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The two problems treated in this report are initended to illustrate

mathematical problems occurring in thcvsolution of Euler's equations for
.stationary, two-dimehsional flows containing one or more closed, finite
regions where tiae vortlci ty 1s finite and non-zero (eddies) An approxi-
mate procedure derived formally by-egpah;ion for slender eddies 1s used
to simpliry the analysis, which»then rc?gces té the‘solution of a none
lineér, sihgular int;gral equation.‘ In the preSen# report, solutions of‘ :
this equation corresponding to (i) a class of wake bubblés reducing to
4Riabouchinsky' solution when the vortici VY in tke eddy is zero, and
(41) a class of cuspeé eddies attached to the base of a slender wedge
- immersed in a unifora flow are derived. In the Case (1) 1t is found that .
tae non—iL“e4r interaction between.the eddy and the exterior, irrotational
flow can result in the branching of solutions aﬁ-éritiéal parameter vaiues;
and'consequently ﬁhét in.géneral thg ﬁubble 1; no; uniquely determined by

the paremeters. L re’
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I. Introduction

In this report we chall derive and discuss several new approximate

solutions of Euler's equations

4

98+ vp=0

where zivis the velocity, P the pressure, and density is cohstant and
equal to unity.- These.so;utions bave certain propgrtics which are
believed to be éf importance in physicgl préblems ¢’ greater complexity
than tic mathemgtical problems to bé considered. In .particular, the
studynof stationaiy laminar flows in the limit of intinite Reynolds
nucber, i.e., tbe mathematical probiem of solving the full Navier-Stokes
equations

Fofevre L viTeo

..(ln)

(1v)

(la)*-'

(1b)




for Re »>] 1cads us to consider the merits of (1) as a "rcduced"

form of (1), and the po.,s;blc emergence of a solution of (1) as the

cver a certain regilon (dcpcncinf in general upon Re. )

limit of a one po.ramevcr Tamily of solutzons of (l) , obtained,when

the parameter KRe becomes infinitely large. However, the present
report is concerned sc.. , with the theory of solutions of (1) and not

L , ' .
~of (1) . (Eowever, see Chuztier VI.)

.share
The solutions of (1) considered below the property that there.

-

exist one or more closzad, Finlte reglions where the vorticity is equal to

a constant W H QO ; Aa.ny such region will be called va.n eddy. Our discussion
wiil be‘limited to two-dn'.zr.enéionc.l problems and will consist of the approxi- »
mave analysis of -two bouhdmv-valuc problems. The first represents a logi.cal'
eJ.ctensionv to flows containing eddies of ti:é ciassical theosy 61‘ discon‘giﬁuous_ ’
irrotational solutions of (1), while the second is a specisal 'c'ase of a recc;.'n‘cly'
proposed model for the inviscid limit.
The main new anglytical problem whica occurs in the study of solutions of
{ for exauple)
Bler's equations containing an eady arises when tnere exists a region Ro of

rrotaticnal motion which is sepéra.ted from the eddy- R { by a streamline by

(Fig. 1). Supposing for simplicity that the points A and B are fixed, the



problem is then to choose the free streamline co that on it the pressure

is a continuous function of x and y. DNote that because of the rotational

flow ¥ is no longer a constant-pressure line. Cleafly the process of

fitting in such a ¥ involves a non-linear interaction between a rotationali'_"

~ {interior) flow and an irrotational (exterior) flow, which is essentially

different from, e.g., the choice of a constant pressure curve in an irro-
tational discontinuous flow. At the same time an ihesscntial but troublesome

technical difficulty occurs. DBecause of the appearance of an inhomogeneous

" differential equatlon in the computation of tre interior flow, mapping

procedures (which-leave‘Laplace’s equation invariént-but‘not its inhomogeneous

form) can not be used in any straightforward manner. Tous it has been found

necessary in the exaaples discussed herein. Fo golve for ¥ by a diréct
dtt;ok oA thg non-lincar'interaqtion problen. That ig, we reatrict attention
1o thévphysiéal plane and use the pressure.COAAition on ¥ As the'deter?dnihg
one.,.

Ve skall study various aspects of this nonklinearlinteraction, ﬁsing

two models. The first, considered in Chapter IV, is an extension.of



iabsuchinsky's ;olution for uniform flow past two syzmetrical obstacles,
one the mirror image of the other (Fig. 2a). Here the attachment points -
A and B are fixed and the eddy ;ep;aceo the stagnant cavity of Riabouchinsky's
model. The second example .(sketched in Fig. éo) représonts the‘sopgrated
flow past.a symmetfica; obstacle, the eddies foroiﬂg an aﬁtachod, cusped
region of closed otreamlines to the’reor of tge base of ?he body.' Tois

model, which was proposed as a stationary inviscid limit for the floﬁ.past‘

a bluff obstacle by Batcheior (Ref. 1), is formulated and solved approxi-

mately in Chapter V. In either case the principal simplifying assumption,
introduced in Chapter III, will be that the eddy is siender. This is
accomplisned, in the {irst case, by_incréaoing the separation of the

obstacles, and in the seccnd casc by assuming the obstacle';tself is slender.

" The result ing equatlono and boundary conditions constitute a "slender-eddy"

the sler centody approxiration off '
approximation fully analogous tvoOWVen tional thln-aizxoil theory. On the

otaer hand, the essential interacﬁion terms; which remain nonélinear in the

siender~-eddy theory, cre in each case retained by an appropriate choice of

the order of W relative to the parameter that is small. This non-linear

interact ion constivutes . the main theme of our 1nvestigations.



The principal results of this rciort are, first, that solutions
ol the type sketched in Fig. 2 exist in the slenderéeddy approximation. ..

This will be established by a combination of analytical and numerical

‘steps. ~ Since closed cusped cavities are known not to exist behind

wedges for the irrotational case cb:::(), this first result shows that

the addition of a rotational eddy can enlarge the class of possible

solutions of a given problem. Second, we have found (in the Riabouchinsky

bmodel) that the non-linear interaction leads to branching of solutions

and a possible indeterminacy for "reasohable“ boundary conditions. This

' behavior is not altogether unexpected'in non-linear elliptic problems,

and is related to the branching of various "inviscid modes" in linear

svability thubry. The present solution does, however, provide a specific

example which can be worked out through a range of w whére the interaction

betﬁecn‘vprticity and flow is.non-linear. It also suggests that rélated-‘

models of non-stationary flows may be of intercst in the investigation of

" global stability in the presence of finite disturbances. We shall, howeveér,.

not consider the non-stationary problenm in'this-report.



For the case in which the velocity is continuous, on ¥ » Col'dishti-.kb

- (Rez. .2 ) bas estaﬁlished the existepce of gt least _two exact solutions pr.'
' " a general piéblem in\r.olvir'x'g"a;single eddy, providedlonly t_ha.t‘ W is

- sufficiently large. The extension of the ma..thematical' tgchniques useé
in Ref. 2 to the discontinuous problem considergd in tﬁg presént rgpolxi't.‘ . lv
would _probably prove very fruitful. However (with tpe ‘exception of
Col'dshtik's oixe-dimen’siorial"model, which we extend in Chaéter II) we shg.j;
restrict our analysis to the slenéer-eddy appro:dmation. At the vaame. tine,
it should be p'ointe_d out that thé'discoxjtinuous .c.a._se i-nv’o_lveS several
' ;iéfinite depa.rtures from the xﬁethods a.ﬁd reéﬁlts of Ref. 2. For example,j
there is a differenge in the manner in which bf.q.nching occurs in the two
problems; in our first Qxample oxie brénch contains tie "cl_assiqal“

Risbouchinsky solution, while in the continuous case W is positive, -

uﬁifdrmly over both branches.-
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II. The Exact Problem = : ‘ ' .

2.1. General considerations. Consider a two-dimensional solution
of (1) which is bounded and 'single-\}a.lued over a simply-connected region -

R having boundary I® . Suppose further that structure of the solution is

g topologically equiv&lent to the sketch shown in_‘Fig. 3. In the region R,

&

52‘

(which contains the point at infinity) the flow is irrotational. In the
regions Ri, b=l,2,...,N the vorticity of the flow is constant and equal -

to Wi, 'L=hl,-—-,n,‘re;spective1y. The cmes.X;,. iz 1,2,...,%  are the

free streomlines and are attached to [T at the points A{ and B;. In general.
both the velocity and the vorticity are discontinuous on the YL , but the

pressure 1s always continuous there. Such a flow 1s to be called a Buler

' ~ flow containing n-eddies. That is, an-eddy will here mean a closed finite

~ " region bounded by a streamline, over which the vorticity is cbn;té.nt. In

this report we 'shali study two simple examplés of Euler flows of the above

type containing a single eddy, which are therefore équiv&lent to the special

¥*
case saown in Fig. 1,

¥* : : _
Note that not all Euler flows in a simply connected region which contain

n closed, finite regions of constant vorticity can be mapped onto Fig. 3.
This Lo “ecause of the possibility of two free streamlines :ceiing at an
interior point to form a cusp (or, if the velocity is continuous on the free’

‘streamiines, a stagnation point). In the exomples considered the cusp.will

occur at the dividing streamline and therefore effeétive.ly on I s 50 that .

this situation 'does not arise. |



If we introduce the streamfunction 4‘ y.

—

T @
X -

W ?_43 )l v=';?“’ ) ?3 W

- then QJ is a constant on [ and»edch 8;-, and-\p will always be 2

normalized so that this constantvis equal to zero. Using (2) we may

partially integrate (1) to obtain the well known relations

2 (wevt) #p = Bernoulli's Function = H (Y . © (3a)
Vb= Vorticity= - 42 ~(3v)
v.#‘ Vorticity'= = 35 30)

The function YY) ha.s. the. form
| He - w; Y +hy= H (W) o (4)

_in' Rl » where the h;) i=\, 2, vee, D are constants, and wo',"'o ' .

We shall assu:ﬁe that \}I'O on the segnehté A,C and 8, D of 7 , while

-~ -
4 N

on the open segment CD we will have 4‘) O.. Since \l; is ‘ha.mo'ni'c

~in Ro, ve therefore have’ tl)>/ O on the closure of Ko . In a region




R; , Vz4=-'~0; and Y =0 on the boundary, so that VY > O or qISQ

in the closure of R; depending upon whether or not W;»oor w, <O, -

're'spectiw‘rely. We shall say that the flow in these cells is kinémtical;y

‘D_gssib;e it

w;<0. W, Wiy £O, i= 3,2,...,n - +(5)

It follows from this definition that the flow is kinematically possible

if and only if for any two adjecent regions R, Risr, i= 0,1,2'.-'..‘

~ there exists a (possibly discontinuous) function N(V¥) wnich through (3) o

generates a solution of (1) in R; + Ry,; " , defined by U= H; for _

.(/7(0(01- ¢.('O , as the case may be) and by % = 21-“ for }b(O (y>0) .

" Note that a flow which is kinematically possible is one for which @ ; < O '
- and the vorticity of adjacent eddies is of opposite signs. It 1is conjectured

that (3) are necessary conditions for the existence of multiple-eddy solutions .

‘of (1) vhich are at the same time (at interior points zlimits'in the sense used |

in Chapter I. Howeverv,‘ this possibility will not be imrestigated,heré and

for the purposes of

'lQ



R ' ' *
the present paper the question is of no importance.

It follows from the preéeding remarks that a flow pattern containing
.n eddies is fully'énd uniquely determined by fixing the free streamlines
and the 2n constants Wi, hi , i=1,3,...,n, To obtain a continuous '-

pressure and therefore a.solution of (1) having the required prbperties ’

we must choose the V. 50 that

LUa-g, ) = him b, im0l I

vhere ¢; denotes the fluid speed in R; ; the constant ho ﬁways will
i [ : . .

.4 be known in advance. The most important problem of this general type is

the problem of fixed attachment, which may be formuia.ted as follows:

Given the vectors A= (A, As...,An) and B=(8, Bx, ..., Gr) and. -

¥ Ir Tact, in the firal ecquations only. the souare of &j ““o*;r‘s. :
— It should be noted that this g priori coxm&ition leads to a topolojzical -

orientation of eddies which is the same as what would be assigned intu:.tlvely S
by considering the probable action of viscous st_resses , and vhich is in

agreement with observation of certain flows. It is possible to show (by

considering the dissipation in an eddy) that (3) are necessary provided that

" every region of closed streamlines has finite arca in the limit of infinite

Reynolds muber, and (Elsoyfrovided|that the linit i sufficiently well benaved.



2n-m (0<M<an) of the AN constants W= (Wi, Wh,..., Wn )

bz b,y oo hn) , to £ind ¥ (F, V. Ly )‘;) and m remaining

4 constants such that the N equations (6) and the /m contraints

Blegl=0 L emenm @

- _. are sdtisfie;i. The constraints are typically associated with the geometry -
.of attc;éhment' of ¥ y a.ndvin the above 'definition ea;::h of the ’ 3",‘ |
presumably deterﬁines emtly oné-bf the M urﬂchowh co;xsiants'. Eb;am_p_leg '
illustrati'ng the cases (h‘,mv)= (, 1) | g.nd (1, 2) vina be \.rorked B

oﬁt :'Ln thel s_lenc.lei--edd_y approximation in Chapters IV ‘m;d V.

A final rem;a.rk of a 'genera.l natu.re. concex"ruzs f.he possibility Qf tx;ivio.l |

». solutions o'_f the above problem. Clearly onesolutlon of the n -eddy proﬁlem

; ie}‘,o‘otained when Yn collapseé Qm;ov r‘ and a soiution of the N-i -ediv

" problem exists for the some Wi, wx, .v. ,Wno . Therefore we may 6ay

that solutions containing M-/ are trivial in the h-éddj Iiréblein, and unless

otherwise noted we shall mean by & "solution” ‘of the problem a non-trivial

solution. Bowever, it will be seen through the examples -that a given probi‘em

EY

of the above type may possess only trivial solutions, or it may have more

than one non-trivial solution.

12



2.2. The case n = 1. Reduction to an: integral equation. Restricting

- attention henceforth to-the situation sbown in Eig. 1, we write (6) in the .

- form

[ 3 - 1001 ’1., -
£ R 2 W k- b

In (7) % denotes the streamfunction in Ro ’ ‘br the streamfunction in R_.
when the vorticity is unity. Now (8) may be expressed as a non-linear

integral equation for ¥ in the following vay: First, regarding ¥'

"as fixed, ‘1’0 is expressed in terms of the ‘Green's. function for Laplace's

equa.t.ién in Ro ,. .Analogously \h can be expressed injterms of the Green's

funétion for' Laplace's .equatij.on in R, . The relations are of the form .

4/5"' '2";, g*}'“"z) ‘G (x,yn"zHScm)
r". .

o

\P;' "}-‘;r S\ Gg, (%5 5,7) dydy
R,

where GR& denotes the Green's function, and in (9a) I 1s traversed in

the positive sense ( Ro to the left). Since the velues of ¥ on [(p are

- ®)

(9&), '

(ow)

a3 -

e oa oAl



“known, we may express the left-hand side of (7) in terms of the

and the'regibn of integration in (9b), 1i.e., in terms of by alone.

2.3. The one-dimencional problem. For the purpose of illustrating -

the use of (7) in the simplest possible form, we consider briefly the

one-dimensional single-eddy problem. A function ﬁb(x), defined in two

adjacent intervals on the x-axis, 1s cohsidered, and we require that
satisfy a certain jump condition at the common end point. Using our
previous notation, we require

%xé*w > O . ',._,«l»'lo\= J(Xe)=O Sor O$x<kf

4= 0, =0, Y=l e Xy Ex<l

L L ew
2 '("»?‘)x:xﬂ .2 (¥ )"="r"- h

.Solvingffor Ap, (10c) leads to the algébraic ‘equation

(lOa)‘é
(10b)

, (10¢)

(104).

U



wnich is the one-;dim;nsional version of (8). The solutions of (11) -
are sketched in Fig.ﬁ. _ Inlthe absence of . - constraints (7) we
| determine Xy by fixing Ww and b . We then ob‘s.er_ve two properties |
of the solutions: (1) For all values of w and h thex_"e: exists a
solution which lies outside the basic mtew;al_ 0$xs | . "Thg
corresponding \} is thefefore ne;essarily a multivalged'runction of %K.
-In the planar éase multivalued solutions ‘\y(l,'j) can 'alsq' occur, but
.are'sometimes ('a.nd‘ will here be) rejected on physical grounds. (ii) |
Xy 18 not necessarily uniquely determined by w and W . 1In fact,
for the same values of the parameters, there may exist one, two, or
three solutiqns in the iﬂterval' OgXxg | . The crit;igal values of
. W and h where the rumber §f (miutions changes determi‘ne the bifu';cation
. points of the solution. Thus in Fig. Aa there is one bifurcation point.
~at @ , and in Fig. 4b there are two bifurcation points, at ga.nd ¢,

' We shall find that a bifurcation point analogous to the point ¢ occurs

plane flous

in the-planer—ease in the slender eddy approximation. (1ii) For a certain -

range of W and h<7 there are no solutions in the interval O Xg) .-

* ‘
&e, e'-gnj’ kr. 3; Chﬂ.pter Iv .

s -



III. Aoproximations for Slender Eddies

3.1.‘ The exterior and interior problems. In order to discués

the passage from the exact problem formulated in the preceding chapter,

.40 the approximate problem valid for slender eddies, we shall consider

the geometry shown in Fig. 5. The boundary ™ consists of the cur_vé.

€Yol , ~l=X €Xg-I |
Y=< O , 1< x<+i = £Yp (0

EYal)  , +1 8 X §iex

where .£ is a small number, € <<} , and the free streamline Y consists

. of the curve

y= eYpt® , =1 <X <+l

where Yy , Ya > Vi _are positive, continuous functions of X% and

WENS YD, V) Y e

| YA,(;'-'\):. Y 14%) -.o



At iﬁfinity the conditions are

AP' O, w=i, v=0 ;' Ches 4) o

We propose to represent {"o' and \h by approximate solutions valid

for small & , using conventional thin-airfoil a.nd boundary-layer procedu.réa ’

"and to use these expressions to derive an approximation to the integral

equation obtained from the pressure condition (8). The exterior problem - . .

is thérefore to find the streamfunction of,t'he' irrotational flow, assuming ° .-

that the boundary conditions imposed on this flow may be written approxi-

- “ mately as

[
EYa)  —leAgX =) . |
- V(x,0)= t Yx’(tl ~1<X <+ : | (12)
eV i €Xg e ]

- .

'i.e., in their thin-airfoil form.’ The interior problem is to be solved-
through the use of a boundary-layer approximation, that is, by the

replacement of the exact probiém vy °ew JJ zero on the boundé.ry,

17



by the approximate form

4

| ‘?;i’: w ond Pl e X, eV )20, =1 < x <+l
v . : - R

The solutions of each of these problems is easily found, and we’

obtain the foilowing expressions for the ’sfreamfuhction:

_ _ o + el t o
. ¢ y Yy (5) 4 yYsin
- Beterior: ‘P “’“’”’ Y- u{ Su—n‘*v Ve gu TR Stm;’ SR
. _ . ) .l") -‘ *" .. ’ '
Interior: -‘-:,- $= $(y) = % [ Y- ey Yy '(ﬂ]: - o (15)

- 3.2. Reduction to a non-linear integral equationé. Using (14) and _."

(35) in (7_) there results

-l +l 'o-un ' ‘ ' R
3 S'Y_“QU;"%YM % +S"‘—;§“¥ - Yylh*'“*"“)
T XY <3 ) xey % 6) -
. ={=A -l : +1 » : - . L
for {..'l LX<+ , t,he' integrals now being g;veh by the Cauc_ény

Principal Value, In order that the contribution from interior and:

L O R R
A A : R e



exterior solutions be of the seme ordex:, and of the 6rder of ) Ve

_therefore must put-

ws J-%' , h= < ¢h | - : (17)

where w—* and h are now numbers of order unity. The phvsica’l. meaning-
1nterior o

of (17) should be noted here; thel\velocu;y mst be small if the pressure

perturbation caused "by a slender eddy is to be balanged by the interior

i‘low, ‘and consequently h Jumps by almost the exterior value as Y

is crossed. On the other hand, the width of the eddy is small, of order

€ , so that if the velocity perturbations are of order /e » the vortiéity N

must be large, of order /JE .

Collecting the terms of order & in (16), we then obtain the asymptotic’ .

forn for a slender eddy

4l : -l . +H+x _ o o -
L Yy, n W YW )(‘f»“’.i Yoly) gy
— 8 4 ¥ T8 dy - il dy - (18)
by -g -3 8 x-5 J X-3 _9 L ( .)
-4 o | ~l=) 4 . :

-which is a ndnflinear singuia.r differential-integral equhtioq_ for Yx .

In order to convert (18) into a pure integral equation, we first make use. '

S99



of the well known inversion

. +! o
+‘ ol

s g dx  , (.19*°) 

“together with the identity

% h—i\-' o=l H- Xo -1 KT ;x',]ﬂl\xlul
L (§5=%)) (x; 3) A EE TR Y -(20)‘

 to put (18) into the form

o+l =
' (TS (h + Lt Y")J} -1 e ‘(A'(s) dy
Yeld= =3 7 == T

fi=xt x-'s e ) Ve x=3
-1 » ' E o =I=>

- L . @)
-_'_S Fer Mt gy, . - < x <+ o .

n

-x*  R-%

|

X In the form (19) it 18 necessary that (i=X*) £1x) .
be integrable on £.|,+JJ » 8 oondition which is always met. below.' v



The conditions given previously on the derivative of Yg at the attachment .

points next give two conditions which will determine h and ‘W . These

4l +i4n

ﬁl g ,_} “‘»,_;w Y')J‘__SE—'YAB)J;-- N'__' Yoy = O (22a) |

- -1\

o +(+x.

-l g{:: (w* +8¢o“ Yx)Jy - -1-'7 -N:‘-'? YA(TH's- = gm YB (ﬂJj‘=O(22b) ,

LY . +1

| ‘I.i‘ now the change of variables
A= wTe , 3= wre’  , Yy = w¥(o) - (e3)

- is made in (21) and the result integrated once, we thé.in the integral

equation for w¥(©),

K |
‘ ws(g)g h SmTd + ~—8-€D , S K(O;e') SWT\'G W' (9 )dé' . | | (2&&) |
+ wh 8) - w;(Q)



. where

- “
, ' tamT, ' . K . ' R
Kio®) = | l wmTp + TP l. 2 Z TN 57N’ | (2b)

Flange- e oooon
e W [E dawe] Ya (ethe @
| | (24a)
@=L et [ VR @) Yo () d |

o

The constraints (22) become

' ’ . k - ) ,
| - * ! ' (o) ! : !
. S(I-W’EO\ (h -0—%&»'.\\: *)de = - i\} l__? Ol 4’ t)dt r= S\'&t\‘ (1rt) dt (25a)
' (o)

*x
(-]

' . | A v

Smwme\ (h*+ #u“ w*) do = "% XJ}: Ynﬂ“‘T)dt.' ‘1‘? g \}—?';*?Ya' (vl-i-_'l‘)dt (25'b)

° - , o

These together with the non-linear 'integra.l equation (24) conétitute
the final form of the general slender-eddy approximation » and ye now

consider various special cases.

s



IV. Riabouchinsiy's Model

L.l. Preliminary remarks. We shall apply the slender-eddy theory

and equations (24) and (25) first to the case obtained by putting

Y= cVienen ) Li-asXx -l

Yoo cViewsx 1 1gx g 4% o (26b)

‘and letting A and X% tend to zero. By this limit process the "obstacles"
defined by (26) are reduced to the th points at X= ¥ | ; the r‘esi@u&l
effect.r of the obstp.cles is, however{ finite and conﬁected with the
‘constant | c>0., A physical interpretation of the solutions obtained
under these conditions emerges from considering Riabouchinsky's model in
the limit of large sep&ratioﬁ. ’Supposé that the uniform stream of speed
unity impinges upon an isolated obstacle, and suppose that there exists an

irrotational (discontinuous) flow for this obstacle for which the drag

 (26a)

3 ) * . .
' See Ref. 4 , p. 68 .

- * ) ’ .
is D (per unit length). Then it is known that such a flow pattern contains

23



a frec streamline vhbse asymptotic behavior is given by
¢ ~ 40 4 65 . X"——' o0 T .
AN L RE o (27)

where X ’ y' are dimensional. Consider now two such obstacles,
placedj'as shown in Fig. 2a. (We consider below only the half-plane
Yy > O ). If the separation between the obstacles is 2L , and it

A 1s a characteristic body dimension, (27) may be written

e R

Comparing (26) and (28), we see that the slender eddy solutions 6bta.ined_
o .at A= X = O for a given € approach near *= X I the asynptotic

behavior of the streamlines for the irrotational flow provided that

dmu’ - ¢ \J’: , '

The corresponding vorticity in the eddy, vhen scaled with L instead

of L. , 1s then equal to

ol



LY ¥ o ‘i% o' e ew® ‘ QY
L 04 (30)

and is small. Specifying ¢ is moreover eq\iiv&‘l.ént in the slender eddy

. . .
approximation to specifying

Loaw*o _ o dwtu) c | (
- © = - 2V . X 31)
T dé T V7 - -
The governing equation for the free streamline in Riabouchinslq'g :
model is theréfore found to be
W) = h* sims + é-w“l Sme,s') smm® w*le’') do’ (32)
o B .
The two constraints (25) become
! ,
. 1 )
, % (I~ o) [h’+éw‘1 w*] des ¢/ . - (33a)
2 - | ‘

¥
wote that (31) states that near X=X |  the slender-eddy solution

matches, in the sense of Ref. 5 , in an overlap domain which lies in a.

szall neighborhood, with a flow of discontinuous type past an®isolated
ovstacle. Therefore, in our approximation, all such flows for which the

obstacle experiences the some drag are equivalent.



l
_ S(lf W e) [h"f D,'“’,"W’lj do =

c’ﬁﬁz’ | "(33v)
o o A ,

The two sets of constraints)(3i) following from the physical model for

large separation, and (33) following from the substitution (26) are seen

~ to be equivalent if W is a solution of (32). -Adding and subtracting

-(33a) and (33b), we obtain
| .

R ] ’ : .

1 w* I wwe w¥(ede = O | (3

: , -
I
¥ .o # \ *? -
A w* () do /‘rz"

o ) (.35)

¥
The first of these is satisfied identically if W 1is a symmetric

M§tion qf 6- '/; » i.e.; it w¥is a metric solution. Moreover

it 1s seen that the symetfic functions cax{ solve (32) (in the sense.

| that the equation 1§ invariant under O - )~ é‘).A ﬁove#er there -
remains. the possibility that there exist solutions of (32) which are _

- not symmetric.



We shall in fact find solutions of (32), (34), (35) emong the
sysmetric solutions, so that (34) is the sole constraint and one and
| . - ., .
_only one free parameter is determined. We shall take &y %o be the
parameter which is prescribed in advance, and write the equations in a .

form involving a single unknown parameter by the change of variables

whs 8/@!‘ w , There results
_ ! :
Witz k swmwo + ‘ K(0,®") smwe’ w*(o') de’ ~ (36a)
A |

= NUOLI o o (36v)
e gt e ' (30

8 / 8V ‘

*

Our conclusion that (34), (35) are in a sense redundant is éupported

by the following physical argument. Consider the drag forcé' exerted on

the surrounding fluid by the clbsed contour containing both obstacles

and consisting of segménts of the streamlines \":‘- O . Clea.fly this
quantity must be exactly zero. To order unity, however, the contributions
from integrals over ¥' are zero (by virtue of the fact that MERIE Y(+))=d) '
50 that to the same order the contributions from th: ette(:li surfaces of tl;e :
obstacles must vanish. But this is equivalent to the statement that f.he drag .
of the upstream obstacle 1e balanced by mMd equal thrust at the dovnstresn

one, or that 94-'3-*(0)'-'-' -'EL‘.‘-’*U) : .
. - 49 . de :



where ¢y is the given, and Kk the unknown parameter.

k.2, The existc ce oi; solutions. The aim of the next two paragrapha
is 4to demonstraf.e, for given v >» O, the existence énd poséible non-
uniqueness of soiutions of (32), (35). No furtk;er appro:fi.mations are
mad.e , although our analysis will involve a combination of an#iytical and
nwericgl steps. Our main result is contained in the following theox_'em:

For _given positive constant ¢, there exists (i) if w¥s O , a unique

solution (Riabouchinsky's solution), (ii) if W¥> O and r is less

than a certain constant r*=" .7} , at least two distinct solutions.
By solution we hgre mean a solution of ( 32), (35) which is continuous
| and positive if O <6 <€ | . The sglutions exhibited below are symmetric
solu;ions.
" In our discussion of the theorem the general x;eference will be
Tricomi (Ref. 3 ). The following properties ‘of the kernel ﬁnctalon
K(6,0’) - will first be noted: (1) K is symmetric in § and 9, , y
over the interior of s consilé;_ting of the points
and is positive A the unit square , 0£ 6,0 4 i ~, vanishes on the
boundary of S éxcluding the points (0,0) ana Q, 1) , and bebaves like

- losxe-e'l - ‘near 0=0 , 00,1 . (ii) The iterated kernel . g



defined.by

I A
K, 16,8') = g Kie,0") K(9)9") do"
o)

. b} .
. 1s bounded (and therefore continuous) on S. In particular K 1s integrable
over O . (14i) The functions SWTNO , nNal;2, ... are eigenfunctions '-

A . S
with respective eigenvalues /n:

| | |
| g K(8,0") siand do = -},— snune | - (37)

]
The proofs of (1)-(iii) are either elementary or well krdown and will ‘not
be given here. An immediate consequence is that w-k ‘M\T"O , and hence

‘any solution of (36a) may be represented by an eigenfunction expansion

00
wig= ) Gn STIN® (38)
n=0 .
. | | , N
which converges absolutely and uniformly on OLK©</[| .
For the case "= O , the unique solution is
wke h¥sime o, W¥s L - (39)

This is the Hilbert-Schmidt Theorem, Ref. 3 . , page ilO,

—



This is Riabouchinsl_qr's solution in the slender-eddy approximation. . We
propose to continue this solution to w*>° by formal expa.néion of .

(36) in powers of R : '

00 L
i+ (40) -
W= Z h,” Wi o
120
Subsf.ituting in (36) and collecting terms of like order there results - |

' Wo = ST o ‘ o | \ (l&la.)

TR ' :
wi= 2 S Ki9,0') wio; (@) W;(8) snwd' do'y =12, (b2D)

We now prove that (41) provides a (synmetric)‘soiution if k <"/.‘ . "'

To do this, wve first generate £h¢ numbers M; by

el
1-Vi-4k = 2 ch hw
iT0

If now (37) 1s used, it is seen from (41) that the M provide bounds in

the fornf

. 30. :



max  Iwile)l §wm; , im0,,2,...
0geg! |

and the result follows. The first few terms of the series a.re

3. .
Wig)s § IWmTe - i3 SwIWe

12
o . |
Wal®)= -Z; MO - —7'12 M TTH + 20 S sToO
wy(0)= %—3;‘ sinro ~ R 503w ¢ 132 s ~ —— SmTUE

17280 Bed0D 180

and, as is easily shown, in general

i .
Do ‘ \w) : .
wile)= [, an' swwno where  Qdzn =20 , nz 4, 73,...
nxs o | :

and .(") '(;5
. . L ) .
q,“)70) agn.“ ‘Oah-t <O/ ‘ﬂ‘-' I, 2).--

" The number of solutions of (36).depends) hove\'rer) upon \‘l . We show now

that (36) has no solutions (38) if k > ' : moreover the formal'serie's '

(40) diverges when % > 3 . Actually the proof is quite simple. .



satisfied by -
Consider the equation forAthe first Fourler coefficient Q, :

\ - . |
a,= 2 S smrowi)de = k+ 2 S[st}a'afe wie)® do
' 0 o 0 '

] 1 . ' ‘ . -
- k o+t Caaf + @l + (a=a)* + (q-ap)+.-.]
_Thusingeneral-

2 .
4, - 20, +2k <O |
- (42)
and this is possible only if lk <", . The second part follows from
the fact that in the series solution the even-numbered coefficients vanish
and 4, and Q; are of opposite sign, as noted ea.rlier, so that the
coefficlent of a! 1in (42) can be replaced by 3/2.
- Therefore as k is decreased from /3 s there occurs a critical value
. *'. ) * y ] ) .‘
k™, /4 €kRT < Y3 , where solutions first appear. There are two
) * _
possibilities to be considered. "Either R is a singular point of the
integral equation, in which case solutions become unbounded there, or

‘ | | ;
K"~ 15 a bifurcation point and there is at least one branch of solutions

; ' * ,
distinct from (40) for some k < k. Now we can eliminate the first

32



possibility by observing that (42) implies @, , and for non-negative

solutions the maximum value of W as well, ig bounded if kR 1s bounded. -

It follows that' k.* %Ls a bifurcation point and t.her; an upper branch
o'f #ymetfic w1u£ions sﬁould be sought. .We shall obt.a;n a .new branch
of \solutions by means of an itere.t‘ive me£hod.

‘Specifically a sequence {'N‘m, n=1,1,... 3 of iterates
wm be.found which converges to a solution of (36). Consider any
non-negativeg symmetric, éontir_mous function HO) defined on 0$ 8|

- and ‘atisfying $0V=4{)= _0 ; then for any positive number > we

define the quantity F Lf] by

Fu [$%]

Fy ()

|

The function Fx(e) has the following properties: (1) It is continuous
on Of eg ! . (11) If the coefficients of ‘f‘ alternate in‘ _sign'; beginning

with a positive coefficient of sinW , then.F, (6) nas the same property.

Consider now the iterates

-(-‘o? .3 si&m’é

SK(G, )swnre {z(e)de + X SwwTt e x._>o"

(43a)
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y 1. o ) ()

#0 T LT = TR (3v)
Yt = FM ()

The sequencve's i&('\)} and {’CU‘)}_ have the uniform bou;xds 1 g.ﬁd | ‘ ,‘

'/)c » respectively. Therefére U'M} is an‘equicéntinuous‘ family

of ﬁmctioﬂs, and we may accordingly select a.sub_seque‘nce

' _ *
which converges to a non-negative, continuous limit function + . It

can be shown also that

) ‘t’m")-—-p. T

R E A I F1)

‘'say, where T 7 ./H-)‘, . The ﬁﬁctibn W'-"'t-"" is seen to be a sc-)lution'
of (_363) providéd \‘(..= Tt X : »-,' Wgcan therefore generate a fami;y of
s'olutionsrof the required type. |

These solutions contain those obtained by expansion in R (occurr‘ing
here for X sufficiently large), but our aim s to exhibit a.n upper branch.
Consider then the choice = € << | K We havé seen thgt T 1is bounded,

and therefore we may choose €& 80 that a solution is obtained for R

arbitrarily small, but for which T ¥ '/ I+ € . Therefore this
* N ) - :
Sce,: €ef8ey Bcfo : 6 2 Chﬂ.p‘ber II .



solﬁtion is distinct from any solution on the lower branch wl;ich is clo?;e
to the Riai:ouchinslqr's solution,. gnd this proves the result;

It is evident from the continuous dependence of F, upon x that we
can; sﬁarting from a.‘solutionl for k emall and positive, continue it

ana.lytic&lly into a certain range of negative k . However, then the

term % MW@ ‘tends to decrease the values of Fa (0) » with the |

result that the iterates may cease to be non-negaiive functions. For

this reason it appears to be difficult to find a negative lower bound.

fbr %' without more refined estimates.than those used abowtre_.. The numericai
results discussed in the following paragraph bear out the exist‘encc;.}of a .
1limit point - k;.:'z -1.87 ( "?c = “W) below ﬁhich aq_lutions contain -
negatixée regions near'the end points.

3 Numericel results. We now complete the proof of the theorem

sté.ted‘ in the previous paragraph' by describing the results of numerical

* .
computations of both branches of solutions. Figures 7, 8, and 9 contain

the cdsential results. The curve of the maximum eddy thickness T versus
* .

Sce Appendix A for a brief description of the numerical procedure..
LS . '

W

3B



: h separates into the uppér and lower branches of solutions at the
birurcation point k¥ = .32 . The limit point Rc¥-1.87 occurs
at the cusped eddy. The behavior of ka along the bupper branch is shown
in Fig. 8, vhi;:h a.}so shows the manner in which the cusped solutionbappea.rq.
\ Strictly speaking, the limit point W 1s excluded by the m'm which the
~ flow field is considefed to be set up, that is,l ‘by the separation of two |
fabstacles' with positive drag, since V(= O now cqrrespdr_xds to zero drag

instead of zero w” . However, the cusped édiv is of inte_:rest as a possible

‘ ¥
model for separation and reattachment on a wall.

The analytic continuation of the upper branch of solutions past k=l

{ond indeed the continuation of the lower branch past k=Q)
must be relected in the present model since ¢ win have a negative region

' recalling{i that ‘ -
near the end points and (e&n«i the flow considered is symmetric in Yy )

-must then be multivalued in either half-plane. .However, there may exist

physical problems where this is not an obJjection and where the sc‘;lutions'

** 'l;he fossibﬂity of cusped solutions in the present problem is not
associ;a.ted entirely with the presence of distributed vorticity, éince _
exemples are known in thé classical theory. Indeed, sipce in the slende;r-
eddy approximation the veloci_ty in the eddy vanishes at a cusp, insofar |

a5 the local behavior is concerned the stréng;h of the vdrtiéity is immaterial

and the arguments advanced by Lighthill (Ref. 7 ) regarding the existence

of stagnant, cusped cgvities behind obstacles are fully applicable here.
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piwemwmmmdwms
for R<R¢ on f.he Aupp'er branch and k<O on f.he lower branch (that is,
the full range K <. k" ) may be admissible solutions.

Thg curve shown in Fig. 9 sums up the ééluﬁion for ls*. For non-
. ncgative v ¢r ¥ = .7_." 'there> are again two branches of solutions, the | o
' bi;‘uz"cationipbint V,* being the image of the .point on the upper branch
at k=0 1n Fig. 7. (That is', with respect to ¥ the two branches of
solutions are not the;sahe as before,) Co;responding to the two poséible
values of T there are two distinct values of h_','and therefore two distinct
values of h" . This curve suggésts that ¥ might be preferred to R as
the parameter for expansion on the lowér branch, since ﬁlore solutions
| (namely those originally on the 1‘xpper. branchA.in the 1nte'r_v?gl O< Wk < k* )
are.obtai'ned for r< r* . _‘}bwev'er {there appears to be r;o esgentig]; advanté.ée
in this‘chahge of pa#ameters, siﬁce in either case.oniy.pﬁytvoflthg possibleb

solutions is invoived.



V. Flow Past a Slender Obstacle. " Batchelor's Model

5.1. Formulation. Referring once again to Fig. 5, we now consider

. ihe .speci'a.l' case
Ya = _”l(':),‘::’&) ) (920,901, Yg=0, x= O

wvhere )\ is a positive pdrameter, corresponding to separaped_ flow past
'a one-parameter family of geometrically similar pointed, blunt-based,
slender obstacles. - The eddy downstream of the base terminates at a

( _

cusp at x = + 1. It is evident from (44) that by appropriate changes

- of scale this family on flows can be reduced to flows past a single

()

obstacle, and .the parhmeter, vhich varies may be then teken conveniently

to be the position of the cusp. Therefore, even if we could establish

the existence of a unique. solution w”. h ) % for each A, the

theory still does not provide more than a one?parmne;ter family of flows

»*
~ast a given slender obstacle.

% . ) . : . .
This freedom should not be regarded as unexpected, since it is

highly unlikely that a purely inviscid theory could yield for a given

: . »
obstacle a unique value for W .

8
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The governing equations for this case follow from (24) and (25)

and are
B | : -
“w¥(e)= h'sinwo 4 gw*," Skmo') sinwg’ W26 de’ + ¥ (8;)) (450)
where
. |
. - . ) ) .
Hod)= W‘(J;}t taro) 1 (A1) dt
A |
and |
! A '“ 1-) - .
k3 | W -i- ! .
M+ La*" lw*e)do = = dt= ¢ (A)
8 .iw 7 E oy S  (5m)

‘ TA

} . A |
‘é‘ ‘O,lx—l S oo w*z(g) do = -4 Sl_f_i n)l (A-t) dt= =v(A) Susc) o
° o o

| ¥ ' '
If the transformation W *-* W, h"— k introduced in paragraph 4.1

" is carried out here, and if (45b) and (45c) are used to eliminate wy¥
‘and R from the transformed (45a), a single equation for W is obtained

in the form

39



where

. . ‘ v ]
Flwtl = Skte,e'-) snTrd’ W2ie')do' - s»‘mro\Sw‘to') de’
0 : o .

| (k6b)

- ;:_”.[ gmve' w‘mae'] [e(v) samTO + -F(G) M]

Note that the equations for Riaboﬁchinsky's model can be put lin a fom~
" similar to (46), and can be obtained from (LGb) by replacing the laétv

. tem by ¥ s»'nné . A general equation containing both cases _tal.ceB the
fom |

w= FIwl +r = F,[wd) | S
| | ~ (&)

‘where ¥ 15 a given non-negative, continuous function of © , vanishing
at 0= O, . Note that (46) and (47) differ from Riabouchinsky's

problem in that the value of W at 0= | is no longer known a priori.

5.2.  Comments on the existence of solutions. ~Putting aside the
possibility of physically unrealistic (multiply-valued) solutions, the

nain mathematical model which emerges from our study is now clear: to



‘establish under as general conditions as possible the number of solu_t'ionq '
of the nonlinear integral equation W= Fy [.WI] and whenever possible.
provide a constructive existence proof. Apart'fran the specific examples
worked out in Chapter IV, and the elementary general result stated below,
- , rigorous -
we shall not attempt to provide a xipmxrxxx answer to these questions in
* _ _
this report. However, for the purpose of Justifying the usefulness of
our numerical investigation, at least heuristically, a few remarks are
in order.

As 1s clear from the construction of the lower branch of solutions .
in Chapter IV, the finding of solutions sufficiently "small," in the
sense of the norm Hwil= Wax Wl (00 <)), is a simple matter. In

WF) Ybveing e cert_:zln constant
fact, if W= Fp LW‘J then Wwh & WFil Wl +lhv\I,A, and if we
construct a seriles

00

Wz KD o+ 2 knt wile) . )

=)

* o ‘ _
A mathematical study of the integral equation is in preparation.



”

in the usual way, 1t is not difficult to see (proceeding as in §L4.2)
that (48) will converge so 1.ong as NFlWNri <'/+.

Of.course, if.r‘= 0, (48) provides us with 6nly'the trivi#l solution
w = 0. We have seen, bowever, that a second soluxién may exist and it
is the finding of nqn-trivial solutions that leads us t0 consider a somewpat
more involved mathematicel theory. The way in which tﬁis occurs, at least
in our examples, is analogous to the dependenée of roots of the quadratic
equation. Nf- Awtf" r ) upon the constant r. I.f 0 <r '/4 there are
exactly two real roots. For :-¥$ O there is one positive and one negative
root, and for O gV < _./4 two ‘p;)sitive roots. For r sufficiently large,
all roots are'imaginary. Thus we are led to conjecture that the existence
of one solution of W™ FoIw') (trivial or nqt) guarantees the existence of
at least one other solutipn (which, of.course? may or may nét be physicaliy
acceptable). In particular the equation (46a) could tﬁen possess a non=
trivial solution. 'Morg c0mp;}cated examples suggest similar,conjectﬁres,
even in cases'yhén the kernel of the integral equation is nﬁt pqsitive{

For example, the linear equation

12



S
, _ ,
wie) = S s (d-0') wio') de |
. .o ' . " . ce | -\’
has only the trivial solution W= O , while the quadratic form
'

“wie)s S st (0-689 w(e') de’
0 :

has in addition the solution W= = %“. W o .

Equations such as the last can be rgduced to a finite system of .
n quadratic equations to be solved for n unknown numbers; Pure%y‘ )
algebraic considerations will then alwéys lead to'a proof of existencé
or nonexistence. If n is not finite (such as in our problem where the
unknown nunbers are the Fourier coefficients) thi; procedu¥e'involvés
in addition the problem of establishing the convergence of a seguence
of truncated series as well as, from a practical point 6f view, the

*
question of how rapidly the sequence converges.

*,
These considerations do, however, provide the following interesting

recult: There afe‘always an even number of real soluxionsﬂappearing by

pairs ax'poinis of bifurcation.
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It should be observed that, on the basis of the numerical results

"of Chapter IV, equation (46a) always has one exact solution, namely that

corresponding to thévsymmetric, §usped eddy. In this solution the obstacle -
has disapﬁea#ed entirely, and it is élearly applicable.only to the limiting
casg A= O. In this limit the product of bracketed terms in ('h6?>) van'i?h‘es
and (in effect) the cusp.has‘moved'infinitely far dovnstream. Therefore;

in spite of the fact that we have pot shown the symmetric solution to be
unique among solutions which are cusped at the endpoints; it is plausib;a‘
that the symmetric cusped eddy»always provides én asyyptotié development

of a one paramete; family of solutions of (46a). Our numeri?al resu;ts

last '
for the wedge are indeed consistent with thisAfonJecture.

5.3. A numerical ekample. We have solved numerically a system of..

. equations equivalent to (L6), for the case a(x}= X , corresponding to

a<family of eddies attached to a wedge. The method of iteration used to

obtain these solutions is straightforward and is summarized in the Appéndix._f
In the present paragraph we describe the results of the calculations.
. Values of Y(X) , , and W' were computed for A= 2 Y

\.;;; ,1 ,2,95, _lO , and 00 and are presented in Fig. 10 and Table 1.



’ *
‘The variation of k with A 4s shown in Fig. 11. The main feature to

be r?ote;l cpncerning the development of the eddy as the reattachment point
move aft is t}'xatb thex;.e i8 a definite trend tovgrd the symmetric, _'cusvped

eddy 'obt.aineci in Chaptex; IV. This is suggested in Fig. 10, and supported

iq Fig. 11, by thé apparent convergence of k .toward 'kc. .'l'here is thereforé
._reason to believe that the conJecture of § 5.2, cbncerningth_e .asymptbtic,-
"oehavio‘r of long eddies, is valid in the more gene.ral wa.y. suégestéd f.héré.

We shall consider the structure of ‘t'.he flow in ﬁ\ore detail for the
pmiéuu case of flow down a step in a wall, ‘for which A= ® ,fvhi‘.ch
is skétched in Fig; 12. In pa.rticﬁlar, the streamline pattgrn' within the '
eddy 'a.nd the pressure distributibn'on the wau downsﬁream c;f the vstep

‘computed from the slender-éddy approximation are shown. These are deﬁned by

b= o (y-gY) o )

~ Some calculations at A= !/ were also tried, but convergence in &

was not sufficiently rapid and the results were rejected. Howe?er, k. '

| converged rapidly and the limiting value was used in Fig. 11.

] s



RO A ek et (-377?)

p= 8 24 (510)
N : *,1 » ‘ i C
. #* w .
where we have used the identity h'= = % We may use (519 and (‘Sﬂo)

in =1 <X+ , but neither is uniformly valid at X= —~1 , since
at that point the base interferes with essentig.l.hr/parallel sheared
velocity profile. The tangency condition on the base requires that we
add to (51) a contribution depending upon x”/(. , which is negligible

when this quantity is lai'gc, but which otherwise contains essential terms.

*

This relation can be proved as follows: Concider the force which acts

on the wall. The tot&l source strength needed to represent the flow in
the harmonic region is Just ~ & so that the total (dimensionless) force
is exactly € and acts in the direction of increasing A . Computing now

“the force on Y , to order £ inclusive, there is obtained

+l

-1

e (Yool- (h*+g Y 0 ] dx vo(€) s [e =gl (h*+ 1:,:‘) +o(eM)

and the identity follows. This direct relation between the two parameters,

independent of ¥ , seems to be peculiar to the case A= o ’ since if
A<® the force on ¢ depends upon the pressure distribution caused by
sources used to represent the obstacle, in a way which retains a dépendence

upon Y .
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The computation of this correction 1s similar to a "boundary layer"
analysis, although it should be noted that the "boundary-layer variables”
are now X= xH/E , Y@ 7/5 and therefore the coordinates gn‘e' :
tr

sXetched in the same way,

A

Consider then the 'rollowin\g problem:

Yl fl=o  , Oy & |

_'(53b)_
S pE,0= b =0, X% 0 ke
The s&lution‘éf (51) is
| @(747)'-‘ 1_«{;_3 g s(v._unn):? e (zm-i)ﬂ'i +-;: | (7'1_7) | o | (55.)f
| neo (an+i) ‘

‘Therefore a solution which is uniformly valid in X , in the sense that

it contains both (51la) and (55) is

b7



(56a)
" The corresponding pressure variation on Y= Om Y s
: ' - b -'(an+|)1'iz ' -
LR N S - 8 Z e __ -
Pyl ® Low*e [. 3 (Y g (n+)* ] ' (560)
uni 4 , ; " n=0 _ | - .
vhile on the rear face we obtain
p= whet l‘_l__ - oY : M(AY\H)“‘”&X ] oo (56c)
i$ 8 3 Tt n=0 @an+)*t ‘

‘Upstrpam of the point A, and downstream of the point B, the wall pfessm’g :
decays from .:%* wt ;e\‘ to O, this rouéwing from‘ the fact that the -
pressure.varies continuously at these points.
It is clear that along Y near X=-=| , the slemier-eddy theory
cannot give Y(X\ accurately, _the error a.risiné from the 'exterioxf pressure
| LI A | |

: | L I oM™ _ ‘
field vhich balances the variation from ~3 W & to il given

by (56b). A calculation of the necesaary correction 18 straightforward



and will not be dealt with here. We nbte, however, that the 1ine§rizéd

~ theory will again be sufficient, since the chanées in Yx) will ve.

IOMN

" The effect on y is therefore nominally O (€*) end if the flow
-.field is to be studiéd to within terms of this 6;-der, we must study
as well the secénd-ordér terms in the basic slender-eddy expansion,
definedinthéregion_-j\<_x3+‘,. |
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VI; Discussion
| ' o .
The approximate solutions- of Euler's equations considered in this
.repbft.suggest:that the following general cbnclus;ons can be drawn
’éoncérning the role of finite eddies: (i) The class of flow problems ) "
thch are solvable can be ipcreasea if the structure of the flow is
| refined ’by the in-tmdu‘ction of an eddy. (11) The basic new fluid-’
dynamical problem arisés in th§'§On-iinear 1nteractioﬁ between the -
eddy and an exterior flow, fhis interactién can leéd to questions
which are peculier to rotationgl floys, fo; example, the possibility.
of ; new kin@ of in@eterminacy arising from the branéhing-of the solutiohs.
In view of the known inadequacies of the »theory. of irrotational,
discontinuoué solutions of Euler's equations in thg repfesenfation of
lﬁmin#: Yiscouslflow at high Reynolds numbers, it is beiieved.that an
) ex£ended class of.solutions which are not nécessarilyairfotational, and

fall within cdnclusi%gs

which therefore and (11), dight bé'.

. A . .
useful in the construction of wealistis models of the laminar vake in

/

the limit of infinite Reynolds numbers.



The way in which flows having a nev structure are generated has been
-illuétrated'by solution in the slcndef eddy approximation for a family of
flows past a given slender wedge. These approximate solutions suggest the

existence of exact solutions having the same atructure; and to this extent

confirm the possibility of the inviscid model proposed by Batchelor (Ref. 1).

There.remains the prospect that this could actually be demonstrated rigsr- :
‘ously by constructing for slender wedges a.series which convefgeé to an
exact solution for.a non-slender wedge. On the other hand, our results
say nothipg-of the relevance of Batchelor's model as limit. The drag ';

experienced by the wedge is necessarily zero and this remains one eerious

objection which can be raised against this proposal. We. have also not

congidered the values of ¢ and h which would actually be obtained in . ,-f>

the limit. - As Batchelor notes in Ref. 1, considered as a limit the length

of the wake would most probably be bounded from above by the action of
viscous stresses in shear and boundary layers, so that the slender-eddy
solutions themselves could provide.(if'in~fact the eddy is sufficiently

long) no more than a numerical approximation to the limit.
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The generalization of Riabouchinsky's mbdel-prescnted in this

report provides us with an example of non-linear interaction leading

- to branching, although the effect of the eddy does not in this case

remove the image obstacle downstream, which is the major obJection ,

* \
to the classical model.

/
" - The branching phenomenon itself probably deserves closer attention.

It is possible to formulate a variational problem for the symmetric

eddies, in which the extrema are maxima or minima depending upon the

_ branch. 'waever, this does not necessarily imply a "neutral stability"

at the bifurcation point, since the "neutral disturbance" may not be

consistent with constraints imposed by the Euler equations. In our

‘ : : .
case, it is possible to show that for W fixed the eddy volume is not .

conserved during deformation from the bifurcation point, unless the

distance between the obstacles is simultaneously varied in a suitable way.

‘This means that the only "neutral disturbances" consistent with the

*
Note that in the slender-eddy approximation Riabouchinsky's model

is equivalent to the well known re-entriant-aet model, since the
discrecpancies between them are contained within an infinitesimal

néighborhood of the endpoints of the eddy: Interpreted in this way -

the flow remains two-valued. In elther case these incénsistencles .
at tze end-points are to be considered distinct from the global

efiects of non-linear edléy interaction.
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constraint of incompressibility involve a change of separaﬁion between_
'the obstacle and its image. Despite tﬁe artifiéiality of this arrangement;
of flow and obstacles, ﬁhése regults suggest nevertheless that branchiné
will be of imbortance 1h any sufficiently general theory of solutions of
Eulér's eéuations, and 1s likely to be a problem of great compleXity'in.f
instances where a large number of distinct eddies are>1n§olved.

An attendant problém in the stationary case centers on the possibility

, : * . ’ - o
of indeterminacy. It is not unexpected that this problem arises here, since

even in the classical theory uniqueness can be achieved for a given obstacle
" only by imposing connections at points of attachment, and without sﬁch
conditions there may exist several and even an infinite number of "acceptabie"
solutions. Hovever, the indeterminacy we refer to here is different from
) present
the classical one. In fact, in thehslender-eddy theory the details of
‘attachment are absorbed into a single matching condition at the obstacle,

not froam the local behavior of ¥ at the obstacle but rather .
‘and the indeterminacy arises from the global properties of the eddy.

s

The corresponding possibility in the non-stationary case 1s the occurrence .
" of "buckling," i.e., the transition betveen two stationary flows at the same

parameter values, through a continuous sequence of accessible flows.
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" But can this question of indeterminacy arise in other models of
the wake which do not require an image obstacle? We cannot give a
firm ansver, althdugh our numericael investigation indicates thatlin’

_ . L ‘ position of the
Batchelor's model the solution is uniquely determined once theAcusp :

'is fixed. Moreover even if a model could be found exhibiting different :

' behdvior, it could very vell be that the values of the parameters for

which there exists more than one branch could never be realized in p}actice.
‘ve close with a final remark concerning the relatlion of our
work to the Navier-3tokes theory. The point of view of the present

report has been that simple examples of inviscid flows containing ,' 

~eddles are useful irn the understanding of a large class of

solutlons of Euler's equations, in spite of the fact that they
may not be limits of viscous flows which are of physical interest.

Yevertheless, apart from any relation they may have to the limits

themselves, there remailns the possibility that these or similar

solutions could 1llustrate, in the sense of a mathematical modei,
properties of tﬁn Navier-Stokes solutions which are of definite
physicaliinterest. A notable possibility 1s that the branching
of solutionsc of the Navier-Stokes equations,.with respéqt to '
the Reynolds number of the flow, could be modeled in this way.
Indeéd, observation suggests the presencex of elongated, almost
symmetric eddies (relaxing now our definition ) behind bluff

bodies at moderate Reynolds numbers. It is therefore plausible
that PRt the inviscid model can provide lnsight into the dynamics

" of the distributed vorticity (but of course not into the diffusion

of vortieity, which however may not be a serious shortcouing in
the study of branching). The questions whiclhi we ralese here are

currently under study. / 4
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Appendix. The Numerical Procedure

' The numerical solutions of the two problems >vtreated in this report
. . » . _
were obtained as follows. All integrations were performed using Simpson's
-procedure over 51 points in the interval 0 &6 $ | . 1In the case of
the upper branch of symmetric eddies, the iterative procedure was precisely
that of § 4.2 above, for various values of X , starting with the function
WeWe= SINTO . The hﬁ" iterate W, was considered a solution if

decreased from n = I at bifurcation to n = 12 at w=-=.} . To obtain the

Wi~ Wn_, “ was smaller than 10-3. The value of n depended upon %, and
Nn . °

_. cusped eddy the value of W was free and determined at each 1tera.1'.10n

by the cusp condition. This mpro';red convergence aﬁd 10 ‘iteraﬁions were
vre‘quired. An inspection of the iterates indicated a monot;onic'appmach
to a limit, and sugvg»estedvtbat more rai)id convergence could be rea.iizeci
'by arbit?urily adding differences to the iterate a.nd qf course by a closer

.choice of the starting function. These mpmvements would probably be
*

The author is indebted to W. L. Elkington for the coding end |

programming of the numerical computations.
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useful if the criterion for convergence were decreased to 10" ’ and
would cert;ainly be essential in ordexi to obtéin solut:lpns very néa.r
- the cusped solution.

' "I'he’ manner in which the wedge flowa_weré obtained is similar, and .
qgm be illustrated by cvo.nsidering the case of flow down a step. The

‘iterates vere computed from the equation

. \ o

» _ .l : . ,

Wne = h  sinTo + f’_en__:n SKWW sinve’ [WE (¢') - wWint@] do
)

+ wWn(e) sinv +0

vhere the two parameters w:,, and h;“ are obtained from two
- conditions on _Wm..' expressing the tangency of ¥ at the ;;oints A
and B. Starting with W,= %()-— wW3IT9) a solution was reached (usingA
the same criterion as before) At the end of seven iterations. 1In thlis

»
_way the values h%= - I8 % = .25 2 were obtained, in close

%>

¥ _w ~
agreement with our independent exact result h'=— -2—:* . For finite

A the method was essentially the same, and again it was found that the

n ' :
number of iterations needed to achieve convergence decreased as the cusped
. ) A '

eddy was approached (i.e., as’ A decreased), a maximum number of 22 1terationé

’being required in the most exfreﬁe case. It was therefore again concluded

that improvements would be needed in order to obtain solutions. near the limit. .
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Figure Captions-

Euler flows containing one eddy.

The principal boundary-value problems:

(a) Riabouchinsky's model

- (b) Batchelor's model.

- The multiple‘ediv problem.

Solutions of the one-dimensional problem.

A flow containing a élender eddy.

Riabouchinsky's model in the slender-eddy approximation.
Maximum thickness of slender eddies.

Eddy boundaries on the upper branch, normalized with

respect to maximm thickness.
_ *

Non=-uniqueness for r < r.

Eddy boundaries for a wedge.

Variation of k with A .

distribution and streamlines derived from the slender~eddy

" Flow over a step. The unbroken lines represent the pressure -

approximation; the dotted lines indicate the effect from the

~ step for an € of about 1/5, and are qualitative only.

58



e



e T B (ay




T



—0<h< /2

(b)




VEN







YO 0 . ¥0-

S3INTVA Q3LNWOD O

S






08

06

0.4







"

69 |

3903M V ¥0d4 G3LNINOD O
AQQ3 43dSND JIYLIWWAS o




_ _ L A |
© d31S 3HL 40 193443 ——-
NOILVINIXOHddV AQQ3-¥30N3TS 3HL 1
NOYd Q3AI¥3AQ SINITWV3IYLS [
ANV NDILNBIY1SId 3YNSSIYd — A
\
g \




