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ABSTRACT 

A general approach to the analysis of planar flight dynamic-stability 
investigations is presented and examples are used to discuss the 
approach. The foundation of the approach is the energy-integral equa- 
tion which relates the energy defect during a half cycle, due to the 
decay, to those factors causing the decay. The equation can accom- 
modate nonlinear aerodynamics, large oscillatory amplitudes, non- 
symmetric or lifting bodies, and noncontinuous or double-valued 
aerodynamic coefficients. Examples are presented demonstrating these 
applications. In addition, this Report also suggests that the usual closed- 
form differential solution may not be properly representing all physi- 
cal mechanisms producing decay because of the continuous nature 
of its formulation. 

~ 

~ 
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1. INTRODUCTION 

Traditionally, in the formulation of equations used to 
extract dynamic-stability data from experimental free- 
flight information or to predict the decay, the dynamic 
motion is expressed as a solvable differential equation 
and a closed-form solution is obtained for a time interval 
of at least one decay measurement, a half cycle. In order 
to obtain this solution the theoretical model used must 
be the same for each differential element in the half-cycle 
interval. In essence this is a “microscopic” approach since 
the whole decay picture is built up from a single differ- 
ential element. Unfortunately, it has limited application 
for cases of nonlinear aerodynamics, large amplitude mo- 
tion, and, particularly, cases where the aerodynamic co- 
efficients are double-valued functions of the angle of 
attack. Employing this differential approach, the flight 
equations have been developed, in detail, by Nicolaides 
(Ref. l), Murphy (Ref. 2), and others. For reference, the 

planar motion solution of the angle of attack, a, using 
this approach and assuming first-order linear aerody- 
namics and small angles of attack, is 

CnIa + h’]”* x} (1) 

where 

An alternate, far more flexible method is one where 
the energy defect over a half cycle, as determined from 
the amplitude decay, is accounted for in an energy-integral 
equation, i.e., the energy defect due to the decay is ac- 
counted for “macroscopically.” With this approach the 

1 
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general nonlinear case can be considered and theoretical 
dynamic-stability models previously too difficult or im- 
possible to explore can be investigated. It should be 
pointed out that the analytic development contained in 

this Report is for planar motion; the general nonplanar 
case was not considered, It is felt, however, that with 
judicious approximations the method can be extended to 
include nonplanar motion. 

II. ENERGY-INTEGRAL EQUATIONS 

The summation of moments for a body oscillating in a 
plane* is 

.. 
Moments = I = 

2 pVzAd (.- + Cmy [$] + C,, [$I} 
(2) 

If the independent variable is changed from time to 
translational distance, X, the above equation becomes 

#’ jp  + # X  = 

pV2Ad { [#?I + Cmd [a’?]} - Crn + C m I ,  - 21 

(3)  
The angle between the velocity vector and the X axis, 
[ 6- a], is extremely small. For a very large class of prob- 
lems, particularly in the supersonic regime, it is less than 
one-half of a degree. It is assumed, therefore, that a small 
angle approximation for [e-a] is valid and that 

X = Vcos [e -a ]  = V ( 4 4  

(4b) 

(4c) 

( 4 4  

Z = -Vsin [e -a ]  = -V [e -a ]  = -X  [e-a]  

Force in X direction = -drag + mg, 

Force in Z direction = -Lift + mgz 

Applying approximation Eq. (4a)  to Eq. ( 3 )  and sepa- 
rating a‘ into 8’ and [a’-@‘], Eq. ( 3 )  becomes 

Ad #’ = P { C m  + [C,,, + C,,,] -dd + C m ,  [a’ - o f ]  d }  

(5 )  
X 

- - - -d  XL 

*Symbol definitions are included in the Nomenclature; sign con- 
ventions are shown in Fig. 1. 

2 

The static pitching moment is a particular function of a, 
C, = C,(a),** while Cln,l and Cn16 are arbitrary func- 
tions. By expanding C,(a) in a Taylor series, it can be 
expressed as a function of 8 and [a-e] .  

dCm(e) 
C,(a) = C,,(e) + [a-01 - de 

[a-e] ’  d’C (e )  
2 !  de2 

+ - nl + ... 

Since [a-e]  is extremely small, and for most physically 
realistic situations the higher-order derivatives of C, re- 
main moderate, the first two terms of the series will yield 
Cm(a) plus a negligible error. Using the first two terms 
then, Eq. ( 5 )  becomes 

2 1  x + C,, [a’ - # ]  d - pAd 
e’} 

(7) 

**In this Report, the parenthesis, ( ), is used to denote a func- 
tional relationship only, with the exception that it may also be 
used for limits of integration. 

Fig. 1. Sign conventions 
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Multiplying through by 4 and integrating from the initial 
amplitude of oscillation, eo, to the amplitude after a half 
cycle, - ( B o  -SO), Eq. (7)  becomes 

I + [CmP + Cm&] Y d  + C,,, [a’ - @‘I d 

-- 2z x ~ } d o  
pAd 5 

At the amplitudes, Y is zero; therefore, the left side of 
the equation is equal to zero. This, in effect, is saying that 
there is a conservation of energy. In order to integrate 
the right side of Eq. (S), [a  - e ] ,  [a’ - @‘I, X/X2, and Y 
must be presented explicitly as functions of e. 
From Eq. (4c) and (4d), 

(9) 

l and 

where C, and C, are, as denoted, functions of a. 
From Eq. (4b) and (9), 

.. I Z =  - X [ e - a ]  - X [ 2 , - & ]  

(10) 

Combining Eq. (10) and (ll), 

The second term on the right side of the equation is 
about two orders of magnitude smaller than the first and 
will be neglected. [a-e]  at any 6 can be obtained by a 
direct integration of Eq. (12): 

Combining Eq. (9), (12), and (13) with Eq. (8), we have 

To this point in the development, the only assumption 
employed was that the angle [ a  - e]  was small. However, 
further assumptions are required in order to solve actual 
problems, as follows: 

1. The lift and drag coefficients are assumed to be func- 
tions of e directly, 

CL(a) = c,(e) (15) 

Cl,(a) = C,(e) ( 16) 

In effect, this assumption says that the second terms 
in the Taylor-series expansions of lift and drag (see 
Eq. 6) will have a negligible influence on the solu- 
tion of Eq. (14). In general, the lift and drag are 
second-order terms; a small error in them will lead 
to a negligible error in the final solution. For most 
physically probable situations, this error will be less 
than one-half of one percent. 

2. The angular rate, @‘, is assumed to be a function only 
of the static pitching moment. The validity of this 
assumption can be seen from an inspection of the 
differential solution, Eq. (1). Aside from the static 
pitching moment, the only other term that affects the 
angular rate is the decay factor, A. It enters into the 
frequency term, -pAdC,,,./21 + h2, and modifies 
the amplitude which is proportional to @‘. In general 
this effect is small and can be neglected. From Eq. 
(6) and (131, 

L 

The proper sign to use can be obtained by differ- 
entiating Eq. (1). In the examples presented later, a 
positive initial amplitude will be assumed; corre- 
spondingly, the negative sign will be used. In gen- 
eral, the second term in the integral is negligible and 
can be neglected. If, however, it becomes important, 
this second term can be included by a process of 

3 
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iteration, i.e., obtain the first order tY from Eq. (17), 
excluding the second term, and evaluate [ a  - e] from 
Eq. (13) with this 8'. The results of Eq. (13) are then 
used to obtain a new 0' and the process is repeated 
until sufficient accuracy is obtained. 

3. The X2 terms in the gravity expressions will be as- 
sumed constant; either the initial velocity V, or some 
mean value for the integration can be used. Again, 
in general, gravity has a second-order effect and this 
assumption will result in a very small error. 

Combining these assumptions into Eq. (14), reversing 
the limits of integration, splitting the C,,(O) integral, and 
multiplying through by [2m/pA], Eq. (14) becomes 

Equation (18) is the basic energy-integral equation. The 
formulation of this equation was originally presented in 
Ref. (3). 

The first integral, quantitatively, is the Total Energy 
Defect. When there is no decay or divergence for the 
half cycle, 68 is zero and the integral is zero. This does 
not mean, however, that no decay or divergence occurred 
during each instant of the half cycle, but it does mean 
that the total effect for the half cycle, from all factors, 
is zero. 

The second term is the Potential Energy Defect. This 
term will account for any hysteresis in the static pitching 
moment due to its being a double-valued function of e. 
The ease by which a hysteresis is handled is one prime 
difference between the microscopic and macroscopic ap- 
proaches. Intrinsic in the microscopic approach is the 
usual assumption that the static pitching moment is 
single-valued and, consequently, there is no hysteresis of 
the static pitching moment, nor is there a potential energy 
defect. This topic will be discussed later. 

The third term is the Normal Motion Defect and is due 
to the fact that there is a difference between a and 8. A 
positive lift will induce a negative a deviation which, in 
turn, will reduce the potential energy due to the pitching 
moment. Another way to look at it is as follows. Consider 
a body with no lift at some angle of attack, E ;  since there 
is no lift, $=E (gravity and initial deviation are neglected). 
Suddenly, there is a gust of air down from above; this is 
analogous to a sharp upward movement of a body due to 
positive lift. The result is a slight negative deviation in a 
and, correspondingly, a decrease in the restoring moment 
and the potential energy due to this restoring moment. 
A positive lift slope tends to cause convergence. 

The fourth term is the Deceleration Defect. The drag 
of the body causes a deceleration which, in turn, causes 
a continual reduction of the dynamic pressure. Since the 
dynamic pressure is a weighing factor in determining 
forces and moments from aerodynamic coefficients, a 
decrease in the dynamic pressure reduces the ability of 
the system to overcome the initial potential energy at 4,. 
A positive drag will tend to cause divergence. 

The fifth and sixth terms are the Dynamic-Stability 
terms. The sixth term is generally two orders of magni- 
tude smaller than the fifth term and is quite often 
neglected. Furthermore, experimentally, C,,l,, and C,,,, are 
inseparable; therefore, as far as extracting dynamic- 
stability data from experiments, the sixth term might be 
meaningless. Negative [Cm,, + Cm&] tends to cause con- 
vergence. 

Particular solutions of Eq. (18) (excluding the last 
term), using several sets of hypothetical aerodynamic 
coefficients, were verified with exact six-degree-of-freedom 
computer solutions and were found to agree with differ- 
ences generally less than two percent. 

For a large class of problems, the gravity effects are 
small, [a-e] ,  is negligible, and the sixth term can be 
ignored. In these cases, Eq. (18) is 

+ \+" c,(e) 8' de 
- (o,-6e 

4 
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Also, for the majority of configurations the decay, 68, will 
be much smaller than the initial amplitude, Bo, and the 
lower limit of integration, - (eo - SO), can be approxi- 
mated by - 8,,, further simplifying the solution. 

One of the examples presented later shows that if first- 
order linear aerodynamics are considered, (C,(a) = 
Cntna, Co(a) = CI,,,, Cl,(a) = Cl,na), and the decay is mod- 
erate such that [ -&8/t?,,] can be approximated by the 
natural logarithm of 1 a,/a,, 1 ,  the solution from Eq. (19) 
is equivalent to the solution from the differential equa- 

tion, Eq. (I), given below. The term, a,, is the angle-of- 
attack amplitude after a half cycle. 

The validity of approximating - [ S8/0,] by In 1 aJa0 I can 
be seen by expanding In 1 a,/a,, 1 in a series and noting that 
for no initial normal motion, Bo = a,. 

111. EXAMPLES 

A. Local and Effective Constant Dynarnic-Stability 

For a specified decay the value of each of the terms in 
the energy-integral equation is dependent only upon 6 
and can be considered a constant. Equation (19) can, 
therefore. be written as follows: 

Coefficients 

0 = K , ,  + K ,  + K ,  + K:, 

or 

As indicated before, [C,,,,, + C,,ti] is an arbitrary func- 
tion and for future reference will be denoted as the 
“local” dynamic stability coefficient. It is desirable to 
define an “effective constant” ( E F F )  dynamic-stability 
coefficient which will yield the same energy defect for 
the half cycle, i.e., 

This coefficient is valuable because in the reduction of 
experimental free-flight and free-oscillation data, it is the 
effective constant coefficient that is obtained. 

The local dynamic stability coefficient, right hand side 
of Eq. (21), could be a function of anything, 8, @‘, eo, etc.; 
only the equality of Eq. (21) must be obeyed. Figure 2 
shows two examples where the local dynamic-stability 
coefficients are functions of the angle of attack. Cases A 
and B depict local values of [CnL0 + Clltir] of the para- 
bolic form [ C,,,,/ + C,,i6] ” + Ka’. The Case A local value 
increases (negatively) with angle of attack from -0.3 at 
0 deg to -0.7 at 25 deg. Integrating the local curve over 
the angle-of-attack region -25 to 25 deg as indicated in 
Eq. (21) for an amplitude of 25 deg results in an effective 
constant dynamic-stability coefficient of - 0.4 (assuming 
a linear static pitching moment and a small decay). Simi- 
larly, effective constant values were obtained at all the 
other amplitudes for both Cases A and B; Case B decreased 
(negatively) as much as Case A increased (negatively). 
Both results are shown as the dashed curves in Fig. 3. 
Although the difference between these two local curves 
is substantial, the effective curves do not show this large 
difference. The change in the local curve is greatly atten- 
uated when converted to the effective constant curve. 
The reason becomes obvious when it is realized that @‘ 
is a weighing factor in the integration, and @‘ looks 
sinusoidal with its largest value when a = 0. The local 

5 
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8, eo, deg 

Fig. 2. Local and corresponding effective constant 
dynamic-stability curves 

dynamic stability values near the amplitude play a small 
part in determining the effective constant value. 

The solution for the effective constant dynamic-stability 
coefficient from a local dynamic-stability coefficient of 
the form 

[emu + Cm,]Locc,f = u + ble/ + ce2 + dJe13 

is 

[cvfl,/ + c,,,] = u + 413 bp, l  
+ 1% d o t  +8/15 T d 1 8 , ( 3  

(assuming a linear pitching moment and a small decay). 
Figure 3 contains the experimental effective constant 
dynamic-stability data from a typical sting-fixed free- 
oscillation test (Ref. 4). A cubic curve fit of the data 
from 0 to 17 deg was made (dashed line); from this, the 
local curve which would yield the effective constant value 
at each amplitude was determined from the above expres- 
sion. The local curve is shown as the dash-dot line. 
Another cubic fit of the experimental data was made 

, 

6 

c +c,. I I [ mo ~ I L o c o / ,  

I 
[C,, 

-0.4 
0 4 8 12 16 2 

8, eo, deg 

Fig. 3. Typical test data 

from 0 to 8 deg, and again in the corresponding local 
curve was determined (dash-dot-dot line). The curve fit 
agreed very well with the experimental data; the differ- 
ence being so small as to not be perceptible on the plot. 
Although the two effective constant curve fits deviate 
only slightly, the local curves differ greatly. It should be 
noted that the difference between the two curve fits is 
about the same magnitude as the scatter of the experi- 
mental data. Even the slightest wiggle in the effective 
constant curve is greatly amplified when converted to 
a local curve. 

Similar comparisons can be made where the local 
dynamic stability is generated according to some other 
dependence. For instance, consider the dynamic stability 
coefficient to be of the form 

[ CM,, + Cn,,] L o r , 2 1  = [ CrnII + Cm;] ,) + 
The corresponding effective dynamic stability from Eq. 
(21) with the assumption of a linear pitching moment is 

where IY,,,,, is a function of the amplitude, e,), as indicated 
by Eq. (17); therefore, the effective dynamic-stability 
coefficient is also a function of the amplitude. hlathe- 
matically then, what on the surface would appear to be 
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an amplitude effect could, in reality, be an angular 
velocity effect. 

8. Nonlinear Aerodynamics 

The energy approach has obvious applications for con- 
figurations with nonlinear static aerodynamics. For in- 
stance, consider the class of bodies whose aerodynamic 
coefficients can be expressed as follows: 

CL(a)  = C L a a  + cla3 

C,(a) = C,,, + c3as + c,a' 

C,(a) = C,,,, a 

where the coefficients of ap are constants. Assuming that 
68 < < Bo, a closed form solution of Eq. (19) can be 
obtained with these coefficients. 

The Total Energy Defect is 

The Potential Energy Defect is 

y:: C,,,, 0 de = 0 

The Normal Motion Defect is 

(22) 

(23) 

(24) 

(25) 

Combining the terms, dividing through by ~ / 2 * 1 9 ;  a, and 
noting that 

the following solution is obtained: 

Note that if cl, c,, and c:{ are zero and [ -6e/e,] = 
In I al/an 1, the problem reduces to the case of first- 
order linear aerodynamics and Eq. (26) reduces to Eq. 
(20). This solution can be used for the reduction of free- 
flight data by obtaining a mean w e , ,  from a plot of the 
logarithm of the amplitude vs. X. Experience has shown 
(Ref. 5 )  that the logarithm of the amplitude data from a 
flight is usually quite linear. Occasionally, when the flight 
is long or there is a large amplitude effect, a curve in the 
logarithm amplitude plot is observed. In these cases, the 
data are separated into mean linear sections and a 
dynamic-stability coefficient is obtained for each section. 

In general, the Normal Motion Defect term is the most 
difficult to evaluate for an arbitrary Y because t?' appears 
in the denominator, complicating the integration. How- 
ever, in many instances, simplifying the form of B to 
facilitate evaluation of this term will add only small 
errors in the total result. For instance, if C,,,(a) is of the 
form Cmaa + k,a3 + k2as, it is impossible to obtain a 
closed-form solution for the Normal Motion Defect using 
the lift curve of the previous example. However, an effec- 
tive Cllza which would yield the same kinetic energy at e 
equal to zero can be obtained from Eq. (17), and the 
Normal Motion Defect evaluated with it; if this defect 
is small or moderate in comparison to the total, this 
approximation will prove very satisfactory. 

Although linear pitching moments are the simplest to 
use, others can certainly be considered. For instance, 
Ref. 3 contains a general solution for a pitching moment 
of the form C,,,(a) = M sin [ra] ,  where M and r are con- 
stants. In addition, it presents a closed-form solution for 
aerodynamics of the following form: 

axial-force coefficient = A cos a 

normal-force coefficient = N sin a 

pitching-moment coefficient = M sin a 

where A, N ,  and M are constants. These solutions are 
particularly valuable for high-amplitude oscillations. 

7 
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C. Nonsymmetric Bodies 

Another area where this approach could prove valuable 
is in the investigation of nonsymmetric or lifting bodies. 
Eq. (14) can be written in a more general way by chang- 
ing the upper limit of integration from - (e , ,  - 88) to 
- ( e ,  - so), where -8, is the negative amplitude of a 
conservative system (no lift, drag, or dynamic stability), 
and - (e l  - 80) is the negative amplitude of a decaying 
system. In a conservative system a body will oscillate 
from + 8,, to - 81 to +8,, etc., where the potential energy 
at -e1 equals that at +e,,. Mathematically, -8, is the 
lower limit required to make the Potential Energy Defect 
integral equal to zero (assuming no static pitching mo- 
ment hysteresis), Le., 

~ ~ l o " C , , l  ( 8 )  d8 = 0 (27) 

The equations can be modified to account for non- 
symmetric aerodynamics by merely changing the limits 
of integration as indicated above. Equation (19) then 
becomes 

As an example, consider a configuration which has first- 
order linear aerodynamics but also has an offset center of 
gravity; the corresponding aerodynamic coefficients for 
this body would be 

Cm(a) C,,,,, + C,,oa 

C , ( a )  = CL,, + c/,p 
C,,(a) = CD,, 

where C,,,,, and C,,,, are the pitching-moment coefficient 
and lift-coefficient offsets. If one goes through the lengthy 
process of solving Eq. (28) with these coefficients, the 
following relatively simple solution, for the decay over 
the first half cycle, is obtained: 

-.- .  4m + 3k 8e = c,,,? - c,,,, 
r pA [e,, +- k]'  

8 

where 

k = -  c m o  
c m a  

Note, if there is no offset, k is zero and CL,) is zero and the 
above equation reduces to the linear aerodynamic solu- 
tion, Eq. (20). 

The same solution, Eq. (29), can be used to obtain the 
decay for the second half cycle by changing the starting 
amplitude from e,, to (e, - 88), and replacing C,,, and 
C,,, with the negatives of the values used for the first 
half cycle. In this example, [e ,  - 881 equals [8(,  + 2k - 
881; 81 was obtained by solving for the lower limit of Eq. 
(27). Denoting 6e1 as the decay for the first half cycle, the 
decay over the second half cycle, is 

D. Static Pitching-Moment Hysteresis 

The previous solutions were obtained within the frame- 
work of the differential approach, assuming that the 
dynamic stability coefficient is a function of the local 
conditions and that all damping not accounted for specif- 
ically by the lift and drag must be due to the dynamic 
stability. However, there is some question about the com- 
pleteness of this analytic model. From a total system 
energy point of view, it is apparent that the pitching 
moment is the principal factor. As a matter of fact, for 
l-in.-D free-flight cones designed to accentuate dynamic 
stability, the ratio of the energy dissipated due to the 
dynamic stability coefficient after a quarter cycle to the 
potential energy at the beginning of the cycle due to 
the pitching moment was four percent, or eight percent 
for a half cycle. The combined lift and drag accounted 
for an additional two percent for the half cycle. Accord- 
ing to the present flow model of static coefficients, the 
pitching moment of a cone is symmetrical with angle of 
attack (C,,, is a single-valued function of a )  and, conse- 
quently, the Potential Energy Defect term of the energy- 
integral equation is zero. However, consider the following 
possibility. As the cone oscillates from 8 = 0 to say 
&, separation occurs on the lee side of the cone. (Experi- 
mental boundary-layer investigations and theoretical 
studies by Moore (Ref. 6) indicate this will occur some- 
what before reaching the cone semivertex angle). The 
body continues to oscillate to the amplitude, 8", and 
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returns to still in the separated mode, but instead of 
re-attaching at e* it re-attached at (8* - E). During the 
separated mode, the pressure on the aft portion of the 
cone on the lee side will be greater than if the flow were 
attached, and the pitching moment will be more positive 
than for the attached flow. Figure 4 contains a hypotheti- 
cal pitching-moment curve exhibiting this condition. A 
body at Bo will travel down the A curve and on to a B 
curve. However, since the area under the A curve is less 
than the area under the B curve, there will not be enough 
kinetic energy developed at e = 0 to pitch the model to 
-6, and a decay will result; analytically, this result is 
obtained by integrating the Potential Energy Defect term 
with the hypothetical pitching moment. Since the ratio 
of the area between the A and B curves to the area under 
the A curve is the Potential Energy Defect, even a one 
percent defect in the case of the 1-in.-D dynamic-stability 
cone would account for 10 percent of the over-all ampli- 
tude decay. 

Another example where this type of flow hysteresis 
could develop is the following. Consider an entry vehicle, 
near peak heating, oscillating at perhaps 3 cps. Three 
times every second, the ablation surface on each side of 
the vehicle goes through a heating cycle. If the surface 
is cooled sufficiently while it is in the lee phase of the 
cycle, there will be a time lag between the heat pulse 
and ablation when it enters the windward phase of the 
cycle. Consequently, there would be a delayed alteration 
of the flow field due to the addition of ablation products 
on the increasing angle stroke, and a persistence of abla- 
tion after the heat pulse during the decreasing stroke. 
The result then would be a hysteresis of the pitching 
moment causing a decay or divergence, depending on 
how ablation affects the flow. If, hypothetically, the affect 
of ablation is to change the effective shape of the body 
such that the aerodynamic restoring moment is greater, 
then the result would be just opposite to that of the pre- 
vious example, and a decrease in the decay would occur. 

One could ask what would be the consequences of 
lumping this kind of hysteresis damping with an effective 
dynamic stability coefficient. To answer this question, 
consider the problem of using test information from a 
small test body to predict the motion of a much larger 

A 

8 

Fig. 4. Hypothetical pitching moment due to 
separation hysteresis 

vehicle. For the discussion assume that the body nom- 
. _ _  - - inally has linear aerodynamics but also exhibits a static 
pitching-moment hysteresis. The ratio of decay to initial 
amplitude is 

i 

If the media density is the same, the influence of the 
static and dynamic coefficients is determined by the fac- 
tors A/m, 1/0, and mdL/I .  It is difficult to say how these 
terms will vary from the test body to the flight vehicle 
without considering a specific case. However, experience 
with free-flight test bodies indicates that usually all these 
factors tend to decrease as the body size is increased from 
the wind-tunnel test model to the actual flight vehicle. 
For this situation it is obvious that the Potential Energy 
Defect will contribute more, percentage wise, to the total 
decay as the body size increases, and a prediction of 
decay using an effective dynamic stability coefficient, 
which includes the effects of hysteresis, will be in error. 
In short, the causes of motion decay (or divergence) must 
be properly evaluated in order to permit proper scaling; 
this includes lift, drag, and pitching moment, as well as 
dynamic stability. 

9 
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IV. CONCLUSION 

This Report presented the idea of viewing dynamic 
stability from a macroscopic or energy-integral point of 
view. Several examples were presented which demon- 
strate the application of this approach to problems not 
generally solvable with the differential approach, includ- 
ing solutions with nonlinear static and dynamic coeffi- 
cients and lifting bodies. It is also suggested that there 
are factors that can cause an amplitude decay which are 
not being accounted for in the differential approach and 
can be accounted for in the energy-integral approach, 

e.g., double-valued pitching moments. It is further sug- 
gested that lumping a hysteresis effect into an effective 
dynamic-stability coefficient could result in erroneous 
results when experimental data are used to predict the 
motion of actual flight vehicles. 

It is felt that this approach offers great latitude, as an 
analytic tool, for investigating different forms of the 
dynamic-stability coefficient and different hypotheses of 
the decay mechanism. 

NOMENCLATURE 

1 0  

c m ,  C L ,  C D  

d, A, I ,  m 

EFF 
gx, gi! 

9 0  

pitching moment, lift, and drag coefficients; moment/% pV'Ad, 
lift/% pV2AA, drag/% pV'A; these coefficients are functions of a:C,,, 
= C,,,( a ) ,  C ,  = C , (  a ) ,  C D  = C, , (a)  
linear pitching-moment coefficient slope (rad-' ), linear lift- 
coefficient slope (rad-'),  and drag coefficient at a = 0, respec- 
tively 

dynamic stability coefficient, nominally: 

body reference length ( ft ), reference area ( ft.), transverse mo- 
ment of inertia ( slug-ft' ) , and mass ( slug), respectively 

effective constant 

gravitational accelerations in the X and Z directions, respectively, 
ft/sec' 

velocity of the body center of mass; V = [ V 1 ,  ft/sec 

initial free-stream velocity 
body position relative to the media measured in the initial free- 
stream velocity direction, ft 

angle of attack; angle between v and the model centerline, rad 
initial angle-of-attack amplitude, rad 

decay for a half cycle, rad 

angle between the initial free-stream velocity, v,, and the body 
centerline, rad 

initial amplitude of oscillation, rad 



L 
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NOMENCLATURE (Cont’d) 

P media density, slug/ft3 

0 frequency of oscillation per distance, X, traveled, rad/ft; for a 

linear pitching moment, [Z$%! Cmm] 

first and second derivatives of ( ) with respect to time 

first and second derivatives of ( ) with respect to X 

YZ 

i ij 
( Y,( Y 
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