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SUMMARY 

Results of a numerical  study of the  natural  frequencies  and modes of 
vibration of the  pressure  prestressed  toroidal  shell  are presented.  The 
analysis is based upon a linearized  theory of vibrations of prestressed 
shells.  The  frequencies  and  mode  shapes are obtained by trial   and 
error in  the  Holzer  fashion.  The effects of wall  bending  stiffness  on  the 
frequencies of shells  under  varying  degrees of pres t ress  are shown. 
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NOMENCLATURE 

a b  amplitudes of ring  flexural  vibrations my  m 

h 

k 

P 

9, 

r 

U 

V 

W 

thickness of shell 

( 1 - v  ) K  

pressure 

2 

D Q p 2  

(1 - € C O S  f f ) Y €  

meridional  displacement  (Figure  1) 

circumferential  displacement  (Figure  1) 

normal  displacement  (Figure  1) 

defined  functions 

Eh  /12  (1 - v ) 3 2 

Young' s modulus 

membrane  strains 

May Me,  

Na' Ne'  Nae 

Q d  Q, 

stress couples 

stress resultants 

transverse  shear stress resultants 

R radius of the generating  circle of torus  (Figure  1) 

%' membrane  prestress  forces 

ff 

E 

meridional  position  angle  (Figure  1) 

ratio of the two radii of the torus  (Figure 1) 
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0 

K 

KcYt3  

x 

V 

circumferential  position  angle  (Figure 1) 

pR/Eh,  prestress  parameter 

bending strains 

( p R /E  E ) w , frequency  parameter 2 2 2  

Poisson' s ratio 

material  density 

rotations of the  normal to the  shell 

circular  frequency 

(h/W2/ 12 

spacing  between  finite  difference  stations 

Matrices 

a, b, c 5 x 5 matrices 

X 1 x 5 column  matrix 

A ,  B, C, D, E, F, G,  H, P 4 x 4 matrices 

A ,  B, 3 x 3 matrices 

Z 1 x 4 column  matrix 

Z 1 x 3 column  matrix 

- 

- 

Indices 

i 

I 

m 

n 

station 

last station 

Fourier index of ring  flexural  vibrations 

Fourier index of shell  vibrations 

ix 



Section 1 
INTRODUCTION 

A study of the free vibrations of the  pressure  prestressed  toroidal  mem- 
brane  [l]  shows  that  the  frequencies  can  be  grouped  into  four  families:  a 
family of flexural  vibrations  associated with relatively low frequencies, 
and  three  families of vibrations  with  high  frequencies. The flexural  vi- 
brations  are found to  depend  strongly on prestress .  The vibrations of the 
other three families  are  practically  insensitive  to  prestress.  Since both 
the effects of prestress  and  the effects of wal l  bending stiffness  enter  the 
fundamental  equations  in a similar  manner  (through  terms whose coeffi- 

cients are small  compared  to  the  coefficients  associated with the  membrane 
terms), it can be  expected  that  bending stiffness has a strong  influence on 

the frequencies of the  flexural  vibrations.  This  report  presents  the results 
of a  numerical  study of the effect of wall bending stiffness on the frequencies 
and  mode shapes of the flexural  vibrations. 

Several  iterative  'numerical  methods  suitable  for  the  analysis of the free 
vibrations of shells of revolution  have  appeared  recently  in  the  literature 

[l] [2] [3]. Kalnins  [2] uses a multisegment  direct  numerical  integration 
approach  and Reference [l] uses finite  differences  to  evaluate a certain 
determinant  corresponding  to a trial value of the  frequency.  Cohen [3] uses 
a method which i terates on the  mode  shape  instead of the  frequency. Al-  
though the  methods of References [2]  and  [3] a r e  applied to shells of revolu- 
tion  without prestress,  their  extension  to shells with prestress   appears  to 
be  straightforward. None of these methods,  however,  possesses a sub- 
stantial  advantage  over  the  others.  This  study uses the  numerical  method 
of Reference [l] . 



Section  2 

FUNDAMENTAL EQUATIONS 

The  present  analysis of the free vibrations of the  pressure  prestressed 

toroidal  shell is based upon a  set of equations which result from  the 

addition of the  bending  terms of the  Sanders  linear  shell  theory [4] to  the 

prestressed  membrane  equations  presented in Reference [l 3. These are 
(refer to  Figure 1): 

Equilibrium 

a  a Ea 
+ ' 6  [ a ~  - 4ae) a a  4 f f )  + (Ea-  Ee)  sin a ] + 'Sa (- - 

+ pRr + phRo r u  = 0 2 

a N e  + - a (rNae) + Nae sin a - Q, COS CY - - - a e  act 2~ a a  r 
r a  cos a [(I + -1 Mael 

a E e  a 
+ 

+ 2Ea e sin a + d e  cos f f  1 + rsa (Eae + dae)  

+ pRr + phRo  rv  = 0 2 

a a Qe r N a  - Ne cos a - - ( r  Qa) - - + Se [ - + 4a s in  a - E  cos a ] a a  a e  a e  e 

a 4, + Ea) - pRr (Ea + E ) - p h R w  r w  = 0 + rS  (- 
2 

a a a  e 

a - ( r  Ma) + - aMae - Me sin a -RrQa = 0 a a  a e  

a M e  + - a 
a e  a a  Mae) + sin a -RrQ = 0 e 
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Strain  Displacement 

REcy - - - a u  + w aa 

rRE, = - a + u sin a. - w cos cT a e  (7) 

2rREae = r - a u  - v sin cy (8) a v  
act +G 

a 4 e  
a e  r R K e  = - + 4cy sin ct 

- r R d e  = - a w  + v cos cy a e  (13) 

Constitutive  Relations 

EhEa = Ncy- v Ne 

EhEe  = N e -  v Na 

Eh = ( 1  + v )  Nae  

Eh3 12 K, = Ma-  v Me 

Eh3 - 
12 K e  = Me- v M, 

Eh3 - 
12 Kcye = ( 1  + v )  Mae 

3 



The  above  constitute  twenty  equations  for  the  twenty  unknowns Na, 

u, v, and w. The  s t ress   resul tants  Sa and S are known functions of 

prestress .  
6 

The  state of pres t ress  is determined  from  a  separate  analysis of the 

toroidal  shell  subjected  to  static  internal  pressure. An analysis  based 

on the linear  membrane  theory [5] gives 

1 1 - 3 E cosa  
Sa = pR 1 - E cos a 

1 Se = 2 pR 

Analyses of the toroidal  membrane  under  internal  pressure  based upon 

nonlinear  theories [6, 71 show that  the linear meridional  stress  resultant, 

S , is in e r r o r  by a negligible  amount,  but  that  the  linear  circumferential 

stress  resultant,  S can  be  in  error by 18%. The  significant  difference, 

however,  between the linear  and  nonlinear stress distributions is confined 

to  a  small  area of the  torus  at a = f n/2. Furthermore,  an  analysis [8] 
of the toroidal  shell  under  internal  pressure  based upon equations which 

consider  wall  bending  stiffness  and  nonlinear  behavior  shows  that the s t r e s s  

resultants  do  not  differ  substantially  from  those  obtained  from  nonlinear 

membrane  theory.  Hence, it appears that the state of prestress  determined 

according  to  the  linear  membrane  theory is adequately  accurate  for  the 

present  analysis of vibrations. 

a 
e’ 
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Section 3 

REDUCTION TO SECOND ORDER DIFFERENTIAL EQUATIONS 

The  solution of the  fundamental  equations (1-20) is started by separating 
the  variables.  Set 

r 1 

sin n e 

Next, define 

S = ( s i n a ) / r  

C = ( cosc r ) / r  
N = n / r  

Then, use of equations (22) and (23) in  equations (1-14) yields 

I + 2SNae - N N B  - CQ, - 2 ~  1 ( l + C ) ( M a i -  S M  ) Na 8 ae 

+ S, ( -  N E e  + 2SEae + C4,) + + 44jo) 

+ P R ~ ~  + phR w v = 0 2 2  

5 



Mde + 2SMae - N M e - R Q e =  0 

Ea = U' + w 

Eo = NV + SU - CW 

2Eae = V I  - SV - NU 

- 
R K a  - dol 

%Y 
= - w ' + u  

de = NW - CV 

$cue = Nu + V I  + Sv 

In equations (24-37) and  subsequent  expressions  the  subscript  n has been 

dropped.  Prime  indicates  differentiation  with  respect  to a. 

At this  point  the  problem  has  been  reduced  to the simultaneous  solution of 

the ordinary  differential  equations (24-37) and (15-20). Our  goal is to 

derive  four  simultaneous  second  order  differential  equations  for u,  v, C$ 

and 9,. First eliminate  Q  from  equations (25) and (26) using  equation (28). 

Then,  substitute  the  strain  displacement  relations (29-34), two of the rota- 

tion expressions (36,  37), and  the  constitutive  relations (15-20) into  the 

equilibrium  equations (24-27). The  resulting  equations  together with (35) 

a' 
e 

6 



constitute  five  equations for u,  v, w, $,, and 9,. They  may  be  written  in 

matrix  form as 

where 

The  elements of the a ,  b, c matrices are given  in  Appendix A. 

W e  now manipulate  equations (38) so that w can  be  eliminated  using  equation 
(38c)  (equilibrium of forces in  the  normal  direction). In order  that  no  deri- 
vatives  higher  than  the  second  derivative  appear  in  the  final  equations, 

eliminate V I !  from  equation (38c)  using  equation (38b) (equilibrium of forces 
in the  circumferential  directions) as follows: 

1 v" = - (bZ1 u t  + c u + b22vt + c22v + a wl!+  b wt + c w 
a22 21 

+ b24 6 CY + ~ 2 4  4,)  

23  23  23 

Then  equation  (38c) reads: 

- - - - - 
b ut + c31 u + b32vt + c32v + a w l l + E  w1 + c w + b344; 31 33 33 33 

where  the  coefficients are given in the  appendix.  From  equation (35) 

(39) 

Af ter  eliminating  the  derivatives of w using (41), equation (40) can be 

written as 

Qw = T u t  + T u + T v' + T4v + T54; + T6d, 1 2 3 - rq; - r sq, (42) 

7 



and  the  derivative of w can  .be  written as 

The T I  s and Q are defined  in  the  appendix. 

Now, multiply  equations (38a, b,  d, e) by Q and  eliminate Qwl from  them 
with  equation (43). Then  multiply  the  resulting  equations by Q and  elimi- 

nate Qw with  equation (42). The  resulting four equations for u, v, 4cr, and 

q,may be  written  in  matrix  form as 

where 

AZ" + BZf + C Z  = 0 

and  the  elements of A, B, and C a r e  given  in  Appendix A. 

The  basic  equations (44) simplify for the  case of axisymmetric  vibrations, 

n = 0, v = 0. The  equation of equilibrium of forces in  the  circumferential 

direction is then  satisfied  identically,  and  equations (44) become 

where 

(44) 

The  elements of A,  E, and are the remaining  elements of A, B, and C if 

the  second row and  column are deleted,  and N is set equal to zero. 

8 



The  fundamental  equations  have now been  reduced to the  solution of two 
sets of second  order  differential  equations as follows: 1) four  equations 
(44) for the  general case, 2) three  equations (45) for  the  axisymmetric 

case. These  differential  equations  will  be  integrated  numerically by a 
method  described  in  Reference [l]. For completeness,  the  description 
of the  numerical  method is reproduced  in  the  next  section. 

At this  point w e  remark  that  the  fundamental  equations (1-20) could  be 
more  easily  reduced to four second  order  differential  equations for 

u, v, w, and Ma in the  manner of Budiansky and  Radkowski [ 9 ] .  However, 
application of the  numerical  method  described  in  the  next  section  resulted 
in a convergence of the  finite  differences  which was too slow for practical 
computation. 

The  fundamental  equations  can also be  reduced  to four  equations for v, w, 
Ncy, and Ma. First ,   derive a set of five  equations for u,  v, w, N and M 

cy cy’ 
then  solve  the  equation of equilibrium of forces in  the  meridional  direc- 
tion for u, and  finally  eliminate u from  the  remaining  four  equations.  The 
application of the  present  numerical  analysis  to  these  equations  resulted 
in  efficient  and  accurate  results  except in  the  approximate  range 

2 2 
< x  < n n 

2  (1 + v) (1 -  E) 2 (1 + v )  (1 + E )  
2 2 

In this  range  the  coefficient of u  in  the  equation of equilibrium of forces 
in the  meridional  direction  has a zero. 

9 



Section 4 
NUMERICAL ANALYSIS 

Since  the  geometry  and  prestress  are  symmetrical  about CY= 0 and CY= r, 
w e  need  to  consider  only  one-half of the  torus  corresponding  to the range 

0 5 CY 5 n . Let  this  range  be  subdivided by I + 1 equally  spaced  stations. 

Then the spacing  between  stations is 

A = r / I  

and the position  angle  for the ith station is 

a. = i A  
1 i = 0 7 1 , 2 ,  . . . . .  I 

The  derivatives of Z  at  the ith station  are  approximated by the central 

difference  formulas 

Z." = 2 (Zi+ 
1 - 2zi  + zi - 

1 

A 

With these formulas we obtain from equation (44) the set of difference 

equations 

DiZi+ + EiZi  + F i Z i  - = o  (47) 

i = 0 , 1 , 2 ,  . . . . .  I 
where 

2 D. = - A . + B  
1 A 1  i 

E.  = - - A .  + 2 ACi 4 
1 A i  

2 F. = - Ai - Bi 
1 A 

10 



The  difference  equations (47) are augmented by conditions at i = 0 and 
i = I. These  end  conditions are obtained  from  considerations of conti- 
nuity of the  displacement  functions,  u,  v,  and w. Now, the  solution of 
the  fundamental  equations (1-20), and  the  reduced  equations (44) are such 
that  either v and w are even, u is odd or v and w are odd,  and  u is an 

even  function of cy with respect  to CY = 0 and T . These two groups of solu- 
tions  will  be  denoted as  symmetric  and  antisymmetric  modes  respectively. 
Hence,  the  end  conditions are 

where G is the  diagonal  matrix 

and  plus  and  minus  signs refer to  symmetric  and  antisymmetric  modes 
respectively. 

The  difference  equations (47) together  with  the  end  conditions (49) make up 
a set of homogeneous  algebraic  equations.  The  eigenvalues of these  equa- 
tions are obtained by trial   and  error,   using a special  Gaussian  elimination 
technique  devised by Potters  [lo]. 

The  equations for this  procedure are obtained as  follows.  Let 

zi - - - Pi zi+l 

Substitute  this  expression  into  the  difference  equations (47), and by com- 
paring  the  result  with (50) obtain  the  recurrence  relation 

i = l ,  2, 3, . . . . . 1 - 1  

11 



Now, write  the  difference  equations (47) at i = 0 and  eliminate Z using 

the  first of the  end  conditions (49). Again, by comparing  the  result with 

equation (50) obtain 

-1 

Po = Eo -' + F GI lD0 - 0 (52)  

where  plus  and  minus  signs refer to  symmetric  and  antisymmetric  modes 

respectively.  Equations (52) together with the  recurrence  relation (51) 
provide all the PI s up to  P Finally,  write the difference  equations 

(47) a t  i = I. Eliminate ZI + using  the  second of the  end  conditions (49), 

and  ZI - using  equation (50). The result is 

1 - 1 '  

[EI - (FI 5 DI G) PI - ,] Z I = HZ I = 0 

Since ZI f 0, we must  require  that  the  determinant 

v = 1 EI - (F + D G) P I - l  I -  I I 
vanish.  Equation (54) is effectively a frequency  equation. A value of X 

which gives v = 0 is a  natural  frequency of vibration. 

The  mode  shape  corresponding  to  a  natural  frequency  can  be  calculated 

once  a X for which V = 0 is obtained.  Set  the  amplitude of one of the dis- 

placements at i = I equal  to  unity  and  calculate  the  remaining unknowns 

a t  i = I from  three of the  equations (53). Thus,  for the symmetric  modes 

For  antisymmetric  modes 

z =  I 

- 
- 

(53) 



where 

The  remaining Zt s can then be  calculated  from  equations (50) in the 
reverse order. 

The w displacement is obtained  from  equation (42). In finite  difference 
form the equation reads 

w i = - {  Qi 1 2a 1 l T 1 , i ( ' l , i + l -   z l , i - l ) +   T 3 , i ( z 2 , i + l - z 2 , i - l  ) 

+ T5,i   ( '3, i+l-   '3, i-1) - r ( z 4 , i + l -   ' 4 , i - 1  ) I  

+ T2, i '1, i + T4, i '2, i + T6 '3, i - '' 1 '4, i 1 
i = l ,  2, 3, . . . . . 1 - 1  (5 8) 

For symmetrical  mode  shapes 

1 1  
wO = - QO [A ( T 1 , 0 Z 1 , 1 + T 5 , 0  ' 3 , l  - '4,l) + T4, 0 '2,O' 

and for antisymmetrical  mode  shapes 

wo = WI = 0 

The  procedure  may  be  summarized as follows: 

1. Assume a value of X ; 
2. Calculate the elements of the A ,  B, C, D, E,  F, and P 

matrices  at  all  stations  from  equations (44), (48), (51) 
and  (52); 

3. Calculate the determinant V from  equation  (54); 



4. Repeat  steps 1-3  and  plot V versus X. F rom th is  plot 
determine a X for which V = 0. This X is a natural 
frequency; 

frequency  from  equations (50) and (55-60). 
5 .  Calculate  the  mode  shape  corresponding  to a natural 

The  equations in  this procedure were programmed  for  the IBM 7094 

computer. 

A number of natural  frequencies  were  calculated with I = 50 and 100 and 

compared. The difference  was found to  be  less  than  one  percent.  There- 

fore, all results were obtained  with I = 50. For  this  number of finite 

difference  spacings the IBM 7094 required  approximately 1.5 seconds  to 

evaluate  one  determinant v of the general  vibrations. 

14 



Section 5 
RESULTS 

Results of the  present  numerical  analysis are contained  in  Figures  2-20. 
These results show  the effect of bending stiffness on the  vibration of shells 

under 1) high pres t ress ,  K = 0.002, 2) low pres t ress ,  = 0.0001, and 
3) no  prestress ,  K = 0. All  results are for Poisson’s  ratio v = 0.3.  

The  modes of the  flexural  vibrations of the  prestressed  toroidal  shell  may 
be  thought to consist of two types of vibrations: 1) the  modes of a torus 
whose  meridional  curve  (cross-section) is not  allowed to distort  (overall 

ring  vibrations), 2) the  modes of a pressure  prestressed  c i rcular   r ing 
with radius R (cross-sectional or ring  flexural  vibrations).  The  first  type 

is approximated  by  the  vibrations of a thin  ring of radius R / E  without 
p re s t r e s s   [ I l l :  

Bending modes 

symmetric (in  plane  bending) 

2  n (n - 1) 2 2  2 

2 ( n  +1)  2 x =  E 

antisymmetric (out of plane bending) 

2 n  (n - 1 )  2 2  2 
X =  E n 

Extensional  modes  (symmetric) 

2 
A = n + 1  

Torsional  modes  (antisymmetric) 
n 

1 n 
2 1+  v 

L 
A = ” (1 + -) 



The  frequencies of flexural  vibrations of a 
radius R are  derived  in Appendix B: 

pressure  prestressed  r ing of 

[ K  + r (m2- 111 

The effect of bending stiffness on the  frequencies of a shell with  high pre-  

stress a r e  shown in  Figures  2-7.  These results are for  n = 0, 1, and  2, 

K = 0.002  and h/R = 0.01. I t  can  be  seen  that  the  frequencies of the first 

mode of each  type of vibration shown are practically  unaffected by bending. 

However, the effect of bending increases with the mode  number so that 

the  increase in frequency of the  fourth  mode is of the  order of 10%. This 

trend is forecast by the  frequencies of the  uncoupled  ring  flexural  vibra- 

tions  given by equation (65) in which the r part   increases with  (m - 1). 

The effect of bending is larger  on shells with high E (fat  toroids).  This is 

also  to  be  expected  because  for high E the  mode  shapes  consist  mostly of 

local  deformation of the  meridional  curve [l]. For  E = 0.75,  n = 0 sym- 

metric  vibrations, the mode  shapes of the  first  four  modes of a shell with 

and  without  bending are  compared  in  Figure 8. This  figure  shows  that  the 

effect of bending  on these  mode  shapes is small. In summary, w e  can  say 

that  for  shells with K = 0.002  and h / ~  = 0.01 the effect of bending on the 

first four  modes of the  n = 0, 1, 2  vibrations is only moderate. 

2 

The effect of bending on the  axisymmetric,  symmetric,  frequencies of a 
shell with K = 0.0001 and / R  = 0.01 is shown in  Figure 9. In this  case, 

bending has  increased  the  frequencies by approximately a factor of two 

when E = 0.75. For   smaller  E the increase is smaller .   For  a  shell with 

K = 0.0001 and h/R = 0.001 the  frequencies  increase by less than 5%. 

h 

Frequency  curves  for  a  shell without pres t ress ,  K = 0, n = 0 and  2  and 

h / ~  = 0.01 are shown in  Figures 10-13. The  dashed  curves in these  fig- 

ures represent  the  frequencies of the uncoupled  modes.  The  shell  frequen- 

cy  curves  are  the  solid  curves.  These  curves  exhibit  transition  regions 
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which occur as  sharp  jumps  for  the  axisymmetric,  symmetric,  frequency 
curve,  and  as  more  gradual  changes  for  the  axisymmetric,  antisymmetric, 
and n = 2 frequency  curves. In a qualitative  sense  these  frequency  curves 
exhibit  the  same  features  as  those of the prestressed  membrane when 
K = 0.002 [l] (or  refer to  the  dashed  curves of Figures 2-7 of this  report). 

The  axisymmetric  mode  shapes  for a shell without prestress ,  K = 0, and 
h / ~  = 0.01 are shown in  Figures 14 and 15. The  f i rs t  column of mode 
shapes in these  figures  shows  essentially  the uncoupled  mode shapes  for E 

below the  transition  region. In this  region  the  overall  ring  mode  shape 
prevails  for  the  symmetric  vibrations, but for  the  antisymmetric  vibra- 

tions  an  irregular  shape  appears. The third  column  again  shows essen- 
tially  the  uncoupled  mode  shapes. These are   for  E above  the  transition 

region  and a r e  one order  of complexity  higher  than  those below the  transi- 
tion  region.  The  fourth  column  shows  mode  shapes  for E: = 0.75 which are 
predominantly  local  oscillations of the  meridional  curve. In  a qualitative 
sense, the mode  shapes of the  shell without prestress  and h / ~  = 0.01 
exhibit  the  same  features  as  those of the  prestressed  membrane when 
K = 0. 002 [I]. 

Frequency  curves  for a shell without prestress ,  K = 0, n = 0 and 2 and 
h / ~  = 0.001 a r e  shown in  Figures 16-19. The  significant  feature of these 
curves is their  tendency  to  pair up with nearly  the  same  frequencies. 
Examples of the  mode  shapes, shown in  Figure 20, associated with fre- 

quencies  that  pair up appear  to  be  mirror  images of each  other.  That  is, 

if the  mode  shape of the  second  symmetric  mode is folded on top of the 
mode  shape of the  first  symmetric  mode,  then  the two mode  shapes are 
nearly the same. The  third  and  fourth  symmetric,  second  and  third  anti- 
symmetric  and  fourth  and  fifth  antisymmetric  mode  shapes shown in  Fig- 
ure 20 are mirror  images  also.  Another  significant  feature of the  mode 

shapes  presented  in  Figure 20, is the  fact  that  the  motion  takes  place 
mainly near the  crowns. 



The  paired up frequencies  with  nearly  the  same  mode  shapes  can  be ex- 
plained  by  the  following. Let the  radius of the  torus go to infinity (E-0). 

Then  the  torus  approaches a cylindrical  shell.  At  every  natural  frequency 

of the  cylindrical  shell  there are actually two identical  frequencies with 

identical  mode  shapes.  These  frequencies  separate  slightly  and  the  mode 

shapes  become  slightly  different when imperfections (for example, when 

the  cylindrical  shell is not  exactly  circular) are present. T h u s  the  pairing 

up of the  frequencies of the  toroidal  shell are due to the  weak  influence of 

the  circumferential  curvature  which  has  the  equivalent effect of imperfections 

on  the  frequencies of the  cylindrical  shell. 
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Section 6 

CONCLUSIONS 

The  following  conclusions are drawn  from  this  study: 

Bending stiffness  has  only a moderate effect on the  natural 

frequencies  and  mode  shapes of relatively  thick  shells, 
( / R  = 0.01) under  high  prestress ( K = 0.002). h 

When pres t ress  is small  ( K = 0,0001) bending  stiffness 
increases  the  natural  frequencies of relatively  thick  and 
fat  toroidal  shells ( E  large, h / ~  = 0.01) by as much a s  a 
factor of two. 

In the  absence of pres t ress ,  when membrane  theory pre- 
dicts a continuous  frequency  spectrum with  discontinuous 
mode  shapes,  the  consideration of bending  stiffness  leads 
to discrete  frequencies with  continuous  mode  shapes. 

Bending stiffness  should  be  considered  in  the  calculation 
of the  natural  frequencies  and  mode  shapes  associated 

with  the  flexural  vibrations of toroidal  shells. 
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A P P E N D I X  A 

Elements of Matrices 

The  non zero  elements of the a, b, and c matrices are: 

a = 1 + k ( 1 + 2 C )  1 

a 22 = ~ ( l - v ) + k . ( l + ~ C ) + '  1 1 (1 -v )   (1+3C)  2 

1 
a23 4 

11 

8 
- - - - ( 1  - u )  r ( l + 3 C ) N  = - a32 

- 1 2 "(1-v)  r N  a33 - 2 

a 54 = 

bl 1 
1 = (1+2 k) S 

b12 = N [ Z ( l - v ) - - ( l - v )  1 1 r ( l + C ) ( 1 + 3 C ) ] =   - b 2 1  8 

bl 3 = l - ~ C + k ( l + ~ C ) + - ( l - v )   r ( l + C ) N  4 
1 1 2 

b22 = ~ S [ l - v + k - - ( l - v )   r ( 1 + 3 C ) ( 5 + 3 C )  J 
1 1 

4 

b23 = ~ ( 1  - u )  r N S  (2+3C) 1 

bz4 = r N [ ~ C + - ( l - v ) ( 1 + 3 C ) ]  = -  r b  

b3 1 = l - v C + - k C + ~ ( l - ~ )   r ( l + C ) N  
1 1 2 
2 

bS2 - - 2 ( 1 - v )   r N S  

I 
4 52 

- 1 

1 
b33 

b34 = k ( 1 + z C )   + ~ ( l + v )  r N  

2 = ~ ( 1 - v )  r N  S 

1 1 2 
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b35 

b43 

= - r  

= 1  

1 2 
b53 = ? ( l + u ) N  

b54 = s  

C = ( 1 - u  2 2  ) E  x +  u C - S 2 - ;   ( l - u ) N 2 - i k ( N  2 2 1  + S  ) - - ( l - u ) r ( l + C )  2 2  N 
11 8 

C = N S   [ - 2 ( 3 - u )  1 - k + g ( l - ~ ) r ( l + C ) ( l + 3 C ) ]  1 

'13 = S ( l + C ) [ l + ? k - T ( l - ~ ) r N  1 1  2 ] 

C - - - [ k C + T ( l - u ) r ( l + C ) N  1 1 2 ] 

12 

14 - 2  

'15 = r  

C 21 = - N S [ z ( 3 - ~ ) + k + - ( l - ~ ) r ( l + C )  1 3 2 ] 8 

c22 = ( 1 - U ) E  2 2  x - ; ( 1 - u ) ( C + S ) - N 2 - ; k ( N  2 2 2 2  + S  + C ) - k c - r N C   2 2  

+ - ( I  1 - .) r ( 1 + 3 c )  [S 2 (5+3C)  - C (1+3C)]  8 
C = N {  - u + C + k ( l + C ) + r N  2 1  C + T ( ~ - Y ) ~ [ C ( ~ + ~ C ) - ~ S  2 (l+C)]} 

C = r N S  [C - T ( ~ - u ) ]  1 

23 

24 
1 

C 31 

'32 

= S [ v - C -  k (1+?C)]  

= - N {  - u + C + k ( l + C ) + r N  2 1  C - 2 ( 1 - u ) r [ S  2 1  - 2 C ( 1 + 3 c ) ] ]  

2 2   2 1   1 2  4 2 
c33 

= - ( ~ - ~ ) E x + ~ - ~ u C + C   + T k C ( S + C ) + z k N  + r N  + ( l - v ) r N C  

1 2 
C 34 = ? S [ k + ( 3 - u ) r N  ] 

c35 
= - r ~  
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r, 
-1 



A44 
= - r Q T l l  

= Q S ( 1 + 2 k )  + Q T7 (TI '  + T2) + T1 Ts 2 1 
Bll 

. B12 = 2 Q  1 2  N[(l+w)--(l-~)r(l+C)(1+3C)]+QT~(T3'+~~)+~3~8 4 1 

B13 

B14 

= Q T7 (T51 + T6) -I- Ts  T8 

= - (QST7 + T8) 



B24 = - r (QST9 + Tlo) 

B3 1 = Q (Tl' + T2) - Q' T1 

B32 = Q (T3' + "4) - Q' T3 

B33 = Q (T5' + T6) - Q' T5 

B34 = - ~ ( Q S  - Q')  

cll = Q [ ( ~ - u ) E A + u C - S ~ - ; ( ~ - ~ ) N ~ - ~ ~ ( N  + S ) - g ( l - v ) r ( l + C ) N  ] 
2 2 2   2 2 1   2 2  

2 

+ Q T7 T2' + T2 T8 

c12 = Q N S [ - Z ( ~ - U ) - ~ + ~ ( ~ - U ) ~ ( ~ + C ) ( ~ + ~ C ) + Q T ~ T ~ ' + T ~ T ~  
2 1 1 

1 2  1 2 
'13 = - 2 Q  [ k C + T ( l - v ) r ( l + C ) N   ] + Q T 7 T 6 ' + T 6 T 8  

C14 = r [Q 2 - QT7 (C - S2) - S T8] 

2 
c21 

= - Q  N S [ 5 ( 3 - ~ ) + k + - ( l - ~ ) r ( l + C )  1 3 2 ] + Q T 9 T i  +T2T10 

c22 = Q2{ ( ~ - u ) E x - ~ ( ~ - u ) ( C + S ) - N ~ - ; ~ ( N  + S  + C . ) - k c - r N  C 

8 

2 2  1 2  2  2 . 2   2 2  

+ L ( h ) r  (1+3c)   [ s2   (5+3C)  - C (1+3C)]  + QT T ' +  T4T10 8 1 9 4  

'2 3 = r Q 2 N S  [C - 1 (1 - u)] + QTgTgl + T6T10 



,C24 = - [QTg (C - S2) + STlo] 

Cgl = - Q2 + QT2' - Q1 T2 

C32 = QT4' - Q' T4 

c33 = Q ~ +  Q T ~ '  - Q' T~ 

c34 = - r [Q (c - s2) - Q' SI 

'41 - - - (1 - U )  (1+C) N Q + QTll  T2'+ T2 T12 - 4  

Cd2 = Q 2 NS  [C+ v ( 1 + C )   + - ( l - v )  1 (1+3C)]   +QT11T4'+T4T12 

1 2 2  

4 

c43 = Q 2 [ U C  - S2 - (1 - u)N 2 ] + QTll  T61+ T6T12 

c44 = - Q2 - r [QTll (C - S2) + S T12] 

where T1 = 1 - v C +   T k C -  - ( l -v)rN  (1-C) + 2 N T  [ l + ~ + - ( l - ~ ) r ( l + 3   C ) ( l - C ) ]  1 1 2 1 1 
4 0 4 

1 1 2 1 
2 2 0 2  T2 = S [ u-C - k ( l + - C )  + - ( l - u ) r N  ] + N S T   [ - ( 3 - ~ )  + k 

+ - ( b v ) r  (1 + c )  - ( h ) r  (2+3C)]  3 2 1  
8 

- - - (1-U) r N S  - - STo [ 1 - u  + k + 4 ( I - u ) ~   ( 1 + 3 C ) ( S +   3 C ) ]  1 1 1 
T3 - 2 2 

T4 = N {  u - C - k ( l + C ) + r [ - N  2 1  C+T( l -v )S  2 1  - ~ ( l - u ) ( 1 + 3 C ) C ] }  

-To{ (1-u 2 2  ) e  X-- ( l -v ) (C+s  1 ) - N  -Zk (N + S  + C  ) - k C  2 2 1   2 2 2  
2 

- r N  2 C 2 + - ( l -u ) r (1+3C) [S2(5+3C) -C(1+3C) ]}  8 1- 

T5 = k (1 + ZC) + r N  - r  N T  [ v C +  2 ( 1 - u )  (1 + 3 C ) ]  1 2 1 
0 

~ r N T 0 [ l - u + ( 1 - 3 v ) C ] }  2 

T, = l - u C + k ( l + - C ) + ~ ( l - v ) r ( 1 + C ) N  1 1 2 
2 
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r 

T8 = Q S ( l + C ) [ 1 + 2 k - T ( l - v ) r N  1 1 2 ] - Q ' T 7  

Tg = T ( 1 - V ) r N S  1 (2+3C)  

= QN [ - v + C + k ( l + C )  + r N  C + Z ( l - u ) r ( 1 + 3 C ) ( C - 2 S  ) 2 1 2 
T1O 

- - ( l - v ) r  (1 - 3C)  S ] - Q'Tg 1 2 
2 

1 2 Tll = 7 ( 1 + ~ )  N 

T1 2 = - (2N2SQ + Q1Tl1) 

and  prime  indicates  differentiation with respect  to CY. In differentiating 
N, S, and C the  following  formulas are useful: 

N' = - N S  

S' = c - s  
C' = - s (1+ C) 

2 



- A P P E N D I X  B 

Flexural  Vibration of the  Prestressed  Circular Ring 

The vibrations of a circular ring of radius  R,  prestressed by pressure  p,  

may  be  determined  from  equations (15-21) and (24-37) by setting E = Y = v 

= S = 0. This  results  in the following  equations: e 

Equilibrium 

1 
M ; - R  Q cy = O  

Strain  Displacement 

E = u ' + w  
CY 

RKcy - 4; 

dcy = - w ' + u  

- 

Constitutive  Relations 

Ncy = EhEa 

E h3 
Ma - 12 KCY 

- 

Pres t ress  

S = pR ct 

Substitution of (B3-B9) into B1 anc 
n 

039) 

3 B2 yields 
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I 

which  with 

u = a s i n m c y  m 
w = brn cos m cy 

yields  the  following  frequency  equation 

For K << 1 and m not large the  lowest root of this  frequency  equation 
is approximately 
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AXIS,OF ROTATION 
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AXIS OF ROTATION 
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