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MAGNETOHYDRODYNAMIC WAVES IN A PLASMA SLAB 

Elisabeth A. Cooper 

1. Introduction 

A study  has  been  carried  out  on  the  propagation of magnetohydrodynamic 

waves  in a plasma bounded by a vacuum  or a neutral   gas,   in  order  to  improve 

understanding of the  propagation of these  waves  in  the  magnetosphere  and  their 

character is t ics  as  observed  on  the  surface of the  earth. 

For  simpl.icity a two-dimensional  problem,  consisting of a magnetized 

plasma bounded by two planes, is considered  here.   Previous  relevant  work 

is discussed  in  Section 2 and  the  basic  equations  and  boundary  conditions  are 

derived  in  Section 3 .  In  Sectlon 4 expressions  are  found for  the  field  variables 

of waves  in a plasma,  a vacuum  and a neutral  gas,  and  in  Sections 5 and 6 these 

waves  are  matched  at   the  plasma  boundaries.  The plasma  waves  separate  into 

principal  modes  which  may  propagate  in  the  plasma  wlthout  inducing  any  ex- 

ternal  f ields,   and  modes  labelled TE which  generate  fields  outside  the  plasma. 

Under  the  requirement  that  the  waves  outside  the  plasma  should be outgoing o r  

damped a consistency  condition is obtained  which,  together  with  the  dispersion 

relation,  determines  the  possible  TE  modes.   I t   is  shown  that  for  these  modes 

propagation is only  possible  for a l imited  range of values of /k,  the  phase 

velocity  along  the  plasma  slab. 

w 

These  resul ts  show that  the  waves  which  may  propagate  in a bounded plasma 

must  satisfy  more  stringent  conditions  than  waves  in  an  infinite  plasma,  and  that 

it may be necessary  to  use bounded plasma  theory  in  interpretation of magneto- 

hydrodynamic  wave  observations. 



2. Previous  Work 

It is well known that  the  types of waves  which  may  propagate  in a magnetized 

plasma  vary  with  the  ratio of the  wave  frequency w to  the  plasma  frequencies  and 

the  gyrofrequencies. We are  here  concerned  with  waves  having  frequencies  much 

less  than  the  ion  gyrofrequency w ci, so tha t   t e rms  of the  order  of /w  ci may be 

neglected.  This is known as the  magnetohydrodynamic  frequency  range,  and a 

general   discussion of magnetohydrodynamic  waves  may be found in  FERRARO 

and  PLUMPTON  (1961). Many authors  have  considered  the  propagation of these 

waves  in  infinite  media,  their  reflection  at  an  interface  between  two  semi-infinite 

media  (PRIDMORE-BROWN,  1963),  their  excitation by an  incident  electromagnetic 

wave  (TURCOTTE  and  SCHUBERT,  1961)  etc.  The  propagation of these  waves 

in  the  magnetosphere  and  ionosphere  has  been  discussed by FEJER ( 1960) ,  

MACDONALD (1961),  and  KARPLUS  et a1 (1962),  among  others,  but  without 

inclusion of any  possible  guided  waves. 

w 

Previous  work on  the  modes  possible  in  bounded  plasmas  has  often  been  con- 

cerned  with  the  high  frequency  range  which is important  in  laboratory  investiga- 

t ions of plasmas.   For   instance DAWSON and OBERMAN  (1959)  investigated  the 

possible  modes  in a plasma  slab  and a cylinder  under  the  assumption  that  the 

ion  motion  was  negligible.  BERS  (1963)  considered  in  great  detail  the  propaga- 

tion of waves  in  plasma  wave  guides,  but  mentioned  only  briefly  the  magneto- 

hydrodynamic limit of his   resul ts ,   referr ing  for   more  detai ls   to  NEWCOMB 

(1957)  and GAJEWSKI (1959). 

NEWCOMB (1957)  considered  the  problem of magnetohydrodynamic  waves 

propagating  along  an  axially  magnetized  circular  cylinder of infinitely  conducting 

plasma bounded by conducting  rigid  walls. He assumed  that   the  plasma  particle 

pressure  was  much  less  than  the  magnetic  pressure  and  included  particle  pres- 

sure   effects  only  through a perturbation  treatment.   Three  types of modes 
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appeared,  named TE (transverse  electric),   principal  and  sound-like  respectively.  

The  effects of a finite  plasma  conductivity  were  discussed  briefly by NEWCOMB, 

and  in  more  detail  by S H M O Y S  and MISHKIN (1 960),  who  identified  the  principal 

modes as the  limiting  form of TM  (transverse  magnetic)  modes.  

LUDFORD  (1959)  discussed  resonant  magnetohydrodynamic  waves  in  an 

infinitely  conducing  plasma  confined  in a rectangular  cavity  with  conducting 

rigid  walls.  His  solutions  separate  into two se ts ,  one of which  could be named 

principal  modes  and  the  other of which  appears  to be a combination of TE  and 

sound-like  modes. 

GAJEWSKI  (1959)  considered  magnetohydrodynamic  waves  in a cylinder of 

arbi t rary  cross-sect ion  with  generators   paral le l   to   the  constant   magnet ic   f ie ld .  

He used  the  general  boundary  conditions 

" n . v l  = 0 ,  2 x 2 1  = o 
C C 

where n is the  unit  normal to the  wave-guide  boundary C and v is the  velocity, 

argumg  that  the  solution  in  any  particular  physical  situation is an  appropriate 

combination of these  two  sets of solutions.  For  either  boundary  condition  the 

solutions  divide  into  I'inhomogeneous"  modes,  which  correspond  to  NEWCOMB's 

principal.  modes,  and  "homogeneous"  modes  which  are  either  longitudinal  (L), 

transverse  and  longitudinal  acoustic  (TLA)  or  transverse  and  longitudinal  mag- 

netic  (TLM).  The L and  TLA  modes  correspond  to  NEWCOMB's  sound-like 

modes,  and  the  TLM  to  NEWCOMB's  TE  modes.  GAJEWSKI  discussed  briefly 

- - 

the  form  taken by these  modes  for  rigid,  perfectly  conducting  walls  and  for  rigid 

insulating  walls. 

GAJEWSKI  and MAWARDI (1960)  extended  these  results to a cylindrical 

cavity  with  rigid  ends  and found the  possible  resonant  modes,  which  consisted 

of a set  of principal  modes,   and a set  of combined  TLM  and  TLA  modes,  in 
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agreement  with LUDFORD. This   combinat ion  ar ises   because a TLA  or   TLM 

wave  reflected  from a boundary  excites  both a TLA  and a TLM  reflected  wave 

unless  the  constant  magnetic  field is parallel  to  the  boundary  (PRIDMORE- 

BROWN, 1960). 

WOODS (1962,  1964)  considered  the  possible  modes  in a cylindrical  wave- 

guide  with  rigid  walls  which  could be either  conducting  or  insulating,  and  in- 

cluded  the  effects of neutral  gas  colllsions  and of viscosity  and  finite  con- 

ductivity. In his  1964  paper  particular  attention is given  to  the  boundary  con- 

ditions  when  the  plasma  has  large but  finite  conductivity  and  the  walls  are 

insulators.  

In summary,  the  general  types of magnetohydrodynamic  waves  which  may 

exist   in a cylindrical  wave  guide of arbitrary  cross-section  have  been  determined, 

but applications  have  been  made  generally to wave  guides  with  rigid walls, as 

required  for  laboratory  experiments,   and  l i t t le  at tention  has  been  paid  to  the 

form of the  fields  generated  outside  the  wave  guide. 

3 .  Basic  Equations  and  Boundary  Conditions 

We consider a fully  icnlzed  gas  in  the  presence of a static  magnetic  field, 

bounded by a vacuum o r  a neutral   gas.  Within  the  plasma we assume  infinite 

conductivity,  zero  viscosity  and a sca la r   p ressure   p ;  p ,  - v, u, and - j denote  the 

material  density  and  vel.ocity,  the  charge  density  and  the  current  density,  and 

E and B a r e  the  components of the  electromagnetic  field.  The  basic  equations 

are  then 

- - 

41T V X B  = -  1 a s  
- c -   c a t  j t -  

V . B = O  - 

V x E  = 1 a B  
-. -7 
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V .  E = 4au - 

In  addition as equation of state  we  use  the  adiabatic  law 

- 
p x  = 
1 dP 

P 

In a vacuum p = 0, p = 0 and  equations (1) - (4) are  valid  with j = 0, - 
0- = 0. 

In a neutral  gas  equations (1) -. (6)  and (8) a r e  val.id with j = 0, u = 0.  

The  pl.asma  boundary is assumed  to  have  zero  thickness  and  to  contain 

possible  surface  charges  and  currents, We are  thus  neglecting  the  various 

skin  depths  such as the  ion Larmor  radius  (STIX, 1962,  pg. 7 2 )  which  would 

appear  in  an  exact  theory.  

- 

Let n denote  the  unit  normal.  at  the  plasma  boundary,  directed  into  the - 
plasma,  and  let u'", j denote  the  surface  charge  and  current  densities 

respectively. By integration of equations (1) - (4 )  across  the  plasma  boundary 

the  following  boundaFy  condltions  may be obtained (KRUSKAL and  SCHWARZSCHILD, 

1954; SII'IX, 1962, pg.  73) 

4- :c 

- 
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where 

u = n .  vp = n .  v V - -  - -  
and  the  superscripts p and v refer  to  the  plasma  and  vacuum  (or  neutral   gas) 

quantities  respectively. 

Equations (5)  and (7)  add  nothing,  but  equation ( 6 )  gives 

In addition  it is easily  shown  that 

dn 
dt = n x (n  x Vu) - - - 

F o r  a vacuum p = 0, and v IS undefmed.  Boundary  conditions (9)  - V v .  
- 

(12)  are  quite  general  and  apply to any  motion of the  plasma.  They  simplify 

considerably  when  applied  to a static  plasma  undergoing  small  perturbations. 

Let  B = Eo -t P = Po + ply p = p, t plS 2 =--no t _nl, 1 - -vl, and - - 
and - -  E = El,  where Bo, po, po, and n are  constants  in  ei ther  medium. To 

zero  order  equations (9)  - (12)  become 

- -0 

Eo x - Eo) = - 

20 * (Eo  "0 

v 477 a: 

c -0 B 

- Bv) = 0 

* 
= 0  

= o  

u = o  
0 

From  these  we  deduce  that  

either 
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o r  
-0 -0 -0 -0 
n . g P = n . g V = o  

F or  a plasma-vacuum  boundary it is impossible  to  satisfy  (14) if 

PO # 0, and  equations  (15)  must  therefore  apply.  For a plasma-neutral  

gas  boundary  either  equations  (14) or (15)  may  apply. 

To f i rs t   order   equat ions (9) - ( 1  2)  become 

V 4a * 
-0 

V 
n * (9 - 2 1 )  + a .  ( g  - B , )  = 0 

V 
-0 

n x - gl) = + (BP - B ~ )  V 
-0 -0 -0 

Eo - (5’ - _El”) = 4lTU1 

-0 

u,, = 2, . 2; = n V 
-0 “1 

If equations (14) hold and n . B f 0, these  equations  simplify  to  give 
-0 -0 

- Bf = BV -1 

P1p = P I  

20 x sp = ‘lo x SV 

V 

2o * (E,1 

u1 =‘lo. v p  = n . v 

- EjV) = 4 n u 1  >% - 
V 

-1 “0 -1 

- aft1 
at  = “-o x b o  x vu+ 
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whereas  i f  n . Bp = n . BV = 0, we  obtain 
-0 -0  -0  -0 

E? . Bp 
V V 

p.; + -0 -1 = p v + -Bo E1 
41T 0 41T 

4. Waves  in a Plasma, a Vacuum  and a Neutral  G a s  

We now consider  the  propagation of small perturbations  along a plasma 

slab bounded by the  planes x = 0, a. This  plasma  slab  may be regarded as a 

cylindrical  waveguide  having  rectangular  cross-section of infinite  width. 

Expressions  are   to  be obtained  for  the  field  variables  corresponding  to  the 

possible  magnetohydrodynamic  waves.  Substitution  from  (1 3 )  into  the  plasma 

equations  (1) - (8) yields  the  f irst   order  equations 

V x B p  = -  4lr P 1 azlP 
-1 c &  + C T  

V . B p  = o  -1 

V x E P  -1 = - " I a$ 
c at 

v . = 4TUl P 

P 

8 
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~ p + ~ ~ ~  1 x B p  -0 = O  

We assume  that  is directed  along  the  z-axis 

l! 
B = (0,  0, B p ,  
-0 -0 

and  that a = 0, i. e.  that all propagation is in  the  z-direction. ay 
In component  form,  dropping  the  subscript  1,  equations  (18)  may  be 

wr i t ten   as  

P 
Ep =x< 

Y C 

Ep = 0 
Z 

y = BOP aB 

at aZ 

(18)  cont. 



Our  variables  separate  into two independent  sets  (vp , By ) and  (pp, v: , P 
Y 

V 2' P P P  Bx D Be ). 

For  the  f i rs t   se t ,   f rom  equat ions  (21)   and  (23)  

where 

is the  square of the Alfv/en velocity. In general VA'/C' << 1 and is often 

neglected. :It appears  here  through the inclusion of the  displacement  current 

in  equation (1).  Fo r  brevity we wri te  

The  solutions  for  vp , B , and, from (19) and ( Z O ) ,  for E: , jz,  and 
Y Y  

j," have  the  form 

v p  = f(x) e -iw[t - z/vAj 
Y 

10 



where f(x) is   an  arbitrary  function. The  remaining  variables  are all zero  for  

this  set  of modes  which  we  call  principal  modes (NEWCOMB,  1957).  Both  the 

velocity  and  the  electromagnetic  components of these  modes  are   t ransverse  to  

the  direction of propagation,  and all the  modes  propagate  at  the  modified  Alfvkn 

velocity V I .  A 
The  remaining  solutions  are  given by setting = Bp = 0, and  using 

Y Y 
equations  (21), ( 2 2 )  and (23). Elimination of pp,  and B: and B: from  these 

equations  gives 

where 

is the  square of the  acoustic  velocity. 

Hence 

C 

(vxP, vzp ) = 0 

Thus  solutions of the  form 

e i(kz - w t  t rx)  - 
exist   where 

(i t V ~ / c 2 ) w 4  -. [;co2 t % 2 1 (k2 t r2) t c,zvA2 2 k2] a2 + coz V k  k2 (k2 + r2)  = 0 (25) 
C 
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The two roots  of this  equation  for w2 correspond  to  the  slow  and fast magneto- 

hydrodynamic  waves. One root  is sometimes  called  magneto-acoustic  since it 

becomes a sound  wave  in  the limit -$- "+ 0. V 
0 

F r o m  (25)  

[i t VA'/C') w2 - VA 2 2  k] L2 - c k q  
r 2  = 0 

w ( c o  t VA ) - c 2 2 2  
o 'A ' k 2  

Thus r = 0 when w = VA , c k2 .   For   rea l  0 and k, r is rea l  if 2 1 2 k 2  
0 

a )  w2/k2 > maximum [:a c v i 1  

'0 

L 

b)  minimum Lo2, V i  > u2/k2 > 2 
0 

F o r  all other  positive  values of w2/k2,  r is   pure  imaginary.  

The values of the  field  components  corresponding to solutions of (25 )  a r e  

as follows,  where A is a constant: r 

- i w  ( t  - z / V A ' )  x (Are ipx A e -irx)  i(kz  -ut)  
v P = ~~~e t 

v P = ~~~e -iw(t - z / co )  2 krco 2 (Ape irx - A-re-irx) ei(kz -wt) 

e 
X r#O - r  

Z r#o J -c  2 k2 
0 

Bxp = -io(t  -z/VA') -x 0 Bp k (Are i r x  t A re-irx)ei(kz 
- K' Aole 

r#O w - 

Bzp = x B z r   ( A r e i r x   A - r e - i r x )   e i ( k z  -wt) 
r#O 

P 

0 
- 

E = k Aole -iw(t - z / V  A I )  t < %(AreirX + A e- i rx)  e i(kz  -ut)  
Y C r C  - r  

pp = P i r x  ,_ A-re- i rx)  .i(kz  -wt) 
Aoze 

iwB 
j yp = - * Aole 

- i w ( t  -z/VA') 

(a2 -c  k - c  r )(Are 2 2  2 2  
~ + A r e  i rx   - i rx )   i (kz   -u t )  e - 

(27)  
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We call   these  modes  transverse  electric  (TE  modes),   since for r # 0 the 

magnetic  field  has a longitudinal  component  BZP.  These  modes  include  Newcomb’s 

TE  and  sound-like  modes.  Note  that  the  mode for which r = 0, w = VA k has 

only  transverse  velocity  and  electromagnetic  components,  while  the  mode  for 

which r = 0, u2 = c 2k2 is a pure  acoustic  wave. 

2 2 

0 

The  electromagnetic  waves  in a vacuum o r  a neutral  gas  satisfy  equations 

(1) - (4) with j = 0, u = 0. If ay = 0, these  equations  separate  into two se ts  

for  (Ex , E Z  , ByV),  and  (EY , Bx , 

a 
V V v v  

- 
B v, which  have  solutions 
Z 

= c e i(kz  -ot + ax)  

E Z  =-T;- V a ~e i(kz -ut t a.x) 

B V  = -  0 C e  i(kz -wt t ax) 
Y ck 

and 

V E = D e  i(kz -ut t ax) 
Y 

BxV = - ck - D e  i(kz - ut -t a x) 
W 

BzV = - D e  i(k.z -ot + a x )  
W 

where C and D are  constants  and 

a 2  = u 2 / c 2  -k2 

In  the  neutral  gas acoustic waves  may  propagate in addition  to  electro- 

magnetic  waves.  These  waves  satisfy  equations ( 5 ) ,  ( 6 ) ,  and (8)  with j = 0, 

cr = 0. To first   order  these  equations  may be writ ten 

- 



and  have  the  solutions 

pv = d e  i(kz -ut t px) 

v v  ="- d e  i(kz  -ut t Px) 
X V 

k i(kz  -ut + p x )  v v = -   d e  
z 

"Po 
V 

where d is a constant  and 

p 2  = w 2 / co2  - k 2 

The  signs  chosen  for a. and p in  solutions  (28), ( 2 9 ) ,  and  (31)  depend 

upon  the  requirements of the  problem. 

5. Modes  in a Plasma  Bounded bv a Vacuum 

We now assume  that  the  regions x > a, x < 0 are  vacuum  regions,   and - - 
apply  the  boundary  conditions  obtained  in  Section 3 to  match  the  magnetohydro- 

dynamic  waves  with  the  vacuum  waves, 

The  unit  normal  to  the  static  boundaries is 

no = (2 1, 0, 0) on x = - {f 
Since p # 0, boundary  conditions (1  5) must  be satisfled,  Therefore 

0 

V 

= 'ax = 0 ,  

( BaV)' = 8rrpOp + ( BoP) 
2 

We have already  chosen 

-0 
B = (0 ,  0 ,  Bop) 

For  simplicity we  choose go parallel  to gop V 

(33) 

The plasma  par t ic le   pressure L S  thus  supported by additional magnetLC p res su re  

14 



in the  vacuum. 

The first order  boundary  conditions  are  obtained from equations (17).  

For variations of the  form e i(kz -ut) these  become 

Using  equation  (19) for E p and E v ,  and  noting from (21)  that 

= - kBnp v p throughout  the  plasma,  and  from (29)  that B," = - E 
Y Y 

BX 

-ck v 
w X W Y  

throughout  the  vacuum,  we  see  that  these  conditions  reduce to 

Bzv = 4rpP t BOP B Z  

B:: 

on x = 0, a. 

The principal  modes of equations ( 2 4 )  and  the  TE  modes of equations 

(27 )  a r e  to be matched to the  vacuum  modes of equations (28 )  and ( 2 9 ) .  under 

the  requirement  that   the  vacuum  waves  are  to be outgoing or  damped.  There- 

fore  in  the  region x 2 a the  sign of a must  be chosen  such  that i f  w / k  > c , 2 2  2 

a > 0 while i f  w /k < c , la < 0. Under  this  sign  conventlon  the  e1ectro.- 

magnetic  waves  in  the  region x 2  a vary as e l (kz  ax) ,  while  those  in 

2 2  2 .  



the  region x 5 0 vary as e i(kz -dt -ax)  

For  the  principal  modes 

throughout  the  plasma.  Therefore  on x = 0, a, f rom (35) 

From  (28)  and  (29) for the  vacuum  fields  we  see  that  thls  implies 

EV = EZ = BV = 0 V 

X Y 

since a 2  = w / c 2  -k 4 0, and  that 2 2 

Thus  there   are  no electromagnetlc  waves In  the  vacuum  associated  with  the 

prmcipal  modes.  

Let m 

where a and b are  arbitrary  constants.   The  princlpal  modes  may  then be 

wr i t t en   a s  

n n 

m 

v = 2 en sin n2 i- bn cos n+) e -io(T - z/V I )  A 
Y n= 0 a 

W 

B p  = -x B: (an  sin -- nnx + b C O S  ns> e -io(t -z/VA') 
Y n= 0 VA' a n 

m 
E: = -x $l (an sin - nnx a t bn  cos n ~ , )  e -iw(t - z / V  A 1 )  

n=O 

nTh (a cos  - nlrx - b sin nc3 e - iw( t - z /  VAl) 
a n a n 

n= 0 
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for 0 5 x 5 a, while 0, 5 0 for x_> a, x 5  0 .  

Next  we  require  the  vacuum  fields  associated  with  the  TE  modes  in  the 

plasma. 

Since E = 0 on x - 0, a, f rom ( 3 5 ) ,  we  see  from (28)  that 
Z 

V V V E x = E Z = B  = O  
Y 

throughout  the  vacuum  unless a2 = c2k2.  Since  boundary  conditions (35)  

place  no  restrictions on E and B , any  field of the  form V V 

X Y 

Ex = C e  V - i w ( t  - z / c )  

B = C e  V -iw(t - z / c )  
Y 

may  exist  in  the  vacuum  regions  without  affecting  the  plasma  fields. 

The values of EV B l ,  and B are  more  str ictly  determined.  Consider V 

Y? 
fir the  region x 2 a. F r o m  ( 2 7 )  and ( 3 5 )  we  flnd that  on x = a 

V 
E V = %  

Y C *Ol e 
-iw(t -z /VA1> - i(kz  -ut) 

rf ( 3 7 )  

and 

-iw(t - z / c o )  x 4apg r L2(c: t VA 2 ) - cn2 V' 2k2 
B Z  v = +Z 0 AoZ e r#O wR," h w 2 -c  k L  

0 

(Ar e - A  i ra   e - i ra )   i (kz  -wt) e ( 3 8 )  - . x  

F r o m  ( 2 9 )  the  vacuum  fields  for x, a may be writ ten as 

E = Dol e 
V -iw(t -z/VA') t i a  

Y 
O l X  -iw(t - z / co )  t i a o 2 x  

Doze 

i(kz -wt t a r x )  (39 )  

and 



= 3 D~~ e -iru(t -z/VA') + iaol ,x  + c a o z  -ic*i(t -z /co)  + i a 0 2 x  
BZ W 0 Do2 e 

where 

and  the  constants D a r e  to be determined.  Comparison of coefficients of 

e i(kz -wt) on X = a,  f rom ( 3 7 ) ,  (38), ( 3 9 ) ,  and  (40)  then  yields 

r 

Dol 

Do 2 

= o  

= o  

Dr = C (Ar e + A_, e B V   i r a  e -  ira) - i  a, a 

and  for  consistency 

Aol = 0 

= o  A. 2 

Areira t A-,e - i r a  = r 2 2  (co t % 2 ) -c: X 2 k J  

~~e~~~ - ~ - , e  " -Ira 2 (42) 
a rVAV u2 -c  0 k 2  

where 

We have  thus  shown  that  the  two TE modes  given by r = 0 cannot  propagate 

in  the  plasma-vacuum  system,  while  the  modes  for r # 0 are  subject  to  the  re- 

striction of equation  (42).  When  the  matching  process is repeated  for  the x = 0 

boundary,  the  field  in  the  vacuum  region x 5 0 becomes 
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etc. , while  the  consistency  condition  for  this  boundary is 

Combination of (42)  and  (44)  yields 

e 
2 ira - 2 e-ira - A  - r  

We therefore   set  

a r  xv ( w  - c  k2) 
2 2  

0 

w2 (c: t ) - c o  V: k 2 2 2 

which,  together  with  (26),  determines  the  possible  propagating  modes.  From 

(26)  we  see  that  for  real w and k, r is   e i ther   real   or   pure   imaginary,   and 

r pn-) ra/ 2 is  therefore  always  real .   Consistent  solutions of (26 )  and  (46) 

are  thus  only  possible if a is imaginary  or z e r o ,  i. e.  , i f  

2 

-cot 

r 

W 2 / k 2  < c - 
The  fields  corresponding to  these   t ransverse   e lec t r ic   modes   a re  as 

follows: 

Within  the  pl.asma,  for 0 5 x 5 a, 

X r (x -a /2+ e i(kz -at) 
rfO 



E = r (x -a123 e + pr czn r C O  

P i (kz  -ut) 
Y 

P 2  
r(x -a123 e i(kz -ut) 

rfO w -co 

j/ = x r + O  2 ~ T W C  iBP (m2 - c 2  k 2  t r 9  p, cos 1 sin r(x -a123 e i(ka -at) 

In the  vacuum  region x? a 

and in the  vacuum  region x <_ 0 

V 

E r a / g  e 
i(kz -wt - a r  x) 

Y r#O 

6. Modes  in a Plasma  Bounded by a Neutral  Gas 

We now assume  that t.he regions  x > a, x < 0 contain  neutral   gas - e 

with  .pressure  and  density  equal  to  that of the  plasma, so that we may  write 

The  acoustic  velocity c is  assumed  to  have  the  same val.ue  in  the  plasma 
0 

and  the  neutral g a s .  

(47) 
c ont . 



and  the  zero  order  boundary  condition (14) (or (15)) are   sat isf ied by taking 

In  this  case  the  neutral   gas  particle  pressure  supports  the  plasma  particle 

p re s su re .  

Since z0 . B = 0, first order  boundary  conditions (1.7) apply. By 
-0 

use of equations  (19), (21), and (29) these  may be reduced to 

on x = 0. 2 for  variations of the  form e i(kz - ut) 

The  principal  modes of equations (24) and  the  TE  modes of equations 

(27)  a r e  to  be  matched  to  the  electromagnetic  and  acoustic  neutral  gas 

modes  given by ( 2 8 ) ,  ( 2 9 ) ,  and (31), under  the  requlrement  that  the  neutral 

g a s  modes  are   to  be  outgoing or  damped.  Therefore  the  sign of a is chosen 

a s  in  the  vacuum  caseg  while  the  sign of (3 is  chosen  such  that if w /k > co , 2 2  2 

f3 > 0 while if L? /k < co , if3 < 0. Under t h i s  sign  convention  the  acoustlc 

waves  in  the  region x > a vary  as e l(k'z ' p x ) ,  while  those  in  the  region 

x < 0 va ry   a s  e 

2 2  2 

i(kz  -ut -@x) 
- 

- 
For  the  principal  modes 

throughout  the  plasma.  Hence from (51) 

EzV = 0 

on x = 0, a 
EyV = 0 
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and  from  (28),  (29) ,  and (31) this   implies   that   there   are  no  waves  in  the 

neutral  gas  associated  with  the  principal.  modes,  which  have  the  form  given 

in  equations ( 3 6 ) .  

Next  we  consider  the TE modes.  Since Ezv = 0 on x = 0, a, we may 

se t  

throughout  the  neutral  gas. 

For the  remaining  variables we consider  first  the  region x > a. On - 
x = a,  f rom ( 2 7 )  and (51) 

V 
v = Aol e 

.-iw(t -Z/V'') 
X 7 I A ~  e t A e - i r a )  e 

i ra   i (kz  - w t )  

rpo 
- r  

i r a  -A e- i ra )  e i(kz  -ut) 
(Ar e - (54) 

From  (29)  and (31) the  flelds f o r  x > a m a y  be written as - 

E = D~~ e -iw(t -z/VA') t ia,lx  -iw(t - z / c 0 ) + i a o 2 x  
Do2e +& D r e  

i(kz -ut t a rx) 
Y 

r# (55) 

and 
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V 
P = d o l e  

-iu(t  -z/VA') + i p o l  x -.iw(t -e/ co) i(kz -ut + i p  x) 
+ do2 e 

r 

where a, is defined as in  Section 5, 

Po1 2 = -6-e) 2 1  

= o / co2  - k 2 2 
P r  

and w and k satisfy (2.5) for  each  value of r. The constants D, and  dr  are 

to be  determined.  Comparison of coefficients of e on  x = a then i( kz -ut) 

givess   f rom ( 5 2 )  - ( 5 8 )  

Dol = 0 

DO2 = 0 

D~ = ( A ~  e t A - ~  e m i r a )  e 
B i r a  - i a r  a 

dol = 0 

- 
d o 2  - co P o  -402 

i r a  + A e - i r a )  e - iP ,a  
- r  

( 5 9 )  

and  for  consistency 

Aol = 0 

This matching  process  must be repeated  for the other  boundary x = 0, as in 



the  vacuum  case.  Note  that  the  transverse  wave  for  which r = 0, w2 = ( % I )  k 

cannot  propagate in the  plasma-neutral  gas  system,  but  that  the  acoustic  wave 

for  which r = 0, w2 = c k2 is able  to  propagate  in  this  system. 

2 2  

0 

From  the  consistency  conditions for the  two  boundaries  we  find 

Ar e 
2 ira 2 .-ira = A  - r  

and  we  may  therefore  set 

The  consistency  condition (61) then  becomes 

which  together  with  (26)  determines  the  possible  propagating  modes.   From 

(26)  we see  that   for  real  w and k, r is either  real. o r  pure  imaginary  and 

.pan r a / q  is therefore  always  real-.  Consistent  solutions o f  (26)  and -cot 

(63)   a re   thus   ody   poss ib le  L f  (n V t w / p r )  is imaginary  i.   e. i f  T A  
2 

w2/  k2 < co 2 

The  fields  corresponding  to  these  TE  modes  are as  foll.ows: 

Within  the ,plasma, for 0 < x < a 
" 

iw(t .- z /  co) 2 
V P  r k c o  

i(kz  -at)  
Z Ao2 e 

0 

BZ= x r B O  i s in  
pr  {cos r ( x  - a / 2 ) )  e 

i(kz -ut)  

rf w 
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pp = -iw(t -z /co)  2 fi sin 

3 
*o2 e r ( x   - a / 2 )  3 e 

i(kz  -ut)  
p r  I C O S  

jyp = 5 iB, r ( x  - a / 2 )  e i(kz - w t )  c (64)  ont . 
4awc r #  

In the  neutral   gas  region x > a - 

and  similarly  for  the  neutral.  gas  region x < 0. - 
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