CFSTI PRICES) \$ \qquad
Hard copy $(\mathrm{HC}) 2.00$
Microfiche (MF) \qquad .502 2. NEV VIF PEFNOENOA: HESSTIERS TRAPPED ff 653 July 65

BELOW THE RROTONOSFHERE D. I. Carpenter,
N. Duncisel, J. E. Walkup

ABSTRACT

A sew whistler phenomenon has been identified through reasuremanta at ground stations, on an Aerobes rocket between 100 and 200 km , and on the Alouette satellite at 1000 km . The new phenomenon is called the "sub-proconosphexic" or " $S P^{\prime}$ visistige, since most of its path appears to be restricted to the region below about 1000 jan. The first reported example of en 5 ? wisistler was shown by Barrirgton and Belrose [1963]. In the present report a large number of observations axe summarized and the basic characteristics of the new phenomenon are described. guperimencil results axe presented mich suggest that the whistler ray path is confined to the region between roughly 100 km and 1000 km altitude, and that the whistler energy can echo back and forth between these levels. The sp phenomenon occurs mostly at night, typically within a few hours after sunset. $S P$ events are often observed over a period of one or two hours in duration and, for a single Alouette pass, have been observed over a northsouth range as great as 2000 km in extent. The evidence suggests that the $\mathbb{S P}$ phenomenon occurs mostly near sunspot minimum and at dipole ? atiswdes greater than 45 degrees.

TMTRODUCITON

Host reported whistler observations support a propagation model in with the winter energy penetrates the ionosphere and propagates along approximately field-aigned paths to the opposite hemisphere. Tavel times over the paths are typically on the order of 1 sec, Recently however, whistlers with tavel times on the order of 0.1 sec have been found. Various properties on these events suggest that the ray paths are confined to zone ionospheric region near the point of observation. An example N65-29461

of this type of whistler was first reported by Barrington and Belrose [1963], who showed Alouette satellite records of a whistlex with two components. The fizst component was identified as a conventional fractional hop whistler, with travel time corresponding to propagation once through the ionosphere to 1000 km . The travel time of the second component was approximately three times that of the first, and it was suggested that this component had propagated three times through the ionosphere, having followed a sequence of partial reflection of the original whistler energy near 1000 km , re-reflection below the ionosphere, and subsequent repeated observation at the satellite.

We have recently examined many examples of this new phenomenon, and find that it occurs frequently and has certain well defined characteristics. It is the purpose of this paper to describe these characteristics and to discuss certain aspects of the whistler propagation path. Because most of the postulated path lies below that portion of the magnetosphere in which hydrogen is the principal ionic constituent, we shall for convenience call the new phenomena "sub-protonospheric" or "SP" whistlers.

Recordings of $S P$ whistlers have been made at ground stations, in the Alouette satellite near 1000 km , and on board an Aerobee rocket in the height range roughly 100 to 200 km . The observations bear out the suggestion of Barrington and Belrose that the whistler propagates through the ionosphere to a height of roughly 1000 km and is then reflected back to the lower ionosphere or ground. Erequently there are repeated echoes of

the whimier, subeestang rerlection beck and forth betneen the Dottom of the iononphere and the upper zegion. Figure i shows a diagrea of this interpretation and inaicates the aititudes at which SP whistlerg have been observed. Mumbers indicace the succesaive order of observaions. In a case involving repeated perlections, the even-order appearances of the whistler energy are recoreded near the lower boundary of the ionosphexe or on the ground, and the oddworder hops are observed mell above the peak of the f layer.

It should not be thought that the actual ray patiz of an SP Fhiatler is as simple as Figure 1 suggests. While the erperinental data support a model in which propagacion over most of the path is in the conventional right-handed circularly polarized mistcler mode and travel cime of a given component is appronimately proportional to the number of travergals of che fonosphere, the data also suggest that certain details of the ray path nay be quite complex.

Some of the experimental results on SP whistiers will be described in the rollowing paragraphs. The extent to which the data support a simple propegacion model fill be indicated. Since we are dealing with a new cless of phenonena, a relatively wide variety of detail will be presented. At the end of the paper, the experimental observations will be summarized, and soute comenta on the propagation model ifill be made. In a companion paper, R. I. Smith presents a poselble theoretical explanation of the mechanism by wich the thistlex energy is
refiscted from the uppen fonosphene.

EMPERTMENDAL RESULTS

Doservations Between 100 end 200 km . A large nunder of SP whistiexs were received on an Aerobee rocket firea from wallops Iskan $\left(50^{\circ} \mathrm{N}\right.$ aipole labitude) on July 9, 1963 at ei46 ESt. A purgase of the firing was to test the perpormance of the broadband ($0.2-12.5 \mathrm{kc} / \mathrm{s}$) recaiver developed Por use by Starard University In the ECGO setelitte. The antema consieted of a loop mounced vertically inside the nosewcone section. The rocket reached a peak altitude of 204 km and made broadend VTF observations for approximately 7 minutes erter launch. The fing whistien event was recorded at about 108 km , at the mpproximate height of a pronounced sporadicaE layer. From this point to peak altitude and baek down to 102 km where the Pinal event was recordet, the observed whistlep rote was relatively unitorn at about 15 per minute, with a single burst of relatively high activity in the vicinity of 200 km . Ground recordings at Greenbank, West Virginia, roughly 500 km from Wallops Island, revealed no detectable whistler events during the entire rocket flight.

Neariy all of the 75 whistlexs odsezved on the rocket exhibited the type of component structure illusirated in pigure 2. The upper left spectrogram, with Trequency range $0-8 \mathrm{kc} / \mathrm{s}$, shows a whistler event recorded at an altitude of 201 km . The two rightwhand records, with frequency range $0=16 \mathrm{kc} / \mathrm{s}$, shom the early part of the same eveat as recorded on the rocket and
on the ground at Geentonk. On ecth record the origin or the tine scaje fndictiog the leachag edge of the esentially tmpusive first signal, ow oth hop of the whistler. Following this impulsive sigral are two aispersed traces mith travel tines ak $3 \mathrm{kc} / \mathrm{s}$ or epproxtmately 0.09 seconds and 0.18 aeconds, pespecively. These are the 2nd and tith hops indlated in Figure 1. Note that mhile these components are uell defined in the lower ionomphem, they are not detected on the ground recording. The ground recording may conveniently be compared to the ferobee record above it by noting the presence on both spectrogeans of NAA signals $2 t 14.7 \mathrm{ke} / \mathrm{s}$.

The loner lefthand record in Flgure 2, with frequency range $0-8 \mathrm{kc} / \mathrm{s}$, shows a whistier event recorded at an altitude of 204 km . In this case the $S P$ traces are well aefined, and wo later components any also be seen, with travel times at 5 to $/ \mathrm{s}$ of about 1.0 sec and 1.7 sec . (These later traces should not be confused with the tro edditional SP events identified by the arrows in the lower margin of the record. The arrows indicate the position of the oth hop for these $S P$ events). The later traces, produced by the Iighthing source that inftiated the flrst SP event, represent portions of the energy that followed magnetospheric paths extending from hemisphere to hemisphere.

All but one on two of the 75 Aerobee mhistier events exhibited at least one SP componens, but there was great veriation in the derinition of the later treces. This is illustrated by a comparison of the two leftwhand records in Figure 2. In the upper record the $S P$ components are intense, but the later fracess
are only ralnty indicated noas 4 re/s.
A detailed study hat beer made of the Prequencyayersusthme properties of eleven of the best depined Aerobee whistlens. In addition, certain basic properties of all the events have been investigated through examination of realotine Rayspan records. In the following sumary of the results, travelwtime measuremente ore expreased in terms of dispersion $D=t f^{1 / 2}$ sec $1 / 2$, where t la the travel tian at frequency f. Por conventence we anall Indicate messurements on apecixic $S P$ component by using the hop number as a subscript, that is, D_{2} and D_{4} will represent measuraments on the and and 4th-hop components. Most travel time measureaents were made mith respect to a fixed time at the leading edge of the Oth hop.

1. Witnin the experimental errox of about ± 5 percent, the dispersion $D=t f^{1 / 2}$ of the $S P$ components is constant as a function of frequency. This is the expected dispersion lat for propacation in the rightwhanded ciaculariy polarfzed whistlermode when wave frequency is well below the electron plasma riequency and gyrorrequency and when the wave nomal is mithin a relatively large range of engleg with the geomagnetlc field. Most of the dispersion measurements were made in the frequency range between about $1.5 \mathrm{kc} / \mathrm{s}$ and $4 \mathrm{kc} / \mathrm{s}$. Below $2.5 \mathrm{kc} / \mathrm{s}$ there is sone indication of an increase in disperision with decreasing frequency, but this point is not yet well established.
2. For 11 cases, the value of D_{2} ranged rrom $4.4 \sec ^{1 / 2}$ to $5.4 \mathrm{sec}^{1 / 2}$. (The value of D_{2} for an event was determined by averaging the results of measurements at several frequencies).

The scatter of ≤ 10 peroent around $D_{2}=4.9$ sec $^{1 / 2}$ is probably attributable to experinental uncertainty in identifying the leading edge of a traca or impuise.
3. There is no apparent syatematic variation in D_{2} throughout the filght. The electronwdensity profile obtained at the time of the shot shows that election density increased quite rapidiy only above 175 kan . The mysteaatic dispersion Vardations that aight be present under these conditjons are approximately of the order of gome of the experimental uncertain ties involved.
4. The cravel time et a given Prequency between the and and 4 th hops is epproximately the same as that between the oth and and hops. The ratio of D_{4} to D_{2}, averaged for each event, remained within ± 10 percent of 2.0 chroughout che flight. This uncerteinty is approximately the same as that associated with experimental error.
5. The upper cutoff frequency of the $2 d-h o p$, or $18 t$ dispersed $S P$ component, is about $6.5 \mathrm{kc} / \mathrm{s}$. Mosi valueg are in the range $6-8 \mathrm{kc} / \mathrm{s}$. The upper cutoff frequency appeared to be somewhat higher near peak altitude. The cutoff of the 4th-hop $S P$ somponent is about $5.5 \mathrm{kc} / \mathrm{s}$, and the range throughout tize flight is roughly $5-6 \mathrm{kc} / \mathrm{s}$.
6. The lower cutoff frequencies of both the $2 d$ hop and 4 th-hop SP components $11 e$ between about 700 and $750 \mathrm{c} / \mathrm{s}$ throughout the flight.

A number or other sapects of the results may be mentioned.

One interesting point is the lack of viw activity on the ground. A comresponding lack of VIp activity on the ground during a rocket flight at 0030 IT was noted by Cartwright ri9647. It appears likely that a factor contributing to the absence of ground activity was the observed sporedic E layer. In adition to causing the sub-protonospheric componants to be reareplected upward, chis layer may have provided a means of raplecting conventional domoning whistlers. The lack of activity on the ground at Greenbank, sone 500 km fron Wallops Island, is supporeed by the rocket experiment itself, which produced recoxis during the sub-ionosphexic segments of the flight. During thege periods no whistlep events were observed.

Although primary attention here is devoted to the SP components, a fer coments should be made about the mighemo dispersion traces $117 u s t r a t e d$ in the lower leftohand part of Figure 2. The propagation path of these events has not been studied In detail, but an examination of their dispersion propexties and a comparison with the known properties of ground-observed whistlers suggests that the fixst component, with dispersion at $5 \mathrm{kc} / \mathrm{s}$ of about $68 \mathrm{sec}^{1 / 2}$, made a single south-to-north traversal of a magnetospheri: path. The path of the firgt was probably axcited by an impulse which reached the southern hemisphere by transequatorial aubionowpheric propagation from the source. This "hybrid" mode of excitation has been prevjously observed on ground records [Helliwell, 1959; Hell1well and Carpenter, 19631, and it appears to be relatively comon in observations made in the ionosphere. The second component, with dispersion of about 118,
apoars to be a trowhophisties, with path entrance in the northern nemiaphere.

Ground observations. A relatively large number of sub. protonospheric whistlers were observed at ground stations in 1962 and 1903. Obsexving stations at which they have been detected are Surpield Experimental Station ($58^{\circ} \mathrm{N}$ dipole latitude) and Great Whale Rives ($70^{\circ} \mathrm{N}$ dipole latstude). Figure 3 ahows a grawh, baed on aural monitoring of hourly two-minute recordings, of the nunber of recording periods containing $S P$ whistlers versus local time at the observing station. On the graph are represented 55 twominute mune fron 26 recording dayg during 28 stacion nonths of operation. The nuber of cases exhibits an abrupt rise at about 2100 LT , and after remalning at a high value for aeveral hours, decreases gradually end then falls papidly near dawn. It should be pointed out that on most of the days represented in Figure 3, examples were found during only one os perheps tho successive runs. On a fes occasions $S P$ whistlers were detected for as many as four or five hours in succession.

The ground observations appear to be limited by the nature of source activity. Prore than one half of the events were seen In local sumer, when lightning activity in neighboring areas is relatively high. In many of the runs containing $S P$ whistlers, only one or perhaps two faint examples were observed following one or nore of the loudest Impulsive atnospherics in the run. on some occesions, however, many SP eventa were detected, and a pew included 4 th hops, as in the case of the Aerobee recordings.

When $S P$ events were observed on the ground, other forms of whistler activity were seldon detected. On a few rame occasions, the $S P$ mistler was Pollowed by a fant two-hop long whistler.

A preliminary study shows that the ground records and Acrobee records are similar in several respects. The even-order hops are observed on the ground (see Figure 1), and twevel tines are frequently such that $D_{2} \approx 5 \mathrm{sec}^{1 / 2}$ and D_{4} (when observed) ≈ 10 sec ${ }^{1 / 2}$. picst of the groundwobserved dispersion values fall In the range $D=3-6 \mathrm{sec}^{1 / 2}$, a distribution to be expected if the corresponding spatial and temporal zange os variation in fonospheric electron density is within a factor of about 4. The irequency range of the ground observaitons is usualiy pelatively Inmited as compared to the range observed on the Aerobee. In many cases the detectable energy in the SP components is innted to the band from about $700 \mathrm{c} / \mathrm{s}$ to about $2000 \mathrm{c} / \mathrm{s}$.

On the basis of ground observations, it appears that the aub-protonospheric mistler 1s associated with sunspot mininua. An extensive amount of erpemimencal work has been done with whistler records made eince early in the IGY, and as yet wo examples of SP events from this early period have been reported. A careful sampling of cextaln IGY iecords should be carried out to clarify this situation.

Observations at 1000 km . The broadvand VIF experiment on the Alouette satellite provides a valuable source of infornation on the spatial distribution of $S P$ whistiers, and on the general properties of SP events as observed at 1000 km . The fixat report on what appears to be an $S P$ whistler recorded on the Alouette nas
made by Barrington and Belrose ri963才. These authoxs showed a spectrogran of two low-dispersion traces, apparently corresponding to the lst and 3ad hops of a sub-protonospheric mistlex. The value of D_{3} was reported to be three times the value of D_{1}. A relatively iarge number of observations of SP whistlem have been made through telemetry of the Alouette receptions to a ground station at Stanom University, Gaifomia. What appear to be SP whistlers have been observed on several passes during the hours after local sunset and on at least one pass near dawn. A pariticulariy incerasting set of records mas obtained on April 19, 1963 at epproximately 1920 local time at the satellite. The track wes approzinately north to gouth near the 105° west geographic meridian. During a 5 -minute observing period, 7 well-depined examples of SP winistlers were recorded, the first being seen at $53^{\circ} \mathrm{N}$ geographic ($62^{\circ} \mathrm{N}$ dipole) latitude, and the Jast at approximately $37^{\circ} \mathrm{N}$ geographic ($46^{\circ} \mathrm{N}$ dipole) latitude. Thus tife northasouth range of observations was on the order of 2000 km on this occasion. It is notewortiny that while a substantial number of SP ulistlers were observed over the range from about 53° to about $37^{\circ} \mathrm{N}$ geographic, no SP events were observed over the range from $37^{\circ} \mathrm{N}$ to the end of the pass at about $10^{\circ} \mathrm{N}$. On this lowalatitude segment there was a signipicant amount of source activity available, as evidencea by the presence on the flouette recorde of a number of conventionel low-disperaion whistlers with $D=3-4 \sec ^{1 / 2}$.

Figure 4 shows spectrograng of SP whistlens recorded on the

April 19, 1963 pass at $53^{\circ}, 50^{\circ}, 38^{\circ}$ and $37^{\circ} \mathrm{N}$ geographic latitude. (The event at $33^{\circ} \mathrm{N}$ will be discussed in a later paragraph.) rach of the four examples shows several oddeorder $S P$ components. The event at 38° ezhibits 5 well defined traces, comesponding to the 18t, 3rd, 5th, 7th, 9th and lith hops. This event also exhibits conventional whistler traces, with travel times of 2 sec or greater. There are sckually three whistier events at 38°, although oniy the first exhibits well defined dispersion properties. Arrous mark the approximate time of origin of the second and third flashes, while the origin of the time acale indicaces the approximate time of origin of the principal whistler event. The hovizontal lines were introduced by instrumentation on the satellite.

The results of a prelininary survey of the dispersion properties of the $S P$ events illustrated in Pigure 4 may be sumnarlzed as follows:

1. The dispersion D_{1} of the ist-hop component is approximately $3 \mathrm{sec}^{1 / 2}$. This value is consistent with previous nighttime observations of l-hop propagation through the ionosphere to 1000 km PBarrington and Belrose, 1963]. It is aiso consistent with theoretical predictions of whistler dispersion for l-hop propagation through a nighttime ionosphere fSmith, 1961; Pope, 1961y. The value of D_{1} is very nearly the same for all of the events.
2. To a first approzimation, successive odd-oider hops are separated by twice the travel time of the lat hop. There do appear to be small departupes from strict integral relations.

Preliminary measurements show that, to a degree depending somewhat upon the frequency of measurement, the interval between the Ist and 3rdwhop components tends to be on the order of 15 percent shorter than the intervals between the later traces. After the 3 rd hop, the travel-time separation for most cases corresponds to a difference in dispersion of about $D=5-6 \mathrm{sec}^{1 / 2}$.
3. To a firet approximation, the dispersion of the components $D=t^{1 / 2}$ is constant. However, as in the case of the Aerobee iecords, there appears to be a trend toward increasing dispersjon with decreasing frequency, part:cularly below $1 \mathrm{kc} / \mathrm{s}$. This trend is bejng investigated.
4. In several cases the upper cutoff prequency increases as hop number increases from 1 to 3 to 5 . In all cases the upper cutoff frequency appears to fncrease from the 3 rd to the 5 th hop, and then remains roughly constant after the 5 th hop at about $1500 \mathrm{c} / \mathrm{s}$. Note that the upper cutori frequency of the 5 th hop is near the upper cutoff frequency of a faint noise band.
5. The lower cutorf frequency of the $S P$ whistier increases with fncreasing trace order until the fifth hop.
6. In several of the events there appears to be a systematic variation in intensity from component to component. The most striking variation is the low intensity of the third hop and the apparent gradual increase in intensity from the 30 to the 5 th and possibly to tre 7 th hop, after which the intensjty appears to decrease again. In the case of the event at $37^{\circ} \mathrm{N}$, the 3 a hop is barely detected. Note that beginning with the event at about
$50^{\circ} \mathrm{N}$, the relative intensity of the 3 d hop decreases with decreasing latitude.

A number of the features of the Alouette records for April 19, 1963 (Figure 4) were repeated in a striking way on a recording made a year later on April 25, 1964, at roughly the same time and location. The satellite track was approximately north-south along the $122^{\circ} \mathrm{W}$ geographic meridian at approxiatately 1855 local time, shortly after ground sunset. Figure 5 shows spectrographic records of two SP events, one recorded at $44^{\circ} \mathrm{N}$ geographic ($50^{\circ} \mathrm{N}$ dipole) latitude, and the other at about $36^{\circ} \mathrm{N}$ geographic ($43^{\circ} \mathrm{N}$ dipole) latitude. A comparison of Figures 4 and 5 reveals sinilarity both in the gross features and in several matters of detail. The simple model of reflection back and forth between an upper and lower region is supported. Once again the travel time between the 1 st and 3 d hops is slightly less than the interval between later hops. The 3dwhop component is again relatively faint and limited in frequency range, and its intensicy decreases with decreasing latitude. In the upper record of Figure 5, the 3 d hop is detected, while on the bottom record it is not observed.

It is tempting to speculate on some of the details of the propagation path as they might be deduced from the Alouette pecords, but it would seem preferable to await both further detailed measurements and theoretical studies of possible ray paths. It does seem reasonable to suggest that for observations by the Alouette, the effective area of the 3 d hop can be relatively small. This is suggested by several forms of evidence, including
the relatively limited frequency range or the 3 hop, as well as the tendency, on at least two occasions, for the 3 d hop to disappean as the satellite mves southmard.

Several additional remarks should be made about figure 4. The event at $33^{\circ} \mathrm{N}$ deserves special attention, since it differs substantlally from the usual $S P$ configuration. The time of origin of the event has been determined only appionimately, within about 50 usec. Tho craces are in evidence, with traveltine separation compesponding to a difference in dispersion of about $5 \mathrm{sec}^{1 / 2}$. The lack of evidence of a lst-hop component near $t=0$ suggests that the orjginating flash was located $2 t$ a considerable distance from the aub-8atellite point. Because the other events in Figure 4 exhibit a decrease in 3d-hop intensity with decreasing latitude, it may be suggested that the two traces at $33^{\circ} \mathrm{N}$ are by analogy merely the late nops of an SP whistler, perhaps the lith and 13th. Another possibility is that the tarese are part of a conventional whistier propagating from an origin in the southern hemisphere. In this case the separation of the traces may be due to return of whistler energy to the satellite after reflection near the botton of the ionosphere.

An additional note should be made in connection with the records for $53^{\circ} \mathrm{N}$ and $50^{\circ} \mathrm{N}$. on both records a triggered rising tone appears at approximately the same place with respect to the $S P$ traces. The piser begins at roughly $600 \mathrm{c} / \mathrm{s}$, not far from the low-frequency tafl of the 5 th or 7 th hop, and it rises in frequency by about $150 \mathrm{c} / \mathrm{s}$ over a period of about 0.5 sec . It
is interesting that the consined nature of the whiatlex path nares it ponsinge to concirue that the rising tone was triggerec within the region beiween the lowst ionosphexe and roughiy 2000 km .

COMCLUSIONS

Onder cettain conditions whisclex anexy can follow a ray path that is confined to the region between roughly 100 km and 1000 km altitucis. The observations suggezt that the onergy edhoes back and forth between these levels. Whe wechanicm of lower reflection way probably be explained ac reflection either from a sporacios layer or xeflection at tha lowes boundary of the ionosphere, in the maner or conventional wistiar reflection as Ciscussed by Eeisimell [1962]. The unique aspects of the now phenomenon seem to lie in the mechantam of uper reflection and in the details of the ray path. In a companion paper, R. I. Sinth, presente an explanation of the upper reszection involving refraction of the wave through the cransverse region of propagation. The altitude of upper reflection is not yet known precisely. The dispezaion properties of many of the observed evente, when compared to previous theorctical and experimental measurementa, indicate that the upper reflection Level is neaz 1000 km. panding mone detailed studies it may be estimated to be in the range $700-1300 \mathrm{kra}$.

The probablity os occurrence of the Sp phenomanon, given suitable lightning source activity, in estimated to be on the order of 0.5 durisg the hours after mancet, near munspot minimua,
and at midde to high letitudes. Sp events have been detected on approwimateiy one-half of the stanford zecordings of Alouette winstlers made curing the post-sunget houris. The ground observations do not show such a high rete of observation, but this is probably dus to the strong blanketing effect of the ionosphere,

The data suggest that aost of the propagation is in the right-handed circulariy polarized histlex mode, wad rhac each traversal of the path extends from rough 1 y 100 to 1000 km . However, some of the Alonette results auggest that the ray path may show suall but systematic deparcures from a simple model. An examples of this is tine limited effective area of observation of the $3 x d-h o p$ sp coaponent at 1000 km . The atrining repentability of the Alonatte records on different passes auggests that a relatively complex deacriptive picture of che sp phenomenon can be obtained from further study of specerographic records.

An explanation of the SP piensmenon must account for the following observational details: 1) wost of the examples have been found at nighttine, the majority within a few hours after sunset; 2) examples are orten tound during to consectuive hourly recording periods, and occasionally appear for as many as four or five hours in succession; 3) the north-south range over which SP whistlers have been found is as great as 2000 km (for a single Alonette pass); 4) no examples of $6 P$ whistlers observed on the ground have been reported for the period priox to 1962; 5) examples have thus fax been limitoa to observations at dipole laciecudes greater than about 45°.

BTEETOGRAPGY

gancingion, (. E. and J. S. Belnose, Exeliminary retults Exom the vexy-low-frecuency recelver aboaxd Canada's Alouecte satellite, Neture, 198(4881), 6F1-656, Ney 18, 1963.

Cartwright, D. G., Rocket obsarvations of very low sreguency radio noise at zight, Planet, and Spacesci., 12(1), 11-16, January 1964.

Helliwell, R. A., Whistler paths and electron denaities in the outex ionosphere, Proc. of the Symposium on Physical Processes in the Sun-barth Environaent, Defence Res. Boand, DREE Pub. Fo. 1025, 165-175, JuIy 20-21, 1959.

Kelliwell, R. A., Coupling between the ionosphere and the earthIonomphexe wavaguide at very low Erequencies, Proc. Int ${ }^{\circ}$. Cont, on the Ionospheze, Iondor, July 1962 , Tnst. Of Physics and Physical soc., London, Bartholomew Prass, Dorking, England, 452-460, 1963.

Eelliwell, R. A. anc D. J. Carpenter, wistlers excited by nuclear explosions, J. Geophys. Res, 68(15), 4409-4420, 1962.

Fope, J. H., An ssixmate of electron denoities in the exosphere using nose whistlars, I. Geophyg. Res, 66(1), 67-75, 1961.

Smith. R. I., Propertiee of the outer ionosphere deduced from noze whistlers, J. Geophys. Res., 66(11), 2709-2716, 1961.

MIST OF HMEOSESETOHS

Figure 1. biagram of the path of a wab-protonospheric whistaer, showing the regions in which evente described in the text were received.

Pigure 2. Spectrographic records of midelers received on an serobee rocket on July 9, 1962 at: 2146 EST . The horizonital lines neaz and balow $4 \mathrm{kc} / \mathrm{s}$ are of instrumental oxigin. The pertical bars of entancact background noise in the upper letcmand recoxd Eent to sollow the code pattemn of stacion MAA at 1.4 .7 3cha. Rhe dark region in produced when nind is beyed oscena there is no strong whistsex aignal pmesent.

Figure 3. Graph of the maber of two-minute recording periods charing which SP whistlexs wexe obeszued as a functicr of local time at tho reation. The data wase takon at
 58° in dipole Laticuce) and Great male River (55° 却, $80^{\circ} \mathrm{w}$ gecgraphic; $65^{\circ} \mathrm{N}$ dipolo Iatitude).

Figure 4. Sgectrogsaphic records of whistlers recejvee on the Alovect sacellite on April 19, 1963 at appromiantely
 geographic latituce of the satellite is indicated above each record. Tha horizontal lines ace of instrumental oxigin. The nosemike effect above $1 \mathrm{kc} / \mathrm{g}$ on the recond for $50^{\circ} \mathrm{H}$ in due to fatermodulation between cae whistler signal and the staitc converter

Srecuency zear 2.6 kcs .
Figure 5. Spectrographic secores of whistlear received on the Alouecte satelinite on Apris 25, 1964 at approximately 1850 local time at the satellite. The aptroximate geogeaphic laficucie of the satellite is indicated above the reccra. the horizontal Iinea and the wide vertical band at the upper right are of inctrumental origin.

ACEBOWLEDGMEATS

We acknowledge with tharizs the cooperation of the Canadian Defance Research Relaconmunicatione Estzblishment in making possible the telemetered rexordings at stantord of the Alouette vik receptions Wh thank Profegsor R. A. [1e111welu Fox his commants upon the manumcrigt.

This zeceaxch was supportad by che mactonat. Aeronautica and Space Acininistracion under Grant $4 S G 174-61$ and Contract mas 5-2131, and in part by the Atmospheric Sciencas Section of the Eational Seience Fommadion undox Grance $25 g 17037$ and GP-1191.

Number of runs with SP events

1Sd tg8l-IS81

