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When the velocity of a moving isotropic medium is small compared to the 

velocity of light, the Maxwell-Minkowski equations have a relatively simple 

form. 

tions can be found either by the methods of Fourier transform or by a more 

direct method. 

solve these equations. 

1 The dyadic Green's function pertaining to these simplified wave equa- . 
2 

Alternatively, the method of potentials can also be used to 

3 

In this communication we shall present a derivation of the dyadic Green's 

function with no restriction upon the order of magnitude of the velocity. A 

compact result is obtained by transforming the wave equation into a conventional 

form and then solving it with the operational method originally due to Levine and 

Schwinger . 4 

The Maxwell's equations for a moving medium have the same form as for a 

stationary medium. 

e'&, they are: 

For harmonically oscillative fields with a time convention 

c x E = - j  LIB 

v x E =  J + j w D  (2) 

(1) 

+The research reported in this paper was sponsored by National Aeronautics and 
Space Administration Grant NsG444. 

https://ntrs.nasa.gov/search.jsp?R=19650022563 2020-03-17T00:57:34+00:00Z



a 

.' 
c ' The cmstitutive jelations between the field vectors for a uniformly moving 

I 

5 isotropic medium were found by Minkowski based upon the special theory of , 

relativity. They are: 

( 3 )  
- 1 -  D + -  V X H  = E ( E + ~ x E )  2 

C 

where E: and p denote, respectively, the permittivity and permeability of the 

medium at rest which is assumed to be lossless. 3 and c denote, respectively, 

the velocity of the moving medium and the speed of light in vacuum. To simplify 

the derivation we assume 

v = v L  (5) 

The above condition is not much of a restriction since a coordinate transformation 

of the result can easily take care of the ieneral  case. . 
By solving 6 and from (3 - 4) in terms of E and fi with G given by (5), 

we obtain the folloMng relations: 

where 

/3 = v/c 

n = ( y t ) l  

2 



Substitution of (6 - 7) into (1 - 2 )  yields the Maxwell-Minkowski equations 

for a moving isotropic medium. They are 

(v- jwSZ)xH = S+jucG*E , (13) 

We obtain the wave equation (14) for E by eliminating fi between (12) and (13). 

where denotes the reciprocal of x defined by (ll), i. e:, 

To integrate (14) in  an infinite region, we introduce the dyadic Green's function 

e such that 
- 

JJJ Substituting (16) into (14) and making use of the identify 

where 6(E/Rt) denotes the three-dimensional delta function, one finds that 

must satisfy the following equation: 
8 

(v-jwfi!X(~-l. [ v - j w f i ) x ( G - l  - ~ Z E  = i a ( ~ / ~ ' )  . (18) 

Equation (18) can be reduced to a simpler 
- 

where f denotes the idem factor. 

3 
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, .form if we introduce a function E such that 

r" 
- ibRZ= 
G = e' g -  

Then, 

e 

= -1 -j wS2 z'  - v x [a . v x ( 5 - l .  E ) ]  - k 2 i  = e f 6 ( R / i i ' )  * 

The first term of (20)  can he decomposed into two terms, namely, 

' c  

(19) 

' ( 2 0 )  

(2 1) vxp-l- vx (5-1 - E ) ]  = - 1 ( -v va E + vav. E )  
a 6 

where v is defined as follows: 
a 

1 =  (22) - .,a A a  & a  va = x -  + y -  + z -  - -cY.v. 
ai32 a ax aY 

Following the operational method originally due to Levine and Schwinger, 4 we take 

the divergence of (20)  giving 

W R / R ' )  . -k  2 V - i  = e -jwS2z1 

A s  a result of (21) and (231, (20) can b e  written in the form 

(I + - vav 1 6 < l i / R ' ) .  2 =  -j wRz' - 
2 

k a  
V - V z  + k a g  = - a e  a 

Thus, can be determined if we can find a scalar function g such that 
0 

(23) 

(24) 

with g satisfying 
0 

2 (2 6) 0.0 g + k ago = - 6cR/Gf> . a o  

in an infinite region is obvious!y given by The solution for g 
0 

That completes the derivation. 
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To summarize the result, a recapitulation of the successive steps is given 
I' I' 

k *" 
below with some simplification and rearrangement of the terms. The numbering of 

the equations is the same as the one originally labelled. 

1 -jwQ z' 
2 2  jwnz(6-1 + - v )  g o j ( k ' ) d v '  = -jwpa e 

k a  

The corresponding expression for fi is given by 

= a e  jwQz 6 --1 G x (6-l-J J J e -jwR z '  g o j ( a ) d v ' ) .  

J 

Once the dyadic Green's function for  an open region i s  known, numerous problems 

involving a radiating system can be investigated. 
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