TECHNICAL INFORMATION SERIES

THREE COMPUTER PROGRAMS FOR N-BODY TRAJECTORIES AND INTERPLANETARY TRAJECTORIES
J. r. do Vries:

1. Coffin
lice $\$$ \qquad
PRICE (S) $\$$ \qquad

Hard copy (HC) \qquad $\frac{3.00}{75}$

SPACE SCIENCES LABORATORY GENERAL (gif ELECT HIC

Microfiche (MF \qquad

SPACE SCIENCES LABORATORY

MECHANICS SECTION

THREE COMPUTER PROGRAMS FOR N－BODY
TRAJECTORIES AND INTERPLANETARY TRAJECTORIES＊

By
J．P．deVries
T．Coffin
＊Prepared under contract no。NAS2－1706 with NASA－Ames Research Center

FOREWORD

This report was prepared by the Space Sciences Laboratory, Missile and Space Division, General Electric Company, King of Prussia, Pennsylvania, under NASA contract no. NAS2-170́f for the INASA Ames Research Center, Moffett Field, California.

This report is a description of three computer programs delivered to NASA-Ames according to the terms of the above mentioned contract. The preparation of the report was performed under the supervision of Dr. F. Wendt, Acting Manager-Mechanics Section, by Messrs. J. P。 deVries, W. M. Pauson, T. Coffin and F. T. Nicholson.

Abstract

This report contains complete input instructions, operating

 instructions and sample problems with computer output for three IBM-7094 Computer Programs. The Programs and their essential features are:I) Interplanetary Trajectory Program. This program determines the burnout velocity for a trajectory from Earth to any other planet or from any other planet to Earth 。
II) N-Body Trajectory Program. This is an N-body program with fourth order Runge-Kutta integration with optional doubling and halving procedure and according to the Cowell or the Encke method. It also can print out central angle, ground trace and azimuth and elevation of the velocity vector.
III) N-Body Program with Sensitivity Coefficients and Differential Correction. This is in purpose similar to the Interplanetary Trajectory Program, but a first estimate of the trajectory must be available from an external source. It computes a 6×6 sensitivity matrix by integration along the trajectory; it also makes use of an improved differential correction procedure.
A full description of Program I is available in reference 1 and 2. This report presents an outline of the pertinent sections of those references, to facilitate their use. Full descriptions and analyses are presented for those features that distinguish Programs II and III from Program I。

TABLE OF CONTENTS

Page
Foreword i
Abstract iii

1. General Description of the Three Programs I
1.l Introduction l
l. 2 Program I, The Interplanetary Trajectory Program 2
1.2.1 Mode 1, Interplanetary Trajectory 2
1.2.2 Mode 2, Initial Configuration Angle 5
1.2.3 Mode 3, N-Body Trajectory 5
1.3 Program II, the N-Body Program With Options 6
2. 4 Program III, the N-Body Program with Sensitivity 6 Coefficients and Differential Corrections
3. Outline of References 1 and 2 7
2.1 Introduction 7
4. 2 Reference 1 7
2.3 Reference 2 9
5. 4 Reference 2 Supplement 12
6. Additions and Modifications 14
3.1 Introduction 14
3.2 Ground Trace, Central Angle and Azimuth and Elevation 14 of Velocity Vector
3.3 Computation of Sensitivity Coefficients 21
4。 Operating Instructions 28
General Operating Procedures 28
7. 1 Program I 31
4.1.l Computer Input 32
Type 1 32
Type 2 35
Type 3 35
4.l.2 Computer Output 38
Type 1 38
Type 2 39
Type 3 39
4.1.3 Sample Problem 40
4.1.4 Listing 45
8. 2 Program II 56
4.2.1 Computer Input 56
4.2.2 Computer Output 59
4.2.3 Sample Problem 60
4.2.4 Listing 63
4.3 Program III 66
4.3.1 Computer Input 66
4.3.2 Computer Output 69
4.3.3 Sample Problem 71
4.3.4 Listing 79
9. References 83

1. GENERAL DESCRIPTIONS OF THE THREE PROGRAMS

1.1 Introduction

This section is a general description of three computer programs. Complete operating instructions and the in-and output formats are given in section 4. Sample problems are presented in section 5. The three computer programs described in this report are:
I. Interplanetary Trajectory Program

This program can be used in three ways:
mode 1) To determine the burnout velocity and the trajectory between Earth and any other planet except Pluto (or vice versa) when departure date and trip time are given.
mode 2) To determine the initial configuration angle between departure and destination planets for a given departure date.
mode 3) To compute an N -body trajectory when initial position and velocity components are given; this includes as an option the use of six (or less) midcourse velocity corrections.

II. N-body Program with Options

This is the same program as (1,3) above, but the units of the output may be miles and feet-per-second (or any other units, depending on input) whereas the units of (I, 3) are always A. U. and A.U. per hour. This program also contains options to compute ground trace information, azimuth and elevation of velocity vector and central angle. It does not have the midcourse correction option.
III. N-body Program with Sensitivity Coefficients and Differential Corrections

This program determines the burnout velocity of interplanetary trajectories (similarly to I, l) by differential correction of a first estimate. It differs from (I, l) in three aspects:
a) a first estimate of the initial conditions obtained from another source, must be used as input (the program (I, l) computes its own estimate)
b) the sensitivity coefficients are computed by integration along the trajectory, whereas (I, l) computes them by perturbing the initial velocity components.
c) it has an option to print out the 6×6 sensitivity coefficient matrices along a nominal trajectory.

The content and operation of program I are reported in G.E. TIS reports R60SD465 (Ref. 1) and R61SD047 (Ref. 2) 。 Ref. l deals with the N -body program which is the common basis for all the programs mentioned above. Ref. 2 is a complete description and operation manual for program I, the Interplanetary Trajectory Program, in its three modes of operation. Ref. 2 also contains flow charts.

Programs II and III grew out of program I by a process of adding and modifying. The additions and modifications are described in this report. To facilitate the use of references 1 and 2 , this report contains an outline of their content.

The chart on page 3 is a summary of this introduction.
1.2 Program I, The Interplanetary Trajectory Program

This program is fully described in Ref. 2. It may be used in three ways.
1.2.1 Mode 1, Interplanetary Trajectory

In this mode the program computes an interplanetary trajectory from Earth to any other planet (except Pluto) or from any planet to Earth. The initial condition is some altitude above a given launch site at some time during a given departure date. The end condition is intersection of a sphere of given radius (which may or may not be the actual radius from the center of the destination planet after a given trip time. The time of burnout on the departure date is determined to take the best advantage of the planet's rotation. (For those planets of which the rotation is not known this feature is dispensed with.) The trip time is satisfied within a tolerance specified in the input.

The input is principally the identification of departure and arrival planets, the departure date and the trip time; other input consists of physical
SUMMARY OF RELATION BETWEEN THE THREE PROGRAMS
Program I Interplanetary Trajectory
Three modes of operation
mode 1

mode 2
mode 3

Described in references 1 and 2
constants, indicators to make the N -body subroutine compute according to the desired mode and conditions to end the program.

The program begins with the computation of an estimated burnout velocity on the basis of a two body analysis (the. "heliocentric transfer analysis') in which the planets are massless. This estimate is refined by introducing the orbital eccentricities of departure and arrival planets (the "geocentric departure analysis"); this part of the program also determines the time of burnout during the departure day to take the best advantage of the planet's rotation. The refined estimate is run as an N-body trajectory; sensitivity coefficients are computed by perturbing the initial velocity components. The estimate is improved iteratively by a differential correction procedure that is based on the sensitivity coefficients.

The heliocentric transfer analysis computes the eccentricity and semi-major axis of the transfer ellipse (or hyperbola, if desired) for given departure date and trip time. This is done by a rather simple iteration procedure, but the formulas to be used depend on the type of transfer to be made. There are four types of elliptic transfers: direct, indirect, perihelion, aphelion; these terms are defined in Ref. 2. To get the iteration started properly, the particular kind of transfer must be indicated in the input. Ref. 2 contains graphs of Earth-planet and planet-Earth transfers; in each graph the trip time -- initial configuration angle space is divided in several areas each of which is associated with a particular type of transfer. Thus, for given trip time and departure date an estimate can be made about which type of transfer is required, since the knowledge of departure date is equivalent to that of initial configuration angle. Since the plots are based on coplanar, circular planetary orbits, their information may be in error especially when a close-to-Hohmann transfer is desired. In that case a number of possible types of transfer may be indicated in the input; the program will then try each type in turn until the correct one is found.

If one does not want to determine the initial configuration angle by referring to the ephemeris and computing the scalar vector of the position vectors, one may use mode 2 of the program to obtain that angle.

1.2.2 Mode 2, Initial Configuration Angle

In this mode the program computes the angle between the departure and destination planets on the departure date by looking up their positions in the ephemeris and computing the scalar product of the position vectors. Input consists of identification of planets, departure date and trip time (but trip time is not used in the computation, it is a "dummy" input)。 1.2.3 Mode 3, N-Body Trajectory

The N-body trajectory program is characterized by:

1) Fourth order Runge-Kutta integration in double precision, with optional doubling and halving procedure;
2) Position data of Sun, Moon and all planets except Pluto given at 12 hour intervals, referred to the mean equinox and mean equator of 1950.0;
3) Cowell or Encke solution method with optional switching from one to the other;
4) Optional switching of coordinate center.

The input consists of a) identification of reference planet, b) initial position (in $A_{0} U_{0}$) and velocity (in $A_{0} U_{0} /$ hour) components with respect to the center of the origin planet, c) physical constants, including the identification of planets to be included in the computation, d) indicators for the particular mode of running the program and e) conditions on which to terminate the computation.

Output lists position, velocity and acceleration components and magnitude with respect to origin planet; position components and magnitude with respect to earth, sun and target planet; all this at each integration step or intermittently at any desired number of steps.

This mode of the Interplanetary Trajectory Program also has an option to include the effects on the trajectory of up to six midcourse corrections. The corrections must be defined in the input by the specific impulse and mass flow (the same for all corrections) and the time of initiation, the burning time and the direction as referred to local velocity vector and trajectory plane。

1．3 Program II，the N－Body Program with Options

This is the same program as that described in section 1．2．3，except for the following．

1）It does not have the option for midcourse corrections．
2）It has an option to print out in miles，feet per second and feet per（second）${ }^{2}$ ，or any other units，depending on the input conversion factors。

3）It has an option to print out the ground traces over the Earth＇s surface in latitude and longitude。

4）It has an option to print out the central angle，$i_{\text {。 }} e_{\text {。 }}$ the angle between the instantaneous and the initial position vectors．

5）It has an option to print out aximuth and elevation of the velocity vector．
1．4 Program III，N－Body Program with Sensitivity Coefficients and Differential Correction

This program maytake the place of Program I if a first estimate of initial conditions of an interplanetary trajectory is available from some other source．Such a source can be，for instance，the JPL Heliocentric Conic Program．Progam III cannot compute the first estimate（as Program I can）， but it does contain improvements in the computation of sensitivity coefficients and the differential correction．These improvements are fully described in section 3 of this report；the following is a general description．

The complete（ 6×6 ）matrix of sensitivity coefficients is computed along the trajectory by integration of the equations of variations．There is an option to print out the sensitivity matrix at each integration interval．

The differential correction procedure has been improved（or，at least， made more flexible）by permitting the use of only a percentage（determined by the＂K－factor＂which is supplied as input）of the velocity correction determined by the sensitivity matrix＇s inversion。

Because of the way in which the sensitivity coefficients are computed， this program must be run with the Cowell solution method and must use the doubling and halving option．
2. OUTLINE OF REFERENCES 1 AND 2

2.1 Introduction

The purpose of this section is to facilitate the use of references 1 and 2. Together, they give a full description of program I (the Interplanetary Trajectory Program). Reference 1 concentrates on the N -body part of the program and discusses two demonstration problems; Reference 2 describes the Interplanetary Trajectory Program and repeats some parts of Reference 1. Reference 2 is thus a complete report in itself. The following is an outline of the relevant materials in the two reports, or an elaborate table of contents (Introductions and abstracts are not mentioned). Some of the contents are merely mentioned, some other matters are discussed in some detail wherever it was felt that further explanation was necessary. Reference is by section number. The title of the reports, "Generalized Interplanetary Trajectory Study, " was the title of the WADD contract under which the work was performed. Section IV of Reference 1, 'Interplanetary Weather, " was the result of a part of that work; it will not be further discussed here.

2.2 Reference 1

('General Interplanetary Trajectory Study," J. P. deVries, coordinator, General Electric TIS R60SD465, August 1960)

Section 2.1 Definition of coordinate system. Reference is the mean equator and mean equinox of 1950.0 .

Section 2.2 Equations of motion for the N -body problem are derived for one body with respect to another. The accelerations due to the first earth oblateness term are also indicated.

Section 2.3 Definition of the "Cowell" and "Encke" solution techniques. The program uses either technique (according to input instructions).

Section 2.4 Description of the integration method. The method used is the fourth order Runge-Kutta; the selection of the time step is made by the doubling and halving method. The criterion by which the integration proceeds with the same interval or with half the interval is that both integrations should agree within a certain tolerance. (In our use of the program it has become customary to use a tolerance of 4×10^{-10} A.U.).

A possible criticism is that the tolerance is an absolute distance, whereas a certain percentage of the instantaneous distance to the center of the coordinate system may be more satisfactory. Be this as it may, the program has performed well, and the automatic time step selection provides a great time saving for interplanetary trajectories since small steps are taken near a center of attraction and long steps far away from it. The doubling and halving procedure is optional.
Section 2.5 It may be argued that for trajectories between two planets it is advantageous (for accuracy and speed) to translate the coordinate system from the departure planet to the sun, and later to the arrival planet. Such translations may be executed automatically (by option, according to input instructions). When using the Cowell method the coordinates are translated to the closest body; when using the Encke method the translation is to that body of which the gravitational force is greater than 25% of the total force. Whenever a translation is needed, the relative velocity between the old and the new coordinate system is computed by numerical differentiation. Usually this does not produce a sufficiently accurate velocity; the velocity is corrected in an iteration procedure which is based on running the trajectory in the old as well as in the new coordinate system for a few integration steps.

The program also has an option to switch solution techniques from Cowell to Encke, or from Encke to Cowell. The criterion is (more or less arbitrarily) that the Encke technique is used when the body at the coordinate center is responsible for more than 75% of the total force; otherwise, the Cowell technique is used.

Section 2. 6 The sources for the planetary tapes are indicated. Positions of all planets (except Pluto), Moon and Sun are stored on tape at 12 hour intervals. Interpolation was by nine-point Lagrange interpolation of the original ephemerides. Time is Ephemeris Time。 Appendix I gives the formulas which were used to convert the Naval Observatory data for the Moon and Mercury.

Section 2.7 All physical constants are input quantities, but this section suggests a set of numbers which is consistent with standards adopted by the International Astronomical Union.

Scetions 2.8 and 2.9 Compütex inpui dnd vuipui are more fully defined in Reference 2 and also in this report, section 4.
Section 3 Two demonstration problems are discussed in detail. The first is the computation of the Lunik III trajectory. The second is the computation of an Earth-Venus trajectory for given departure date and trip time. The method by which a first estimate was obtained is discussed in detail in Appendix II. The method consists of two parts: the heliocentric transfer analysis ("Vertregt") and the geocentric departure analysis ('Moeckel'). These analyses were later generalized and programmed and are now part of the Interplanetary Trajectory Program. The use of differential correction to refine the estimate is also discussed (see also Appendix III); this was also programmed later to be part of Program I.

2.3 Reference 2

('Generalized Interplanetary Trajectory Study, " Part II and Supplement I, J. P. deVries, Coordinator, General Electric TIS R61SD047, Jan. 1961)

Section 2 Description of the N -body program. This repeats section 2 of reference 1. The list of astronomical constants contains suggested values for several physical properties of the planets.
Section 3.1 Description of the Interplanetary Trajectory Program. The problem to be solved by this program is briefly: to determine the burnout velocity for a trajectory from Earth to any other planet (or vice versa) when departure date and trip time are known. The program operates in three phases: 1) first estimate, 2) N-body program and 3) differential correction.

Section 3.2 The heliocentric transfer analysis determines the semimajor axis and eccentricity of the transfer ellipse, assuming that the planets have no mass. For elliptic trajectories four kinds of transfer
('routes") are defined (direct, indirect, aphelion and perihelion); two routes are defined for hyperbolic transfers. No retrograde transfers are considered. In plots having trip time as ordinate and initial configuration angle (or departure date) as abscissa each route is confined to a certain region (i.e combination of trip times and departure dates). The four regions belonging to the elliptic routes come together in a point which corresponds to the single trip timedeparture date combination for a Hohmann (least energy) transfer. There are fourteen such plots, seven for earth-planet and seven for planet-earth transfers. The plots are used to determine which route will be taken for the desired trip time-configuration angle combination. This information is needed in the input data, because the computation of semi-major axis and eccentricity requires different formulas for different routes. Since the plots are based on an idealized model there is some uncertainty about the route that is required, especially in the neighborhood of the Hohmann point. One may therefore specify a number of routes; the computer will try each one in succession.

This section gives all the formulas for the computation of semimajor axis and eccentricity (for each of the different routes) and the iteration procedure which is used in the program.

Section 3.3 The purpose of the departure analysis is to obtain a first estimate of the burnout velocity. The burnout point is taken to be some given distance vertically above the launch site and the burnout time during the given departure date is determined to take the maximum advantage of the earth's (or other planet's) rotation. (Departures from Mercury and Venus are dealt with slightly differently because not enough is known about their rotations and direction of their axes.) The escape from the planet is taken to be along a hyperbola which is "patched" to the transfer ellipse that was the result of the heliocentric transfer analysis.

Pages 55-57 of this section have a more general significance. A step-by-step procedure is given for the determination of the Universal

Time that corresponds to local mean sidereal time; this is a "translation" of the instructions in the American Ephemeris and Nautical Almanac (as well as the Explanatory Supplement).

Section 3.4 The differential correction by which the first estimate is corrected to produce an impacting trajectory is based on the sensitivity matrix between positions at arrival time and velocities at departure time. The sensitivity coefficients are computed by making small changes in each of the burnout velocity components in turn and computing three new trajectories. The inversion of the sensitivity matrix produces the burnout velocity correction and a new trajectory is run。With the same sensitivity matrix up to ten iterations may be performed; if impact is still not obtained, a new sensitivity matrix is computed along the last trajectory and another 10 iterations may be performed. If after three computations of sensitivity matrices (or a total of 30 tries) impact is still not achieved, the run is given up as a hopeless case. The end condition of the trajectory is impact on a sphere centered at the arrival planet's center with arbitrary (i.e. input data) radius at the arrival time to within a given tolerance (also input data).

Section 3.5 This is a complete discussion of the computation of a Mars-Earth trajectory.

Section 3.7 This is a summary of 7 Earth-Venus trajectories with departure dates at 12 -day intervals and a trip time of 100 days.

Sections 4.1 and 4.2 It is argued that to use the Encke method advantageously the coordinate center must be translated from one body to another when the second becomes prominent. To perform this translation relative velocity of the old and the new coordinate center must be determined by differentiation of the ephemeris data. Even when using the iteration procedure described in section 2.5 of reference 1 it has been found that the results are not always consistent. The reasons for this are quite complex, maybe a combination of some
small interval inconsistency in the ephemeris with the fact that light significant figures in the initial velocity does not give enough accuracy. Section 4.2 presents an improved method for the velocity determination; this method has been applied with some success, but it has not been incorporated into the present program. (Our practice has become to use the Cowell method always, without translating coordinate centers).

Section 5 This section describes how the program handles the midcourse correction option. Up to six midcourse corrections may be specified. Specific impulse and mass flow must be the same for each correction. The corrections are further specified by giving the starting time (hours from beginning of trajectory), the burning time and two angles which define the thrust direction. The thrust direction is to be specified in a coordinate system that is directed along the local velocity and the trajectory plane.
Appendix I. This reports the two-body formulas that are used in the Encke method.

2.4 Reference 2, Supplement

Section 2 The complete input instructions for the three modes of the Interplanetary Trajectory Program.

Section 3 Description of computer output.
Section 4 Operating instructions.
Note: The contents of sections 2, 3 and 4 of this Supplement are repated in section 4 of this report.

Section 5 Description of the binary tapes of planetary tables.
Section 6 Block diagrams of the most important parts of the Interplanetary Trajectory Program: tape data to angular parameters (fig. 1), heliocentric analysis (fig. 2), departure analysis (fig. 3), Encke integration program (fig. 4), Cowell integration program (fig. 4 cont.) and differential correction analysis (fig. 5).

Appendix I Description of the modified DBC FORTRAN input routine. Appendix II Complete input and computer output sheets of two examples:

1) Earth-Venus trajectory, 110 days trip time, departure date Dec. 12, 1960 or 346 days from beginning of tape (Jan. 1, 1960) and
2) Venus-Earth trajectory, 110 days trip time, departure date April 1, 1961, or 456 days from beginning of tape.

Appendix III List of Julian dates, calendar dates and table days.

3．ADDITIONS AND MODIFICATIONS OF PROGRAM I

3．1 Introduction

Since the completion of Program I several additions and modifications have been made．Programs II and III are the results。 This section describes

1）the computation of ground trace parameters，azimuth and elevation of velocity vector and central angle（for Program II）
2）Computation of 6×6 sensitivity matrix（for Program III）
3）Modified differential correction procedure（for Program III）． The use of these additional features is fully explained in the section on input instructions and operating procedures later in this report． 3．2 Computation of Ground Trace，Central Angle and Azimuth and Elevation

Program II offers the option of printing out ground trace information， the central angle（or travel angle and aximuth and elevation of the velocity vector．This section describes how this information is obtained．The program can also print out distances in miles，velocities in ft／sec and ac－ celerations in $\mathrm{ft} / \mathrm{sec}^{2}$ ，or any other units depending on the conversion constants （from A．U．and A．U．／hour）which are supplied as input．

3．2．1 GroundTrace

The parameters computed are the latitude of the vehicle referenced to the equatorial plane and the longitude referenced to the Greenwich meridian． Negative longitudes indicate angles west of Greenwich．

The additional input quantities required for this option are：
$\mathrm{H}=$ Greenwich Hour Angle for starting day of trajectory（deg．）
$t_{o} \quad=$ Table hours for $O^{h} U . T$ ．on starting day of trajectory
$\omega_{\mathrm{e}} \quad=$ Angular rate of Earth＇s rotation $\left(\omega_{\mathrm{e}}=.262516 \mathrm{rad} / \mathrm{hour}\right)$
The coordinates（ $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ）of the vehicle with respect to the Earth referenced to the vernal equinox of 1950．0，found by the n－body program are transformed to coordinates referenced to the Greenwich meridian at $t_{o}\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$ 。 This involves a rotation about the Z axis through the angle H as shown in Fig． 1 。

Fig. 1 Computation of Ground Trace

$$
\begin{aligned}
& X^{\prime}=X \cos H+Y \sin H \\
& Y^{\prime}=-X \sin H+Y \cos H \\
& Z^{\prime}=Z
\end{aligned}
$$

Now, if R is the geocentric distance to the vehicle, the latitude ℓ is given by

$$
\ell=\sin ^{-1}(Z / R)
$$

where $-90^{\circ} \leq \ell \leq 90^{\circ}$. Negative values of ℓ indicate latitudes in the southern hemisphere。

The longitude with respect to the Greenwich meridian at t_{o} is

$$
\begin{aligned}
& \lambda_{0}=\sin ^{-1}\left(Y^{\prime} / R \cos \ell\right) \\
& \lambda_{0}=\cos ^{-1}\left(X^{\prime} / R \cos \ell\right)
\end{aligned}
$$

To find the longitude, λ, with respect to the Greenwich meridian at the time of the printout step, t, a correction for the Earth's rotation is applied

$$
\lambda=\lambda_{o}-\omega_{e}\left(t-t_{o}\right)
$$

3.2.2 Central Angle and Azimuth and Elevation of Velocity Vector

 The desired parameters are shown in Fig. 2

Fig. 2 Central Angle and Direction of Velocity Vector
$\theta=$ central angle, or angle traveled from injection, \bar{R}_{i}, to \bar{R} at any time t.
$\beta=$ elevation of velocity vector, $\overline{\mathrm{V}}$, measured positive above local horizontal plane
$\sigma=$ azimuth of \bar{V}, measured positive clockwise from north in local $\mathrm{X}, \mathrm{Y}, \mathrm{Z} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z}=$ components of geocentric position and velocity vectors at any time t subscript irefers to injection time

The central angle is given by

$$
\theta=\cos ^{-1}\left(\frac{\mathrm{XX}_{\mathrm{i}}+\mathrm{YY}_{\mathrm{i}}+\mathrm{ZZ}_{\mathrm{i}}}{R R_{\mathrm{i}}}\right)
$$

where $0^{\circ} \leq \theta \leq 180^{\circ}$.

The elevation of $\overline{\mathrm{V}}$ is

$$
\beta=\sin ^{-1}\left(\frac{\dot{X} X+Y \dot{Y}+Z \dot{Z}}{R V}\right)
$$

where $-90^{\circ} \leqslant \beta \leqslant 90^{\circ}$ 。
The declination of the vehicle, δ, is the latitude found previously as part of the ground trace computation. The right ascension is found from

$$
\begin{aligned}
& \alpha=\sin ^{-1}(\mathrm{Y} / \mathrm{R} \cos \delta) \\
& x=\cos ^{-1}(\mathrm{X} / \mathrm{R} \cos \delta)
\end{aligned}
$$

The azimuth of $\overline{\mathrm{V}}$ is thus given by

$$
\left.\sigma=\cos ^{-1} \dot{(X} \sin \delta \cos \alpha-\dot{\mathrm{Y}} \sin \delta \sin \alpha \sin +\dot{\mathrm{Z}} \cos \delta\right) / \mathrm{V} \cos \beta
$$

where

$$
\begin{aligned}
& \sigma=\sigma \text { if }(-\dot{\mathrm{X}} \sin \alpha+\dot{\mathrm{Y}} \cos \alpha) \geq 0 \\
& \sigma=2 \pi-\sigma \text { if }(-\dot{\mathrm{X}} \sin \alpha+\dot{\mathrm{Y}} \cos \alpha)<0
\end{aligned}
$$

3.2.3 Discussion

It must be noted that some simplifications have been used in the computations described in this section. The ground trace is computed using the mean equator and mean equinox of 1950.0 ; it should thus be corrected by introducing the nutation and precession to get the ground trace properly in the coordinates of date. The error amounts to about 50 secs of arc per year, counted from 1950; most of the error is in the direction of longitude. (When the option was introduced in the program the purpose warranted neglecting this correction.)

Also in defining the direction of the velocity vector the coordinate system is that of the 1950.0 mean equator and mean equinox.

3.2.4 Modification of the Differential Correction Procedure

In determining the burnout velocity for an interplanetary trajectory with the Interplanetary Trajectory Program (Program I), the linear differential correction procedure has sometimes shown a slowly converging or even diverging behavior. It is typical in such cases that the miss distance will oscillate from one side of the target planet to the other in successive
iterations. The modification of the differential correction procedure (described in this section) has improved the computation of such difficult cases considerably。

Since the completion of the Interplanetary Trajectory Program other means of getting a first estimate have become available; in some cases such estimates produce a smaller miss distance (when run in an N-body program) then the estimate determined by the Interplanetary Trajectory Program. An example of such other means is the JPL Heliocentric Patched Conic Program, used directly or with its own differential correction。

The improvement of the Interplanetary Trajectory Program thus consisted of three parts:

1) Make it possible to begin with an estimated burnout velocity which is computed externally.
2) Modify the differential correction procedure to improve convergence.
3) Improve the computation of the sensitivity coefficients by getting them through integration of the equations of variation along the estimated trajectory. (This takes only 10% more computer time than integrating the trajectory alone, whereas the finite perturbation method requires 300% more; the results have consistently agreed within 1%. Also, in this manner the complete 6×6 matrix becomes available for printout at any integration interval.

It was therefore decided to let the Interplanetary Trajectory Program stand unchanged and to add the new sensitivity matrix computations and the modified differential correction procedure to the N -body program. The first estimate of initial conditions must now come from an external source. One such source may of course still be the old Interplanetary Trajectory Program (Program I) when it is stopped just before it goes into the N -body subroutine.

The modification of the differential correction procedure consists essentially of limiting the magnitude of the velocity correction that is
predicted by the inversion of the sensitivity matrix. A "limiting factor" k is defined below; to date values of .1 and .2 have been used successfully al although not enough experience has been gained to determine a "best" (if there is one!). Low values of k tend to increase the number of iterations required to find an impacting trajectory, larger values may not sufficiently reduce the oscillatory behavior of the differential correction. As shown in Figure 3, only the magnitude of the predicted velocity correction is changed, the direction is maintained.

Figure 3. Velocity Diagram
The modification also limits the initial velocity to values greater than the escape velocity of the departure planet.

The modification is described below by a list of symbols, a logic diagram and the pertinent equations. List of Symbols
$r_{0} \quad$ radial distance from origin at injection
$\overline{\mathrm{V}}_{\mathrm{o}} \quad$ velocity at injection, from two-body estimate or previous n-body run, to be corrected
($\mathrm{X}, \dot{\mathrm{Y}}, \dot{Z}$) rectangular components of velocity
$\Delta \overline{\mathrm{V}}$ velocity correction predicted by linear differential correction procedure

LOGIC DIAGRAM

3.3 Computations of Sensitivity Coefficients

In Program I (the Interplanetary Trajectory Program) the sensitivity coefficients are computed by perturbation of the initial conditions; a 3×3 sensitivity matrix is computed between position components at the end of trajectory and velocity components at the beginning. In Program III the sensitivity coefficients are obtained by integrating the equations of variation along the trajectory. The sensitivity coefficients denote the rate of change of position and velocity components at some time with respect to changes in position and velocity components at the initial time。A 3×3 submatrix of the 6×6 matrix at the final time is used in the differential correction procedure; the complete 6×6 matrix may also be printed out at the integration intervals of the nominal trajectory.

In the computation of the sensitivity coefficients advantage is taken of the doubling and halving procedure of integration. Because of this, the gravity gradients are available at the beginning, the midpoint and the end of the integration interval. This results in a computation of the sensitivity coefficients with errors proportional to the fifth power of the integration interval.

Let the equations of motion be represented by

$$
\begin{equation*}
\ddot{\ddot{r}}=-\nabla \phi(\bar{r}, \mathrm{t}) \tag{1}
\end{equation*}
$$

where ϕ is the gravitational potential of N bodies. Let \bar{r}_{n} be the position vector on the nominal trajectory, \bar{r} the position vector of a variation trajectory. The equations of variation are then

$$
\begin{aligned}
\delta \ddot{\bar{r}} & =\ddot{\bar{r}}-\ddot{\bar{r}}_{\mathrm{n}}=-\left[\nabla \phi \overline{(r}_{\mathrm{n}}, t\right)+\frac{\partial}{\partial \mathrm{x}} \nabla \phi\left(\bar{r}_{\mathrm{n}}, \mathrm{t}\right) \delta \mathrm{x} \\
& \left.+\frac{\partial}{\partial y} \nabla \phi \delta y+\frac{\partial}{\partial z} \nabla \phi \delta z\right]+\nabla \phi\left(\bar{r}_{\mathrm{n}}, \mathrm{t}\right)
\end{aligned}
$$

or, expanded,

$$
\begin{align*}
& \delta \ddot{x}=G_{x x} \delta_{x}+G_{x y} \delta_{y}+G_{x z} \delta_{z} \\
& \delta \ddot{y}=G_{y x} \delta_{x}+G_{y y} \delta_{y}+G_{y z} \delta_{z} \\
& 0 \ddot{z}=G_{z x} \delta_{x}+G_{z y} \delta_{y}+G_{z z} \delta_{z} \tag{2}
\end{align*}
$$

with $G_{x x}=\frac{-\partial^{2} \phi\left(\bar{r}_{n}, t\right)}{\partial x^{2}}, G_{x y}=\frac{-\partial^{2} \phi\left(\bar{r}_{n}, t\right)}{\partial y \partial x}$, etc.
This is a set of linear second order equations

$$
\begin{equation*}
\delta \stackrel{\ddot{r}}{\mathbf{r}}=G(t) \delta \bar{r} \tag{3}
\end{equation*}
$$

The $G_{i j}$ are the components of the gravity gradient tensor; they are evaluated on the nominal trajectory as follows.

The gravitational potential is given by

$$
\begin{equation*}
\phi=\frac{\mu_{k}}{r_{k}}\left[1+J \frac{r_{e}^{2}}{r_{k}^{2}}\left(\frac{1}{3}-\frac{z^{2}}{r_{k}^{2}}\right)\right]+\underset{\substack{j=1 \\ j \neq k}}{N} \frac{\mu_{j}}{r_{j}} \tag{4}
\end{equation*}
$$

where the first term represents the earth potential (including the second harmonic) and the second term the N -body potential. The notation is
$r_{k}=$ distance from earth center
$r_{e}=$ earth radius
$\mathbf{r}_{\mathbf{j}}=$ distance to center of body \mathbf{j}
$\mu_{k}=k^{2} M, M$ is mass of earth
$\mu_{j}=k^{2} M_{j}, M_{j}$ is mass of body j
$J=$ first oblateness constant
$z=$ position coordinate parallel to earth's axis of rotation.
By differentiation of (4) the components of the gravity gradient are obtained

$$
\begin{aligned}
& G_{x x}=-\sum \frac{\mu_{j}}{r^{3}{ }_{j}}\left(1-3 \frac{x^{2} j_{j}}{r_{j}^{2}}\right)-J \frac{\mu_{k} r^{2} e^{2}}{r_{k}^{5}}\left(1-5 \frac{\left(x_{k}^{2}+z_{k}^{2}\right)}{r^{2}{ }_{k}}+35 \frac{x_{k}^{2} z_{k}^{2}}{r^{4}{ }_{k}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& G_{z z}=-\underset{j}{i} \frac{\mu_{j}}{r_{j}^{3}}\left(1-3 \frac{z_{j}^{2}}{r_{j}^{2}}\right)-J \frac{\mu_{k} r^{2}}{r_{k}{ }^{5}}\left(3-30 \frac{z_{k}{ }^{2}}{r_{k}{ }^{2}}+35 \frac{z_{k}^{4}}{r_{k}^{4}}\right) \\
& G_{x y}=G_{x y}=\sum_{j} \mu_{j} \frac{3 x_{j} y_{j}}{{ }_{r}{ }_{j}}+J \frac{\mu_{k} r^{2} e^{2} x_{k} y_{k}}{r_{k}{ }^{7}}\left(j-35 \cdot \frac{z_{k}^{2}}{r_{k}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& G_{y z}=G_{z y}=\sum_{j} \mu_{j} \frac{3 y_{j}^{z} j}{r_{j}^{5}}+J \frac{\mu_{k} r^{r} e^{y_{k}{ }^{z} k}}{r_{k}^{7}}\left(15-35 \frac{z_{k}^{2}}{r^{2}}\right)
\end{aligned}
$$

The summation signs \sum_{j} stand for $\sum_{j=1}^{N}$
Since the positions on the nominal trajectory are available at three points of the integration interval (because of the doubling and halving procedure), the gravity gradient is also available at three points。

If $\overline{\mathrm{X}}$ is the vector $\left\{\delta \overline{\mathrm{r}}, \delta \frac{\dot{\mathrm{r}}}{}\right\}$, equation (3) can be written as

$$
\begin{equation*}
\frac{\bar{X}}{X}=F(t) \bar{X} \tag{5}
\end{equation*}
$$

with

$$
F=\left|\begin{array}{ll}
O & I \tag{6}\\
G & O
\end{array}\right|
$$

Here I is the 3×3 unit matrix, O is the 3×3 null matrix and G is the gravity gradient matrix.

If six solutions of equ。(4) are obtained at some time t_{l} with the initial conditions taken as

$$
\overline{\mathrm{x}}\left(\mathrm{t}_{\mathrm{o}}\right)=\left|\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right|,\left|\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right|, \quad\left|\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right|, \text { etc。 }
$$

and column wise arranged in a matrix, the resulting matrix is the sensitivity matrix from t_{0} to t_{1}. Lei this matrix be $H_{1,0}$; the foliowing equation then represents the relation between position and velocity deviations at t_{1} and t_{0} :

$$
\begin{equation*}
\bar{x}\left(t_{1}\right)=H_{1,0} \bar{X}\left(t_{o}\right) \tag{7}
\end{equation*}
$$

where

$$
H_{1,0}=\left|\begin{array}{ccc}
\frac{\partial x_{1}}{\partial x_{o}} & \frac{\partial x_{1}}{\partial y_{o}} & --- \\
\frac{\partial y_{1}}{\partial x_{o}} & & 0 \\
0 & & 0 \\
0 & \cdots & \frac{\partial \dot{z}_{1}}{0} \\
0 & & \frac{0}{\partial \dot{z}_{o}}
\end{array}\right|
$$

For a time t_{2}, equation (7) gives

$$
\overline{\mathrm{x}}\left(\mathrm{t}_{2}\right)=\mathrm{H}_{2,1} \overline{\mathrm{x}}\left(\mathrm{t}_{1}\right)
$$

But $\quad \bar{X}\left(t_{1}\right)=H_{1,0} \bar{X}\left(t_{o}\right)$
thus $\bar{X}\left(t_{2}\right)=H_{2,1} H_{1,0} \bar{X}\left(t_{o}\right)$
and

$$
\mathrm{H}_{2,0}=\mathrm{H}_{2,1} \mathrm{H}_{1,0}
$$

By continuing this procedure, the chain rule for sensitivity matrices follows

$$
\begin{equation*}
H_{n, 0}=H_{n, n-1} H_{n-1, n-2}--H_{2,1} H_{1,0}=\prod_{i=n} H_{i, i-1} \tag{8}
\end{equation*}
$$

This suggests that the sensitivity matrix for an arbitrary time interval can be computed by multiplying the sensitivity matrices for a number of
subintervals. As convenient subintervals, the integration intervals of the nominal trajectory may be chosen. If a constant value of G is assumed during an integration interval (for instance the value at the midpoint), simple expressions follow for the H covering that interval, but the errors are proportional to the third power of the interval. Better expressions (resulting in errors proportional to the fifth power of the interval) are found by using the fourth order Runge-Kutta formula。 For its use three values of Gare needed, at the beginning, the midpoint and the end of the interval. If the doubling and halving procedure is used for the integration of the trajectory, these three values of G are available. Applying this to equation (5), that equation is first written as a matrix equation

$$
\begin{equation*}
[\dot{X}]=F[X] \tag{9}
\end{equation*}
$$

To integrate this equation for a time step $\Delta t_{n+1}-t_{n}$, the Runge-Kutta formula is applied as follows.
Let $[X]_{t=t_{n}}[X]_{n}$,
let also $F_{o}=F\left(t_{n}\right), F_{l / 2}=F\left(t_{n}+\frac{1}{2} \Delta t\right), F_{1}=F\left(t_{n}+\Delta t\right)$,
then $\quad K_{1}=F_{o}[X]_{n} \Delta t$

$$
\begin{aligned}
\mathrm{K}_{2} & =\mathrm{F}_{1 / 2}\left[\mathrm{I}+\frac{1}{2} \mathrm{~K}_{1}\right][\mathrm{X}]_{\mathrm{n}} \Delta \mathrm{t}=\mathrm{F}_{1 / 2}\left[\mathrm{I}+\mathrm{F}_{\mathrm{o}}, \frac{1}{2} \Delta \mathrm{t}\right][\mathrm{X}]_{\mathrm{n}} \Delta \mathrm{t} \\
\mathrm{~K}_{3} & =\mathrm{F}_{1 / 2}\left[\mathrm{I}+\frac{1}{2} \mathrm{~K}_{2}\right][\mathrm{X}]_{\mathrm{n}} \Delta \mathrm{t}= \\
& =\mathrm{F}_{1 / 2}\left[\mathrm{I}+\mathrm{F}_{1 / 2}, \frac{1}{2} \Delta \mathrm{t}+\mathrm{F}_{1 / 2} \mathrm{~F}_{\mathrm{o}} \frac{1}{2} \Delta \mathrm{t}\right][\mathrm{X}]_{\mathrm{n}} \Delta \mathrm{t}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{K}_{4}=\mathrm{F}_{1}\left[\mathrm{I}+\mathrm{K}_{3}\right][\mathrm{X}]_{\mathrm{n}} \Delta \mathrm{t}= \\
&=\mathrm{F}_{\mathrm{i}}\left[\mathrm{I}+\mathrm{F}_{1 / 2} \Delta \mathrm{t}+\mathrm{F}_{1 / 2}^{2} \cdot \frac{1}{2} \Delta \mathrm{t}^{2}+\mathrm{F}_{1 / 2}^{2} \mathrm{~F}_{\mathrm{o}} \cdot \frac{1}{2} \Delta \mathrm{t}^{3}\right][\mathrm{X}]_{\mathrm{n}} \Delta \mathrm{t} .
\end{aligned}
$$

The result of the fourth-order Runge-Kutta integration is thus

$$
\begin{align*}
& {[X]_{n+1}=[X]_{n}+[\Delta X]=\left[I+\left(F_{0}+4 F_{1 / 2}+F_{1}\right) \frac{\Delta t}{6}\right.} \\
& \quad+\left(F_{1 / 2} F_{0}+F_{1 / 2}^{2}+F_{1} F_{1 / 2}\right) \frac{\Delta t^{2}}{6}+\left(F_{1 / 2}^{2} F_{0}+F_{1} F_{1 / 2}^{2}\right) \frac{\Delta t^{3}}{12} \\
& \left.\quad+F_{1} F_{1 / 2}^{2} F_{0} \frac{\Delta t^{4}}{24}\right]\left[X_{n}\right] \tag{10}\\
& {[X]_{n+1}=H_{n+1, n}[X]_{n}} \tag{11}
\end{align*}
$$

03
where $H_{n+1, n}$ is the "incremental" sensitivity matrix from t_{n} to t_{n+1}. If equation (6) is substituted in (10), the following expressions result for the submatrices of the partitioned sensitivity matrix $H_{n+1, n}$.
Let

$$
\mathrm{H}_{\mathrm{n}+1, \mathrm{n}}=\left|\begin{array}{ll}
\mathrm{H}_{1} & \mathrm{H}_{2} \\
\mathrm{H}_{3} & \mathrm{H}_{4}
\end{array}\right|
$$

Then

$$
\left.\begin{array}{rl}
H_{1} & =I+\left(G_{0}+2 G_{1 / 2}\right) \frac{\Delta t^{2}}{6}+G_{1 / 2} G_{0} \frac{\Delta t^{4}}{24} \\
H_{2} & =I \Delta t+G_{1 / 2} \frac{\Delta t^{3}}{6} \\
H_{3} & =\left(G_{0 .}+4 G_{1 / 2}+G_{1}\right) \frac{\Delta t}{6}+\left(G_{1 / 2} G_{0}+G_{1} G_{1 / 2}\right) \frac{\Delta t^{3}}{12} \\
H_{4} & =I+\left(2 G_{1 / 2}+G_{1}\right) \frac{\Delta t^{2}}{6}+G_{1} G_{1 / 2} \frac{\Delta t^{4}}{24} \tag{12}\\
\text { where } G_{0} & =G\left(t_{n}\right), G_{1 / 2}=G\left(t_{n}+\frac{1}{2} \Delta t\right), G_{1} G\left(t_{n}+\Delta t\right) .
\end{array}\right\}
$$

In the computation of the sensitivity matrix $H_{n, o}$ by continued product, as in equ. (8), the integration for the $i^{\text {th }}$ interval is carried out with $[X]{ }_{i}=I$, the unit matrix. This method is used in the computer program described in this report. If $H_{n, o}$ were to be computed by continuous integration, the initial condition for the $i^{\text {th }}$ interval would be $[X]$, the result of all previous integrations. Because of the linearity of the equations of variation the two
processes are precisely equivalent with respect to the truncation error. In the build up of round off error they behave differently, although it is not immediately obvious that either one is inferior to the other. To reduce the influence of roundoff error all computations are done in double precision.

Expressions for the truncation errors of a single integration step may be derived by carrying out a few steps of the Peano-Baker method, using a Taylor series expansion for the gravity gradient matrix G. The result may be compared with the expressions obtained by substituting Taylor expansions for $G_{1 / 2}$ and G_{1} in equ。(12). If ϵ is defined as the exact solution minus the computed solution, the truncation errors for the submatrices of $H_{n+1, n}$ are

$$
\begin{aligned}
& \epsilon_{1}=\left(\frac{1}{720} \ddot{G}_{o}+\frac{1}{240} \ddot{G}_{o} G_{o}+\frac{1}{120} G_{o} \dot{G}_{o}\right) \Delta t^{5} \\
& \epsilon_{2}=\left(\frac{1}{240} \dddot{G}_{o}+\frac{1}{120} G_{o}^{2}\right) \Delta t^{5} \\
& \epsilon_{3}=-\left[\frac{1}{2880} \dddot{G}_{0}+\frac{1}{480}\left(G_{0} \ddot{G}_{0}+\ddot{G}_{0} G_{0}\right)+\frac{1}{120} \dot{G}_{0}^{2}-\frac{1}{120} G_{o}^{3}\right] \Delta t^{5} \\
& \epsilon_{4}=-\left(\frac{1}{720} \stackrel{\bullet 0}{G}_{o}+\frac{1}{120} \stackrel{\circ}{G}_{o} G_{o}+\frac{1}{240} G_{o} \stackrel{\circ}{G}_{o}\right) \Delta t^{5}
\end{aligned}
$$

The program can print out the incremental as well as the total sensitivity matrix at every trajectory print out. The final sensitivity matrix is also printed out, together with its "theoretical" inverse, i。e., the matrix obtained by rearranging the components of the sensitivity matrix according to

$$
H^{-1}=\left[\begin{array}{cc}
\mathrm{H}_{4} & -\mathrm{H}_{2} \\
-\mathrm{H}_{3} & \mathrm{H}_{1}
\end{array}\right]^{\mathrm{T}}
$$

4. OPERATING INSTRUCTIONS

This section outlines the operational procedures for the three decks. The Interplanetary Trajectory Program is Program I, the N-Body Program with the ground trace feature and optional output conversion is Program II, and the N-Body Program with sensitivity coefficients is Program III. Each program is completely described in each section so that there need be no cross referencing from one part of the report to another when setting up a job. Included in each section are the FORTRAN statements for the 3 decks showing the main programs as they request input and call for subroutines.

The following listings of input data show certain values for the constants (gravitational constant, radius and mass of the earth, oblateness constant). The values have been chosen to conform with those which are presently in use at J.P.L; they differ therefore from the constants which were recommended in references 1 and 2. Also, the sample problems listed in this report have been run with different values. The J.P. L. constants which are the basis for the values in the input listings are:

$$
\begin{aligned}
& 1 \mathrm{AU}=1.49599 \times 10^{8} \mathrm{~km}^{3} \\
& \mathrm{k}^{2} \mathrm{M}_{\mathrm{E}}=398603.2 \mathrm{~km}^{3} / \mathrm{sec}^{2} \\
& \mathrm{R}_{\mathrm{E}}=6378.165 \mathrm{~km} \text { (earth equatorial radius) } \\
& \mathrm{J}=1.62345 \times 10^{-3} \text { (oblateness constant) }
\end{aligned}
$$

General Operating Procedure

A. Input Format

The format for input is as follows. Card columns (cc) l through 72 may be used. The first character on a data card must be an F or an X. The F denotes floating point numbers and the X, fixed point numbers (Integers). The numbers on each card are to be separated by commas and the last character on each card must be an asterisk. At the end of each program description in this section, there is a sample case with input data included in the proper format. A sample input data card might have the following set of numbers:

$$
\text { e.g. Fl. } 75,3.4 \mathrm{E}-06, \mathrm{X} 20, \mathrm{~F} .008^{*}
$$

B. Deck Make-up (Monitor Control Cards)
(1) Card 1 (optional)

This is an ID card. Columns 1 and 2 contain asterisks and columns 3-16 are available for the programmer's name.
(2) Card 2 (optional)

The next card(s) are used to notify the operator if any additional tapes are to be mounted for the run. In our case, an ephemeris tape must be mounted on B-6. CCl and 2 contain dollar signs (\$\$), CC5 contains the number l; (if two tapes had to be used, the second card would have the number 2 in CC5).

CC7-16 contain the library number of the tape(s) to be used. CC20-22 are used to indicate the number of the particular tape drive. CC78-79 is for a sequence number and are the same as CC5.
(3) Card 3 (must be included)

Card \#3 has a $\$$ sign in CCl and the word EXECUTE in CC2-8. CC16-17 contain F2 (indicating FORTRAN II).
(4) Card 4 (must be included)

Card \#4 has an asterisk in CCl and in CC7-9, the letters XEQ.
(5) Card 5 (must be included)

Card \#5 is placed directly behind the binary deck and directly in front of the input data. Cl has an asterisk and CC7-10 have the word DATA.
(6) Card 6 (must be included)

This is an end of file card and is the last card on the job deck. It has a multiple 7,8 punch in CCl.

Thus, the deck make up is as follows:

CARD COLUMN NUMBERS
1234567891011121314151617181920 ---787980

Card
Number
I $\quad * *$ T. COFFIN
II
$\begin{array}{lllllll}\$ \$ & 1 & A 2 & 9 & 6 & 0 & 7\end{array}$
01

III \$EXECUTE F 2

IV $* \quad \mathrm{XEQ}$

BINAR Y
DECK

V
*
DATA

INPUT

VI
7
8

GENERAL OPERATING NOTES FOR THE 3 PROGRAMS

1. Tapes Used

All tapes used in normal FORTRAN System. Tape B-6, Planet
Position Tables Tape.
2. Sense Switches

Sense Switch 1 is the only switch tested. In the down position, output will be printed on-line as well as on tape A-3. The sense switch may be repositioned at any time. Printing on line uses the Share No. 2 printer board.
3. Card Deck

Normal FORTRAN System deck set-up with input cases following. Operation is initiated by the FORTRAN System.
4. Stops
a. All FORTRAN stops.
b. Stops of form HTR * . These are double precision subroutine stops caused by overflow. Experience has shown the se to be due to machine error or input error.
c. HPR 77777 - Error in two-body solution.

4.1 PROGRAM I

Three types of runs may be made with the Interplanetary Trajectory Program:

1. Interplanetary trajectory
2. Determination of initial configuration angle,
3. N-body trajectory.

The required information is listed for each type of run, along with the corresponding computer output. Also included is a description of the FOR TR AN II input-routine to be used with the program.

[^0]
4.1.1 COMPUTER INPUT

This section lists the computer input required for the three types of problems which may be run with the Interplanetary Trajectory Program. These are:

Type 1. Interplanetary trajectory - Computation of trajectory with differential correction procedure from trip time, departure date, and route.

Type 2. Determination of initial configuration angle - Computation of from trip time and departure date. This problem is run prior to run type 1 if the angle ϕ has not been determined by hand computation in order to find the required route.

Type 3. N-body trajectory - Computation of trajectory from initial position and velocity, including midcourse correction capability.

All decimal input is read by a modified DBC FORTRAN subroutine which accepts variable length fields. An (x) following the field number in the following listings indicates a fixed point variable. All other inputs are floating point variables.

TYPE 1 。
INTERPLANETARY TRAJECTORY
FORTRAN
Symbols
Read Statement l
Field $1(x)$ NTYPE code digit for type of run $=1$
Read Statement 2

Field 1	TT	T	trip time, hours
2	DJD	t_{s}	date of departure, days from beginning of tape (table-days)
$3(\mathrm{x})$	ND		code digit for departure planet
$4(\mathrm{x})$	NT		code digit for destination planet

Read Statement 3

Field l(x) NR
$2(\mathrm{x}) \mathrm{NJ}(\mathrm{I})$
3 (x) EC(I)
4 GEE q_{1}
$5(x)$ KIT K

6
DT

DPHI

NR
${ }^{e}{ }_{i}$
q_{i}
$\Delta \mathrm{T}$
$\Delta \phi$
number of routes to be designated (see note 1)
inR sets of data, each set composed of the next two fields
code digit of the route
initial estimate of the eccentricity (see note 2)
initial estimate of the ratio a / r_{1}
number of iterations before attempting next route
allowable tolerance on trip time, hours
allowable tolerance on vehicle travel angle, degrees

Read Statement 4

Field 1	BLE	λ_{E}
2	GEL	L
3	RO	ro
4	$G(1)$	k^{2}
5	WTE	M
6	WTV	v
7	RADE	R

launch site latitude, degrees (0 for non-Earth departure)
launch site longitude, degrees (0 for non-Earth departure)
burnout radius, statute miles
gravitational constant $=2.9591221$
$\times 10^{-4}$, (radians $/$ day $)^{2}$
mass of the Earth $=3.0034424 \times 10^{-6}$,
solar mass units
mass of vehicle, solar mass units
equatorial radius of the Earth $=$ $.42635078 \times 10^{-4}$, A.U.

Note 1: One or more of the six possible routes may be designated as input in preferential order. If after K iterations for each route a successful trajectory is not atiained with any of these routes, the remaining routes will automatically be attempted by the computer.

Note 2: The initial eccentricities, e_{i}, used for routes which are not designated as input are 0.5 for elliptic routes and 1.5 for hyperbolic routes.
oblateness constant for the Earth $=$ $\mathrm{JM}_{\boldsymbol{\oplus}} \mathrm{R}_{\nrightarrow}^{2}=8.8632361 \times 10^{-18}$,
(solar mass units, A. U. ${ }^{2}$)

Read Statement 5

Field 1	EMAX	$D_{1 \text { max }}$	maximum distance from Earth, A.U.
2	GMAX	$\mathrm{D}_{2 \text { max }}$	maximum distance from target, A. U.
3	SMAX	$\mathrm{D}_{3 \text { max }}$ maximum distance from Sun, A. U.	

Read Statement 6

Field l ${ }^{\text {(x) }}$	NCKE		control digit indicating computing scheme, $0=$ Cowell, $1=$ Encke
2 (x)	MSDT		control digit indicating selection of integration time step interval, $0=$ doubling and halving procedure $1=$ three fixed $\Delta t ' s$
3 (x)	MET		control digit indicating whether computing scheme (Cowell, Encke) is to be switched, $0=$ retain original scheme, $1=$ switch schemes on test
4 (x)	NOUT	n	print digit n indicates print every n integrations
5 (x)	NOSW		control digit, $0=$ retain initial origin, l = switch origins on test

Read Statement 7 (used only if Field 2 of Read Statement 6 is 0)

Field 1	DTOR	Δt_{i}	initial Δt, hours
2	DTMAX	$\Delta t_{\max }$	maximum Δt, hours
3	EPl	ϵ	value to test accuracy of integration,
		A. U.	

Read Statement 8 (used only if Field 2 of Read Statement 6 is 1)

Field 1	DTA	Δt_{1}	Δt within 3 radii of origin, hours
2	DTB	Δt_{2}	Δt within 100 radii of origin, hours
3	DTC	Δt_{3}	$\Delta \cdot \mathrm{t} \quad 100$ radii from origin, hours

Read Statment 9

Field 1 (x) NBD \quad\begin{tabular}{l}

$\mathrm{N}_{\mathrm{b}} \quad$| the number of bodies other than |
| :--- |
| the Earth to be included in the |
| study (the Earth is always |
| included) |

\end{tabular}

Read Statement 10

N_{b} sets of data, each including

Field 1(x)	NB (I)	code digit of body
2	WT (I)	mass of body, solar mass units
3	RAD (I)	radius of body, A. U.

TYPE 2.
DETERMINATION OF INITIAL CONFIGURATION ANGLE
Read Statement 1
Field $1(x)$ NTYPE 2 code digit for type of run
Read Statement 2

Field l	DJD	t_{s}	date of departure, days from beginning of tape (table-day)
2	TT	T	trip time, hours
$3(\mathrm{x})$	ND		code digit for departure planet
$4(\mathrm{x})$	NT		code digit for destination planet

TYPE 3.
N-BODY TRAJECTORY
Read Statement 1
Field $1(x)$ NTYPE 3 code digit for type of run
Read Statement 2

Field 1
G91)

WTE
k^{2}
M_{\oplus}
gravitational constant $=2.9591221$ $\times 10^{-4}$; (radians/day) ${ }^{2}$ mass of Earth $=3.0034424 \times 10^{-6}$, solar mass units

3	RADE	R_{e}	$\begin{aligned} & \text { equatorial radius of the Earth }= \\ & .42635078 \times 10^{-4} \text {, A. U. } \end{aligned}$
4	WTV	m_{v}	mass of the vehicle, solar mass units
5	OBJ	J^{\prime}	oblateness constant for the Earth $=$ $J M_{\oplus} R_{\oplus}^{2}=8.8632361 \times 10^{-18}$, (solar mass ${ }_{(1)}^{\oplus}$ units) (A.U. $)^{2}$

Read Statement 3

Field 1	EMAX
2	GMAX
3	SMAX
4	TMAX
5	TO

Read Statement 4

Field l(x) NCKE
$2(\mathrm{x}) \mathrm{MSDT}$

3 (x) MET

$4(\mathrm{x})$	NOUT	n	print digit n indicates print every n integrations
$5(\mathrm{x})$ NOSW		control digit, $0=$ retain initial origin, l $=$ switch origins on test	
$6(\mathrm{x})$	NMC	N_{M}	number of midcourse corrections

Read Statement 5 (used only if Field 2 of Read Statement 4 is 0)

Field 1	DT	Δt_{i}
2	DTMAX	$\Delta t_{\max }$
3	DP1	ϵ

initial Δt, hours
maximum Δt, hours
value to test accuracy of integration, A. U.

Read Statement 6 (used only if Field 2 of Read Statement 4 is l)

Field l	DTA	Δt_{1}	Δt within 3 radii of origin, hours
2	DTB	Δt_{2}	$\Delta t>100$ radii from origin, hours

Read Statement 7

Field l(x) N	$N_{b} \quad$number of bodies other than the Earth to be included in the study
(Earth is always included)	

Read Statement 8

	N_{b} sets of data, each including	
Field l(x)	$\mathrm{NB}(\mathrm{I})$	code digit of body
2	WT(I)	mass of body, solar mass units
3	RAD(I)	radius of body, A. U.

Read Statement 9

Field 1	PM(1)	x_{o} (position coordinates with
2	PM(2)	$\left.\mathrm{y}_{0}\right\}$	respect to origin at burnout, A. U.
3	PM(3)	z_{0})	
4	PM(4)		velocity components with respect
5	PM(5)	$\left.\dot{y}_{0}\right\}$	to origin at burnout, A. U. /hour
6	PM(6)	$\left.\dot{z}_{0}\right\}$	

Read Statement 10 (used only if Field 6 of Read Statement 4 is not 0)

Field 1	SIMC	I_{sp}	specific impulse, seconds
2	FMC	$\dot{\mathrm{m}}$	mass flow, $\mathrm{lb}_{\mathrm{m}} / \mathrm{sec}$
3*	WVMC	m_{v}	mass of vehicle, ${ }^{1 b_{m}}$
	sets of		
4	PPM(I)	T_{M}	time of midcourse correction application, hours from start of trip

[^1]$\operatorname{PPL}(\mathrm{I}) \quad \Delta t \quad$ burning time, seconds
burning time, seconds
component of angle between ΔV
and velocity vector in trajectory
plane degrees
component of angle between ΔV and velocity vector normal to trajectory plane, degrees

The code digits for the various planets and routes are as follows: Planetary Code Digits:

0	Earth	5	Mars
1	Sun	6	Jupiter
2	Moon	7	Saturn
3	Mercury	8	Uranus
4	Venus	9	Neptune

Route Code Digits:

1	Route	D	(direct)
2	Route	P	(perihelion)
3	Route	A	(aphelion)
4	Route	I	(indirect)
5	Route	D_{H}	(direct hyperbolic)
6	Route	P_{H}	(perihelion hyperbolic)

4.1.2 COMPUTER OUTPUT

TYPE 1.

INTERPLANETARY TRAJECTORY

Normally, output will be obtained from each major section of the program as follows:
A. Heliocentric Transfer Analysis

1. The eccentricity of the transfer orbit
2. q; the ratio a / r_{1}
B. Departure Analysis
3. Exact burnout time, hours from beginning of tape
4. Position coordinates at burnout; A. U.
5. Velocity components at burnout; A. U. /hour
C. N-body Integration Program

The following information is printed-out after every n integration steps, where n is an input-control parameter

1. Flight time, hours from start of trajectory
2. Table time, hours from beginning of tape
3. Time increment of integration step, hours
4. Planetary code digit of body at the origin
5. Acceleration components of the vehicle with respect to the origin, A. U. $/ \mathrm{hr}{ }^{2}$
6. Velocity components of the vehicle with respect to the origin, A. U. $/ \mathrm{hr}$
7. Position coordinates of the vehicle with respect to the origin, A.U.
8. Position coordinates of the vehicle with respect to the Earth, A.U.
9. Position coordinates of the vehicle with respect to the target, A.U.
10. Position coordinates of the vehicle with respect to the Sun, A。U. D. Differential Correction Analysis
11. Modified initial velocity components at burnout, A。U./hr

All times are expressed in hours and distances in astronomical units. Position, Velocity, and acceleration components are expressed in a rectangular coordinate system, referenced to the equatorial plane and mean equinox of 1950.0

TYPE 2.

DETERMINATION OF INITIAL CONFIGURATION ANGLE

1. Trip time, days
2. Initial configuration angle, degrees

TYPE 3.

N-BODY TRAJECTORY

The following information is printed out after every n integration steps, where n is an input-control parameter.

1. Flight time, hours from start of trajectory
2. Table time, hours from beginning of tape
3. Time increment of integration step, hours
4. Planetary code digit of body at the origin
5. Acceleration components of the vehicle with respect to the origin, A. U. $/ \mathrm{hr}^{2}$
6. Velocity components of the vehicle with respect to the origin, A. U. $/ \mathrm{hr}$
7. Position coordinates of the vehicle with respect to the origin, A. U.
8. Position coordinates of the vehicle with respect to the Earth, A.U.
9. Position coordinates of the vehicle with respect to the target, A.U.
10. Position coordinates of the vehicle with respect to the Sun, A.U.

The following information is printed out after every midcourse correction.

1. Mass of the vehicle before correction, $1 b_{m}$
2. Mass of the vehicle after correction, $1 b_{m}$
3. Change in velocity components with respect to origin due to correction, A.U./hr
4. Velocity components of vehicle with respect to origin after correction, A. U. $/ \mathrm{hr}$

4.1.3 SAMPLE PROBLEM

PROGRAM I

```
(Interplanetary Trajectory Program)
    Mars to Earth Trajectory
    CARD #
    1 X1*
    2 F5760.0, 1776.0, X5,0*
    3 Xl, 1, F0. 2300,0.8500, X30,F0.10,. 10*
    4 F0.0,0.0,2500.0,2.959122083E-04,2.9991123E-06,0.0*
    5 F.426636E-04,8.8609392E-18*
    6 F6.0;6.0,8.0*
    7 X0, 0, 0, 25, 0*
    8 F0.25,32.0,4.0E-09*
```


$9 \mathrm{X} 2 *$

10 X5, F3.2325845E-07,2.26E-05*
11 Xl,F1.0,4.655E-03*

N R日CT TRAJECTERY

GENERAL ELECTRIC CO.
E.S.V.B.

```
    STARTING PABLE TIME = 42636.000
    GRIGIN IS BODY 5 NASS = 3.232584E-07
    DESTINATICN IS BODN O MASS = 2.999112E-06
    MASS OF VEHICLE = 0.
    OTHER BODIES ARE-
        BODY 1 MASS = 1.000000E 00
        GRANITATIGNAL CONSTANT = 2.959122E-04
    EPSILCN OF INTEGRAITION = 4.00E 009 MAXIMUM DELTA I = 32.0
    COMELL MEPHOD IS USED
    THE ORIGIN IS FIXEO
```

	$t=3240.030$	PHI $=170.310$	$E=0.23000$	$0=$	0.85006
ROETE	T 2240.032	PHI 5170.312	$E=0.23231$	$0=$	0.81167

[^2]
0 。

TIME=
ACCELERATION
0.
0.
0.
0.

5

CENTER 16 MO.
0.250

$$
\begin{array}{ccc}
\hline \text { PBSIT FRDM EARTH } & \text { TARGET } \\
y & -1.323721 G E O & -1.3737219 E-00 \\
Y & 613417706 E-01 & 6.3417706 E-01 \\
1 & 312789295 E-01 & 3.2789295 E-01 \\
R & 115481622 E 00 & 1.5481622 E 00
\end{array}
$$

ACCELERATION
$-1.2355676 E-09$
$-4.2305837 E-09$
$-2.5480977 E-08$
$2.5859324 E-08$

TIME $=682.6250$ TAPE TIME $=433181625$

$$
\text { TIME= } 682.6250 \text { UAPE TIME }=433186625
$$

OGSIT FRQM EARTH TARGET

$$
\begin{aligned}
& 00 \\
& 01 \\
& 01 \\
& 00
\end{aligned}
$$

$$
\begin{aligned}
& \text { TARGET } \\
& 48586 A E \quad 00
\end{aligned}
$$

$$
\begin{array}{r}
-1.1485864 E \quad 00 \\
1.9889798 E-01 \\
1.241094 A E-01
\end{array}
$$

$$
32.000
$$

CENTER IS MO.

TIME 22282.6250 TAPE TIME 444918.625 DELTA $T=32.000$ CENTER IS NO. 5

ACCELERATION
$3.5961078 E-08$
$7.6655930 \mathrm{E}-09$
$-9.4694060 \mathrm{E}-08$
$1.0158211 \mathrm{E}-07$

$$
\text { DELTA } T=32.000
$$ CENTER IS MO. 5

4.1.4 LISTING

This listing is the main program for PROG \#l. No subroutines are included since it is here included to assist in setting up job decks.

TPN, EE,NR,PSI
DIMENSION TAB(10,3),TIMV(10) $\operatorname{ROAR}(1)=.387099$
RBAR(2) $=.723332$
$\operatorname{RDAR}(3)=1.523691$
$\operatorname{REAR}(4)=5.202803$
REAR (5): $=9.538843$ $\operatorname{REAR}(6)=19.181945$ $\operatorname{RBAR}(7)=30.057767$
$E P S 1=1.0 E-11$
MGM $=512$
$P I=202622077325$
$P 1(2)=147042055061$
PI2 2 2) $=150042055061$
$H P I=201622077325$
THPI $=203455457437$
ERASE NOT NORG, PLOSL (4) OSL(5) OSL (6)
RIT 2, 3, NTYPE
3 FORMAT (312)

RIT 2,3, NCKE,MSDT,MET, NOUT, NOSN
6RIT 2,3,DTA,DTB,DTC

42 FORMAT $11 H 115 X, 20 H F O R$ DEPARTURE PLANET $12,1 \times, 22 H A N D$ DESTINATION P ILANET I $2,1 X, 11 H O N$ TAPE DAY $15 / 1 H O 25 X, 26 H T H E$ CONFIGURATION ANGLE IS -2F7.1,1X,4HDEG.1
80 RIT 2,3,G(1),WTE,RADE,WTV,OBJ
$G(2)=G / 576$.
$G=-G(2)$
84 RIT 2, 3, EMAX, GMAX, SMAX, TMAX,TO
85 RIT $2,3, N C K E, M S D T, M E T$, NOUT, NOSW,NMC
IF (MSDT) $86,87,86$
86 RIT 2,3, DTA,DTB,DTC
E ERASE DT
B7 RIT 2,3,DTOTMAX,EP1
87 RIT 2,3,DT, DTMAX,EP1
HAFDT $=$ DT/2.

- HAFDT DTVO
88 RIT $2,3, N, N E W O R G, N T A R G$
RIT $2,3,(N B(1), W T(1), R A D(1), 1=1, N)$
RIT 2,3,(PM(I),I $=1,6)$
$E R R=1$.

228 IF (ABSF (D-DL)-5E-8) 230,230,229
229 CONTINUE
AL (AL+6.2831853)
$D L=(D L+1.5707963)$
$\begin{aligned} 230 \mathrm{AL} & =A L * 57.29578 \\ \mathrm{DL} & =D L * 57.29578 \\ T & =T+T O\end{aligned}$
,
280 FORMAT $11 H 04 X, 38 H R I G H T$ ASCENSION OF TARGET NORTH POLE $=1$ PE $15.7 / 1 H O$
IF (PM(1)) 231,232,232
231 PUNCH 260,PM(1)

237 PUNCH 264, PM(3)
GO TO 239 .
238 PUNCH 265, PM 31
239 IF (PM(4)) 240,241,241
240 PUNCH 266,PM(4)
243 PUNCH 268,PM(5)
GO TO 245
244 PUNCH 269, PM 51

4.2 PROGRAM II

This program is a modification of the N-body subroutine in Deck \#l. Vehicle ground traces (i。e. longitude, latitude), the central angle, and the elevation and azimuth of the velocity vector are given. Also the option is available for having positions, velocities and acceleration in units of $A U$, $\mathrm{AU} / \mathrm{HR}, \mathrm{AU} / \mathrm{HR}^{2}$ or MILES, FT/SEC, FT/SEC ${ }^{2}$ 。
4.2.1 COMPUTER INPUT

N-BODY TRAJECTORY
Read Statement l
FORTRAN
Symbols
Field 1 (x) KGT
code digit to determine whether or not ground traces are to be computed.
($1=$ yes; $\emptyset=n o$) *
2 (x) KLMS
code digit to determine units of output
($1 \rightarrow$ output in miles, $\mathrm{ft} / \mathrm{sec}$ and $\mathrm{ft} / \mathrm{sec}^{2}$; $\phi \rightarrow$ output in $A U, A U / h r, A U / h r^{2}$)

Read Statement 2 (used only if field 2 of read statement 1 is $=1$)
Field 1 CONV conversion factor from AU to miles $=9.2956509 \mathrm{E}+07$

2 CONV2
conversion factor from $A U / \mathrm{hr}$ to $\mathrm{ft} / \mathrm{sec}$ $=1.3633621 \mathrm{E}+08$

3 CONV 3
conversion factor from $A U / \mathrm{hr}^{2}$ to $\mathrm{ft} / \mathrm{sec}^{2}=3.7871170 \mathrm{E}+04$

These conversion factors can of course be changed to suit anyone's particular needs. If one is interested in obtaining position coordinates in kilometers rather than miles or AU, the proper conversion factor could be read in as CONV but since KLMS would then $=1$, the alphanumeric printout of the beginning of the output would state DISTANCE IS IN MILES, VELOCITY IS IN FT PER SEC, ETC even though this is not the case. This is due to the format of the output statement.

Read Statement 3 (used only if field 1 of read statement 1 is $=1$)

Field 1 GHRA

2 OMGE

3 TTTO

Read Statement 4

Field $1 \quad G(2)$

2 WTE

3 RADE

4 WTV

5 OBJ

Read Statement 5

Field 1 EMAX

2 GMAX

3 SMAX

4 TMAX
5 T0

Read Statement 6
Field 1 (x$)$ NCKE

2 (x) MSDT

Greenwich hour angle at O^{h} ET on the day of departure in degrees and decimals of a degree
angular velocity of the earth $=$ $.262516 \mathrm{rad} / \mathrm{hour}$
tape hours from O^{h} ET Jan. 1, 1960 of the Greenwich hour angle at O_{ET} on the day of departure

Gravitational constant $=$
5.1373647E-07 ($\mathrm{rad} / \mathrm{hr})^{2}$
the mass of the earth $=$
3.0034424E-06 (solar mass units)

SMU
R_{9}; the radius of the earth $=$
$.426636 \mathrm{E}-04$ (AU)
mass of the vehicle (usually zero)
solar mass units
oblateness constant for the earth $=$ $\mathrm{JM}_{\mathscr{\oplus}} \mathrm{R}_{\mathscr{E}}^{2}=8.8609392 \mathrm{E}-18 \mathrm{SMU}(\mathrm{AU})^{2}$
maximum distance from Earth, A. U. maximum distance from target, A. U. maximum distance from Sun, A。U。
trip time, hours
date of departure, hours from Jan. 1960, OhUT
control digit indicating computing scheme, $0=$ Cowell, $1=$ Encke
control digit indicating selection of integration time step interval, $0=$ doubling and halving procedure, $1=$ three fixed Δt^{\prime} s
\(\left.$$
\begin{array}{ll}3(\mathrm{x}) \text { MET } & \begin{array}{l}\text { control digit indicating whether } \\
\text { computing scheme (Cowell, Encke) }\end{array}
$$

is to be switched, 0 = retain original

scheme, 1=switch schemes on test\end{array}\right\}\)| print digit n indicates print every n |
| :--- |
| integrations |

Read Statement 7 (used only if Field 2 of read statement 6 is one (l))

Field l	DTA	Δt_{1}	Δt within 3 radii of origin, hours
2	DTB	Δt_{2}	Δt within 100 radii of origin, hours
3	DTC	Δt_{3}	$\Delta t>100$ radii from origin, hours

Read Statement 8 (used only if Field 2 of read statement 6 is zero (0))

Field 1	DT	$\mathbf{t}_{\mathbf{i}}$
2	DTMAX	$\mathbf{t}_{\text {max }}$
3	EPI	ϵ

Read Statement 9

Field $1(x) N \quad N_{b}$

$$
\begin{aligned}
& 2(x) \text { NEWORG } \\
& 3(x) \text { NTARG }
\end{aligned}
$$

Read Statement 10
N_{b} sets of data, each including
Field 1 (x) NB(I)

2	WT(I)
3	$\operatorname{RAD}(\mathrm{I})$

Read Statement 11
$\left.\begin{array}{rll}\text { Field l } & P M(1) & x_{0} \\ 2 & P M(2) & y_{0} \\ 3 & P M(3) & z_{0} \\ 4 & P M(4) & \dot{x}_{0} \\ 5 & P M(5) & \dot{y}_{0} \\ 6 & P M(6) & z_{0} \\ & & 58\end{array}\right\}$
initial Δt, hours
maximum Δt, hours
value to test accuracy of integration, A。U。
number of bodies other than the Earth to be included in the study (Earth is always included) code digit for origin planet code digit for destination planet
code digit of body mass of body, solar mass units radius of body, A. U.
position coordinates with respect to origin at burnout, A. U.
velocity components with respect to origin at burnout, A. U./hour

The code digits for the planets are as follows:

0	Earth	5	Mars
1	Sunn	6	Jupiter
2	Moon	7	Saturn
3	Mercury	8	Uranus
4	Venus	9	Neptune

4.2.2 COMPUTER OUTPUT

Initially (dependent on the input parameters KMLS and CONVI, CONV2 and CONV3) the units of position velocity and acceleration will be stated.

Then the following information is printed out after every n integration steps, where n is an input control parameter

1. Flight time, hours from start of trajectory
2. Table time, hours from beginning of tape
3. Time increment of integration step, hours
4. Planetary code digit of body at the origin
5. Acceleration components of the vehicle with respect to the origin, in desired units
6. Velocity components of the vehicle with respect to the origin, in desired units
7. Position coordinates of the vehicle with respect to the origin, in desired units
8. Position coordinates of the vehicle with respect to the Earth, in desired units
9. Position coordinates of the vehicle with respect to the target, in desired units
10. Position coordinates of the vehicle with respect to the Sun, in desired units

Then, if KGT = 1
11. Ground trace longitude and latitude (degrees)
12. Control angle (Degrees)
13. Elevation and aximuth of velocity vector (degrees)

4.2.3 SAMPLE PROBLEM

PROGRAM II (N-Body Program with Ground Traces)
Earth to Moon Trajectory
CARD \#

1

2
3
4
5
$6 \quad \mathrm{X} 0,0,0,1,0 *$
7
8
9
10
11
12
X1, 1*
F. 25, 2.0, 4.0E-10*
$\mathrm{X} 2,0,2$ *
X1,F1.0, 4.655E-3*

F9.2956509E+7,1.3633621E+8, . $378711694 \mathrm{E}+5 *$
F336́. 27666, . 262516, 75888.0*
F5.13736490E-7,3.00344220E-6, .4266E-4, 0.0, 8. 8609392E-18*
F2.0,2.0, 80.0, 75902.422*

X2, F3.6942027E-8, 1. 1625090E-05*
F-2.9325021E-06, 3.8733136E-05, 2.0975379E-05*
F-2.6227989E-04, -2.3734089E-06, -3.3926081E-06*

TN BODY TRAJECTORY
GENERAL ELECTRIC CO.
\qquad

The next page is only the first part of the run to show the ground trace print, etc.

CENTER－－－－－AELDCITY－－－
1

- 1843
acceleration

0.
1.
2.

0
0.
－ AZIMUTH＝ 92.4655409

DELTA T＝ 0.026
TARGET SUN
$-\quad 10 \quad 31696215^{\circ} 8$

TAPE TIME $=75902.453$
Nom

70
30
31
39
$H 1$

GRDUND TRACE VELDCITY VECTOR

TIME $=0.0313$

GRUUND TRACE LATITUDE $=25.5987666$ LDNGITUDE $=-77.0768948$ CENTRAL ANGLE $=20.4134693$ VELOCITY VECTOR ELEVATION＝ 13.0350755 AZIMUTH＝ 102.9033747
TIME $=0.0938$ TAPE $T I M E=75902.516 \quad$ DELTA $T=0.016 \quad$ CENTER IS NO．
TIME $=0.0938$ TAPE TIME $=75902.516$ DELTA $T=0.016$ CENTER IS NO．
TTAE $=0.0625$ TAPE TIME $=15902.484$

LONGITUDE $=-67.7708359$ CENTRAL ANGLE $=29.6255589$
VELDCITY VECTOR ELEVATIUN x I7．5590794 ALIMUTH＝106．9571533
TIME $=-0.1563$ TAPE TIME $=75902.578$ DELTA T $=0.031$

CENTER ISND． 0

CENTRAL ANGLE＝ 45.4890680
今NA
318 NOS
31810と15＊8
0 mon
$\begin{array}{ccc}1 & \omega & 1 \\ 0 & 0 & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 4 & + \\ 0 & 1 & 0 \\ N & 1 & 0\end{array}$
$-6.4360687 E 03$

にnす － ELEVATION $=\begin{aligned} & 17.8154516 \\ & 25.3381155\end{aligned}$
POSIT FROM EARTH
1
10
0 1

0
0
0
0
p
∞
-

GROUND TRACE
YELDCITY VECTOR
4.2.4 LISTING

This listing is the input routine for Program II. N-body MAIN is called at the end.

C KGT=1. GROUND TRACES, O. NONE KMLS=1, OURPUT IN MLABS, De A.VES
C READ CONVERSION FROM A.U.S FOR DISTANCE , VELOCITY,ACCELERATION EQUIVALENCE(WM(1),XIM), (WM(2),YIM). (WM(3), ZIM). (WM(4):XIDM).
I(WM(6),ZIDM), (WMI 5),YIDM), (WL(1), XIL), (WL(2),YIL), (WL(3), ZILJ. $2(W L(4), X I D L),(W L(5), Y I D L),(W L(6), 2 I D L)$

 2P.PL(6),QM(6),QL(6),WM(6),WL(6),XX(9),YY(9),ZZ(9),TI(6),CE(6)
COMMON NEWORG, ZER,FMX,FLX,FMY,FLY,FMZ,FLZ,AM,AL,BM,BL,CM,CL
COMMON NORG, NTARG, NSUN,N,NN, NNN, T, TO, TMAX, DTMAX,HAFDT,WTE,HTV,MGM.

2NBE,NBT, NBS,RADORG,SAM, SBM,SCM, SAL,SBL,SCL,XIM,XIL,YIM,YIL,ZIM.
 4GMX, GLX, GMY, GLY, GMZ, GLZ, SUMX, SULX, SUMY, SULY, SUMZ, SULZ, FM, FL, GM, GL,
 6XPM, XPL, YPM, YPL, ZPM, ZPL.
7KOB. VNZ, MEDT, MSDT, MDT, NOT, MET, NOUT,NCKE,TSAK.DTA,DTB,DTC, EPL
DAC G(2),WTS(2)
DAC SOGOOD (6) .XDOT(2).YDOT(2).ZDOT(2).WRONG(6).0X(2)
1,QY(2), QZ(2), XP(2), YP (2), ZP(2), XDOTP(2),YDOTP(2), ZDOTP(2).,PA(2)..
2PI2(2), E(2), XMJ(2),CCON(2),XN(2)
COMMON A1, A2,FJ1,FJ2,SFJ1, SFJ2,CFJ1,CFJ2,S1,S2,EPS1
COMMON DT, DTME,RPM
DAC SM(6),SL(6),XMJP(2)
COMMON OBJ, ISAVE,REA,RTA,RSN.HPI,THPI,KK.NOSH2POM(6) ePOL(6),ERR
COMMON RPA,GHRA, OMGE, TTTO, KGT, KMLS
COMMON CONVI,CONY2.CONV3
MGM $=512$
EPSI $=1.0 E-11$
PI $=202622077325$
PI(2) $=147042055061$
$P_{I 2}=203622077325$
PL2(2) $=150042055061$
HPL $=201622077325$
IHPL = 203455457437
2 REWIND 26

1) RIT2,3, KGI,KMLS

IF(KMLS)112,113,112
2112 RIT2,3, CONV1,CONV2,CONV 3
113 IF(KGT)102,103,102
3) 102 RIT 2.3,GHRA,OMGE,TTTO ${ }^{3}$

3 FORMAI (E'9.5)
4 RIT 2,3,EMAX,GMAX,SMAX,TMAX,TO
5 RII 2.3,NCKE, MSDT, MET, NOUT, NOSW
IF (MSDT) 6, 7, 6
6 RIT 2,3,DTA,DIB,DTC ERASE DT
GO TO 8
7 RIT 2.3, DT, DTMAX.EP1 HAFDT $=D T / 2$.
8 RIT 2,3,N,NEWORG,NTARG
RIT 2.3.(NBII),WT(I).RAD(I).I = L, NI
9 RIT 2,3, (PMII), $I=1,6$)
ERASE I
N-BODY KITH OPTLONS FOR GROUND TRACE DUTPUL IN MILES AND FT/SEC. 4 JUN 1933 PAGE 2

4.3 PROGRAM III

This program is a modification of the N -body subroutine of Program I . A complete 6×6 differential correction matrix is computed by integration and may be printed out with each integration step. There is also a differential correction procedure (improved over that of Program I) for the computation of interplanetary trajectories。

There is an uption to print out at each $\mathrm{n}^{\text {th }}$ integration step the incremental sensitivity matrix $H_{t, t-\Delta t}$ and/or the sensitivity matrix $H_{t, 0}$

The final sensitivity matrix $H_{t \text { final, } 0}$ is always printed out as well as its inverse. This inverse is the "theoretical" inverse, obtained by rearranging the components of H as follows:
$H^{-1}\left(\begin{array}{cc}\mathrm{H}_{4} & -\mathrm{H}_{2} \\ -\mathrm{H}_{3} & \mathrm{H}_{1}\end{array}\right)^{\mathrm{T}}$

4.3.1 COMPUTER INPUT

Read Statement 1

Field l(x) KWC

2 (x) KNOP

3 (x) KNOPP

4 (x) NOOFT

Read Statement 2
Field 1 AK
control digit for sensitivity coefficients. If $k=1$, coefficients are computed. If $k=0$, no coefficients are computed. (i. e. same as option 2 in deck \#1). control digit for intermediate print of incremental sensitivity coefficients. The program prints them after every KNOP Integration steps.
control digit for intermediate printout of total sensitivity coefficient matrix. Program prints after every KNOPPth integration step.

This is a dummy number with no meaning. Simple set it equal to one (1).
the limiting ratio of $\Delta V / V o$. Section 3.4 of the report explains this in detail.

Read Statement 3

Field 1
$G(2)$

2	WTE	M_{\oplus}
3	RADE	R $_{\text {¢ }_{e}}$
4	WTV	m_{v}
5	OBJ	J^{\prime}

Read Statement 4

Field l	EMAX
2	GMAX
3	SMAX
4	TMAX
5	T0

Read Statement 5
Field 1 (x) NCKE

2 (x) MSDT

3 (x) MET

4 (x) NOUT

5 (x) NOSW
$\mathrm{D}_{1_{\text {max }}}$

D_{3} max
T0
t_{s}
gravitational constant $=5.1373647 \mathrm{E}-0$, $(\mathrm{rad} / \mathrm{hr})^{2}$
mass of Eāth $=3.0034424 \times 10^{-6}$, solar mass units
equatorial radius of the Earth $=$ $.42635078 \times 10^{-4}$, A.U.
mass of the vehicle, solar mass units
oblateness constant for the Earth $=\mathrm{JM}_{\oplus} \mathcal{R}_{(}($ $=8.8632361 \times 10^{-18}$, (solar mass units) (A. U.) ${ }^{2}$
maximum distance from Earth, A。U. maximum distance from target, $A . U$. maximum distance from Sun, A. U.
trip time, hours date of departure, hours from Jan. 1960, OhUT
control digit indicating computing scheme, 0 = Cowell, $1=$ Encke; This must be $=0$ if $k=1$
control digit indicating selection of integration time step interval, $0=$ doubling and halving procedure, l = three fixed Δ t's
control digit indicating whether computing scheme (Cowell, Encke) is to be switched, $0+$ retain original scheme, l = switch schemes on test
print digit n indicates print every n integrations
control digit, $0=r e t a i n$ initial origin, l = switch origins on test

Read Statement 6 (If field 2 of read statement $5=1$)

Field 1 DTA
2 DTB

3
DTC
Δt_{1}
Δt_{2}
Δt_{3}
Δt within 3 radii of origin, hours
Δt within 100 radii of origin, hours
$\Delta t 100$ radii from origin, hours
Read Statement 7 (If field 2 of read statement $5=0$)
Field 1 DT
2 DTMAX
3 EPI
Δt_{i}
$\Delta t_{\max }$
ϵ

2 (x) NEWORG
3 (x) NTARG
number of bodies other than the Earth to be included in the study (Earth is always included)
code digit for origin planet
code digit for destination planey

Read Statement 9
N_{b} sets of data, each including

Field l(x) NB(I)
2 WT(I)
3 RAD(I)
code digit of body
mass of body, solar mass units
radius of body, A.U.
Read Statement 10

Field 1	$P M(1)$	x_{o}
2	$P M(2)$	y_{o}
3	$P M(3)$	z_{o}
4	$P M(4)$	\dot{x}_{o}
5	$P M(5)$	\dot{y}_{o}
6	$P M(6)$	\dot{z}_{o}

position coordinates with respect to origin at burnout, A. U.
velocity components with respect to origin at burnout, A. U. /hour

The planetary code digits are as follows:

0	Earth	5	Mars
1	Sun	6	Jupiter
2	Moon	7	Saturn
3	Mercury	8	Uranus
4	Venus	9	Neptune

4.3.2 COMPUTER OUTPUT

The following information is printed out after every n integration steps where n is an input control parameter.

1. Flight time, hours from start of trajectory
2. Table time, hours from beginning of tape
3. Time increment of integration step, hours
4. Planetary code digit of body at the origin
5. Acceleration components of the vehicle with respect to the origin, A.U./hr ${ }^{2}$
6. Velocity components of the vehicle with respect to the origin, A. U. $/ \mathrm{hr}$
7. Position coordinates of the vehicle with respect to the origin, A.U.
8. Position coordinates of the vehicle with respect to the Earth, A.U.
9. Position coordinates of the vehicle with respect to the target, A.U.
10. Position coordinates of the vehicle with respect to the Sun, A. U.

The intermediate printout of the incremental sensitivity coefficients (the matrix $H_{t, t-\Delta t}$) is determined by Field 2 of read statement \#l, KNOP. (This printout is not shown in the sample output).

The printout of the sensitivity coefficients over the entire trajectory is controlled by Field 3 of read statement \#l KNOPP. On the sample output $K N O P P=1$ since we get the matrix at each step. The form is standard; e.g.

4.3.3 SAMPLE INPUT

PROGRAM III (N-Body Program with Sensitivity Coefficients)
Earth to Moon Trajectory

1	X1, 500, 1, 1*
2	F1.*
3	F5.137365E-07, 2.9991126E-6, . $4266 \mathrm{E}-4,0,8.8609392 \mathrm{E}-18 *$
4	F1.0, 1.0, 1. 1, 56.6816, 62163.147*
5	X0, $0,0,1,0 *$
6	F. $25,2.0,4.00 \mathrm{E}-10 *$
7	X2, 0, 2
8	X1,F1.0, 4.655E-3*
9	X2, F3.6821513E-8, 1.1625E-5*
10	$-1.4158093 \mathrm{E}-05,3.7906955 \mathrm{E}-05,1.7647465 \mathrm{E}-05$
11	-2.5124908E-04, -4.8551250E-05, -6. $2786291 \mathrm{E}-05$

This run is not shown in its entirety。 Only the first few lines of output and the last few lines are here included for the sake of brevity.
n BODY TRAJECTORY
GENERAL ELECTRIC CC.
M.S.V.D.

- GENERAL ELECTRIC CC.

> THE ORIGIN IS FIXED

 TIME＝ 56.6719 TAPE TTME $=62219.819$ DELTA T $=0.008$ CENTER IS NO．

TIME $=56.6797 \quad$ TAPE TIME $=62219.827 \quad$ DELTA $Y=0.004$ CENTER IS NO．

7．8658144E OL 5.4184224 E 5 ． $.5943601 E 00$ $3.1004267 \mathrm{E} 90^{-}$ $-1.1639709 E^{-}$

4－2962550E 01 4．0032420E OT
$1.1624689 E 00$ $-1.0683213 E$ O1 T0．$\exists>898985^{\circ} \mathrm{L}-$

$$
\varepsilon 0 \text { ق0III8ع0:1- _ } 20 \quad \exists ヶ 1 ヶ 9 \angle 88^{\circ} ヶ
$$

$$
2.4357145 \mathrm{E} \text { O2 - }-6.2212117 \mathrm{E}
$$

$$
-4.4820793 E \text { OO }-1.9562155 \mathrm{E} \text { OI }
$$

$$
-2.7071956 \mathrm{E} 02 \quad 2.2991649 \mathrm{E} \mathrm{O2}
$$

1．7085285E 02
－$-6.4319358 \mathrm{E}^{-} \mathrm{OZ}$

$$
=4.9520928 \mathrm{OL} \quad 9.8029618 \mathrm{E} \text { 0 }
$$

$$
-9.1917830 E 00
$$

$$
5.7889857 E 02 \quad-5.5508782 E 02
$$

$-4.0005352 \mathrm{E} 01 \quad-9.3880231 \mathrm{E} 01$

SUN	CENTER	VELOCITY
$-7.0635256 E-01$	$-1.5726025 E-05$	$-3.2889231 E-05$
$6.2887849 E-01$	$-2.3066424 \mathrm{E}-03$	$-2.6826200 \mathrm{E}-05$
$2.7252460 \mathrm{E}-01$	$-1.1893555 \mathrm{E}-03$	$3.1297873 \mathrm{E}-06$

$5.5244088 \mathrm{E} \quad 02$
DELTA T $=0.001$

4.3.4 LISTING

This is the listing for Program III with the n-body calling sequances and the differential correction routine.

EQUIVALENCE(WM(1),XIM), (WM(2), YIM), (WM(3), ZIM), (WM(4), XIDM),
I(WM(6), ZICM), (WM(5), YIDM),(WL(I),XIL),(WL(2),YIL),(WL(3),ZIL),
$2(W L 14), X I C L),(W L(5), Y I D L),(W L(6), 210 L)$
DAC PX(9,67),PY(9,67),P2(9,67),TL(67),RKM(4,6),RKL(4,6),NB(9).
IWT(9),RAD(9), X(9),Y(9),Z(9),DIS(9),DIST(9),PM(6),PL(6),PPM(6),
2PPL(6),QM(6),QL(6),WM(6),WL(6),XX(9),YY(9),22(9),T1(6),CL(6)
COMMON NEWORG, ZER,FMX,FLX,FMY,FLY,FMZ,FLZ,AM,AL,BM,BL,CM,CL
COMMON NORG,NTARG,NSUN,N,NN,NNN,T, TO, TMAX,DTMAX,HAFDT,WTE,WTV,MGN,
1XTARG, YTARG, 2 TARG, SCEN, VCEN, SMAX,GMAX,EMAX,RAD1,RAD2,RADE,HTA,
ZNBE,NBT,NBS,RADORG,SAM,SBM,SCM,SAL,SBL,SCL,XIM,XIL,YIM,YIL, 2IM,
$32 I L, X I D M, X I O L, Y I D M_{,} Y I D L, Z I D M, Z I D L, R M, R L, R R, R O, S S, R R M, R R L, T E M, T E L$,
4GMX,GLX,GMY,GLY,GMZ,GLZ,SUMX,SULX,SUMY,SULY,SUMZ:SUII, FM:FL;GM;GL;
SiAM, , HiL, $\bar{R} R \bar{R}, ~ S S S, X M, Y M, Z M, A, B X, B Y, B Z, W R M, W R L, R C M, R C L, R O M, R O L, R P P M$,
6XPM, XPL, YPM, YPL, ZPM, ZPL,
TKOB,VNZ, MEDT, MSDT, MDT,NOT, MET, NOUT,NCKE,TSAV,DTA, DTB, DTC, EPI DAC G(2).WTS(2)
DAC SOGOOD(6), XDOT(2), YOOT (2), ZDOT(2), WRONG(6), QX(2)
$\overline{1}, Q Y(2), Q Z(2), \overline{X P}(2), Y P(2), Z P(2), X D O T P(2), Y D O T P(2), Z D O T P(2), P 1(2)$.
2PI2(2),F(2), XMJ(2), CCON(2), XN(2)
COMMON A1,A2,FJ1,FJ2,SFJ1,SFJ2,CFJ1,CFJ2,S1,S2,EPS1
COMMON DT,DTME,RPM
DAC SM(6),SL(6),XMJP(2)
COMMON OBJ, TSAVE,REA,RTA,RSN,HPI,THPI,KK,NOSW,PQM(6),PQL(6),ERR
COMMON RPA
COMMON RARBM(3,3), RARBL(3,3),RBRBM(3,3),RBRBL(3,3),
$\operatorname{IRCRBM}(3,3), \operatorname{RCRBL}(3,3), \operatorname{RDRBM}(3,3), \operatorname{RDRBL}(3,3)$
COMMON XHINT(10), YHINT(10), ZHINT(10), XNP (3,3), ALX
COMMON XPCS(3), XVELX(3),NBX(10), XWTX(1O), XRADX(IO), HDETT
COMMON KWC, KNOP, KNOPP, NOOFT, KNOPPC, NOOFK
DIMENSION TRARI $(3,3)$, TRBR I 3,3$)$, TRCR I 3,3$)$, TRDRI 3,3$)$
DIMENSION XYZO(6),FGH(10,10)
MGM=512
$E P S 1=1.0 E-11$
$B \quad P I=202622077325$
PI (2) $=147042055061$
PI2=203622077325
PI $2(2)=150042055061$
HPI $=201622077325$
THPI $=203455457437$
2 REWIND 26
RIT 2,3,KWC,KNOP,KNOPP,NOOFT
RIT 2,3, AK
RIT 2.3,G(2), WTE,RADE, WTV,OBJ
3 FORMATTEG.5I
4 RIT 2,3, EMAX,GMAX, SMAX, TMAX,TO
5 RIT 2,3, NCRE,MSDT,MET,NOUT,NOSW
IF(MSDT) $6,7,6$
6 RIT2,3, DTA,DTB, DTC
ERASE DT
GO TO 8
7 RIT 2.3, CT,DTMAX,EP1
HAFOT $=0$ T/Z.
8 RIT 2,3, N,NEWORG,NTARG
RIT2,3, (NBEI), WT (I), RADTT, I=I,N)
RIT 2,3,(PM(I), I=1,6)
C *****SAVE INITIAL CONDITIONS***

```
    61 DO 601 I=1.6
    601 XYZO(I)=PM(I)
    VO=SQRTF(PM(4)*PM(4) +PM(5)*PM(5)+PM(6)*PM(6))
    DO 604 I=1,N
    JK=I
    IF(NEWORG-NB(I) )604,612,604
    604WW=WTE
    GO TO 613
    612WW=WT(JK)
    613 VESC=SQRTF(2.*G(2)*WW/SQRTF(PM(1)**2+PM(2)**2+PM(3)**2))
        IF(KWC) 50,51,50
    50 CONTINUE
        ERASE KNOPC.KNOPPC
    ALX=-G(2)*OBJ
    NOOFK=NOOFT
    DO 9 I= 1.N
    NBX(I)=NB(I)
    XWTX(I)=WT(I)
    XRADX(I)=RAD(I)
    KTT=I+1
    9 ~ C O N T I N U E
        NBX(KTT)=0
        XWTX(KTT)=WTE
        XRADX(KTT)=RADE
        ERASE RARBM,RARBL,RBRBM,RBRBL,RCRBM,RCRBL;RDRBM,RDRBL
        DO 24 I=1,3
        RARBM(1, 1)=1.0
        RDRBM(I,1)=1.0
    24 CONTINUE
    51 CONTINUE
        ERASE T
        CALL SETI
        G=-G(2)
        ERASE NOT,NORG,PL,SL(4),SL(5),SL(6)
        CALL TITLE
    11 CALL ORGN
        KK=67
        NBT=NBT
        IF(TEM)12,2,12
    12 CALL NBOCY
        IF(ERRI55.2.55 m teST FOR mPNCT
    55 IF(KWC)52,53,52
    52 CONTINUE
        SET UP INVERSE MATRIX
        00 60 I =1,3
        DO 59 J=1,3
        TRARI(I,d)=RDRBM(J,I)
        TRBRI(I, J) =-RBRBM(J,I)
        TRCRI(I, J)=-RCRBM(J,I)
        TRDRI{E,d)=RARBM(J:I)
    59 CONTINUE
    60 CONTINUE
        WOT 10,230
        WOT 10,231,(RARBM(1,I),I=1,3),(RBRBM(1,J),J=1,3)
        WOT 10,231,(RARBM (2,1),[=1,3),(RBRBM (2,J),J=1,3)
        WOT 10,231,(RARBM(3,1),I=1,3),(RBRBM(3,J),J=1,3)
```

 \(\bar{C}\)
 | WOT $10,231,(\operatorname{RCRBM}(1,1), 1=1,3),(\operatorname{RDRBM}(1, J), J=1,3)$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HOT $10,231,(\operatorname{RCRBM}(2,1), I=1,3),(\operatorname{RDRBM}(2, J), J=1,3)$ WOT $10,231,(\operatorname{RCRBM}(3, I), I=1,3),(\operatorname{RDRBM}(3, J), J=1,3)$ | | | | | |
| | | | | | |
| WOT 10,232 | | | | | |
| WOT $10,231,($ TRARI $(1,1), 1=1,31,(\operatorname{TRBRI}(1, j), J=1,3)$ | | | | | |
| WOT 10,231, (TRARI(2,1), $1=1,3)$ ((TRBRI $(2, J), J=1,3)$ | | | | | |
| WOT $10,231,(\operatorname{TRARI}(3,1), I=1,3),(\operatorname{TRBRI}(3, J), J=1,3)$ | | | | | |
| WOT $10,231,($ TRCRI $(1,1), 1=1,3),($ TRDR $(1, j), J=1,3)$ | | | | | |
| WOT 10, $231,(\operatorname{TRCRI}(2,1), 1=1,3)$, (TRDRI $(2, J), J=1,3)$ | | | | | |
| WOT $10,231,(T R C R I(3,1), 1=1,3),($ TRDR $(13, J), J=1,3)$ | | | | | |
| 53 | CONT INUE | | | | |
| 6 | **** DIFFERENTIAL COOROCCTIONSE\#\#F\% | | | | |
| | $N R=3$ | | | | |
| | $N C=4$ | | | | |
| REWIND 26 | | | | | |
| FGH(1,4) $=$-XTARG | | | | | |
| FGH(2,4) $=$-YTARG | | | | | |
| FGH(3.4$)=$ - 2 TARG | | | | | |
| DO $600[=1,3$ | | | | | |
| D0 $600 \mathrm{~J}=1,3$ | | | | | |
| $600 \mathrm{FGH}(1, J)=R B R B M(1, J)$ | | | | | |
| | | | | | |
| DO $602 \mathrm{~J}=1,3$ | | | | | |
| 602 PM(J) $=X Y 20(J)$ | | | | | |
| DO $603 \mathrm{~J}=4,6$ | | | | | |
| 603 | PM(J) \times XYZO(J)+FGH(J-3,4) | | | | |
| C **** TEST CHANGE IN VELOCITY **** | | | | | |
| | VI=SQRTF(PM(4):*2+PM(5)**2+PM(6)**2) | | | | |
| DVI=SQRTF(FGH(1,4)**2+FGH(2,4)**2+FGH(3,4)**2) | | | | | |
| IF (VI-VESC) $606,606,605$ | | | | | |
| 605 IF(ABSF(DV1)-AK=V0)61,607,607 | | | | | |
| 607 | $D V I P=A K \# V O$ | | | | |
| | $J=1$ | | | | |
| 609 CONST \times DVIP/OVI | | | | | |
| | DXP $=$ CONST FGG (1,4) | | | | |
| OYP $=$ CONST F FGH(2,4) | | | | | |
| D2 P = CONST*FGH(3,4) | | | | | |
| PM(4) $=$ XYZC(4)+DXP | | | | | |
| PM(5) $=X Y$ LC(5) + DYP | | | | | |
| PM (6) $=$ XYZO(6) + DZP | | | | | |
| $V 1=\operatorname{SQRTF}($ PM 4$) * * 2+P M(5) * 2+$ PM (6) **2) | | | | | |
| 610 IFIVI-VESC)608,608,61 | | | | | |
| | | | | | |
| 608 | V1Px1.005.VESC | | | | |
| | | | | | |
| C=VO\#VO-VIP*VIP | | | | | |
| DVIP $=(-B-\operatorname{SQRTF}(B * B-4 * *) /$ /2. | | | | | |
| $J=2$ | | | | | |
| GO 10609 | | | | | |
| 606 | IFIABSFIOVI)-AR*VOI607.608,608 | | | | |
| 230 | FORMAT ($1 \mathrm{H} 1,32 \mathrm{X}, 46 \mathrm{H****}$ | SENSITIVITY | COEFFICIENT | MATRIX | -***) |
| 231 | FORMATTIHC, 1P6E19.7) | | | | |
| 232 | FORMAT ($1 \mathrm{HO}, 32 \mathrm{X}, 29 \mathrm{He***}$ | INVERSE MAT | IX **** | | |
| | ENDI.1.0.0.0.1.1.1.0.1 | 0,0,0,0.01 | | | |

5．REFERENCES

1．＂Generalized Interplanetary Trajectory Study，＂by J。P。deVries， coordinator，General Electric，Technical Information Series R60SD465，Class III，August 1960．（Air Force Cuntiact AF 33（616）－6296． Project 1431，Task 14014。）

2．＂Generalized Interplanetary Trajectory Study，Part II and Supplement I，＂ by J。P．deVries，coordinator．General Electric，Technical Information Series R61SD047，Class III，January 1961。（Air Force Contract AF 33（616）－6296，Project 1431，Task 14014。）

Distribution List for TIS R64SD7

GE Tech. Data Center (2 \& 6 TIS pages)
Bldg. 5, Rm. 363
1 River Road
Schenectady, N. Y.
GE Tempo Library (2)
735 State Street
Santa Barbara, Calif.
GE Electronics Park Library
Bldg. 3, Rm. 143
Syracuse, N. Y.
Attn: Catherine Lukens, Librarian
GE Small Aircraft Engine Dept.
Bldg. 2-40M
1000 Western Ave.
West Lynn 3, Mass.
Attn: Dr. C. W. Smith, Library
GE Technical Library
Military Communications Dept.
Bldg. 2-6
P. O. Box 129

Oklahoma City, Oklahoma
Attn: June B. Sitterly, Librarian
Space Technology Center
Valley Forge
L. Steg M955l
F. Wendt M9543
A. Zizmont M7047C
T. Coffin M7023E
D. Delpo U3035
F. Nicholson M2626
J. deVries (30) M7047E
J. Weinstein M2626
G. Rawlings U3113
D. Stephenson U3ll3
A. Harrison (2) M7035
S. Voltz M9114
L. Chasen (10 \& tissue) Ll343
W. Pauson Bldg. \#5
H. Lieske Bldg. \#5
G. Ellis CCF \#6
K. Reside CCF \#6

TECHNICAL INFORMATION SERIES

[^0]: *To begin processing another case when machine has stopped, manually transfer to ${ }^{171} 8^{\circ}$

[^1]: *Not necessarilly equal to Field 4 of Read Statement 2.

[^2]: NOTE:
 The above indicates the route selection for the nominal trajectory.
 The next page is only the nominal trajectory for Route l. The perturbations on $\dot{x}, \dot{y}, \dot{z}$ are not included.

