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EFFECT OF MECHANICAL
STRAIN ON p-n
JUNCTIONS

Jimmie J. Wortman

ABSTRACT

A theory is developed for the effect of mechanical strain on the
electrical characteristics of germanium and silicon p-n junction devices.
The model is based on the deformation potential theory of semiconductors
which accounts for strain-induced changes in the energy band structure.
Changes in the minority carrier densities are found to cause the major
changes in the electrical characteristics. The changes in the energy
structure and hence the minority carrier densities are shown to depend
upon the type of stress applied, with anisotropic stresses causing larger
changes than hydrostatic stresses. Equations which are based on the energy
changes are developed for the current-voltage characteristics of diodes
and transistors under stress.

The results of an experimental investigation are reported. Experi-
ments were carried out on mesa diodes, planar diodes and transistors. The
theory is compared with the experimental data and is found to be in good

agreement,
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Chapter I

INTRODUCTION

It has been known for some time that large mechanical stressés
(~ 108 - 1011 dynes/cmz) have a significant effect upon the electrical
characteristics of p-n junction devices. Early work treated the effect
of hydrostatic pressure upon diodes [1]. It was found that the major
effect of a hydrostatic pressure is to change the band gap of the semi-
conductor. Recent experimental investigations have shown that anisotropic
stress has a larger effect upon p-n junction characteristics than does
hydrostatic pressure and, in addition, the effects are considerably
different [2,3,4,5,6,7,8,9,10]. For example, in Ge diodes hydrostatic
pressure causes the reverse saturation current to decrease while anisotropic
stress causes it to increase.

A model based upon purely hydrostatic effects is not adequate to
explain the experimental results for anisotropic stress conditions., It
has been suggested that the phenomenon could result from the creation of
generation-recombination levels as a consequence of strain [6]. Another
model has been proposed in which the phenomenon is attributed to strain
induced changes in the minority carrier lifetime [7]. None of these
theories are able to explain the many facets of the phenomenon.

It is the purpose of this work to show that the phenomenon is

explained by strain-induced changes in the energy band structure of the



semiconductor. A theoretical model is developed which is based on the
distortion of the energy band structure under a general strain condition.
Analytical expressions are developed for the current and voltages as a
function of a general elastic strain for diodes and transistors. Experi-
mental measurements have been made on a variety of silicon p-n junction
devices. These results and the results of other workers in the field are
compared with the theory. The theory is in good qualitative agreement

with the experimental results.



Chaptexr IT

ENERGY BAND STRUCTURE AND DEFORMATION POTENTIAL
THEORY OF Ge AND Si

2.1 Energy Band Structure

Germanium and silicon form single crystals with the diamond cubic
structure, The periodicity and the binding energy of the atoms in the
crystal lattice impose certain quantum mechanical restrictions on the
energy that electrons in the crystal can have [11], As is the case for
all semiconductors, germanium and silicon each have a forbidden energy
range (energy gap) separating the valence levels and the conduction levels.
It is this energy gap that gives semiconductors the desirable electrical
properties which they possess. As will be discussed later, a mechanical
deformation of the crystal lattice changes the forbidden gap and thereby
changes the electrical properties of the semiconductor.

It is convenient, from quantum mechanical considerations, to describe
the energy bands in terms of momentum space (k-space). The energy bands of
germanium and silicon are functions of position in k-space. The maximum
valence levels and the minimum conduction levels are of interest here
since it is these levels that determine the energy gap. The following is
a discussion of the unstrained energy structure of Ge and Si. The maximum
valence levels occur at k = (000) and the minimum conduction levels occur

in the <111> and <100> directions for germanium and silicon respectively.



Figures 1 and 2 are sketches of the band structure of germanium and silicon
as a function of k for the <111>and <100> directions [12]. The notation
used to indicate energy surfaces and k-space points are those adapted from
group theory [13].

Germanium has eight conduction minima which lie in the <111>

directions and are located at the L, point, k = Ha_l(lll), where a is the

1
lattice spacing. Silicon has six conduction minima which occur in the
<100> directions and are located at k = 1.7Ha—1(100) which is approximately

85% of the distance from k = (000) to k = ZHa-l(lOO) or the X, point, The

1
conduction electrons are located at these conduction minima. The name
"many valley'" semiconductor is sometimes given to germanium and silicon and
is derived from the fact that they have conduction minima in more than one
k-space direction. Using this model, n-type Ge is a <111> valley material
and n-type silicon is a <100> valley material,

The maximum valence levels, T for both germanium and silicon are

’
25°
located at k = (000) and are assigned an energy value of zero for conven-
ience. The PéS level is degenerate in energy. Figure 3 shows an expanded
view of the levels in Si [14]. As can be seen, there is a slight separation
in energy of these bands at k = (000) which results from the two angular
momentum quantum numbers j = 3/2 and j = 1/2. The Fés(j = 3/2) level is
itself degenerate at k = (000) and is slightly split for k # (000) due to
spin orbit coupling. Electron spin resonance experiments have shown that
for the Pés(j = 3/2) level the upper of the bands is slightly different in
shape from that of the lower band and as a result the effective masses are
different for the two. The upper band gives rise to the so-called "heavy"

holes and the lower band the '"light' holes. In non-degenerate material the

Pés(j = 1/2) level is usually neglected when performing hole population

4
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Energy Band Structure of Germanium for the <111> and <100>

Directions in k-space,
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Fig. 1.

ra~! (200)

Energy Band Structure of Silicon for the <111> and <100>

Directions in k-space.
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Fig. 2.



E;;;E;,— Heavy Hole
Band

Light Holes
Band

044 ev

j=1/2

2z Split-off
Band

k

—

Fig. 3. The Valence Bands of Silicon near k = 0,

3/2 bands, This

calculations since it is separated in energy from the j
assumption is quite good for germanium while in some cases it may not be a
good assumption for silicon.

The points in k-space where the conduction band minima and valence
band maxima occur are called band edge points. 1In the case of the conduc-
tion bands for germanium and silicon, if one translates the origin in k-space

to the band edge points, constant energy surfaces are found to be ellipsoids

e —— 1 ——————————



of revolution about the band edge points. Figure 4 is a sketch of the multi-

valley energy surfaces for n-type silicon.

[001]

[010]

—C O D oo

Fig. 4. Multi-valley Energy Surfaces for the Conduction Band of n-type
Silicon.

Constant energy surfaces in the valence band are much more complicat-
ed due to the degeneracy. Early workers in the field assumed that the
surfaces were spherical. Of late, experiment and theory have shown that
the surfaces are warped spheres., Figure 5 is a sketch of the cross-
section of energy surfaces a constant distance below the origin for

silicon. As shown, the heavy and light hole surfaces are quite different.



[110]

Fig. 5. Cross-section of the Valence Band Energy Surfaces a Constant
Distance Below the Origin.

2.2 Deformation Potential Theory

As one might expect, if the crystal is mechanically deformed the
periodicity of the lattice will be altered and hence the energy bands will
change. Bardeen and Shockley first introduced deformation potential theory
in 1950 to explain mobility [15]. 1In 1955, Herring and Vogt [16] expanded

the Bardeen-Shockley theory in formulating their transport theory of



many-valley semiconductors, The deformation potential coefficients, []'s as

introduced by Herring and Vogt are defined by

6
E=E 4+ = [] e (2.1)

where E is the energy at the band edge point, Eo is the unstrained energy,
and eS are the strain components indexed in the usual manner (see Appendix
A) and referred to the crystallographic axes. Equation 2.1 has since been
found to apply in géneral only for the conduction band of germanium. The

discussion to follow considers in some detail the effect of a general

strain on the conduction and valence bands of germanium and silicon,

2.2.1 Valence Bands of Ge and Si

Kleiner and Roth [17] have derived the Hamiltonian, H, from sym-

metry considerations which includes the effect of a homogeneous strain

e (s =1,2,...6)

s , on the valence band edge:

2 2 1.2
+ e3) + Du[(Jx 3 J7) e

3 + c.p. |

H=H0+Dd(el+e2 1

(2.2)

2 ik
+3 Du[z(Jsz + Jsz) e, + c.p.]

where the D's are the deformation potential coefficients, the J's are the
4 x 4 angular momentum matrices of the hole for j = 3/2, and HO is the zero

strain Hamiltonian; D, is the shift per unit dilatation of the band edge,

d

while 2 Du is the splitting of the band edge induced by uniaxial shear
strain along the [001] axis, ZDS gives the splitting similarly for the [111]
" 1"

axis, Finally, "c.p." means cyclic permutations of x, y, and z referring

to the crystallographic axes.



For a Cartesian coordinate system, the conventional representation

for the angular momenta for j = 3/2 are [18]

0

V3

o

w

NE

0

Substituting Eq.

where

o
W WY Wi Wi wiN

=D

4t

(2.3) into (2.2) gives

0 -\/_Si
NJ3i 0
1
> I = 90 o 21
0 0
1 0
2 15[ © 1
, =5
0 0]
0 0
1R4 R3 - 1R6
R2 0
0 R1 - R2
iR -R. - iR,
e1 + e2 + e3);
1
Du(e3 - Z[el + ez])s

DLL(%\/EB)(e1 - ez);
1

Dl’l(E\/_3) e

DL’I(%\/—B) e

1
DL’I(E\[B) e,

10

0 0
-21i 0
0 ~J§i
J3i o0
0 0
0 0
1 0
0] 1
0
R3 - 1R6
—R5 + 1R4
R1 + R2

2

(2.3)

(2.4)



The allowed energy levels are found by determining the eigenvalues
of the Hamiltonian (diagonalizing the Hamiltonian). Mathematically this is
done by subtracting the energy, E, from each of the diagonal elements of
the Hamiltonian and equating the determinate of the new matrix to
zero, i.e. H - 3,, E =0, Diagonalizing the Hamiltonian for the energy

1]

gives

_ 2 2 2 2 2,1/2
E—E0+R1i(R2+R3+R4+R5+R6)
or (2.5)
3 _ 2 2,2 2 2
AE = E. Eo—Dd(e1+e2+e3)i{(3 Du) (e1+e2+e3 e,
) ) 2 /N2 2 2 2,51/2
e e, e2e3) + (3 Du) (e4 +oes + e6)}

From Eq. (2.5) it is seen that there is not only a shift of the level due

to Dd but also a splitting of the level,due.to Du and Dé,which removes the
degeneracy. The separation in energy is twice the square root term of

Eq. (2.5). T1If the net strains multiplying Du are compressional strains then
the + sign of Eq. (2.5) corresponds to the heavy hole band and the - sign
corresponds to the light hole band. If the strain is tensional then the
ordering of the bands is reversed. For convenience of notation, let the
heavy hole band be Ev

and the light hole band be EV From Eq. (2.5) the

1 2°

changes in these levels for compressional strain are

AE =D_e + {(g D )2 (e2 + e2 + e2 - e.e._-ee_-e.e_.)
vl d 3 u 1 2 3 172 13 273
(2.6a)
2 /2 2 2 2.,1/2
+ (3 Du) (e4 + ex + e6)}

11



and

_ _ 2 2 2 2 2 - _
AEVZ = Dd e {(3 Du) (e1 + e, + e eleZ, ele3 e2e3
(2.6b)

2 2 2 2 2,,1/2
+ (3 Du) (e4 +eg + e6)}
For the sake of completeness the change in the split-off band

TéS(j = 3/2), E is AEV3 = D, e. Figure 6 is a sketch of the bands for

v3’ d

a compressional strain,

E (k)

Evl

v2

4h%

—_———3k

Fig. 6. The Split Valence Bands of Silicon for a Compressional Stress.
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2.2.2 Conduction Band of Ge

The effect of strain on the conduction band of Ge has already been
mentioned in Sect. 2.2. For the band edge point at k = Ha-l(lll) the shift

in energy is

NE o= (2.1)

cl

n ™Mo
A
—_
o

s=1

where EC is used to denote the conduction minimum at k = Ha_l(lll).

1
Symmetry restrictions on the deformation potentials reduce the number of
constants to two for germanium, []u and []d [16]. Equation (2.1) reduces
to

pE = ([, +300) e +¢ll (e, +e. +e), (2.7)

where e = ey + e, + é3. The other seven band edge points in the <111>
directions can be obtained by symmetry and will be stated in complete

form later.

2.2.3 Conduction Band of Si

The effects of strain on the conduction band minima of silicon are
considerably more complicated, due mainly to the fact that the minima are
not located at highly symmetrical points in k-space. Strain can have the
effect of shifting the band edge point in k-space. Hensel and Hasegawa
[19,20] have derived the Hamiltonian as a function of the wave vector k

and strain ey for the band edge point lying along the [100] axis. The

Hamiltonian is given by

13




p~—

2

1
2m1

+[lye+ 1], e)

gl 2 2
AV k +— k= + =&~ + k)
b4 X y z

Zm'

’
[]u e, + N ky kz

’
[]u e, + N ky kz

w2
(-fv « +h——/<2+1——
X 2m” X 2ml

+ 10,

e + []

2 2
ey + k)

)

u el

(2.8)

where mH and m, are the effective masses along the [100] and its transverse

directions respectively, V and N are band parameters, KX is the [100]

component of the wave vector k as measured from the symmetry point

1

Xl(Kx = - [2Ha_ - kx]) and []é is an additional deformation potential

coefficient introduced as a result of symmetry analysis,

Diagonalizing the Hamiltonian and setting ky = kz = 0 (Eq. 2.8)
gives
. ] e+ 0] e+ mEv 4 ()7 et? (2.9)
ZmH X d u 1 —= VoK u 4 :

In order to get some feel for the significance of this equation, let the
strain be zero. Equation (2.9) then reduces to
2
gi!
E=2— 2+ V (2.10)
X — x

2m”

This now describes the unstrained energy as a function of Ker Referring to

Fig. 2, this describes the energy bands Aﬁ and Aé where the positive sign

of Eq. (2.10) corresponds to the A/ band and the negative sign corresponds

2

to the Al band. The band edge point Ko is found by differentiating Eq.

(2.10) with respect to Ky and equating the result to zero, i.e. the normal

procedure for determining the stationary points of a function. Performing

1




this operation gives

Ak =-my |V]. (2.11)
o I I '
The band edge point under zero strain conditions is ko = 0.85(2ﬂa-1).
Solving for Ko gives
-1
Ky = - 0.15(21a 7) . (2.12)

The energy value separating the two levels (A51 and Aé) at the point Ko

as determined by the plus and minus sign of Eq. (2.10) is

oE = 2my Ve . (2.13)

Returning to Eq. (2.9), the same procedure as that just illustrated
can be used to determine the conduction band minimum and the band edge
point for a general strain. Taking the derivative of Eq. (2.9) with respect

to « and equating the result to zero gives'
X

2
([17 e,)
2 2 _ 2 u_ 4
B (Kx)min = m” v ~ "—"2 - (2.14)
\Y
or
2
([17 e,)
£2(c )2 =22 . A, (2.15)
X min o V2
where (Kx) . is the band edge point under strain. The band edge point,
min
(Kx)min’ is a function of the shear deformation potential coefficient []6
and of the shear strain e, Hensel, et. al. [19] have given estimated
, ) .
values of AE as 0.5 ev and []u as 5.7 ev, Figure 7 is a plot of (Kx)min

as a function of e, and has been calculated using the above values of

AE and [}/, where (k) . = - [2ma™t - (k)

. . ]. Note that (k_) . increases
x’min x’min x’min
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Fig. 7. Variation of the Band Edge Point as Measured from the Origin in the
[100]-direction with Respect to the Shear Strain e,-

with shear strain until it reaches the symmetry point X1 where it assumes a

..1 .
value of 2Ta for larger strains. Once (kx)min reaches X1 it can no longer
. . 2
increase due to symmetry restrictions, i.e. (Kx)min must be greater than or

equal to zero otherwise (KX) . would be imaginary. The strain level at
min

which (k) . =0 is
X min
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(2.16)

where the bars indicate the absolute magnitude.

Substituting Eq. (2.15) into Eq. (2.9) and evaluating at the band

edge point gives

2
([12 e,)
E=Z£_ZE—4+[]de+[]ueli

NIE

(2.17)

The positive and negative signs of Eq. (2.17) give the energy of the Aé

and Al bands respectively at the band edge point as a.function of strain.
In order to reduce the notation, let Eci be the energy of the conduction
band minimum where i = 1, 2, 3. Here 1, 2, 3 represent the [100], [010],
[001] directions respectively. The [100] valley minimum is then
(117 e)?

AE

B =-fE ] e + ] e -

u (2.18)

The above equation is good for strains less than that required to shift
the band edge point to Xl, i.e.|e4|§ AE/(Z[]G). For strain above the
critical value (Kx) . is equal to zero. In this case the energy is

min
obtained directly from Eq. (2.9) and is

E,, = [ge+ ], e ',”ﬁ e4| ) (2.19)

The magnitude of the energy is not important here but rather the
change in the energy with strain. The change in Ec1 with strain is as

follows:
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g e+ [, e = (117 e)/me; e, | < aB/(2[17)
AE_ = (2. 20)
g e Uy +58- 007 ey 5 |y >m8/ 211,

u u

2.2.4 Deformation Potential Coefficients

The deformation potential coefficients have been calculated theo-
retically by Kleinman, et. al [21, 22, 23]. His calculations are for pure
(no impurities) Ge and Si and are based upon a knowledge of the electronic
wave functions. Many of the coefficients have been calculated from data
taken from piezoresistance and cyclotron resonance experiments. Table I
lists both experimental and theoretical values of the coefficients,

There is good reason to believe that the deformation potentials
change with doping and type of impurity, Mason and Bateman [24, 25] and
Csavinsky and Einspruch [26] have measured the change in the elastic
constants of Si for doped samples using ultrasonic pulse techniques., They
have been able to estimate the deformation potentials from their measure-
ments, and they find that the shear deformation potential (Dé) increases
with increased doping. Table II shows‘the results of their measurements.
As shown in Table II, it may be possible that Dé varies considerably. This
large uncertainty will, of course, be reflected in latercalculations of

junction parameters.
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Table T

Deformation Potential Coefficients (ev/unit dilation) for

Ge and Si. (Kleinman's theoretical values are shown
in brackets,)
Si Ge
Dy [-2.09] [-2.09]
a b
D, 2.04%, [3.74] 3.15°, [3.74]
D/ 2.68%, [4.23] 6.06°, [3.6]
[y [-4.,99] [-10.16]
[, 11¢, 8.3%, [9.57] 19.2%, [11.4]
f
/
(17 5.7

1
D, ([l + 3501

-1.448, [-0.30]

4.82%, [4.27]

a. J. C. Hensel and G. Feher, Phys. Rev.
b. J. J. Hall, Phys. Rev. 128, 68 (1962),

c. D. K. Wilson and G. Feher, Phys. Rev.

1041 (1963).

124, 1068 (1961).

d. J. E. Aubrey, W. Gubler, T. Henningsen and S. H. Koenig,

Phys. Rev., 130, 1667 (1963).

e. H. Fritzche, Phys. Rev. 115, 336 (1959).

f. J. C. Hensel and H, Hasegawa, paper presented at the Inter-
national Conference on the Physics of Semiconductors, Paris, July 1964,

and private communications,

g. W. Paul, J. Phys.

Chem. Solids 8, 196 (1959).
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Table II

Values of the Shear Deformation Potential Coefficient D/ for
Boron Doped Si as a Function of Doping Concentration

Concentration (cm_3) Dé(ev)
1.4 x 10t° 8.5°
2.5 x 10°8 30%
3.2 x 10'8 5.8P
1.0 x 107 13°¢
1.1 x 102 11- 8P

a. W. P, Mason and T. B. Bateman, "Ultrasonic Attenuation and
Velocity Changes in Doped n-type Germanium and p-type Silicon and their
use in Determining an Intrinsic Electron and Hole Scattering Time', Phys.
Rev. Letters 10, 151, 1 March 1963,

b. P. Csavinsky and Norman G. Einspruch, "Effect of Doping on the
Elastic Constants of Silicon', Phys. Rev, 132, 2434 (1963).

c. W. P. Mason and T. B. Bateman, 'Ultrasonic Wave Propagation in
Doped n-Germanium and p-Silicon', Phys. Rev. 134, Al1387 (1964).

2.2.5 Summary

The effects of strain on the conduction minima and valence maxima
of Ge and Si have been treated. These calculations have been based on the
deformation potential theory of semiconductors. By way of summary, the
following equations were obtained which can be used for calculating the
change in energy of the valence and conduction band edge points with

compressional strain:



Valence Band of Ge and Si

LE 4 D, e + {(% Du)2 (e2 + e2 + e2 - e,e. ~ee,  -e.e))

d 1 2 3 172 173 23 (2.21)
2 /2 2 2 2.,1/2
+ (3 Du) (e4 + es + e6)]
_ S22 582 2, 2 2 .
AE,, = Dge - {3 D)7 (e] +ey +ey-eje, - eeq- ey
(2.22)
2 2,2, 2  2.1/2
+ (3 Du) (e4 + e + e6)}
where E ; is the "heavy" hole band and E,» is the "light'" hole band.
Conduction Band of Ge
ME = ([, +E[1) e +L[] (e, +ec +e) (2.23)
cl a T3ty ¢ T eliyl®y T8 TR .
- 1 1 - -
pE_, = ([, +301) e +20) (e, - e5 =€), (2.24)
1 1 .
AE 5= ([1g +301) e+ gl (e, tes - e) (2.25)
- 1 1 e -
2B, = ([, +301) e + ¢l (e, - e5 +ep) (2.26)

where EC is the conduction minimum in the [111] and [111] directions, E

1 c2
is the minimum in the [111] and [111] directions, E03 is the minimum in
the [lil] and [ili] directions, EC4 is the minimum in the [111] and [111]
directions.

Conduction Band of Si
2
- 7 . /
[1g e + [1, e - (L1 e)7/0E; le,| < 2B/ (2110
AE ;= e (2.27)
an / /
[]d e+ []u €1 + 4 []u A 'e4l > AE/(z[]u)
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ge+ [0, e, - ([ e?/om;  |eg) < AB/2(110)

u 2

AE = (2.28)
c2 AF , ,
[lget+ [, e, +7 - [ ey les| > 2E/2(110)
- ’ 2 np - ’
[14 e + 1], eg - ([1] e /LE; [eg] = 2E/(2[1D

AE03 = AE (2.29)
ok 7 . Y
[ge+ [l eg+q - 1] eg s feg| >2E/C20D

where Ecl is the conduction minimum in the [100] and [100] directionms, Ec2

is the conduction minimum in the [010] and [010] directions, E is the

c3

minimum in the [00l] and [001] directionms.

Referring to the set of Egqs. (2.23), (2.24), (2.25), (2.26) and
to the set (2.27), (2.28), (2.29) it is seen that for a general strain some
of the conduction minima increase in energy while others decrease. This
means that electrons will populate the lowest minima and depopulate the
higher minima. Likewise the valence levels.shift relative to each other
as shown by Eqs. (2.21) and (2.22). Again the holes will populate the
higher energy level. The band gap Eg is defined as the difference in
energy between the lowest conduction minimum and the highest valence maximum.
For hydrostatic pressure all of the conduction levels shift the same amount.
Likewise the valence levels shift together. The shift of Eg with strain is
then simply'the change in the conduction levels minus the change in the

valence levels.
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Chapter III

EFFECT OF STRAIN ON JUNCTION PARAMETERS

3.1 Carrier Concentration

Changes in the energy levels, as discussed in Chapter II, cause
changes in the carrier concentrations. For non-degenerate material for
which Maxwell-Boltzmann statistics apply, the density of electrons n
associated with an ellipsoidal energy surface at a band edge point is [27]

2.3/2 3/2
m e

n = 2(2IkT/H c

xp[- (E, - EZ)/KT] (3.1)

where m is the effective mass of the energy surface, Ec is the energy of

the band edge point, and EF is the Fermi level. 1If there are vy ellipsoidal

energy minima in k-space, the density of conduction electrons is

3/2 (E . - E)
0= 2B wl? ewpl —Shp
f (3.2)
(E ., - E) E - E
+ miéz exp[- __Eziif—g_] + - +-m2£2 exp [- —EXEE——E]].

The conduction band of Si has six energy minima in the <100> directions in
k-space with equal effective masses while Ge has eight minima in the <111>
directions with equal effective masses. Pairs of energy minima are always

affected in the same manner by stress so that only three minima need be

23



considered for Si ([100], [010], and [001] directions) and four for Ge
([111], [111], [111], and [111) directions). Referring to Eq. (3.2), the
density of electrons depends on the effective mass, the energy of the éartic—
ular conduction levels and the Fermi energy of the crystal. The effects of
strain on the conduction minima have already been treated. Tt should be
noted that the energy terms enter into the density relationship as an
exponential while the effective mass enters as a 3/2 power. The effective
mass m_ may change slightly with strain; however, for the present discussion
it will be assumed that it remains constant, The validity of this assumption
is discussed in detail in Appendix B.

Assuming then that m, is constant and is the same for each energy
minimum, the density of electrons under strained conditions for both Si

and Ge can be written as

AEF 1 AEcl cV
n=ngexplir] 5 lexpl- —op ]+ e Fexpl- =1 (3.3)

where ¥ = 3 for Si and 4 for Ge, ng is the electron density in the unstrained
condition, AEF is the change in Fermi level, and the AEC's are the changes
in the energy minima of the conduction levels under strain.

The equation for the hole density differs slightly from that for
electrons due to the degeneracy of the valence band levels at k = (000).

The hole density, p, is

_ 2(2HkT)3/2 @32 expl- Ep - Evl)]
P g2 vl P KT
(3.4)
(E_, - E_ ) (EL. - E )
3/2 F 2 3/2 F 3
+ mvé exp|[- ————EETX——] + mvg exp[- ————EE—Z——]}
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where Ev and Ev are the energies of the PéS(j = 3/2) levels (heavy and

1 2

light hole bands) and Ev is the energy of the j = 1/2 level., It will be

3
assumed here that the j = 1/2 level can be neglected compared to the j = 3/2

level because it has a smaller effective mass and is lower in energy. The
third term in Eq. (3.4) is thereby neglected. (This is a good assumption
for Ge while for silicon the error in p will be less than 20%.)

In the unstrained case Ev and EV are equal so that an effective

1 2

mass m; can be defined for the combination of the two levels as follows

wta

* m3/2 + 3/2

o ]2/3
v vl v2 ‘

(3.5)

This is the normal hole effective mass. Again it will be assumed that the
effective mass of the individual levels do not change with strain (see

Appendix B). The hole density under strain becomes

m3/2 OE_ - AE m3/2 NE_ - AE
= p vl exp [- F vl] + v2 exp[ - F v2] (3.6)
P =Py Y %372 €¥P KT % 372 S¥P KT :
(mv) (mv)

where P, is the hole density with zero strain.

Equations (3.3) and (3.6) are valid for either p- or n-type
material. In non-degenerate n-type material, with zero applied stress,
the electron density is approximately equal to the net donor density.
Likewise, in non-degenerate p-type material the hole density is approxi-
mately equal to the net acceptor density. The effects of strain on
impurity states in Ge and Si are not completely known. For hydrostatic
stress, experiment has shown that the changes in impurity ionization

energy are negligible compared with band gap changes [28]. Hall has
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shown that ionization energy decreases with strain for large <111> uniaxial
stresses in Al and In doped Ge [29]. Kohm [30] has also given a theéretical
discussion in which it is suggested that the change in ionization energy is
second order for shear strains. It will be assumed that shifts in ioniza-
tion energy of impurities can be neglected and that the majority carrier con-
centration is independent of strain.

Since both the valence and conduction bands shift with strain, the
Fermi level must also shift. This can be seen for p-type material by
setting Eq. (3.6) equal to the acceptor density Na' Since the ionization
energy has been assumed to be independent of stress, the hole density

remains constant, and

3/2 3/2

g S o, ™2 —
expli=1 = ( *)3/2 exp [ 1 + (m*)3/2 exp ["] (3.7)
mV v

Substituting Eq. (3.7) into Eq. (3.3) and solving for the minority carrier

concentration gives

m3{2 ~Eoq miéz ARG o
np/npo = (1/v) (—*)—375 exp [ 1 + *)3/2 exp [~ ]
m (m
v v (3.8)
JAN )
cl cV
X Lexpl- T ]+ ¢« + expl[- ©T ]

where np is the minority carrier concentration with strain and npo is the
unstrained minority carrier concentration., 1If a similar calculation is
made for n-type material, it is found that the same expression results for

pn/pno so that the minority carrier density can be written in general as
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3/2 -)

Pn _ " moy” o M2 )
7y(e) =g = o = () TSy exelar 1 s exe by
no po (m ) (m )
(3.9
AE .
1
X 4expl[- —E%—] + -e+ + exp[- k;v]

The factor 7v(e) gives the ratio of minority carrier density under strain
to minority carrier density with zero applied strain. For hydrostatic
stress Eq. (3.9) reduces to

FAND
7v(e) = exp(- ﬁg‘) (3.10)

Figures 8 and 9 are plots of 7V(e) for Si and Ge respectively as a function
of uniaxial compression stresses for several orientations. The uniaxial
stresses were calculated as shown in Appendix A, The experimental values
of the deformation potentials as shown in Table I and II were used in the
calculations, Note in Figs. 8 and 9 that hydrostatic stress causes the
minority carrier concentration for Ge to decrease while it causes the
minority carrier concentration of Si to increase. Also 7V(e) is more
sensitive to <100> uniaxial stresses in Si while <111> uniaxial stresses
cause larger changes in Ge,

The above treatment of the effect of strain on carrier concentration
is based on two assumptions (1) no change in effective mass with strain and
(2) no change in ionization energy with strain.

The pn product (pn = ni) is an important parameter in semiconductor
theory because at equilibrium it remains constant with position in p-n
junction devices. It does however change with strain. This can be seen

by forming the pn product from Egs. (3.3) and (3.6)
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Fig. 8. Ratio of Stressed to Unstressed Minority Carrier Density for Ge as
a Function of Stress for Hydrostatic, [100], [110], and [111]
Uniaxial Stress.
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Fig. 9. Ratio of Stressed to Unstressed Minority Carrier Density, 7y (e),
for Si as a Tunctiom of [100], [110], [111] and Hydrostatic
Stress.

n, =pn=pn 7v(e) . (3.11)

Rewriting Eq. (3.11) gives

2 2
n; = n; 7V(e) (3.12)

where ni is the intrinsic carrier concentration under strain and n. is the
io

intrinsic carrier concentration with zero strain.
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3.2 Effect of Strain on the "Ideal" Current Components of p-n Junctions

This section discusses the '"ideal" or diffusion currents in p-n
junctions as predicted by the Shockley model. Generation-recombination
currents are discussed in the following section. The p-n junction model
to be discussed is shown in Fig, 10, where AT is the total junction area,
ASn and ASP are the stressed areas at the edges of the depletion region

are the respective widths

on the n and p sides respectively, Wn, Wp’ and Wd

of the n region, p region, and depletion region. The hole and electron

currents are

qATD P, wn an
I = —228 coth(=/) {exp[—=] - 1} (3.13)
P L L kT
p p
qATDnn HR an
In = —_E;——E coth(Ln) {exp[iirﬂ - 1) (3.14)

where Dp and Dn are the hole and electron diffusion coefficient, Lp and Ln
are the hole and electron diffusion lengths,'pn and np are the equilibrium
minority carrier densities at the edges of the depletion region on the n
and p sides of the junction respectively, andVa is the junction voltage.
Under stress there are two regions of the junction which must be
considered. The current in the unstressed area is given by replacing AT
with AT - Asn in Eq. (3.13) and AT - ASp in Eq. (3.14). The current
through the stressed areas will be modified by the stress induced changes
in the parameters, As shown in Figs, 8 and 9, the minority carrier concen-
trations change by several orders of magnitude for large strains. It is
assumed here that changes in the other parameters are negligible compared
to changes in minority carrier densities. This assumption is discussed in

Appendix C.
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Fig. 10. Stressed p-n Junction Model.

Taking into account the stressed and unstressed regions, the

equation for the "ideal" component of diode current can be written:

1 = I

qVv
S exp[kT] -1

A_ - A

T sn 1

= —_— dx d .1
Lo R S 7yl ax ) (3.15)
AT B AS 1 f
b (T L dx d
no AT AT Asp 7,V(eP) x dy}
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where I is the "ideal" diode current, Is'is the reverse saturation current,

e and ep are the position dependent strains at the edges of the depletion

region on the n and p sides respectively, and

gA D p W
_ T p no n
I = coth(=) ,
po L L
P P
(3.16)
qATDnn o HR
Ino = —__f——R_ coth(L )
n n
Defining an effective ratio of minority carrier densities as,
v ==t [, 7. (e) dxdy
v A A v ?
s s
Eq. (3.15) reduces to
AT ~ Asn Asn AT ) ASE AsE
IS = Ipo{ AT + AT 7V(en) + Ino AT + AT 7V(ep)} ) (3.17)

Two special cases are of interest, The first occurs when the stress

is symmetric across the junction, so that ASrl = Asp = As’ and
¥ =¥ =% (e). The
7v(ep) 7v(en) 7,(e) n
AT - As As
Is = [Ipo + Ino][———z—__ +oa 7V(e)] . (3.18)
T T
or
AT - AS AS
I =I_[—F—+77=75 ()], (3.19)
s so AT AT v

where I is the unstrained saturation current.
so
For hydrostatic pressure the stressed area is equal to the total

AE

area and y_ (e) = expl[- EEg]' The reverse saturation current is then
v
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LE

= - B
IS ISo exp[ T ] (3.20)

AE
For EEE << 1, this may be written as

AT NE
Ts— ~ -[——EkT ] (3.21)

where AIS is the change in saturation current for a change in band gap of
AEg. This equation agrees with the results obtained by Hall, et. al,[31],
The dependence, on temperature, of the current through a stressed
diode can be described. Referring to Eqs. (3.16) and- (3.17), 7v(en) and
Vy(ep) as well as the diffusion coefficient, the diffusion lengths, and the
minority carrier densities are temperature dependent. For small tempera-
ture variations near room temperature, only the changes in carrier density,

7V(en) and ?V(ep) need be considered. The carrier densities P, and n_ are

: E LE
proportional to exp|[- K%] [32]. For large strains, ?v(e) « exp[- EEE]

where AEg is of course strain dependent. For the case where the stress is

symmetric across the junction and

b=

AT - As

A

= 7,(e) >>
T

A

|

(valid at high stress or when the entire junction is stressed),

E NE
I« {exp[ﬁ%] - 1) exp[- E%} exp|- Efg} . (3.22)
av
if >> 1
kT
_._B“Qn-[ = _1-.. [E + AE - qv] s (3. 23)
oT k> 8 &
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and when av < -1,

kT
nt _ 1
ST - sz[Eg + AEg] . (3.24)

A; shown in the above equations the slope of fnI vs T depends upon the
stress through AEg. AEg is negative for uniaxial compressive stresses.
Therefore the slope of fn I vs T decreases with increasing stress.

The effect of a large stress applied to a small area of a p-n
junction is to cause the '"ideal" or diffusion current through the small
area to increase. For high stress levels the current through the stressed
area can become much larger than that through the unstressed area, hence

the total diode current is essentially that flowing in the stressed area,

3.3 Effect of Strain on the Space Charge Generation-Recombination Current
in p-n Junctions

Space charge generation-recombination current can be important in
p-n junctions (particularly in silicon) [33]. This current adds to the
"ideal" or diffusion current which is predicted by the Shockley theory.
Mechanical strain can cause a change in generation-recombination currents in
two ways. First, strain can cause the generation-recombination current to
increase by simply increasing the number of generation-recombination centers
located in or near the space charge region of a p-n junction. The second
way strain can change the generation-recombination current is to shift the
relative position of the energy of the trap levels with respect to the con-
duction and valence levels.

Rindner, et. al. [5,6] have suggested that the first effect, creation
of trap centers by strain, is in fact the underlying mechanism responsible

for large changes observed in the electrical characteristics of p-n junction
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devices when subjected to strains. They argue that the trap levels result
as a consequence of dislocations introduced in the crystal by strain.- As

to whether or not dislocations can be caused by strain, at room temperature,
is subject to controversy [34,35]. If dislocations are created by strain
they would be expected to remain when the strain is removed--not reversible.

Rindner and Tramposch [34] have performed experiments on germanium
in which a diamond needle was used to indent the sample at and below room
temperature, The sample was then annealed and etched to exhibit the presence
of dislocations. After etching, the samples did in fact contain dislocations
in the vicinity of the indention. Craig and Pugh [35] have performed similar
experiments on germanium with the exception of the annealing cycle. They
found that no dislocations were formed. They conclude that Rindner and
Tramposch actually introduced the dislocations during the annealing cycle.

It is the opinion of this author that Craig and Pugh are correct in their
findings and that the creation of generation-recombination levels with strain
is negligible. Even if it were possible to produce the generation-recombi-
nation centers, a model based on this effect will not begin to explain the
many facets of the phenomenon that have been observed.

The second aspect of generation-recombination currents (change in the
relative position of the trap energy with respect to the conduction and
valence bands) can be important. The following discussion treats this
problem. Hauser [36] has derived an approximate theoretical expression for
the current for a single trap level located in the forbidden band. A review
of Dr. Hauser's work is given in Appendix E. The space charge generation-

recombination current, J is given by:

U’
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qnf W[exp{an/kT} - 1]

I, = T Tpo] . exp{an/kT} (3.25)

no
(Tnopl + Tponl) 1+

[Tnopl + Tponl]

where W is the width of the space charge region, Va is the applied voltage,
Too is the lifetime for electrons injected into highly p-type material, and
Tpo is the lifetime for holes injected into highly n-type material. The

hole and electron densities Py and n, are given by [33]

1

Py n; exp(Et - Ei)/kT (3.26)

n

1 n, exp(Ei - Et)/kT (3.27)

where Et is the energy of the trap level and Ei is the energy of the intrin-
sic Fermi level. The width of the space charge region, W, is a function of

the applied voltage. For a step junction the width is

: _ 1/2
W= wo(l va/vo) , (3.28)

where wo is the width with zero applied voltage and V0 is the built-in
junction potential.

To see how the generation-recombination current changes with
mechanical strain, each parameter in Eq. (3.25) is analyzed. The intrinsic
carrier density has already been discussed in Sect. 3.1. Again it will be
assumed that Tho and Tpo are strain independent (see Appendix C). The
built-in potential is related to the intrinsic carrier concentration by

NaNd

2

n,
1

Vo« dn ( ) (3.29)

Since changes in Vo are logarithmically related to changes in ni, it will be
assumed that V0 and hence W are independent of strain when compared to changes

in n,.
i
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This leaves only Py and ny to be discussed. They are related to the

energy of the trap level as shown by Eqs. (3.26) and (3.27).

Unfortunately
there is no information available on the effect of strain on Et' In the
absence of this information it is not possible to predict how J . varies

U
with strain in the reverse biased and low forward biased regions.

For large forward biases JU is independent of Py and n. For this

case JU is given by (see Appendix E):

qniw
JU = exp{an/ZkT} (3.30)
no po
Substituting Eq. (3.12) into Eq. (3.30) one finds
Jo(e) = J (o) Ny (e) , (3.3
U U v
or
L;(e) Ny
@ " Ve (3.32)
where JU(o) is the unstrained generation-recombination current, As shown
by the above equations, the generation-recombination current is not as
strain sensitive as the ideal current.
Taking into account the stressed and unstressed regions as was
done for the "ideal' current, the generation-recombination current is
AT - A AS
I =|—=——24+-=2 J5 (& |1 (0) (3.33)
U AT AT v U

It should be noted that it is the strain in the junction that is important

here as opposed to the strain at the edge of the depletion region in the

ideal current.
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3.4 Effect of Stress on Transistor Characteristics

A p-n-p junction transistor model is considered. The equations
for the electron and hole components of emitter current are [32]

qv qV

k;b) - 1] + K, [exp(-

qub
Ine = np K3 exp [ *T 1-1 (3.35)

where Kl’ K2, and K3 are functions of the device dimensions and material

constants, n_ and p, are the minority carrier densities in the emitter and

cb
kT

I, = P, (K [exp( ) - 1) (3.34)

pe

and

base respectively, Veb is the emitter-base voltage, and VCb is the collector-
base voltage. The minority carrier densities are shown explicitly to
indicate the dependence of Ipe and Ine on stress. Under normal forward

bias transistor operatiom, qub/kT >> 1 and chb/kT >> 1, Using these

restrictions, the emitter currents under stress conditions similar to

those discussed for the p-n junction are

qV
- eb
Ipe = IPO{Ab + Bb 7v(eb)} exp o (3.36)
qVeb
Ine =~ Ino{Ae + Be 7v(ee)} exp —r (3.37)

where Ipo - Klpno’ Ino = K3np0, Ab = (AT B Asn)/A‘l" Ae = (AT B ASp)/AT’
B, = Asn/AT’ and Be = Asp/AT'

The base current is

I. =1 +I =1 + 51 s (3.38)



since Ir’ the total recombination current (bulk and surface), is propor-
tional to Ipe' Combining Eqs. (3.36), (3.37) and (3.38) gives for the

emitter current, Ie =1 + Ine; base current; and collector current,

pe
I, =1 -1,
qVeb - _
I, = exp[—= ]{Ipo[Ab +B 7, ()] + Ino[Ae + B 7v(ee)]} (3.39)
qVeb

Ib = exp|[ o ]{QIPO[Ab + Bb 7§(eb)] + Ino[Ae + Be 7§(ee)]] (3.40)

qV
I, = explpt)(l - 0) I [A + B 7 (e)] (3.41)

The forward grounded base current gain ¢ is

c _ 1 -5
aIe Vcb 1 + Ino Ae + Be
T + B

po b

(3.42)
e

¥ (e
7,(ee)
5 (e
7, (ey)
It has been assumed in the preceding equations that the emitter-base
voltage is the same for the stressed and unstressed regions. If the stressed
region is small compared with the total junction area there can be a signifi-

cant base spreading resistance associated with the stressed area. In this

case the equations becomes:

qRIbs
Ie = {Ipo[Ab + Bb 7v(eb) exp(- T Y] (3.43)
qRI qV
— bs eb
+ Ino[Ae + B VV(ee) exp(- —=) 1] exp [ T )
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qRI

= = - bs
Ib B {Ino[Ae + Be 7v(es) exp ( kT )] (3.44)
qRI qV
+ QIPO[Ab + B, 7;(eb) exp (- kI;S)J] eXP[—E%h ,
-— qR s qVeb
I, = Ipo(l - o)Ay + B, 7 () exp(- —) ] expl51 (3.45)

where R is the spreading resistance and I s is the base current flowing into

b

the stressed area:

qV_, - qRI

_ - e bs, .
Ibs B Ino Be 7v(es) exp [ kT ] (3.46)

The base resistance associated with the unstressed part of the emitter-base
junction has been neglected. The inclusion of the spreading resistance
term makes the analysis considerably more difficult since a transcendental

; however, the major features are the same

equation must be solved for Ibs’

as before. Changes in R have been neglected here, The effect of large
strains on conductivity are discussed in Appendix D.

All of the equations developed for p-n-p transistors will hold for
n-p-n transistors if n and p are interchanged each time they appear.

As an example of the transistor theory, comsider a silicon p-n-p

transistor with the following parameters:
-5
A =5 %10 cm2

T
I =5x 10_15 amp
po

I /1 =103
no "~ po
2

6 =2 x 10

Ppase = 2 ohm-cm
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Let the stress be applied over a circle of diameter d = 3.56 X 10-4 cm,

The spreading resistance of a flat circular area is
- Phase

R = 2d = 2800 ohms .

Case I. Let the stress be applied in the [111] direction to both

sides of the emitter-base junction, e =e , A =A = 10-7 cmz. Figure
e b sn sp

11 is a plot of base current I, as a function of emitter-base voltage Veb

b
for several stress levels, Figure 12 is a plot of collector current as a
function of Veb for the same stress levels. As shown by the curves, both
Ib and IC are changed by several orders of magnitude for small changes in
stress in the high stress region. The effect of spreading resistance is

shown by the convergence of I, and Ic toward their unstressed value for

b
high applied voltages. The effect of stress on the spreading resistance
has been neglected. It would reduce the resistance and thereby cut down
on the rate at which the stressed curves converge to the unstressed curves,
The larger the spreading resistance the more rapidly the currents converge
to their unstressed values. Note that & is not affected by the stress
when both sides of the emitter-base junction are stressed Eq. (3.42).

Case II. Assume the same conditions as before except that only the
emitter side of the emitter-base junction is stressed e, >> e - Figure 13

is a plot of I, and Ic as a function of Ve for several stress conditions.

b b

Note that IC is not changed by the stress while I, is changed. This means

b
that « is changed. In this case, where 6 > Ino/Ipo’ the base current is

not as sensitive to stress as it was for the previous case.
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In Fig. 14, Ic/Ico is plotted as a function of stress for constant
emitter current and for constant base current, where ICo is the collector
current with no stress. Spreading resistance was neglected in these calcu-
lations. As showh, changes in Ic/Ico are larger when the base current is
held constant as compared to holding the emitter current constant,

Case TIII. Assume that the stress is applied only to the base side
of the emitter-base junction (ee << eb). Using the assumed transistor
parameters in Eqs. (3.42) and (3.44) it can be shown that « and I, will
remain approximately constant, However, in devices where 9 is very small
compared to Ino/Ipo (Ge for example) the base current can change signifi-
cantly depending upon the ratio of Ino/Ipo' For constant base current,
the collector current is constant,

These examples are not intended to be a complete analysis of the
many implications of the preceding theory of stressed transistors but are

intended to illustrate some of its salient features.
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Chapter IV

EXPERIMENTAL

4,1 Introduction

A variety of experimental measurements have been made both on
silicon diodes and silicon transistors in order to determine the effect
of large anisotropic stresses on the electrical characteristics of the
devices. While most of the test devices were fabricated in the labora-
tory, some were obtained from commercial sources., The devices fabricated
in the laboratory were designed specifically to allow measurements to be
made which would delineate the effect on the piezojunction phenomenon of
such parameters as crystal orientation, junction depth, material resistivity.
The object of the experimental work has been to understand the phenomenon

better and to check the applicability of the theory.

4,2 Experimental Apparatus

An experimental test station was built and calibrated. The primary
purpose of this apparatus was to apply a known mechanical stress to a semi-
conductor junction device and to measure the appropriate electrical
parameters under various stress conditions. To obtain the large mechanical

stress necessary to change the electrical characteristics of the devices,
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it was necessary to restrict the stressed area to less than ten square mils
in order to work with practical forces, 0 to 105 dynes. This was accomplished
in all cases by using either a steel, sapphire or diamond phonograph needle.
Figure 15.is a schematic diagram of the stressing apparatus. Figure
16 is a photograph of the test station. The needle or indentor point which
was used to apply the stress to the device was mounted near the end of a
phonograph pick-up arm in much the same mannner as that normally used in a
phonograph system. A dc solenoid was attached to the stationary part of
the pick up arm a short distance from the pivot point of the arm. The
plunger of the solenoid was attached to the arm. This arrangement permitted
a continuous force range of 0 to 105 dynes by simply varying the current
supplied to the solenoid. The force was calibrated in terms of the solenoid

current. The device to be tested was mounted under the needle on a precision

Balance Weight
Pick-up Arm
)///////r Plunger

l/r__ Solenoid
A s/ /
r‘EEﬁli r//f Stylus

Sample

— X~y Stage —» ® Z]

U o T 7 7

Table
Fig. 15. Schematic of Experimental Stressing Apparatus.
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Fig. 16, Photograph of Experimental Stressing Device.

x-y stage. Due to the small size of the devices under test it was necessary
to perform the alignment between the device and needle under a microscope.
The electrical current, voltage and current-voltage characteristics
as a function of stress were the parameters of interest. The current range
of interest covered about four to eight orders of magnitude. Most of the
data taken on the deviceswere recorded directly on an x-y recorder. In
order to cover the large current range a circuit was constructed which
allowed the x-y recorder to plot the natural logarithm of current as a
function of either voltage or solenoid current. An "ideal'" diode (one in
which the current through the device is proportional to the exponential of
the voltage across the jﬁnction) was used as the logarithm element. The
diode used was the emitter-base junction of a Texas Instrument 2N1711 planar
transistor in which the base and collector leads were connected together.
Figures 17 and 18 are schematic drawings of the test arrangement used for
measuring the I-V characteristics of diodes and transistors under stressed

conditions.
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4,3 Mesa Diodes

Mesa diodes were fabricated in the laboratory by diffusion and photo-
lithographic techniques. Figure 19 is a sketch of the mesa structure that
was used. Diodes were formed on a variety of different silicon wafers in
which the resistivity, junction depth and orientation were varied. Mechani-
cal stress was applied to the diodes by a steel post (a needle whose radius
of curvature was much greater than the diameter of the diode). The steel
post was also used to make electrical contact to one side of the diode.

A typical set of forward biased current-voltage characteristics of
a mesa diode for different stress levels is shown in Fig. 20. The diode
was fabricated on a 0.01 ohm-cm crystal with a (100) orientation. The
junction depth was approximately 3 microns and the diode diameter was 42

microns.

Force

Aluminum
J o

p-type

Electroless
«—— Nickel

DI

Fig. 19. Sketch of Mesa Diode Structure.
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Fig. 20. Current vs Forward Voltage Characteristics of a Mesa Diode Under
Various Stress Levels.
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There are several significant features of the characteristics as
shown in Fig. 20. For voltages below 0.3 volts, all of the curves have
the same slope, qV/kT, where kT ~ 0.026 ev at room'temperature. For low
stress levels and voltages above 0.3 volts the slopesof the curves are
functions of stress. In the latter case where the stress is zero, the
slope is approximately qV/2kT. As stress is increased the slopes again
approach a constant of qV/kT.

The change in the slope of the I~V characteristics can result from
either the '"ideal' or generation-recombination components or both. Consider-
ing first the "ideal' component, the slope of the I-V characteristics can
change from qV/kT at low injection levels to a qV/2kT at high injection
levels. The voltage at which high injection takes place for 0.0l ohm-cm
crystal resistivity is approximately 0.65 volts., Since the slope change in
the diode occurs at approximately 0.3 volts, high injection can be eliminated.
Turning to the generation-recombination component of current it is seen from
Eq. (3.25), neglecting the change in junction width as a function of voltage,
the IU can have a slope change from qV/kT at low voltages to a qV/2kT at
higher voltages,

From Chapter III it is seen that the "ideal' component increases in
magnitude in proportion to 7v(e) with increasing stress and that the generation-
recombination component increases in proportion to J;:RZS.with increasing
stress. Stress then has the effect of amplifying the "ideal" component more
than the generation-recombination component. In light of the above discussion,
if the unstressed current is essentially generation-recombination current,

then as stress is increased the "ideal" component becomes increasingly impor-

tant and at higher stress levels the '"ideal" component dominates the total
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current. The "ideal' component has the qV/kT slope. The theory is therefore
consistent with the experimental data,.

Current-stress characteristics of the diode just discussed for several
voltages are shown in Fig. 21. These curves are essentially 7v(e) since
7v(e) ~ I(e)/I(o). Comparing the data in Fig. 21 with that shown in Fig. 9
for 7V(e) which was calculated theoretically it is seen that there is
excellent agreement. A large number of samples were tested in order to
determine experimentally the parameter 7V(e) as a function of stress.
Contrary to the above good agreement with the theoretical dependence of
7V(e) on stress, it was found experimentally that 7v(e) had the same general
characteristics as the theoretical but in most cases the magnitude of the
force required to give the same value of.yv(e) was lower than the theo-
retical value and varied from sample to sample. This variation was found
with samples made on the same crystal at the same time and stressed with
the same needle. Figure 22 shows an example of this variation for two
diodes on the same crystal.

The large variation in 7v(e) as a function of stress is expected
since 7v(e) is exponentially related to stress. The nominal stress in the
present experiments was calculated from measurements of force and diode
diameter. The data indicate that the actual or effective stress varies
from sample to sample. This probably results from variations in the area
over which the force acts. This is believed to result from a non-uniform
or rough surface on the diode and from the non-linearity of 7v(e) vs e.
Since the junctions are very close to the surface of the diode (0.5 - 10

microns), a rough diode surface would cause uneven stress to be set up in

the junction.
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Fig., 22. 1y (e) as a Function of Stress for Two Diodes Made on the Same
(fll) Wafer.

A series of tests was made to determine the effect of crystal orien-
tation on the phenomenon. Figure 23 is a typical plot of 7v(e) for three
different crystal orientations. As shown in the figure, the orientations
in order of decreasing sensitivity are <100>, <110>, and <111>. This is
in agreement with the theory as shown in Fig. 9 in which the theoretical

values of 7v(e) are plotted.
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Fig. 23. 1y (e) as a Function of Stress for a [100], [110], and [111]
USiaxial Stress.

Experiments were performed to determine the effect of junction

depth on the phenomenon. It was found that the shallower the junction depth

the more sensitive the devices are to stress. Figures 24 and 25 show the
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I-V characteristics at several stress levels for a 0.6 and a 2.5 micron
junction respectively, There are two reasons why stress sensitivity
increases with decreasing junction depth. First, for shallow junctions

the "ideal' current component is larger than it is for deep junctions,

This is due to larger minority carrier density gradients (see Eqs. (E.2)

and (E.3) of Appendix E). The closer the junction is to the surface the
steeper the gradient for the minority carriers near the surface.

The second reason for increased stress sensitivity is that the closer the
junction is to the surface the more nonuniferm the stress is in the junction

due to surface roughness of the diode.

4,4 Planar Diodes

Diodes of the planar type were fabricated. TFigure 26 is a sketch
of the planar structure, Again a steel needle was used to apply the
mechanical stress and to make electrical contact to one side of the junction.
Figure 27 is a typical plot of diode current versus forward voltage for
several stress levels. The sample crystal was 1l ohm-cm with a (111)
orientation. As was the case for mesa diodes, the slopesof the curves for
planars are stress sensitive at low stress levels. It appears that the
total diode current in this case is almost all '"ideal" as evidenced by the
slope of approximately qV/kT and the many orders of magnitude of current
over which the slope is constant. The effect of spreading resistance can
be seen by the turnover of the curves at the higher voltage levels. Figure
28 shows the current vs stress characteristics for several voltage levels.

The characteristics are essentially the same as those for mesa diodes.
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Fig. 26. Schematic of Planar Diode Structure-

4.5 Transistors

The transistors used in the present experiments have all been of the
planar type. A variety of devices have been tested with the aim of exhibiting
the many facets of the piezojunction phenomenon is multi-junction devices.

No attempts were made to compare quantitatively the data on transistors

with the theory due to the extreme difficulty of determining the stress and
strain fields caused by spherical indentor points. The indentor point can

be applied to a number of locations on the structure of planar transistor-
emitter, emitter-base junction where the junction comes to the surface, base,
base-collector junction where it comes to the surface, and the collector. 1In
all of the locations the stress or strain field must be at or near a junction

in order to alter the electrical characteristics.
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The most interesting results have been obtained on transistors in
which stress was applied either directly on the emitter-base junction or
near the emitter-base junction on the emitter side. The latter can be done
in two ways. The first method is to place the indentor very close to the
junction where the junction comes to the surface. The second is to apply
the indentor anywhere in the emitter region. The stress produced by a
spherical indentor point is attenuated very fast with distance underneath
the indentor. When the indentor is placed on the emitter there is some
stress on the base side of the junction; however, the stress on the emitter
side of the junction is larger and essentially dominates the piezojunction
effect.

The effect of stress on the collector current with either emitter
current constant or base curvrent constant for a 2N1958 n-p-n transistor is
shown in Fig. 29. The stress was applied to the emitter by a 0.7 mil
sapphire needle. As shown in Fig. 29 the collector current is more sensi-
tive to stress with base current held constant than it is with emitter
current held constant. By comparing Fig. 29 with Fig. 14 which was calcu-
lated theoretically it is seen that the experimental results are in good
qualitative agreement with the theory.

Figure 30 is a plot of IC as a function of Veb for several stress
levels with base current held constant in a laboratory n-p-n planar transistor.
In this case the stress was applied to the emitter with a 3 mil steel needle.
The effect of stress on the base current with collector current and emitter-
base voltage held constant is shown in Fig. 31. The transistor was a 2N2102
n-p-n device with stress applied by a 0.7 mil sapphire needle. The base

current of an n-p-n 2N2102 transistor as a function of emitter-base voltage
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Held Constant for an n-p-n 2N2102 Transistor Stressed in the
Emitter Area with a Sapphire Needle,

for several stress levels is shown in Fig. 32. 1In this case the emitter-
base junction was stressed where it comes to the surface with a 3 mil
sapphire needle. This particular device had an oxide over the junction

and the stress was applied through the oxide.
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Base Current as a Function of Emitter Base Voltage for Three
Stress Levels in an n-p-n Silicon Transistor. The transistor

was stressed on the emitter base junction with a 3 mil Sapphire
needle.
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Stress applied on the base side of the emitter-base junction has a
much smaller effect on the electrical characteristics of most transistors.
‘It was found however that in some power transistors a stress on the base
side of the e-b junction causes the base current to decrease. Figure 33
is a plot of base current as a function of emitter-base voltage for constant
emitter current and several stress levels, This device was an n-p-n power
transistor manufactured by Solid State Products Inc. The stress was applied
with a 0.7 mil sapphire needle near the emitter-base junction on the base
side. As shown in the figure the base current can be made to decrease and
go negative at low voltages and high stress levels. This means that the
collector-base potential has been lowered by the stress to the point that
the collector leakage is larger than the emitter current. Stress applied
on the collector side of the base-collector junction was found to have

little or no effect on transistor characteristics.
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Chapter V

DISCUSSION AND SUMMARY

A theory of the effect of a general strain on the'electrical charac-
teristics of p-n junctions is developed. The model is based on the defor-
mation potential theory of semiconductors, i.e., the change in the energy
band structure with strain. The energy band structure of germanium and
silicon is reviewed and the necessary deformation potential theory is
developed. Energy band changes with strain are incorporated into the
current-voltage p-n junction equations. Equations are developed which
describe the current-voltage characteristics of diodes and transistors
under strain. The diode and transistor model as developed has neglected
the effects of strain on such junction parameters as effective mass,
mobility and carrier lifetime.

Comparing the theoretical model with experimental data it shows
that there is good agreement. Quantitative comparisons have not been made
in cases where the stress was applied by an indentor point. When stress
is introduced in the junction by a spherical needle, the calculations for
the strain tensor, in which accuracy is needed, is difficult if not impos-
sible. This distributed strain problem has not been considered here. As
demonstrated by the experimental data, the theory can be used to predict
the electrical characteristics of diodes and transistors under strain. As

an example, theory predicted that a [100] oriented junction in silicon would
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be more sensitive to strain than a [110] or [l11] orientation and a [110]
orientation would be more sensitive than a [111] orientation. This was
found to be correct experimentally. Theory predicts that a [111] orienta-
tion is more sensitive in germanium than a [110] or [100] orientation and
a [110] is more sensitive than a [l00] orientation. Rindner et al., [6]
have found experimentally that this is the case.

The present theory explains the many facets of the piezojunction
phenomenon as observed in silicon and germanium p-n junction devices.
This theory should be useful in the design of semiconductor junction
transducers. In addition, there are useful applications in evaluating and
fabricating diodes and transistors. For example, if one wishes to determine
whether the current in a diode is "ideal" or due to generation-recombinatiom,
a mechanical stress can be applied to the junction which will cause the
"ideal" component to be amplified more than the generation-recombination
component, Also it has been the practice to test semiconductor devices
before lead attachment and encapsulation by.placing small metal probes on
the various contact areas. One of these areas is often a tramsistor emitter.
1t is very likely that device characteristics thus observed can be very
different from those usually obtained, due to the strains introduced by

the probes.
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Appendix A

NOTATION USED TO REPRESENT STRESS AND STRAIN AND
CALCULATIONS FOR SEVERAL CRYSTAL ORIENTATIONS

In all cases the stress and strain are referred to the crystal axes;
x = 1,2,3 refer to the [100], [010] and [001l] directions respectively, Ten-
sional stresses and strains are positive and compressional are negative.

The mechanical stress, o, is represented as follows:

qﬁﬁ = conventional stress 3 Qa,B = X,y,2
Uij = tensor stress 5 i,j=1,2,3
0. = engineering stress ; r =1,2,3,4,5,6
where oa5 = OBQ and Oij= O The conventional, tensor and engineering
stresses are related as follows:
Principal Shear
9%x - %11 T 91 %%y = %12 T %
Oy T %227 92 %%z = %13 T %
92z = 933 T 93 Oyz T 9237 %

The hydrostatic stress, P, is defined in terms of the principal stresses as

P = (ol + o, + 03)/3

2

The mechanical strain is represented as

>



eOlB = conventional strain 3y Q,B = z,y,z
eij = tensor strain ; i,j =1,2,3
e = engineering strain ; r=1,2,3,4,5,6
= .. = s T ti 1, t i i
where eaa eBa and elJ ejl he conventional, tensor and engineering
strains are related to each other in the following manner:
Principal Shear
Cxx ~ €11 T 1 °xy = %€12 T %
eyy = €20 e2 ®xz 2€13 = %5
€2z © €33 T %3 eyz - 2623 A

The hydrostatic strain, e, is defined as

For the case of cubic symmetry, the engineering stress is related

to strain by Hook's generalized law

i 9y ] —Cll c12 c]-2 0 0 0 -1 _.el-l
92 ‘12 ‘11 ‘12 0 0 0 )
93 _ 12 ‘12 ‘11 0 0 0 8 €3
o, B 0 0 0 » 0 0 e, ’
o 0 0 0 0 S\ 0 e

| o | 0 0 0 0 0 s e

and

T



. 1 = [ hr
ey $11 512 S19 0 0 0 W oy
e2 312 s11 512 0 0 0 02
€3 S12 S12 11 0 0 0 O
= X s
e4 0 0 0 544 0 0 04
eg 0 0 0 0 544 0 05
ec L 0 0 0 0 0 s44 9
b el — . o

where the c's and s's are the stiffness and compliance coefficient for the
crystal,

When a general stress is applied to a crystal, it is always possible
to choose a rectangular coordinate system (not necessarily the crystal axes)

such that there is zero shear stress and three principal stresses. Let

/ /

the principal stress system have the coordinates x/, y’/, z/, the shear

stresses are then Ox’y' =0,/,0 = Gy’z’ = 0, The principal stresses are

related to the crystal axes by the following equation.

Oy = O 1yt ﬂi + Oty ﬂ; o, . Qi
vy Y W{ + Uy’y’ n% + Tptg? né
9%z = Ix’x/ ni + Oy’y’ n; t 0,050 n§
Xy Y anﬁ + Oy’y’ Qz”ﬁ + Optz’ QBWE
9%z = Tx’x’ anl + Ogry? £2n2 P £3n3
Orz = O%/x’ "ﬁ”l + Oy’y’ nénZ + Oply? ngnB

where {,mn are the direction cosines defined by the following transformation.

7

X ﬂl "ﬁ nl X
= /

y 22 na nz X |y
m n /
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1t is of practical interest here to determine the strain components
for hydrostatic, uniaxial [100], uniaxial [011l] and uniaxial [111] stresses.

For the hydrostatic case,

and
%
Solving for the strains yields

e, =e, =e, = -(s44 + 2512)P s

Consjder a uniaxial compressional stress of magnitude T applied

along the [111] direction. In this case 21 = ﬂa =n =1/ JE-, for which

1
gy = 0, =05 F 0, =05 =0 = - /3 ,
and
e; = e, =e,=- T(s11 + 2512)/3 ,
e, = e; = e, = - T 544/3 .

Next consider a uniaxial compression stress of magnitude T applied along the

[011] direction. 1In this case 21 = 0, m o= LAJE_, n, = 1/ N2 for which
=0, o,=¢g,=-T/2,0, =-T/2, 6. =0, =0,

3 4 5

and



&, =-1T 344/2 , €5 = e, = o .

Finally consider a uniaxial compression stress of magnitude T

applied along the [100] direction. This gives 21 =1,m=0,n =
for which
Ul=-T’02=03=G4=05=U6=0’
and
ep =Sy Ty =83 =75, T,
e, = g = e, = 0
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Appendix B

EFFECT OF STRAIN ON THE EFFECTIVE MASS

B.1 Introduction

There is little experimental information available on the effect of
large strains (eS > 1%) on the effective mass. Cyclotron resonance measure-
ments of the effective mass have been made on silicon subjected to uniaxial
stress in which the strain levels were less than 17 [19,20,37]. 1In these
experiments the effective mass was found to change only a few percent.
Hasegawa [38] and Hensel and Hasegawa [19] have derived theoretical expres-
sions for the effective mass of some of the energy levels in silicon as a
function of some particular stresses. By ﬁsing the results of their work
it can be shown that strain in the range of interest here (es < 5%)
produces a negligible change in the effective mass of silicon when compared

to changes in carrier concentration.

B.2 Effective Mass of Holes in Silicon

The shape of the energy bands at the band edge points determines the

effective mass, i.e.,

2
* 1 D°E()--1
My T 2ok ok d (8.1)
g3l i 7]
9




where m;j is the effective mass tensor and i and j are the k-directions. In

2
2

KA
"

the case of spherical bands, E « [ki f k- + kg]/m*, the effective mass, m ,
is independent of direction. Such is the case for the split-off hole band
(EV3) in silicon and germanium. The light hole band (EVZ) can be approxi-
mated to within a few percent by a sphere [11]. The heavy hole band (Evl)

is a warped sphere. 1t can also be approximated with less accuracy as a
sphere with a radius equal to the average radius of the warped sphere [11]

As discussed in Chapter II, when the crystal is mechanically strained
the degeneracy of the Fés(j = 3/2) is removed. Strain causes the warped
spheres to transform into ellipsoids similar to that encountered in the
conduction bands of Si and Ge [38]. Hasegawa [38] has developed a theoret-
ical expression for the energy of the heavy hole band as a function of k

and the magnitude of a uniaxial compression stress applied along the <100>

axes of the crystal:

_ 1 2 : 2
E,p = (A - 35 B2K, + (A+ 3Bk (B.2)

where k,, is parallel to the <100> direction and k1 is perpendicular to the

H
<100> direction, A and B are constants which can be determined experimentally

and Z is the degree of mixing between the heavy hole band and the split-off

band and is given by

1 -
z =21+ L - 9x 177 (8.3)
(1 2x + 9x7)
where
e. D
1 "u
X = 5 ’ (B.4)

® is the separation between the heavy hole band and the split-off band

(see Fig. 3).



Solving Eqs. (B.l) and (B.2) for the components of the effective

mass tensor gives

i _ 1
2my A - 2 Bz (8.3)
]
and
2
i Asz. (B. 6)
2m1

A "density of states effective mass', m,, can now be defined in the

same manner as is done for the conduction band, i.e.

(mc)3/2 = mf m'| . (B.7)

Hensel and Feber [37] have determined experimental values of A, B, and D,

as follows:

>
]

- 4,28 ﬁ2/2mo ,

- 0.75 ‘ﬁz/ZmO , (B.8)

w
[

D = 2.04 ev .
u

Solving the above equations for the density of states effective mass as a
function of strain shows that m, changes less than 1% for stress levels
as large as 6 X 1010 dyne/cmz. This change is negligible when compared to
changes in the carrier concentration for the same stress.

The effective mass can also be obtained from the theory of Hasegawa
[38] as a function of other uniaxial stresses ([011] and [111]). Changes
in the density of states effective mass for these directions are also found

to be very small.
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B.3 Effective Mass of Electrons in Silicon

The Hamiltonian for the conduction electrons has been discussed in

Chapter II, Eq. (2.8). Diagonalizing the Hamiltonian gives

2
ot 2, 1,2 .2
E(k) = 2m“ Ky + Zml(ky + kz) + []d e + []u e,
(8.9)
+ 6V S+ (1] e, + N k, kz)z]l/z .

The band edge point along the [100] axis has already been shown to be

located at

2
([17e,))
2 2 2
R T S s - (B.10)
x min fo} 2
1)

ﬁz k2 =0 ,

y
ﬁz k2 =0

Z

It can be seen from Eq. (B.9) that constant energy surfaces are not
ellipsoids or spheres in k-space when there-is an applied strain, If one
wants the density of states exactly, it would be necessary to
use Eq. (B.9) for E(E) in the density of states relationship. To do this
would require considerable effort which is probably unwarranted. An approxi-
mate approach is to expand E(E) in a Taylor series about the band edge point.

Per forming this expansion to second order powers in k yields;

2 2
- AV, 2 2 2Ktk
E(k) = 66 + ‘<3(Kx)min[l<x - (Kx)min] +H( o Y + @ e, ky kz , (B.11)

/
o
where 6e represents the shift of the band edge and
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o =——="- (B.12)

This approach has been taken by Hensel and Hasegawa [19)t and they find that

« is given approximately by
o
o = ——— —(— - 1) (B.13)
1

An analysis of Eq. (B.10) shows that as e, —> AE/Z[]G’ (Kx)min—b 0.

This means that E(E) becomes independent of Kx to second order powers in

Kx for the strain level. Therefore one would not expect Eq. (B.1ll) to hold
near this strain level. For strains below the above critical value Eq. (B.1l1l)
is expected to be a good approximation.

Taking the derivatives of Eq. (B.ll) and solving for the components

of the effective mass tensor yields;

1 _ , 2 2
m"[l (Z[JU/A,E).e4 0 0
l:" = 0 L e (B.14)
-~ mJ_ 4
m. ,
1]
1
0 Qe -
4 my
L _

as expected there are terms in the tensor which are non-zero for the off
diagonal elements. This is handled in the usual manner (diagonalizing the

tensor) which yields

. 83



B 7 2[17 2
1 1 . _ u 2
m () 0 0 e —D e, 0 0
1 1 _ 1
= = 0 o 0 = 0 = (1+m1ae4) 0 . (B.15)
m 2 l
k1l 1
0 0 m3(e) 0 0 i:(l-mlaea)
1L |

where k and 1 are different from i and j and are used to show that the new
coordinate system is different from the old x, y, z system.

The inverse density of states effective mass is

3
1 1 1 1 .
<;*(e)) - ml(e) mz(e) m3(e) (8.16)
c

Rewriting Eq. (B.16) in terms of the strain gives

* 3
mc(e) 1
% - 2 2 22 2. (8.17).
- / -
mc(o) (1 (2[]U/AE) e4] [1 - m & e4]
where mZ(o) is the unstrained effective mass. Using the experimental value

[19] om = 16.4 and substituting into Eq. (B.17) the values of the other

band parameter gives

% 3
mc(e)

m_ (o)

1
- 2 2
(1 - 520 ea) (1 - 268 ea)

(B.18)

Referring to Eq. (B.17) it is seen that there are two singularities
in the effective mass equation. This is not unexpected since the energy was

expanded in a Taylor series and accounts only for second order power in k.

It is seen that, in fact, if the shear strain is less than about 2 percent,

8k



there is a negligible effect on the effective mass. In the case of hydro-
static pressures the shear is zero and hence the effective mass is indepen-

dent of strain.

B.4 Summary

The above treatment of the variation of effective mass with strain
for silicon is by no means complete. It does however indicate that for
strain levels below a few percent,effective mass changes are negligible.
Although no treatment has been given for germanium, it is expected that
germanium will behave similarly to silicon. More important than the
preceding discussion is the fact that experimental measurements made on
the electrical parameters of p-n junction devices subjected to mechanical
stress indicate that effective mass variations are at least second order

when compared to carrier density variations.
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Appendix C

EFFECT OF STRAIN ON THE MINORITY CARRIER LIFETIME,
CARRIER MOBILITIES, DIFFUSTION CONSTANTS AND
DIFFUSION LENGTHS

k3
C.1 Minority Carrier Lifetime

The minority carrier lifetime of a semiconductor, based on a single
trap level located in the forbidden band [33], is given by [39]

Tpo(n + nl) + Tno(p + Pl)

T = 2 T p (C.1)

where n and p are the respective electron and hole concentrations in the
particular semiconductor. Tpo and Tho are the lifetimes of holes and
electrons in highly n- and p-type materials respectively. Both 7t o and
T, 2re inversely proportional to the trap density [39]. ny and Py in

Eq. (C.1l) are given by [33].

n

L= 0y exp[(Ei - Et)/kT] , (C.2)

p; =, exp[(E_ - E)/kT], (C.3)

where Et is the energy of the trap level and Ei is the energy of the intrin-

sic Fermi level.

¥
The present treatment of minority carrier lifetime is closely

related to the treatment of generation recombination current given in
Appendix E.
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It is seen from Eq. (C.1) that if the material is highly n- or p-type,
the lifetime expression reduces to either Tpo or T . Any changes in the
latter two quantities can be neglected,based on the arguments presented in
Sect. 3.3; naﬁely, the density of generation-recombinations centers is not
changed by strain. The capture cross section is assumed to remain constant.
The lifetimes, T, and Tp’ which appear in the theory of the '"ideal" junction
current are the lifetimes of electrons at the edge of the depletion region
on the p side of the junction and of the holes at the edge of the depletion
region on the n side of the junction respectively. It will be assumed for
the present purposes that the material at the edges of the depletion regions
is doped heavily enough so that the lifetimes are independent of the carrier

concentrations n, p, n, and Py- The effects of strain induced changes in

1
the lifetime ofcarriers inside the depletion region are accounted for in
the theory of generation-recombination currents (see Appendix E and Sect.
3.3).

Matukura [40] has measured the lifetime of minority carriers in
stressed and unstressed silicon p-n junctions. He found that the lifetime
decreased 10 to 30 percent for the stressed diodes. 1In his experiments a
diamond needle was used to introduce a high stress level over a small
region of the p-n junction area. The lifetime was measured by first
injecting minority carriers with a large forward biased current pulse.
Following the current pulse, the decay time was measured, The unstrained
lifetime was found to be 0.3 -seconds. Assuming that the change in the
decay time with the application of strain is due to a change in the

lifetime of carriers in the strained area only, it is found that the lifetime

in the strained material is reduced to 10_13 p-seconds! Physically, this
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value is not acceptable. The results of this experiment can be explained

by neglecting changes in lifetime in favor of energy band changes.

C.2 Mobility

Much work has been done on the piezoresistance properties of
éermanium and silicon [41,42,43,44,45,46]. This work, however, has
been concerned mainly with low strain, i.e., strain levels low compared
to the levels of interest here. The piezoresistance effect in many-valley
semiconductors (n-type Ge and Si) is explained by the deformation potential
theory [41,42]. The major effect has been found to result from the
relative population and depopulation of the valleys in the conduction
band with strain as discussed in Chapters II and III.

For low strain levels, the relative change in the resistivity of
germanium and silicon has been found to be directly proportional to strain.
The proportionality constant or elastoresistance coefficient is on the
order of 175 for extrinsic silicon and -150 for extrinsic germanium [43]

For silicon this gives

ﬁﬁ ~ 175 8 (C.4)

where  is the mobility of the majority carriers and S is the strain.
The relative change in mobility is seen to have a small effect compared to
that of minority carrier changes.

It is the minority carrier mobility that is of interest here. It
will be assumed that changes in the minority carrier mobility are of the

same order of magnitude as that for majority carriers. This is probably
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a good assumption since the majority carrier mobility changes mainly due to
relative changes in the density of carriers at the band edge points while
for minority carriers the density of the carriers are small to begin with
and therefore would have less influence on the mobility.

It should also be noted that the relative change in resistance
tends to saturate below the strains of interest here. This comes about
because relatively small changes in the energy levels cause all the majority
carriers to occupy certain valleys while leaving the other valleys empty.
Strains above those required to empty the valleys have little effect on

the mobility.

C.3 Diffusion Coefficients

The minority carrier diffusion coefficients are directly proportional
to the minority carrier mobilities (D = pukT/q). As discussed in Sect. C.2
above, the minority carrier mobility is expected to be relatively insensitive
to strain--especially when compared to minority carrier density changes.
Changes in the diffusion coefficients with strain are therefore expected to be

negligible.

C.4 Diffusion Length

The diffusion lengths LP and Lrl are proportional to the square root
of My T and b Ty respectively. Changes with strain of both mobility and
lifetime have been discussed above and it was concluded that the changes
were negligible compared to other parameter changes. Another effect arises

due to the changing energy levels which produce a 'quasielectric'" field
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acting on the minority carrier [47], This means that an effective
diffusion length must be used which includes the drift field effect,

" field will have an effect similar to a built-in

The "quasielectric
electric field. The field is directly proportional to the band gap
changes and thus directly proportional to strain. These linear changes

will be neglected compared to the exponential changes of the minority

carrier density.
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Appendix D

EFFECT OF LARGE STRAINS ON CONDUCTIVITY

Most of the piezoresistance work which was cited in Appendix C
has been concerned with conductivity and resistivity changes as a function
of strain. Again this work has been for low strain levels in extrinsic
material such that the carrier density was determined by the impurity
density and was independent of strain. As pointed out in Chapter III,
the minority carrier density in extrinsic material can change by several
orders of magnitude for large strain levels. Also in intrinsic material
both the hole and electron densities can change with strain.

For the present purposes it will be assumed that mobility is indepen-

dent of strain. The conductivity is

0 = pgu, F Pgu; - (p.1)

For the case of intrinsic material (n ~ p) the conductivity expression

reduces to

o =09y +u) (0.2)
From Eqs. (3.11) and (3.12)
pn = nio 7v(e) = n? ] (D. 3)
93
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The conductivity then reduces to

g(e) = n, 4 VVV(e) s (D.4)
or
ale) _ oy
5(o) = 7v(e) . (D.5)

Since 7v(e) can change by orders of magnitude with high strain levels, the
conductivity of intrinsic material can also change by orders of magnitude.
In the case of extrinsic material, p-type for example, the hole

density is approximately equal to N Substituting this into Eqs. (D.1)

A
and (D.3) gives

n’

g = ﬁig ke 7v(e) + NA qpp . (D.6)

The conductivity is then expected to change with strain in extrinsic material
when nio 7v(e) approaches the same order of magnitude as NA'

Large changes in the conductivity of near intrinsic germanium have
been observed for large strain levels by Graham, Jones and Holland [48].

In their experiments very large strains were set up in the sample by shock

waves.
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Appendix E

SPACE CHARGE GENERATION-RECOMBINATION
CURRENT IN P-N JUNCTIONS

Space charge generation-recombination current can be important in
p-n junctions (particularly in silicon) [33]. This current adds to the
"ideal" or diffusion current which is predicted by the Shockley theory.
In a p-n junction in which there is a single trap level located in the
forbidden band, the steady state recombination rate U for holes or electrons
is [33].

2
pn - n,

1
U=— H (E.l)
Tho (P T P + 7, (n + 1)

where Py is the density of holes in the valence band when the Fermi level
falls at the trap level, ny is the density of electrons in the conduction
band when the Fermi level falls at the trap level, Too is the lifetime for
electrons injected into highly p-type material, and Tpo is the lifetime for
holes injected into highly n-type material. Hauser [34,49] has treated this
problem and has obtained an approximate solution for the generation-
recombination current, The discussion to follow is a review of his work,

The hole and electron currents are given by

J = E - qD dp/dx E.2
p = AupP D, p/ (E.2)
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and

Jn = qpnnE + andn/dx s (E.3)

where E is the electric field at x. The continuity equations for steady

state are
1 dJ
0 =-0 - T E;B (E.4)
and
1 dJn
0=-U+ E = (E.5)

Figure 34 1is a sketch of the junction which shows the two regions
(n and p) and the space charge region where the width of the space charge
region is W. Integrating Egs. (E.4) and (E.5) over the space charge region

gives

W
JP(W) JP(O) - q fo U dx (E.6)

and

W
Jn(O) Jn(W) + q fo U dx (E.7)

The total current density is obtained by adding the hole current density
and the electron current density at any point x, for example x = 0.
This gives
W
J=7J(0) + JP(O) =3 (0) + JP(W) + q fo U dx (E.8)
or

J=J_+ J., (E.9)



Space Charge Region

"

1
!
I
I
P | n
|
]
!

Fig. 34. Generation-Recombination Junction Model.

where J_ is the '"ideal" or diffusion current density and J_ is the generation-

I 3

recombination current density given by

_ W
Jy =4 fo U dx (E.10)

In the space charge region Jp and Jn are small compared to the drift

and diffusion terms which reduces Eqs. (E.2) and (E.3) to:

HPPE ~ Dpdp/dx (E.11)
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and

-pnnE ~ Dndn/dx . (E.12)

Using Einstein's relation (D = pkT/q) and solving Eqs. (E.ll) and (E.12)

for the hole and electron densities gives

P~ Cy exp[-qV/kT] (E.13)
and

n =~ G, exp[qV/kt] . (E. 14)
It can be shown that [49]

pn = ni exp[an/kT] s (E.15)

where Va is the applied junctioﬁ voltage.

Substituting Eqs. (E.l) and (E.15) into Eq. (E.10) gives

dx .
Tno(P + pl) + rpo(n + nl)

= 2 W
Jy = 4 ni[exp{an/kT} - 1] fo (E.16)
An explicit evaluation of the integral is not possible because the hole
and electron densities are a function of the applied voltage. Several
important cases can be analyzed however, First, consider the case for
large reverse bias such that an/kT << 1. 1In this case p < Py and n << n,.
Integrating Eq. (E.16) gives
-q n? W
J. = L . (E.17)

[3f
"no P1 + Tpo i

The width of the space charge region W in Eq. (E.17) is a function of the

applied voltage Va'
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For the case of a step junction

/2

1
We=w(l - va/vo) (E.18)

where Wo is the width of the space charge region with zero applied voltage
and Vo is the built-in junction potential.
A second case of interest is for large forward bias such that

an/kT >> 1, for which
P~n =mn, exp{an/ZkT} , (E.19)

where p >> Py and n >> n;. Under these conditions the generation-recombination

current density becomes

qn,
= 1
JU ;——-;7:7—-w exp{an/ZkT} . (E. 20)
no po

Again W is a function of the applied voltage.

The third case which can be solved is the small forward bias case

such that p << Py and n << n, for which
q ni W
Iy = — 0 + . & [exp{an/kT} -17. (E.21)
no 1 po 1

The above three special cases are of particular interest; however,
it would be desirable to obtain a solution which is valid for all values of
applied voltage. Although Eq. (E.16) cannot be solved in general, limits
can be established on the current density. Consider the denominator of the

integral term of Eq. (E.16)

£E(V) =7 (P + pl) + rpo(n + “1) s (E.22)
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where

o
]

P, exp {qV/kT} " (E.23)

and

n exp{-qV/kT} (E. 24)

3
]

where p and n are the hole and electron densities in the junction at the
point where the voltage is V and P, and n_are the densities on the n-side
of the junction. The function £(V) has a minimum value for some value of

voltage V. The minimum can be found in the usual manner, i.e.

of (V) _ 5 o a_ } 9 -
3V 0 Too Pn KT exp{qV/kT} Tpo noWT exp{-qV/kT} (E. 25)
or
T o nr1 1/2
exp {qV/kT} = (--LT - =) . (E. 26)
no Pn.
Therefore
£EV) 27 Wap_ JTPO/THO +p )+ Tpo{\/nnpn ‘JTno/Tpo +n ) (E.27)
or
(V) > (Tnop1 + Tponl) +-QTPOTno n, exp{an/ZkT} (E. 28)
Substituting Eq. (E.27) into (E.16) and integrating gives
2
qn, W [exp{qV_/kT} - 1]
I < L 2 (E.29)
U= (t Pyt Tponl) . +./TpoTno n, exp{an/ZkT}

(Tnopl + Tponl)
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An inspection of Eq. (E.29) shows that for large reverse bias the
limit is, in fact, equal to the exact value found earlier, Eq. (E.17).
For large forward bias Eq. (E.29) becomes

q niW exp{an/ZkT} _
Ju = . (E. 30)

T
Tpo no

By comparing Eq. (E.29) with the exact value given in Eq. (E.20), it is

found that if Nt T is replaced by (t__ + 1_ ) then the two equations
po no po no

give the same value. As an approximation the recombination-generation
current density is equal to the limiting value given in Eq. (E.29) with

Nt T replaced by (Tpo + 7 ),

no po no

q ni W[exp{an/kT} - 1]

JU = 7 (t + 7 ) n, exp{qV _/2kT} ) (E.31)
no po’ i a
(Tnopl toT onl)(1 + [ + 1t _n_ ]
P ThoP1 po 1
Comparing the ratio (v + 1t )/(t_ = )1/2 we see that if ¢t = 7
po no po no po no

then the ratio is equal to 2. TIf however Tho = IOTpo the ratio is equal to
11A/10 =~ 3. The error introduced by making the substitution in Eq. (E.30) is
then expected to be less than a factor of 2 for Tho — Tno and less than

3 for T = 107
no po
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