A LYAPUNOV METHOD FOR THE
ESTIMATION OF STATISTICAL AVERAGES


CENTER FOR DYNAMICAL SYSTEMS


## A LYAPUNOV METHOD

FOR THE
ESTIMATION OF STATISTICAL AVERAGES
W. M. WONHAM ${ }^{\dagger}$
$\dagger_{\text {This research was supported in part by the National Aeronautics }}$ and Space Administration under Grant No. NGR - 40-002-015, and in part by the United States Air Force through the Office of Scientific Research under Grant No. AF-AFOSR-693-65.

## A LYAPUNOV METHOD FOR THE ESTIMATION OF STATISTICAL AVERAGES

## 1. INTRODUCTION

We consider a randomly perturbed dynamical system described by the equation

$$
\begin{equation*}
d x / d t=f(x)+G(x) \xi(t), t \geqq 0 \tag{1}
\end{equation*}
$$

where $x, f$ are $n$-vectors, $G$ is an $n \times n$ matrix and $\xi(t)$ is n-dimensional Gaussian white noise. Such equations arise in control theory [1], and the theory of random vibrations [2]. In these applications it is of interest to know under what conditions the process

$$
X=\{x(t), t \geqq 0\}
$$

generated by (1) is stable, in the sense that $X$ admits a unique invariant probability distribution. If $X$ is stable then it is often desirable to estimate various stationary averages $\mathcal{E}[L(x)]$, when these averages exist.

In a previous paper [3] a criterion of Lyapunov type was given for stability in the sense described. In the present. note a Lyapunov criterion (Theorem 3.1) is obtained for the existence (finiteness) of the stationary average $\varepsilon\{L(x)\}$ where $L$ is an arbitrary nonnegative function. This result is applied to show that algebraic moments of all orders exist when, in (1), $G$ is bounded and the unperturbed system $d x / d t=f(x)$ is of Lur'e type.

The existence criterion is extended to yield an effective method of calculating an upper bound for $\varepsilon\{L(x)\}$ (Theorem 4.1). The method is illustrated by an example from control theory.

## 2. STATEMENT OF THE PROBLEM

We start with a precise version of (1), namely Itô's equation

$$
\begin{align*}
& d x(t)=f(x(t)) d t+G(x(t)) d w(t) \\
& t \geqq 0  \tag{2}\\
& x(0)=x_{0}
\end{align*}
$$

The following assumptions are made with respect to (2):
(i) $x, f$ are vectors in Euclidean $n$-space $E(n \geqq 2)$ and $G$ is an $\mathrm{n} \times \mathrm{n}$ matrix.
(ii) $\{w(t) ; t \geqq 0\}$ is a Wiener process in $E$
(iii) $x_{0}$ is a random variable independent of the process $w(t)$.
(iv) There is a constant $c>0$ such that

$$
|f(x)-f(y)|+|G(x)-G(y)|<c|x-y|
$$

for all $x, y \in E$. (here $|\cdot|$ denotes Euclidean norm of a vector or matrix.)
(v) There is a constant $\epsilon>0$ such that

$$
y^{\prime} G(x) G(x)^{\prime} y \geqq \epsilon|y|^{2}
$$

for all $x, y \in E$. (A prime denotes transpose of a vector or matrix).

Under these assumptions it is known (cf. [3]) that (2), interpreted in the sense of Itô, defines a continuous, strongly Feller process

$$
X=\{x(t), t \geqq 0\}
$$

The differential generator of X will be denoted by $\mathcal{L}$, where

$$
\begin{equation*}
\mathcal{L}[u(x)]=\frac{1}{2} \operatorname{tr}\left[G(x) G(x)^{\prime} u_{x x}(x)\right]+f(x)^{\prime} u_{x}(x) \tag{3}
\end{equation*}
$$

whenever the indicated derivatives exist. (In (3), $u_{x}$ is the vector of first partial derivatives of $u$ and $u_{x x}$ is the matrix of second partial derivatives).

In the following we shall always assume that $X$ is positive [4]. Under these conditions it is known [4] that there exists a unique invariant probability measure $\mu$ defined on the Borel sets $B \subset E$ : that is, if $P$ denotes probability measure on the paths of $X$, and if

$$
P\left(x_{0} \in B\right)=\mu(B)
$$

then

$$
P(x(t) \in B)=\mu(B), \quad t>0
$$

An effective criterion for positivity of X is given in [3].
Let $L(x) \geqq 0$ be Hölder continuous on the compact subsets of $E$. The main problem is to obtain a sufficient condition that

$$
\mathcal{E}\{L(x)\}=\int_{E} L(x) \mu(d x)
$$

be finite. Subsequently we shall describe a method for deriving an upper bound on $\mathcal{E}\{L(x)\}$.

In the following, the terms smooth, and normal domain, have the same meaning as in [3].
3. A CRITERION FOR EXISTENCE OF $\varepsilon\{(\mathrm{L}(\mathrm{x})\}$

A Lyapunov criterion for the existence of $\mathcal{E}\{L(x)\}$ can be derived by arguments very similar to those of [3] and [4]. The result is given
in Theorem 3.1. We start with some preliminary lemmas.
Let $D$ be a normal domain with boundary $\Gamma$, and let $\tau_{\Gamma}$ be the first time X hits $\Gamma$. Let $\varepsilon_{\mathrm{x}}$ denote expectation on the paths of X when $\mathrm{x}(0)=$ $=x \in E$. Since $X$ is positive, $\varepsilon_{X}\left(\tau_{\Gamma}\right)<\infty, x \in E-D$.

Lemma 3.1
Let

$$
u(x)=\varepsilon_{x}\left\{\int_{0}^{\tau^{r}} L[x(t)] d t\right\}
$$

If $u\left(x_{0}\right)<\infty$ for some point $x_{0} \in E-\bar{D}$ then $u(x)<\infty$ for all $x \in E-\bar{D}$.
Furthermore

$$
\begin{align*}
\mathcal{L}[u(x)] & =-L(x), x \in E-\bar{D} \\
u(x) & =0, x \in \Gamma . \tag{4}
\end{align*}
$$

Proof.
The proof closely follows that of Lemma 5.3 of [4]. Let $\left(D_{n} ; n=1,2, \ldots\right.$ ) be an increasing sequence of normal domains such that $D \subset D_{1}, x_{0} \in D_{1}-D$ and $\lim D_{n}=E(n \rightarrow \infty)$. Let $\tau_{n}$ be the first time $X$ hits the boundary $\Gamma \cup \Gamma_{n}$ of $D_{n}-D$, and define

$$
\begin{array}{ll}
u_{n}(x)=\varepsilon_{x}\left\{\int_{0}^{\tau_{n}} L[x(t)] d t\right\}, & x \in \bar{D}_{n}-D \\
u(x)=\varepsilon_{x}\left\{\int_{0}^{\tau_{n}} L[x(t)] d t\right\}, & x \in E-D .
\end{array}
$$

Since $X$ is positive (and hence, regular [4]) $\tau_{n} \uparrow \tau_{\Gamma}(n \rightarrow \infty)$ and therefore $u_{n}(x) \uparrow u(x)(n \rightarrow \infty)$. For fixed $m \geqq 1$

$$
\begin{equation*}
u(x)=u_{m}(x)+\sum_{n=m}^{\infty}\left[u_{n+1}(x)-u_{n}(x)\right], x \in \bar{D}_{m}-D \tag{5}
\end{equation*}
$$

with convergence at least for $x=x_{0}$. We now use the fact that $u_{n}(x)$ is the
unique smooth solution of

$$
\begin{aligned}
\mathcal{L}\left[u_{n}(x)\right] & =-L(x), x \in D_{n}-\bar{D} . \\
u_{n}(x) & =0, x \in \Gamma \cup \Gamma_{n} .
\end{aligned}
$$

(see e.g. [5], Ch. 5, §5). Let $v_{n}(x)=u_{n+1}(x)-u_{n}(x), x \in \bar{D}_{n}-$ D. Then $\mathcal{L}\left[v_{n}(x)\right]=0, x \in D_{n}-\bar{D}$ and (since $\left.u_{n}(x) \geqq 0\right) v_{n}(x) \geqq 0, x \in \Gamma \cup \Gamma_{n}$. By the maximum principle $v_{n}(x) \geqq 0, x \in D_{n}-\bar{D}$. It follows that all terms of the series (5) except the first are positive functions for which $\mathcal{L}[v(x)]=0$, and the series converges for $x=x_{0}$. From the generalized Harnack inequality [11] it follows that the series converges for all $x \in \bar{D}_{m}-D$ and $u(x)$ satisfies (4) for $x \in D_{m}-\bar{D}$. Since $m$ is arbitrary the result follows.

Lemma 3.2
A necessary and sufficient condition that

$$
\mathcal{E}\{L(x)\}<\infty
$$

is that

$$
\begin{equation*}
\varepsilon_{x}\left[\int_{0}^{\tau} \Gamma[x(t)] d t\right]<\infty, \quad x \in E . \tag{6}
\end{equation*}
$$

Proof.
We use the construction and notation of [4]. Let $D_{1}$ be a normal domain with boundary $\Gamma_{1}$ such that $D \subset D_{2}$ and $\Gamma \cap \Gamma_{1}=\varnothing$. Let $\tau$ denote the length of a cycle, namely, in obvious notation,

$$
\begin{gathered}
\tau=\min \left\{t: x(t) \in \Gamma \mid x(0) \in \Gamma \text { and } x(s) \in \Gamma_{1}\right. \text { for some } \\
s, 0<s<t\} .
\end{gathered}
$$

Let $\tilde{\mu}$ be the finite invariant measure (see [4]) induced on the Borel sets of $\Gamma$. Then if $K$ is an arbitrary compact subset of $E$ we have, within
a constant of normalization,

$$
\begin{equation*}
\mu(K)=\int_{\Gamma} \tilde{\mu}(d x) E_{x}\left\{\tau^{K}\right\} \tag{7}
\end{equation*}
$$

where $\tau^{K}=\operatorname{meas}\{t: 0 \leqq t \leqq \tau, x(t) \in K\}$.
Let $L_{n}(x)$ be an increasing sequence of simple functions (constructed on compact sets) such that $L_{n}(x)=O(|x|>n)$ and $L_{n}(x) \uparrow L(x)(n \rightarrow \infty)$. From (7)

$$
\begin{array}{r}
\int_{E} \mu(d x) L_{n}(x)=\int_{\Gamma} \tilde{\mu}(d x) \varepsilon_{x}\left\{\int_{0}^{\tau} L_{n}[x(t)] d t\right\}, \\
n=1,2, \ldots ;
\end{array}
$$

and by monotone convergence

$$
\begin{equation*}
\varepsilon\{I(x)\}=\int_{\Gamma} \tilde{\mu}(d x) \varepsilon_{x}\left\{\int_{0}^{\tau} L[x(t)] d t\right\} . \tag{8}
\end{equation*}
$$

Let $\tau_{1}=\min \left\{t: x(t) \in \Gamma_{1} \mid x(0) \in \Gamma\right\}$. By the strong Markov property

$$
\left.\varepsilon_{x}\left\{\int_{0}^{\tau} L[x(t)] d t\right\}=\varepsilon_{x}\left[\int_{0}^{\tau_{1}} L[x(t)] d t\right\}+\varepsilon_{x}\left\{\varepsilon_{x\left(\tau_{1}\right.}\left\{\int_{0}^{\tau} \Gamma_{L} L x(t)\right] d t\right\}\right\}
$$

$$
\begin{equation*}
x \in \Gamma . \tag{9}
\end{equation*}
$$

Since $\bar{D}_{1}$ is compact the first expectation on the right side of (9) is bounded for $x \in \Gamma$. If

$$
u(y)=\varepsilon_{y}\left\{\int_{0}^{\tau} \Gamma[x(t)] d t\right\}<\infty, \quad y \in \Gamma_{1},
$$

then, by Lemma 3.1, $u(y)$ is smooth, and therefore bounded on $\Gamma_{1}$. By the strong Feller property, $\varepsilon_{x}\left\{u\left[x\left(\tau_{1}\right)\right]\right\}$ is continuous, hence bounded on $\Gamma$; it follows from (8) that $\mathcal{E}\{L(x)\}<\infty$.

Conversely if (6) fails for some $x \in E-D$ then by Lemma 3.1 (6) fails for all $x \in E-D$, and by (8) and (9), $\varepsilon\{L(x)\}=\infty$.

Lemma 3.3
If the equation

$$
\mathcal{L}[v(x)]=-L(x), x \in E-\bar{D}
$$

has a smooth positive solution $v(x)$ in $E-D$
then

$$
\varepsilon_{x}\left\{\int_{0}^{\tau} \Gamma[x(t)] d t\right\}<\infty
$$

Proof
Let $\left\{D_{n} ; n=1,2 ; \ldots\right\}$ be a sequence of normal domains constructed as in the proof of Lemma 3.1, and let $u_{n}(x)$ be the corresponding sequence of smooth functions such that

$$
\begin{aligned}
\mathcal{L}\left[u_{n}(x)\right] & =-L(x), x \in D_{n^{-}} \bar{D} \\
u_{n}(x) & =0, x \in \Gamma \cup \Gamma_{n}
\end{aligned}
$$

Since $\mathcal{L}\left[v(x)-u_{n}(x)\right]=0, x \in D_{n}-\bar{D}$, and $v(x)-u_{n}(x) \geqq 0, x \in \Gamma \cup \Gamma_{n}$, we have $u_{n}(x) \leqq v(x), x \in \bar{D}_{n}-D$; therefore

$$
\begin{aligned}
\varepsilon_{x}\left\{\int_{0}^{\tau} \Gamma_{I[x(t)] d t\}}\right. & =\lim u_{n}(x) \\
& \leqq v(x), x \in E .
\end{aligned}
$$

This completes the proof.
Before stating Theorem 3.1 we introduce a class of real-valued functions $V$, analogous to Lyapunov functions, with the following properties.
$P_{1}: V$ is defined for $x \in \bar{D}_{v}$ where

$$
D_{v}=\{x:|x|>R\} \quad(R<\infty \text { is arbitrary })
$$

$P_{2}: V$ is continuous in $\bar{D}_{v}$ and is twice continuously differentiable in $D_{v}$. $P_{3}: V(x) \rightarrow+\infty$ as $|x| \rightarrow \infty$.

Theorem 3.1
Let $X$ be positive. If there exists a function $V$ with properties $\mathrm{P}_{1}-\mathrm{P}_{3}$ and if

$$
\mathcal{L}[V(x)] \leqq-L(x), x \in D_{v}
$$

then

$$
\mathfrak{E}\{L(x)\}<\infty .
$$

We remark that if $X$ is positive and $L(x)$ is bounded then $\mathcal{E}\{I(x)\}$ is obviously finite. If $L(x)$ is bounded away from zero for $x \in D_{v}$ then, by Theorem 2 of [3], the existence of $V$ already implies that $X$ is positive. Proof

By Lemmas 3.2 and 3.3 we have that $\mathcal{E}\{L(x)\}<\infty$ if and only if there exists a normal domain $D$ such that the equation

$$
\begin{equation*}
\mathcal{L}[u(x)]=-L(x) \tag{10}
\end{equation*}
$$

has a smooth positive solution $u(x)$ defined for $x \in E-D$. Let $D=E-\bar{D}_{v}$ and define a sequence $\left\{D_{n}\right\}$ of normal domains as in the proof of Lemma 3.1. The remainder of the proof follows that of Lemma 3.3, with $v(x)$ replaced by $V(x)$. By adding a constant to $V$ if necessary we can arrange that $V(x) \geqq 0, x \in \bar{D}_{V}$. If $\mathcal{L}\left[u_{n}(x)\right]=-L(x)\left(x \in D_{n}-\bar{D}\right), u_{n}(x)=0\left(x \in \Gamma \cup \Gamma_{n}\right)$, then $0 \leqq u_{n}(x) \leqq u_{n+1}(x) \leqq V(x), x \in \bar{D}_{n}-D$. It follows by a compactness theorem ([6]p.344) that $\lim u_{n}(x)$ exists and is a solution of (10) for $x \in E-\bar{D}$.

Remark. The proof of Theorem 3.1 remains unchanged if property $P_{3}$ of $V$ is replaced by

$$
P_{3}^{\prime}: V(x) \geqq 0, x \in \bar{D}_{V} .
$$

4. ESTIMATION OF $\mathcal{E}\{\mathrm{L}(\mathrm{x})\}$.

In this section we assume that $\mathcal{E}\{(\mathrm{L}(\mathrm{x})\}<\infty$ and derive an upper bound for this quantity. The result is given in Theorem 4.1.

For $x \in E$ and $t>0$ define

$$
u(t, x)=\varepsilon_{x}\left[\int_{0}^{t} L[x(s)] d s\right]
$$

Lerma 4.1

$$
\text { If } \varepsilon\{\mathrm{L}(\mathrm{x})\}<\infty \text { then } u(\mathrm{t}, \mathrm{x})<\infty \text { for } \mathrm{a} 11 \mathrm{t} ~>0, \mathrm{x} \in \mathrm{E} \text {. }
$$

Proof.
We use the notation and construction of the proof of Lemma 3.2 and assume $x \in \Gamma$. If $\tau$ is the length of a cycle which starts at $x$ then (cf. (9))

$$
\varepsilon_{x}\left\{\int_{0}^{\tau} L[x(s)] d s\right\}
$$

is bounded for $x \in \Gamma$. With $t<\infty$ and fixed, let $v(x)$ denote the number of complete cycles which occur in the interval $[0, t)$ when $x(0)=x \in \Gamma$. Obviousiy $u(t, x)<\infty$ if $\mathcal{E}_{\mathrm{x}}\{\nu(\mathrm{x})\}<\infty . \operatorname{Let} \rho=\min \left\{|\mathrm{x}-\mathrm{y}|: \mathrm{x} \in \Gamma, \mathrm{y} \in \Gamma_{\mathrm{l}}\right\}$. By our assumptions, $\rho>0$; and if $\epsilon>0$

$$
\begin{aligned}
P_{x}\{\tau<\epsilon\} & \leqq P_{x}\left(\max _{0 \leq s \leq \epsilon}|x(s)-x| \geqq \rho\right\} \\
& =0(\epsilon 3 / 2) \text { as } \epsilon \rightarrow 0,
\end{aligned}
$$

uniformly for $x \in \Gamma$. (The last estimate can be derived as in [7],VI,§ 3.). Consider a chain of $n$ cycles starting at $x$ with lengths $\tau_{1}, \ldots, \tau_{n}$. By the strong Markov property

$$
P_{x}\{v(x)=n\} \leqq P_{x}\left\{\tau_{1}+\ldots+\tau_{n}<t\right\}
$$

$$
\leqq\left[\sup _{x \in \Gamma} P_{x}[\tau<t\}\right]^{n} \leqq\left(c t^{3 / 2}\right)^{n}
$$

where $c$ is independent of $t$, and $t>0$ is sufficiently small. Therefore $\sup \left[\mathcal{E}_{\mathrm{x}}\{\nu(\mathrm{x})\}: \mathrm{x} \in \Gamma\right\}<\infty$ for some $\mathrm{t}>0$, hence (by continuation over a finite number of subintervals) for every $t>0$.

## Lemma 4.2

$$
\begin{align*}
& \text { If } \varepsilon\{L(x)\}<\infty \text { then } \\
& \varepsilon\{L(x)\}=\lim _{t \rightarrow \infty} t^{-1} u(t, x) \tag{11}
\end{align*}
$$

Proof
Let $L_{n}(x)(n=1,2, \ldots)$ be a sequence of nonnegative simple functions such that $L_{n}(x) \uparrow L(x)(n \rightarrow \infty)$ and $L_{n}(x)=0,|x|>n$. By the corollary to Theorem 3.1 of [4],

$$
\begin{align*}
\lim _{n \rightarrow \infty} \lim _{t \rightarrow \infty} t^{-1} \varepsilon_{x}\left\{\int_{0}^{t_{n}}\right. & \left.L_{n}[x(s)] d s\right\} \\
& =\lim _{n \rightarrow \infty} \varepsilon\left\{L_{n}(x)\right\} \\
& =\varepsilon\{L(x)\} \tag{12}
\end{align*}
$$

Let $P(t, x, B)$ be the transition function of $X$. If $\mu$ is the invariant measure of $X$ then, by repeated applications of Fubini's Theorem,

$$
\begin{aligned}
\varepsilon & \left\{\varepsilon_{x}\left\{t^{-1} \int_{0}^{t} L_{n}[x(s)] d s\right\}\right\} \\
& =\int_{E} \mu(d x) t^{-1} \int_{0}^{t} \int_{E} P(s, x, d y) L_{n}(y) d s \\
& =t^{-1} \int_{0}^{t} \int_{E} \mu(d y) L_{n}(y) d s \\
& =\varepsilon\left\{L_{n}(x)\right\}
\end{aligned}
$$

Passing to the limit ( $n \rightarrow \infty$ ) we have by monotone convergence

$$
\begin{equation*}
\varepsilon\left\{t^{-1} u(t, x)\right\}=\varepsilon\{L(x)\} \tag{13}
\end{equation*}
$$

Now let $X_{n}(x)=1,|x| \geqq n ;=0$, otherwise. Suppose that for some $\epsilon>0$ there exists a sequence $t_{v} \uparrow \infty$ and a subsequence $n(v)$ of positive integers such that

$$
\begin{equation*}
\varepsilon_{x}\left\{t_{v}^{-1} \int_{0}^{t} v_{x_{n(v)}}[x(s)] L[x(s)] d s\right\}>\epsilon, v=1,2, \ldots \tag{14}
\end{equation*}
$$

From (13) and (14) it follows that

$$
\varepsilon\left\{X_{n(v)}(x) L(x)\right\}>\epsilon, v=1,2, \ldots,
$$

which contradicts the fact that $\mathcal{E}[L(x)]<\infty$. Hence for each fixed $\mathbf{x} \in E$,

$$
\varepsilon_{x}\left\{t^{-1} \int_{0}^{t} L_{n}[x(s)] d s\right\} \rightarrow \varepsilon_{x}\left\{t^{-1} \int_{0}^{t} L[x(s)] d s\right\}
$$

as $n \rightarrow \infty$, uniformly in $t$ for $t$ sufficiently large. We can therefore interchange limits in the left side of (12), and the result (11) follows by monotone convergence.

We consider functions $V$ with properties $\bar{P}_{1}-\bar{P}_{3}$, where these differ from properties $P_{1}-P_{3}$ of section 3 only in that now we require $D_{v}=E$.

Theorem 4.1
Let $X$ be positive. If there exist a function $V$ with properties $\bar{P}_{1}-\bar{P}_{3}$ and a positive constant $k$ such that

$$
\mathcal{L}[V(x)] \leqq k-L(x), x \in E,
$$

then

$$
\mathcal{E}\{L(x)\} \leqq k
$$

Proof
We first show that $\mathcal{E}\{I(x)\}<\infty$. Indeed if $D$ is a normal domain with boundary $\Gamma$ and if $v(x)=\mathcal{E}_{x}\left\{\tau_{\Gamma}\right\}$ then $\mathscr{L}[v(x)]=-1 \quad(x \in E-D)$ and $v(x)=O(x \in \Gamma)$. It follows that the function $V(x)+k v(x)$ satisfies the conditions of Theorem 3.1.

Let $D_{n}=\{x:|x|<n\}$ and put $\tau_{n}=\min \{t:|x(t)|=n \mid x(0)=$ $\left.=x \in D_{n}\right\}$. Let $t_{n}=\min \left(t, \tau_{n}\right)$ and define

$$
u_{n}(t, x)=\varepsilon_{x}\left\{\int_{0}^{t} n_{L[x(s)] d s\}}\right.
$$

$t>0, x \in D_{n}(n=1,2, \ldots)$. Since $\tau_{n} \uparrow \infty(n \rightarrow \infty)$ we have $u_{n}(t, x) \uparrow u(t, x)$. We now use the fact that $u_{n}(t, x)$ is the unique smooth solution of the problem

$$
\begin{aligned}
& \mathcal{L}\left[u_{n}(t, x)\right]-\partial u_{n}(t, x) / \partial t=-L(x), \\
& u_{n}(0, x)=0, x \in D_{n} \\
& u_{n}(t, x)=0, t>0,|x|=n
\end{aligned}
$$

(see e.g.[5], Ch. 5). We can assume that $V(x) \geqq 0, x \in E$. If $W_{n}(t, x)=$ $=k t+v(x)-u_{n}(t, x)\left(t \geqq 0, x \in \bar{D}_{n}\right)$ then

$$
\mathscr{L}\left[W_{n}(t, x)\right]-\partial W_{n}(t, x) / \partial t \leqq 0
$$

$W_{n}(0, x) \geqq 0$; and $W_{n}(t, x) \geqq 0,|x|=n$. By the maximum priciple for parabolic equations $W_{n}(t, x) \geqq 0\left(t \geqq 0, x \in \bar{D}_{n}\right)$; that is $u_{n}(t, x) \leqq k t+V(x)$; hence

$$
u(t, x) \leqq k t+v(x), t \geqq 0, x \in E .
$$

The result now follows from Lemma 4.2.

## 5. APPLICATIONS

## EXAMPLE 1

Let X satisfy the Itô equation

$$
\begin{align*}
\mathrm{dx} & =\mathrm{Fxdt}-\mathrm{b} \phi(\sigma) \mathrm{dt}+\mathrm{G}(\mathrm{x}) \mathrm{dw} \\
\sigma & =\mathrm{c}^{\prime} \mathrm{x} \tag{15}
\end{align*}
$$

In (15), F is a constant matrix, b and c are constant $n$-vectors, and $\phi$ is a scalar-valued, in general nonlinear, function of $\sigma$. The non-stochastic differential equation, obtained from (15) by setting $G=0$, has been studied extensively in connection with the Lur' e problem [8].

Theorem 5.1
Let the system (15) satisfy the following conditions:
(i) All the eigenvalues of $F$ have negative real parts
(ii) $\sigma \phi(\sigma)>0$ for all $|\sigma|$ sufficiently large; $\phi(\sigma)$ is continuously differentiable; and $d \phi(\sigma) / \mathrm{d} \sigma$ is bounded $(-\infty<\sigma<\infty)$.
(iii) There exist two nonnegative constants $\alpha$ and $\beta$ such that
$\alpha+\beta>0$
and

$$
\operatorname{Re}(\alpha+i \mu \beta) c^{\prime}(i \omega I-F)^{-1} b>0
$$

for all real $\omega$.
(iv) $G(x)$ satisfies the conditions of section 2 and, in addition,
$|G(x)|$ is bounded for $x \in E$.
Then $X$ is positive and

$$
\varepsilon\left\{|x|^{v}\right\}<\infty
$$

for every $v>0$.

Proof.
The positivity of X was proved in [3]. To satisfy the conditions of Theorem 3.1 we introduce a function $\tilde{V}(x)$ of the form

$$
c^{\prime} x
$$

$$
\tilde{\mathrm{V}}(\mathrm{x})=\mathrm{x}^{\prime} P \mathrm{x}+\beta \int_{0} \varphi(\sigma) \mathrm{d} \sigma
$$

and define

$$
V(x)=\exp (\gamma \tilde{V}(x))
$$

where $\gamma>0$ will be chosen later. By a result of Meyer [9] there exist positive definite matrices $P$ and $Q$ such that

$$
\begin{equation*}
\left[F x-b \Phi\left(c^{\prime} x\right)\right]^{\prime} \tilde{V}_{x}(x) \leqq-x^{\prime} Q x \tag{16}
\end{equation*}
$$

for all $|x|$ sufficiently large. Moreover

$$
\begin{align*}
\frac{1}{2} \operatorname{tr}[G(x) G(x) & \left.\tilde{V}_{x x}(x)\right] \\
& =\operatorname{tr}\left[G(x) G(x)^{\prime} P\right]+\frac{1}{2} \beta\left|G(x)^{\prime} c\right|^{2} d \Phi\left(c^{\prime} x\right) / d \sigma \tag{17}
\end{align*}
$$

Since the right side of (17) is bounded it follows on adding (16) and (17) that, for arbitrary $\delta>0$,

$$
\begin{equation*}
\mathcal{L}[\tilde{v}(x)] \leqq-(1-\delta) x^{\prime} Q x \tag{18}
\end{equation*}
$$

for all $|x|$ sufficiently large. Let $\delta \epsilon(0,1)$ be fixed. Now

$$
\begin{align*}
\exp (-r \tilde{\mathrm{~V}}(x)) \mathcal{L}[ & {[\mathrm{V}(x)] } \\
& =r \mathscr{L}[\widetilde{\mathrm{~V}}(x)]+\frac{1}{2} r^{2}\left|G(x)^{\prime} \tilde{\mathrm{V}}_{\mathrm{x}}(\mathrm{x})\right|^{2} \\
& =r \mathscr{L}[\tilde{\mathrm{~V}}(x)]+\frac{1}{2} r^{2}\left|G(x)^{\prime}\left[2 P x+\beta \phi\left(c^{\prime} x\right) c\right]\right|^{2} \\
& \leqq-r(1-\delta) x^{\prime} Q x+r^{2} x^{\prime} R x \tag{19}
\end{align*}
$$

for some positive definite constant matrix R. Since $Q$ is positive definite the matrix ( $1-\delta$ ) $Q-\gamma R$ is positive definite for $\gamma>0$ sufficiently small.

Then, for $|x|$ sufficiently large

$$
\begin{aligned}
\mathcal{L}[V(x)] & \leqq-\exp (r \tilde{V}(x)) \\
& \leqq-|x|^{\nu}
\end{aligned}
$$

The result now follows by Theorem 3.1.

Remark.
It is clear from the proof that, under the conditions of Theorem 5.1, $\varepsilon\{L(x)\}<\infty$ provided

$$
L(x)=O\left[\exp \left(\theta|x|^{2}\right)\right] \quad(|x| \rightarrow \infty)
$$

for $\theta>0$ sufficiently small.
EXAMPLE 2
We shall illustrate the application of Theorem 4.1 to the analysis of a simple control system. Suppose

$$
\begin{align*}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{2}-\psi\left(x_{1}+x_{2}\right) \tag{20}
\end{align*}
$$

where

$$
\psi(y)=\left\{\begin{array}{l}
1, y \leqq 1 \\
y,|y| \leqq 1 \\
-1, y \leqq-1
\end{array}\right.
$$

The null solution $x_{1}=x_{2}=0$ is asymptotically stable. If the system is perturbed by Gaussian white noise it is of interest to estimate the mean square error $\varepsilon\left\{x_{1}^{2}\right\}$. The prior verification that $X$ is positive will be omitted. Introducing perturbation terms and making the change of variables
$\mathrm{x}_{1}=\mathrm{x}, \mathrm{x}_{1}+\mathrm{x}_{2}=\mathrm{y}$, we obtain

$$
\begin{align*}
& d x=-(x-y) d t+a_{11} d w_{1}+a_{12} d w_{2} \\
& d y=-\psi(y) d t+a_{21} d w_{1}+a_{22} d w_{2} \tag{21}
\end{align*}
$$

where $w_{1}, w_{2}$ are independent l-dimensional Wiener processes and the coefficients $a_{i j}$ are constants. The differential generator of the ( $x, y$ ) process is

$$
\mathcal{L}[u]=A u_{x x}+2 B u_{x y}+C u_{y y}-(x-y) u_{x}-\psi(y) u_{y}
$$

where

$$
\begin{aligned}
& A=\left(a_{11}^{2}+a_{12}^{2}\right) / 2 \\
& B=\left(a_{11} a_{21}+a_{12} a_{22}\right) / 2 \\
& C=\left(a_{21}^{2}+a_{22}^{2}\right) / 2
\end{aligned}
$$

To satisfy condition (v) of section 2 we assume that $a_{11} a_{22}-a_{12} a_{21} \neq 0$; in applications such a restriction is clearly not significant. To estimate $\mathcal{E}\left\{x^{2}\right\}$ we try to construct a positive function $V(x, y)$ with continuous second derivatives such that

$$
\mathcal{L}[V(x, y)] \leqq k-x^{2} \quad(x, y \in E)
$$

for some positive constant k. As a first step we assume that the perturbation terms are absent from (21) and evaluate

$$
V^{\infty}(x, y)=\int_{0}^{\infty} x(t)^{2} d t \quad(x(0)=x, y(0)=y)
$$

The result is

$$
\begin{align*}
\mathrm{V}^{0}(\mathrm{x}, \mathrm{y})= & \mathrm{x}^{2} / 2+\mathrm{xy} / 2+\mathrm{y}^{2} / 4,|\mathrm{y}| \leqq 1 \\
= & \mathrm{x}^{2} / 2-\mathrm{x}+\mathrm{xy}-\mathrm{y}^{2} / 2+\mathrm{y}^{3} / 3 \\
& +\mathrm{e}^{1-\mathrm{y}}(\mathrm{x}-\mathrm{y}-1) / 2+17 / 12, \quad \mathrm{y} \geqq 1 \\
= & \mathrm{V}^{0}(-\mathrm{x},-\mathrm{y}), \mathrm{y} \leqq-1 . \tag{22}
\end{align*}
$$

From (22) we find that $\mathrm{V}_{\mathrm{xx}}^{\circ}, \mathrm{V}_{\mathrm{xy}}^{\circ}$ are continuous, but

$$
v_{\mathrm{yy}}^{\bullet}(\mathrm{x}, 1-0)=1 / 2, \quad v_{\mathrm{yy}}^{\circ}(\mathrm{x}, 1+0)=1+\mathrm{x} / 2 .
$$

To achieve the required smoothness replace $\mathrm{V}^{\circ}$ by $\mathrm{V}^{\mathrm{l}}$, where

$$
\begin{align*}
& v^{1}(x, y)=v^{0}(x, y)-(1 / 4)(1+x)(y-1)^{2} e^{-\alpha(y-1)}, \\
& y \geqq 1 \\
&=v^{0}(x, y),|y| \leqq 1 \\
&=v^{1}(-x,-y), y \leqq-1 \tag{23}
\end{align*}
$$

where $\alpha>0$ is arbitrarily large. From (23),

$$
\mathscr{L}\left[v_{1}\right] \sim 2 c|y|-x^{2} \quad(|x| \rightarrow \infty,|y| \rightarrow \infty)
$$

To cancel the term $2 c|y|$ for large $|y|$, define

$$
\begin{aligned}
\mathrm{v}^{(2)}(\mathrm{x}, \mathrm{y})= & \mathrm{v}^{1}(\mathrm{x}, \mathrm{y})+C(|y|-1)^{2} \exp \left[-\beta(|y|-1)^{-1}\right] \\
& |y| \geqq 1 \\
& =\mathrm{V}^{0}(\mathrm{x}, \mathrm{y}),|\mathrm{y}| \leqq 1
\end{aligned}
$$

where $\beta>0$ is arbitrarily small. Finally, let

$$
v(x, y)=(I+r) v^{(2)}(x, y)
$$

where $r>0$ will be chosen later. Then

$$
\begin{equation*}
\mathcal{L}[V(x, y)] \leqq K-x^{2} \quad(x, y \in E) \tag{24}
\end{equation*}
$$

if $K$ is sufficiently large. By straightforward estimation of the individual terms of $\mathscr{L}[V]$ we can obtain a value $k_{\gamma}$ of $K$ for which (24) is true; we then choose

$$
k=\min \left\{k_{\gamma}: r>0\right\}
$$

Carrying out the estimates for $|y| \leqq 1$ and $|y| \geqq 1$ separately, we find

$$
\varepsilon\left\{x^{2}\right\}<\max \left(k^{\prime}, k^{\prime \prime}\right)
$$

where

$$
\begin{aligned}
& \mathrm{k}^{\prime}=(\mathrm{A}+\mathrm{B}+\mathrm{C} / 2)\left[1+\mathrm{C}\left(9 C^{2}+4 D\right)^{-\frac{1}{2}}\right] \\
& \mathrm{k}^{\prime \prime}=(5 / 2) \mathrm{C}^{2}+\mathrm{D}+(\mathrm{C} / 2)\left(9 C^{2}+4 D\right)^{\frac{1}{2}}
\end{aligned}
$$

and

$$
D=A+2 B+|B|+3 C / 2
$$

To obtain a rough idea of how conservative the bound may be in this case, suppose that $A \simeq 0, B \simeq 0, C \rightarrow \infty$. Then

$$
\begin{equation*}
\varepsilon\left\{x^{2}\right\}<k^{\prime \prime} \sim 4 c^{2} \tag{25}
\end{equation*}
$$

Analysis of the system (21) based on 'statistical linearization' [10] of the nonlinear function $\psi$ yields

$$
\begin{equation*}
\varepsilon\left[x^{2}\right\} \simeq(\pi / 2) c^{2} \quad(c \rightarrow \infty) \tag{26}
\end{equation*}
$$

The qualitative agreement between the results (25) and (26) is due to the special choice of the function $V_{0}$. We should emphasize that the upper bound (25) was derived rigorously; the estimate (26), although probably reliable, was obtained by a heuristic procedure.
[1] Wonham, W. M., Stochastic Problems in Optimal Control, RIAS TR 63-14, May, 1963.
[2] Crandall, S. H. (ed.), Random Vibration, vol. 2, M.I.T. Press, 1963.
[3] Wonham, W. M., Lyapunov criteria for weak stochastic stability, to appear.
[4] Khas'minskii, R. Z., Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations, Th. of Prob. and its Appl., 5(2), 1960, pp. 173-196.
[5] Dynkin, E. B., Markov Processes, Academic Press, 1965.
[6] Courant, R. and Hilbert, D., Methods of Mathematical Physics, vol. 2, Interscience, 1962.
[7] Doob, J. L., Stochastic Processes, Wiley, 1953.
[8] Aizermann, M. A. and Gantmacher, F. R., Absolute Stability of Regulator Systems, Holden-Day, 1964.
[9] Meyer, K. R., On the existence of Liapunov functions for the problem of Lur'e, J. SIAM, Series A: Control (to appear).
[10] Booton, R. C., Nonlinear control systems with random inputs, Trans .IRE CT-1, 1954, pp. 9-18.
[ll] Serrin, J. On the Harnack inequality for linear elliptic equations, J. Anal. Math. 4, 1954-56, pp. 292-308.

