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THEORETICAL AND EXPERIMENTAL ASPECTS OF THE SHOCK STRUCTURE PROBLEM 

Hans W. Liepmann*, Roddam Narasimha** and Moustafa Chahine*** 

I. INTRODUCTION AND SUMMARY '- 

There does n o t  y e t  e x i s t  a gene ra l ,  rel iable theory of t h e  

flow of rarefied gases ,  b r idg ing  the gap..between simple free 

molecular flow methods and t h e  Navier-Stokes theory ,  It is  clear 

today tha t  an e s s e n t i a l '  improvement of the range of a p p l i c a b i l i t y  

of t h e  Navier-Stokes equat ions cannot be expected from t h e  h igher  

approximations i n  the Chapman-Enskog procedure b u t  t h a t  d i f f e r e n t  

methods of finding approximate s o l u t i o n s  of the Boltzmann equation$ 

are needed. The shock wave s t r u c t u r e  problem is one of  t h e  best -- 

t es t  c-qses f o r  such at tempts  because it i s  "b r ea l i s t i c  M, amenable , 

t o  experimentat ion,  and simple enough t o  expect  tha t  i n  the f u t u r e  

an e x a c t  s o l u t i o n  of  the Boltzmann equat ion  can be obtained.  

The p resen t  paper d iscusses  e s s e n t i a l l y  r e c e n t  r e s u l t s  
he 

obta ined  by u s  from an exac t  n u m e r i c a l  s o l u t i o n  of t h e  Bhathtgar- 

Gross-Krook model. Shor t  d i scuss ions  of the Navier-Stokes and 

Mott-Smith t h e o r i e s  as w e l l  as  of r e c e n t  experimental  work are 

included.  The main conclusions reached are t h e  following: 

i.) The B-G-K model is capable of desc r ib ing  the e s s e n t i a l  

f e a t u r e s  of t h e  shock l a y e r  and l eads  t o  r easonab ly . accu ra t e  

numerical  va lues  f o r  the measurable v a r i a b l e s  . 
ii.) 

t o  the model and t h e  exac t  s o l u t i o n  shows t h a t  u s e f u l  convergence 

A comparison of t h e  Chapman-Enskog approximation appl ied  

* C a l i f o r n i a  I n s t i t u t e  of Technology 
** Indian  I n s t i t u t e  of  Scienc;, Bangalore, I n d i a  
*** Je t  Propuls ion Laboratgry (C.1.T.) 
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of the C-E series requires  Stress t o  pressure r a t i o s ,  7/p8 less 

than 0.2) ~ 

iii.) The d i s t r ibu t ion  function within the layer  is  bimodal, exh ib i t s  

Corresponding t o  shock Mach nunibers of less than about 2.  

the gradual change from the molecular beam-like behavior ahead t o  

a Maxwellian d i s t r i b u t i o n  behind-the shock. The effect  of t h e  f a s t  

molecules is noticeable even many mean free paths behind the shock'. 

iv . )  The flow is nearly. loca l ly  ad iaba t ic -  That is, t h e  t o t a l  

enthalpy is  constant t o  with'F few per  cent.  
' .  , . . -  

11. LOCALLY ADIABATIC FLOW 

The general  equations of motion f o r  the flow within a shock 

wave (Fig. 1) can be reduced t o  a s ing le  one, t he  momentum equation, 

i f  one assumes t he  flow t o  be . " loca l ly  adiabat ic" ,  i.e.8 tha t  the 

hea t  f l u x  q balances everywhere the w o r k  done by the stress TU. 

For " loca l ly  ad iaba t ic  flow" the  t o t a l  enthalpy H = h + u2 is 

constant s ince . 
A 

Within the  Navier-Stokes theory one"can e a s i l y  give an upper boun& 

f o r  the maximum t o t a l  enthalpy va r i a t ion  i n  t e r m s  of t h e  Prandtl  

number Pr :  
. 

I 

In  k i n e t i c  theory, l oca l ly  adiabat ic  f l o w  requires  a not very 

s t r ingen t  r e l a t i o n  between the  first three moments of the 

d i s t r i b u t i o n  function. 

Fig. 2 together  w i t h  the N-S r e s u l t s  demonstrate t h e  comparatively 

s m a l l  deviat ions of H f r o m  H1. 

Computations for the  B-G-K modellshown i n  

. .  1 
The B-G-K model is usa l ly  thought 

\ .  
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For loca l ly  ad iaba t ic  f l o w  ,yaM? 4 k;;r&~p' /& m, 

. t o  imply a Prandtl Vumber of u n i t y ,  +his is  cor rec t  Ln the N-S 
1. +t 

. -  l i m i t ,  d d . . n u m + d , q  r&.. &i.ty&L .- . > r u! , I i;.,: ...A 

7fu = rn d2L 
2& 

(u - ul) (u  - u2)  = q (3 I '  

and the  c h a r a c t e r i s t i c  parameter r/p ,can be given e x p l i c i t l y  (Fig. 3) . 
A. The Navier-Stockes theory 

The Navier-Stokes equations a re  obtained from the Chapman- 

a re  kept . 5 Enskog (C-E) approximation.if terms proportional t o  - P 
Rapid convergence of the C-E s e r i e s  is thus a s u f f i c i e n t  condition 

-- . The terms ofathe C-E. 
P- 44-4 and 4 M C3 

P -  P -  c ../ 

p ' .  . 
and hence the re  

exists  always regions i n  velocity - space where the  s e r i e s  diverges. 

Indeed fo r  any Mach number there e x i s t  a t  l a rge  

which the  C-E d i s t r ibu t ion  function is  negative. Howeuer t h i s  

C , r eg ions  f o r  
1 ,  

impossible region i n  the d i s t r ibu t ion  function does not necessarily 

contr ibute  appreciably t o  the  moments l i k e  a ,  u,and T. A 

comparison of the  C-E s e r i e s  applied t o  the B . G . K  model and the  
T 

exact solut ion indicates  a l i m i t  of - f 0.2 f o r  reasonable 

convergence of the  s e r i e s .  3 P 
A glance a t  Fig. [then shows t h a t  one 

can expect the  N-S solut ion t o  apply t o  the complete shock p r o f i l e  f o r  

shocks of M1 < I .  

2.0 approximately, .however fo r  'strong shock waves 

the  N-S theory should be applicable only to a r e l a t i v e l y  small port ion 

of t h e  shock p ro f i l e .  

ChalzS.nc'ZZ2) we expected the N-S theory t o  hold f o r  the  whole 

subsonic port ion of the shock p r o f i l e ,  i .e.,  up t o  - values of 

I n  our f i r s t  paper & f . - , ~ s ) ~ ,  2!ZYZ'iit:ka & 
hr3 

z 

8 P 



- 4 -  

. 0.6 or  so. The more precise  recent computations reduce the . 

expected app l i cab i l i t y  of the N-S equations and lead t o  maximum 

densi ty  slope thickness for  s t r o n g  shocks approximately 25% . .  

l a rger  than the corresponding N-S value, not only 10% as believed 

i n  our f i r s t  paper. ‘. 
The precise  shape o f ’ t h e  d i s t r i b u t i o n  function is  no t  given 

cor rec t ly  by the C-E expansion,for any Mach n u d e r .  Besides the 

occurrence of negative regions, the  C-E d i s t r i b u t i o n  function, due 

t o  the non-uniform convergence of the method,$ails t o  account 

properly f o r  the f a s t  molecules with long f r e e  paths. This leads 

t o  an asymptotic approach o f ,  e.g., u(x)  t o  i t s  equilibrium value u1 

which Liubarsky f&t i4) has f i r s t  shown is bEF2tlie-:€orm u., - exp 

\ 

a 
*. 1 * $  3 

r a the r  than uNS I - X I  NS Since u, + u 
.’. 

a t  l e a s t  

f o r  weak shocks, t h i s  behavior is i r r e l evan t  f o r  comparison w i t h  

experiments but of considerable conceptual importance, 

B. The Method of Mott-Smith 

(P#S I 
Mott-Smith was.the f i r s t  t o  recognize the  bimodal character 

of the  d i s t r ibu t ion  function within a shock wave. 

approximate solut ion of the  Boltzmann equation by assuming f t o  , 

He proposed an 

be of t h e  form 

f = [I - L’(X)] F1 +’ L’(x)F2 (41 

9 (x) t o  be determined by a Galerkin-type technique. Mott-Smith ) 

method w a s  ce r t a in ly  an important s t e p  i n  the r i g h t  d i rec t ion ;  

however as he himself c l ea r ly  recognized the  method ’is l imited by 3 .  
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Subsequently ,mor e 
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i n  the weighting function used i n  evaluating j ( x ) .  

elaborate w o r k  by Rosen ( W , $ ) ,  Gustafson ( 2  &?) and 

dmnot eliminate the  a rb i t r a r ines s  i n  evaluating p ( x ) .  
1- d 

Sakurai's($ry) attempt t o  prove t h a t  the  N-S method leads t o  an 

asymptotically va l id  solut ion of the  Boltzmann equation fo r  i n f i n i t e  

Mach number, has a l so  n o t  been successful. 

'. 
M L w / c ; ,  r i ,  clc;c~,,.c,.~J/J k d a 9 k d  

However t h i s  

TodayAit iz 
L&q m c 4 A  f r"  /tk-A&:) 

[to chose Y (x)"'for a b e s t  f i t  with experiments. 

would be sensible  only i f  the Mott-Smith approximation could then 

be developed in to  a general method i n  r a re f i ed  gas flows. Such an 

extension does not seem possible. 

C. The Bhatnaqar-Gross-Krook theory 

The .model equation we consider i s  the one proposed by 

Bhatnagar, Gross & Krook For one-dimensional f l o w  it 

can be wri'tten 

- An (F - f )  v - -  b f  
x ax 

. 
ts I 

Equation (J) i s  nonlinear i n  s p i t e  of i t s  apRearance, a s  

the parameters i n  the loca l  Maxwellian F a r e l a l l  moments of the  

unknown f. We have computed an exact numerical solut ion of (s) 
. .  

s a t i s f y i n g  the cor rec t  boundary conditions f o r  a shock wave, fo r ,  a .  
6 .  

gas with a r e a l i s t i c  viscosity-temperature r e l a t ion .  For thee 

computation it is preferable t o  convert (J) formally i n t o  the 

i n t e g r a l  equation 
X 

f ( x ,  VYI V Z #  vx 2 0) vX ' exp[- Ix@ An vX dx" 3 'dx '  (6) 
t *  

This i,s now solved by an i t e r a t i v e  method whose pr inc ip les  a re  

as follows: A f i r s t  guess is  made a t  the parameters n, u and ,T 
.. . i 



' ( a s  functions of x) appearing i n  F on the  r i g h t  hand s ide:  I 
) '  

in tegra t ion  with respect t o  x gives f ,  and fur ther  in tegra t ion  . - . 

with respect t o  v gives new values f o r p ,  u and 7 .  These 

a re  now used t o  generate the next approximation t o  F, and so 

on, till there  i s  no sensible var ia t ion  i n  the f i n a l  r e s u l t s .  

I n  our computations we used the Navier-Stokes solut ion fo r  shock ', 

? s t ruc tu re  t o  provide the f i r s t  guess. Deta i l s  of the ac tua l  

computations, the  convergence of the  scheme and the r e s u l t s  obtained 
! 

For weak shocks (say M < 2.0), the exact solut ion hardly d i f f e r s  : 

from the Navier-Stokes which is  thus an adequate approximation. For i 

stronger shocks the  p r o f i l e s  deviate more and more from the  Navier- - i  I? 

i t e r a t i o n  converges r e i a t i v e l y  slowly, fi 
f: 

I. I: 

T 

t Stokes, especial ly  on the cold s ide,  where a long t a i l  develops 1 

[ 

rapidly.  On the  hot s ide  the 

and the  departure from Navier-Stokes is l e s s  marked. The thickness 
! 

of the  shock,based on the  maximum densi ty  slope,  i s  about 25% l a rge r  

than the  Navier-Stokes value a t  a Mach number of 10(arda v iscos i ty  

law p T with W = .816). The asymmetry i n  the temperature p r o f i l e  

L, 

I i 
I t 0 

. is  very much more pronounce'd than i n  the density p ro f i l e .  t 
i 

considering the  form of f as given by ( 6 ) .  Crucial i n  E 

i 

4 
b 
t. 
F 

I 
I. 

We can give a h e u r i s t i c  explanation of these r e s u l t s  by 

. .  
determining t h i s  i s  the magnitude 0-f what may be ca l led  the  

. "sampling dis tance",  I =  vx/An, appearing i n  the  exponential: 

As vx takes  a l l  possible values, so does 2 ,  b u t  a l l  
t 

' I  . .  
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- ve loc i t i e s  v do not contribute equally t o  the moments, i n  which 
X - - _. In general ,  

c 
we are’ primarily interested,  

the v e l o c i t i e s  vx w h i c h  c c n t r i h t e  m o s t  t o  the first few- 

,moments may be expected’to be of order u.  On the ho t  s ide  of 

the  shock, the Mach number i s  always 0(1), or  u = O ( c ) .  Hence 

the  c h a r a c t e r i s t i c  sampling distance i s  [ 2^ c2/A2n2, which is  
- 

proportional t o  the  mean f r e e  path 4 2. iSGn-43- 

The’gradients within the  shock a re  r e l a t i v e l y  s m a l l  

on the  hot  s ide  aver a mean f r ee  path -, , s o  i f  

slowly over t he  dis tance . 2 2 8  we may w r i t e ,  using an obvious 

asymptotic technique, 

F var ies  

c 

T h i s  is, of course, j u s t  the  Chapman-Enskog s e r i e s ,  the second 

term corresponding t o  Navier-Stokes, the t h i r d  t o  Burnett, e t c .  

I t e r a t i n g  on the Navier-Stokes solut ion as  described e a r l i e r ,  

we see t h a t  the departures noticed on the  hot  s ide  could possibly 

be due t o  the higher order terms of ( 7 ) , especial ly  the 
c . Burnett t p r m s .  The ‘fact t h a t  the i t e r a t i o n  scheme’ is  e s s e n t i a l l y  

evaluating higher der ivat ives  of F is perhaps pa r t ly  responsible 

f o r  t he  r e l a t i v e l y  slow convergence noticed on the  hot  s ide.  The 

typ ica l  length sca l e  of the  p ro f i l e  on the  hot s ide  of 

t he  shock remains $I 

. d, 

t o  a f i r s t  approximation: 

I n  a weak shock the  Mach nurriber M = O(1)everywhere; and the  

argument made above for the  hot s i d e  of a strong shock appl ies  a l l  

through a weak shock. 

The large deviations noticed on the  cold s ide  of strong 

shocks seem t o  be due ’ t o  a d u f e r e n t  mechanism. Here u = O(Mlzl) ,  
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a :  

and the characteristic sampling distance tl 4%' ul/Alnl 4 MldLl 

becomes very large as M 

determined as an integral over the flow and cannot possibly be 

described in terms of local derivatives (as in (7)). Also we 

may expect the characteristic length scale on the cold side to 

O D ,  we see thst f is now 
. I  

1- 

'. 

. become e 1; for, if we should put in for F the Navier-Stokes 

values (whose scale would be Al/Ml), 

multiplying F in ('6) would immediately "smudge" it over a 

distance P,., . We conclude that the characteristic dimension of 
the 'tail.' is 

the attenuation factor 

S1 @ 
M ~ A ~ ,  and not nl/M1- as in the N-S theory. 

A crude measure of the asymmetry of the profile is thus 

the ratio 

- 
I If we take p F T @, and define the mean,.free path as -/I-. p/f c 

\ 

we have 

I 

! ' .  

1 

i -  

i 

recaliing that .T2/T1 - M: for large Ml.pIt is easy to show (/YW ep. 3 

that the ,characteristic scales in the Navier-Stokes solution are 

proportional to the respective viscosities on either side of the 

shock; hence , 

. .  
I 
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Since f o r  r e a l  gases $$,< c3 < 1, ( 6 1 / € 1 2 ) ~ - ~  0, as  M1 ->a0 

while fo r  the B-G-K model (61/62) 3 03 . 
p r o f i l e  

exact solut ion reaches the asymptotic s t a t e  i n  a long, gradual 

t a i l  a s  shown i n  Fig. $! 

Thus the Navier-Stokes 
rmd&** Cdmp /$ 

the  upstream whaa-as the  B-G-K; 
appr&it.c 4CG.l 

J 

It i's fur ther  i n t e re s t ing  t o  note t h a t  

the B-G-K t a i l  becomes weaker as  &'9 1, as noted i n  Figure 6. 

This r e s u l t  f o r  the r a t i o  of the length sca l e s  61/62 may be 

compared with the  r a t i o  of the appropriate f r e e  paths A ( u l ) / A  (z2).  
-S 

For an intermolecular po ten t ia l  of t h e .  form p (r)  .CV r the  

f r e e  path 4 depends on the  co l l i s ion  ve loc i ty  v ' obviously l i k e  

cu V 4/s Hence 

and the  r a t i o  is  thus fo r  large M nearly independent of M , ,  
1 1) - and only weakly dependent on # . The B-G-K model (except f o r  the 

A4ffP 
case of Maxwell molecules, i . e . ,  k)  = 1) is l i k e l y  t o  exaggerate 

the t a i l ;  the  abrupt d i p  given by the N-S solut ion on the other  hand 
4 

is ce r t a in ly  u n r e a l i s t i c  and hence any solut ion of the  Boltzmann 

equation can be expected t o  f a l l  between these two. 
I 

A grea t  dea l  of in te res t ing  information i s  contained i n  

t he  solut ion fo r  f of the model equation. When the  p r o f i l e s  

f o r . t h e  flow quan t i t i e s  w i t h i n  the shock have converged, they 

may be used t o  generate the d i s t r ibu t ion  function, by evaluating 

t h e  in t eg ra l  i n  ( 4 ) .  Many such computations have been car r ied  out,  

and some typ ica l  r e s u l t s  a r e  shown i n  Figs. s-d  6 . 
/ 

It is  seen t h a t  over a fa i r  p a r t  of the shock layer  t he  

d i s t r i b u t i o n  is  s t rongly bimodal. The pers is tence of the  "memory" 
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of the 'supersonic  stream i s  remarkable,and can be noticed even I 

a t  X = 15, where , u and T have reached t h e i r  downstream 

4 ,  asymptotic values t o  one p a r t  i n  10 . T h i s  pers is tence i s  due . 

J 

t o  the longer free path of molecules t rave l ing  near the upstream . 

veloci ty  ul ,  as discussed above: 

behaves l i k e  a molecular beam being attenuated by the molecules i n  

i n  f a c t  the supersonic stream 

the  rest  of veloci ty  space. Qual i ta t ive ly  t h i s  behavior i s  not 
\ 

unexpected and has been used ip'models fo r  the  shock s t ruc ture ,  

e.g., by Rott and w. ..and Broadwell [ M f k ~ ~ )  
U4 i(i!cbt h ttt2 b$ /i3 

There is  a s imilar  e f f ec t  on molecules coming from the 

subsonic stream, b u t  t h i s  i s  much weaker on account of the smaller 

f r e e  paths. 
1- The Chapman-Enskog d i s t r ibu t ion  function even M1 < 2 

cer ta in ly  d i f f e r s  loda l ly  considerably from,the cor rec t  f abut 

does give the lower moments & ,  u and T with good accuracy, 

IV. EXPERIMENTS 

Only the densi ty  p ro f i l e s  of s t rong shocks have so::far been 

measured and the accuracy which has been reached is  s t i l l  of the  order  

of + 5% a t  best. Two methods have been used, Hornig's 
I 

- 
i n  which t h e . i n t e n s i t y  of l i g h t  refracted a t  nearly glancing 

incidence t o  the shock surface is  measured, and the sca t t e r ing  

of an electron beam which has been applied i n  various ways by a 

nurciber of invest igators .  The most recent  and 'complete measurements 

are the ones by C a m a c  <J4$3) and R u s s e l l  (Yilp). . 
$ 

Hornig's method depends on the phase differences i n  the l i g h t  

r e f l e c t i o n  from d i f f e ren t  regions of the  shock p r o f i l e  and hence 

requi res  shock thicknesses of the  order of a wave l eng th  of l i g h t .  

It has therefore  the  advantage of being appl icable  t o  t h i n  shock 
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waves and therefore  t o  small shock tubes operating a t  high pressure. 

It has the serious drawback of being very sens i t i ve  t o  the angle 'o f  

incidence and hence t o  the shock wave topography, which a t  high shock 
6 

I 
tube pressures can be qu i t e  complex (e.g. ,  Ref./$). It is  surpr is ing 

indeed t h a t  the measurements are consis tent  within a few per cent 

and i n  good agreement w i t h  the  other experiments. 

The electron beam methods simply use the  f a c t  t h a t  f o r  

s u f f i c i e n t l y  l o w  beam in tens i ty  sca t te red  in t ens i ty  i s  proportional 

t o  the  number of s ca t t e r e r s .  The in t ens i ty  of the sca t te red  b e a m i s  

e i t h e r  measured d i r e c t l y  l i k e  i n  Camac's experiments using a high 

. energy beam o r  obtained by measuring the  "absorption" of a l o w  

energy beam l i k e  i n  the e a r l i e r  measurements of Duff  e t .a l , ,and 

the  recent  ones of R u s s $ l l .  Due t o  the  f i n i t e  space and time 

reso lu t ion  of the e lec t ron  beam the method is  b e s t  applied t o  

th ick  shock waves and hence requires low'pressure shock tubes (or 

wjnd tunnels) and r e l a t i v e l y  large ones t o  keep boundary layer  
c 

induced curvature e f f e c t s  small. 

A t y p i c a l . p l o t  of the maximum densi ty  slope thickness 

versus M1 is  given i n  Fig.+. 

based on the  N-S approximation, B-G-K model and the  Mott-Smith 

methods a re  shown. The agreement of the measurements w i t h  t he  B-G-K. 

model computation i s  as  good a s  can be expected- The agreement with 

As a comparison computations 

the  Mott-Smith computations i s  b e t t e r  but then t h i s  is t r u e  f o r  only 
) 

one p a r t i c u l a r  and a r b i t r a r y  way of the  method a 

The most c h a r a c t e r i s t i c  trend i n  the B-G-K ' p ro f i l e s ,  the  " t a i l "  of 

t he  p r o f i l e  i s  very small for  the  density and probably anyway somewhat ' 

exaggerated by the model, consequently more de t a i l ed  comparison of 

theory and experiment requires temperature ,prof i le  or  d i s t r i b u t i o n  

I 

function measurements.. 
, 
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