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" DEFINITION OF TEMPERATURE IN NONEQUILIBRIUM PROCESSES*

qesk
Robert E. Mates and Roger C. Weatherston

Cornell Aeronautical Laboratory, Inc,
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244 0 [
ABSTRACT - This paper exammes the validity of applying concepta of tempera-
ture as defined in classxcal thermodynamice tq nonequilibrium processes. If

the irreversibility in the process can be confined to heat flow between suitably
defined subsystems," equillibrium thermodynamics can be applied by the definition
of additional temperatures to characterize the subsystems. The classical B
thermodynamic temperature is defined as suggested by Clauaiua in terms of

P

heat exchange between a reversible engine and energy reservon‘s. It is shown
that the above definition of classical thermodynamic temperature can sometimes .~
be applied to a particular degree of freedom, such as vibration, even if it is not
m equilibrium with the other degrees of freedom. However, it 'does not appear
pqssible to extend this concept to a fluid with nonequilibrium chemical composi-'
tion. To demonstrate this, the entropy rise in vibrational and chemical non-

ethbrmm processes is computed using the concapt of multlple tempera.tures

and compared with the classical result. The results agree for vibrational but

not for chemical nonequilibrium, - L S ;" m
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Introéuction

In many problems of current interest involving high temperature, high
velocity flows, nonequilibrium phenomenalplay an important role, These in-
clude expansions of high temperature gases in rocket nozzles and hypersonic
test facilities, and relaxation phenomena behind shock waves. I;'A analyzing
" these phenomena it is convenient to employ the methods of cla'ssical equilibrium - -
thermodynamics. '

‘While classical thermodynamics is normall'y applied only to equilibrium.
'Eyétems, some authors have successfully applied classical methods to non-
equilibrium systems by clever definition of the thermodynamic system. A
technique whigh has been used is to split the system into two subsystems, each
internally in equilibrium and connected by some irreversible heat exchange.
Kantrowitzl and Connor and Ericksonz used this method 'for. anaiyzing a lagging -
yﬂl)"?ra.tional d‘egree of freedom, introducing a vibrational temperature to charac-

: t‘é%ize‘ the vibrational subsystem. Wood and Kirkwood3 extended the treatment

to multiple lagging energy modes. Recently Eschenroeder4 ha; applied the same
idea to chemical nonequilibrium processes, using a chemical temperature de- |
fined by the mass-action laQ; Questxons have been rawed regardmg the vahchty

of these methods., For mstance, He1m55 has pomted out the hmlta.tlona of the ‘

'Kantrowitz, A., J. Chem. Phys., 10, 145 (1942), |
Connor, L.N. and Erickson, W.D., AIAA J., 2, 397 (1964) o
3Wood, W.W. and Kirkwood, J.G., J. App. Phys., 28, 395 (1957) s

4Eschenroeder, A.Q., Phys. Fluxds. 6, 1408 (1963). SRR




heat flow analogy for the case of simultaneoue vibrational and chemical
nonequilibrium. The purpose of this paper is to examine the justification for
using the coucept of multiple temperatures from a classical thermodynamic
standpoint.

Thermodynamic temperature is defined classically in terms ef a

reversible engine operating between two reservoirs, by the relation6 . o

T' : -— Q/
Tﬁ- Q:.

where T is the temperature and Q the amount of heat transferred. Heat
may be transferred either by conductlon or radxatwn. Conduction is controlled
by the translational energy of the molecules. Radiation occurs through rotatxonal,
vibrational or electronic transitions and is thus related to the corresponding
energy distributions. On a statistical basis the energy of a gas.is described

by a series of dxstnbutxon functions for the various modes of energy storage.

& In order to charactenze a distribution functxon by a single parameter, the
temperature, each degree of freedom of the gas must be mternally equilibrated. ,
- The statistical descriptioh,’ however, does not require equilibrium between
modes of energy storage. Thus we may speak of a translational temperature,

a rotational temperature, and so forth. For a gas iu completethermodynamic‘ : N
equilibrium, of course, all these tempelratures are equal. The relationship
between the thermodynamlc temperature and \the various statlatxcal temperatures .
""may be established through the use of a revermble engme. . |

Consider first a gas whxch can transfer heat.to the engme only by conduc- -

tiou. This can be accomphshed by makmg the 'engme_ a perfect reflector. If

i

6Zemanskj, M. W,., Heat and Thermodynamms, 4th Ed., (McGraw-Htll Book
Co,, Inc., New York, 1957) p. 164, . ’




the reservoir gas is internally in thermal equilibrium its thermodynamic
temperature is given by the translational temperature. Suppose now that one
of the modes contributing to radiation is excited by some means without changing
the translational temperature. This does not affect the conduction of heat and
since this is the only mode of heat transfer allowed, the heat tranafer to the
engine will be unchanged. Hence, the thermodynamic temperature is still
equal te the translational temperature. |

Next suppose the gas can transmit or receive heat only by radiation
due to vibrational trai‘xsitions. This can be accomplished by separating the gas
from the engine by an evacuated space and making the engine a perfect absorber
or black body. Since a gas radiates in spectral lines instead of in.a black body
distribution it is not obvious that the effective ""radiation temperature'' is equal

to its statistical vibrational temperature. These temperatures may be shown

to be the same by ttie following argument, Suppose first that a gas is brought

into complete thermal equilibrium, through radiation,. with a black body. At
§quilibrium the thermodynamic temperature of the gas and the black body are

edual. The thermodynamic temperature of the gas is equal to its translational .

. temperature., However in equilibrium the statistical vibrational temperature -

s
4

s equal to the translational, and hence, thermodynamic temperature. Now

suppose the gas is expanded suddenly, lowering its translational temperature

“without affecting the vibrational energy,distribution. If the gas and black body

can exchange heat only by radiation the thermal equilibrium will not be disturbed,

' henCe the thermodynamic temperature of the gas as measured by the engme

\ .
‘.

will be the vibrational temperature.

It is apparent from this discussion that the temperature used in claasical :

thermodynamica ma.y be equwalent to any one of several statistical temperatures

‘ S
'




depending on the particular circumstances. The translational temperature

is usually thought of as more fundamental than any of the others since it is

more easily measured. However practical methods for measuring other tem=
peratures have been developed; for exarhple, the line reversal method for .
vibrational temperature in a diatomic gas. 7 It would appear that any tempera~-
ture which describes an energy distribution that can exchange heat with the
surroundings satisfies the classical definition of a thermodynamic temperature. "
The use of temperatures other than these cannot be justified by the above
arguments, For'example, the chemical temperature, as defined above, cioea
not characterize an energy distribution which can exchange heat directly with

its surroundings, It\should also be noted that for many systems the chemical - .
- composition is a function of pressure as well as temperature, For a given:
chemical composition, which specifies an amount of chemical enérgy, the , e
chemical temperature cannot be determined unless the pressure or density is

3

also given, P
Both Ka'ntrowitz1 and Eschenroeder4 used the concept of multiple tem-
peratures to calculate the entropy rise in.irrevefaible adiabatic flows. Kantrowitz

"considered the ifreversibility due to a lagging vibrational heat capacity and

’ v,

ds = ey (‘F’ “?) s 1)

v

obtained

where T is the translational temperature, Tv the vibrational temperatu.re, B

| . . : . . -

7Hurle, 'I.R., Russo, A,L. and Hall, J. Gordon, Spectroscopic Studies of . '
Vibrational Nonequilibrium in Supersonic Nozzle Flows. To be published in‘ =
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‘cases described above and are presenﬁed in the next two sections. The . - .

-

+

and de, the amount of energy exchanged between the two modes.” Eschenroeder
defined the chemical temperature 7. as that temperature for which a dis=
sociating diatomic gas would be in equilibrium at the same density and degree

of dissociation. Thxa model yields

&s (;_—- - —-) | o (2) |
where clc,_ represents the amount of heat releaseci or abeorbed by the chemicalu‘
reaction. |

To resolve the correctness of Eqgs. (1) and (2) the entropy rise in non-
equilibrium processes is calculated here by choosing a ixypothetical revezjsible '
path connecting the two end states of the process. It is not always possible to
find a reversible process connecting two nonequilibrium states, since in fnany
cases the states cannot be described by a finite number of state variables. -

The cases considered here are.rather special in that each energy distribution P

is internally in equilibrium. Calculations have been carried out for the two- -

expression for vibrational nonequilibrium entropy rise (Eq. (1)) is venﬁed,
but (Eq. (2)) for chemical noneq\uhbrmm does not appear to be vahd. :

. .

Vibrational Nonequilibrium

Consider a gas in which the vibrational degree of freedom is not
equilibrated with.the "'fast' degreesof £r_eedom:‘ translation, rotation, etlcz.-1

A hypothetical reversible path will be constructed to calculate the entropy rise

' .
i

due to vibrational relaxation. The process. is assumed to be free of irrever- .

. . .\\
sibility due to other dissipative effects such as viacosity._ It is assumed that

each degree of freedom is mternaltv equxhbrated, that ta, the energy is dwtn- S

%

buted accordmg to a Ma.xwellhBoltzmarm dxatrxbution law, Then the energy in S

[y




cach degree of freedom can be described by a single parameter, the tempera-
ture appearing.in the distribution function,

Under these assumptions the internal energy of the gas may be written

e = e, () + ey (“,‘T) , . o (3)

where <. depends only on temperature and e, is a function of temperature o

and a parameter o expressing the degree of 'vibrational excitation, T is
the translational temperature of t‘he gas. In order to compute the change in'
entropy for an irreversible process on the basis of classical thermodynamics
1; is nécessary to choose some hy.pothétical reversible path connecting the two
end states. On the' T-/a diagram shown in Fig. 1 the real process is denoted

by 1-2. The following reversib'le path is chosen: (a) The gas is heated or

cooled at constant density, keeping the vibrational energy constant, to a temper=
¢ .

thermodynamic equilibrium with the given energy distributions., This process

¥

is reversible since no energy exchange occurs between the vibrational mode

a;i;'?d the other degrees of freedom. (b) The gas undergoes a reversible process

_1%-2' bringing it to the density and the proper amount of vibrational energy re-

quired at state 2. (c) The gas is cooled or heated to state 2.at constant dgane.ity:'

with frozen vibration,

- The hypothetical processes (a) and (c)\require special consideration in
that their execution requires the vibrational relaxation time to be infinite com-
pared to the time required to maintain translational equilibrium. The fact that

‘no weal gas could fulfill this requirement does not invalidate the calcula;tion of
entropy changes based on such a process, Aa long as the translational gmd

vibra.tiona.i degrees of freedom. are each internally. equilibrated ,(in'a. Boltzmann

~

.

ature T":Ii's chosen as the temperature at which the gas is in complete .‘ 5
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disiribution) the process end states can be described by a set of thermodynamic
variables. Hence the entropy, which is a state function, will change by the -
same amount along any path, reversible or irreversible. The reversible |
path wap chosan to facilitate the culculation by making use of the equality '
fa(.s = 49
=7

however the result is not dependant on the path. chéeen. ) '
The entropy change for the process 1-2 is the sum qf fhe changé.s over

the path 1-1'-2'-2,

" dep ;17' N (7) r L )
e = = e (7)) =—— R ' 4y
43 ‘f Zr f-,; Gt T I (
ds'.," "‘fﬂl deﬁ"'"‘ev*/’d%o -
2! =
% a T : B (5).
. ="‘ C#(T' ) d7;,z, + de‘f:‘a' - R"‘/’y:}.’u' o
7: . . 7;1 | ; “/o’, .
' T o ' '
.- : 4T
'As,zlz_ = - f C,F(T)'_'-F"" ‘ . . ‘
| -r3 . 4 , P 6)
o pT AT AT arn,
= f e (T = = Cy(T,) —C2 4 C ()
T A
.Adding the entropy contributions’: : \ AR ‘ B
| -, dey, L AT
dsy, = D200 L REP g pry
v . -r-’ o L . . T R
: S o c,pcr;') = N
\ -8



An energy balance for the process 1-2 yields

d /3~ | ' ’
d?l’b '= C.p(.r') 6‘ T"."‘ devl"'- 27-' "_g—‘ | (8)

Hence

de = dele[_i_;_] . _?__.

7:1 T" l (9)
If the actual process is adiabatic the!last term of course is zero. This is the
exact result obtained in Ref. 1 and 2, Eq. (1), and confirms the validity of .

the use of vibrational temperature in the classical thermodynamic sense.

>

Chemical Nonequilibrium

Next consider the irreversibility caused by chemical nonequilibrium.
Assuming the reactants and products to be ideal gases the internal energy per

unit mass of the mixture is given by

e= o, (M+(==)eT) o "(10)'

whc;re & is the-mass fraction of products and . and €, are the spec;ific
internal energies of reactants and products.

The same path is used as in the ﬁrsf case: (1-1') the gas is heated
or cooled at constant density and composition to a temperature 7, ! at which
the gas {s in chemical equilibrium. ( 11w2! ) The gas is brought reversibly to

e .
the final density and composition. (2'-2) “'I'he gas is he#ted or cooled at con-
R ‘_stant density and cofnposition to the f'}nél tem'peraturg;ft’,.'l‘h.e: differ,entiall'change

in internal energy may be wrxtten. ‘ S \
N de s v B 4 UL
\ . ) "-‘, T y\\ .. . (11)

L s (e )a(oc + C' (oz T ) < 7‘ | o

i




where C, is the constant volume specific heat for the mixture.

The entropy contributions are computed as before:

As, = f"' Cv ("‘7'_:") ar o aw
JS , . = de,:zi - P,'(c( //,0)’12.: . L
' 7' T (13)
- p(T )= <~ (T, )d“” + C é‘ d:":.’ ‘/ dp,
T . " A

where R is the gas constant for the mixture and varies with composition.

B o d?",,, 7"_& :
As,, = "'f;_ ¢ @‘ :T)_' Cv@‘z"r') = + Cy (°‘le) T, (14)
..\. ‘ ‘ ) ’ - -
- Summing:
| : 7’ C (0‘ T)" c (‘xa- :T) [(} @( )7, ) cv@": > T, j
“Sm.:f‘ S X & T . dT'II ,

¢

; (15)
A7,,  _1 dp, Sy ,doc/,,,
Oyl ) =57 -R, ~—;,’§-—- * [}‘M’) - e.(7, 2']—-—7:-——- g
Colocs»T) = CyloeyyT) = [cvpmﬂ- Co (1)) ety =ets)
- o= - Rm-Cn )] e
Making these substitutions and neglectmg second order differences .

o \:‘fr’ cvpgr)chr(T) 4 J d“ . Cv- éc,ﬁ,'r) azT! o
. T, . ‘ - |
| S | e

»"gnd (‘7‘)-—e('7',)




An cnérgy balance for the process ( 1-2 ) yields - . o

o Q e,,<T,)—-e,-(7‘,> dm 2o o
= = <+ C,lee,, - | (17)
Substituting and rearranging (. ‘ (s - ) .,\\ :
M ) 7/ ) - ‘
C sy = |- f e Dot ar + = fr ‘, S .
| 7 T wnh
: ‘ ’ - (18)
ep(T)=ecm) | 4@,
T, T

The entropy rise in chemical nonequilibrium processes can also be calculated by
the use of the wgll known Gibbs equation, 8 Equation (18) can be reduced to the

Gibbs equation, as shown in the Appendix,

2Q,, =

For the particular case of a diatomic gas relaxing adiabatically,

e and @, = €m where €, and e, are the internal energy of the

P~ Ca
atoms and molecules, i‘espectively. For comparison with Eq. (2) the internal 4

energy of the atoms is redefined to exclude chemical energy .

/]
=e, "'&at ,

where Jyd represents the dlssomatlon energy at some referenCe temperature.

e“,

The results may then be written

w - C (T)‘ ¢y (T) o : 1‘ °
als‘;‘_,»_-_ _§ | Va.' VYm ' dT-f‘ (-7—_:—,— - ?)'Ad

J, T v
(19) .

ea.(Tll) - e.7n<Tl’> _  e.(T)~ €m (To ) | .d‘o( )

{ .
7 } -\ T

8Ros:sini, F.D., Ed., Thermodynamics and Physics of Matter, (Vol. 1, -

ngh Speed Aerodynamxcs and Jet Propulslon, PrmCeton' Umver sxty Press,

Prmceton, New Jersey, 1955) Pe 782

. P . ,.‘_":_:,./-‘.‘.



This is not the same result which is obtained by treating the irreversibility
as a heat exchange between two reservoirs (Eq. (2) }. This confirms the
earlier argument that the chemical temperature defined by the mass action law

is not the same as the classical thermodynamic temperature defined in terms

. .

of a heat engine.

Conclusions

One method of extending thé.res\ﬂts of equilibrium thermodynamics
to nonequilibrium processes is the use of a heat bath analogy, wherein the
irreversibility is coﬁﬁned to a heat flow between suitably defined subsystems.
This model requires the use of multiple temperatures. The thermodynamic
justification for definin"g' these temperatures has been examined by considering
the classical definition of thermodynamic tempei"ature. It was found that

temperatures characterizing degrees of freedom which are capable of heat ex~

‘change satisfy the classical definition, and hence that the heat bath analogy is -

valid for processes such as rotational or vibrational relaxation as long as each

degree of freedom exhibits a Boltzmann distribution, It is not possible to ex-

tend the analogy to chemical nonequilibrium using a chemical temperature defined

'by the mass action law since the temperature introduced does not satisfy the

classical definition.
: : \
The entropy rise for vibrational and chemical relaxation has been ob-

tained using equilibrium thermodynamics-and compared with the results of the

-

heat bath analogy. The results agree for vibrational relaxation but disagree -

for™chemical relaxation.” = oL e o

\
v




Agnéndix
The Gibbs equation for a reacting mixture is given b)ﬁ8 _
TAdS = LE' + pfalar’-vjz /2:,- .y | (ZO)M
where J .E ., and #* are the total entropy, internal energy and volume |

of the mixture, Z. is the molar chemical potential and 77; the number of
At ) “J

moles. If there are no dissipative effects other than chemical nonequilibfium

AdQ =& +pdv R o (21)
'Coﬁbining Eqgs. (20) and (21) and writing the equation for unit mass of mixture -
TLds = = v o+ d}

F'or a reacting mixture this may be further simplified by intro&ucing the mass

3

Tds = = (M=o )dec vy )

fraction of products ¢

where A4 and Lé. are the average chemical potentials for reactantsland
products. For the jth specieé, the chemical potential at unit :pressure is‘ given’
by | . | : S L i
Ai B MG R T Aoy T g
Introducing the stoichiometric coefficients -zg\ and vJ-' for reactants and

products, Eqs. (22) and (23) yield
! o-— ° ¢ o‘ d
ds= | Lol Re .zm7.T"&TrT"" Ao +
SR e A= M

4 (24)

13




..

where 7 is the molecular weight of species j. The second term may be
. ' ;
réarranged as follows. 1If #; represents the equxhbrlum partial pressure at

the mixture densxty and composition, the gas law may be written

: ¢t T
LSl —r |
where T/ is the‘equilibrium'temperature for the same density and composition.
Then : ,V p ' ._,
% o Ev' - Z»— ) I S
TT S =TT -2 (7) T
‘ P #; ¢ ' . D
Also . . /
. / J ' (-4 o
Py - r CT ) ~/ (T l) '
R e Ry e
P | ROT/Z 7{;..7(‘/- ) _

The chemical potentials may be eliminated by uaing-

- ?, : ' .
/,4"::6-!— RT TS' ‘ . ' (27)_"

Substitutions of Eqs. (25)-(27) into (24) gives )
s = [. cull)= e (), ealti-ect)  sg(m=sir)

T | T T
° zzn p S .
S-S0 &, j T en ™
) 4
Now 7! ‘ g :
s°(T) = s°(T) =-§ =22 ) ar
. r o7 2 ' _
T ’ | (29)
- f C -—-—-dT o+ E,erv 'I"' K I
Equations (28) and (29) y1e1d the result :
LAd T‘)-e (T') 7‘) exlr) d |
dex |- [ LeaTll o, A T | sy

T T

which is identical with Eq. (18)..' SO

SR T
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