F4F-T A (2_, 1 )=-g,21 ] 9::?6[J'E.+C' 1

_ET&( 1,2):-6, 1575440E+01

I%k:TAI2,2)=-_,226*)D_%E+OI

_ETA(3,2)=-I,O3a43%6E+02

8ETA (1 ,3) =-9°2 ! 1 g36-'5-E+O 1

BETA (2,3) =-1 ,03z_.4366E+02:'

BETA (3,3) =-7,37a876 ] b-4O 1

At.F/, (I ,l )= 8,29%8723E-()3

AI FA (2, ] ):-R,g210270E-03

Z_I FrA (3, I )= 2, 1647976)E-09

ALFA(I,P)=-8,QZ_IOP7IE-03

AL_A(2,2)= 2°5_21911E-02

ALFA(3,2)=-2,4656566E-02

ALFA(I ,3): 2,16472_76h-0:?

ALFA (2,3):-2,4656666E-OP

ALFA(3,3)-- I ,_3PO967E-02

_tJl2= 1,0765626F+00

M[7_I =--I , !81%62Q_-0]

F(T): I,PO54187E+02 E(Z)=

MUI3:--B,6Og4ISIE-O] MU23=

MUB2: 1,3_%_ll_E+O0 MtJ2l=

3,9166672_+01

9,65715673E-01

3,4978060E-01

Example: Beta (i, I)

Alpha (i, i)

= _zz = 7.8289814E + Ol = 78289814×i0 z = 78.289814 psi

= _ = 8.3006059E - 03 = 8.3006059×10 -3
ii

= 0.0083006059 (psi)-_



Adventitia

(mostly collagen)

External elastic lamella

(mostly elastin)

Media (mostly

smooth muscle)

Lumen

Internal elastic lamella

(mostly elastin)

Endothelium

Figure i.- The five layers of the arterial wall.



Figure 2.- Microphotograph of Human Brachial 11, 
magnification 125X. 



Figure 3.- Microphotograph of Canine Femoral I, 
magnification 1 2 5 X .  



Figure 4.- Microphotograph of Canine Thoracic Aorta I, 
magnification 62X. 
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Figure 8 , -  Experimental setup f o r  s t a t i c  e l a s t i c  t e s t s .  
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Figure 12.- Enlargement of X-ray negative for direct 
measurement . 
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APPENDIX A

DETERMINATION OF THE _ CONSTANTS

The form of the
_ij was given in Equation (27) as

_°ii _,j = 1,2,¢
_ij = Aj

which is convenient for machine computation. The various partial deriva-

tives, obtained directly from Equation (13) are given by

_ 2 _P2_z_ + _ 2 _ _ _ 2 + ksa) + 2>`z(_22 + >`a )_ +
1 1 1

_Ull 2 2 2 + h32) + 27k2hl 2 _ + "_i"--
2 2 2 2

_qlz _ 2 _k 3 + 2 2
3

_3 2 _P+ >`32) _ + 2_z hs _ + _3

_ 2 _P_(_22 _ >` 2 _ + k 2(h12 + A32) + 2>`zh 2 % +_

_U22 2 ___ 4- _ 2( Jr

2 2

2 _P
7,s2)'_ + 27,2(7, z + ks2)% +

2 2

8033 k e _ + h32(_.12 + _22) _ + 2A.1>`32 _ +o,'_"--= 3
1

C_U
33 .9

= k3
_k 2 5P+ >`32(>`12 + ?_22) 3 + 2heks2 _ + _2

_U
33 2

"_>`3 - >'3 2

(A-l)

(A-2)

where _, _, and P are given by Equation (14). The derivatives of these

functions are then given as



A-2

2 62W __ Dis
0%i _IfI- _l_ki 213 _i

3

_ 2 DeW _ <]Is

DZ i -_-- _- 2i s
3

DP : 2 _'/--_s _eW P DIs
DI_ i + 2-Y_%-fT._%i i

(A-3)

The second-order partial derivatives, _2W/DIiD%j, are determined by differ-

entiation of DW/_I i (Eq. (19)) with respect to the extention ratio %_,

that is,

DeW DIi _ 3)DI._k. = Ki _ ,j : 1,2,
i ] J

(A-4)

where

K : 2 [_ + 3B (_ - 3)]

K2 = 2 [c2 + 3cs (I2 - 3)] (A-5)

The remaining derivatives 8Ii/D% j are determined by differentiating the

strain invariants with respect to the extention ratios %.. Hence, the
J

_ij are finally obtained by substitution of Equations (A-2), (A-3), (A-4),

and (A-5) into Equation (A-l).



APPENDIXB

DISPLACEMENTSOLUTIONOFA THICK-WALLEDTUBE

B.I DEVELOPMENTOF THE STRAINEQUATIONS

The analysis presented in Section 3 was a nonlinear membraneanalysis
in which the variation of stresses across the tube wall was neglected. By
virtue of this approximation, it was possible to extract all of the elastic

coefficients _ij from experimental measurements of the internal pressure,

axial load, and resulting deformations. As a check on that analysis, we

shall present here the analysis of a thick-walled, homogeneous s, anistropic

tube subjected to internal pressure and axial tension. Since the vari-

ation of stress through the tube wall cannot be measured directly, it is

not possible to use this analysis to extract the elastic constants from

the experimental data. However, the thick-walled analysis can be used as

a check on the membrane analysis by using the _ij computed from the latter

in the stress-strain relations obtained from the thick-walled analysis.

These stresses and strains can then be checked against the experimental

data.

The equilibrium equations for an axisymmetric body (see Fig. 6) are

given, in cylindrical coordinates (Ref. 35), as

and

8o r _Trz o r - o@

+ _z + r - 0 (B-I)

rz _zz rz _ 0 (B-2)
_r + _z + r

We now assume that the shear stresses T and the shear strains are
rz

zero and that the normal stresses are functions only of the radial coordi-

nate r. Equation (B-2) is then automatically satisfied and Equation (B-l)

becomes

d°r Or - °e

d_ + r - 0 (B-B)

8

It should be noted that, in a thick-wall analysis, the assumption of homo-

geneity may actually be less realistic than in the membrane analysis, in

view of the nonhomogeneous material wall. However, the thick-wall analysis

does permit a radial variation of stresses and strains which the membrane

analysis does not allow.



B-2

The strains are given in terms of displacements (Ref. 35) by

du u w
6r = _; ee = r; 6z = (B-4)

and e z was observed experimentally to be constant through the wall.

Since the normal stresses and strains are assumed to be a function only of

the radial coordinate r, the material automatically satisfies the compati-

bility equations, (see Ref. 35).

The stress-strain equations for a linear, cylindrically anisotropic

material can be expressed in terms of the elastic constants _'s by

08 = _lle8 + _leez + _is6r

oz = _lee8 + _eeez + _eser

or = _ise8 + Base z + _ss6r

(B-5)

This equation is based upon the assumption that the components of

strain are linear functions of the stresses and pass through the origin.

However, if the stress-strain relationship is nonlinear, then Equation (B-5)

is meaningless, so, rather than discuss absolute stresses, we must discuss

the local rates of change (perturbations) of the stresses and strains o

and 6, and thereby determine the differential strains. In order to do

this, we assume that the elastic constants _ij are defined as the local

values and are not strong functions of the pressure; that is, we assume that

0Bii _ 0 (B-6)

This assumption permits us to write the stress-strain equation in the form

$°8 I See I _ezl Se r P_--_ p_- + _2 _-p P_ + _3 p_-Pl Pl

A- i A_ i

_t e
_z = _ _-
%_- p_

P_

_°r e

Pl

Pl

+

+ _22 _ P_

_erl

_23 _-- Pl

_er 1B33 _--pp_
I

(B-7)

where the derivatives are evaluated at some pressure p
1
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Equation (B-7) is more simply written as

o@' = B11e@' + Blaez ' + B1_e r'

UZl : _12£_ ! + _22£Z ! + _236r !

' = _i + ' +_3 '_r s68 f _236z s6r

where 6 e' = _e@/$p, e z' = _ez/_p, and e r' = _6r/_p.

The differentiation of equilibrium Equation (B-3) with respect to

pressure yields

l O v _ O-eVd°r r
+ - 0

dr r

(B-8)

(B-9)

Now, by substituting the strain-displacement Equations (B-4) and the

stress-strain Equations (B-5) into the equilibrium Equation (B-9), we

obtain the following second-order, ordinary differential equation for the

radial displacement u' as a function of r:

where

dmu I + i du I _k e u w
--+ A 6zt

dr e r dr r 2
= 0

k a = _i1/633 and A = (_2S - _13)/_33

(B-10)

(B-11)

The solution of Equation (B-10) has the form

u t = F r k + F r -k + Fr (B-12)

where the constants F and F
l 2

ditions, and F is defined by

must be determined from the boundary con-

F = -A6 z'/(l - k 2) (B-13)

The two boundary conditions which are used to evaluate F I and F a

are the values of radial stress (equal to minus the pressure) at the inner

and outer wall. Thus, in terms of the local derivatives, we have

o r ' = 0 at r = b, and o r ' = -i at r = a (B-14)
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By substituting the solution of the differential equation (Eq. (B-12))
into the stress-strain equation (Eq. (B-8)), and employing these boundary

conditions, we find that FI and F are given by2

F - (i - yak) - Bez'
(B-15)

1 bk-l(_13 + k _33)

and

m

2

(-i) a k+l [i + B6 z' (i- _/k-l)_

(1 - 7ak) (_13 - k _33)

(B-16)

where

'y = a/b

A

B = _23 1 - k 2 (_33 + _13 ) (B-17)

Hence, the stresses and strains can finally be written in terms of the

radial coordinate by substituting Equations (B-15), (B-16), (B-4) , (B-13),

and (B-12) into Equation (B-8). Thus, we have

e z = constant

c_

k-l -k-1 A6 z v
= F r + F r

l 2 1 - k 2

£r = F1

O r

a
Z

kr k-l - F kr -k-l Aez'

2 1 - k 2

F
___E_2

rk-l (_l + k _33) 4- k+l= FI 3

r

F

= F1rk-_(_ll + k _13 ) + k+1
r

F
2

= rk-l(_12 + k _23) + k+lF 1 _

r

(_13 - k _33) + Be z'

(_ll -- k _13) + He z'

(B12 - k B23) + GE z '

(B-18)

where the constants H and G are given by
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H = Bl2 A + Bil)i - k e (_zs

G = 811 A
1 - k 2 (_as + _z2 )

(B-19)

Equations (B-18) will be used to check the validity of the elastic

constants _ij generated by the nonlinear membrane theory of Section 3.

This check is completed by comparing the computed values of e 8 ' at the

inner and outer radii (a and b) with the values calculated directly from

the experimental data. The experimental strains, e 8 ' and 68b' are
given locally by a

, 1 _a h

t l _b

(B-20)

These expressions are easily evaluated from the

tions (36), so that they become

a + 2a3P
! 2

6e = a
a a I + aep + asP

b 2 + 263P
! _-

b e68b bl + b2p + 3P

a and b curve-fit Equa-

(B-21)

Figure 38 presents the values of e_a' and ebb' computed from the

thick-tube analysis (Eqs. (B-18)) for two different arteries, each of

which was exposed to two different axial weights. The experimentally

determined values of eeal and ebb' are also shown.

Since experimental uncertainties (Ref. 41) in calculating the experi-

mental es's are fairly high (20 to 30 percent), it is difficult to say a

great deal concerning the results except that the experimental data are in

approximate agreement with the theoretical values, in view of the highly

nonlinear equations involved in computing these theoretical strains, and

in view of the nonhomogeneous arterial wall, the agreement is considered

sufficiently close to conclude that this approach adequately checks the

6's computed from the membrane analysis. It also appears that the thick

tube effects do not warrant additional consideration at this time, since

the theory roughly predicts the strains at both the inner and outer walls.
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B.2 INCOMPRESSIBILITY

The condition of incompressibility is given by setting Equation (39) to

zero and written here in terms of er_ cot and 6zV, , as

£r' + ee' + ez' _ 0 (B-22)

By substituting the strain Equations (B-18) into the above, we observe that

F Ir k-l(l + k) + Fa(l - k) r -k-l -6 z ' 2A(I - k a) - - 0 (B-23)

If the test material is truly a homogeneous, incompressible material,

then Equation (B-23) must hold for any value of the radial coordinate r.

However, the only conditions which will satisfy Equation (B-23) for all

values of r are either

k - 1 and A - 0

- _2s= _s3 and _13
or

(B-24)

but these are the conditions for isotropy and/or transverse isotropy in the

r8 plane, respectively. Hence, only isotropic or transversely isotropic

_L_ plane) material can be incompressible; =_-I_ other _=_,=_us,......... trans-

versely isotropic (rz and ez planes) and anisotropic materials must be

compressible.

Under certain loading conditions, arteries behave as transversely

isotropic materials in the 8z plane, but this is no___ttthe condition for

incompressibility discussed above. Consequently, arteries are compressible

except for extremely small loading (below the physiological range) where

they behave isotropically.



APPENDIXC

COMMENTSON Bi-3 AND W

C.l CHECKSON THECOMPUTED_ii and W
It is often very helpful to be able to have an instant check of the

computed W's (strain energy) and _ij's (elastic constants) to eliminate

unnecessary computing if errors are present. Two such checks exist, one

for the B's and one for W1s.

The _'s can be quickly checked by observing whether reciprocity s

exists, that is, _ij = _ii'_ Since all nine _'s are calculated individu-

ally (see Table VI for sample output), this comparison is a convenient and

quick check. In the present work, if the _rs did not check within i0 per-

cent, the data were not considered admissible, and the W function was

re-evaluated.

It should be noted that reciprocity also exists for the _'s, as well

as the _'s.

The magnitude of the stored strain energy W for the unweighted

specimens can be evaluated by considering the work done by the air in dis-

tending the specimen. The isothermal work W a done on the gas inside the

artery can be expressed as

V

j 1Wa = - Pi dV

V
l

where the internal pressure Pi can be related to the internal volume

by the equation of state, that is

(C-l)

V,

l

PiVi = RoT i (C-2)

In this case, the pressure is absolute pressure and not gage pressure. By

substituting (C-2) into (C-l) and integrating, we find that W a is given

by

9The proof of reciprocity can be found in most elasticity texts (see Refs.

31, 33, or 34).
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or

Pi
W = -R T. in -- (C-3)

a o i Pl

Pi
Wa = -PiVi in Pl

If W a is the work done on the gas, then the stored strain energy is equal

to -W a the work done by the gas on the walls. However, since W is

given as the strain energy per unit volume, we must divide -W a by the

volume of the arterial wall V, which finally yields W. The value of the

W then should be given as

2
-Wa Pi a Pi

W = -- = in

V (b 2 _ a 2) Pl
(c-4)

where Pi is the internal pressure corresponding to the radii a and b,

and Pl is atmospheric pressure (14.7 psia).

This check of W is also presented in Table VI (noted as W (check))

for comparison with the value obtained from the W function curve fit.

Equation (C-4) offers only an approximate check because the errors involved

in measuring the pressures are too great to allow an accurate computation

of the logarithm. Therefore, if the value of W computed from (C-4) agreed

within an order of magnitude with the value computed from Equations (18),

the data were considered acceptable.

C.2 FINALIZED ELASTIC CONSTANTS

All of the finalized elastic constants presented herein were obtained

by averaging the _ij where reciprocity should exist; that is, since _12

should equal _al' an average value was used in their place. The net result

of this averaging is shown in Table VI. In general, the finalized moduli

and Poisson's ratio only changed by 1 to 2 percent from their values before

averaging.


