|
View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

. UNCLASSIFIED

AD 616 642

i
e, N65-32194 __ =

(PAGES)  (cODE)

Processed by . .. W L4453/ /g
(NASA CR OR TMX OR AD NUMEER) (CATEGERY)

CLEARINGHOUSE

FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION

L i |

| of the
U.S. DEPARTMENT OF COMMERCE

CALCULATION OF SUBDOMINANT SOLUTIONS OF LINEAR DIFFEREN-

TIAL EQUATIONS

by

% GPO PRIC
4 J. E. Midgley £ 8

CSFTI PRICE(S) $

Hard copy (HC) ,// LQO

5 | 0 Microfiche (MF) S
i | r. ff 653 July 65

DEFENSE DOCUMENTATION CENTER
DEFENSE SUPPLY AGENCY

UNCLASSIFIED


https://core.ac.uk/display/85254499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NOTICE TO DEFENSE DOCUMENTATION CENTER USERS
This document is being distributed by the Clearinghouse for Federal
Scientific and Technical Information, Department of Commerce, as a
result of a recent agreement between the Department of Defense (DOD)
and the Department of Commerce (DOC).

The Clearinghouse is distributing unclassified, unlimited documents
which are or have been announced in the Technical Abstract Bulletin
(TAB) of the Defense Documentation Center.

The price does not apply for registered users of the DDC services.

¢ w*

\ 2

S
C = 0¥




PROGE

v

CALCULATION OF SUBDOMINANT SOLUTIONS OF LINEAR
DIFFERENTIAL EQUATIONS

by

J. E, Midgley
Southwest Center for Advanced Studies
Dallas, Texas

Submitted to the

Journal of the Society for
Industrial and Applied Mathematics
Series B:" Numerical Analysis

day, 1965

SYILIATION COToem
ESSINE BOPY ARETIVE COPY

C




CALCULATION OF SUBDOMINANT SOLUTIONS OF LINEAR
DIFFERENTIAL EQUATIONS

J, E. Midgley
Southwast Center for Advanced Studies
Dallas, Texas

1, Introduction

Many physical problems are described well by linear differential

: %
equations of order N .

N ’ n .

Soa ™y =0, WM -du ()
n . n

n=0 dx :

The initial value problem, of course, has N independent solutions
ui(i=1, 2...N) and the desired physical solution is determined by

taking the appropriate linear combination of these

which, in a well determined-problem, satisfies N specified boundary
conditions. If the u. can be obtained analytically, the solution of
the problem is formally trivial, but more often they can not and
numerical techniques must be resorted to.

If none of the u, grow too rapidly in the interval of integration,
the initial value problem for (1) can be solved by standard numerical
methods, but in many physical problems one or more of the u. may
increase so rapidly with x that they can not be eliminated or controlled

by means of boundary conditions which are subject to roundoff error,

"The mathematical development for the analogous problem of N first

order equations is given in Section 5.




For instance the linearized equation for vertical wave pro-
pagation in a vertically inhomogeneous gas is a second order equation
with twe solutions corresponding to the two directions of propagation.
If the effects of viscosity are addedq however, the equation becomes
fourth order, Naturally the two original solutions are altered
somewhat, but also there must necessarily be two completely new
solutions. Physically these two new solutions are the "viscous waves"
for the two directions of propagation., A "viscous wave" is of no
importange physically because it is so drastically attenuated, However
a "viscous wave" is very important computationally because (approached
from the other ‘direction) it grows catastréphically. In other words the
numerical procedure interprets part of every roundoff error as the
remnant of a dying "viscous wave" and ﬁroceeds to calculate what
it must have come from., If the effects of‘therﬁal condugtivity are
also added to the equation, its order is again increased by two and
two more solutions (oﬁe growing in each diréction) are possible,

Thus in many physical problems it has been impossible by straight-
forward numerical techniqués to obtain from the aﬁpropriate linéarized
equation those solutions that are the only ones observed éhysically.

It is the purpose of this paper to describe a method of numerically

obtaining these so-called subdominant solutions,

2, Definitions and Restrictions

The method to be developed applies to complex equations and
solutions as well as real ones, but it does not work for equations
where dominant solutions have zeros, Thus in general the solutions
nmust be expressible as u = exp(f(x)) where f(x) is a finite complex

function.




9.

range X _<X<x

A solution uy will be said to dominate another solution u, in

the interval from X to %Xy if:

u,(x,) u,(x;) : .
G, e )} l(xi)ll : @

where € is the accuracy required of the numerical result, Note that
the direction of integration as weil as the length of the interval
is inherent in this definition,

It is easy fo determine whether there is a solution which, for
a given direction of integratién,'dominates all other soiutiohs in a
1° Starting with arbitrary boundary conditiéﬁs at x s

integrate the equation beyond x

.+ obtaining a solution ula(x). Re-

‘peat this for a second set of bouﬂdary conditions obtaining Uy If

u, _(x

1a 1) = (x,) where c is a constant for all XX, the solution

SUpt*
just fouhd domiriates all others.,

It may be that there i; no single solution which dominates
all others, but rather.a éubset of M solutions which do nof dominate
each 6ther but each of which dominates all solutions not of the set,
In this case one will find that any solution started with arbitrary

boundary conditions at X, can be expressed for all x>x, as a linear

1

combination of M other arbitrary solutions. Of course, if M = N it
simply means that no solution dominates any other and all solutions
can be calculated numerically by standard methods.

Now that we have a good working definition of dominance we can

{

label the solutions in order of their dominance Ups Upos Uy Ugy

etc. The additional subscripts, a, b, etc. will be used to distinguish

‘
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linearly independent solutions of a set with nearly equal dominance.

It should be noted here that unless two independent solutions have

xX+ix X=-i%, .. .
and e ) it is a

exactly equal growth rates (for instance e
matter of choice and convenience whether they be treated as having
-'neérly equal dominance or not, If they are treated as nearly equal,
the interval over which they are integrated must be short enough
that one dces not dominate the other, If they are treated separately
the "intervals of separation" (to be defined) must be long enough
to ensure dominance of one over the other,

The "intervals of separation" are extra intervdls both before
and after fhe interval in whiéh the solutions are required, The inte-
grations must be carried out over these intervals as well in order to
separate out the,déminant solutions in a pure (within roundoff error)
.fo§m. Specifically we must require that ug dominate all uj (j>1i) in

the intervals (xi <x<xi) and(xm i<x<xm). Then if the original equation

-1

is integrable throughout (xo<x<xm), u, can be obtained throughout

1

(x <x<xm), u,, can be obtained throughout (x

N <x<xm_N) and all other

1 N-1

)e

solutions u, can be obtained throughout (xK<X<xm-K

3, Methoed for Mondegenerate Case

Assume that there are no solutions.with nearly equal dominance
(the degenerate case will be treated later), Then if the integration
of (1) is begun at x, for two sets of arbitrary boundary conditions,
the ratio of the two solutions will eventually converge to a constant

at some x, which will be labeled x Either solution after this point

ll

will be the pure solutioen u, .
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Define the function
v(x) = 2 (3)
u, (x
1
in terms of which one obtains for u(n).
() _ (), , Eif nt__ () (n-r) -
v 1 220 (n-r)'irf 1

Substitute this in (1), and drop the first term since uy is a solution

of (1)

§onct nta, () (o

(n-r)!ri Y v 0 ] ’ (5)

n=1l r=0
Set r = n~s-l, exchange the order of summation, and divide by hl

N n!a u (n-s)
n

N-1 : : . |
(s+l) _ - 1
Z boyr v =0 bg = Z__: st{n=s)! u (6),
s=0 n=s 1

This is clearly a well defined linear equation of order N-1 in v',

If this is solved with arbitrary boundary conditions at Xy and the

result is integrated to obtain v, by definition it must be of the form

N ui(x)
vix) = i§z A, W* A , (7)

j would recover u(x), which for any finite A, would

¢
of course be dominated by Uy Therefore in integrating v' the constant

Multiplication by u



of integration must be chosen so as to make A, vanish, This is

1

done by setting V(xm) = 0 and then integrating v' from this point in

the direction of smaller x, Since uy dominates all other us in the

interval X _1SX<X_, any linear combination of the remaining uy will

-1

dominate uy in that interval in the reverse direction, Thus for all

N .
X<xm—l the contribution of ul to u{x) = ulv = iz-:a Aiui + Alul will bg

‘below the level of roundoff error. It is not possible to say at this
point that the u(x) thus obtained is a pure Uys but if %he calculation
of v' is pepeated with different boundary‘cqnditions.at X1y and the

value of x at which the ratio v'a/v'b.approaches a constant is called

solution in the interval x_<x<x

Xy then u{x) will be a pure u 2 el

2

Strictly speaking X is to be determined as the largest value

-1

of x for which one could restart the integration of (1) with arbitrary

boundary conditions and still recover a pure u, solution before reaching

1

X In practice it is much more easily determined to a good approximation

by the formula:

fvix )]
t
lvix )] > = (8)
where
[u (x| u (x )v'(x)
1l m 1 "s S N
!ul(xt)| < - 1l - Il + X = Ry

Ui'(xs)v(xs)

This is just a restatement of the condition for dominance, complicated
{

by the fact that v(xm) = 0, so that v(xt) must be used instead. This

Xy must be just far enough from X, SO that Uy has decreased by about 10

unless v is not growing locally by a comparable rate,

. . S

it



This completes the detailed description of the extraction of

the first subdominant solution and the determination of its interval

of validity., Of course this interval may be extended in either direction,

if necessary, by starting the entire calculation at a smaller X and/or
extending it to a larger R oo

If the next solution, ua(x), is desired it is only necessary to
repeat the entire procedure on the equation for v' that was just used

on the equation for u. Define the function

v'(x)

w(x) = ;;TT;T (9)
Substitute this into the équation for v' to obtain the following
equation for w':
: (n-s=1).
- - M
NZQ e, WSt o c_ = NZl Sl 2 (10)
v Ts+l T ’s ~ s!(n-s)! v,!
s=0 n=s 2

This equation of order N-2 in w' is integrated from x_  using two sets

2

of arbitrary boundary conditions, The point at which the ratio of the

two solutions becomes constant is %4 and the calculation of w' is car=-

ried from there on to L Although v, is known only up to Ro_19 v2'
is known all the way to X s SO the cs(x) are defined up to X Setting
w(xm) = 0, the integration of w' is done from X to Xq, and as before

the value of X is determined from the approximation:

-2

Iw(xt)| N
btz )| > —— (11)




pa - a7

where
| v, '(x )] vt (x Iwt (k)
. 2 'm _ 2 s s Y
v I ——— 1 -1+ T ea el PRSI

Then in the interval x X<R- o the w(x) just calculated is a pure Wa

3

- . e | -v_ [] - ".' "' ' h ( . = k3 '
solution and vg' = wav,' by (9). Set vs(xm) 0 and integrate v, from
there x, to obtain Vas and then multiply this by u, to obtain the desired
_2.' Since v, is growing faster than w, (in

the negative x direction), any errors in vy due to an inaccurate Wy in

i i <x<
ua(x) in the interval R <X<X

the interval x

n-p<X<x should be washed out by the time the integration

1
of v3 reaches-xm_z.

Note that x may be either greater or less than x depénding

m=2 m=1

on the relative dominance of the solutions Ui U, and Uge
The extension of this process to successive solutions is obvious
and will not be pursued further, except to note that one need not

pursue it farther than Uy /2° since reversing the direction of integration

reverses the order of dominance of allthe solutions,

4, Method for Degenerate Case

Suppose that u, is a double solution; that is, the ratio of two

1

arbitrary solutions Yg and W does not approach a constant after a

reasonable distance, but any other arbitrary solution does approach

a linear combination of the first two, u = Au,_ + Bu Then the value

la 1b°

of x beyond which any solution can be expressed as a linear combination

of u,_ and u,, will be designated x Define

la 1b 1!




_ulx)
v(x) = RN (12)
la
as before, and obtain the resulting equation for v', If this equation

were solved for v', the result would be formally:

1 !

Z U4 “1b
v Voalt] s oa (22 o (13)
T i Ty B L P

The term with Alb must be eliminated (as the term with A-la has been) so

(13) is divided by (ulb/ulé)' and differentiated, which gives a formal -

N

expression for w' where
€ I At .2 My (14)

The'equafion-for w'.isveasily obtained from the equation for v', just -
exactly as the equation for Y' was obtained_from_the equation for Q (see
Eq. 1, 3 and 6), since éig) is a solution of the equation for v',

If uy had been a tripie solution, it would only be a matter of
tedious calculation to repeat the process again,'defining y(x) =
w'(x)/[(ulc/ula)'/(ulb/ula)']' and obtaining the appropriate equation
for y',

Returning to the double solution case, integrate the equation for
w'! from X, to LI The value of x beyond which any arbitrary solution is

a linear combination of M other arbitrary solutions is called %y and u,
<

consists of M independent solutions. Each independent w' is integrated
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from x  to x, starting wlth_w(xm) = 0, giving w2a,.w2b,... which are

accurate for x KX o where X is determined by the analog of (11)

2

s ' s ' $ 3 ' '
with (ulb/ula) replacing vyl Equation (1u) then glyes Voa » Vap 2t

which are integrated from X to x

-2

9 w1tb v2(xm) = 0, If v2(x) grows

more rapidly (in the negative x direction) then w2(x), the resultant

Voat Vopt Stce will be accurate in the interval x2<Xfxm_2- If v, grows

more slowly than W,y @ mew will need to be determined by a formula

xm-2_

analogous to (8)%> Of course, u etc, are determined now from (12).

2a Yop?

The continuation of this to obtain Uy etc., should be obvious.

5. System of First Order Equations

The methéd’is.besf described in terms of a single Ntb order equafio‘n9
and so this was developed first, but in most physical problems the
equations occur rather as a system of N first order equations which may
be very difficult to reduce to a single Nth ordef equation.' Thus fhe
method‘will now be described for this case.

Suppose we have the following linear system of N first order equations:

N : ‘
un'(x) = igl ani(x) u; () - n=l, Z, 4. N (15)

As before, if any solution of this equation starting with arbitrary
boundary conditions at X is a unique linear combination of M other

arbitrary solutions u for all X%y then these M independent

nla® Ynib***’

solutions dominate all other solutions and can be calculated exactly

(within roundoff error) in the interval x KX where x is the maximum

1

value of x to which the solution of (15) is carried.
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Define

u_ (x)

Vn.(x) = m (16)

nla

Substitute this in (15) to obtain the equations for Ve

N ‘ lla |
2: [v -V ] (17)

-

" Rewriting this equation in terms of the differencestvn = Vo=V gives

a system of one lower order

N-1- :
i=1 :
N - . . N ’ .
- ni__ aNi u.. - 6. i: 513 (18)
ni u U, ila in -
nla Nla o \s= la '

If u , were a single solution (i.e, dominated all others) one
would merely solve (18) with arbitrary boundary conditions at X1 de-
termining the lower boundary of validity x, as before. Equation (17) then

gives vn' in terms of Avn as follows:

il Yila |
Z [av,-bv_] (19)
=1 Ynla
This is integrated to obtain Vo starting at X with the boundary con-
dition vn(xm) = 0., The upper limit of validity, xm_l,_of the vy thus
N <
determined is the largest value of x at which one could restart the

integration of (15) with arbitrary boundary conditions and still recover
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a pure u_. solution before reaching X e In practice it is more

nl

easily determined by a generalization of the approximation given in (8).

'|vn(xt)| .
~lvn(xm__l)| > c n-= l. 2,~ see N (20)
‘where
L]
oG] < lu_ (x| L. unlfxs)vn (xs)! e
nl "t 10 U, (xs)vn(XST’ s t

If u, is a double solution, then-the formal solution for bv_ is

u . u

' . u u
_ ni Ni . nlb “"Nlb
Avn - ;ga A u ) * Alb u u (21)

nla Nla nla Nla

1b

which may be divided by the factor ﬁultiplying A.. and differenced again
Spegifically,’define

in order to eliminate Alb'

Av ‘u
“os B . :Nlb (22)
n nla Nla

Then since Fn is a solution of the equation for Avn, if we define

Awn = W WLl the equation for Awn is:
N=-2
t - = -
Awn izl Cni Awi ] n l’ ?, see N 2

(23)
. b . N=-1 F )
c . = (i _N-11 F. - 8, 2: b =
ni F F i in ns F
: n N-1 - s=1 n
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Solve this equation for arbitrary boundary conditions at X1 deter-
mining the lower boundary of validity X, as before. The wn"are
obtained from these Awn by the formulat

N-1 Fy

q ' - ——— -

W 's 2 b, 7 (B ~bu ) (24)
1=1 n

These wn' are integrated from X down to %o starting with the boundary
condition wn(xm)“= 0, and determining the upper limit of validity, X o_1*
by a formula analogous to (20). Using these wa in (22), and the re;_

sulting Avn'in (19) gives vn' which is likewise integrated from X to

X, starting with fhe boundary. conditionvvn(xm) = 0, As pointed out

~beforé, if this Vv o, Brows faster ‘than W then xm_l.is still the upper

if not, then x

n2; m=1

Finally u o, is calculated from (16) and is accurate in the range X,<X<X. ;.

limit of validity for v must be lowered appropriately.
The modifications necessary to find the solutions subdominant to
three or more equally dominant solutions are a tedious but straightforward

extension of the above,

6. Summary

| A.method has been developed which makes possible the numerical
calculation of all the solutions of almost any Nth brder system of linear
differential equations, even when some of the solutions groﬁ so rapidly
as to completely dominate a staﬁdard ngmerical initial value calculation.
This is the situation that arises physically whenever the inclusion of a
physical effect .(such as viscosity, thermal conductivify, resistivity,

etc.,) in the equations has only a small effect on the desired solution

but raises the order of the equations, Invariably, then, it also
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introduces into the equations other solutions which vary rapidly
relative to the original solutions and therefore cannot be eliminated
by proper choice of boundary conditions in any calculation subject

to roundoff error.

The method described makes it possible to calculate numerically

all the solutions of the equations in those cases where the £cllowing
conditions are fulfilled,

1) The solutions can be clearly "ordered" as to their dominance,
in the sense described in Section 2.

2) . No solution which is\treated as dominant over any other may
have a zero, |

3) It must be possible to solve the equations ovef intervals both
before and after the interval where accufate solutions are required,
These intervals are longer féé the more éub-dominant éolutibné.

The approéch consistsvof isolating these dominant éolutions one
at a time in order of their dominance, expressing the general solution
as a pfoduct of the dominant solution and a new function. The amount
of the dominant soluticen that appears in the final solution then is
controlled by an additive constant in the new function. This additive
éonstant is determined at the other ena of the interval of integration
in such a way that the dominant solution is effectively eliminated.
Treating the equation for this new.function (which is one order lower) in
the sameway as the original equation eliminates the next dominant solution,
ad soion. The method for eliminating several solutions none of which

-

dominates any of the othars is also .described.
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Appendix

For purposes of illustration, the foregoing method is here
applied to the problem of calculating the four solutions of the

equation

u
‘©

—22[(x2+2e2)u"" - 2xu"'] 4 x2u" - 2xu'+2u (A-1)

-

_where € is a small parameter, Clearly when €

n

0, this becomes a
" second order equation with solutions u = x and u = x2. These are
still solutions for-e:# 0 and in-additipn'one also obtains the two

+

‘ . - =x/e
solutions u = e /

» Qualitatively this is just what haﬁpens in'many
physical sitgations when the inclusion of a small additional efféét
raises the order of the equations.

The specific value € = 0.1 wés chosen and (A-1) was integrated
over thé range 0<x£10 by Rungé—Kufté integration using a step size of
«00125, The boundary values at x = 0. included equal amounts of all
four solutions.. Referring to the first column of Table 1, one can see
that the first solution had dominated the other three before x ='2. fhé
first pair of numbers in each column gives two significant figures and
the exponent of the quantity and the next pair gives one significant
figure and the expoQént of the fractional error (obtained by comparison
with the analytic solution). Only 8 significant figures were prinfed out
so efrors below 10-8 are given as 1-8,

Beginning'at ®x = 2 the differential equation for‘v' was determined

A

from Eq. (6) and solved (using Runge-Kutta with step size ,0025) for two
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sets of boundary values to.determine v2a' and v2b'. The u, were

determined from the formula

_ 10 . :
uz(x) = ul(x)j v2'(>§')dx' (A=2)

X

which comes from (3) and the condition that u (xm) = 0, OJne does

’ s s . . . 2
not know a priori what linear combinations of x and x correspond to

2

2a 2b

u,._ and u,, but these are easily determined near the center of the interval,
The linear combinations thus determined were used as the analytic solutions

-in calculating the indicated errors.
Beginning at x = 4, where the u

2

determined from the differential equation

are accuratély known, ysf is

. . ] " ‘ "y ' MNry,
. Byt Vo, Vob  Y2a "V2a Vob |
'y3 - 2 T * ' - 2' 1 ' " ' y3
¥ 4,02 wy Vo, \V2b Y2a "V2a V2p '

(A-3)

by a Runge-Kutta integration with step.size of .,005, It was necessary
to double the step size for each-successive integration because the
Runge~Kutta method requires that the coefficient functions be known at
the middle aé well as the ends of each interval,

Finally the last three célumns of the table were determined by

the formulae:

V2b' 10
Wa'(x) =l f yy'(x")dx! (A-4)
2a X )
R 10 Y
vs'(x) = y2a'(x)~[. ,ws'(x')dx' (A-5)
x
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0
ua(x) = ul(x)JJx v3'(x')dx'

The fractional error in the Ugs n.amely about 10-5, is larger than
the error.in the other solutions primarily because of the larger
interval size in the final integrations, but certainly also as a
result of the cumulative errors from going through six successive

integrations.,

(A-6)
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