CONTRACT 950137

RANGER TV SUBSYSTEM (BLOCK III) FINAL REPORT

VOLUME 4b: APPENDICES

Prepared For:

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

By The:

ASTRO-ELECTRONICS DIVISION DEFENSE ELECTRONIC PRODUCTS RADIO CORPORATION OF AMERICA PRINCETON, NEW JERSEY

AED R-2620

Issued: JULY 22, 1965

Appendix A

Tabulations for Preliminary Reliability Analysis

	PRELIMI	NARY PA Breakd	RTS-CC	TABLE A-1 ARY PARTS-COUNT RELIABILIT BREAKDOWN OF SUBSYSTEMS	TABLE A-1 T RELIABILITY Subsystems B	TABLE A-1 ELIMINARY PARTS-COUNT RELIABILITY ANALYSIS FOR BREAKDOWN OF SUBSYSTEMS BY COMPONENTS	S FOR F	RANGER				
Subsystems by Components	ms by Tents	Transistor	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Misc.	Total Parts	Total Failure Rates
Communications Transmitter 1	Parts F. Rate @ 25°C F. Rate @ 70°C	9 0.360 0.378	18 0.635 0.705	75 1.007 3.337	49 1.177 1.976	38 0.445 0.980	15 0.710 0.710	3 1,000 1,175	2 6.000 7.000	8 0.706 1.036	217	12.040 17.297
Transmitter 2	Parts F. Rate @ 25°C F. Rate @ 70°C	9 0.360 0.378	18 0.635 0.705	75 1.007 3.337	49 1.177 1.976	38 0.445 0.980	15 0.710 0.710	3 1,000 1,175	2 6.000 7.000	8 0.706 1.036	217	12.040 17.297
R.F. Output	Parts F. Rate @ 25°C F. Rate @ 70°C		2 0.090 0.100			2 0.050 0.150	25 1.000 1.000			7 12.050 13.138	36	13.190 14.388
T ransmitter Telemetry Components	Parts F. Rate @ 25°C F. Rate @ 70°C	$\begin{array}{c} 12\\ 0.480\\ 0.504\end{array}$	14 0.440 0.486	24 0.444 1.184	60 1.140 1.800	6 0.060 0.120	8 0.740 0.740	1 16.200 16.200		2 0.119 0.290	127	19.623 21.324
Cruise Mode Telemetry	Parts F. Rate @ 25°C F. Rate @ 70°C	3 0.320 0.336	5 0.190 0.211	19 0.319 0.968	27 0.513 0.810	5 0.090 0.300	7 0.295 0.295	1 0.300 0.300		4 3,139 3,310	76	5.166 6.580
Total for Communications Pa F.	tions Parts F. Rate @ 25°C F. Rate @ 70°C	38 1.520 1.596	57 1.990 2.207	193 2.777 8.826	185 4. 007 6. 562	89 1,090 2,530	70 3.455 3.455	8 18,500 18,900	4 12,000 14,000	27 16.720 18.810	671	62.059 76.886
TV Cameras and Circuitry F-Scan Cameras Part F.Ra	rcuitry Part F.Rate @ 25°C F.Rate @ 70°C		342 11,010 12,136	256 2.268 5.910	620 12.534 20.712	10 0.210 0.950	$14 \\ 1.800 \\ 1.900$			14 2.737 3.155	1486	50.659 66.803
P-Scan Cameras	Parts F.Rate @ 25 °C F.Rate @ 70 °C	463 18.520 19.446	694 22.320 24.602	558 4 . 904 12 . 694	1309 26.379 43.494	43 0.650 2.360	29 3.920 3.920	16 6.400 7.600	4 16.000 18.000	24 4.736 5.400	3140	103.829 137.516
Video Mixing Amplifiers	Parts F. Rate @ 25°C F. Rate @ 70°C	30 1.200 1.260	114 4.140 4.578	27 0.072 0.138	102 1.983 3.366		15 1.260 1.260	1 0.300 0.350			289	8,955 10,952
											1	

	PRELIMII BREA	NARY PA KDOWN	RTS-CC	TABLE DUNT RELIZ	E A-1 IABILITY BY COA	TABLE A-1 PRELIMINARY PARTS-COUNT RELIABILITY ANALYSIS FOR RANGER BREAKDOWN OF SUBSYSTEMS BY COMPONENTS (Continued)	S FOR I (Contin	RANGER				
Subsystems by Components	is by ents	Transistor	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Misc.	Total Parts	Total Failure Rates
TV Cameras and Circuitry (Cont Tone Code Parts Generators F. Rate @ F. Rate @	cuitry (Cont'd) Parts F. Rate @ 25°C F. Rate @ 70°C	18 0.720 0.756	18 0.810 0.885	35 35 0.488 1.150	56 1.100 1.791		7 0.525 0.525				134	3.649 5.107
Totals for T.V.	Parts F. Rate @ 25°C F. Rate @ 70°C	731 29.240 30.702	1168 38.280 42.201	876 7.732 19.892	2087 42.002 69.363	53 0.860 3.310	65 7.605 7.605	25 9.900 11.750	6 24.000 27.000	38 7.473 8.555	5049	167.092 220.378
Control Programmer and Camera Sequencer "Selective" Or Parts Gate and 2-18 KC F. Rate @ Oscillators F. Rate @	and Camera Parts F. Rate @ 25°C F. Rate @ 70°C	10 0.400 0.420	14 0.400 0.436	6 0.015 0.036	30 0.548 0.900		3 0.315 0.315				63	1.678 2.107
Cameras A, B, Sequencer (18 ctrs, 50 gts)*	Parts F. Rate @ 25°C F. Rate @ 70°C	50 3.440 3.612	358 10,740 11,814	136 0.544 1.088	380 8.712 15.050		68 7.140 7.140				992	30.576 38.704
Cameras 1,2,3,4 Sequencer (16 ctrs, 60 gts)	Parts F. Rate @ 25°C F. Rate @ 70°C	92 3.680 3.864	396 11.880 13.068	152 0.608 1.216	400 9.144 15.820		76 7.980 7.980				1116	33.292 41.948
Counter Circuitry (22 ctrs, 15 gts)	Parts F. Rate @ 25°C F. Rate @ 70°C	59 2.360 2.748	207 6.210 6.831	148 0.592 1.184	280 6.498 11.155		37 3.855 3.855			_	731	19,515 25,503
A, B, Sequencer Power Supply	Parts F. Rate @ 25°C F. Rate @ 70°C	10 0.400 0.420	12 0.540 0.600	6 0.173 0.481	16 0.390 0.660	1 0.040 0.200	2 0.210 0.210	$\begin{array}{c}1\\0.300\\0.350\end{array}$			48	2.053 2.921
1,2,3,4 Sequencer Power Supply	Parts F. Rate @ 25°C F. Rate @ 70°C	$\begin{array}{c} 10\\ 0.400\\ 0.420 \end{array}$	12 0.540 0.600	6 0.173 0.481	16 0.390 0.660	$\begin{array}{c}1\\0.040\\0.200\end{array}$	2 0.210 0.210	1 0.300 0.350			48	2.053 2.921
*ctrs. = counters gts. = gates												

7

	PRELIMII BREA	ELIMINARY PART	ARTS-CO	TABLE 5-COUNT RELI SUBSYSTEMS	TABLE A-1 T RELIABILITY TEMS BY COA	TABLE A-1 ELIMINARY PARTS-COUNT RELIABILITY ANALYSIS FOR RANGER BREAKDOWN OF SUBSYSTEMS BY COMPONENTS (Continued)	S FOR 1 (Contir	RANGER ued)				
Subsystems by Components	s by ents	Transistor	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Misc.	Total Parts	Total Failure Rates
Totals for Programmer-Sequencer Parts	er-Sequencer Parts E Data @ 95 00	231	999 20,210	454	1122	2	188	8			2998	
	F. Rate @ 20 °C F. Rate @ 70 °C	10.680 11.214	30, 310 33, 349	2.105 4.486	25.682 44.245	0.080	19.710 19.710	0.600				89.167 114.104
Test and Control Function Test Mode Switch Pa. F.	ction Parts F. Rate @ 25°C F. Rate @ 70°C		$\begin{array}{c} 1 \\ 0.045 \\ 0.050 \end{array}$				1 0.120 0.120	1 3.000 3.200			÷	3.165 3.370
Operational Switch	Parts F. Rate @ 25 °C F. Rate @ 70 °C						1 0.120 0.120	1 3.000 3.200			01	3.120 3.320
Operational Switch Driving Amp.	Parts F. Rate @ 25°C F. Rate @ 70°C	2 0.080 0.084	$\begin{array}{c}1\\0.045\\0.050\end{array}$		4 0.164 0.296		1 0.075 0.075				æ	9.364 0.505
Totals for Test and Control	ontrol											
	Parts F. Rate @ 25°C F. Rate @ 70°C	2 0.080 0.084	2 0.090 0.100		4 0.164 0.296		3 0.315 0.315	2 6.000 6.400			13	6. 649 7. 195
Power Source and Regulator (2) Prime Power Parts Sources F. R.	ullator Parts F. Rate @ 25°C F. Rate @ 70°C		$\begin{smallmatrix}&&2\\0.090\\0.100\end{smallmatrix}$				1 0.145 0.145	2 0.300 0.350		2 1.000 1.500	2	1.535 2.095
Series Regulating Control Elements and Driver	Parts F. Rate @ 25°C F. Rate @ 70°C	3 0.120 0.126		1 0.043 0.120		· · · · · · · · · · · · · · · · · · ·		2 0.300 0.350			v	0.463 0.596
Error Detector and Reference	Parts F. Rate @ 25°C F. Rate @ 70°C	2 0.080 0.084	1 0.045 0.050		6 0.114 0.180		1 0.120 0.120		<u></u>	1 0.069 0.080	11	0.428
Error Amplifier	Parts F. Rate @ 25°C F. Rate @ 70°C	2 0.080 0.084		1 0.002 0.006	2 0.038 0.060		1 0.120 0.120				9	0.240

_

• •

A-5

۲

	· · ·	
	Total Failure Rates	3.475
	Total Parts	0°°
	Misc.	1. 069 1. 580 1. 580
	Vacuum Tubes	
ANGER Jed)	Relays and Switches	0. 600 0. 700
S FOR R (Contine	Connector	0 0 3 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TABLE A-1 PRELIMINARY PARTS-COUNT RELIABILITY ANALYSIS FOR RANGER BREAKDOWN OF SUBSYSTEMS BY COMPONENTS (Continued)	Inductive Components	
A-1 ABILITY BY COM	Resistors	0.240 0.240
TABLE A-1 UNT RELIABILI SYSTEMS BY C	Capacitors	2 0.045 0.126
RTS-CO DF SUB	Diodes	0.135 0.150
HARY PA	Transistor	7 0.280 0.294
PRELIMIN BREAK	Subsystems by Components	Totals Power Supply and Regulator Parts F. Rate @ 25°C F. Rate @ 70°C

BREAKDOWN OF TR	TRANSMITTER	R 1 OR	TABL 2 FOR	A-2 ANGER	PARTS-COUNT RELIABILITY ANALYSIS	JUNT RE	IIIABILI	IY ANI	ALYSIS		
Subsystems by Components	Transistor	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Misc.	Total Parts	Total Failure Rates
Transmitter No. 1 or 2 FM Modulator Parts F. Rate @ 25°C F. Rate @ 70°C	4 c 0.160 c 0.168	8 0.250 0.276	27 0.271 1.282	25 0.721 1.256	8 0.090 0.170	4 0.160 0.160	1 0.400 0.475		5 0.617 0.936	82	2,669 4.723
X12 Multiplier Parts F. Rate @ 25°C F. Rate @ 70°C	°C 0.120 °C 0.126	6 0.210 0.234	27 0.402 1.069	18 0.342 0.540	21 0.215 0.430	3 0.155 0.155				78	1.444 2.554
X4 Multiplier Parts F. Rate @ 25°C F. Rate @ 70°C	ົ່ວ	1 0.040 0.045	2 0.004 0.005			2 0.080 0.080				ى ب	0.124 0.130
Intermediate Power Parts Amplifier F. Rate @ 25°C F. Rate @ 70°C	ົວວ		8 0.077 0.186		4 0.040 0.030	2 0.100 0.100		1 3.000 3.500	1 0.010 0.010	16	3.227 3.876
Power Amp. (60w) Parts F. Rate @ 25°C F. Rate @ 70°C	ົວວ		7 0.139 0.356	1 0.019 0.030	4 0.060 0.100	3 0.140 0.140		1 3.000 3.500	2 0.079 0.090	18	3.437 4.216
Power Supply Parts F. Rate @ 25°C F. Rate @ 70°C	°C 0.080 °C 0.084	3 0.135 0.150	4 0.114 0.439	5 0.095 0.150	1 0.040 0.200	1 0.075 0.075	2 0.600 0.700			18	1.139 1.798
Totals for Transmitter 1 or 2 Parts F. Rate @ 25°C F. Rate @ 70°C	°C 0.360	18 0.635 0.705	75 1.007 3.337	49 1.177 1.976	38 0.445 0.980	15 0.710 0.710	3 1.000 1.175	2 6.000 7.000	8 0.706 1.036	217	12.040 17.297

BREAKDOWN	OF	CRUISE-MODE	TELEME	TELEMETRY FOR	A-3 RANGER		PARTS-COUNT	RELIABILITY ANALYSIS	LITY AI	ΝΑΓΥΣΙ	S	
Subsystems by Components	ms by nents	Transistor	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Misc.	Total Parts	Total Failure Rates
Cruise Mode Telemetry	Parts F. Rate @ 25°C F. Rate @ 70°C									4 3.139 3.310	4	3.139 3.310
Channel-8 VCO	Parts F. Rate @ 25°C F. Rate @ 70°C	5 0.200 0.210	3 0.100 0.111	15 0.204 0.528	20 0.380 0.600	3 0,030 0,060	3 0.090 0.090				49	1.004 1.599
AC Amplifier	Parts F. Rate @ 25°C F. Rate @ 70°C	1 0.040 0.042		1 0.087 0.241	4 0.076 0.120	$\begin{array}{c}1\\0.020\\0.040\end{array}$	3 0.130 0.130				12	0.353 0.573
Power Supply	Parts F. Rate @ 25°C F. Rate @ 70°C	2 0.080 0.084	2 0.090 0.100	1 0.028 0.199	3 0.057 0.090	1 0.040 0.200	1 0.075 0.075	1 0.300 0.350	<u>-</u> -		11	0.670 1.098
Totals	Parts F. Rate @ 25°C F. Rate @ 70°C	0.320 0.3320	0.190	0.319 0.968 0.968	0.513	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.295	0.350		4 3.139 3.310	46	5.166 6.580

ł

	Total Failure Rates	6.274 7.310	4.556 6.746	4. 456 5. 882	1.859 2.607	1.802 2.391	3,958 5,228	2.609 3.465	25,514 33,629
		11	149	183 4. 5.	87		163	75	744 21 33 21
	Total Parts		<u> </u>					00	
/SIS	Misc.	5 0.444 0.680			1 0.040 0.045	1 0.069 0.080		1 1.000 1.000	8 1, 553 1, 805
ANALYSIS	Vacuum Tubes	1 4.000 4.500							1 4.000 4.500
NBILITY	Relays and Switches	4 1.600 1.900							4 1.600 1.900
NT RELIA	Connector	$\begin{array}{c}1\\0.230\\0.230\end{array}$	1 0.120 0.120	$\begin{array}{c}1\\0.120\\0.120\end{array}$	1 0.120 0.120	1 0.120 0.120	1 0.120 0.120	$\begin{matrix}1\\0.120\\0.120\end{matrix}$	7 0.950 0.950
PARTS-COUNT RELIABILITY	Inductive Components		4 0.080 0.400					1 0.025 0.075	5 0.105 0.475
	Resistors		50 0.950 1.500	78 1.692 2.900	45 0.855 1.350	31 0.570 0.930	70 1.516 2.596	36 0.684 1.080	310 6.267 10.356
TABLE A-4 FOR RANGER	Capacitors		21 0.606 1.684	24 0.024 0.024	22 0.154 0.363	16 0.073 0.226	22 0.022 0.022	23 0.255 0.636	128 1.134 2.955
•	Diodes		48 1.800 1.992	58 1.740 1.914	3 0,090 0,099	11 0.330 0.363	50 1.500 1.650	1 0.045 0.050	171 5.505 6.068
OF TV CAMERA	Transistor		25 1.000 1.050	22 0.880 0.924	15 0.600 0.630	16 0.640 0.672	20 0.800 0.840	12 0.480 0.504	110 4.400 4.620
BREAKDOWN OF	5 5	Parts F. Rate @ 25°C F. Rate @ 70°C	Parts F. Rate @ 25°C F. Rate @ 70°C	Parts F. Rate @ 25°C F. Rate @ 70°C	Parts F. Rate @ 25°C F. Rate @ 70°C	Parts F. Rate @ 25°C F. Rate @ 70°C	Parts F. Rate @ 25°C F. Rate @ 70°C	Parts F. Rate @ 25°C F. Rate @ 70°C	Parts F. Rate @ 25°C F. Rate @ 70°C
BREA	Subsystems by Components	Camera A (w/color wheel)	6.3 Regulator, DC Converter and Hi Voltage Regulator	Deflection Amps.	Video Amps. and Pre Amps.	Grid 1 Regulator and Telemetry Link Monitor	Programmer	Shutter and Drive Amp.	Totals for Camera A

	Total Failure Rates	5.905 6.855	4.556 6.746	4. 456 5. 882	1.859 2.607	1.802 2.391	3.958 5.228	2.609 3.465	25.145 33.174
YSIS	Total Parts	6	149	183	87	76	163	75	742
ANALYSIS	Misc.	3 0.075 0.225			$ \begin{array}{c} 1 \\ 0.040 \\ 0.045 \end{array} $	1 0.069 0.080		1 1.000 1.000	6 1.184 1.350
ABILITY	Vacuum Tubes	1 4.000 4.500							1 4.000 4.500
IT RELIV	Relays and Switches	$\begin{array}{c} 4\\ 1.600\\ 1.900 \end{array}$			·				4 1.600 1.900
PARTS-COUNT RELIABILITY	Connector	$\begin{array}{c}1\\0.230\\0.230\end{array}$	1 0.120 0.120	1 0.120 0.120	1 0.120 0.120	1 0.120 0.120	1 0.120 0.120	1 0.120 0.120	7 0.950 0.950
	Inductive Components		4 0. 080 0. 400					1 0.025 0.075	5 0.105 0.475
LE A-5 4 IN RANGER	Resistors		50 0.950 1.500	78 1.692 2.900	45 0.855 1.350	31 0.570 0.930	70 1.516 2.596	36 0.684 1.080	310 6.267 10.356
TAE 3 OR	Capacitors		$\begin{array}{c} 21\\ 0.606\\ 1.684\end{array}$	24 0.024 0.024	22 0.154 0.363	16 0.073 0.226	22 0.022 0.022	23 0.255 0.636	128 1.134 2.955
S B, 2,	Diodes		48 1.800 1.992	58 1.740 1.914	3 0.090 0.099	11 0.330 0.363	50 1.500 1.650	1 0.045 0.050	171 5, 505 6, 068
CAMERAS	Transistor		25 1.000 1.050	22 0.880 0.924	15 0.600 0.630	16 0.640 0.672	20 0.800 0.840	12 0.480 0.504	110 4.400 4.620
WN USED FOR	ns by ents	Parts F. Rate @ 25°C F. Rate @ 70°C	. Parts F. Rate @ 25°C F. Rate @ 70°C	Parts F. Rate @ 25°C F. Rate @ 70°C	Parts F. Rate @25°C F. Rate @70°C	Parts F. Rate @ 25°C F. Rate @ 70°C	Parts F. Rate @ 25°C F. Rate @ 70°C	Parts F. Rate @ 25°C F. Rate @ 70°C	Parts F. Rate @ 25°C F. Rate @ 70°C
BREAKDOWN USED	Subsystems by Components	Camera Type Used for B, 2, 3, and 4	6.3v Reg., DC Conv. Parts HV Regulator F. Rai F. Rai	Deflection Amps.	Video Amps and Pre-Amps	Grid 1 Reg. and Telemetry Link Monitor	Programmer	Shutter and Drive Amp.	Totals for One Camera

8	BREAKDOWN OF	F CAMERA	-	TABLE A FOR RANGER		-6 PARTS-COUNT		RELIABILITY ANALYSIS	IALYSIS			
Subsystems by Components	t by nts	Transistor	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacum Tubes	Misc.	Total Parts	Total Failure Rates
Camera 1 (with Internal Sync)	Parts F. Rate @ 25°C F. Rate @ 70°C						$\begin{array}{c}1\\0.230\\0.230\end{array}$	4 1.600 1.900	1 4.000 4.500	3 0.075 0.225	m	5.905 6.855
6. 3v Reg., DC Conv. Parts and HV Regulator F. Rat F. Ra	v. Parts F. Rate @ 25°C F. Rate @70°C	25 1.000 1.050	48 1.800 1.992	21 0.606 1.684	50 0.950 1.500	4 0.080 0.400	1 0.120 0.120		<u> </u>	<u></u>	149	4. 556 6. 746
Synchronizer	Parts F. Rate @ 25°C F. Rate @ 70°C	23 0.920 0.966	10 0.300 0.330	46 0.368 0.874	69 1.311 2.070	23 0.230 0.460	1 0.120 0.120				172	3.249 4.820
Deflection Amps.	Parts F. Rate @ 25°C F. Rate @ 70°C	$22 \\ 0.880 \\ 0.924$	58 1.740 1.914	24 0.024 0.024	78 1.692 2.900		1 0.120 0.120				183	4. 4 56 5. 882
Video Amps and Pre-Amps.	Parts F. Rate @ 25°C F. Rate @ 70°C	15 0.600 0.630	3 0.090 0.099	22 0.154 0.363	45 0.855 1.350		1 0.120 0.120		nde værd ^{ann} er	1 0.040 0.045	87	1.859 2.607
Grid 1 Reg and Telemetry Link Monitor	Parts F. Rate @ 25°C F. Rate @ 70°C	16 0.640 0.672	11 0,330 0.363	16 0.073 0.226	31 0.570 0.930		1 0.120 0.120			1 0.069	76	1.802 2.391
Programmer	Parts F. Rate @25°C F. Rate @70°C	20 0.800 0.840	50 1,500 1,650	$22 \\ 0.022 \\ 0.022$	70 1.516 2.596		1 0.120				163	3.958 5.228
Shutter and Drive Amp.	Parts F. Rate @ 25°C F. Rate @ 70°C	12 0.480 0.504	1 0.045 0.050	23 0.255 0.636	36 0.684 1.080	1 0.025 0.075	1 0.120 0.120			1 1.000 1.000	75	2.609 3.465
Totals for Camera 1	Parts F. Rate @ 25°C F. Rate @70°C	133 5,320 5,586	181 5, 805 6, 398	174 1.502 3.829	379 7.578 12.426	28 0.335 0.935	8 1.070 1.070	4 1.600 1.900	1 4,000 4,500	6 1.184 1.350	914	28, 394 37, 994

Appendix B

۰.

Tabulations for Detailed Reliability Analysis

	COMP	COMPONENT-PART FOR THE	IT-PART FA FOR THE SE	TABLE B-2 AILURE RATES / SEQUENCER-A9	TABLE B-2 FAILURE RATES AT 70°C: SUMMATIONS : SEQUENCER-A9 EQUIPMENT	AT 70°C: SUMN EQUIPMENT	ATIONS			
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
Counter P Channel										
Parts	55	64	36	275	1	63	1	1	ŀ	432
FR	1.760	0.704	0.324	11.801	ı	0.270	1	I	1	14.859
Controller P Channel										
Parts	82	119	12	276	ł	5	I	ı	ı	491
FR	2.624	2.499	0.012	12.620	ı	0,550	,	1	ł	18, 305
Controller and Modulator										
Parts	36	72	27	178	I	5	н	ł	I	316
FR	1.152	1.512	0.302	7.117	I	0.415	0.232	I	ı	10.730
Controller and Timer "F" Channel										
Parts	70	118	17	267	ı	63	1	1	ı	474
FR	2.240	2.478	0.017	10.348	ı	0.620	ł	I	I	15.703
Counter F Channel										
Parts	52	58	36	268	ł	62	1	1	ı	416
FR	1.664	1.218	0.324	11.532	ı	0.315	ş	ı	ı	15.053
Dual Oscillator										
Parts	11	9	7	43	63	5	i	1	2	73
FR	0.352	0.126	0.021	1.451	0.054	0.280	ł	1	0.040	2.324
Dual Sequencer Power Supply										
Parts	24	18	19	58	63	5	ł	ı	ı	123
FR	0.798	0.426	0.314	3.612	0.400	0.445	ŧ	1	F	5.995

COMPONENT-PART	T FAILURE	RATES		TABLE B-1 C: SUMMATI	B-1 ATIONS FO	R THE CO	DINUMM	ATIONS	TABLE B-1 AT 70°C: SUMMATIONS FOR THE COMMUNICATIONS EQUIPMENT	L
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
Transmitter (2) Parts FR	20 1.026	66 21.622	162 4.932	172 8.394	70 0.912	28 1. 348	10 5.470	6 57,000	4 0.040	536 100
RF Combiner Parts FR	1 1	2 2000	1 1	1 1	1 1	6 0.240	1 1	1 1	2 0.240	10 2.480
Telemetry Parts FR	8 0. 336	10 0.322	14 0.112	82 6.212	4 0.336	10 1.030	2 1.084	1 1	4 16.950	13 4 26.382
Cruise-Mode Telemetry Parts FR	9 0.328	10 0.246	10 1.078	33 2.207	5 0.090	3 0.260	1 1	1 1	4 3. 310	74 7.519
Total Parts FR	37 1.690	88 24,190	186 6.132	287 16,813	79 1.338	47 2.878	12 6.554	6 57.000	14 20.540	754 137.125

	COMP	ONENT	TABLE F NENT-PART FAILURE RAT FOR THE SEQUENCER-A9	TABLE B-2 ILURE RATES ENCER-A9 EQ	TABLE B-2 COMPONENT-PART FAILURE RATES AT 70°C: SUMMATIONS FOR THE SEQUENCER-A9 EQUIPMENT (Continued)	8-2 ES AT 70°C: SUMMATIC EQUIPMENT (Continued)	IATIONS nued)			
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
Video Combiner										
Parts	15	9	2	74	ł	I	ı	I	1	102
FR	0.320	0.150	0.027	1.353	I	1	ı	1	I	1.850
Analog-to-Digital Converter and Tone Oscillator										
Parts	æ	ł	21	28	\$	I	ı	1	en	60
FR	160	1	0.054	0.142	I	1	I	I	0,060	0.416
Analog-to-Digital Converter										
Parts	6	9	e	27	1	1	1	1	I	45
FR	0.180	0.06	0, 022	0.835	1	1	1	1	I	1.097
Total										
Parts	362	467	185	1494	4	14	1	t	5	2532
FR	11.250	9.173	1.417	60.811	0.454	2.895	0.232	1	0.100	86, 332

-

•

COMPONENT-PAR	PART FAILURE		RATES AT 7	TABLE B-3 70°C: SUMM/	TABLE B-3 70°C: SUMMATIONS FOR THE TV-CAMERA EQUIPMENT	FOR THE	TV-CAM	ERA EQ	UIPMENT	
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
F-Scan Cameras Parts FR	230 7.824	250 6.704	186 10.370	752 33, 880	14 0.480	16 2.960	8 3.800	4 10.480	8 0.905	1468 77.403
P-Scan Cameras Parts FR	513 17.191	529 13.945	423 26.968	1641 74.759	28 0.960	38 6.910	16 7.600	8 20.960	12 0.900	3208 170.193
Total Parts FR	743 25.015	779 20.649	609 37.338	2393 108.639	42 1.440	54 9,870	24 11.400	12 31.440	20 1.805	4676 247.596
								· · · · · · · · · · · · · · · · · · ·		

-

. ,

	Totals	31	2.286		43	1.748		74	4.034	
	Miscellaneous	3	ł		1	1		I	ı	
	Tubes	1	ł		1	I		1	I	
TEST AND C	Switches		1		61	0.07		51	0.07	
	Connector	ï	I		ı	ł		ı	I	
SUMMATIONS FOR Inductive	Components	t	1		ł	1		1	ı	
	Resistors	27	2.202		28	1,061		55	3.263	
	Capacitors	I	I		5	0,06		63	0.060	
	Diodes	4	0.084		7	0.287		11	0.371	
	Transistors	I	ł		4	0.270		4	0.270	
	Equipment	Temp. Sensor Parts	FR	Command Switch	Parts	FR	Total	Parts	FR	

•

•

. `

	COMPG	OMPONENT-PART FOR THE POWER	PART FAI	TABLE B-5 FAILURE RATES SOURCE AND R	TABLE B-5 COMPONENT-PART FAILURE RATES AT 70°C: SUMMATIONS FOR THE POWER SOURCE AND REGULATOR EQUIPMENT	°C: SUMM TOR EQUI	A TI ONS P M EN T			
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
Prime Power Sources (2)										(
Parts FR		i 1	1 1	11	11	1 1	1 1	1 1	2 0.750	2 0.750
High-Current Regulator										
Parts	7	9	2	25	t	ı	1	1	ı	40
FR	0.168	0.111	0.027	0, 305	I	i	I	i	1	0.611
Low-Current Regulator										
Parts	ŝ	S	1	12	1	ı	1	I	I	19
FR	0.070	0.033	0.006	0.126	I	ı	1	1	I	0.235
Total										
Parts	10	6 [.]	e	37	I	1	ı	ı	73	61
FR	0.238	0.144	0, 033	0.431	1	I	ı	I	0.750	1.596

	COMPON	VENT-P.	ART FAILI E TRANSM	TABLE B-6 Ure rates a Vitter 1 or	TABLE B-6 COMPONENT-PART FAILURE RATES AT 70°C: SUMMATIONS FOR THE TRANSMITTER 1 OR 2 EQUIPMENT	: SUMMA IPMENT	TIONS FC	RC		
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
FM Modulator	-		05	34	œ	a	1	l	2	95
FR	1 0.280	415	1.521	1.874	0.080	0.160	0.329	1	0.020	4.679
X12 Multiplier Darts	4	6	35	32	20	2	1	1	1	102
FR	0.169	6,108	0.235	0, 838	0.220	0.080	ı	ł	1	7.650
Intermediate Power Amplifier										
Parts we	1	1 1	4 0 070	1 1	4 0.040	1 0.040	1 1	2 21.00	1 1	10 21.150
44	1									
Power Amplifier Parts	t	1	3	e	1	e	1	H	ł	Ħ
FR	١	1	0.024	0.374	0.016	0.014	1	7.50	1	7.928
Power Supply Parts FR	2 0.064	10 2.239	7 0.560	9 0.573	2 0.100	2 0.250	4 2.406	• •	1 1	36 6.192
X4 Multiplier Parts FR	1 1	2 2.000	2 0.056	1 0.030	1 1	1 1	1 1	1 1	1 1	5 2.086
Transmitter Parts	1	1	1	7	1	1	1	1	E	o
FR	1	0, 049	1	0.508	1	0.130	1	1	1	0.687

		IENT-P	1 ONENT-PART FAILURE THE TRANSMITTER 1	TABLE B-6 JRE RATES A 1 OR 2 EQI	TABLE B-6 COMPONENT-PART FAILURE RATES AT 70°C: SUMMATIONS FOR THE TRANSMITTER 1 OR 2 EQUIPMENT (Continued)	: SUMMA T (Continu	TIONS FC	R		
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
Total Parts	10	33	81	86	35	14	5	2	5	268
FR	0.513	10.811	2.466	4.197	0.456	0.674	2.735	3.000	0.020	50, 372
		<u>. </u>								
		·								
				· <u>·</u>						
				· <u>,</u> , , , , , , , , , , , , , , , , , , ,						
		-								

COMPONENT-PART		JRE RA	TES AT 7	TABLE B-7 0°C: SUMM	TABLE B-7 FAILURE RATES AT 70°C: SUMMATIONS FOR THE RF-COMBINER EQUIPMENT	FOR THE	RF-COMB	INER EC	QUIPMENT	
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
Four-Part Hybrid							9	1	1	1
Parts FR	ł 6	1 1	1 1	1 1	1 1		I	1	0.160	0.160
Dummy Load						1	1	I	-	
Parts vp	ı ı	1 1	1 1	1	1 1	i I	1	1	0.080	0.080
Signal Sampler (2)										c
Parts	ı	2	ı	1	ł	9	1	1	1	æ
FR	I	2.000	ł	ł	ı	0.240	1	•	-	2.240
Total										ç
Parts	١	67	I	1	I	9	1	1	N	10
FR	1	2.000	ŧ	1	1	0.240	1	1	0.240	2.48
						······	51 miles			
							1.0			
					<u>,,.</u>					

	-		20	1					1			Τ		22	 	 	 	
	Totals	4	16,950	6	6.074		32	1.478		14	1.880		134	26.382				
	Miscellaneous	4	16.950		1		ı	I		I	ı		4	16,950			 	
	Vacuum Tubes	1	1		I		1	I		I	I		1	I		 _	 -	
ATIONS	Relays and Switches	l l	I		I		I	I		5	1.084		2	1.084				
C: SUMM	Connector	1	ı	c	- 0.130	-	2	0.260		9	0.640		10	1.030			 	
TABLE B-8 COMPONENT-PART FAILURE RATES AT 70°C: SUMMATIONS FOR THE TRANSMITTER TELEMETRY EQUIPMENT	Inductive Components	1	I	-	0.336		1	I		1	I		4	0.336		 	 	
TABLE B-8 ILURE RATES MITTER TELE/	Resistors	1	1	ç	4.964		26	1.134		4	0.114		82	6.212	 	 	 	
PART FA	Capacitors	1	ı		0,112		I	1		ı	I		14	0.122				
DNENT-	Diodes	1	I	V	0,196		4	0.084		52	0.042		10	0.322		 	 	
COMPO	Transistors	1	I	o	0. 336		I	ı		1	1		80	0.336	 		 	
	Equipment	90-Contact Commutator Parts	FR	225KC VCO (2)	FR	Telemetry Processor (2)	Parts	FR	Telemetry Unit	Parts	FR	Total	Parts	FR				

	COMPG	ONENT-	PART FAI IE CRUISE	TABLE B-9 ILURE RATES -MODE TELE/	TABLE B-9 Component-part failure rates at 70°C: Summations for the cruise-mode telemetry equipment	°C: SUMM EQUIPMEN	ATIONS 4T			
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Misceltaneous	Totals
15-Contact Commutator									and a standard and a standard a st	
Parts	I	I	1	1	1	ł	ı	ł	4	4
FR	ı	ł	1	1	1	I	I	1	3.310	3.310
Channel-8 VCO										
Parts	4	e	6	26	I	1	I	1	ı	37
FR	0.168	0.099	0.010	2.046	1	0.100	1	ł	1	2.423
AC Amplifier										
Parts	1	ł	53	4	1	1	1	1	ı	6
FR	0.032	I	0.184	0, 092	0.020	0.075	ı	1	ŧ	0.403
Cruise-Mode Telemetry Power Supply										
Parts	4	7	ß	3	4	1	1	1	ı	24
FR	0.128	0.147	0.884	0,069	0.070	0. 085	1	1	ı	1, 383
Total										
Parts	6	10	19	33	5	3	I	ı	4	74
FR	0.328	0.246	1.078	2.207	0.090	0.260	I	I	3, 310	7.519

٠.,

	COMPO	ONENT	TABLE E PART FAILURE RA FOR THE CAMERA	TABLE B-10 ILURE RATES CAMERA A	TABLE B-10 COMPONENT-PART FAILURE RATES AT 70°C: SUMMATIONS FOR THE CAMERA A EQUIPMENT	°C: SUMM AENT	ATIONS			
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
Vertical and Horizontal Deflector Programmer										
Parts	19	21	10	64	ı	1	1	I	I	115
FR	0.608	0.441	0.073	4.024	•	0.195	1	1	1	5.341
Deflection Amplifiers A and B										
Parts	22	14	11	56	i	ı	ı	1	ı	103
FR	0.904	0.294	0.120	1.988	L	ı	I	I	I	3.106
Shutter and Lamp Drive Circuit										
Parts	15	19	2	44	ł	1	I	I	I	81
FR	0.584	0.459	0.016	2.413	I	0.140	I	1	I	3.612
High-Voltage Regulator										L C
Parts	21	7	6	46	1	1	ı	ı	I	C S
FR	0.702	0.189	1.219	2.697	0.010	120	1	ı	I	4.937
Converter										d
Parts	2	2	<u></u>	10	2	1	1	ı	I	23
FR	0.248	0.084	0.774	0.290	0.190	0.195	T	1	6	1.781
Low-Voltage Regulator										
Parts	9	33	14	33	4	1	۱	1	I	91
FR	0.192	1.252	1.953	1,315	0.040	0.230	1	1	1	4.982
Video Amplifier										
Parts	17	16	25	65	1	1	I	ı	ı	123
FR	0.544	0.336	0.342	1.739	1	I	ı	1	ı	2.961

	COMPO	DNENT-	PART FAI HE CAME	TABLE B-10 ILURE RATES RA A EQUIP	TABLE B-10 COMPONENT-PART FAILURE RATES AT 70°C: SUMMATIONS FOR THE CAMERA A EQUIPMENT (Continued)	°C: SUMM Continued	ATIONS			
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
G1 Regulator										C
Parts	10	13	14	52	t	1	I	1	1	0. 0.
FR	0.330	0.297	0.330	2.336	1	0.285	I	1	1	3.578
Preamplifier								,		C T
Parts	ı	I	ß	6	١	1	ı	1	ı	13
FR	1	1	0.358	0,138	1	0,085	1	0.740	B	1.321
Camera A										
Parts	1	ı	١	ı	ı	1	4	1	2	11
FR	ı	1	1	I	I	0.230	1.900	4.500	0.680	7.310
Total Parts	115	125	93	376	7	∞	4	2	a	735
FR	3.912	3, 352	5.185	16.940	0.240	1.480	1.900	5.240	0.680	38.929
ц ц	N T D 	N 0 0								

.

	COMP	ONENT	TABLE B-11 COMPONENT-PART FAILURE RATES FOR THE CAMERA B I	TABLE B-11 ILURE RATES CAMERA B	B-11 Ntes at 70°C: S A b equipment	AT 70°C: SUMMATIONS EQUIPMENT	ATIONS			
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
Vertical and Horizontal Deflection Programmer										
Parts	19	21	10	64	ı	1	'	ı	ı	115
FR	0.608	0.441	0.073	4.024	t	0.195	I	1	ı	5.341
Deflection Amplifier A and B										
Parts	22	14	11	56	1	1	I	I	ı	103
FR	0.704	0.294	0.120	1.988	1	I	1	I	ı	3.106
Shutter and Lamp Drive Circuit										
Parts	15	19	2	44	ı	1	1	I	1	81
FR	0.584	0.459	0.016	2.413	1	0.140	1	1	ı	3.612
High-Voltage Regulator										
Parts	21	7	6	46	1	Ţ	1	1	ı	85
FR	0.702	0.189	1.219	2.697	0.010	0.120	1	i	i	4.937
Converter Power Supply										
Parts	5	8	e	10	2	1	ı	t	I	23
FR	0.248	0.084	0.774	0.290	0.190	0.195	1	1	I	1.781
Low-Voltage Regulator										
Parts	9	33	14	33	4	П	1	1	I	16
FR	0.192	1.252	1.953	1.315	0.040	0.230	1	1	1	4.982
Video Amplifier										
Parts	17	16	25	65	I	I			1	123
FR	0.544	0.336	0.342	1.739	I	1	ı	1	I	2.961

Diodes 13 13 13 1 0,297 6 - 5 - 0,29		Resistors 52 2. 336 6 6 0. 138	Inductive Components 					_
	14 0.330 5 0.358 93	2 . 336 . 138	1	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
0.2	0.330 0.358 93	. 138	I	Ŧ				G
	5 5 5 0.358 93	.138	ł	1 0.285	1	1	1	3.578
· ·	5 0.358 93 388 5 185	.138						
1	0. 358 93	.138	1	1	1	1	•	13
	82 I I		1	0.085	1	0.740	B	1.321
	82 I I							
1	93 1 85 1 85	1	i	1	4	1	3	6
1		1	1	0.230	1.900	4.500	0.225	6. 855
125		376	7	80	4	01	3	733
3, 352		16.940	0.240	1.480	1.900	5.240	0.225	38.474

	COMP(ONENT-	IT-PART FAI FOR THE CA	TABLE B-12 LURE RATES AMERA NO.	TABLE B-12 COMPONENT-PART FAILURE RATES AT 70°C: SUMMATIONS FOR THE CAMERA NO. 1 EQUIPMENT	°C: SUMM PMENT	ATIONS			
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
Horizontal Sync Generator										
Parts	4	11	4	20	1	1	I	1	ı	40
FR	0.128	0.255	0.228	1,114	1	0.065	1	t	1	1.790
Vertical Sync Generator										
Parts	21	14	23	77	ı	1	I	I	I	136
FR	0.687	0.294	2.176	3, 305	I	0.145	1	1	1	6.607
Vertical and Horizontal										
Deflection Programmer	19	21	10	64	l	1	I	ı	ı	115
FR	0.608	0.441	0.073	4.024	I	0.195	1	ı	I	5.341
Deflection Amplifier Camera Nos. 1,2,3, or 4										
Parts	22	14	10	56	ı	1	ı	ı	ı	103
FR	0.704	0.294	0.114	1.988	ł	0,195	1	1	1	3, 295
Shutter and Lamp Drive Circuit										
Parts	15	19	2	44	ı	1	I	1	ı	81
FR	0.584	0.459	0.016	2.413	ı	0.140	1	1	I	3.612
High-Voltage Regulator										
Parts	21	7	6	46	1	1	ı	1	ı	85
FR	0.702	0.189	1.219	2.697	0.010	0.120	ı	1	1	4.937
Converter Power Supply						٩				50
Parts	2	2	<u></u>	10	5	1	1	1	1	1 781
FR	0.248	0.084	0.774	0.290	0.190	0.195	۱ 	1		101.1

	COMP	ONENT. OR THI	TABLE PONENT-PART FAILURE RA FOR THE CAMERA NO. 1	TABLE B-12 ILURE RATES A NO. 1 EQU	TABLE B-12 COMPONENT-PART FAILURE RATES AT 70°C: SUMMATIONS FOR THE CAMERA NO. 1 EQUIPMENT (Continued))°C: SUMN T (Continu	(ATIONS ed)			
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
Low-Voltage Regulator										
Parts	9	33	14	33	4	1	ı	t	·	91
FR	0.192	1.252	1.953	1.315	0.040	0.230	I	8	ı	4.982
Video Amplifier										
Parts	17	16	25	65	I	ı	1	I	,	123
FR	0.544	0. 336	0.342	1.739	ł	1	I	I	ı	2.961
G1 Regulator										
Parts	17	14	21	62	ı	1	i	ł	ı	115
FR	0.512	0.294	1.292	2.981	ı	0. 285	1	ŀ	1	5.364
Preamplifier										
Parts	I	I	5	9	1	1	I	1	ı	13
FR	I	1	0.358	0.138	ı	0.085	1	0.740	I	1.321
Camera No. 1 (with internal sync)										
Parts FR		i I	1 1	1 1	1 1	1 0.230	4 1.90	1 4, 500	3 0. 225	9 6. 855
Total										
Parts	147	151	126	483	2	11	4	63	3	934
FR	4.909	3. 898	8.545	22.004	0.240	1.885	1.900	5.240	0. 225	48.846
				-						

Facilitation Transiture Diodes Diodes Canadiants Connector Servictors Connector Connect		COMPC	ONENT-P	PART FAI	TABLE B-13 ART FAILURE RATES CAMERA NOS. 2, 3,	AT 7 OR	70°C: SUMMA1 4 EQUIPMENT	ATIONS			
tail 10 64 1	Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miscellaneous	Totals
19 21 10 64 - 1 - <td>Vertical and Horizontal</td> <td></td>	Vertical and Horizontal										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Deflection Programmer										
	Parts	19	21	10	64	I	1	۱	ı	I	115
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	FR	0.608	0.441	0.073	4.024	I	0.195	1	1	1	5.341
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Deflection Amplifier										
	Parts	22	14	10	56	ı	1	1	ł	I	103
$ \begin{bmatrix} 15 \\ 0.584 \\ 0.459 \\ 0.140 \end{bmatrix} \begin{bmatrix} 2 \\ 2.413 \\ 0.016 \end{bmatrix} \begin{bmatrix} 44 \\ 2.413 \\$	FR	0.704	0.294	0.114	1.988	1	0.195	1	1	I	3.295
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Shutter and Lamp Drive										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parts	15	19	01	44	ł	1	I	I	I	81
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FR	0.584	0.459	0.016	2.413	ł	0.140	I	I	1	3.612
	High-Voltage Regulator										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parts	21	7	6	46	П	1	ı	1	I	85
$ \begin{bmatrix} 5 & 2 & 3 & 10 & 2 & 1 & - & - & - \\ 0.248 & 0.084 & 0.774 & 0.290 & 0.190 & 0.195 & - & - & - \\ 6 & 33 & 14 & 33 & 4 & 1 & - & - & - \\ 0.192 & 1.252 & 1.953 & 1.315 & 0.040 & 0.230 & - & - & - \\ 17 & 16 & 25 & 65 & - & - & - & - \\ 0.544 & 0.336 & 0.342 & 1.739 & - & - & - & - & - \\ 0.544 & 0.336 & 0.342 & 1.739 & - & - & - & - & - \\ \end{bmatrix} $	FR	0.702	0.189	1.219	2.697	0.010	0.120	I	I	1	4.937
	Converter Power Supply										
0.248 0.084 0.774 0.290 0.190 0.195 - - 6 33 14 33 4 1 - - - 6 1.252 1.953 1.315 0.040 0.230 - - - 17 16 25 65 - - - - - 0.544 0.336 0.342 1.739 - - - -	Parts	5	2	ŝ	10	5	1	1	1	1	23
6 33 14 33 4 1 - - 0.192 1.252 1.953 1.315 0.040 0.230 - - 17 16 25 65 - - - - 0.544 0.336 0.342 1.739 - - - -	FR		0.084	0.774	0.290	0.190	0.195	-	1	ı	1.781
6 33 14 33 4 1 -	Low-Voltage Regulator										
0.192 1.252 1.953 1.315 0.040 0.230 - - - 17 16 25 65 - - - - - 0.544 0.336 0.342 1.739 - - - - -	Parts	9	33	14	33	4	1	1	1	١	91
17 16 25 65 - - - - 0.544 0.336 0.342 1.739 - - - -	FR	0.192	1.252	1.953	1.315	0.040	0.230	1	I	1	4.982
17 16 25 65 - - - - 0.544 0.336 0.342 1.739 - - - - -	Video Amplifier										
0.544 0.336 0.342 1.739	Parts	17	16	25	65	1	I	1	1	I	123
	FR	0.544	0.336	0.342	1.739	1	I	ı	1	ł	2.961

.

	COMP FOR TI	COMPONENT-PART FOR THE CAMERA	PART FAI	TABLE B-13 FAILURE RATES NOS. 2, 3, OR 4	TABLE B-13 COMPONENT-PART FAILURE RATES AT 70°C: SUMMATIONS FOR THE CAMERA NOS. 2, 3, OR 4 EQUIPMENT (Continued)	°C: SUMM	ATIONS ontinued)			
Equipment	Transistors	Diodes	Capacitors	Resistors	Inductive Components	Connector	Relays and Switches	Vacuum Tubes	Miseellaneous	Totals
G1 Regulator										
Parts	17	14	21	62	,	1	1	1	ı	115
FR	0.512	0.294	1.292	2, 981	ı	2.85	1	T	ı	5.364
Preamplifier										
Parts	1	ı	ŋ	9	I	1	ı	1	I	13
FR	4	1	0.358	0.138	I	0, 085	1	0.740	I	1.321
Camera										
Parts	I	1	1	I	1	1	4	1	e,	6
FR	1	ı	ı	1	8	0.230	1.900	4.500	0.225	6, 855
Total										
Parts	122	126	66	386	• 2	6	4	23	ß	758
FR	4.094	3.349	6.141	17.585	0.240	1.675	1,900	5.240	0. 225	40.449
									-	
										•

•

Appendix C

Failure Effects Analysis of Initial System Configuration Compared to Split-System Configuration

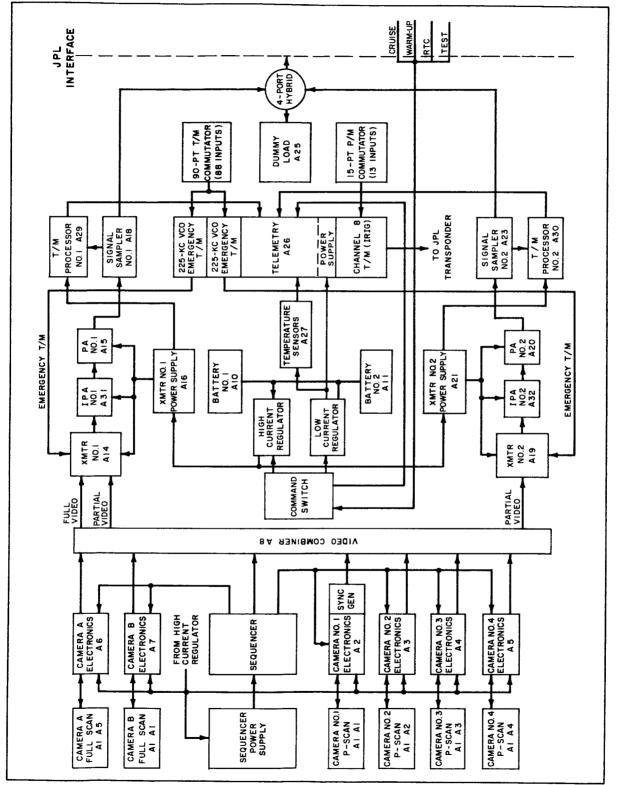
TABLE C-1 FAILURE EFFECTS ANALYSIS OF INITIAL SYSTEM CONFIGURATION (Continued)	med Pessible Symptoms and Compensating Effects on Mission Failure Failure Remarks/Recommended ure Causes Local Effects Probability Compensating Effects on Mission Causes Factor Provisions. And Campended Factor Provisions.	Same as above Loss of partial-scan video #3 Same as above Same as above Dp Eo 2	camera #4 Same as above Loss of partial-scan video #4 Same as above Same as above D. F. ?	Same as above I oss of full-scan video A Same as above Loss of 1/2 of full-scan $C_F = E_0$	Same as above Loss of full-scan video B Same as above	(i (i	o) rauny cone or con- nectors 4) Lons of blas voltage 5) Shorted video com- biner	-6.3 volts Same as above Same as above None or loss of all P Dp Eo 2 - clear and the video, depending on status of camera #3 power	era #2 Same as above, except, Loss of partial-scan video #2 Partially redundant Loss of 1/4 of partial- nes cam- function- function-) Faulty sequencer (unction-) Faulty sequencer (unction-)	era #3 Same as above Loss of partial-scan video #3 Same as above Same as above D _p E _o 2 -	era #4 Same as above Loss of partial-scan video #4 Same as above Same as above Dp Eo 2 -	rra A Same as above Loss of full-scan video A Partially redundant Loss of 1/2 full-scan CF Eo 2 -	intera B Same as above I.oss of full-scan video B Same as above Same as above $C_{\rm F} E_0$ 2 -	B Same as above Loss of A and B video None No full-scan pictures $A_f C_o 4$	deo mode 1) Faulty internal cir- cuitry No transmitter #2 modulation Partial redundancy No partial-scun pictures Dp 5 Combine input power from until the last two min- pictures isgnals video) of partial-scun pictures No partial-scun pictures Dp 5 Combine input power from until the last two min- pictures 3) Loss of blas voltages 4) Shorted Load 4) Shorted Load 5) Faulty sequencer 5) Faulty sequencer 1) Shorted Load
<u>ш</u>	Passible Causes					(i (i	 s) rauny capte or c nectors 4) Loss of blas volti 5) Shorted video con biner 		Same 6) Fa	Same	Same		Same as above	Same as above	<u>- 6</u> 6 €6
FAI	Assumed Failure	td c) Loss of camera #3 ued) (A1A3)	d) Loss of camera #4	e) LOBS of camera A (A1A5)	f) Loss of camera B (A1A6)	a) Loss of camera #1 video		b) Loss of ±6.3 volts power	Loss of camera #2 video (assumes cam- era head is function- ing properly)	Loss of camera #3 video (same assump- tion)	Loss of camera #4 video (same assump- tion)	Loss of camera A video (same assump- tion)	 a) Loss of camera B video (same as- sumption) 	b) Loss of camera B ±6.3 volts	er a) No "Pu' video mod- ulator B (assumes good camera elec- tronics)
	te 3	Camera Head (A1) (Continued)				Camera #1 Electronics (A2)			Camera #2 Electronics (A3)	Camera #3 Electronics (A4)	Camera #4 Electronics (A5)	Camera A Electronics (A6)	Camera B Electronics (A7)		Video Combiner (A8) (Assumes good camera elec- tronics)

C-4

TABLE C-1 FAILURE EFFECTS ANALYSIS OF INITIAL SYSTEM CONFIGURATION	Assumed Possible Symptoms and Compensating Effects on Mission Class Probability Commended Failure Countersting Effects on Mission Class Provisions/Fractor Provisions Effects on Mission Class Provisions/Fractor Provisions/F	ead or weak 1) Excessively high 1) Loss of voltage from Redundant battery 1) None – if one battery Ar from the drain that area in working the abortion of Arpo 2) Faulty heaters 2) Loss of voltage from low- 3) Defective battery voltage regulator 3) Defective battery voltage regulator from low- 3) Defective battery voltage regulator and the heat the drain 3) Defective battery voltage regulator and the heat the drain 3) Defective battery voltage regulator and the heat the drain 3) Defective battery voltage regulator voltage regulator and the heat the drain 3) Defective battery voltage regulator and the heat the drain 4) Faulty connecting 3) Weak or lost unregulated both batteries fail both batteries fail	£ € € € F	(1 (2 (6 (4	1) No command from No power to telemetry during None Loss of 15-point AT15 Eo 5 JPL 2) Faulty internal cir- ciruise telemetry telemetry 2) Faulty internal cir- 3) Faulty cable or con-) No WARM UP Same as above No warm-up period None Transmitter turn-on - 5 Tests have been conducted without warm-up vithout warm-up successful without warm-up up.	Same as above No emergency T/M None No emergency T/M AT90 Do 5			1 ross of camera #2 Same as above I loss of partial-scan video #2 Same as above Same as above Dp Eo 2
	Assumed Failure	Dead or weak	Loss of voltage	Loss of voltage	a) Loss of CRUISE ON command	b) No WARM UP command	c) No EMERGENCY T/M command	d) No EMERGENCY OFF command	a) Loss of camera #1 (A1A1)	b) Loss of camera #2
	lten.	Batteries (A10, A11)	High-Current Regulator (A12)	Low-Current Regulator (A17)	Command Switch (A13)				Camera Head (A1)	

.

C-3


	FAILURE		TABLE C-1 EFFECTS ANALYSIS OF INITIAL SYSTEM CONFIGURATION (Continued)	TABLE C-1 VITIAL SYSTEM (CONFIGURATIO	N (Cont	nued)	
lten	Assumed Failure	Possible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Fallure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
d)	b) No P video modula- tor A	Same as a) and 6) faulty switch over	No transmitter #1 partial- scan modulation signals	Partial redundancy of partial-scan pic- tures	No partial-scan pictures Ep from transmitter #1	Ep Fo	5	Same as above
camera elec- tronics)	c) No F video modula- Same tor A	Same as a)	No fuil-scan video	None	No full-scan video	A _f c _o	ŝ	Same as above
Sequencer (A9) Sequencer Power Supply (A28)	a) No DC return	 Faulty internal cir- cultry Faulty cable or con- nectors Loss of -27.5 volts 	No power amplifier (trans- mitter) turn-on	Redundant JPL command	None	t	4	I
	 b) No 2X horizontal sync 3000 cps and 900 cps 	Same as a) and 4) Shorted load	Slight reduction in video levels and sensitivity	None	Slight loss in camera sensitivity	$\left. \begin{smallmatrix} F_{\rm P} \\ F_{\rm F} \end{smallmatrix} \right\} E_{\rm O}$	4	1
	 c) No sync pulses: 1) Horizontal 1500 cps and 450 cps 2) Vertical read 3) Shutter 4) Ernse 	Same as a)	1) No full-scan video 2) Partial partial-scan video	 None Self-generating sync signals in camera #1 	 No full-scan pic- tures Loss of 3/4 of par- tial-scan pictures 	$\left \begin{array}{c} A_{F} \\ B_{p} \end{array} \right = \left \begin{array}{c} B_{o} \end{array} \right $	4	•
	d) No vertical blank- ing sync	Same as a)	 Continuous video Loss of blanking 	Partial blanking in video combiner	Blanking retrace in pictures	$\left \substack{F_{\mathrm{p}} \\ F_{\mathrm{F}} \right \in \mathbf{E}_{\mathrm{o}}$	4	1
	e) No flash sync	Same as a)	 Poor crase Inproved sensitivity 	Partially redundant cameras	Multiple exposure pic- tures	$ \begin{array}{c} E_{P} \\ E_{F} \end{array} \end{array} $ D_{o}	4	1
	f) No tone burst sync	Same as a)	No tone signals	None	No camera lights at GSE	н Н Ч	4	1
Transmitter #1 (A14) PA #1 (A15) Sig. Samp. (A18) Power Supply (A16) IPA (A31)	No output	 Faulty internal cir- cultry eables and Faulty eables and Sounctors No DC RETURN A Faulty command signals Loss of power 	No RF	Completely redun- dant 90-point te- lemetry	No full-scan pictures	Af Co	-	Fuse input power leads to isolate battery in case of short. Double check all RF cables.
Transmitter #2 (A19) PA #2 (A20) Sig. Samp. (A23) Power Supply (A21) IPA (A32)	No output	Same as transmitter #1	An No	Completely redun- dant 90-point te- lemetry	No partial-can pictures until last two minutes of mission	പ്പ		Same as transmitter ∉I

•

.

		II	
	Remarks/Recommended Compensating Provisions/etc.	Redesign dummy load in a double hermetic seal. Double check all RF cables.	Most of telemetry fail - ures occur at the take-off points and not at the te- lemetry complex
nued)	Failure Probability Factor	m	က က
N (Conti	Failure Class Factor	E _f to Af E _p to Ap ET90 Ar90 Ar90	FT90 AT90 FT15 AT15 Eo
C-1 SYSTEM CONFIGURATION (Continued)	Effects on Mission	 Decreased signal-to- noise ratio in both channels No video 	Loss of telemetry up to 88 points Loss of telemetry up to 13 points
TABLE C-1 NITIAL SYSTEM (Compensating Provisions	None	None Same as above
TABLE EFFECTS ANALYSIS OF INITIAL	Symptoms and Local Effects	Loss of RF	Loss of telemetry points Same as above
ш	Possible Causes	 Cabling and/or con- nectors Air leak 	 Faulty tremal cir- Faulty processors Faulty processors Faulty enbers Faulty cables and connectors Same as above
FAILUR	Assumed Failure	Low RF or loss of output	a) No 90-point telem- etry b) No 15-point telem- etry
	item	4-Port Hybrid (A24) and Dunny Load (A25) RF Cabling RF Cabling	Telemetry (A36) TCM Processor T/M Processor T/M Processor #2 (A30)

C-6

-

Figure C-1. Block Diagram of the Initial TV Subsystem Configuration

		FAILURE EFFI	TABLE EFFECTS ANALYSIS OF 3	.E C-2 = SPLIT-SYSTI	ABLE C-2 OF SPLIT-SYSTEM CONFIGURATION	ATION		
fea	Assumed Failure	Possible Causes	Sympioms and Local Effects	Compensating Provisions	Effects an Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
Battery (A10)	Dead or weak	 Excessively high drain Tauity heaters Defective battery Faulty connecting diode 	 Loss of high-current reg., A12, and low-current reg., A17 A17 A17 A17 A18 A18 A18 A19 A19 A19 A19 A19 A19 A10 A10 A11 A11 A11 A11 A11 A11 A11 A12 A12 A12 A12 A12 A12 A12 A12 A12 A11 A12 A12 A12 A12 A12 A12 A12 A12 A12 A14 A14<td>None</td><td>No F scan or T/M</td><td>Af 'AT90 AT15 Bo</td><td>a</td><td>It should be noted that in- dependent channels, in- cluding the batteries are cluding the batteries are employed for the F and P scans.</td>	None	No F scan or T/M	Af 'AT90 AT15 Bo	a	It should be noted that in- dependent channels, in- cluding the batteries are cluding the batteries are employed for the F and P scans.
Battery (A11)	Dead or weak	Same as above	 Loss of high-current reg., None A22 No loss of T/M Weak or lost unregulated P channel only 	None	No P scan	Ap Co	ล	Same as above
Batteries (A10 & A11)	Dead or weak	Same as above	Same as above for A10 and A11 combined	None	Aborted	$\left. \begin{array}{c} A_{p} \\ A_{p} \\ A_{T15} \\ A_{T15} \end{array} \right\} \left. \begin{array}{c} A_{0} \\ A_{0} \end{array} \right.$	۵	L
High-Current Regulator (A12)	a) Open circuit	 Faulty regulator cir- cuit (open series ele- ment) Faulty SCR's 	 Loss of voltage to F chan- nel during all modes Loss of voltage to T/M during terminal mode 	None	 No F scan No T/M during ter- minal mode 	$\left. \begin{smallmatrix} A_{f} \\ A_{T90} \end{smallmatrix} \right\} \ c_{o}$	۵ 	1
	b) Shorted circuit across regulator	circuit slement)	or II or	None	Degradation or possible Ft _{to} loss of F-scan and 90- Af point T/M during ter- FT90 minal mode to AT90	$ \begin{array}{c} Ft_{0} \\ Af \\ FT_{90} \\ FT_{90} \\ to \\ AT_{90} \end{array} $		
	c) Loss of voltage	 Shorted load Faulty SCR switch Faulty SCR switch Low battery voltage Faulty regulator Faulty cable connector 	1) No reg27.5 volts 2) No unreg. 30.5 volts	None	1) No F-scan, ever 2) No P-scan	$\left. \begin{array}{c} A_{f} \\ A_{T90} \end{array} \right\} \left. \begin{array}{c} C_{o} \\ A_{p} \end{array} \right. \left. \begin{array}{c} C_{o} \end{array} \right.$	പ വ	
High-Current Reg. (A22)	a) Open circuitb) Short circuitacross reg.	 Faulty reg. circuit (open series element) Faulty SCR's Faulty regulator cir- cuit (shorted series element) 	Loss of voltage to P-channel all modes Over voltage on -27.5 volts line (=30.5 -25 volts) during P-scan	None None	No P-scan A_p Degradation or possible F_p to loss of P-scan A_p	$ \begin{array}{c} A_{p} & C_{o} \\ F_{p} & to \\ A_{p} & C_{o} \end{array} $	ഗന	ц I
A17, Low Cur- rent Reg.	a) Open circuit	 Faulty reg. circuit (open series element) Faulty series diode Faulty relay (com- mand switch) 	Faulty reg. circuit T/M supplied by high-cur- poen series element) rent reg. A12, during termi- Faulty series diode nal mode; no 15-point T/M Faulty relay (com- mand switch)	Redundant with high-current reg. A12, during ter- minal mode	Loss of 15-point T/M during cruise mode	AT15 65 Hy Fo	ى ا	

	A T	FAILURE EFFECTS	TAB EFFECTS ANALYSIS OF SPLI	TABLE C-2 SPLIT-SYSTEM C	TABLE C-2 SPLIT-SYSTEM CONFIGURATION (Continued)	l (Conti	nveď)	
E	Assumed Failure	Possible Causes	Sympioms and Local Effects	Compensating Provisions	Effects on Mission	Failure Closs Factor	Failure Probability Factor	Remorks/Recommended Compensating Provision/etc
A17, Low Cur- rent Reg. (Continued)	 b) Shorted circuit across reg. 	Faulty reg. circuit	Over voltage on -27, 5 volts line during cruise to T/M	None	Degradation or possible Fr15- loss of 15-point T/M to during cruise mode Ar15-	FT15 65 to Hy AT15 Hy	n	,
		 Shorted load Low battery voltage Faulty regulator Faulty cable connector 	Same as a) above. Possible oscillation of CRUISE ON relay in command switch	Redundant with high-current reg. A12 during termi- nal mode only	Possible loss of F-scan AT15 and T/M AT15 Af	$ \begin{array}{c} F_0 \\ AT15 \\ to \\ to \\ AT90 \end{array} $	دی	The indicated effect on the mission could result from discharge of the battery due to CRUISE-ON relay oscillation due to short-circuit load
Command Switch (A13)	a) No CRUISE-ON command	 No input from JPL Faulty cable or connector Faulty latching relay 	No T/M during cruise	None	Loss of 15-point T/M during cruise mode	$\left. \begin{array}{c} A_{T15} \\ 65 \\ H_{y} \end{array} \right _{F_{O}}$	ß	t
	b) No WARM -UP command	 No unput from JPL Paulty cable or connector nector Faulty SCR ampl. Faulty diodes to SCR's 	No high-current regulator output; no F- or P-scan; no 90-pount T/M during terminal mode	 RTC signal as tst back-up Clock signal as Zhd back-up 	None, províded back- up works		tت 	I
	c) No EMERGENCY command	 Faulty relay in trans- mitter #1 or #2 2) Selection connection open 3) Faulty wiring of re- turn to stepper switch 4) Inoperative stepper 	Faulty relay in trans- None for expected (normal) mitter #1 or #2 operating conditions; however Selection connection no emergency T/M is possi- open ble. When stepper switch is "Faulty wiring of re- inoperative, system is locked furnto stepper switch in cruise mode if warm-up inoperative stepper	None, since this is a back-up com- mand	Loss of back-up for minimal T/M data re- turn. No effect if warm-up signal from JPL works. Otherwise, subsystem is looked in cruites mone	AT90 Eo	ى بى	Only during emergency mode operation
	d) No EMERGENCY OFF command	Frozen stepper switch	Continued operation in emer- gency mode assuming failures require going to the emer- gency operation	None, since this is a back-up com- mand	fect de- turn, tn- cat trials peration rring ini- isi, i.e.,	$A_p \begin{cases} A_0 \\ A_p \end{cases}$	ى ب	Failure class and prob- ability figures apply only ability emergency opera- tion and clearing of diffi- culties precipitating emergency operation
	e) No RTC input re- sponse	 Faulty RCA-JPL in- terface conn. Faulty RTC relay Faulty RTC signal source 	Loss of back-up command capability for turn-on and loss of cmergency telemetry	None	not e If ired	Ar Ap Ar90	ۍ ۱	Failure class and prob- ability figures apply only after initial failure of warm-up signal from JPL and clock
Camera Head (F-Scan)	a) Loss of camera A (A1A6)	 Faulty sequencer to F-channel Faulty connector or cable Faulty internal cir- cuit Loss of 27.5 volts reg. 	Loss of F-scun video A		Loss of 1/2 of F-scan pictures	c. Do	2	1

.`

	Remarks/Recommended Campensating Provisions/etc.		1	1		, , ,		1	Simultaneous loss of ±6.3 volus from cameras #1 and #2 is required to dis- able the video combiner causing loss of all P-scan video	1
ued)	Failure Probability Factor		5	£	N	~ ~ ~	1	8	<u>م</u>	L .
ontin	Failure Class Factor		Do	ပိ	ů	9 8 8 8	0	о щ	о Е	°ບ
	50 E		చి	¥	Å	កំកំ	<u>a</u>	<u>é</u>	Ъ.	- Ap
TABLE C-2 SPLIT-SYSTEM CONFIGURATION (Continued)	Effects on Mission		Same as a)	Loss of all F-scan pic- tures	Loss of 1/4 of P-scan pictures	Same as above Same as above	Dallie as anote	Loss of 1/4 P-scan pictures	None	Loss of all P-scan pic- tures
TABLE C-2 SPLIT-SYSTEM CO	Compensating Provisions		ı	P-scan returns, no F-scan	Partially redundant partial-scan pic- tures	Same as above Same as above	Same as above	Partially redundant P-scan pictures	±6.3 volts is re- dundant	None
QF	Symptoms and Local Effocts		Loss of F-scan video B	Loss of all F-scan	Loss of P-scan video #1	Loss of P-scan video #2 Loss of P-scan video #3	Loss of P-scan video #4	Loss of one P-scan video	None	Loss of all P-scan video
FAILURE EFFECTS ANALYSIS	Possible Causes	 5) Loss of 30.5 volts reg. 6) Shorted camera electronics 7) Faulty vidicon and shutter 	ove	Same as above	 Faulty sequencer Paulty cable or con- nector Faulty internal cir- cuti Loss of -27.5 volts Loss of -30.5 volts Loss of -30.5 volts Loss of -31.5 volts tronics Shorted camera elec- tronics Faulty vidicon Faulty shutter 		Same as above	 Faulty internal cir- cutry vidicon and shutter Iosa of bias voltage Shorted video com- biner Faulty cable or con- nector 	 Faulty internal cir- out Faulty cable Faulty diode 	Same as above
FAI	Assumed Failure		b) Loss of camera B (A1A5)	c) Loss of both cam- era A and B	a) Loss of camera #1	b) Loss of camera #2c) Loss of camera #3	d) Loss of camera #4	 a) Loss of any one of the four P-scan camera videos (assume camera head is O.K.) 	b) Loss of ± 6.3 volts from either cam- era ± 1 or ± 2	c) Loss of ±6.3 volts from both cam- eras
	E	Camera Head (F-scan) (Continued)			Camera Head (P-scan)			Camera Elec- tronics (A2) P-scan Cam- eras		

CONFIGURATION (Continued)	B Effects on Mission Class Failure Failure Remarks/Recommended Class Probability Compensating Factor Factor Provisions/etc.	Loss of 1/2 F-scan Dr Do 2	e- None F_f F_0 5 Simultaneous loss of 46.3 volts from cameras A and B is required to diable the video combi- ner and cause loss of all F-con video.	No F-video returned A1 Co 5 T/M return possible	No F-video return A _f Co 5 -	Complete loss of P- Ap Co 5 -	Complete loss of F- Af Co 5 -	None	nels No video (i.e., loss of $\frac{A_f}{or}$ $\frac{A_f}{C_o}$ $\frac{A_f}{C_o}$ - channel, 1 to 6 other A_p A_p A_p	hela No video or degraded A_f A_p and video or degraded A_f C_o A_p C_o A_p
TABLE C-2 SPLIT-SYSTEM	Compensating Provisions		46.3 volta is re- dundant	None	None	None	None	Rechindant JPL command	Redundant channels employed, "P" and "F"	Redundant channels employed, "P" and "F", Camera P1 and free-running sync. provisions.
TAB ANALYSIS OF SPLI	Sympioms and Local Effects	Loss of F-scan video, A or B	None	Loss of all F-video	Loss of all F-video	No XMTR #2 modulation sig- nais (video)	No XMTR #1 modulation sig- nals (video)	No XMTR operation	Deficient video or no video combining	Deficient video or no video
FAILURE EFFECTS A	Possible Caviss		 Faulty internal cir- cuit Faulty cable Paulty diode 	Same as a) above	Same as b) above	 Faulty internal cir-1 cuit Faulty cable or con- nector Loss of blas voltage Shorted load Faulty sequencer 	Bame as a) above n	 Faulty relay Faulty cable or con- bector Faulty relay driver Faulty timer 	 Faulty cable or con- nector c 2) Faulty internal cir- outh 	Same as b) above
FA	Assumed Failure	a) Loss of camera A or B video (as- sume camera head is working properly)	b) Loss of ±6.3 volts	c) Loss of camera A and B video (as- sumes camera head is O.K.)	d) Loss of ±6.3 volts both cameras	 B) No P-video modu- lator B (assumes good camera elec- tronics) 	b) No F-video modu- lator A (assumes good camera elec- tronics)	s) No DC return (transmitter re- turn)	 b) Loss of gating sig- nals (to combiner) 	c) Loss of camera sync functional signals (to cam- era electronics)
	ltem	Camera Elec- tronics Cam- era A or Cam- era B				Video Com- biner (A8)		Sequencer (A9) Sequencer Pwr. Supply (A28) Channel F or Channel P		

).

······						
	Remarks/Recommended Compensating Provisions/etc.	. 1	I			
ued)	Failure Probability Factor	1	1		ŵ	ñ
(Contin	Failure Class Factor	υ μ	Ap Co	$ \begin{array}{c} E_{f} \ to \\ A_{f} \\ E_{p} \ to \\ E_{T90} \\ A_{T90} \end{array} \right) \\ A_{T90} \end{array} $	ET90 to AT90 AT90	FT15 E0
CONFIGURATION (Continued)	Effects on Mission	No "F" scan pictures Af	No ''P'' scan pictures A	Decreased signal-to- noise ratio both chan- all video and 90-point E T/M A A A A A	Loss of T/M up to 88 F points A hour to 88 A	Loss of T/M up to 13 F points
TABLE C-2 SPLIT-SYSTEM CC	Compensating Provisions	Redundant 90-point T/M	Same as above	None	None	None
TAI ANALYSIS OF SPL	Symptoms and Local Effects	No RF	No RF	No RF	Loss of T/M points	Same as above
FAILURE EFFECTS 4	Possible Causes	 Faulty internal cir- ouit Faulty cable and con- nector No DC return Paulty command sig- nal Loss of power 	Same as above	 Faulty cabling or connector Arcing Air leakage 	 Faulty commutator Faulty internal cir- out Faulty processors Faulty temperature sensors Faulty calles and connectors 	
F A	Assumed Failure	No output	No output	Low or lost output	a) No 90-point T/M	b) No 15-point T/M
	Item	XMTR #1 PA #1 (A15) 2nd IPA (A31) Pwr. Supply (A16)	XMTR #2 PA #2 (A20) 2nd IPA (A32) Pwr. Supply (A21)	4-Port Hybrid (A24) and Dummy Load (A25)	T/M (A26) Temp Sensor (A27) T/M Proces- sor #1 T/M Proces- sor #2	

• .

. .

التواريك يعيب

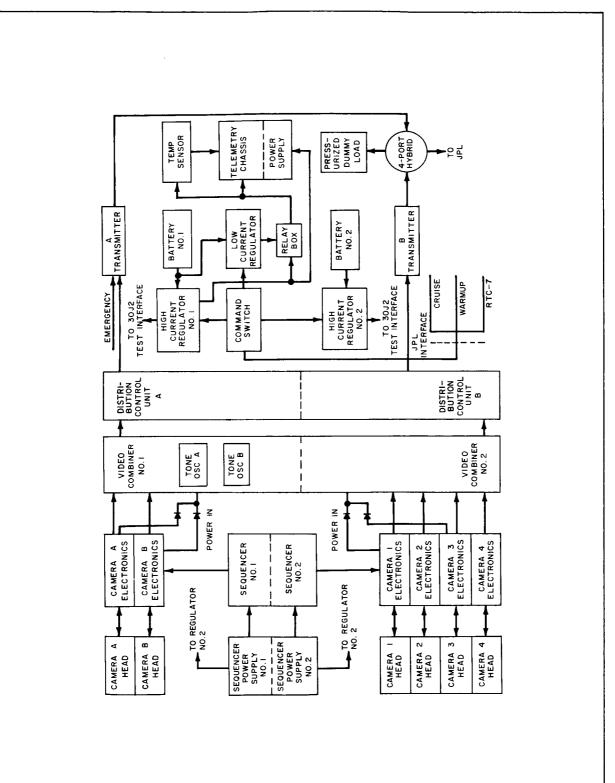


Figure C-2. Block Diagram of the Split-System Configuration

	Remarks/Recommended Compensating Pravisions/etc.	1	ŀ	1	·	•	1	Design with input fuses in each camera circuit	1	Redesign telemetry pick- up point	Protect transistors from excessive collector volt- ages
CIATED	Failure Probability Factor	ъ	<u>ت</u>	ø	Ω	μĴ	4	4	3 to 4	N	n
D ASSC	Failure Class Factor	0 Er	Fp Fo	Fp Fo	Ep Eo	Fp Fo	° 4 4	$\left\{ {{{_{{f}}_{{P}}}}_{{A_0}}} \right\}$ Ao	ຍ ມີ	ດ d	°a du
TABLE C-3 OF PARTIAL-SCAN CAMERA NO. 1 AND ASSOCIATED ELECTRONICS (Continued)	Effects on Mission	None	Slightly wider P-scan R on camera #3	Slightly longer P-scan F on camera #3		Blight vertical shift on F P-scan from camera #3	 No P-video during I first 8 minutes of terminal mode Loss of 1/4 of par- tial-scan pictures 	No TV presentation A	One partial-scan pic- ture will have multiple exposure picture	Loss of 1/4 of partial- D scan pictures	Loss or degradation of D 1/4 of partial-scan pic- tures
TABLE C-3 DF PARTIAL-SCAN CAME ELECTRONICS (Continued)	Campensating Provisions	None needed	3 other partial- scan cameras	3 other partial- scan cameras	3 other partial- scan cameras	3 other partial- scan cameras	 3 other partial- scan pictures P video modu- lates A during last two minutes of terminal mode 	None	3 other partial- scan pictures	3 other partial- scan pictures	3 other partial- scan pictures
1 1	Symptoms and Local Effects	None	Slightly wider picture	Slightly longer picture	Picture every other frame	Slight vertical center shift	 No video from camera #3 Loss of bias voltage(s) to video combiner resulting in no "video modulator B" 	Short on -27 wolt bus	 Inproved sensitivity Poor erase 	 No video from camera #3 2 No shutter motion Possible erratic shutter action Transient injection into video 	No video from canners #3 or severe degradation of video by: defocueing and beam oscillation
E EFFECTS ANALYSIS	Possible Causes	Open cable and/or con- nectors		Open cable and/or con- nectors		Open cable and/or con- i nectors	 Paulty internal cir- cutry Shorted load 		 Faulty internal cir- cuitry Loss of sync signal(s) Loss of blas volt- age(s) Open cable or con- nector(s) Open lamp 	 Faulty internal cir- cuitry Loss of bias volt- age(s) Locked shutter Locked shutter Open cable or con- nectors Shutter and lamp telemetry circuit 	 Faulty internal circuitry Loss of bias volt- age(s) Faulty vidicon
FAILURE	Assumed Failure	a) Loss of: 2X horizontal sync, sync, flash sync, black clamp sync, and vertical blank- ing	b) Loss of: horizontal sync:	c) Loss of: vertical read sync	d) Loss of: erase sync	e) Loss of: shutter sync	a) ±6.3 regulator and converter	b) Same as above	Lamp driver and lamp	Shutter and shutter drive circuit	Beam current and regulator switch
	1	. Interface Signals					±6.3 Regulator and Converter		Lamp Circuit	Shutter and shutter and s Bhutter Control drive circuit	Beam Current and Regulator Switch

			r					· · · · · · · · · · · · · · · · · · ·
	Remarks/Recommended Compensating Provisions/etc.		•	1	1		1	
OCIATED	Failure Probability Factor		م	a.	۵	u	n	N
ID ASSC	Failure Class Factor		D _p E ₀	Dp Eo	Dp Eo	e e	Dp Eo	д д
TABLE C-3 OF PARTIAL-SCAN CAMERA NO. 1 AND ASSOCIATED ELECTRONICS (Continued)	Effects on Mission		Loss or degradation of 1 1/4 of partial scan pictures	Loss or degradation of 1 1/4 of partial-scan pic- tures	Loss or degradation of 1 1/4 of partial-scan pictures	Loss or degradation of 1 1/4 of partial scan pic- tures	Loss or degradation of I 1/4 of partial-scan pic- tures	Loss or degradation of I 1/4 of partial-scan pic- tures
TABLE C-3 DF PARTIAL-SCAN CAME ELECTRONICS (Continued)	Compensating Provisions		3 other partial- scan pictures	3 other partial- scan pictures	3 other partial- scan pictures	4	3 other partial- scan pictures	3 other partial- scan pictures
TAB LYSIS OF PARTIAI ELECTRONIC	Symptoms and Local Effects		No video or partial (non linear) vertical sweep from camera #3	No video or partial (non linear) horizontal sweep from camera #3	No video or possibly un- blauked horizontal and/or vertical lines on video from camera #3	No video or possibly degraded 3 other partial- video from camera #3 (center scan pictures shifts and/or size shifts)	No video or possibly defo- cused video from camera #3	No video or degraded video from camera #3
E EFFECTS ANALYSIS	Possible Causes	 4) Faulty read signal (due to cable or con- nectors) 	 Faulty internal cir- cuitry Loss of bias volt- age(s) Shorted yoke coil Loss of syne signals Failure in deflection programming 	 Faulty internal cir- cultry Loss of bias volt- age(s) Shorted yoke coll Loss of sync signals Failure in deflection programming 	 Faulty internal cir- cuitry Loss of bias volt- age(s) Loss of sync signals Faulty vidicon 	 Faulty internal cir- cuitry Loss of bias volt- age(s) Loss of sync signals Faulty cable or con- nector(s) 	 Faulty internal cir- cuitry Loss of power input 	 Faulty tube Connectors Loss of blas volt- age(s) Faulty focus or de- flection coils Poor focus current regulation Faulty optical align- ment
FAILURE	Assumed Failure		Vertical deflection amplifier	Horizontal deflection amplifier	Mixed cathode blank- ing	Deflection program- mer	Focus current regu- lator	Vidicon
	ttem	Beam Current and Regulator Switch (Continued)	Vertical De- flection Ampli- fier	Horizontal Deflection Amplifier	Mixed Cathode Blanking	Deflection Programmer	Focus Current Regulator	Vidicon

	T	π						_					 	
	Remarks/Recommended Compensating Provisions/etc.	Redesign telemetry take- off point	1		ı	ł	1	ı	I	1				
AND ASSOCIATED	Failure Probability Factor	3	n	4	4	4	4	4	4	4				
ASS	Failure Class Factar	Eo	Eo	° H	ы о	Eo	о щ	Eo	ы ы	° B	····		 	
ND	501	<u> </u>	р Бо	f	ď	å	ď	ď	ďa	<u> </u>				
RA NO. 1	Effects on Mission	Loss or degradation of 1/4 partial-scan pic- tures	Partial loss of engi- neering data	Possible loss of 1/4 of partial-scan	Possible loss of 1/4 of partial-scan	Same as above	Same as above	Same as above	Possible loss of 1/4 of partial-scan	Same as above				
TABLE C-3 OF PARTIAL-SCAN CAME ELECTRONICS (Continued)	Componsating Provisions	3 other partial- scan pictures	None	3 other partial- scan pictures	3 other partial- scan pictures	Same as above	Same as above	Same as above	3 other partial- scan pictures	Same as above				
TAE LYSIS OF PARTIA ELECTRONI	Symptoms and Local Effects	Erratic shutter operation	Faulty internal circuitry Erratic video or loss of te- lemetry points	No video from camera #3	 Increase of sensitivity Multiple exposure 	No video from camera #3	None	No video from camera #3	No video from camera #3	Very little effect				
E EFFECTS ANALYSIS	Possible Causes	Shorted transistor	Faulty internal circuitry	 Faulty internal cir- cuitry Loss of bias volt- age(s) 	 Faulty internal cir- cuitry Loss of bias volt- age(s) 	Same as above	Same as above	Same as above	 Faulty Internal cir- Cultry Loss of bias volt- age(s) 	Same as above			 	
FAILURE	Assumed Failure	a) Shutter telemetry	b) Other telemetry	a) Loss of read sync	b) Loss of flash pulse	c) Loss of erase pulse	d) Loss of dark cur- rent sample	e) Loss of shutter pulse	a) Loss of horizontal sync	b) Loss of 2X hori- zontal sync			 	
	Lea H	Telemetry		Vertical Sync Generator					Horizontal Sync Generator			······	 	

	FAII	FAILURE EFFECTS A	TABI EFFECTS ANALYSIS OF PART AND ASSOCIAT	TABLE C-4 5 OF PARTIAL-SCAN CAME ASSOCIATED ELECTRONICS	RA NOS.	2, 3, A	AND 4	
Ĕ	Assumed Failure	Possible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
Interface Power	a) Loss of regulated -27, 5 volts	Open cable and/or con- nectors	 1) No video from faulty camera(s) 2) If camera #3 is at fault, no partial-scan video to modulator A 3) Clipper to modulator B is not properly blased 	 Partial-scans from other cameras (if cameras (if cameras is bad, partial- scan to modu- lator B only) Redundant P- scan video dur- ing last two ing last two minal mode 	 J. Loss of 1/4 of par- tial-scan pictures Over deviation of both transmitters if camera #3 is at fault. Last two minutes of terminal mode only B modulator will operate 	°n 	۵.	Combine input power from camera electronics
	b) Loss of unregula- ted voltage	Open cable and/or con- nectors	No video in faulty camera due to shutter power	3 other partial- scan cameras	Loss of 1/4 of partial- scan pictures	Dp Eo	ъ	I
Interface Signal	a) Loss of 2X hori- zontal sync (3000 cps)	Open cable and/or con- nectors	Slight loss in video levels, slight loss in sensitivity	3 other partial- scan cameras	Very little effect on overall partial-scan pictures	Fp Fo	ى م	1
	 b) Loss of horizontal sync (1500 cps), vertical read, shutter, and erase 	Open cable and/or con- nectors	No video	3 other partial- scan cameras	Loss of 1/4 of partial- scan pictures	D ₀ E ₀	ى س	ı
	c) Loss of flash	Open cable and/or con- nectors	a) Improved sensitivity b) Poor erase (not as criti- cal as in full-scan pic- tures)	3 other partial- scan cameras	One partial-scan pic- ture is slightly degra- ded	Ep Fo	ى 	1
	d) Loss of vertical blanking	Open cable and/or con- nectors	Continuous video loss of blanking	Partial blanking effect is accom- plished in video combiner	Blanking retrace in pic- ture	Ep Fo	ن	1
_	e) Loss of black clamp	Open cable and/or con- nectors	No effect	None needed	None	- Fo	5	May be used at later time for other purposes
±6.3 Regula- tor and Con- verter, Cam- era #2 or	a) ±6.3 regulator and converter, cam- era #2 or camera #4	 Faulty internal com- ponents Shorted load 	No video from camera #2 or from camera #4	3 other partial- scan pictures	Loss of 1/4 of partial- scan pictures	D _D E	4	1
Camera #4	b) Same as a) above	Shorted chopper	Short on -27 volt bus	None	No TV presentation	$\left\{ \begin{array}{c} A_{f} \\ A_{p} \end{array} \right\} A_{o}$	4	Design with input fuses in each camera circuit
±6.3 Regulator and Converter, camera #3	a) ±6.3 regulator and converter, cam- era #3	 Faulty internal com- ponents Shorted load 	 No video from camera #3 No partial-scan video to modulator A Clipper to modulator B is not properly biased 	Partial-scan to modulator B only	 Loss of 1/4 of par- tial-scan pictures Over deviation of both transmitters before switchover only after switchover only B modulator will be operative 	ి 	4	Combine input power from camera electronics
	b) Same as a) above	Shorted chopper	Short on -27 volt bus	None	No TV presentation	$\left\{ \begin{array}{c} A_{f} \\ A_{p} \end{array} \right\} = A_{0}$	1	Design with input fuse in each camera circuit

.

	FAI	FAILURE EFFECTS / AN	TABLE C-4 EFFECTS ANALYSIS OF PARTIAL-SCAN CAMERA N AND ASSOCIATED ELECTRONICS (Continued)	TABLE C-4 PARTIAL-SCAN D ELECTRONICS	TABLE C-4 PARTIAL-SCAN CAMERA NOS. 2, 3, AND 4 ED ELECTRONICS (Continued)	2, 3, 1	ND 4	
Ĕ	Assumed Failure	Possible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
High-Voltage DC-to-DC Con- verter	a) High voltage DC- to-DC converter	 Faulty internal com- ponents Shorted load Faulty high-current regulator (due to over voltage transi- ent) 	No video from faulty camera	3 other partial- scan pictures	Loss of 1/4 of partial- scan pictures	đ	4	Design over-voltage pro- taction in high-current regulator
	b) Same as a) above	Shorted chopper	Short on -27 volt bus	None	No TV presentation	A_{p} A_{o} A_{o}	4	Design with input fuses in each camera circuit
High-Voltage Regulator	High-voltage regula- tor (faulure of any output voltage) ±30 +300 ±27 +1000 40 -150	 Faulty internal com- ponents Shorted load 	Poorly focused video or no video	3 other partial- scan pictures	Complete loss of cam- era #3 picture or pic- ture is defocused	Ap Eo	0	Check into transistor Q32 failure modes
Preamplifier	Preamplifier	 Faulty internal components No vidion picture Loss of bias voitage() age() Cable or connector(s) 	No video from faulty camera (telemetry point)	s other partial- scan pictures	Loss of 1/4 of partial- scan pictures	D D D D	4	Check into muvistor fail- ure modes. Design with transistor preamplifier
Video Ampli- fier	Video amplifier	 Faulty internal components No video from pre- amp Loss of blas volt- age(s) 	No video from faulty camera (possibly degraded video) from faulty camera	3 other partial- scan pictures	Loss of 1/4 of partial- scan pictures	Dp Eo	w	ı
Video Clamp and Sync In- jection	Video clamp and sync injection	 Faulty internal com- ponents Loss of horizontal or vertical sync No video from video amplifier Loss of blas volt- age(s) 	No video from faulty camera (possibly degraded video) from faulty camera	3 other partial- scen pictures	Loss of 1/4 of partial- scan pictures	ů ď	ت ت	1
Lamp Circutt	Lamp driver and lamp	 Faulty internal components ponents Loss of sync signal(s) Loss of bias volt- age(s) dy open cable or con- nectors Open lamp 	 Inproved sensitivity Poor srase 	3 other partial- scan pictures	One partial-scan pic- ture will have multiple exposure pictures	ය ජ	2 2 7	I
Shutter and Shutter Control	Shutter and shutter drive circutt	 Faulty internal com- ponents Loss of bias voltage 	 No video from faulty camera No shutter motion 	3 other partial- scan pictures	Loss of 1/4 of partial- scan pictures	Dp Eo	N	Redesign telemetry take- off point

	Remarks/Recommended Compensating Provisions/etc.		Protect transistors from excessive collector voltages.		•	1	1	1	ſ
4D 4	Failure Probability Factor		ñ	Ŋ	2	3	Ω	3	0
, Ah	1 3 Q		ы°	о Э	о ല	° a	ы°	Eo	ы В
2, 3	Failure Class Factor		a ^a	ď	đ	ad	م ^م	ď	ڡڡ
CAMERA NOS. (Continued)	Effects on Mission		Loss or degradation of 1/4 of partial-scan pictures	Loss or degradation of 1/4 of partial-scan pictures	Loss or degradation of 1/4 of partial-scan pictures	Loss or degradation of 1/4 of partial-scan pictures	Loss or degradation of 1/4 of partial-scan pictures	Loss or degradation of 1/4 of partial-scan pictures	Loss or degradation of 1/4 of partial-scan pictures
TABLE C-4 PARTIAL-SCAN (D ELECTRONICS	Compensating Provisions		3 other partial- scan pictures	3 other partial- scan pictures	3 other partial- scan pictures	3 other partial- scan pictures	3 other partial- scan pictures	3 other partial- scan pictures	3 other partial- scan pictures
TABLE C-4 RE EFFECTS ANALYSIS OF PARTIAL-SCAN CAMERA NOS. 2, 3, AND 4 AND ASSOCIATED ELECTRONICS (Continued)	Symptoms and Local Effects	 Possible erratic shutter action 	No video from faulty camera or severe degradation of video by defocusing and beam oscillation	No video or partial (non- linear) vertical sweep from faulty camera	No video or partial (non- linear) horizontal sweep from scan pictures faulty camera	No video or possibly un- blanked horizontal and/or vertical lines on video	No video or possibly de- graded video (center shifts and size shifts)	No video or possibly de- focused video from faulty camera	No video or degraded video from faulty camera
	Possible Causes	 3) Locked shutter 4) Open cable or connectors 5) Shutter and lamp telemetry circuit 	 Faulty internal components Loss of bias voltages Faulty vidicon Faulty read signal (due to cables or con- nectors) 	 Faulty internal components components Loss of bias voltages Loss of bias voltages Force sync signals Faultre in deflection programming 	 Faulty internal components components Loss of bias voltages Snorted yoke coil Loss of sync signal(s) Failure in deflection programming 	 Faulty internal components Loss of bias voltage(s) Loss of sync signals Faulty vidicon 	 Faulty internal components Loss of blas voltages Loss of sync signals Faulty connector(s) or cable 	 Faulty internal components Loss of power input 	 Faulty tube Connectors Connectors Loss of bias voltages Faulty focus or de- flection coils
FAILU	Assumed Failure		Beam current regula- tor and switch	Vertical deflection amplifier	Horizontal deflection amplifier	Mixed cathode blank- ing	Deflection Program- mer	Focus current regulator	Vidicon
	ltem	Shutter and Shutter Control (Continued)	Beam Current Regulator and Switch	Vertical Deflection Amplifier	Horizontal Deflection Amplifier	Mixed Cathode Blanking	Deflection Programmer	Focus Current Regulator	Vidicon

		Ţ			
	Remarks/Recommended Compensating Previsions/efc.		Redesign telemetry takeoff point.	1	
4	Failure Probability Factor		n	n	
3, AND	Failure Class Factor		D D D	ET90 Eo	
NERA NOS. 2, ntinued)	Effects on Mission		Loss or degradation of 1/4 of partial-scan pictures	Partial loss of en- gineering data	
C-4 L-SCAN CAN RONICS (Co	Componsating Provisions		3 other partial- scan pictures	None	
TABLE C-4 EFFECTS ANALYSIS OF PARTIAL-SCAN CAMERA NOS. 2, 3, AND 4 AND ASSOCIATED ELECTRONICS (Continued)	Sympioms and Local Effects		Erratic shutter operation and erratic video	Loss of telemetry points	
	Possible Causes	 5) Poor focus current regulator 6) Faulty optical alignment 	Shorted transistor	Faulty components	
FAILURE	Assumed Failure		a) Shutter telemetry	b) Other telemetry	
	E . J	Vidtoon (Continued)	Telemetry		

TABLE C-5 FAILURE EFFECTS ANALYSIS OF FULL-SCAN CAMERAS F. AND F. AND ASSOCIATED ELECTRONICS	Assumed Possible Symptoms and Local Effects Compensating Effects on Mission Failure Failure Failure Failure Compensating Failure Causes Local Effects Provisions Effects on Mission Cargon Factor Factor Factor Factor Factor Provisions/etc.	a) Loss of regulated Open cable or connec- 1) No video 27.5 volts tor(e) 2) Partial bias voltages in video combiner signals and only one signals and only on	b) Loss of unregu- lated voltage Compensative shutter 2) If camera B is at Ar Compensative as above pictures 5 Same as above b) Loss of unregu- lated voltage Copen cable or connec- tor(s) Inoperative shutter Partially redundant Loss of 1/2 of full-scan 5 5	dant Small loss of 1/2 of DF full-scan video	b) Loss of: horizontal Open cable or connec- sync (450 cps), tor(s) vertical read sync, shutter sync, and erass ync.	c) Loss of flash sync Open cable or connection in the provide sensitivity $Partially redundant A set of multiple expo- \begin{bmatrix} D_F \\ F \end{bmatrix} = \begin{bmatrix} 5 \\ C_F \end{bmatrix} = \begin{bmatrix} 5 \\ C$	d) Loss of vertical Open cable or connec- Continuous video loss of Partial blanking tetrace in F F o 5 - blanking tor(s) blanking tor(s) video complished in full-scan picture - video combiner -	ar a) Loss of ±6.3 volts 1) Faulty internal 1) No video from camera A Partially redundant 1) No tone alguals at C E 4 Combine video combiner circuitry 2) No power to tone gates in full-scan video B GSE 0; Shorted load(s) video combiner 2) Shorted load(s) 2) Loss of 1/2 of full-scan prover from two camera electronice. Use scan pictures scan pictures a diode "OPP" value of the start of the scan pictures a diode "OPP" value of the scan pictures a diode video combiner of the scan pictures a diverse of the scan pictures a diode video combiner of the scan pictures a diverse of the scan	b) Loss of ± 6.3 volts Shorted chopper (shorted Short on -27 volt bus (regula- None 1) Loss of full-scan $\begin{vmatrix} A_F \\ pictures \\ input \end{vmatrix}$ $\begin{vmatrix} A \\ A_F \end{vmatrix}$ $\begin{vmatrix} A \\ A_C \end{vmatrix}$ $\begin{vmatrix} A_F \\ fuses in each \\ pictures \end{vmatrix}$ $\begin{vmatrix} A_F \\ A_C \end{vmatrix}$ $\begin{vmatrix} A_F \\ A_C \end{vmatrix}$ $\begin{vmatrix} A_F \\ A_C \end{vmatrix}$ $\begin{vmatrix} A_F \\ A_F \end{vmatrix}$ $\begin{vmatrix} A_F \\ A_C \end{vmatrix}$ $\begin{vmatrix} A_F \\ A_F \end{vmatrix}$ $\begin{vmatrix} A$	a) Loss of ±6.3 volts 1) Faulty internal 1) No video from camera B None Loss of full-scan pic- Af C 4 Combine video combiner - circuitry 2) No power to F video gates 2) Shorted loads on F video combiner gates 2) Shorted loads 0 n F video combiner gates 2) Shorted loads 2) Shorted 2)	b) Loss of ±6.3 volts Shorted chopper (shorted Short on -27 volts bus (regu- input) ated) -27 volts bus (regu- lated) b) Loss of full-scan A b) Loss of partial-scan A b) Loss of partial-scan A b) Loss of partial-scan A	a) Inoperative Con- a) Inoperative Con- 1) Faulty internal Loss of full-scan video A or Partially redundant Loss of 1/2 of full-scan 4 verter 2) Shorted load(s) B full-scan video pictures 6 4 3) Faulty high-current 3) Faulty high-current regulator full-scan video pictures 1/2 of full-scan 6 4
	Assumed Failure	a) Loss of regul		a) Loss of 2X ho zontal sync (45 cps)	 b) Loss of: horize sync (450 cps), vertical read a shutter sync, a erase sync 		d) Loss of vertics blanking		b) Loes of ±6, 3 vo	a) Loss of ±6.3 vo	b) Loss of ±6.3 vo	a) Inoperative Con verter
	East	Interface Power		Interface Signals				±6.3 Converter Regulator Camera A		±6.3 volts Converter Regulator Camera B		High- Voltage, DC-to-DC Converter

		FAILURE EFFECT	TAB LURE EFFECTS ANALYSIS OF FI ASSOCIATED ELEC	TABLE C-5 OF FULL-SCAN CAMERAS ELECTRONICS (Continued)	Ľ	AND F. AND	QN	
t.	Assumed Failure	Pessible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
High- Voltage DC-to-DC Converter (Continued)	b) Same as above	Shorted chopper (shorted short on -27 volts bus (regulated)	ehort on -27 volts bus (regulated)	None	 Loss of full-scan plotures Loss of partial-scan plotures 	Ar Ao	4	Design with input fuses in each camera.
High Voltage Regulator	Loss of any output voltage + 300 +27 +1000 +40 - 150	 Faulty internal oircuitry Shorted load(s) 	Degraded video or no full- scan video A or B	Partially redun- Loss dant full-scan video video	Loss of 1/2 of full-scan video	L _F E	63	Check into transistor Q32 failure modes
Preamplifier	a) Loss of preampli- fier output	 Faulty internal circuitry faulty vidicon (head) Loss of blas voltage(s) Lobie of blas voltage(s) 	No video (fuil-scan) A or B telemetry point	Partially redundant full-scan video	Partially redundant Loss of 1/2 of full-scan full-scan video video	ມິ ປ ^ະ	4	Check into nuvistor fallure modes; check into transistor design.
	 b) microphonic pre- amplifier output 	microphonic nuvistor	tolsy video (full-scan) A or. 3	Partially redundant full-scan video pictures	Partially redundant Noisy fuil-scan pictures full-scan video pictures	FF-CFE	4	Select nuvistor for mini- mum microphones
Video Amplifier	Loss of amplifier out- put	 Faulty internal circuitry Faulty Preamplifier Loss of blas voltage 	 No full-scan video A or B Degradation of video out- put (full-scan) 	Partially redundant full-soan video	Partially redundant Loss of 1/2 of full-scan full-scan video video	с ^в	ε	
Video Clamp and Sync Injection	Loss of output	 Faulty internal circuitry Loss of horizontal Loss of horizontal Faulty video amp Loss of bias voltage(s)) No fuil-scan video A or B) Degraded fuil-scan video	Partially redundant full-scan video	Partially redundant Loss of 1/2 of full-scan full-scan video video	ຍິ ^{ເຊ} ັບ	a	
Lamp Driver and Lamp	Loss of excitation	 Faulty internal frouttry circuittry 21 Loss of flash sync 22 Loss of bias voltage(s) a) Loss of bias voltage(s) a) Faulty cable or con- nectors b) Open lamp) improved sensitivity poor erase	Partially redundant full-scan video	Partially redundant One full-scan ploture full-scan video will have multiple ex- posure pictures	ц° ц	3 to 4	
Shutter and Shutter Control	Loss of shutter action	 Faulty internal circuitry Faulty connector(s) Faulty connector(s) or cable Lotsed shutter Locked shutter and lamp belemetry cir- cuitry) No full-scan video A or B No shutter motion Possible erratic shutter action	Partially redundant full-scan video	Partially redundant Loss of 1/2 of full-scan full-scan video pictures	° S	9	Redesign tolemetry take- off point.

) .

	Remarks/Recommended Compensating Provisions/etc.	Protect transistors from excessive collector-to- emitter voltages.	1	1	1	1	•	1
	Failure Probability Factor	n 14 0 0	ی ا	ب ب	ß	ى	en	8
F _b AN	Failure Class Factor	ມິ ບັ	° E E	ຍິ	c _F Eo	c ^E	с Е	° с
.MERAS F _a AND F _b AND ntinued)	Effects on Mission	 Loss of 1/2 of full- scan pictures Possible degradation of same video chan- nel 	Loss or degradation of C 1/2 of full-scan pic- tures	Loss or degradation of C 1/2 of full-scan pic- tures	Loss or degradation of C	Partially redundant Loss or degradation of C full-scan video 1/2 of full-scan video	Partially redundant Loss or degradation of C full-scan video 1/2 of full-scan video	Partially redundant Loss or degradation of C full-scan video 1/2 of full-scan video
TABLE C-5 OF FULL-SCAN CAMERAS ELECTRONICS (Continued)	Compensating Provisions	Partially redundant 1 full-scan video	Partially redundant full-scan video	Partially redundant 1 full-scan video t	Partially redundant full-scan video	Partially redundant full-scan video	Partially redundant 1 full-scan video	Partially redundant 1 full-scan video
	Symptoms and Local Effects	 No full-scan video A or B Degraded full-scan video (defocusing and beam oscillation) 	 No full-scan video A or B Partial (non-linear) video sweep 	 No full-scan video A or B Partial (nonlinear) video aweep 	 No full-scan video A or B Possibly unblanked horizontal and/or vertical lines on video 	 No full-scan video A or B Possibly degraded video center shifts size shifts 	 No full-scan video A or B Possibly degraded video (defocused) 	1) No full-scan video A or B 2) Degraded video
FAILURE EFFECTS ANALYSIS ASSOCIATED	Possible Causes	 Faulty internal circuitty or circuitty or cable Faulty vidicon tube Faulty vidicon tube Faulty read sync Loss of bias volt- age(s) 	 Faulty internal circuitry Loss of blas volt- age(s) Shorted yoke coil Loss of sync signals Failure in deflection programming 	 Faulty internal circuitry Loss of bias voltages Shorted yoke coll Loss of syne signals Failure in deflection programming 	 Faulty internal circuitry Loss of bias voltages Loss of sync signals Faulty cable or connector(s) 	 Faulty internal circuitry Loss of bias volt- age(s) Loss of sync signals Faulty cable or con- nector(s) 	 Faulty internal circuitry Loss of power inputs 	 Faulty optical alignment Faulty tube Faulty connectors Faulty connectors Faulty focus or deflection cols Poor focus our tages Poor focus our entrement
Ľ	Assumed Failure	Loss of regulation	Loss of output	Loss of output	Loss of output	Loss of output(s)	Loss of regulation	Faulty picture
	Te a	Beam Current Regulator and Switch	Vertical Deflection Amplifier	Hortzontal Deflection Amplifier	Mixed Cathode Blanking	Deflection Programmer	Focus Current Regulator	Vidicon

[]	1	
	Remarks/Recommended Compensating Provisions/etc.	Redesign telemetry take- off point.
9	Failure Probability Factor	62 - 1 4
F. AND F. AND	Failure Class Factor	دی ۲.30 ۲.30
	Effects on Mission	Partially redundant Loss or degradation of full-sean video None Partial loss of engineer- ing data
TABLE C-5 OF FULL-SCAN CAMERAS ELECTRONICS (Continued)	Compensating Provisions	Partially redundant full-sean video None
TABL EFFECTS ANALYSIS OF FL ASSOCIATED ELECI	Symptoms and Local Effects	Log
FAILURE EFFECTS	Possible Causes	Shorted transistor 1) Erratic shuttor operat Faulty internal circuitry Loss of tolemetry points
Ľ	Assumed Failure	a) Faulty outputs b) Other telemetry
	lten	Telemetry

Ì

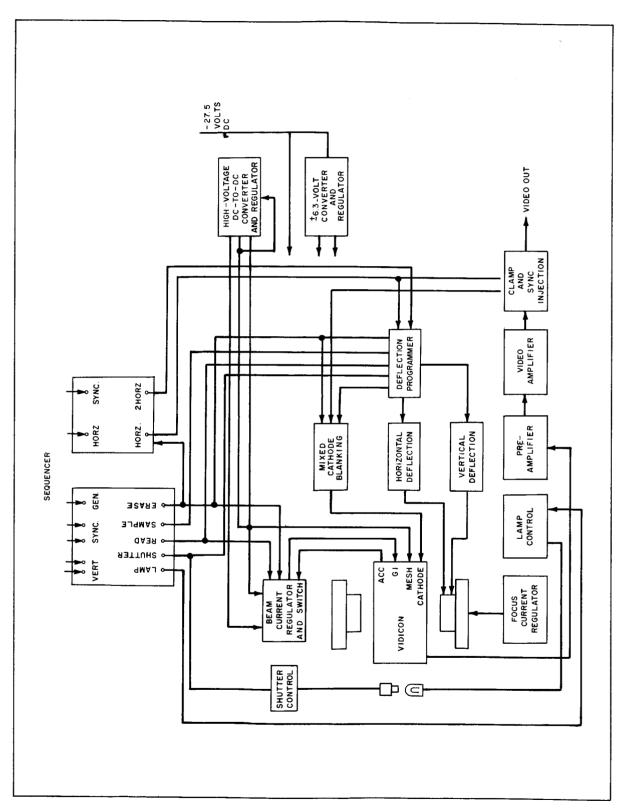
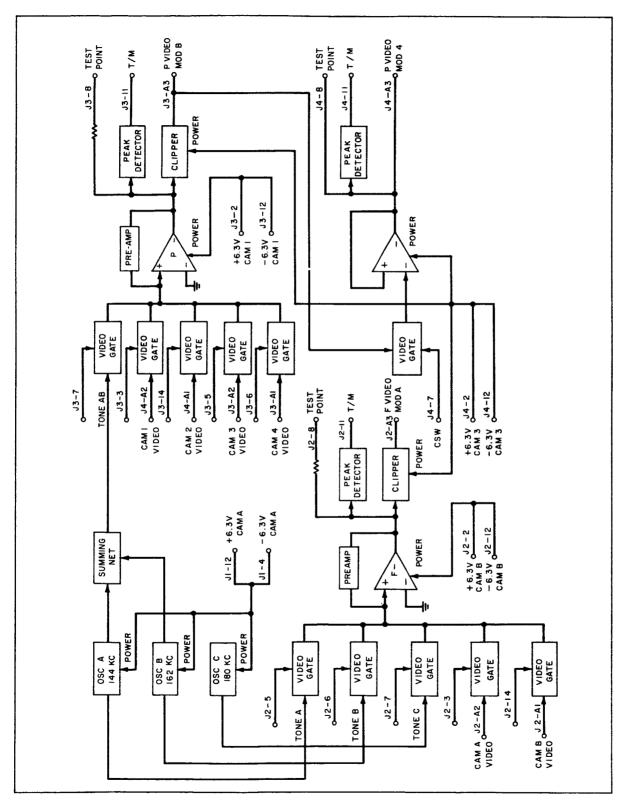


Figure C-3. Block Diagram of the Full-Scan and Partial-Scan Camera and Camera Electronics Assemblies


I

), .

	COMBINER
	VIDEO
9 0	OF THE
TABLE C-6	ANALYSIS OF THE VIDEO
	FECTS

	Remarks/Recommended Compensating Provisions/etc.	Apply ±6.3 volts from two camera electronics via diode "OR" gates.	 Power clippers from amplifier which drives clipper. Apply ±6.3 volt from two camera electro- nics via diode "OR" gates. 	 Power clippers from amplifier which drives clipper. Apply #6. 3 volts from two camera electronics via diode "OR" gates. Redundant channel for partial-gecan video in combiner. 	Apply ±6.3 volts from two camera electronics via diode "OR" gates.		 Lifects become more serious with increasing number of gate failures. Open cable or connec- tor failure modes can be compensated with mhor design changes. 	Same as partial-scan video gates.
	Failure Probability Factor	ŝ	Ω.	a ع	Ω	۵	n	م
æ	Failure Class Factor	DF E	ں ¥	#° * ⁴	°c b c	۹° م	° Q ^d	D _F E _o
VIDEO COMBINER	Effects on Mission	Full-scan camera A and B pictures are not dis- cernibie at OSE	 No fuil-scan video Adjacent channel interfarence after switch-over 	No partial-scan video	 Distorted full-scan video Distorted partial- scan video Adjacent channel interference 	 Interference of tones on video 2) Lower signal-to- noise ratio Duess of partial-acan contrast ontrast Increasing distortion of video with high- lights 	 Decreased signal-to- noise ratio in partial- scan video Decreased contrast and highlight detail 	 Decreased signal-to- noise ratio in full- ecan video 2) Decreased contrast and highlight detail in full-scan video
OF THE	Compensating Pravisions	None	None	Nobe	None	Dual power supply in sequencer	None	None
EFFECTS ANALYSIS	Symptoms and Local Effects	No oscillator tones	 No full-scan video Over modulation on chan- D ver switch-over 	No partial-scan video	 Over modulation due to lack of clipping action Badly distorted "P" scan video and "F" scan video 	 Tones permanently super- imposed on video Implang of partial-scan video Clipping of full-scan video (not serious) High noise content 	 Continuous conduction of signals to transmitters Increase of DC offset 	 Continuous conduction of signals to transmitters Increase DC offset
FAILURE	Possible Causes	 Faulty cable or connectors Faulty camera A electronics 	 Faulty cable or connectors Faulty camera B electronics 	 Faulty cable or connectors Faulty camera #1 electronics 	 Faulty cable or connectors Faulty camera #3 electronics 	 Faulty cable or connectors Faulty sequencer power supply 	 Open cable or con- nectors Sequencer signal(e) the present Internel gate circuitry failure 	 Open cable or con- nectors Bequencer signals not 2 Sequencer signals not 2 Internal gate circuitry failure
	Assumed Fallure	a) Loss of ±6.3 volts to oscillator board	b) Loss of ±6.3 volts to "F" summing board	c) Loss of ±6.3 volts to "P" summing board	d) Loas of ±6.3 volts to isolation ampli- fier board	Loss of gate inputs	Gates fail closed (aignaig transmitted)	Gates fail closed (signals transmitted)
	E	Interface Power				Interface Signals	Partial Scan Video Gates	Full-Scan Video Gates

						1				\$
	Remarks/Recommended Compensating Provisions/etc.	Same as partial-scan video gates	T	Apply power from two camera electronics via diode "OR" gates.	1	Apply power from two camera electronics via diode "OR" gates.	Apply ±6.3 volts from two camera electronics via diode "OR" gates.	Apply ±6.3 volts from two camera electronics via diode "OR" gates.	Apply ±6.3 volts from two camera electronics via diode "OR" gates.	Apply ±6.3 volts from two camera electronics via diode "OR" gates.
	Failure Probability Factor	بن 	a	ىر ا	വ	ب م	с	с,	2	۵
inved)	Fàilure Class Factor	$ \mathbf{E}_{\mathbf{p}} $ $\mathbf{E}_{\mathbf{p}} $ \mathbf{E}_{0}	DF Eo	Fr Front Fro		а Р Р Р Р	A _F c _o	F C F	ы ⁰ ы	يد. د
OMBINER (Cont	Effects on Mission	Interference between tones and video	Severe interference on full-scan video	Slight adjacent channel interference if high- lights are present	 Loss of video contrast Decreased signal-to- noise ratio 	No partial-scan video	No full-scan video	No partial-scan video in modulator A after switch-over	No tone light for camera B at OSE	No tone light for camera A at OSE
C-6 THE VIDEO C	Compensating Provisions	Tones can be separated from video at OSE	Possible separation of video at OSE	None	Possible compen- sation at OSE	None	None	Partial-scan video modulator B	Tone B signal	Tone-A signal
TABLE C-6 S ANALYSIS OF THE VIDEO COMBINER (Continued)	Symptoms and Local Effects	Constant tones superimposed on video	Partial-scan and full-scan fideo are interfering in channel A	No clipper action leading to overmodulation in transmit- ter	Low video signals	No partial-scan video	No full-scan video	No partial-scan video modulator A	No 144-kc tone	No 162-kc tone
FAILURE EFFECTS	Possible Causes	 Open cable or connectors Sequencer signals not present Internal gate cir- cuttry failure 	 Open cable or connectors Sequencer signals not present Internal gate cir- cuitry failure 	sege	 Internal clipper circuit failures Shorted loads 	 Internal amplifier circuitry failure Loss of ±6.3 volts 	Loss of ±6, 3 volts Faulty internal circuitry	 Loss of ±6.3 volts Faulty internal circuitry 	 Loss of ±6.3 volts Faulty internal circuitry 	 Loss of ±6.3 volts Faulty internal circuitry
	Assumed Failure	Gate fails closed (signals transmitted)	Gate fails closed (signals transmitted)	stuated)	b) Clipper (shorted)	Power amplifier	F scan power amplifier	Isolation amplifier	Tone-A oscillator	Tone-B Oscillator
	lte m	Tone Gate	Switch-Over Gate	Clipper		P Scan Power Amplifier	F Scan Power Amplifier	Isolation Amplifier	Tone-A Oscillator	Tone-B Oscillator

.

.

Figure C-4. Block Diagram of the Video-Combiner Assembly

.

		FAILURE EF	TABLE C-7 EFFECTS ANALYSIS OF THE SEQUENCER (Continued)	LE C-7 OF THE SEQ	UENCER (Conti	nued)		
Item	Assumed Failure	Pessible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Closs Factor	Failure Probability Factor	Remorts/Recommended Compensating Provisions/etc.
Power Supply Converter and Regulator (Partial-Sean) (Continued)	b) Loss of +12 volts	 4) Shorted load(s) 1) Faulty internal circuitry 2) Loss of -27.5. volts 3) Faulty cable or connectors 4) Shorted loads 	 J. Low possibility of erratio partial-scan #1 I. No partial-scan frequency division 2) No partial-scan sequencer signals 3) No partial-scan video from cameras #2, #3 	None	 Loss of 3/4 of partial-scan pic- tures Slight loss of reso- lution on partial- scan #1 picture 	B F - E F - E B	4	Design for power switch- over in case of power supply failure.
Dual Clock and Driver	Loss of clock output	 Faulty internal circuitry Faulty cable or connectors Shorted test points (both of them) Shorted "p" or "p" divider chain inputs 	No sequencer signals	Redundant clock oscillators	 Loss of 3/4 of hrttal-scan pic- tures Loss of full-scan pictures Slight loss of assolution on partial-scan #1 	$\left. \begin{array}{c} B\\ P\\ A_{f}\\ F_{p} \end{array} \right A_{0}$	μ	 Design with redundant olock drivers. Remove test points or install isolation re- sistors in series with test points.
F Division Chain	a) Loss of any Divider outpute	 Faulty internal ofreuitry Faulty cable or connectors Loss of bias voltages Shorted loads 	Loss of F sequencer outputs	None	No full-scan video	Ar Co	4	
	 b) Loss of any gate outputs (feedback gate) 	 Faulty circuitry Loss of blas voltages Shorted loads 	 Loss of sequencer outputs Erroneous repetition rates Erroneous pulse withins 	None	Worst-case situation would be loss of fuil- scan pictures	Ar Co	4	Analysis of various gate failures is too complex to be discussed here.
F Logic Decoder	Loss of any of the following outputs: a) 2x horizontal sync	 Faulty circuitry Shorted loads Open connectors or cables 	Loss of sensitivity in low video levels	None	Poor quality full-scan pictures	°a ^j a	ю	ı
	b) horizontal sync	 Faulty circuitry Bhorted loads Open connectors or cables 	No camera horizontal sync	None	No full-scan pictures	Ar Co	CI	1
	c) Vertical read A	Same as above	No camera A vertical read sync	Partially redundant camera B	Partially redundant Only one full-scan set camera B of pictures	с _F	sc.	8
	d) Vertical read B	Same as above	No camera B vertical read sync	Partially redun- dant camera A	Only one full-scan set of pictures		ŝ	ı
	e) Shutter A	Same as above	No camera A shutter sync	Partially redun- dant camera B	Only one full-scan set of pictures	с _F	ŝ	ł
	f) Shutter B	Same as above	No camera B shutter sync	Partially redun- dant camera A	Only one full-scan set of pictures	с _F E	ω	ł

:

Separate line to each camera instead of a single line. Analysis of various gate failures is too complex to be discussed here. Redesign automatic re-set outputs into two parts Eventual removal from Remarks/Recommended Compensating Provisions/etc. Same as above system. Failure Probability Factor ŝ ŝ ц 4 ŝ ŝ ŝ ບິ Co-Bo ۳° ц° ⁰ ы° а-а 1-а Failvre Class Factor FAILURE EFFECTS ANALYSIS OF THE SEQUENCER (Continued) a^d 86 4 6 6 6 B90 ы^с ച ۹ م , e s s Ł
 1) Loss of 3/4 of partial-scan plctures
 1

 2) Partial loss of
 1
 Poor quality partial-scan pictures #2, #3, & #4 resolution of partial- Partial loss of reso-lution of partial-scan #1 pictures 1) Worst-case condition would be loss of 3/4 No warm-up period -possible damage to transmitters Effect on telemetry
 No full-scan plofull-scan pictures, signals no partialscan pictures, no No partial-scan pic-tures in transmitter minutes of terminal scan #1 pictures warm-up period of partial-scan signal - none 2) With no back-up Effects on Mission and no 90-point tures 3) No transmitter A during last two 1) With back-up telemetry pictures None mode Partial-scan camera #1 has own sync generators Back-up command from JPL bus Back-up command from JPL bus Compensating Provisions TABLE C-7 Not used None None None None Loss of sensitivity, low video levels on partial-scan cameras #2, #3, and #4 Loss of sequencer outputs
 Erroneous repetition 1) Immediate camera switch-Continuous DC return, high battery drain Loss of P sequencer out-puts 3) Erroneous pulse widths No full power-on to trans-mitter A and B 2) Faulty indication to P and/or F timer No camera switch-over Symptoms and Local Effects Not being used rates over 1) Faulty circuitry12) Loss of bias voltages23) Shorted loads 3) Loss of set input signals due to cables or connectors
4) Loss of bias voltage 2) Loss of bias voltages Loss of bias voltages
 Shorted loads Continuous low reset 2) Shorted loads3) Open cable or connector(s) Continuous high set circuitry 2) Faulty cable or connectors Faulty relay
 Faulty internal circuits 1) Faulty internal 1) Faulty internal 1) Faulty internal Faulty Internal Possible Causes Faulty relay Same as above Same as above circultry circuitry circuits input input ଳ **ର** 4 Immediate DC re-turn to transmitter Loss of any of the following outputs a) 3.0 kc power supply and black Loss of any gate outputs (feedback No reset (at +12 volt level) a) No DC return to transmitters b) (at O volt level) a) LOSE of any divider outputs 2X horizontal sync 3000 cps clamp syncs Assumed Failure gates) â Â q **a**) Power Turn-on Logic Transmitter P Division Chain Automatic Reset tem P Logic Decoder

:

Ì

		FAILURE E	TABLE C-7 EFFECTS ANALYSIS OF THE	ULE C-7 OF THE SEQ	SEQUENCER (Continued)	nved)		
te B	Assumed Failure	Possible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Pravisions/etc.
P Logic Decoder (Continued)	c) Horizontal sync 1500 cps	Same as above	 No camera horizontal sync from sequencer No video from cameras 2, 3, 4 	 Partial-scan camera #1 & 2 Two separate sync lines 	No partial-scan pictures from camera #2, #3, #4	ບ° ສື	ທ	1
	d) Vertical read #1	Same as above	No camera #1 vertical read pulse	Camera #1 has own None generator	None	Fo	a	I
	e) Vertical read or #2, or #3, or #4	Same as above	No camera vertical read pulse to camera #2, or #3 or #4	3 partially redun- dant partial-scan videos	Loss of 1/4 of partial- scan pictures	D D D	a	t
	f) Shutter #1	Same as above	No camera #1 shutter pulse	Camera #1 has own generator	None	F.	ŝ	1
	 g) Shutter sync for cameras #2, #3, #4 	Same as above	No camera shutter sync to cameras #2, or #4	3 partially redun- dant partial-scan videos	Loss of 1/4 of partial- scan pictures	D E	ى ب	1
	h) Erase sync for caneras #1	 Faulty internal circuitry Shorted loads Open cable or connector(s) 	No erase sync to camera #1	Camera #1 has own None generator	None	° H	ى 	I
	i) Erase sync for carnera #2 or #3 or #4	Same as above	No erase sync to cameras #2 or #3 or #4	3 partially redun- dant partial-scan videos	Loss of 1/4 of partial- scan pictures	D D E	2	I
	 Flash sync for camera #1 	Same as above	No camera #1 flash sync	Camera #1 has own generator	None	F	ŝ	ı
	k) Flash sync for cameras #2 or #3 or #4	Same as as above	No camera #2 or #3 or #4 effects erase	3 partially redun- dant partial-scan videos	Set of multiple exposure partial-scan pictures	р В	Q	I
	 P vertical blanking 	Same as above	No vertical blanking sync pulses	 Camera #1 has own generator 3 partially re- dundant cameras 	Continuous pictures at OSE (no blanking)	E-D E	a	ı
P Video Combiner Logic		 Faulty circuitry Shorted loads Open cable or connectors Loss of syme from logic decoder 	No sync tone	None	OSE cannot recognize which partial-scan camera is supplying the video	ம° ங ^{ட்}	cu I	1
	b) Video #1 on gate(at +12 volts only)	Same as above	No video #1 on gate	Designed for fail- safe	None	Ч	Ð	1
	c) Video #1 on gate (at 0 volt only)	Same as above	Continuous transmission of video from camera #1	None t a s 1	Residual video (partial- scan) in pictures from all cameras (poor con- trast)	D - C D	ß	I
	<pre>d) Video #2 or #3 or #4 on gate (at +12 volts only)</pre>	Same as above	No video #2, #3, or #4 6	3 partially redun- I dant partial-scan s cameras	Loss of 1/4 of partial- scan pictures	е е о	ŵ	New circuit design.

<u>г</u>		η	r				
	Remarks/Recommended Compensating Pravisions/erc.	New circuit design.	1	Possible transmitter	I	1	
	Failure Probability Factor	ю	4	ŝ	4	ß	
(pent	Failure Class Factor	D-C-D	ы ⁰	A _P	Б Б	FF-AF Co	
TABLE C-7 SIS OF THE SEQUENCER (Continued)	Effects on Mission	Residual video (partial- scan) in pictures from all cameras (poor con- trast)	None	Early power amplifier(s) (transmitter) turn-on	No switch-over	Lack of fuil-gean pictures (depending on time of switch-over)	
	Compensating Provisions	None	Redundant 5- minute sync output from F timer	None	None	None	
TABLE C-7 EFFECTS ANALYSIS OF THE	Sympioms and Local Effects	Continuous transmission of video from cameras #2, #3 or #4	No 5-minute sync from P timer	Premature 5-mínute sync out	No 13-minute sync from "P" timer	Premature 13-minute sync from "P" timer	
FAILURE EFF	Possible Causes	as above	 Faulty circuitry Shorted loads Open cable or connectors Faulty input signals 	Same as above	Same as above	Same as above	
	Assumed Fallure	e) Video #2 or #3 or #4 on gate (at O volts only)	a) No 5-minute aync out	b) Early 5-minute sync out	c) No 13-minute sync out	d) Early 13-minute sync out	
	E e	P Logic Decoder (Continued)	P Timer				

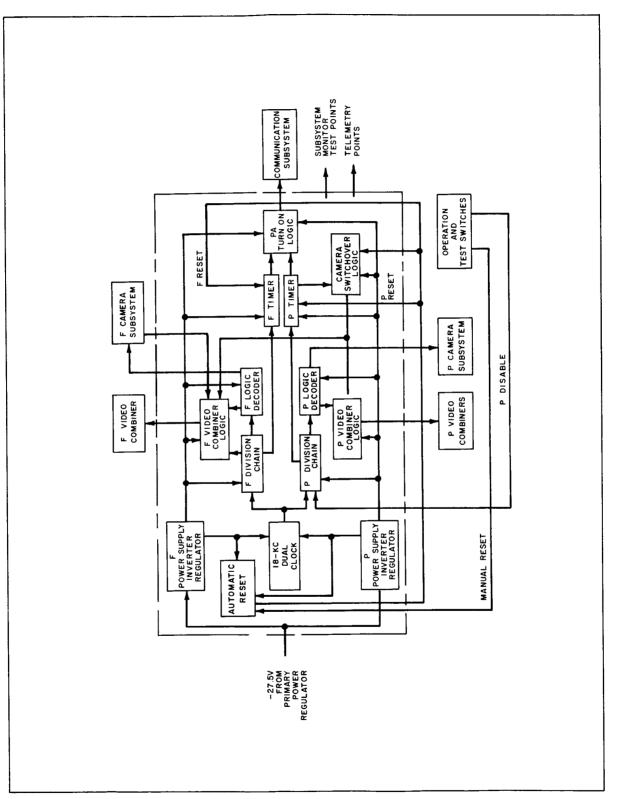
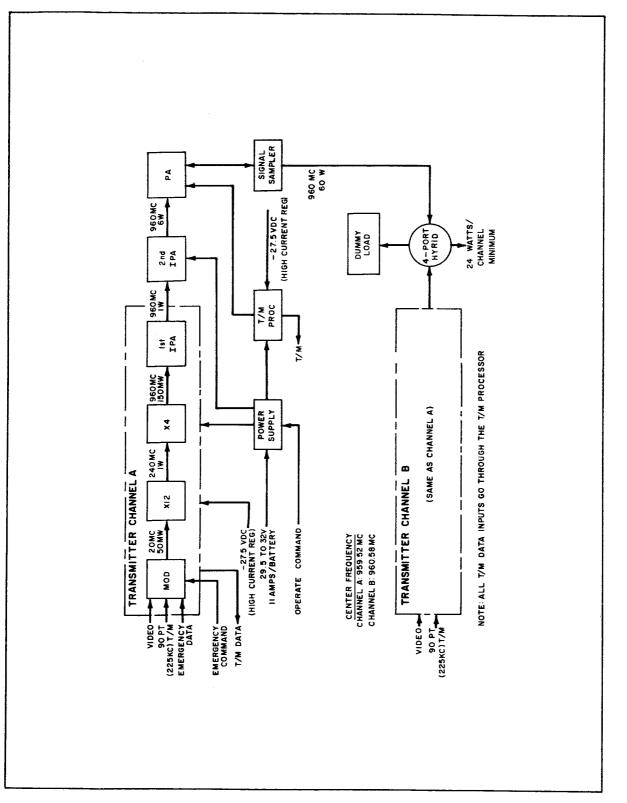


Figure C-5. Block Diagram of the Control Programmer and Camera Sequencer Assembly


	Remarks, Recommended Compensating Provisions/etc.	Current limiting or fuses in each load circuit to reduce battery drain.	Determine the extent of transients by multiple turn-on turn-off switching.	Effective transformer pretesting.			Check regulation of blae voltages	
	Failure Probability Factor	3 to 2	6 04 04 05	ব	υ <i>τ</i> ο	co	പറ	CU CU
AND 2	Failure Class Factor	ບິ ດິ * ດີ	ບິ ດິ ^v ັ ດີ	$\begin{array}{c} C_{f} \mbox{to} A_{f} \ C_{o} \ (Channel A) \ D_{p} \ D_{o} \ D_{o} \ (Channel B) \end{array}$	ດ ພິ ພິ ເອີ້	Af AP AP90 Same as above	$ \begin{array}{c} C_{f} \ to \ D_{o} \ to \\ A_{f} \ C_{o}^{O} \ (channel \ A) \ D_{D} \ D \ D \ (channel \ B) \ (channel \ B) \end{array} $	Δ ^P C
C-8 TRANSMITTER NOS. 1	Effects on Mission	 If channel A fails - no fuil-scan plotures If channel B fails - no partial-scan pictures until last two minutes of mission 	 If channel A fails, no full-sean pictures If channel B fails, no partial-sean pictures until last two minutes of mission 	Poor picture quality in one channel a) Loss in picture de- tall b) High noise in picture	b) High noise in picture Partial-scan in the last two minutes only None	No partial-scan video No full-scan video No 90-point telemetry Same as above	 Low signal-to-noise ratio Poor picture resolu- tion 	 If fault is in channel A, no full-scan pictures If fault is in channel B, no partial-scan pictures until last two minutes
TABLE C-8 is of transmi	Compensating Provisions	Partially redun- dant transmitter and power supply	 Fuse to isolate power supples Partially redun- dant transmitter 	None in any one transmitter channel	Partial redundancy In channel B 1) Complete loss in channel A 2) Redundant telemetry (90-point) 3) Back-up com- mand from JPL bus	None None	 Partially redun- dant transmitter Telemetry is completely redundant (90-point) 	 Partially redun- dant transmitter Telemetry is completely re- dundant (90- point)
TABLE FAILURE EFFECTS ANALYSIS OF	Sympioms and Local Effects	 Loss of one or more voltages: 100 volts 100 volts 1000 volts 150 volts 30 volts 30 DC-to-DC converter might fail to oscillate 	 Very high battery drain Reduction of power aupply output voltage 	a) Low RF power output b) Possible modulation distortion	No 1000 volts for power amplifier No 1000 volts for power amplifier	Capiting or connectors No 1000 voits for both power fault Faulty relay control No 1000 volts { for both (faulty signal) No -750 volts } transmitters	None	None
FAILURE EFF	Possible Causes	 Shorted load circuits Facility cable or connectors Open transformer winding Defective control- circuit relays 	Excessive switching transfects causing input circuit short	Shorted turns of con- verter transformer		 o) caping or connectors fault 4) Faulty relay control (faulty signal) 	 Faulty internal circuitry Loss of bias voltages Eault in cable or connectors 	 Faulty internal circuitry Loes of this voltages Fault in cable or connectors Loes of bias voltages
	Assumed Failure	a) No output voltages	b) Loss of output voltages	c) Reduction of output voltages	d) Open DC return		a) Weak modulation	b) No modulation
	E et	Power Supply					FM Modulator Oscillator	

¥

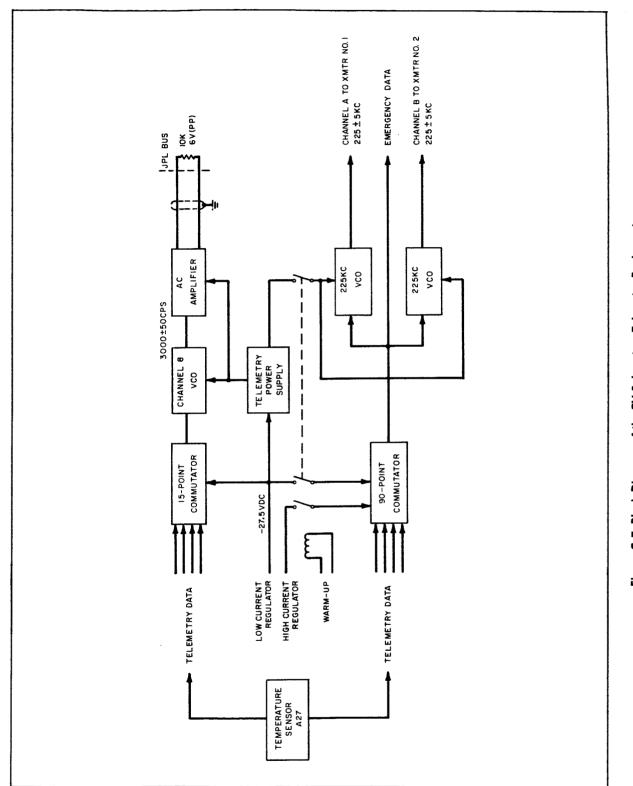
	Remarks/Recommended Compensating Pravisions/etc.	Check regulation of bias voltage.	,		Check regulation of bias voltages.	1	1	1
ed)	Failure Probability Factor	വ വ	വ വ	4 LO	~ ~	പ വ	3 to 3 10 2	3 to 2 3 to 2
(Continued)	Failure Class Factor	v° A°	D ^f to D ^f to D ^f D D ^f D	A _f C D D	Ef-Bf Qo Dp Do	Af D D D O	$\mathbf{E}_{\mathbf{F}}^{-\mathbf{B}}$ $\mathbf{D}_{\mathbf{D}}$ $\mathbf{E}_{\mathbf{P}}^{-\mathbf{D}}$ $\mathbf{D}_{\mathbf{O}}$	^A ^f ^C
TABLE C-8 RE EFFECTS ANALYSIS OF TRANSMITTER NOS. 1 AND 2	Effects on Mission	 If fault is in channel A, no full-scan pictures If fault is in channel B, no partial-scan pictures until last two minutes 	 If fault in channel A, loss in full-scan picture resolution If fault is in channel B, loss in partial- scan picture resolu- tion 	 If fault is in channel A, no partial-scan picture If fault is in channel B no partial-scan pictures until last two minutes 	 Low signal-to-noise ratio in channel A Low signal-to-noise ratio in channel B 	 If fault is in channel A, no full-scan pictures If fault is in channel B, no partial-scan B, no partial-scan two minutes of mission 	 Low signal-to-noise ratio in channel A Low signal-to-noise ratio in channel B 	 If fault is in channel no full-scan pictures pictures no partial-scan pictures until last two minutes of mission
	Compensating Pravisions	 Partially re- dundant trans- mitter Telemetry is completely redundant (90-point) 	 Partially redundant transmitter dant transmitter Teiemetry is completely redundant (90-point) 	 Partially redundant transmitter Telemetry is completely redundant 	 Partially redundant transmitter Telemetry is completely redundant (90-point) 	 Partially redundant transmitter Telemetry is completely redundant (90-point) 	 Partially redundant transmitter Telemetry is completely redundant (90-point) 	 Partially redundant transmitter Telemetry is completely redundant (90-point)
	Symptoms and Local Effects	No RF	Possible interchannel interference	None	None	No RF	None	No RF
	Possible Causes	 Shorted zener regulator Faulty internal circuitry Fault in cable or connectors Loss of blas voltages 	 bad crystal Bandpass amplifier partially shorted 	 Faulty K, relay Faulty internal circuitry Open cable on con- nector Loss of bias voltages 	Slight detuning	 Faulty X2 multiplier Faulty X3 multiplier Loss of bias voltages 	 Slight detuning Weak amplifier Instability due to warm-up 	 Faulty internal circuitry Faulty eable or connectors Loss of supply voltages
FAILU	Assumed Failure	c) No 20 megacycles	d) Off-center frequency	e) No video	a) Low power	b) No power	a) Low RF power	b) No RF power
	E = _	FM Modulator Oscillator (Continued)			X12 Multiplier		1st Inter- mediate Power Amp	

	T	π	r —			1	+	1	
	Remarks/Recommended Compensating Provisions/etc.	1 		ſ	Redesign with solid teflon spacers.	1	Redesign with redundant hermetic seal.	 Pack all cables in sili- con graase. Pretest all high-power cables at 90 watts (4 cables). Controlled assembly techniques. 	
ed)	Failure Probability Factor	3 to 2	8	24	m	ت ن	en	1 to 2	4
2 (Continued)	Failure Class Factor	Same as 1st IPA	Same as above	Same as above	Same as above	$ \begin{array}{c} E_{T} - A_{T} \\ A_{p} - A_{p} \\ E_{T90}^{-} \end{array} \right) \begin{array}{c} E_{0} \\ to \\ A_{T90} \end{array} $	$ \begin{array}{c} E_{f}^{-B}_{f} \\ E_{p}^{-B}_{p} \\ E_{T90}^{-} \\ B_{T90} \end{array} \right) \begin{array}{c} B_{0} \\ B_{T90} \end{array} $	$ \begin{array}{c} E_{f} - A_{f} \\ E_{p} - A_{f} \\ E_{p} - A_{f} \\ A_{o} \\ E_{T90} \end{array} \right) \begin{array}{c} E_{o}^{-} \\ A_{o} \\ A_{T90} \end{array} $	A _r c _o
TABLE C-8 OF TRANSMITTER NOS. 1 AND 2 (C	Effects on Mission	Same as 1st IPA	Same as above	Same as above	Same as above	 Decreased signal- to-noise ratio in both channels Loss of picture resolution 	 Decreased signal- to-noise-ratio in both channels A & B) Loss of picture Loss of picture 	Decreased signal-to- noise-ratio: if in channel A, poor full- channel B, poor channel B, poor partial-scan resolution	 If fault is in channel A, no fuil-scan pictures
	Compensating Provisions	Same as let IPA	Same as above	Same as above	 Partially redundant transmitter Telemetry is completely redundant 	None	None	 Partially redundant transmitters Telemetry is completely redundant (90- point) 	 Partially re- dundant trans- mitters
	Sympioms and Local Effects	Same as 1st IPA	Same as above	Same as above	Loss (partial loss)of RF power	Partial loss of RF power	Reduction of power from 3 to 6 db mismatch	1) High VSWR 2) Loss of power	No R.F output (telemetered point)
ILURE EFFECTS ANALYSIS	Possible Causes	Same as 1st IPA	Same as above	 faulty internal circuitry cality coble or connectors loss of supply volt- ages faulty current faulty current etry processor 	 Arc leak Arc over Arc over High YSWR due to fauity terminations Cables or connector fauity 	 Cabling or connector faults Partial pressure 	 Fault cable or connector Loss of hermetic seal resulting in internal breakdown 	 Partial or complete abort Open Poor workmanship 	 Fault in connectors and cables Faulty internal circuitry
FAILL	Assumed Failure	Same as 1st IPA	a) Same as above	b) Same as above	Partial or complete short	Partial or complete short	Partial short	Cables and connectors	e) Open
	Item	2nd Inter- mediate Power Amp	Power Amplifier		Signal Sampler	4-Port Hybrid	Dummy Load	RF Cables and Connec- tors	T/M Proces- sor Current Regulator (Located in processor)

	Remarks/Recommended Compensating Provisions/etc.	1		1	I	I	ı					
nued)	Failure Probability Factor	4	4	5	a	2	S				 	
AND 2 (Continued)	Failure Class Factor	°a da	Same as above	ET90 Fo	Same as above	Same as above	Same as above					
TABLE C-8 FAILURE EFFECTS ANALYSIS OF TRANSMITTER NOS. 1 AND 2	Effects on Mission	 If fault is in channel B, no partial-scan pictures until last two minutes 	Same as above	Lack of telemetry data	Same as above	Same as above	Same as above					
	Compensating Provisions	 Telemetry is completely redundant (90- point) 	Same as above	Same as above except 15 point	Same as above	Same as above	Same as above				 	
	Symptoms and Local Effects		 High direct current drain in 1000 volts Possible PA tube burn- out 	Lack of telemetry data	Same as above	Same as above	Same as above					
	Possible Causes		 Fault in connectors and cables Paulty internal circuitry 	Same as above	Same as above	Same as above	Same as above					
	Assumed Failure		b) Short	a) Loss of RF power out	b) PA EK	c) PA HV	d) IPA HV	 				
	Eet	T/M Proces- sor Current Regulator (Located in	(Continued)	15 T/M Processor				 				

) 1

	Remarks/Recommended Compensating Provisions/etc.	1	1		Seal motor bearings.	1	1	I	Fuse input line use better capacitors.		1	1
PMENT	Failure Probability Factor	۵.	ى ە	n	4 to 5 S	ىر س	۵	n	4 7	4	ñ	۵
AENT	Failure Class Factor	$\left. {{{\rm A}_{{ m T15}}} \atop { m A_{{ m T90}}} } \right _{ m D_0}$	A _{T90} Eo	A _{T15} E _o	A _{T15} Eo	AT15 Eo	Aris Eo	$\begin{bmatrix} \mathbf{D}_{\mathbf{T}15} \\ \mathbf{D}_{\mathbf{T}90} \end{bmatrix} \mathbf{E}_{0}$	$\left. \begin{smallmatrix} A_{T90} \\ A_{T15} \end{smallmatrix} \right _{D_0}$	Fo	A _{T90} D ₀	ц ^о ц
TABLE C-9 FAILURE EFFECTS ANALYSIS OF THE TELEMETRY EQUIPMENT	Effects on Mission	 No 15-point telem - etry No 90-point telem - etry 	No 90-point telemetry	Playback video tape Loss in confidence of from OSE 15-point T/M data	Loss of 15-point telemetry	Partial or complete loss of 15-point telemetry	Partial or complete loss of 15-point telemetry	Partial or complete loss of: 15-point telem- etry and 90-point telemetry	No telemetry	No serious effect on telemetry at OSE	 Loss in confidences in 90-point telemetry No 90-point telem- etry 	None
	Compensating Provisions	Redundant warm- up relays	None	Playback video tape from OSE	None	None	None	None	None	None	Playback video tape from OSE	Redundant 225 KC V _{CO} on other transmitter channel
	Symptoms and Local Effects	No 15-point commutation	No 90-point commutation	Loss and/or erroneous data	No 15-point commutation	Loss of telemetry data	Loss of telemetry data	Shift in V _{CO} center fre- quency	Short on -27.5 volts low- current regulated	Ripple on telemetry	 Erroneous data No commutation 	Loss of telemetry data
	Possible Causes	 Faulty cables or con- nector(s) Faulty warm-up re- lays (two in parallel) 	Faulty cable or con- nector(s)	 Faulty cable or connectors Faulty switching 	Motor binding due to brush deterioration	 Loss of +28. 0 volts Paulty cables or connectors Faulty internal circuitry Shorted load 	 Loss of +28. 0 volts Faulty cable or connectors Faulty internal circuitry Shorted load 	 Shorted poor transistor Faulty regulator 	 High load Shorted capacitors Shorted transistors 	Faulty components	 Faulty cable or connector(s) Faulty switching in commutator Motor binding due to brush deterioration 	 a) Loss of bias voltage b) Faulty cable or connectors c) Faulty internal cir- cuitry d) Shorted load
	Assumed Failure	a) Loss of -27.5 volts from low-power regulator	 b) Loss of -27.5 volts from high-power regulator 	a) Partial loss of T/M data and/or inaccuracy of T/M data	b) Stalled motor	Partial or full loss of T/M data	Partial or complete loss of telemetry data	a) Change in output voltage	b) Shorted input	c) Shorted rectifier diodes	 a) Partial loss of telemetry data b) Inaccuracy from stalled motor 	Partial or full loss of telemetry
	lte T	Interface Power		15 - Point Commutator		Channel 8 VCO	AC Amplifier	Telemetry Power Supply			90-Point Commutator	225 KC VCO


: (

) . .

	·	
	Remarks/Recommended Compensating Pravisions/etc.	1
(P	Failure Probability Factor	4 8 0
Continue	Failure Class Factor	D T90 E
Y EQUIPMENT (Continued)	Effects on Mission	Loss in telemetry data from temperature sensor
LE C-9 IE TELEMETRY	Compensating Provisions	None
TABLE EFFECTS ANALYSIS OF THE 1	Sympioms and Local Effects	Loss of telemetry data
FAILURE EFFECTS	Possible Causes	cir - ttages
1	Assumed Failure	Partial or full loss of 1) Faulty cable or connectors 2) Faulty intermal 3) Loss of blas vol
	E 2	Temperature Sensor

):

	Remarks/Recommended Compensating Provisions/etc.	1		ı		•		I			·	ı	ı	I	ı	ŀ	1
	Failure Probability Factor	<u>م</u>	ũ	ũ		ى ا		ß		2	£	ъ	ß	ß	ы	ى ت	ŝ
Б	Failure Class Factor	$\left. {{{\rm A}_{T10}}\atop {{\rm A}_{T15}}} ight\} { m D_0}$	$\left. \begin{smallmatrix} \mathbf{A}_{\mathbf{T90}} \\ \mathbf{A}_{\mathbf{T15}} \end{smallmatrix} \right \mathbf{A}_{0}$	$\left. \begin{smallmatrix} \mathbf{A}_{\mathrm{T90}} \\ \mathbf{A}_{\mathrm{T15}} \end{smallmatrix} \right _{\mathrm{D}_{\mathbf{O}}}$	$\left. \begin{smallmatrix} A_{T90} \\ A_{T15} \end{smallmatrix} \right _{A_0}$	AT90 Do	AT90 A0	$\left \begin{smallmatrix} \mathbf{A}_{\mathrm{T90}} \\ \mathbf{A}_{\mathrm{T15}} \end{smallmatrix} \right _{\mathrm{D_0}}$	$\left. \begin{smallmatrix} A_{T90} \\ A_{T15} \end{smallmatrix} \right _{A_0}$	ATI5 Fo	A ₁₅ F ₀	•	ı	1	AT15 Fo	ı	Ar90 Eo
COMMAND SWITCH	Effects on Mission	Loss of T/M if RTC-7 performs; if RTC-7 does not, no T/M and no video		Same as above		Same as above		Same as above		Loss of 15-point T/M	Same as above	Redundant device itself; used only in event of CC&S command failure	I	Loss of all return in absence of CC&S	Loss of 15-point T/M	Loss of all return in absence of CC&S	No 90-point T/M
TABLE C-10 FAILURE EFFECTS ANALYSIS OF THE CO	Compensating Provisions	None required RTC-7 command performs redun- ant function		Same as above		Same as above		Same as above		Same as above	Same as above	None	Already in ex- istence in the form of RTC-7	Redundant - automatic turn-on provision	None required RTC-7 command performs redun- dant function	Redundant - automatic turn-on provision	Redundant boards
	Sympioms and Local Effects	No 15-point T/M		Same as above		Same as above		Same as above		No 15-point T/M	Same as above	No RTC-7 step switching in event of CC&S failure	No 15-point T/M; also no other output if follow-on RTC-7 signal is not received	Assuming loss of CC&S command, no T/M and no video	No 15-point T/M	Assuming loss of CC&S command, no T/M and no video	No 90-point T/M
	Possible Causes	 Open R8 or R5 or open R6 or R11 		2) Open Q1 and/or Q2		 Any other A2 board failure not producing SCR output turn-on 	signal	4) No CC&S signal		1) Open coil	2) Shorted coil	Failure on A-1 board	External to TV Sub- system	External to Ranger TV Subsystem	Failure of Relay, K-1	1) No RTC-7 signal	2) Failure on board A1
	Assumed Failure	a) No SCR turn-on								b) Relay, K-1		c) S-1	d) No CC&S signal	e) No RTC-7 signal	f) No warm-up	g) No emergency-on	
	te 31	Command Switch															

- X

:

Figure C-7. Block Diagram of the TV Subsystem Telemetry Equipment

<u> </u>		
	Remarks/Recommended Compensating Provisions/etc.	1
q)	Failure Probability Factor	۵
Continue	Failure Class Factor	AT90 A
EQUIPMENT (Effects on Mission	No last minute video
.E C-9 E TELEMETRY	Compensating Provisions	Redundant beards
TABLE C-9 IRE EFFECTS ANALYSIS OF THE TELEMETRY EQUIPMENT (Continued)	Symptoms and Local Effects	No last minute video
FAILURE EFFECTS	Possible Causes	Same as e), f), and g)
E	Assumed Failure	b) No emergency-off
	ltem	Continued) (Continued)

	Remarks/Recommended Compensating Provisions/etc.	1	,	,	,	,	Used to ensure starting		1	The failure probability here is the product of this probability and that of the regulator not starting without this circuit.	ł	1
	Failure Probability Factor	eo E	ي	ю 	ß	۵	so.	10	10	10	ю	0.1 x ¥, ₽, 5
Ð	Failure Class Factor	$ \begin{pmatrix} A_{f} \\ A_{p} \\ A_{T90} \\ A_{T15} \end{pmatrix} A_{0} $	$\left(\begin{array}{c} A_{p} \\ A_{p} \\ A_{T10} \end{array} \right) \left(\begin{array}{c} A_{0} \\ A_{0} \end{array} \right)$	a a	Ar Ap	A A A	Ap As	Ap Ao	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v ² v ²	Ar Ap	
OMMAND SWI	Effects on Mission	Complete Subeystem fallure; no RF; no TM; eto.	Same as above	No video from either oamera group and no timing from loss of sequencing	Same as above	Game as above	Same as above	Same as above	Same as above	Same as above	No video from either camera group and no timing for lack of se- quencer operation	Bhift in VCO center frequency in T/M; video output of cum- eras distorted or out
TABLE C-10 LYSIS OF THE CO	Componsating Provisions	Increase redun- dancy in batteries	Increase isolation in reverse direc- tion between batteries	Redundant regulator	Bame as above	Same as shove	Redundant com- mand signaling	Redundant regulator	Redundant connectors	Not required, this is a redundant cou- figuration to assure regulator starting	Fuse various parts of load	Nape
TABLE C-10 FAILURE EFFECTS ANALYSIS OF THE COMMAND SWITCH	Symptoms and Local Effects	Bubsystem completely inoperative	Same as above	No F or P camera video and no programming from sequencers	Same as above	Same as above	Same as above	Barne as above	Bame as above	Same as above	No F or P camera video and no programming from sequencers	Load voltage equals battery voltage
FAILURE	Pessible Causes	1) No battery input	2) Combined aborted battery and SCR	3) Open series regulator transistors, Q6 and Q7	4) Open series regulator equalizing resistors, R10 and R11	5) Open emitter on driver, Q5	6) Failure to receive SCR turn-on command	7) Opens on terminal board	8) Open connector, input or output	9) Regulator failed to start, open in circuit comprising R13, R14, and CR2	10) Short on output	1) Shorted Q6 or Q7
	Assumed Fallure	a) No output				- 103						b) No regulation (above nominal output)
	E 91	High-Current Voltage Regulator										

:

		FAILURE EFFE	TABLE C-11 EFFECTS ANALYSIS OF THE POWER SUPPLY (Continued)	TABLE C-11 5 OF THE POWER	R SUPPLY (Con	tinued)			
Eet	Assumed Failure	Possible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Fartor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.	····-
High-Current Voltage Regulator		2) Short in driver, emitter-to-collector of Q5	Same as above	None	1	D _f -A _f D _o - D _p -A _p A _o	2 L	I	r
(Dentruon)		3) Failure in Q1, 2, 3, or 4	Same as above	None	I	D _f -A _f D _o - D _p -A _p A _o	lx4xF.R.	ı	
		4) Open Zener, CR1	Same as above	None	I	D _f -A _f D _o - D _p -A _b A _o	0.3xF.R.	ı	
	(ç) No regulation (below nominal	1) Shorted CR2 in starting circuit	I	I	I	I	1	ı	
	(and an	2) Excess leakage in output cap., C-1	I	ı	I	I	ı	ı	
		, 3) Overload (ext. to regulator)	I	ı	ł	1	t	1	
		4) Low battery input	ı	ı	I	'	•	ŀ	
Low-Current Voltage Regulator	a) No output	1) No battery input	No telemetry	Redundancy in batteries	Loss of both 15-point and 90-point telemetry	$\left. \begin{smallmatrix} \mathbf{A}_{\mathrm{T15}} \\ \mathbf{A}_{\mathrm{T90}} \end{smallmatrix} \right\}_{\mathrm{D_{o}}}$	2 2	ı	
		2) Open series regulator, Q-1	Same as above	Redundant regulator	Same as above	$\left. {{{\rm A}_{{ m T15}}}\atop{{ m A}_{{ m T90}}}} \right _{{ m D}_{{ m O}}}$	ũ	·	
		 Failure to receive turn-on command from command switch 	Same as above	Redundant com– mand signaling	Same as above	$\left. \begin{smallmatrix} A_{T15} \\ A_{T90} \end{smallmatrix} \right _{D_{O}}$	â	ı	
		4) Open isolation diodes, CR2 and 3	Same as above	Redundant diodes	Same as above	$\left. \begin{smallmatrix} \mathbf{A}_{\mathrm{T15}} \\ \mathbf{A}_{\mathrm{T90}} \end{smallmatrix} \right\}_{\mathbf{D_{o}}}$	2 2	ı	
		5) Connector opens	Same as above	Redundant connections	Same as above	$\left. \begin{smallmatrix} \mathbf{A}_{\mathrm{T15}} \\ \mathbf{A}_{\mathrm{T90}} \end{smallmatrix} \right\}_{\mathrm{D_{0}}}$	ß	ı	
		6) Opens on terminal board	Same as above	Redundant regulator	Same as above	$\left. \begin{smallmatrix} \mathbf{A}_{\mathrm{T15}} \\ \mathbf{A}_{\mathrm{T90}} \end{smallmatrix} \right\}_{\mathrm{D_{Q}}}$	ۍ د	ı	
		7) Shorted output ^(*)	Same as above	None	Same as above	AT15 Do	ŝ		
(*) With shorted outpu	11 on low-current voltage regulat.	or, the circuit becomes a current su	(*) With shorted output on low-current voltage regulator, the circuit becomes a current supply at a maximum level of approximately 50 ma.						, , , ,

(Continued)	taion Class Factors Remark/Recommended Cars Probability Companialing Factor Factor Provisions/atc.	From complete loss of Dr15 telemetry data to some transmort loss data to some transmort loss depending on $-A_{T15}$ E_{O} B_{D15} E_{O} B_{D15} E_{O} B_{D15} E_{O} B_{D2} D_{D2} $D_$	$\begin{array}{c} D_{T15} \\ -\Lambda_{T15} \\ D_{T90} \\ -\Lambda_{T90} \\ D_{0} \\ B \\ -\Lambda_{T90} \end{array} $	$ \begin{array}{c} D_{T15} \\ -\Lambda_{T15} \\ D_{T90} \\ -\Lambda_{T90} \\ \end{array} $	$ \begin{array}{c} D_{T15} \\ -A_{T15} \\ D_{T90} \\ D_{O} \\ B \\ D_{O} \\ B \\ B \\ B \\ D_{O} \\ B \\ D \\ B \\ D \\ $	Dris Eo- Trans Do Trans Do Trans Do
ER SUPPLY	Effects on Mission	From complete loss of talemetry data to some muor loss depending or battery EMF, also frequency change in VCO	Same as above	Same as above	Same as above	Same as above
TABLE C-11 5 OF THE POWE	Compensating Provisions	None	None	None	None	Redundant or higher vastt-HR batteries
TABLE C-11 FAILURE EFFECTS ANALYSIS OF THE POWER SUPPLY (Continued)	Symptoms and Local Effects	Output follows battery voltage	Same as above	Same as above	Same as above	Same as above
FAILURE EFF	Possible Causos	1) Shorted series regulator, Q1	2) Open voltage regulator diode, CR1	 Shorted voltage regulator diode, CR1 	4) Failure of Q1 or Q2 in any mode	5) Low battery input
	Assumed Failure	b) No regulation				
	ltem.	Low-Current Voltage Regulator (Continued)				

•

Appendix D

Failure Effects Analysis of Split-System Configuration

	Failure Remarks/Recommended Prebability Compensating Factor Provisions/etc.	3 Connect Battery A11 to terminal mode commu- tator when Battery A10 fails telemetry only. This should be an ex- clusive "or-ing" arrange- ment.	3 Connect Battery A10 to terminal mode commu- tator when A11 falls (telemetry only) in ex- clusive "or-ing" arrange- ment.	ιΩ		ъъ	ß	7	LD LD	4
	Failure Class Factor	Af Do	Ap Co Ar15	ν ^ο J	Ff to Fo Afto Co FT90 to AT90	Arso Co Arso Co Ap Co	P C C	Fp to Fo Ap to Co	A _{T15} F _o	FT15 Fo AT15
I OF TV SUBSYSTEM	Effects on Mission	No F-ecan RF (Channel F) output	No P-sean RF (Channel P) Output	No F-scan video		No F-scan video, and no RF if SCR fails	No P-scan video	Degradation or possible loss of P-scan	Loss of telemetry dur- ing cruise mode	Degradation or possible loss of telemetry dur- ing cruise mode
TABLE D-1 ANALYSIS OF TV	Compensating Provisions	None	Telemetry oper- ates from A10 during terminal and warming mode	None	None	None	None	None	Redundant with High-Current Regulator A12 during terminal mode	None
EFFECTS /	Symptoms and Local Effects	 Loss of High-Current Regulator, A12, and Low- Current Regulator, A17 Loss of all telemetry, un- regulated F Channel only 	 Loss of High-Current Regulator, A22 Ross of telemetry during cruise mode Weak or lost unregulated P Channel only 	 Loss of voltage to F Channel during all modes Channel of redundant voltage 2) Loss of redundant voltage to telemetry processor during terminal mode 	Over voltage on -27.5 Volts line (-30.5 to -35 volts) F-soan und telemetry, ter- minal mode only	1) No regulated -27.5 volts	Loss of voltage to P Channel in all modes	Overvoltage on -27.5 volts line (=30.5 -35 volts) during P-scan	Telemetry supplied by High- Current Regulator A12 during terminal mode; no telemetry during cruise mode	Over voltage on -27.5 volts line during orulae mode
FAILURE	Possible Causes	 Excessively high drain Faulty heaters Petective battery Faulty connecting diode 	Same as above	 Faulty regulator circutt (open series element) Faulty Silicon Con- trol Rectifiers (SCR) 	Faulty regulator cir- cutt (shorted series element)	 Shorted load Faulty SCR switch Jow Battery voltage Faulty regulator Faulty cable Faulty cable 	 Faulty regulator circuit (open series element) Faulty SCR¹5 	Faulty regulator cir- cutt (shorted series element)	 Faulty regulator circuit (open series element) Faulty series diode Faulty reley (Command Switch) 	Faulty regulator circuit
	Assumed Failure	Dead or weak	Dead or weak	a) Open circuit	b) Short circuit across regulator	c) Loss of voltage	a) Open circuit	b) Short circuit across regulator	a) Open circuit	b) Shorted circuit across regulator
	ltem	Channel F Battery (A10, Figure D-1)	Channel P Battery (A11, Figure D-1)	(Channel F) High-Current Regulator (A12, Figure D-1)			(Channel P) High-Current Regulator (A37, Figure D-1)		Low-Current Regulator (A17, Figure D-1)	

	Remarks/Recommended Compensating Provisions/etc.			The failure class factor can not be considered separately, since there are redundant considera- tions. For channel F there are three turn-on possibilities: the CC&S command, the RTC-7, and the clock signal.	This failure can occur only during emergency- mode operation.	Failure class factor would apply only should return to normal operat- ing conditions be attempt- ed, after conditions initi- ating energency mode have been cleared. Fig- ure is reduced in critical- ity, therefore, by proba- bility of "Emergency-Off" bility of "Emergency-Off"		
	Failure Probability Factor	Ţ	4	4	4	ব	۵	m
ued)	Failure Class Factor	AT15 Fo	A _{T15} F ₀		A _{T90} E _o	P P P P P P P P P P P P P P P P P P P	ວ° P	D _f E _o
SYSTEM (Contin	Effects on Mission	Possible loss of F-scan and telemetry if battery A10 is pulled down be- cause of overload	Loss of telemetry dur- ing cruise mode	None, provided back-up works	Loss of back-up for minimal telemetry data return, No effect if warm-up signal from JPL works. Otherwise, system is looked in cruise mode,	Inability to effect de- sired telemetry return; inability to repeat trials for desired op- eration upon encounter- ing initial difficulties, i.e., no warm-up sig- nal	 None if back-up not required Loss of P-scan video if back-up is required 	Loss of 1/2 of F-scan pictures
TABLE D-1 /SIS OF TV SUB	Compensating Provisions	 Redundant with High-Current Regulator A12 during terminal mode only Fuse input 	None	 RTC signal as lst back-up tack-up clock signal as 2 iclock signal as 2 iclock signal as 2 iclock signal as clifects chan-up nel F only) 	None, since this is a back-up pro- vision	None, since this is a back-up provi- sion	 None for P- scan Clock for F- scan and termi- nal-mode 	
TABLE D-1 FAILURE EFFECTS ANALYSIS OF TV SUBSYSTEM (Continued)	Sympioms and Local Effects	Same as (a) above: possible oscillation of cruise-on relay in Command Switch	No telemetry during cruise	No high-current regulator output; no F- or P-scan; no telemetry during terminal mode	None for expected (normal) operating conditions; how- ever, emergency telemetry is not possible. When stepper switch is inoperative, system is looked in cruise mode if us looked in cruise mode if failed.	Continued operation in emer- gency mode, assuming fail- ures have necessitated emergency operation	 Loss of emergency mode (if needed) Loss of a back-up com- mand for P-scan video 	Loss of F-scan video from F _a camera
FAILURE E	Possible Causes	 Shorted load Faulty regulator Faulty cable con- nector 	 Faulty cable or connector Faulty latching relay 	 Faulty cable or connector Paulty SCR amplifier Faulty diodes to SCR's 	 Selection connection open Faulty wiring of return to stepper switch Inoperative stepper 	Stepper switch locked in "Emergency-On"	 Faulty RCA-JPL interface connection Faulty relay driver Faulty RTC relay Faulty RTC signal source 	 Faulty sequencer to F channel Faulty connector or eable Faulty internal cir- cuit
	Assumed Failure	c) Loss of voltage	a) No "Cruise-On" command	b) No "Warm-Up" command response	c) No "Emergency" command	d) No "Emergency" Off" command	e) No RTC input response	a) Loss of camera Fa (AlA6)
	ltern	Low-Current Regulator (A17, Figure D-1) (Continued)	Command Switch (A13, Figure D-1)					Camera Head F-scan (A1, Figure D-1)

	Remarks/Recommended Compensating Previsions/etc.						Simultaneous loss of 46.3 volts from canneras P1 and P2 is required to disable the Video Com- biner causing loss of all P-scan video.
	Failure Probability Factor		a n	m		N	ى ت
(pen	Failure Class Factor		Ar Do Eo	ພ [°]	ພິ ຜິ ພິ ພີ ຜີ ຜິ	ಟ ⁰ . ಹಿ	د ⁰ بر
SUBSYSTEM (Continued)	Effacts on Mission		Same as above Loss of all F-scan pictures	Loss of 1/4 of P-scan video	Same as above Same as above Same as above	Loss of 1/4 of P-scan video	None
TABLE D-1 Failure effects analysis of tv subsy	Componsating Provisions		P-scan returns, no F-scan	Partially redun- dant pictures from P-scan cameras	Same as above Same as above Same as above	Partially redun- dant P-scan pictures	±6.3 volts is re- dundant
	Symptoms and Local Effects		Loss of F-scan video from F _b camera Loss of all F-scan video	Loss of P-scan video P1	Loss of P-scan video P2 Loss of P-scan video P3 Loss of P-scan video P4	Loss of one P-scan video	None
FAILURE EF	Possible Causes	 4) Internal loss of -27.5 volts reg. 5) Internal loss of -30.5 volts unreg. 6) Shorted camera electronics 7) Faulty vidicon and shutter 	Same as above Same as above	 Faulty sequencer Faulty cable or connector Faulty internal cir- cuit Internal lose of -27, 5 volts reg. Internal lose of -30, 5 volts urreg. Shorted camera electronics Faulty vidicon Faulty widicon 	Same as above Same as above Same as above	 Faulty internal circuitry cuttry Faulty vidicon and shutter Loss of blas voltage Shorted video combiner Faulty cable or 	connector 1) Faulty internal circuit 2) Faulty diode 3) Faulty diode
	Assumed Failure		b) LOBS of camera $F_{\rm b}$ (A1A5) c) LOSS of both cameras $F_{\rm a}$ and $F_{\rm b}$	a) Loss of camera P1	 b) Loss of camera P2 c) Loss of camera p3 d) Loss of camera 	P4 a) Loss of any one of the four P- scan camera videos (Camera head is assumed to be operating properly.)	b) Loss of ±6.3 volta from either camera P1 or P2
	Fei	Camera Head F-scan (A1, Figure D-1) (Continued)		Camera Head P-Scan (A1, Figure D-1)		Camera Elec- tronica P-scan (A2, A3, A4, A5, Figure D-1)	

	Remarks/Recommended Compensating Provisions/etc.			Both F -scan cameras would have to lose ±6.3 volts simultaneously to disable the video com- biner and cause disable the video loss of all F - scan video.					
	Failure Probability Factor	ب ب	N	نە 	сı	<u>م</u>	G	in	- 1 -
ued)	Failure Class Factor	Ap Co	p E	ь Г Г	A _f D _o	A _f D _o	ບ° ¢	A _f D _o	
SYSTEM (Contir	Effects on Mission	Loss of all P-scan video	Loss of 1/2 of F-scan video	None	No F-scan video	No F-scan video	Complete loss of P- scan video	Complete loss of F- scan video	None
TABLE D-1 /SIS OF TV SUB	Compensating Provisions	None	None	±6.3 volts is re- dundant	None	None	None	None	Redundant turn-on command in elec- tronic clock
TABLE D-1 FAILURE EFFECTS ANALYSIS OF TV SUBSYSTEM (Continued)	Symptoms and Local Effects	Loss of all P-scan video	Loss of F-scan video, F _a or F _b	None	Loss of all F-scan video	Loss of all F-scan video	No transmitter No. 2 modu- lation signals (video)	No transmitter No. 1 modu- lation signals (video)	No transmitter No. 1 opera- tion by sequencer
FAILURE E	Possible Causes	Same as above	 Faulty internal circuit Loss of bias volt- ages Shorted video com- biner Faulty cable or connector Faulty vidicon and shutter Faulty sequencer 	 Faulty internal circuit Faulty cable Faulty diode 	Same as failure (a) above	Same as failure (b) above	 Faulty internal circuit Paulty cable or connector Loss of has voltage internally Shorted load Faulty sequencer 	Same as (a) above	 Faulty relay Faulty cable or connector Faulty relay driver Faulty timer
	Assumed Failure	c) Loss of ±6.3 volts from both cameras	 a) Loss of cameras F or F video (camera 2) head is assumed to be operating proper- ly.) 	b) Loss of ±6, 3 volts	c) Loss of camera F_{a} and F_{b} video (assumes camera head is O, K_{a})	d) Loss of ±6.3 volts both cameras	a) No Channel P video	b) No Channel F video	a) No d-c return (transmitter re- turn
	lten	Camera Electronics P-scan (Continued)	Camera Elec- tronics F-Scan (A6, A7 Fig- ure D-1)				Video Com- biner (A8, Figure D-1)		Sequencer Power Supply, Channel F (A28, Figure D-1)

Γ	1	Π		I					• • • • • • • • • • • • • • • • • • •
	Remarks/Recommended Compensating Provisions/etc.				Power "fail-safe" gate from camera P1 electronics.				
	Failure Probability Factor	4		4	4	4	-		۵
ued)	Failure Class Factor	A _f D _o	Ar Co	о Р СС	ບິ d		A _f D _o	° P d	Er Arto Ep Ap Argo Argo
SUBSYSTEM (Continued)	Effects on Mission	No video	Deficient video or no video.	No P-scan RF output	No vídeo A	Deficient or no video from cameras P2, P3, or P4	No F-scan RF output	No P-scan RF output	Decreased signal-to- noise ratio both chan- nals: possible loss of all video and terminal mode telemetry
LE D-1 OF TV	Compensating Provisions	None	None	None	None	Free-running sync. generator in cam- era P1	Redundant termi- nal mode teleme- try	Same as above	None
TAB EFFECTS ANALYSIS	Symptoms and Local Effects	Loss of synchronizing and gating signals; loss of video, defloient video, or no video combining	Deficient Video or no video	No transmitter No. 2 oper- ation	Loss of sync, and gating signals, some loss of video, deficient video, or no video combining	Deficient or no video from cameras P2, P3, or P4	No RF output	No RF output	No RF output
FAILURE	Possible Causes	 Faulty cable or connector Faulty timer Faulty internal circuit 	Same as above	Same as failure (a) above	Same as failure (b) above	Same as fallure (c) above	 Faulty internal otrout Faulty cable and connector No DC return Faulty command Faulty command Loss of power Modulator and multiplier failure 	Same as above	 Faulty cabling or connector Arving Air leakage
	Assumed Failure	 b) Loss of gating signals (to com- biner and se- quencer power supply 	c) Loss of camera- sync functional signals (to cam- era electronics)	a) Same as failure (a) above	b) Same as failure(b) above	c) Same as failure(c) above	No output	No output	Low or lost output
	lte m	Sequencer Power Supply, Channel F (Continued)		Sequencer Power Supply	(Cnannel F) (A28, Figure D-1)		P-Channel Transmitter Araphitier Anplitier (A15), Power (A15), Power Supply (A16, Figure D-1)	F-channel Transmitter (A19), Power Amplifier (A20), Power Supply (A21, Figure D-1)	Four Port Hybrid (A24) and Dummy Load (A25, Figure D-1)

	Remarks/Recommended Compensating Provisions/etc.				Design for power turn-off is nected, in case of accidental clock turn-on.	Turn-off provision is strictly a compensating provision.	Separate power cables are needed. Power "fail-aafe" gate from camera P1 elec- tronics	Separate power cables are needed.
	Failure Probability Factor	°	n	പറ	ى س	പറ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്	പ പ	۵
ued)	Failure Class Factor	^F T90 AT90 E	F _{T15} to _{E0} A _{T15}	F F C C A T 90	Af D ₀	$egin{array}{c} A_{f} & D_{o} \\ A_{p} & C_{o} \\ A_{T90} & A_{T90} \end{array}$	A ^P A ^F	Df Eo
SUBSYSTEM (Continued)	Effects on Mission	Loss of telemetry up to -88 points	Loss of telemetry up to 13 points	 None if either CC&S commands operate or RTC-7 commands operate Lack of F-scan Lack of F-scan Lack of F-scan telemetry if clock is needed 	 Excessive power drain on channel F may cause failure of channel during terminal mode 	 Possible loss of F-scan video if battery is low pattery is low P-scan video if P-scan and P-scan rideo and terminal 	 Loss of power to T-sequencer power supply; no F-scan video Loss of power to P-sequencer power supply; no P-scan video 	Loss of power to both F cameras; loss of 1/2 of F-scan pictures
LE D-1 OF TV	Compensating Provisions	None	None	RTC-7 command from JPL bus	None	None	None	Redundant F-scan camera
TABLE EFFECTS ANALYSIS OI	Symptoms and Local Effects	Loss of telemetry points	Same as above	 No clock turn-on signal No system A turn-on if all other turn-ons fail 	Constant transmission of F-scan video	No DC disconnect in the event of accidental power turm-on	No regulated DC input (-27.5) None to either unit	No regulated d-c input (-27.5) Redundant F-scan to either unit camera
FAILURE EI	Possible Causes	 Faulty commutator Faulty internal circuit cutt 3) Faulty processors 4) Faulty temperature 5) Faulty cables and connectors 	Same as above	 Faulty internal cir- cutt Faulty cable or connector Faulty DCU 	Same as above	 Faulty internal circuit Faulty cable or connectors Faulty command switch 	 Faulty internal circuit Faulty cable or connectors 	 Faulty internal cir- cuit Faulty cable or connectors
	Assumed Foilure	a) No terminal mode telemetry	b) No cruise mode telemetry	a) No turn-on output	b) Accidental turn- on	No turn-off signal	a) Loss of regulated power to 2 se- quencer power supplies	 b) Loss of regulated power to 2 F- scan cameras
	Hen	Telemetry As- sembly (A26), Temperature Sensor (A27), Telemetry Processor No. Processor No.	2 (Figure D-1)	Electronic Clock (A35, Figure D-1)		Power Control Unit (A36, Figure D-1)	Distribution Control Unit (A34, Figure D-1)	

	FAILURE	EFFECTS AN		D-1 OF TV SUBSYSTEM (Continued)	tinued)		
		Symplems and Local Effects	Componsating Provisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
 Faulty internal cir- ouft Faulty cable or connectors 	L	No regulated DC input (-27.5) to any one or all of the units) Three other redun- dant partial scan cameras	Loss of power to all four P cameras; loss of 1/4 of P-scan video	в в в	م ا	Separate power cables are needed,
 Paulty internal circuit cuit Paulty cable or connectors 		No regulated DC input (-27,5) None to either unit) None	 Loss of power to transmitter No. 1 telemetry processor; loss of Charnel F Loss of power to transmitter No. 2 telemetry processor; loss of Charnel P 	Ar D	ى 	Separate power cables are needed.
 Faulty internal cir- cuit Faulty cable or connectors Faulty battery 		No unregulated DC input to either unit	Redundant F-scan camera	Loss of 1/2 F-scan video	Df Eo	ю	
 Faulty internal cir- cutt Faulty cable or connectors Faulty battery 		No unregulated DC input to any one or more of the four units	3 redundant P-scan cameras	3 redundant P-scan Loss of 1/4 P-scan carmeras video	ല് ല ^മ	a،	
 Faulty internal cir- cult Faulty cable or connectors Faulty battery 		No unregulated DC input to either unit	None	Complete loss of F- scan video	A B B	ۍ ا	
 Paulty internal circult cult Faulty cable or connectors Faulty battery 		No unregulated DC input to unit	None	Complete loss of P- scan video	AT15 Fo	a	
 Faulty internal cir- cutt Faulty cable or connectors Faulty battery 		 No unregulated DC input to command switch, 2 battery heaters via com- mand switch, jow-current regulator via command regulator to low-current No power to low-current 	1) CC&S and RTC-7 signals 2) None	 No turm-on clock signal Loss of cruise telemetry 	Ar15 Fo	م	Redundant turn-on command
 Faulty internal cir- cutt Faulty cable or Faulty command Faulty command switch 		No emergency mode signals to either transmitter No. 1 or transmitter No. 2	Both channels carry terminal mode telemetry	None	FT90 Fo	a	
 Faulty internal cir- cuit Faulty cable or connectors 		Partial operation of clock, or none	CC&S and RTC-7 signals	No turn-on signal			Redundant turn-on command

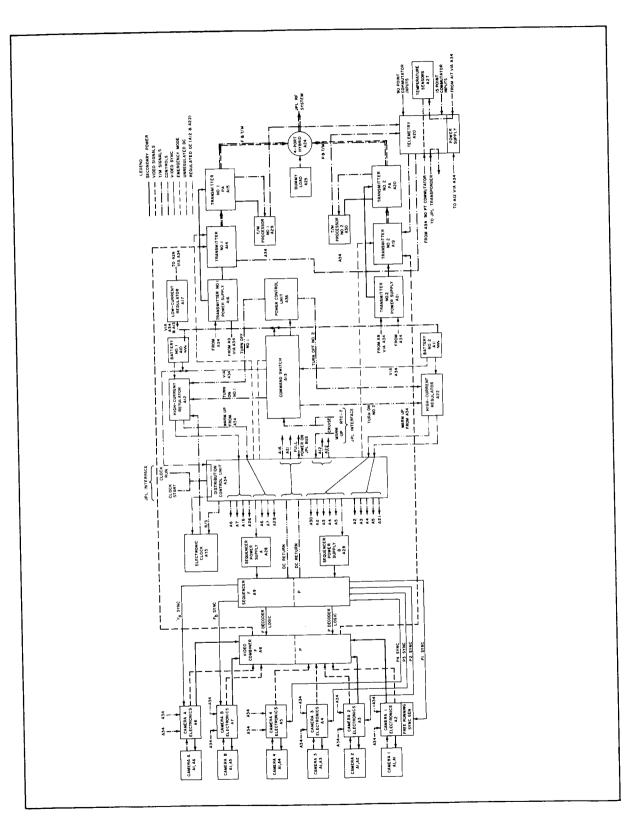


Figure D-1. Split-System Configuration of the TV Subsystem

	Remarks/Recommended Compensating Provisions/etc.	The CK06 ceramic capac- ttor now being used has been the source of noise and microphonic prob-	lems on at least two DEP equiments. A molded Mylar capacitor of the same electrical ratings and approximately the same physical size is are at a structure of J. E. Fast Type F310C103M).	It was indicated by the design group that the function provided by stages Q ₁ through Q ₆ could be abheved with only four stages. This would eliminate the transistors and their associated components and result in a functive- ment in reliability. It was recommended that this recommended that this recommended that this				
	Failure Probability Factor	5		a.	ю		n	
AND	Failure Class Factor	c _f D	D _f Eo	ດ [°] ບັ [້]	c ^r p	ດ° ບັ	ది ది చి చి	ດິດິ ¹ ັບັ
D-2 FULL-SCAN CAMERA F _a AND ELECTRONICS	Effects on Mission	Loss of 1/2 of the F-scan video	1/2 of the F-scan video will be notsy	Loss of 1/2 of the F- scan video	Same as above	Same as above	1/2 of the F-scan video will be lost Same as above	Same as above Same as above
	Componsating Provisions	F-scan video is also being pro- vided by the F _b camera	Same as above	Same as above	Same as above	Same as above	F-scan video also supplied by F _b Same as above	Same as above Same as above
TABLE FAILURE EFFECTS ANALYSIS OF ASSOCIATED	Sympioms and Local Effects	No video contribution from the F_{a} chain	Noisy video from F _a camera chain	No video contribution from the F _R camera chain	No video contribution from the F_{g} camera chain	No video contribution from the F_{a} camera chain Video from F_{a} camera chain will not contain any horizontai sync puises	No video from F _a camera camera citain ^a Same as above	Same as above Same as above
FAILURE EF	Possible Causes	Nuvistor failure short in either C3 or C4	Noisy coupling capaci- tors C1 or C5	Failures in Q, through Q ₆ and associated components components	Failure in Q ₁₇	Fallure in Q_{12} , Q_{13} , Q_{16} , or Q_{18} , or Q_{18} (Q_{13} shorted) Q_{13} shorted) Q_{13} fails open	 Failure or slump in Q. Failure of Q. Failure of Q. through Q.1 or as- sociated components 	 Failure or slump in Q₁₂ or Q₁₃ Failure of Q Q₁₄ through Q₂₂
	Assumed Failure	a) No video output from pre-amp.	b) Noisy video out- put from pre- amp.	No video to com- biner	No blanking to vidi- con cathode	a) No video to com- biner b) No horizontal sync, pulses on video	8) No vertical scan	b) No horizontal scan
	E	Video Pre- amplifier (Figure D-2)		Video Ampli- filer (Fig- ure D-2)	Mixed Cathode Blanking (Figure D-2)	Clamp and Sync Injection (Figure D-2)	Deflection Amplifier (Figures D-3, D-4)	

	Remarks/Recommended Compensating Provisions/etc.		It was indicated that the purpose of diode CR6 is to protect transistor Q_8 in the event that pot R29 is set to one end of its range. It is recommend- ed that the alternate solu- tion of placing a fixed resistor in series with the pot and removing diode CR6 be considered.			Both 6.3 volts supplies use an IN827 reference Zener diode. This is a	selected type costing approximately \$30, and it has an indefinite deliv- ery cycle. It is recom- mended that the IN821 be considered for this ap- plication, as it is much less expensive and more recodit, continue.	treating an answer of the two parts are mechanically identical: both are 6.2 volts Zeners, with the volts Zeners, with the starp, coefficient of a temp. coefficient of a temp. coefficient of a temp. coefficient of the IN821.
	Failure Probability Factor	S		4		4		
a AND	Failure Class Factor	c _f _D	c J	cf D	ດ° ບ້	cf D	в С О	^B r D _o
TABLE D-2 ANALYSIS OF FULL-SCAN CAMERA F _a AND CIATED ELECTRONICS (Continued)	Effects on Mission	Same as above	Same as above	Loss of 1/2 of F-scan information	1/2 of the only F-scan video will be degraded	Loss of 1/2 of F-scan information	All of the F-scan video will be slightly degrad- ed	Same as above
TABLE D-2 iis of Full-sc/ electronics (c	Compensating Provisions	Same as above	Same as above	F-scan video also being provided by camera F _b	Same as above	Same as above	None	None
TABLE D-2 EFFECTS ANALYSIS OF FULL-SCAN CAME ASSOCIATED ELECTRONICS (Continued)	Sympioms and Local Effects	No video from F _a camera	Same as above	No video contribution from F _a camera chain	Degraded video from F _a camera chain	No video contribution from F _a camera chain	 Because of the "or-ing" arrangement, the increas- ed 6.3 volvs will back-bias the "or" diode and take over the loads in the video over the loads in the video or whistor heater will see approx. 7.5 volts 	Same as above, except that the vidicon heater instead of the nuvision heater will see approx. 7.3 volts
FAILURE EI	Possible Causes	Failure of Q_2 , Q_5 , Q_6 , Q_7 , Q_9 , Q_{10} , Q_{12} , Q_{13} , Q_{14} , and associated components	Failure of Q ₁ , Q ₃ , Q ₄ , Q ₈ , and associated components	 Shorted reference Zener CR25 (IN1530A) C-E short in either Q₃ or Q₄ (1754122) 	C-E short in either Q ₃₃ (1753007) or Q ₅ (1754122)	C-E short in Q ₁ or Q ₂ (1754122)	с-Е short in Q ₂ (1754123)	Collector-emitter short in Q ₄ (1754123)
	Assumed Failure	a) No erase	b) No deflection	 a) No 1000 volts, 300 volts, -150 volts, 50 volts, 40, +27.5 volts, +20 volts, simultaneously 	b) 1000 volts, 300 volts, -150 volts, 30 s0 volts, 40 volts, +27, 5 volts lines approx. 10% above nominal with no regulation	a) Loss of both + and -6.3 volts DC	 b) +6.3 volts output rises to approx. 7.3 volts with no regulation 	 c) -6.3 volts output rises to approx, -7.3 volts with no regulation
	ltern	Deflection Programmer (Figure D-5)		High-Voltage DC-to-DC Converter and Regulator (Figure D-2)		±6.3 volts DC to DC Con- verter and	Regulator (Figure D-2)	

	Remarks/Recommended Compensating Provisions/etc.					
	Failure Probability Factor	4			-41	
" AND	Failure Class Factor	cf Do	c _{f D}	D ₁ E ₀	cf Do	
AN CAMERA F continued)	Éffects on Mission	Loss of 1/2 of F-scan information	Same as above	1/2 of F-scan video will present some double-exposure ap- pearance	Loss of 1/2 of F-scan video	
TABLE D-2 115 OF FULL-SC ELECTRONICS (C	Compensating Pravisions	F-scan video also being provided by camera Fb	Same as above	Same as above	Same as shove	
TABLE D-2 EFFECTS ANALYSIS OF FULL-SCAN CAMERA F _a AND ASSOCIATED ELECTRONICS (Continued)	Symptoms and Local Effects	No video from F ₈ camera	Same as above	Slightly degraded video from F_{a} camera due to slower erasure of previous picture	No video from F_{a} camera due either to inability to erase previous picture or to vidicon blanking off	·
FAILURE EI	Possible Causes	Catastrophic failure of any transistor from Q1 through Q10 or Q12 through Q14	C-E short in Q ₁₈	Lamp burned out	Failure of Q_3 , Q_4 , Q_5 , Q_7 , and associated components	
	Assumed Fallure	a) Shutter will not operate	b) Lamp remains on	c) Lamp will not turn on	No control of vidicon	
	ltem	Shutter and Lamp Drive Circuits (Figure D-2)			G1 Regulator (Figure D-2)	

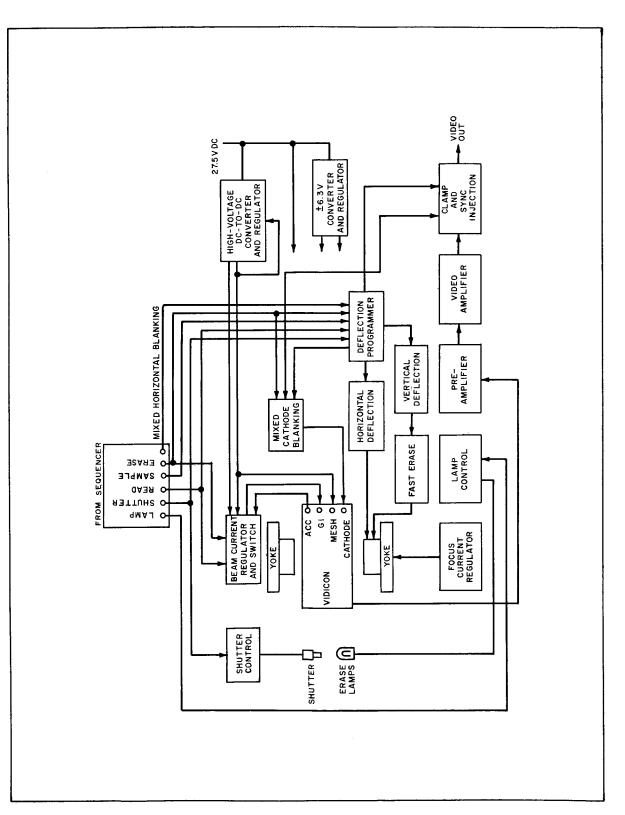
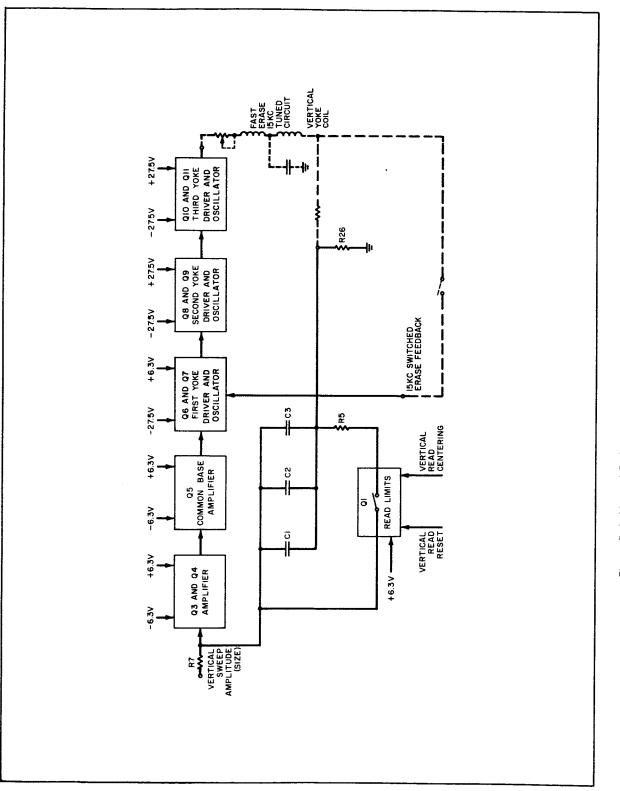



Figure D-2. Full-Scan Camera Electronics Assembly

.

.

Figure D-3. Vertical Deflection Amplifier of the F_{\circ} -Camera Assembly

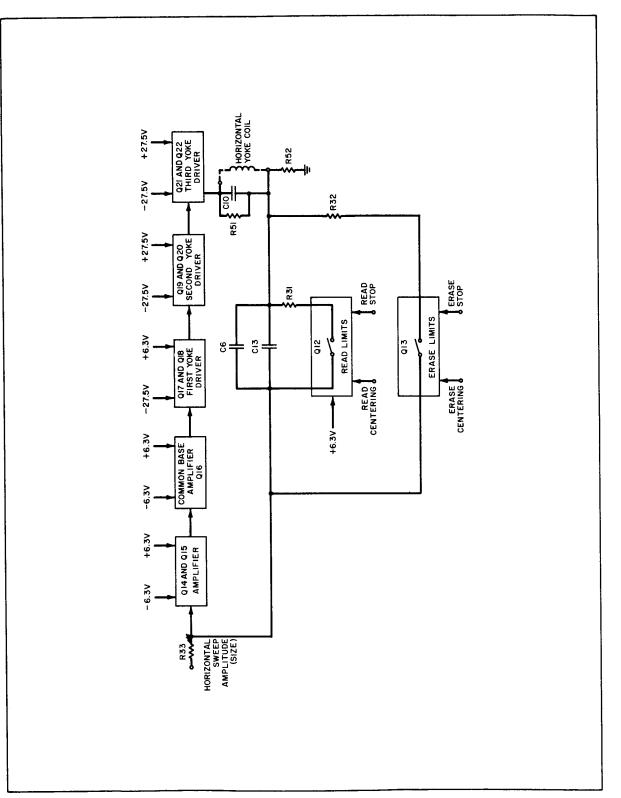
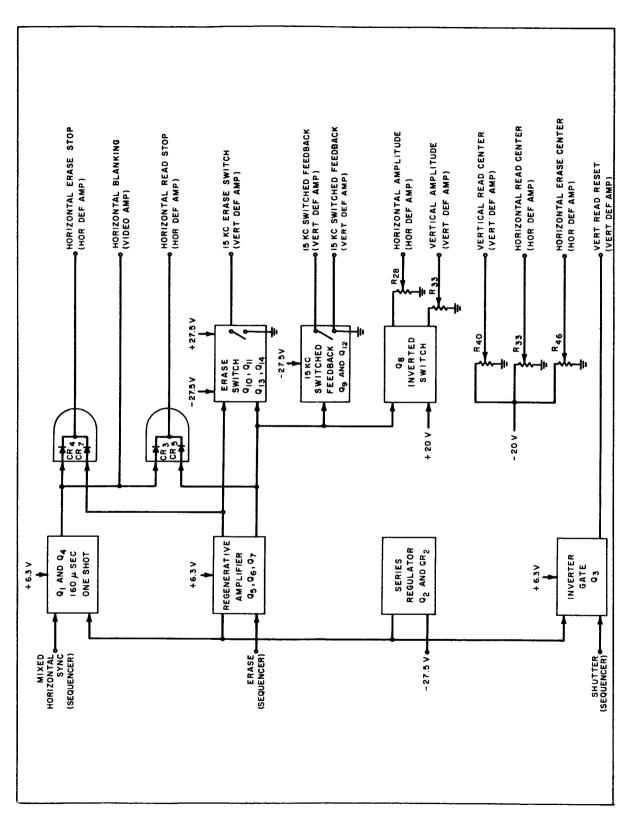



Figure D-4. Horizontal Deflection Amplifier of the $F_{\rm a}\text{-Camera}$ Assembly

;

:

	Remarks/Recommended Compensating Provisions/etc.								
	Failure Probability Factor	4		4				ى م	
A PI	Failure Closs Factor	D D D If sequencer fails these factors be- come Ap C ₀	$ \begin{array}{c} E & E_{0} \\ \text{if Sequencer} \\ \text{fails, these} \\ \text{factors be-} \\ \text{come} \\ B \\ P \\ C_{0} \end{array} $	D If sequencer fails, these factors be- come Ap C ₀		Cp D ₀ If sequencer fails, these factors be- come B C ₀		$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{lll} D_p & D_0 \\ \text{If sequencer} \\ \text{fails, these} \\ \text{factors become} \\ \text{come} \\ A_p & C_0 \end{array}$
D-3 PARTIAL-SCAN CAMERA A1A1 AND A2)	Effects on Mission	Loss of 1/4 of P-scan information; loss of free-run mode in the event of a sequencer failure	In the event of a se- quencer failure, the only available P-scan video will be degraded	Loss of 1/4 of P-scan information; loss of free-run mode in the event of a sequencer failure	All of the P-scan video will be slightly degraded	Same as above	Same as above	Degraded picture from P1 camera	1/4 of P-scan video will be lost; free-run mode in the event of sequencer failure
LE D-3 OF PARTIAL CS (A1A1 A	Compensating Provisions	P video also being provided by cam- era P2, P3, and P4.	Same as above	Same as above	None	None	Same as above	Same as above	Same as above
TABLE D-3 FECTS ANALYSIS OF PARTI AND ELECTRONICS (A1A1	Symptoms and Local Effects	No video contribution from P1 camera chain	Degraded video from P1 camera chain	No video contribution from P1 camera chain	Because of the "OR-ing" arrangement, the increased 6.3 volts will back-bias the "OR diode and take over the loads in the video combiner. Nuvisior heater will see ap- prox, 7,3 volts	Same as above, except that the visicon heater instead of the nuvistor heater will see approx, 7,3 volts	No video from P1 camera, due to absence of horizontal scan	Double-exposure appearance of picture, or vertical bar washing out approximately soft of picture (type of mal- function depends on whether QI fails to open or shorts)	No video from P1 camera, because of lack of vertical- read output
FAILURE EFFECTS AND	Possible Causes	 Short-circuited reference Zener CR25 (1N1530A) C-E Short-circuited in either Q3 or Q4 (1754122) 	C-E short-circuited in emitter Q33, Q4 (1753007), Q5 (1754122)	С-Е short in Q ₁ or Q ₂ (1754122)	C-E short in Q2 (1754123)	C-E short in Q-4 (1754123)	Failure of Q3, Q4, Q5, and associated components	Failure of Q1	Failure of Q1, Q2, Q3, and associated compo- nents
	Assumed Failure	 a) No 1000 volts -150 300 volts, -150 volts, 50 volts, 40 volts, +27, 5 volts, +20 volts simultaneously 	 b) 1000 volts, 300 volts, -150 volts, 50 volts, 40 volts, 427.5 volts lines approx. 10% above nominal with no regulation 	a) Loss of both + and -6, 3 volts DC	 b) +6.3 volts output rises to approx. 7.3 volts with no regulation 	 c) -6.3 volts output rises to approx, -7.3 volts with no regulation 	a) No horizontal- rate output	 b) No control of horizontal-sync. generator 	a) Multivibrator or associated buffer amplifier inop- erative
	ltem	High-voltage DC-to-DC Converter and Regulator (Fig- ure D-6)		±6.3 volts DC to DC Con- verter and Regulator (Figure D-6)			Horizontal- Sync Generator (Figure D-6)		Vertical-Sync Generator (Figure D-6)

		FAILURE EFI AND	ECTS ANALY	TABLE D-3 SIS OF PARTIAL (A1A1 AND A)	-SCAN CAMER 2) (Continued)	A P1		
ltem	Assumed Failure	Possible Causes	Sympioms and Local Effects	Compensating Provisions	Effects on Mission	Faiture Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
Vertical-Sync Generator (Continued)	 b) Shutter drive one- shot or associated buffer amplifier inoperative 	Failure of Q19, Q20, Q21, and associated components	No video from Pl camera, due to loss of control of shutter	Same as above	Same as above			
	c) Vertical-sync. generator inoper- ative	Fallure of any transis- tor from Q1 through Q21 and associated components except Q6, Q12, or Q18	Loss of free-run mode	P-scan video also being supplied by three other P-scan cameras	1/4 of the P-scan video will be lost: free-run mode in the event of sequencer failure	D _p D _o If sequencer fails, these factors be- come A _p C _o	a	
Deflection Amplifier (Figure D-6)	a) No vertical scan	 Failure or elump in either Q1 or Q5 	No video from Pl camera	P-scan video sup- piled by three other P cameras	1/4 of the P-scan video will be lost; free-run mode in the event of sequencer failure	D _D D ₀ If Bequencer fails, these factors be- come	ω	
		 Catastrophic failure of Q3 through Q11 and associated com- ponents 	Same as above	Same as above	Same ая above	D D D D Do If sequencer fails, these factors be- come		
	b) No horizontal scan	 Failure or slump in either Q12 or Q13 	No video from P1 camera	Same as above	Same as above			
		 Catastrophic fallure of Q.4 through Q22 and associated com- ponents 	Same as above	Same as above	Same as above	Dp Do If sequencer fails, these factors be- come A C		
Deflection Programmer (Figure D-6)	a) Vertical-size output does not change level	Failure of Q11, Q12, Q13, and associated components	Solid white stripes across picture, washing out approx- imately 20% of picture	P-scan video sup- plied by three other P-scan cam- eras	Approximately 20% of P1 video will be lost		ω	
	b) Vertical erase- stop and erase- sync outputs do not change level	Fallure of Q18	No video from P1 camera, due to absence of vertical scan	Same as above	Loss of 25% of P-scan video and loss of free- run mode in the event of a sequencer failure	x		

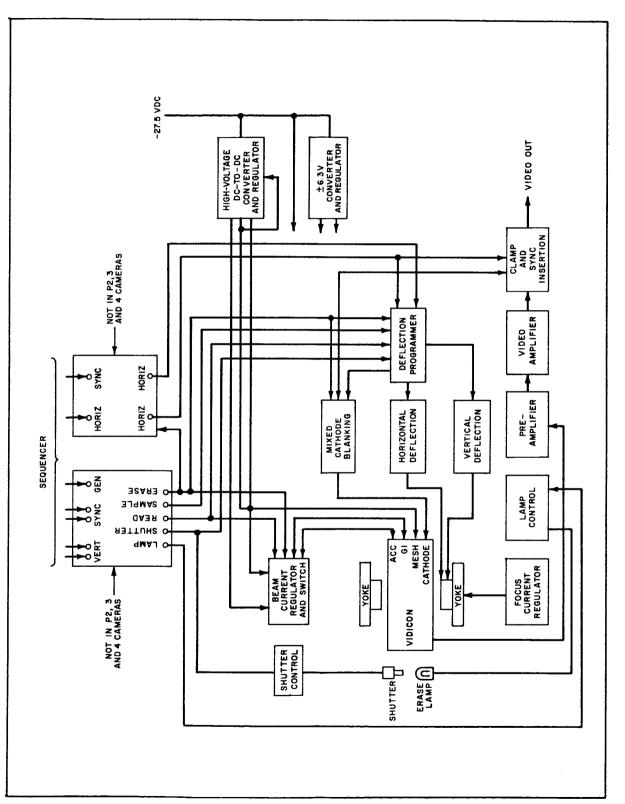
.

•

	Remarks/Recommended Compensating Pravisions/etc.					
	Failure Probability Factor			ی •		ى م
I A PI	Failure Class Factor	Ep Eo If sequencer fails, these factors be- come Bp Co	Dp Do If sequencer fails, these factors be- come Ap Co	Dp Do If sequencer fails, these factors be- come Ap Co	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	D _p D _o If sequencer fails, these factors be- come A _p C _o
)-3 PARTIAL-SCAN CAMER AND A2) (Continued)	Effects on Mission	Approximately 20% of P1 video will be lost	1/4 of the P-scan video will be lost; loss of free-run mode in the event of a sequencer failure	Loss of 1/4 of P-scan information; loss of Free-Run Mode in the event of a sequencer failure	Poor video from P1 camera; in the event of a sequencer failure only available P-scan video will be poor	Loss of 1/4 of P-scan information; loss of free-run mode in the event of a sequencer failure
TABLE D-3 SIS OF PARTIAL (A1A1 AND A3	Compensating Provisious	Same as above	Same as above	P-video is also being provided by cameras P2, P3, and P4	Same as above	Same as above
TABLE D-3 FAILURE EFFECTS ANALYSIS OF PARTIAL-SCAN CAMERA AND ELECTRONICS (A1A1 AND A2) (Continued)	Symptoms and Local Effects	Solid white stripes across picture washing out approxi- mately 20% of picture	No video from P1 camera chain due to lack of horizon- tal sweep	No video contribution from P1 camera chain	Noisy video from P1 camera chain	No video contribution from P1 camera chain
FAILURE EF AND	Possible Causes	Failure of Q2, Q3, Q4 and associated compo- nents	Failure of Q10	 Nuvision failure Short in either C3 or C4 	Noisy coupling cap. (C1 or C5)	Failures in Q1 through Q6 and associated components components
	Assumed Failure	c) Horizontal size output does not change level	 d) Horizontal erase stop and erase blanking outputs do not change level 	a) No video output from the pre- amp.	b) Noisy video output from pre-amp.	No video to com- biner
	E	Deflection Programmer (Figure D-6) (Continued		Video Pre- Amp. (Figure D-6)		Video Ampli- fier (Figure D-6)

;

	re Remarks/Recommended lilty Compensating rr Provisions/etc.											
	Failure Probability Factor	ŝ		ۍ ا	ώ	2 2		4			4	
۱۹	Failure Class Factor	a°	ш°	e			о° d	о° d		р Б	д° д	
AL-SCAN CAMERA A2) (Continued)	Effects on Mission	Loss of 1/4 of P-scan D p video information	Poor video from one of ^E ^P eras	Loss of 1/4 of P-scan D video information	Same as above Dp	Same as above Dp	Same as above D	Loss of 1/4 of the D-scan video informa-	Same as above	1/4 of the P-scan video E p will present some double -exposure	Loss of 1/4 of P-scan D _p information	
.E D-3 DF PARTIAL- A1 AND A2	Compensating Provisions		Same as above	Same as above	Same as above	Same as above		P video being pro- vided by the three other P-scan cam- eras still operating	Same as above	Same as above	Same as above	
TABLE D-3 FAILURE EFFECTS ANALYSIS OF PARTIAL-SCAN CAMERA AND ELECTRONICS (A1A1 AND A2) (Continued)	Symptoms and Local Effects	No video contribution from P-scan video is the associated P-scan camera supplied by three other P-scan camera	Noisy video from the associ- sted P-scan camera chain	No video from the associated P-scan camera chain	Same as above	Same as above	Video from associated P-scan Same as above camera chain will not contain horizontal sync pulses	No video from the associated P-scan camera	Same as above	Slightly degraded video from the associated P-scan camera due to slower erasure of previous picture	No video information from associated P-scan camera	
FAILURE EFF AND	Possible Causes	1) Nuvision failure2) Short circuit inteither C3 or C4	Notay coupling capa- citors (C1 or C5)	Failures in Q1 through 11 Q6 and associated components	Fallure in Q17	Failure in either Q12, Q13,Q16 or Q18,(Q13 shorted)		Catastrophic failure of any transistor from Q1 through Q10 or Q12 through Q14	C-E short-circuited in Q18	p burned out	 C-E short-circuited in Q11 C11 short-circuited 	
	Assumed Failure	a) No video output from preamp.	b) Noisy video output from preamp.	No video to combiner	No blanking to vidi- con cathode	a) No video to com- biner	b) No horizontal sync pulses on video	a) Shutter will not operate	b) Lamp remains on	c) Lamp will not turn on	No control of vidicon	
	Eet	Video Pre- Amplifier (Figure D-6)		Video Amplifier (Figure D-6)	Mixed Cathode Blanking (Figure D-6)	Clamp and Sync Injection (Fioure D-6)		Shutter and Lamp Drive Circuits (Figure D-6)			G1 Regulator (Figure D-6)	


TABLE D-3 FAILURE EFFECTS ANALYSIS OF PARTIAL-SCAN CAMERA P1 AND ELECTRONICS (A1A1 AND A2) (Continued)	Assumed Possible Symptoms and Compensating Effects an Mission Failure Failure Remarks/Recommended Failure Causes Local Effects Provisions Effects an Mission Factor Factor Provisions/etc.	1) Shorted reference No video contribution from P video is being Loss of $1/4$ of the D D 2) C-E short-circuit in the associated P-ecan camera provided by the D P P 2) C-E short-circuit in esther Q ₃ or Q ₄ P ether P P 2is ether Q ₃ or Q ₄ athing athing athing athing	C-E	9 7 7	.3 volts output C-E short-circuit in Q ₁ Same as above, except that None Same as above C D ses to approx. 7.3 the vidicon heater instead of the nuvistor heater will see the vidicon heater will see p o and the nuvistor heater will see approx. 7.3 volts approx. 7.3 volts p o	o vertical scan 1) Failure or slump in No video from associated P-scan video sup- Loss of 1/4 of the D 0 5 ether Q of P-scan camera plied by three P-scan video plied by three P-scan video by the P cameras other P cameras	2) Catastrophic failure Same as above Same as above Same us above D D D o O Q ₃ through Q ₁₁ and associated components	o horizontal acan 1) Falture or alump in No video from associated Same as above Same as above D D O of ther Q12, Q13 P-scan camera either Q12, Q13 P-scan camera
	Assumed Failure	No 1000 volts, 300 volts, -150 volts, 300 volts, 40 volts, 40 volts, -27.5 volts, and -27.5 volts simultan- eously 1000 volts, 300 volts, -150 volts, 50 volts, 40 volts, -27.5 volts lines approx 10% above nominal with no regulation	Loss of both + and -6.3 volts d-c	+6.3 volts output rises to approx, 7,3 with no regulation	-6.3 volts output rises to approx. 7.3 volts with no regula- tion	No vertical scan		No horizontal scan
	lten	High-Voltage D-C to D-C Converter and Regulator (Figure D-6)	±6.3 volts D-C Converter and Regulator (Figure D-6)			Deflection Amplifier (Figure D-6)		

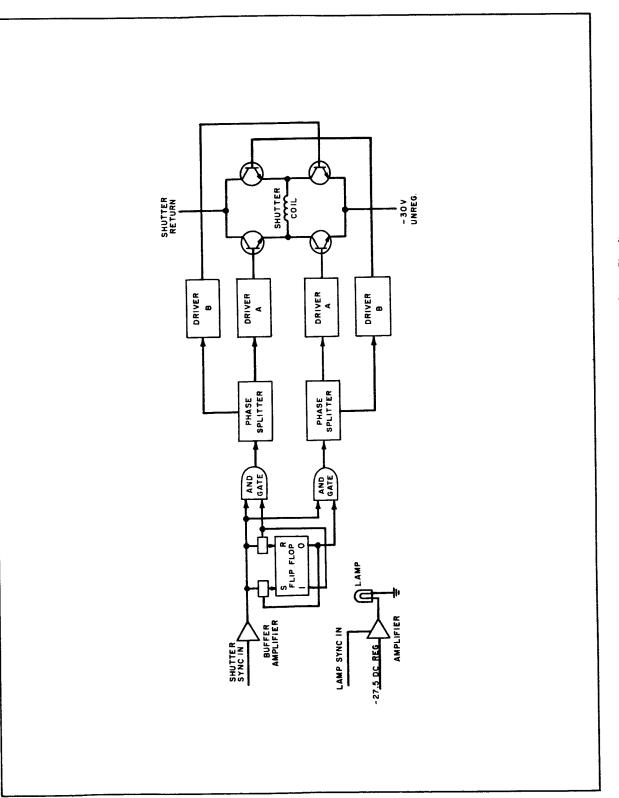
.

) :

	Remarks/Recommended Compensating Provisions/etc.						 		 	
	Failure Probability Factor		ى م		ۍ ۲				 	
I A	Failure Class Factor	D _p D _o	Ep Eo	o d d	E Eo	ď				
)-3 PARTIAL-SCAN CAMER, AND A2) (Continued)	Effects on Mission	Same as above	Approximately 20% of P1 video will be lost	1/4 of the P-scan video will be lost	Approximately 20% of P-scan video will be lost from associated camera.	1/4 of P-scan video will be lost				
TABLE D-3 SIS OF PARTIAL- (A1A1 AND A2	Compensating Provisions	Same as above	Same as above	Same as above	P-scan video sup- plied by three other P cameras	Same as above				
TABLE D-3 FAILURE EFFECTS ANALYSIS OF PARTIAL-SCAN CAMERA AND ELECTRONICS (A1A1 AND A2) (Continued)	Symptoms and Local Effects	Same as above	Solid white stripes across picture, eashing out approx- imately 20% of picture	No video from associated P-scan camera chain due to lack of horizontal sweep	Solid white stripes across picture, washing out approx- imately 20% of picture	No video from associated P-scan camera due to lack of vertical scan				
FAILURE EF AND	Possible Causes	 Catastrophic failure Catastrophic failure of Q₁₄ through Q₂₂ and associated components 	Failure of Q ₂ , Q ₃ , Q ₄ , 1 and associated com-	Failure of Q10	Failure of Q ₁ , Q ₁₂ , Q ₁₃ , and associated components	Failure of Q ₁₈	 			
	Assumed Failure		a) Horizontal size output does not change level	 b) Horizontal erase stop and erase blanking outputs do not change level 	c) Vertical size out- put does not change level	d) Vertical erase stop and erase sync outputs do not change level				
	Le H	Deflection Amplifier (Continued)	Deflection Programmer (Figure D-6)				 		 	

:

.



	Remarks/Recommended Compensating Provisions/etc.		Assumes failure in a single channel	Same as above		Redesign gate in order to eliminate a portion of video channel in advent of a single failure				
	Failure Probability Factor	ŝ	cı	ы	ى ب	۲3 N	<u>م</u> م	c.	ю.	ى م
×	Failure Class Factor	Af or Do Ap Bo	cf Ep Eo	g g g g g g g g g g g g g g g g g g g	Ep Fo	Ar Do Ap Bo	Af D _o Ap B _o D _p E _o	Ft90 Fo	Ff Fo	Af D _o
VIDEO COMBINER	Effects an Mission	No F-scan or no P-scan video	 Increased noise on video channel Loss of snyc. signals in affected channel 	Same as above	 Loss of 1/2 F-scan video. or Loss 1/4P-scan video. all but camera P1 	 Loss of F-scan video, or Loss of P-scan video 	 Loss of F-scan video, or Loss of P-scan Loss of P-scan partial loss of high- frequency resolution 	Loss of monitoring point	F-scan camera F _a and F _b pictures are not discernible at OSE	 No F-scan video Adjacent channel interference after switch-over
D-4 OF THE	Compensating Provisions	None	None	None	Fail-safe gate for camera P-1 video	Same as above	Same as above	Same as above	Nonc	None
TABLE EFFECTS ANALYSIS	Symptoms and Local Effects	No F-scan video or No P- scan video	Continuous transmission through affected gate.	Same as above	Loss of video in affected gate	Loss of video in that particular channel	 Loss of video in that particular channel Loss of high-frequency preemphasis 	Loss of telemetry point	No oscillator tones	 No F-scan video Over-modulation on chan- nel F after switch-over
FAILURE	Possible Causes	Shorted decoupling capacitor	Grounded or open line from sequencer	 Shorted Q8, Q10, Q12, Q14 Q12, Q14 Open Q9, Q11, Q13 Q15 Shorted diode bridge- CR3, CR4, CR5, & CR6 Q15 Q15, R47, R63, & R76 	 Open Q8, Q10, Q12, Q14 Shorted Q9, Q11, C13, Q15, Q15, C13, Q15, Q15, R44, R69 	 Open R36 thru R41 (typical in a single gate) Faulty diode in any bridge network 	 Any open resistor Any short or open transistor Shorted capacitor C₇ Open capacitor C₇ 	Any open or shorted part	 Faulty cable or connectors Faulty camera F_a electronics 	 Faulty cable or connectors Faulty camera F_b electronics
	Assumed Failure	a) Shorted decoup- ling capacitor (8 or 9)	b) Loss of sequencer drive	c) Constant trans- mitting gate	d) Constant inhibi- ting gate	e) D-C shift caused by faulty gate	f) Amplifier failure	g) Peak detector failure	a) Loss of ± 6.3v to oscillator board	b) Loss of ± 6.3v to F summing board
	E	Gate Amplifier & Peak Detector (Figure D-8)							Interface Power (Figure D-8)	

1

		FAILURE EFFEC	TABLE D-4 AILURE EFFECTS ANALYSIS OF THE VIDEO COMBINER (Continued)	TABLE D-4 Of THE VIDEO	COMBINER (Co	ntinved		
Herr	Assumed Failure	Possible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Pravisions/etc.
Interface Power (Continued)	c) Loss of <u>4</u> 6.3 volts to P summing board	 Faulty Cable or connectors Faulty camera P1 electronics 	No P-scan video	None	No P-scan video	ບິ v	ع	
144kc GSC Gate (Figure D-8)	Loss of gate inputs	 Faulty cable or connectors Faulty sequencer power supply 	Tones permanently super- imposed on video	None	Interference of tone on F-scan video	Ef Fo	۵	
Partial-Scan Video Gates (Figure D-8)	Gates fail closed (signals transmitted)	 Open cable or connectors Sequencer signal(s) not present Internal gate circuit failure 	 Continuous conduction of signale to transmitter Small shift of DC level 	Иопе	Temporary loss of sync. at OSE	о Ел	D)	
Full-Scan Video Gates (Figure D-8)	Gates fail closed (signals transmitted)	 Open cable or connectors Sequencer signals not present Internal gate circuit failure 	Continuous conduction of signals to transmitters	None	Decreased signal-to- noise ratio in F-scan video	Ef Fo	ت ت	
Clipper (Figure D-7)	a) Clipper (fuily actuated	 Internal clipper clipper circuit failure Loss of bias voltages 	No clipper action leading to overmodulation in transmitter	Иоле	Slight adjacent charmel interference if high- lights are present	E F O	۵ ۱	
	 b) Clipper (short- circuited) 	 Internal clipper circuit failures Shorted loads 	Low video signais	Possible compen- sation at OSE	 Loss of video contrast Decreased signal- to-noise ratio 	a a a	IJ	
P-Scan Power Amplifier (Figure D-8)	Power amplifier failed	Internal amplifier circuit failure	No P-scan video	None	No P-scan video	Ap Co	ي ا	
F-Scan Power Amplifier (Figure D-8)	F-scan power amplifier failed	Faulty internal circuit	No F-scan video	None	No F-scan video	A _f D _o	5	
144kc-Tone Oscillator (Figure D-8)	Tone oscillator	Faulty internal circuit	No 144kc tone	Camera F _b tone signal	No tone light for camera F _b at OSE	۰ ۴	ß	
Converter F _a Tone Oscillator (Figure D-8)	a) No 144kc tone	Shorted power de- coupling capacitors C22 and/or C23	No 144kc tone, and no camera F _a video	None	Only 1/2 of F-scan video	Cr E	Cu	
	 b) Output level increase 	Open resistor, R ₂₂ , R ₂₃ , R ₁₃ , or R ₁₄ in tone circuit	Increase in amplitude	None	Loss of F _a video	Ff Fo	ω	

<u> </u>	mended ng itc.									 			
	Remarks/Recommended Compensating Provisions/etc.												
	Failure Probability Factor	2	ß	5	ß	 م	ى	a	ß	 		 	
ntinued)	Failure Class Factor	Ef Fo	Ef Fo	A _f D _o	A B B	а° Д	D B B	Ef Fo	E Fo	 			
COMBINER (Co	Effects on Mission	No tone signals	No tone signal at OSE	No F-scan video	No P-scan video	Over-modulation of channel F video, and some probable adjacent channel interference aunanione action	of and annel	Loss of F-video contrast	Loss of P-video contrast				
TABLE D-4 OF THE VIDEO	Compensating Provisions	None	None	None	None	None	None	None	None				
TABLE D-4 FAILURE EFFECTS ANALYSIS OF THE VIDEO COMBINER (Continued)	Symptoms and Local Effects	No 144kc tone	Change in tone frequency	No F-scan video	No P-scan video	No clipping of F video	No clipping of P video	Distorted F-scan video (severe clipping)	Distorted P-scan video (severe clipping)				
FAILURE EFFEC	Possible Causes	Bad crystal, electrical or mechanical	Other faulty components Change in tone frequency	 Open R₅₅, faulty connector or cable 		1) Open Q_{10} or Q_{11} , R_{46} or R_{51} , R_{47} or R_{52} , R_{45} or R_{53}	2) Q ₈ or Q ₉ , R ₃₈ pr R ₄₁ , R ₃₇ or R ₄₂ , R ₃₅ or R ₄₃		2) Open R ₃₆ , short- circuited Q ₈ or Q ₉		 		
	Assumed Failure	c) No 144kc tone	d) Change in frequency	a) No video output		b) Loss of clipping		c) Distorted video				 	
	ften	Converter F _a Tone Oscillator	(Continued)	Clipper in Peak Detector						 		 	

· ··· ·····

Figure D-7. Partial-Scan Camera Shutter and Lamp-Drive Circuitry

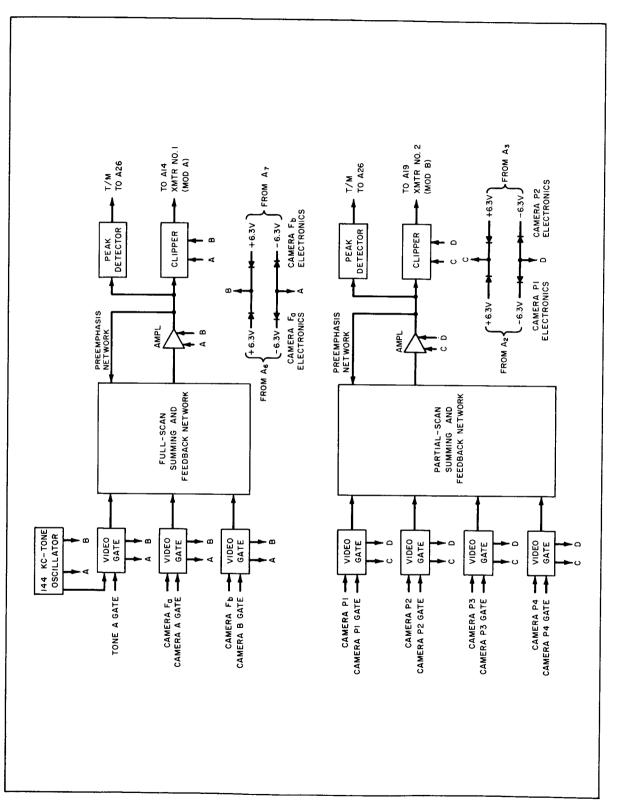


Figure D-8. Video-Combiner Assembly

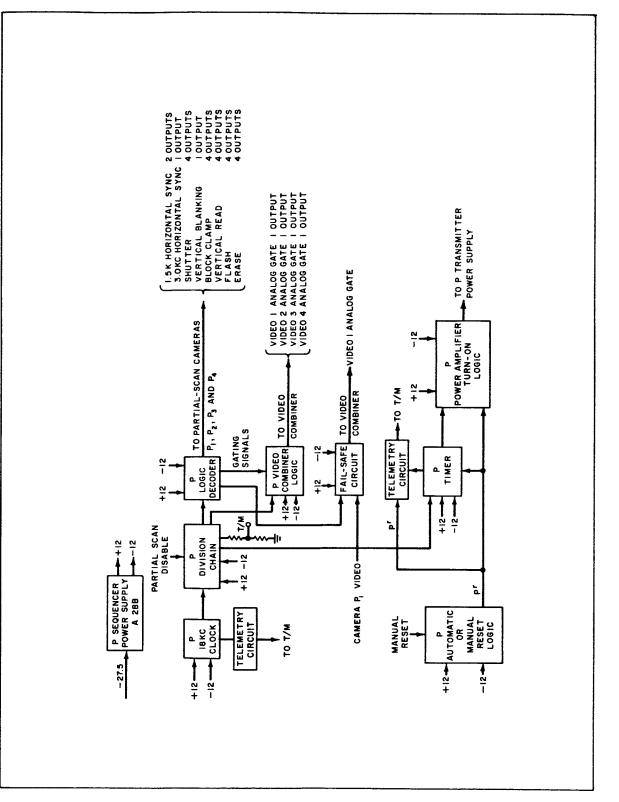
/ . .

1

	FAILU	ILURE EFFECTS	TABLE D-5 Re effects analysis of the partial-scan camera sequencer	TABLE D-5 THE PARTIAL-SC	CAMERA	SEQUEN	CER	
ttem	Assumed Failure	Pessible Causes	Sympiams and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
Channel P Power Supply Converter & Regulator	a) Loss of -12 volts	 Faulty cable or con- nectors Faulty -12 volts regulator 	 Erratic or complete loss of gating signals No automatic turn-on 	One free-running P-scan camera	Only 25% of P-scan pictures	с° м ^d	4	
(Figure D-9)	b) Loss of +12 volts	 Faulty cable or con- nectors Faulty DC to DC converter Faulty +12 volts regulator 	 Loss of gating signals No automatic turn-on 	One free-running P-scan camera	Only 25% of P-scan pictures	۵° ¤ ^d	4	
18 kc Clock & Driver (Figure D-9)	Loss of clock output	 Faulty cable or con- nectors Faulty clock circuit Faulty driver circuit Faulty P division chain input Faulty gate (5) 	No sequencer signals	One free-running P-scan camera	Only 25% of P-scan pictures	۳ ₀	۵	
Telemetry of 18 kc Clock (Flg- ure D-9)	Loss of 18 kc teleme- try (P-Scan)	 Faulty cable or connectors Faulty rectifier Reference circuit failure Faulty gate (11) 	No 18 kc telemetry	None	No 18 kc telemetry from P-scan channel	Ft90F0	م	
P-Division Chain (Fig- ure D-9)	Loss of counting of 1 of 3 Binary counters 1-3: 1 divider or 1-5: 1 divider or 1-6: 1 divider or 1-25: 1 divider or 1-26: 1 divider or 1-26: 1 divider 7 total of 16 compil- mentary flip-flops	 Faulty flip-flops Faulty connector Shorted loags (gate) 	Loss of all: 1) P-logic decoder outputs 2) P video combiner inputs 3) P automatic turn-on	One free-running P-scan camera	Only 25% of P-scan pictures	о° а	ى	
P-Divider Telemetry Monitor (Figure D-9)	Open or shorted volt- age divider resistor	Faulty connector	No P-divider telemetry output	None	No P-divider teleme- try output	F _{t90} Fo	υD	
P-Logic De- coder (Fig- ure D-9)	a) Loss of 2X hori- zontal sync (3 kc)	Failure of: 1) P clock 2) Gate (5) 3) Flip-flop A, B, or C 4) Gates (R35) (R36) 5) Cables or connectors	Loss of sensitivity of low video signals from cameras P2, P3, and P4	One free-running P-scan camera	Poor quality pictures from cameras P2, P3, and P4	о О (д- ^д)	a	Recommend separate line to each camera instead of a single line to all cam- eras.
	 b) Loss of horizontal sync 1.5 kc (2 out- puts: 1-gate 33, 1-gate 30, 	Fallure of: 1) P clook 2) Cate (5) 3) Flip-flops A, B, C, or D 4) Cates (R32), (33), (30)	Loss of video from cam- eras P2, P3, and P4	One free-running P-scan camera	Only 25% of P-scan pictures	d _o d	cı	

•

	FAILURE							
te 3	Assumed Failure	Possible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
P-Logic De- coder (Continued)	c) Loss of vertical- read pulses	Failure of: 1) P cloco f: 2) Gate (5) 3) Single flip-flop in P division chain					ى 	
	Loss of 1) Vertical-read #1	Failure of gates (80), (82)	No camera P1 read pulse	Free-running camera	None	ь Бр	<u>ي</u>	
	2) vertical-read #2	Failure of gates (77), (R79)	No camera P2 read pulse	3 other P-scan cameras	Only 75% of P-scan pictures	D E O	ŝ	
	3) vertical-read #3	Failure of gates (71), (R73)	No camera P3 read pulse	3 other P-scan cameras	Only 75% of P-scan pictures	D D D	ŝ	
	4) vertical-read #4	Failure of gates (R70), (69), (65), (D75), (74)	No camera P4 read pulse	3 other P-scan cameras	Only 75% of P-scan pictures	D E	S	
	d) Loss of shutter pulse:	Failure of: 1) P clock 2) Gate (5) 3) Single flip-flop in P division chain	Loss of cameras P2, P3, and P4	Free-running camera P1	Only 25% of P-scan pictures	a d	ى ب	
	Loss of 1) shutter #1	Failure of gates (R60), (58), (50), (54)	No camera P1 shutter pulse	Free-running camera P1	None	F P	ى ب	
	2) shutter #2	Failure of gates (R52), (56), (D81), (80), (50)	No camera P2 shutter pulse; no camera P2 video	3 other P-scan cameras	Only 75% of P-scan pictures		ũ	
	3) shutter #3	Failure of gates (R55), (54), (D78), (77), (50)	No camera P3 shutter pulse; no camera P3 video	3 other P-scan cameras	Only 75% of P-scan pictures		ۍ 	
	4) shutter #4	Failure of gates (R53), (51), (72), (71), (50)	No camera P4 shutter pulse; no camera P4 video	3 other P-scan cameras	Only 75% of P-scan pictures	D E O	ŝ	
	e) Loss of erase pulse:	Failure of: 1) P clock 2) Gate (5) 3) Single flip-flop in P division chain	No return from cameras P2, P3, and P4	Free-running camera P1	Only 25% of P-scan pictures		بە 	
	Loss of 1) erase #1	Failure of gates (8), (9), (10), (1), (R79), (77), (71), (17), (74), (D74)	No camera P1 erase pulse	Free-running camera P1	None		ى م	
	2) erase #2	Failure of gates (5), (6), (R7), (1), (17), (80), (R82), (RD73), (71)	No camera P2 erase pulse No camera P2 video	3 other P-scan cameras	Only 75% of P-scan pictures		co ا	
	3) erase #3	Failure of gates (2), (3), (4), (1), (17), (74), (D75)	No camera P3 erase pulse No camera P3 video	3 other P-scan cameras	Only 75% of P-scan pictures		<u>ی</u>	
	4) erase #4	Failure of gates (1), (17), (RD73), (71), (17), (D81), (80)	No camera P4 erase pulse No camera P4 video	3 other P-scan cameras	Only 75% of P-scan pictures	о С	сı	
				_				


ed)	Remarks/Recommended Compensating Provisions/etc.							Possible elimination not active	Purpose questioned not active	Purpose questioned not active	Purpose questioned not active		
Continu	Failure Probability Factor	ى	a	ى ئ	ى ت	C)	ŝ	S.	ۍ	ß	υ	œ	œ.
SEQUENCER (Continued)	Failure Class Factor	a a a	ь с ц	а° д ^d	a° a ^d	D D D	ч ч	F Fo	ь Б	н р	ь с ц	ษ [°]	ч ч
CAMERA SEQU	Effects on Mission	Only 25% of P-scan pictures	None	Only 75% of P-scan pictures	Only 75% of P-scan pictures	Only 75% of P-scan plctures	Camera P2, P3, and P4 pictures may still be reclatmable	None	None	None	None	Continuous pictures at OSE	None
TABLE D-5 PARTIAL-SCAN (Compensating Provisions	Free-running camera P1	Free-running camera Pl	3 other P-scan cameras	3 other P-scan cameras	3 other P-scan cameras	Free-running camera P1	Free-running camera P1	Not required	Not required	Not required	Camera Pl 18 free-running	Fail-safe gate for video P1
OF THE	Symptoms and Local Effects	No usable return from cameras P2, P3, and P4	No camera P1 flash pulse	No camera P2 flash pulse No camera P2 video	No camera P3 flash pulse No camera P3 video	No camera P4 fl ash pulse No camera P4 video	No black-clamp pulse in cameras P2, P3, and P4	No sync pulse to free- running generator	No clamp pulse	No clamp pul s e	No clamp pulse	No vertical-blanking sync pulse	Loss of video #1 analog-gate pulse
EFFECTS ANALYSIS	Possible Causes	Fallure of: 1) P clock 2) Gate (5) 3) Single flip-flop in P division chain	Fallure of gates (R23), (21), (D78), (77), (14), (17)	Failure of gates (R19), (16), (14), (17), (D72), (71)	Fallure of gates (R18), (15), (14), (17), (D76), (74)	Failure of gates (66), (68), (65), (R37), (5), (1), (17), (RD82), (80), (74), (D75)	Fallure of 1) P clock 2) Gate (5) 3) Single flip-flop in P division chain	Fallure of gates (R34), (31), (D76), (74)	Failure of gates (H29), (27), (20), (25), (D87), (80)	Failure of gates (R28), (26), (D78), (77), (20), (25)	Failure of gates (R24), (22), (D27), (71), (20), (25)	Failure of: 1) P clock 2) Gate (5) 3) Single flip-flop in P division chain 4) Gates (38), (66), (D75), (68), (55), (74)	Failure of: 1) P clock 2) Gate (5) 3) Single filp-flop in P division chain
FAILURE	Assumed Failure	f) Loss of flash pulse	Loss of 1 1) flash #1	2) flash #2	3) flash #3	4) flash #4	g) Loss of black- clamp pulse:	Loss of 1) black clamp #1	2) black clamp #2	3) black clamp #3	4) black clamp #4	h) Loss of vertical- blanking pulse	a) Loss of video P1 analog-gate pulse
	tte m	P-Logic Decoder (Continued)											P-Video Combiner Logic (Fig- ure D-9)

	FAILURE	L L	TABLE FECTS ANALYSIS OF THE PARTIA	LE D.5 1AL-SCAN C	TABLE D-5 PARTIAL-SCAN CAMERA SEQUENCER (Continued)	NCER (C	Continue	d)
E E	Assumed Failure	Possible Causes	Symptoms and Local Effects	Compensating Pravisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
P-Video Combiner Logic (Fig- ure D-9)		4) Gates (R49), (D81), (80), (44), (62), (63), (40), (33), (39), (14), (17)						
(Continued)	 b) Loss of video P2 analog-gate pulse 	Fallure of gates (R47), (D78), (44), (77), (62), (63), (39), (33), (40), (14), (71)	Loss of video P2 analog-gate pulse	3 other P-scan cameras	Only 75% of P-scan pictures	D L E E	ۍ	
	c) Loss of video P3 analog-gate pulse	Failure of gates (44), (R45), (62), (63), (39), (33), (40), (14), (17), (72), (71)	Loss of video P3 analog-gate pulse	3 other P-scan cameras	Only 75% of P-scan pictures	а ^с	a	
	d) Loss of video P4 analog-gate pulse	Failure of gates (R42), (41), (38), (66), (68), (D75), (74), (65), (D76), (63), (40), (33)	Loss of video P4 analog-gate pulse	3 other P-scan cameras	Only 75% of P-scan pictures	I	ъ	
P Timer (Figure D-9)	a) Loss of P-timer signals	Failure of 1) P clock 2) Gate (5) 3) Single binary in P division chain 4) Single binary in timer division chain 5) Encoder gate (R)	Failure of five-minute automatic turn-on signal for P chamel	Full power on turn-on from CC&S	Possible transmission loss from some early P-scan pictures	ч° ч	ى 	
	b) Continuous or pre- mature P-timer signals	 Faulty reset signal Single divider in P- timer chain Encoder gate (R) 	Premature P-scan trans- mitter turn-on	None	Premature trans- mission of P-scan pictures	о с Р	ы	Possible transmitter damage due to the lack of warm-up time. A as- sumes worst-case.
P Automatic or Reset Logic (Fig- ure D-9)	a) Failure to reset	 Failure of "AND" Failure of "AND" gate (Q27 & Q28) Faulty control flip- flop 	Late transmitter turn-on	Full power turn- on from CC&S	Possible transmission loss of some early P- scan pictures	ь Ч	ŝ	
	 b) Premature turn- on 	Same as above	Premature transmitter turn-on	None	Premature transmis- sion of P-scan pictures	A C C	ن ن	Possible transmitter damage due to the lack of warm-up time. A as- sumes worst-case.
P-Timer Telemetry (Figure D-9)	a) Loss of telemetry signal	 Failure of "AND" gate (Q23 & Q24) Failure of telemetry SCR 	Loss of telemetry point	None	No P-timer telemetry	$\mathbf{F}_{\mathbf{190Fo}}$	ى ا	
	 b) Misleading telem- etry information 	 Failure of clock after 40 seconds of opera- tion 	False telemetry data after telemetry SCR has been fired	None	No timer telemetry	$^{\rm F}_{ m t90Fo}$	ú	
Fail-Safe Circuit (Figure D-9)	Failure of fail-safe	Failure of: 1) P clock 2) Gate (5) 3) Single binary in P division chain	Continuous transmission of camera P1 video	None	Some noise in P-scan picture	ь Р	ы	

D-34

CER (Continued)	Failure Failure Remorks/Recommended Closs Probability Compensating Factor Factor Provisions/etc.	ω°	C 4 Diode "OR" the power for gate (12) from camera electronics P1 or from both sequencer power supplies	C 3 Redesign chopper trans- former to eliminate need for R16 and iower voitage into regulator. The de- orease in secondary turns will lessen the possibility of Q1 or Q2 failure in the event of a momentary over-load on the +12 voits supply	۳ ۲	ຕ ບິ	ື	۳ ۲	D 4	نۍ ټر
TABLE D-5 PARTIAL-SCAN CAMERA SEQUENCER (Continued)	Effects on Mission	75% of P-scan video D	Loss of all P-scan A pictures	75% of the P-scan B video will be lost	Same as above B	Good possibility of B P-scan sequencer maltunctioning, re- sulting in loss of P2, P3, and P4 video	Same as above B	ра м	Only 25% of P-scan B _p pictures	Possible transmission F loss of some early P- scan pictures
TABLE D-5 ARTIAL-SCAN C	Compensating Provisions	3 other P-scan cameras	None	Pl camera la de- signed to free-run in the event of a sequencer failure; Pl video Pl video	Same as above	Same as above	Same as above	None required	One free-running P-scan camera	Back-up command in JPL CC&S
	Symptoms and Local Effects	Loss of P-scan P1 video	Loss of all P-scan video	9 volts will be supplied to sequencer: sequencer output will not be sufficient to sync P1 free-run generator or operate P2, P3, and P4 cameras	P-scan channel sequencer will be inoperative	+12 volts to P-scan se- quencer and fall-safe gate in combiner	-1 volt will be supplied to sequencer and fail-safe gate in video combiner; P-scan channel sequencer will be inoperative	-21 voits will be supplied to sequencer and fall-safe gate in video combiner; P- scan channel sequencer will operate, and fall-safe gate will operate	No P-scan sequencer signals	No five-minute automatic turn-on for P transmitter
EFFECTS ANALYSIS OF THE	Possibie Causes	 4) Gates (12), (44), (62), (33), (39), (14), (17), (63), (40) (63), (40) (49) held at 0 volt Gate (R49) held at 0 volt permanently 	Failure of P-scan se- quencer power supply	Open circuit in trans- istor Q7	Short or open circuit in transistor Q1 or Q2	Short circuit in tran- sistor Q7	Short circuit in tran- sistor Q12	Open circuit in tran- sistor Q12	 Open cable or con- nectors Faulty sequencer power supply 	 Open DC return cable
FAILURE	Assumed Failure	Зате аз ароvе	Same as above	a) +12 voits output drops to approx. +9 voits	b) +12 volts output drops to zero	 c) +12 volts output rises to approx. +24 volts 	 d) -12 volts output drops to less than 1 volt 	e) -12 volts output rises to -21 volts	Loss of -27.5 volts for P sequencer power supply (A28 B)	a) Open DC return
	Ē	Fall-Safe Circuit (Figure D-9) (Continued)		Sequencer Power Supply (Figure D-9)					Power Inter- face P Chan- nel (Figure D-9)	P Channel Power Am- plutier Turn- On Logic (Figure D-9)

	Remarks/Recommended Compensating Provisions/etc.			
ontinued)	Failure Probability Factor		ى ب	ن م
ENCER (C	Failure Class Factor		ь Ч ц	۵° ش ^ط
TABLE D-5 PARTIAL-SCAN CAMERA SEQUENCER (Continued)	Effects on Mission		None	Only 25% of P-scan pictures
TABLE D-5 ^ARTIAL-SCAN C	Compensating Provisions		P Automatic re- set circuitry	D-scan camera P-scan camera
	Symptoms and Local Effects		None, if sequencer P auto- matic reset circuits are operating satisfactorily during flight	No P-scan sequencer signals
EFFECTS ANALYSIS OF THE	Possible Causes	 P clock failure Division chain failure P timer failure Auto-reset logic (Q27 & Q29) failure Reset filp-flop fail- ure Relay failure Relay failure P Sequencer power supply failure 	 Short-circuited cable or connector (test connector) Stuck or shorted switch in OSE 	 Short-circuited cable or connector (test connector) Stuck or shorted switch in OSE
FAILURE	Assumed Failure	 b) Faulty P controller modulator 	Manual reset input short-circuited	P disable input short- circuited
	E	P Channel Power Am- plifier Turn- On Logio (Continued)	Input Signal Interface (Manual Re- set) (Figure D-9)	Imput Signal Interface (P Disable) (Figure D-9)

•

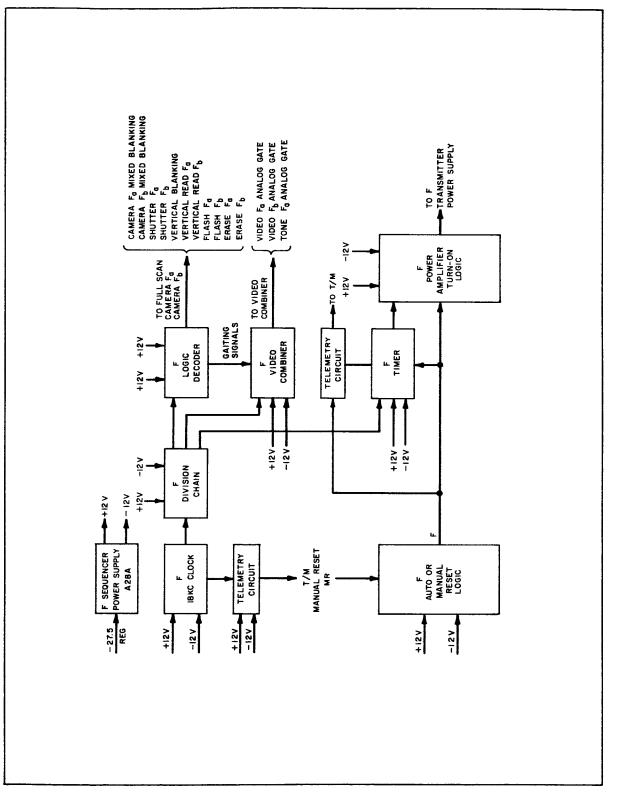
Figure D-9. Partial-Scan Camera Sequencer Assembly

		FAILURE EFFECTS	ANALYSIS	TABLE D-6 OF THE FULL-SCAN CAMERA		SEQUENCER	R Failure Probability	Remarks/Recommended Commended
Power Inter- lace, Channel F (Figure D-10)	Loss for ch quence ply (A	r con-	signals	None	No F-scan video	A D O	Factor 55	Provisions/etc. Design free-running generator for F-scan electronics.
Power Ampli- filer Turn-on trolle Jono - troller Modu- lator), Channel F (Figure D-10)	a) Open d-c return b) Faulty channel F controller modulator	 Open DC return cable Channel F clock failure Division chain failure Channel F timer failure Failure of auto- reset logic (Q₂₅, Q₂₆) Resat filp-flop failure Relay driver failure Relay driver failure Relay driver failure Channel F sequencer power supply failure 	No five-minute automatic turn-on for channel F trans- mitter	1) Back-up com- mand in JPL CC&S 2) Electronic Clock 2) Electronic Clock	Possible transmission loss of some early F-scan pictures	о Ч Ц	ن م	
Input Signal Interface (Manual Reset), Channel F (Figure D-10)	Manual -reset input shorted	 Shorted cable or connector (test connector) Stuck or shorted switch in OSE 	None, if channel F sequencer of auto-reset circuits are oper- ating properly during flight	Channel F auto- reset circuitry	None	F F	a	
Power Supply Converter and Regulator, Channel F	a) Loss of -12 volts	 Faulty cable or con- nectors Faulty -12 volts regulator 	 Erratic or complete loss of gating signals No automatic turn -on 	None	No F-scan pictures	Af D _o	4	Design free-running gen- erator for F-scan elec- tronics (only one camera is necessary).
	b) Loss of +12 volts	 Faulty cable or con- nectors Faulty DC-to-DC converter Faulty +12 volts regulator 	1) Loss of gating signals 2) No automatic turn-on	None	No F-scan pictures	A _f D _o	4	
18 kc Clock and Driver (Figure D-10)	Loss of clock output	 Faulty cable or con- nectors Faulty clock circuit Faulty order circuit Shorted F division chain input Faulty gate 	No sequencer signals	None	No F-scan pictures	Af Do	LO.	Design free-running gen- erator for F -scan elec- tronics (Camera F_a).
Telemetry of 18 kc Clock (Figure D-10)	Loss of 18 kc telem- etry F-scan chain	1) Faulty cable or con- nectors	No 18 kc telemetry	None	No 18 kc telemetry from Channel F	Ft90 Fo	a	

(penu	Follure Remarks/Recommended Probability Compensating Factor Provisions/etc.		5 Design free-running generator for F-scan camera electronics			5 Plotures can be restored after playbaok at OSE.	Ľ	ß	Ľ	φ
SEQUENCER (Continued)	Failure Class Factor		A _f D _o			с ц	G E L	e° ບັ	ຍິ	g J J
	Effects on Mission		No F-scan pictures			Non-synchronized pictures at ground station	Only one set of F-scan 0 pictures	Dnly one set of F-scan plotures	Muly one set of F-scan	Only one set of F-scan C pictures
LE D-6 LL-SCAN CA	Compensating Provisions		None			None	Partially redund - ant camera F _b	Partially redund- ant camera Fa	Partially redund- ant camera F_b	Partially redund- (ant camera F _a
TABLE D-6 EFFECTS ANALYSIS OF THE FULL-SCAN CAMERA	Symptoms and Local Effects		Loss of all: Channel F logic decoder outputs	Channel F video combiner inputs	Channel F automatic turn-on	lack of vertical-blanking sync pulses	No camera F _a vertical read sync	No camera F _b vertical read sync	No camera F _a erase sync	No camera F _b erase sync
	Possible Causes	 Faulty rectifier and reference circuit Faulty gate 	1) Faulty filp-flops	2) Faulty connector	3) Shorted loads (gates)	Fallure of: 1) Channel F clock 2) Gate (9) 2) Channel F division 3) Channel F division 6) channel F (10), (52), 4) Gates (45), (50), & (53), (56), (59), & (780), (50), (52), &	Failure of: 1) Channel F clock 2) Gate (6) 3) Single binary in Channel F division chain 4) Gate (RD49)	Failure of: 1) Channel F clock 2) Gate (6) 3) Single binary in Channel F division chain 4) Gate (RD62)	Fallure of: 1) Channel F clook 2) Gate (9) 3) Single binary in ohannel F division ohain chain (48), (37), (43), & (R37)	
FAILURE	Assumed Failure		a) Loss of counting of 1 of 11 binary counters	b) 5:1 counter	 c) 3.1 counter (total of 18 complemen- tary flip-flops and 8 "hor" gates) 	s) Loss of Chamel F vertical – blanking	b) Loss of vertical- read F ₈		d) Loss of Fa erase	e) Loss of F _b erase
	E	Telemetry of 18 kc Clock (Figure D-10) (Continued)	Division Chain, Channel F (Figure D-10)			Logic Decoder, Channel F (Figure D-10)				

.

TABLE D-6 ALYSIS OF THE FULL-SCAN CAMERA SEQUENCER (Continued)	Symptoms and Compensating Effects on Mission Class Probability Compensating Local Effects on Mission Class Probability Compensating Factor Factor Factor Compensating Factor Fact	No camera mixed-bianking Partially redund- Only one set of F-scan $R_f F_0^5$ F _b sync	No camera mixed-blanking Partially redund- Only one set of F-scan $C_{\hat{f}} F_{o} = 5$ F_{b} sync. $C_{\hat{f}} r_{o}$	No camera F_a flaah sync Partially redund- Set of multiple- $(E_f E_o 5$ and camera F_b exposure pictures in D_f camera F_a (F-scan) D_f	No camera F_b flash sync Partially redund- Set of multiple ex- ant F_a camera posure pictures in D_f D_f (full-scan) D_f	No camera F_a shutter sync Partially redund- Only one set of F-scan $C_f E_o$ 5 and F_b camera pictures
EFFECTS ANALYSIS OF	Possible Symptoms an Causes Local Effect	 3) Single binary in channel F division channel F division chain chain (TOC), (43), (48), (53), (53), (43)	chain (5) (R50), (5) (10), (10), (70), (5) (10), (70), (5) (10), ((48), (70), (335), (32), (328), (27), (28), (27), (28), (27), (28), (37), (4), (4), (4), (4), (4), (4), (4), (4	(RD49), (51), 342), (33), 48), (50) 5f: 61 F clock 6) binary in 1 F division	(R40), (R36), , (63), (RD62), 47), (50), (48) of: el F clock 6) binary in
FAILURE	Assumed Failure	Logte Decoder , Channel F (Continued) f) Camera mixed blanking F _a	g) Camera mixed blanking F _b	h) Loss of F ₈ flash	i) Loss of F _b flash	j) Loss of shutter Fa


.

r	<u> </u>	Π				
	Remarks/Recommended Compensating Provisions/etc.					
ntinued)	Failure Probability Factor	ю	υ	<u>ل</u>	ю ю	υ
SEQUENCER (Continued)	Failure Class Factor	ພິ ບັ	ມິ ບັ	ຼ ມີ	ین ^{کی} بنا مع	а а ы
CAMERA SEQUEN	Effects on Mission	Only one set of F-scan pictures	Only one set of F-scan pictures	Only one set of F-scan pictures	Either lack of tone signal at OSE (at -12.0 volts level), or continuous tone signal (at 0 volt level)	Possible transmission loss of some early F-scan pictures
TABLE D-6 THE FULL-SCAN CA	Compensating Provisions	Partially redund- ant F _a camera	Partially redund- ant camera F _b	Partially redund- ant camera F _R	None None	on from CC&S on from CC&S
TAI ANALYSIS OF THE FL	Symptoms and Local Effects	No camera F _b shutter sync	No video F. gate sync at +12.0 volts level	No video F _b gate sync at +12.0 volts level	No F tone signal at +12.0 volta level, continuous at 0 volt level	Failure of five-minute auto- matic turn-on of channel F
EFFECTS	Possible Causes	 4) Gates (R46), (44), (51), (51), (38), (43), (70), (RD49) (RD49), (A3), (70),	Faliture of: 1) Channel F clock 2) actae (6) 3) Single binary in channel F division chain (51), (R55), (31), (R55), (63), (RD52)	Fatlure of, Channel F clock 2) Gate (6) 3) Single binary in channel F division ohain 4) Gates (R64), (61), (49), (R50), (551), (55), (RD49)	Fallure of:) Channel F clock 2) Gaate (8) 3) Single binary in chain 4) Gates (R67), (33), (47), (56), (48), (52), (54), (58)	Fallure of: 1) Channel F clock 3) Gate (b) 3) Single binary in channel F division ohannel F timer channel F timer chain chainel F timer chainer 3) Encoder gate
FAILURE	Assumed Failure	k) Loss of shutter F _b	a) Faulty video Fa gate signal a	b) Faulty video F _b gate signal	c) Faulty tone Fa gate signal Fa	a) Loss of channel F timer signal
	ltem	Logic Decoder, Channel F (Continued)	Video Com- biner Logic, Channel F (Figure D-10)			Timer, Channel F (Figure D-10)

	FAILURE	EFFECTS	TABLE ANALYSIS OF THE FULL-	D-6 SCAN	CAMERA SEQUEN	SEQUENCER (Continued)	ntinued	
lem	Assumed Failure	Possible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
Timer, Channel F (Continued)	b) Continuous or premature channel F timer signal	 Faulty reset signal 2) Single division in channel F timer chain B Encoder gate 	Premature F-scan trans- mitter turn-on	None	Premature transmission of TV pictures	F F	a	Possible transmitter damage due to the lack of warm-up time
Automatic or Reset Logic, Channel F (Figure D-10)	a) Failure to reset	Falure of: 1) "AND" gate $(Q_{25} \& Q_{26})$ Q_{26} 2) Faulty control flip- flop	Late transmitter turn-on	Full power turn- on from CC&S	Possible transmission loss of some early F-scan pictures	ы Ч	a	
	b) Premature turn- on	1) Same	Premature F-scan trans- mitter turn-on	None	Premature trans- mission of TV pictures	F F o	ى ۱	Possible transmitter damage due to the lack of warm-up time
Timer Telemetry, Channel F (Figure D-10)	a) Loss of telemetry signal	Failure of: 1) "AND" gates (Q ₂₁ & Q ₂₂) 2) Telemetry SCR	Loss of telemetry point	None	No F-timer telemetry	Ft90 Fo	<u>م</u>	
	b) Misleading telem - etry information	Failure of clock after 40 seconds of operation	False telemetry data after SCR has been fired	None	False F-timer telem- etry	Ft90 Fo	3	
Sequencer Power Supply (Figure D-10)	a) +12 volts output rises to approx. +24 volts	Transistor Q ₁₉ short- circuits	+24 volts supplied to sequencer (F-scan)	None	Good possibility of F-acan sequencer mal- functioning and conse- quent loss of all F-scan video	A _f D _o	n	
	b) +12 volts output falls to zero	Short or open circuit in either Q_{13} or Q_{14}	F-scan sequencer inoperative None	None	No F-scan video will be transmitted	Ar Do		
	c) +12 volts output falls to +4 volts	Q ₁₉ open circuit	+4 volts applied to F-scan sequencer, causing it to malfunction	None	Same as above	A _f D _o		
	 d) -12 volts output falls to less than -1 volt 	Q_{24} short circuit	-1 volt applied to F-scan sequencer, causing it to malfunction		Same as above	A _f D _o		
	e) -12 volts output rises to -18 volts	Q_{24} open circuit	-18 volts applied to F-scan sequencer, which should still operate at this condition	None required	None	Ef Eo		
	 f) +12 volts output drops to approx. +4 volts 	Q ₁₉ open circuit	+4 volts supplied to F-scan sequencer, with result that this sequencer will be in- operative	None	All F-scan video will be lost	Å Ĵ		

ł

i

. •

Figure D-10. Full-Scan Camera Sequencer Assembly

	Remarks/Recommended Compensating Provisions/etc.	Against random failures, redundant combined out- puts would be a corrective measure; the drive to succeeding multiplier stages would be reduced, however.	This failure can only be offset by the dual modu- lation capability (multi- plexing) of a single carrier, and the capa- bility of data recovery under this operational mode.	Same as note 1 above, except omit Q3.			Parallel unused relay contact sets in K1 to in- crease reliability.	Reconstitution of video may be possible; loss of data occurs if deviation goes far enough outside of band, however.		Dissipation levels in all parts should be kept with- th safe margins. Opera- tion in the presence of failures can be achieved in the present design only through dual redundancy and output-combining and/ or switching.
S	Failure Probability Factor	a N	۵	ى ا	ى ا	S	4	ى ا	ى 	ñ
IICATION	Failvre Class Factor	Af D2	Af D2	$A_{f} D_{2}$	A _f D ₂	$A_f D_2$	$A_{f} D_{2}$	A _f to F _f	Af D2	A _f D ₂
TABLE D-7 OF THE SPACECRAFT COMMUNICATIONS	Effects on Mission	Loss of Chamel-F RF	Same as above	Same as above	Loss of Chamel-F video	Same as above	Same as above	Same as above	Possible loss of com- plete RF from this channel if shift is to- ward remaining opera- tive channel or if transmitted signal level is too low	No RF output from this channel
LE D-7 HE SPACECI	Compensating Provisions	None	None	None	None	None	None	None	None	None
ANALYSIS	Symptoms and Local Effects	No RF output from modulator, no RF drive supplied to multiplier stages, IPA, and PA; thus, no RF output from this channel	Substantially the same as above	Same as above	Q3 oscillator operates at crystal-controlled frequency with no frequency- modulation	Same as above	Same as above	Output signal characteristics from transmitter changed	Modulator detuned in respect to portions of RF system following; transmission off frequency and down in mag- nitude	No output from this multi- plier to drive following stagee
FAILURE EFFECTS	Possible Causes	 Open circuits in Q4 buffer stage 	2) Open circuit in Q3 oscillator stage	3) Shorts in Q4 (C-E, C-B) and shorts in Q3 (C-E, C-B)	1) Failure in FM modulator input cir- cuit, including Q1	2) Failed varactor		Input circuit failures or part parameter changes including Q1	CR10, Y1, or other frequency control ele- ments change value	 Any failed transistor (Q1-Q4) or varactor failure (CR1, CR3, CR6-9)
	Assumed Failure	a) No radio fre- quency output			b) RF output un - modulated			c) Change in modu- lation index	d) Center frequency off design point	a) No RF output
	lten	FM Modulator Channel F (Figure D-11)								X12 Multiplier (Figure D-11)

	FAILURE	RE EFFECTS ANALYSIS OF	TAB ALYSIS OF THE SP	TABLE D-7 E SPACECRAFT	TABLE D-7 THE SPACECRAFT COMMUNICATIONS (Continued)	ONS (C	ntinued	
Ĕ	Assumed Failure	Possible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
X12 Multiplier (Continued)		 Faulty RF cabling, including connectors 	Same as above	None	Same as above	A _f D ₂	Ľ\$	
	b) Low output	Slight detuning (shift) in varactor diode char- acteristics; defective components in matching networks and amplifter stages	Output from this multiplier below nominal level; drive to X4 multiplier and IPA and PA low	None	Low output from this channel	A_{f} to F_{f}	4	Limit varactor diode bias ourrent to some safe maximum and suppress translents due to switch- ing, etc.
	c) Garbled output (excessive noise, low power, etc.)	Faulty varactors and/or detuning noise in amplifier (buffer stages)	Same as above	None	Same as above	A _f to F _f	4	Same as above
X4 Multiplier (Figure D-11)	a) No output	1) Failed varactors and/or inductors	No drive to IPA	None	No video from this channel	A _f D ₀	2	
à 		2) Faulty RF cabling, including connectors	Same as above	None	Same as above	A _f D _o	ю	
	b) Low output	 Detuned cavity (shift in CR1 and/or CR2 parameters) 	Insufficient power available to drive IPA (low output)	None	Low RF output from this channel	A _f to F _f	cu ا	
		2) Incorrect blas, or none, applied to varactors	Same as above	None	Same as above	A _f to F _f	£۵	
Channel F IPA Cavity (Figure D-11)	a) No output	1) V1 tube failures	No drive supplied to power amplifier stage	None	No video from this channel	A _f D _o	8	Suggest power burn-in of all tubes, and gain and stability checks at se- lected intervals to ensure use of most stable tubes
		2) Feed-through fail- ures, cavity com- ponent failures	Same as above	None	Same as above	A _{f D}	<u>م</u>	
	b) Low output	 Cavity detuned by mechanical reposi- tioning of V1 or other cavity elements V1 low G. etc. 	Low drive power to PA; power fluctuates widely with frequency changes Same as above	None Mone	Low output at nominal frequency with power a function of output frequency		ۍ د	
		m 3) Mismatch between IPA and PA (due to cables, connectors, etc.); loss Y cable	Same as above	None	transmitter operation Same as above	Af to Ff	ы ю.	utine surves
Channel F Power Ampli- fter (Figure D-11)	a) No output	1) Failures in V1	No RF drive to antenna system from channel	None	No video from this channel	A _f D ₀	8	Same as no output; V1 tube failures occur in in- termediate power
		2) Failures in filament transformer, feed- through, contacting surfaces between	Same as above	None	Same as above	A _f D _o	ي م	ampuner.

D-45

ŧ)

	FAILURE	EFFECTS	TAB ANALYSIS OF THE SP	TABLE D-7 E SPACECRAFT (COMMUNICATIONS (Continued)	DNS (Co	intinued)	
Itea	Assumed Failure	Possible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Failvre Probability Factor	Remarks/Recommended Compensating Provisions/etc.
Channel F Power Amplifier (Continued)		tube and cavity structures 3) Faulty cabling, con- nectors, cavity elements, etc.	Same as above	None	Same as above	A _f D _o	w	
	b) Low output	 Low G_m in V1, etc. Cavity detuned by V1, or other parts in 	Low RF to antenna subsystem Same as above	None None	Low output during transmitter operation Same as above	A _f to F _f A _f to F _f	دى m	Same as no output; V1 tube failures occur.
_		cavity 3) Faulty RF cabling and connectors	Same as above	None	Same as above	A _f to F _f	ŝ	
4-Port Hybrid (Figure D-11)	High input VSWR on etther or both channels	 Mismatched antenna or dummy load Fault within hybrid 	Reduced power output; both channels affected Same as above	None None	Received power may be too low for proper detection Same as above	° °	പറം	
Dummy Load (Figure D-11)	Open or short	 Connector failure Dielectric failure Center conductor failure Pressure seal failure 	High VSWR presented to hybrid, and resulting mis- match reflected into both chamels	Same as above	Same as above	×°	۵	
Channel F Transmitter No. 1 Power Supply (Power Supply Osc. & Transformer, T1) (Figure D-11)	No output	 Open C -E of either or both of the in- verter witching transistors, or open bases of the same two transistors Falled transformer, 	No current delivered to this power supply; no B+ avail- able to either the IPA or PA Same as above	None None	No RF transmission Same as above	Δ ⁴ 4	a a	Adequate temperature control and/or derating of semiconductors and other parts will keep failure probability low.
		T1, or failed filter choke						
Channel F Transmitter No. 1 Power Supply (Diode Bridges) (Figure D-11)	a) No +1000 volts output	 Failed diodes Prailed 1000 volts whiching of T1 Failures in K1, K2 and/or K4 	No high voltage applied to power amplifier; no output Same as above	None None	Same as above Same as above	Ar D2 Ar D2	თ ო	 Redundant diodes in bridge rectifiers can offset failure effects. Redundancy in contact sets, conservative current levels & volt- age breakdown applied to relay contact sets. Redundancy in bridge rectifiers
	b) No -750 volts output	 Failed diodes in -750 volts bridge rectifier Failures in K1, K2, 	No cathode bias applied to IPA; substantially the same as loss of IPA B+; no RF output Same as above	None None	Same as above	A D D	m	
		or K4						

TABLE D-7 EFFECTS ANALYSIS OF THE SPACECRAFT COMMUNICATIONS (Continued)	Effects on Mission Class Fallure Fallure Remarks/Recommended Class Probability Compensating Factor Factor Provisions/etc.	Same as above $A_f D_o 5$ Same as above $A_f D_o 5$ No RF output this $A_f D_o 5$ of annel because of loss of 100 volts and 470	voits to modulator and multiplier Loss of RF from this Af D 5 EMF developed across Q1, and hannel hard and hard hard hard hard hard hard hard har	ь С	A C 1 Notes under channel F apply equally to channel P.	
TABLE D-7 : SPACECRAF	Compensating Provisions	None None None None	Nome Nome	None None None	above	
TAE ALYSIS OF THE SP	Sympioms and Local Effects	Same as above No screen grid voltage ap- plied to IPA; probable loss of TPA through excess screen eurrent Same as above No blas applied to varactor diode muitipliars and +100 volts to FM modulator; no	video data amplification and FM oscillator frequency offset Same as above Loss of RF output; cathode current reduced abstantially by sincle KT resistance to	o ground in exhede circuit Same as above V1 in PA overheating and possible destruction Same as above	Details same as F-Channel RF given	
	Passible Causes	 Falures in -750 volts winding of T1 -500 volts bridge rectifier Pallues in -500 volts winding of T1 Fallues in -100 volts winding of T1 	 2) Failures in +100 voits winding of T1 1) Open C-E 	2) Open base in Q1 1) Q1 in saturation 2) C-E short	Details	
FAILURE	Assumed Fallure	c) No -500 volts output d) No +100 volts output	a) Cathode current through regulator is zero	b) High cathode current		
	Hem	Chumel F Transmitter No. 1 Power Supply (Joide Bridges) (Continued)	Channel F Telemetry Processor	(P.A. Cathode Current Regu- lator, (Figure D-11)	P-Channel RF	

), ,

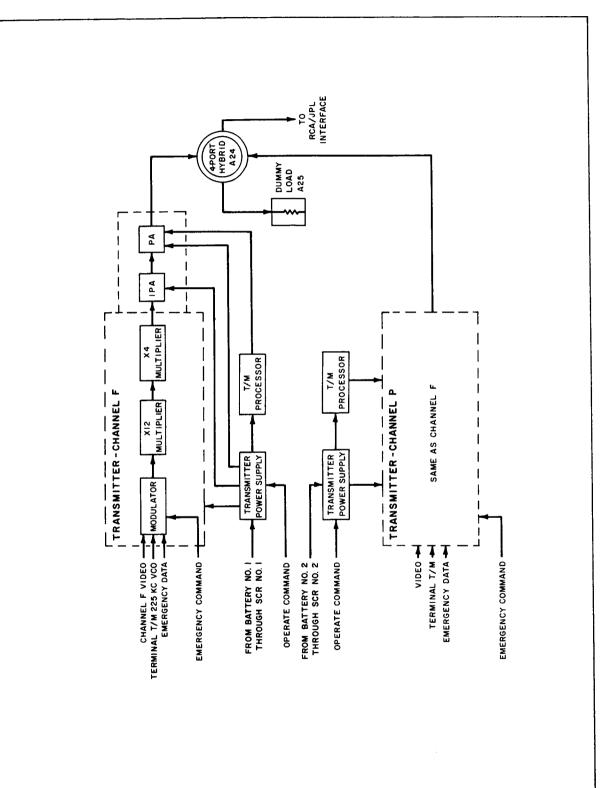
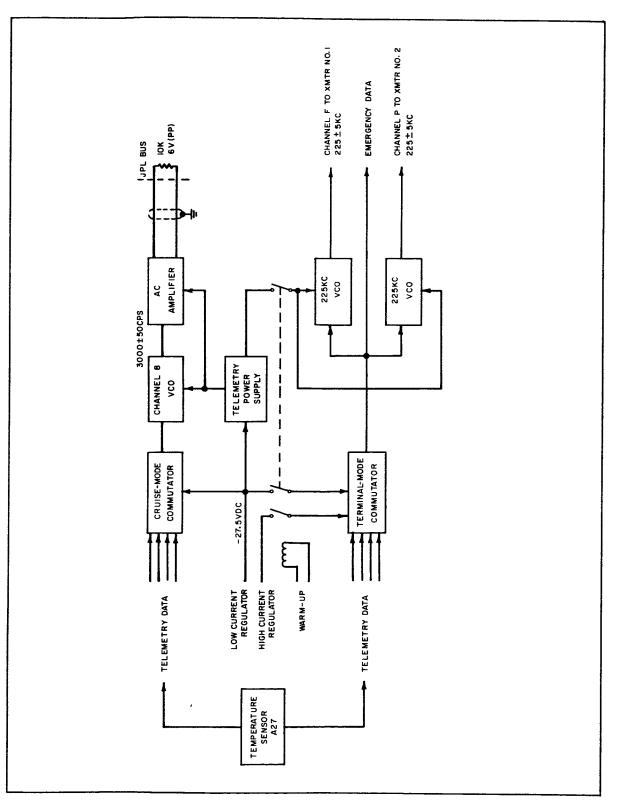


Figure D-11. TV Subsystem Communications Equipment

.


D-48

ì

		FAILURE	EFFECTS ANA	TABLE D-8 LYSIS OF TELEM	E D-8 OF TELEMETRY EQUIPMENT	NT		
<u>е</u>	Assumed Failure	Pessible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remarks/Recommended Compensating Provisions/etc.
Telemetry Processor #1,	a) No 1000 volta telemetry	Open resistor in divider	No power amplifier B+ telem- etry	None	No power amplifier B+ telemetry data	F90 F0	a l	
D-12)	b) No RF level telemetry	Open R14	No RF level telemetry	None	emetry	F90 F0	£С	
	 v) No cathode current telemetry 	Open R7, CR2	No cathode current telemetry	None	athode current netry data	F90 F0	υQ	
Telemetry Processor #2, A-30 (Figure D-12)			Same as Tel	emetry Processor #1	Same as Telemetry Processor #1, A-29, given above			
Telemetry Processor, A-26 Channel 8-AC Amplifier (Figure D-12)	No output	Open T1, C1, and C-E in Q1, R4	No cruise telemetry data output	None	No cruise telemetry data	A ₁₅ D ₀	цэ	
TV Mission Telemetry Con- verter (Figure D-12)	No output	Open C-E on Q1, Q2, Q3 and/or Q4; open base on any or all of the above	No +27 volts DC regulated output and/or no +30 volts unregulated output; no B+ supplied to 225 kc VCO*s of channels F and P	None	No cruise telemetry data	A ₁₅ D ₀	ى	
225 kc Voltage- Controlled Oscillator			Loss of terminal telemetry data to one RF channel	225 kc VCO on other RF channel	Negilgible	F90 F0	2	
(Figure D-12)	b) Shift in output level	Part degradation or parameter shift	Hardly any	other RF channel	None, if rechundant unit is known to be stable & unchanged	^к 90	co	Normally the shift is not discernible unless com- parison can be made against unchanged VCO in other channel, Howver, , some question may arise and which is not.
Channel 8 Voltage- Controlled	a) No output	Internal part failure (purchased item)	Loss of cruise telemetry data output	None until terminal telemetry readout starts	No cruise-mode telem- etry	F15 F0		
(Figure D-12)	b) Shift in output level	Part degradation or parameter shift	Hardly any	Same as above	Probable erroneous or , urreliable cruise-mode telemetry	A ₁₅ D _o		Normally the shift is not discernible until terminal- mode telemetry duplica- tion points start their readout.
Cruise-Mode Commutator (Figure D-12)	1) Opens 2) Nolsy	Contactor failures	Loss of telemetry data points Possible loss of telemetry data points	None None	Loss of some telemetry / data Same as above	A ₁₅ D ₀ A ₁₅ D ₀	n	

٠

	Remarks/Recommended Compensating Provisions/etc.	
1	Failure Probability Factor	
ontinued)	Failure Closs Factor	
TABLE D-8 OF TELEMETRY EQUIPMENT (Continued)	L Effects on Mission	tator given above
TABLE D-8 OF TELEMETRY E	Compensating Provisions	Same as Cruise-Mode Commitator given above
TABI 5 ANALYSIS OF	Symptoms and Lacal Effects	Same
FAILURE EFFECTS ANALYSIS	Possible Causes	
	Assumed Failure	
	Ē	Terminal - Mode Commutator (Figure D-12)

-

Figure D-12. TV Subsystem Telemetry Equipment

_	Remarks/Recommended Compensating Provisions/etc.	Parallel SCR's would improve reliability against open failures, but in regard to early short failures the system would be put in greater jeopardy. The net gain or loss of reliability should be de- termined, therefore, be- tore a decision is made.	With parallel-pass transistors, each should be capable under worst case or at least under nominal load levels of carrying full load.				Basically this is re- dundant and is required to operate only if the regulator does not start by itself.	Redundant series parallel capacitor arrangement will negate to a large ex- then the effect of either open or short capacitor failures.	Some circuits may be temporarily vorioaded due to initially high battery EMF, However, most of this will be regulated out by other regulators hung on this regulators hung on this regulators will dis- these regulators will dis- sipate more than normal.
IPMENT	Failure Probability Factor	ca	ca ا	4	a	ى ۵	a	ى م	4
OL EQU	Failure Class Factor	P P	۵°	A _f D _o	Af Do	A _f D _o	0° J	A _f D _o	Ч
TABLE D-9 POWER DISTRIBUTION AND CONTROL EQUIPMENT	Effects on Mission	No video or RF from A this channel	Same as above	No video from this A channel	Same as above	Same as above	None if regulator starts; no video or RF from this channel if it doesn t	No video from this A channel for permanent possible if short circuit possible if short circuit burns open ; also, ter- minal still available	TV Subsystem should continue to operate: some overloading should occur in some circuits but power drain should pull battery peak down rapidly
TABLE D-9 Ner distributio	Compensaling Provisions	None	None	Terminal telem - etry derived from low-current regulator	Same as above	Same as above	None	None	None
TABI ANALYSIS OF POWER	Symptoms and Local Effects	No power applied to camera electronics or sequencer power supply F _a or trans- mitter power supply	Same as above	No power applied to camera electronics or sequencer power supply F_a and termi- nal commutator	Same as above	Same as above	Regulator may not start, in which case there is no output; however, this circuit is basically a redundant one to ensure regulator starting	No regulator output, thus no power applied to camera electronics or sequencer power supply; however, the capacitors may burn open before regulator fails, and some output is regained	Short circuit in Q6 No regulation of battery in- and/or Q7 and failure put; output follows battery that puts Q5 in a voltage; dissipation increased saturated state in sequencer power supply and camera electronics
EFFECTS	Possible Causes	1) Open SCR	2) SCR will not turn on	 Either one or both series pass tran- sistors 60 or Q7, open C-E, open base, short, B-E, also Q5 failures same as Q6 or Q7 	aase or col- in Q1 and/or loss of ref- voltage	818- - D11		7) Short circuit in out- put filter capacitors	 Short circuit in Q6 and /or Q7 and failure that puts Q5 in a saturated state
FAILURE	Assumed Failure	a) No output							b) Loss of regulation
	E	High-Current Regulator (A12), (Figure D-13)							

	FAILURE EFFECTS	ANALYSIS	OF POWER D	TABLE D-9 ISTRIBUTION AN	D CONTROL EC	JUIPMEI	4T (Cont	inued)
E	Assumed Follure	Possible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Class Factor	Failure Probability Factor	Remorks/Recommended Compensating Provisions/etc.
High-Current Regulator (Continued)	c) No unregulated	 2) Open base, short 2) Open base, short 2) Open emitter, open base on Q3. Short circuit in C22 0 open circuit in R1, 2 and/or 3. Open SCR 	Same as above Same as open SCR in high- current regulator; no output	None	Same as above	°G ^J v	۵ ۵	No corrective action deemed necessary or advisable,
Battery No. 1	No battery output	 No SCR turn -on Defective cells Open cabling 	same as no SCR turn-on No channel Foperation	None	No video or RF this channel and no terminal- mode telemetry	A _f D _o A _{t90}	ŝ	Remove battery heaters if not required. Redund- ant cabing to SCR's.
Command Switch (Board A1) (Figure D-13)	a) No awitch to warm-up on re- celpt of RTC-7 command	Open C-Es, open Cs, open bases of Q3 and/or Q4; open R17, 18, or 18; open or shorted coll In S1 coll In S1	Command switch does not step from zero patiton to warm-up. TV slubsystem not sequenced on. Thia is a re- dundant turm on mechanism the C & S command system has failed to operate	Fre timer Elec- tronic clock	Loss of all video and terminal T/M if elec- tronic clock falls; otherwise time of ter- minal mode is depend- ent upon electronic clock.	بد [°]	4	Added redundancy is pro- vided in the stertronic clock and relays in DCU. (This is already incor - porated in the system.) porated in the system. The child and the fit and redundant the fit and redundant the fit and redundant the fit and redundant the fit fit and redundant the fit and
	b) Premature oommand switch operation	Short C-E of either Q3 and/or Q4 prior to CC&S or RTC-7 or spurious command	Command switch gated to warm-up before receipt of RTC-7 or CC&S command; system operation is com- menced prematinely; power- control unit, if functioning properly, can gate TV Sub- system off.	Power-control unit turn-off command	Early operation of turn-off accomplishes safe mode; but Q3 or Q4 short circuit keeps on-command present, and removal of turn-off gates system back on.	^A D	œ	Suppression of spurious commands necessary as asleguard, Other failures appear to be remote in probability of occurrence since circuit is in a cut- off state until receipt of turn-on command,
Command Switch (Board A12) (Figure D-13)	a) No SCR turn-on signal to F chain	 Open circuit in R2, CR1, base of Q1. C-E of Q1, R5 and/ or R7 Open connector pin, J1.28 or short- circuited C1 	No F-camera chain operation; no video, no RF, no operation Same as above	None None	No F camera chain out- put, video or RF, Same as above	A ^I D	<u>م</u> م	
	b) No SCR turn-on signal to P cam- era chain		Same as No SCR turn-on signal to F camera chain, except part numbers change accordingly	l to F camera chain,	except part numbers cha	ige according	-a-	
Battery No. 2	a) Loss of Battery No. 2 output	1) Bad ceils 2) Faulty connector	No power to P-scan cameras and transmitter circuits	None	Complete loss of P- scan camera pictures;	р Р С С	8	

	FAILURE EFFECT	S	TAB ANALYSIS OF POWER DISTR	TABLE D-9 ISTRIBUTION AN	TABLE D-9 DISTRIBUTION AND CONTROL EQUIPMENT (Continued)	QUIPME	NT (Con	tinued)
Fe	Assumed Failure	Possible Causes	Symptoms and Local Effects	Compensating Provisions	Effects on Mission	Failure Closs Factor	Faiture Probability Factor	Remarks/Recommended Compensating Provisions/etc.
Battery No. 2 (Continued)		3) Short circuit4) Excessive drain			loss of telemetry during cruise mode	B ₁₁₅ E ₀		
High-Current Regulator No. 2 (A22)	Loss of gated un- regular voltage	 Faulty SCR gate Faulty cable or connectors Loss of turm-on gate signal 	No power to P-scan cameras and transmitter circuits	None Telemetry is re- dundant in F channel	Complete loss of P-scan pictures.	° P P	4	Remove battery heater if not required.
	Loss of regulated -27.5 volts	 Faulty regulator Faulty cable or connectors 	No power to P-scan cameras	None	Complete loss of P-scan pictures	o d d	4	
Board A-2	a) No low-current regulator turn-on	Failure of K-1 or connector pins asso- ciated with LCR turn- on.	No cruise data	None	No cruise telemetry; also, will effect deci- sion-making if other troubles are present or develop	A _{t15} E ₀	4	
	b) No switch to emergency mode	Substantially the same a	Substantially the same as 'No switch to warm-up on receipt of RTC-7 warm-up command''	ceipt of RTC-7 warn	"prommand"		4	
Distribution Control Unit (Figure D-13) Module A1)	a) No unregulated output	Open fuses, connectors	No power available to F camera chain transmitter power supply; no RF output this channel	None	No F camera chain transmitter RF	A _f D	a	
	b) No regulated output	Same as above	No F camera video	None	No F camera chain video, but RF should be present	A _f D _o	cu 	
Module A2		(Same as DCU-Module A	(Same as DCU-Module A1 given above, except P camera chain)	a chain)				
Module A3	a) No SCR turm -on, channel F or channel P	Open CR-4	CC &S command closing K2 and grounds SCR control junction through this diode; open diode inhibits this action. However, redundancy action, However, redundancy in RTC-7 and clock circum- vents this failure	RTC -7 command and Preset Clock		A V V		
	b) No clock start and hold signals	Open CR-7 and/or CR-8	Not normally required to operate, provided either CC&S or RTC-7 operate CC&S or RTC-7 operate Lorelof redundancy, No sys- tem operation, though, if this is required,	None	No RF or video from either channel if other sequenced modes fail	ь°	۰. ۱۰	This is a third-level-of- redundancy applications as it presently costists. Thus, the failure class factor is reduced in criticality by the probability of failure of both CC&S and RTC-7
Distribution Control Unit K1 K2	Same as above No SCR turn-on, both channels	Open contacts or coil K2 Failure	Same as above (Same as Module A3, no SCR turn-on)		Same as above	v v v v	4 4	

r

ntin ved)	Remarks/Recommended Compensating Provisions/efc.	Delete CR3 in the low- current regulator and provide circuits in-	volved.		This is a back-up feature and is required to oper- ate normally only if and when an inadvertent	Turn-off output should be bypassed during terminal mode.	Same as DCU Module A3	Solid-state switching de- stred in lieu of electro- mechanical switching,	Insure stepping-switch operation based upon min- fimum time-power rela- tion Also, suppression of any but legitimate turn-on signals by filtering, etc.
NT (Cor	Failure Probability Factor	£	ы		4	a		m	ى ع
QUIPME	Failure Class Factor	B ₁₁₅ E ₀	B _{t15} E		A P O	° °	E	°L °C	۳°
AND CONTROL EQUIPMENT (Continued)	Effects on Mission	No telemetry during cruise mode	No cruise telemetry data. Affects decision- making in presence of other failures.	Telemetry callbration changes with battery voltage	Probably no return during terminal mode	During cruise mode, the effect is negligible; during terminal mode loss of TV Subayatem functioning	s affected only)	Optimum terminal - mode interval not attained No emergency-mode capability	If damage to tubes in IPA and PA loss of HF capability
TABLE D-9 DISTRIBUTION AN	Compensating Provisions	None	None	None	None	None	(Same as DCU Module A3, except F is affected only)	Electronic clock relay in DCU None None necessary, if other operational sequences of mode are okay)	PCU tum off
OF POWER	Symptoms and Local Effects	No cruise-on power	No low-current voltage regulator output available; no telemetry data available during cruise mode	Unregulated bus voltage ap- plied to voltage-sensitive telemetry circuits, some probable over-dissipation high battery voltage	TV Subsystem operation at other than desired interval	Loss of power to system	(Same as DCU N	If in Zero position, no warm- up command transmitted to remainder of TV Subsystem If in warm-up it Jams or fails, no effect unless step- ping to emergency mode is dosired	Instantaneous turn-on of transmitter with possible IPA and PA damage due to cold start
ECTS ANALYSIS	Possible Causes	Open CR-3, or failed cabling and/or con- nector	Open-pass translstor, 2N1486; open base or C-E in Q1, open RG, short circuit in CR1	C-E short in 2N1486 pass transistor; C-E, C-B shorts in Q1; opens in Q2; open CR1, Zener	Faulty relays, SCR's, cabling, including connectors	Spurious commands, falled components	Fallures in counting chain; Failures in cabling, connectors, and/or switching	 Open coll, jammed in one position 	2) Stepping switch double steps -zero thru warm-up to emergency mode
FAILURE EFFEC	Assumed Failure	a) No unregulated output	b) No regulated output	c) Loss of regula- tion	a) No turn-off signal when required	b) Erroneous turn- off signal	No turn-on signals	Faulty stepping switch	
	te	Low-Current Regulator (Figure D-13)			Power Control Unit (PCU) (A36) (Figure D-13)		Electronic Clock (A35) (Figure D-13)	C ommand Swrttch	

•

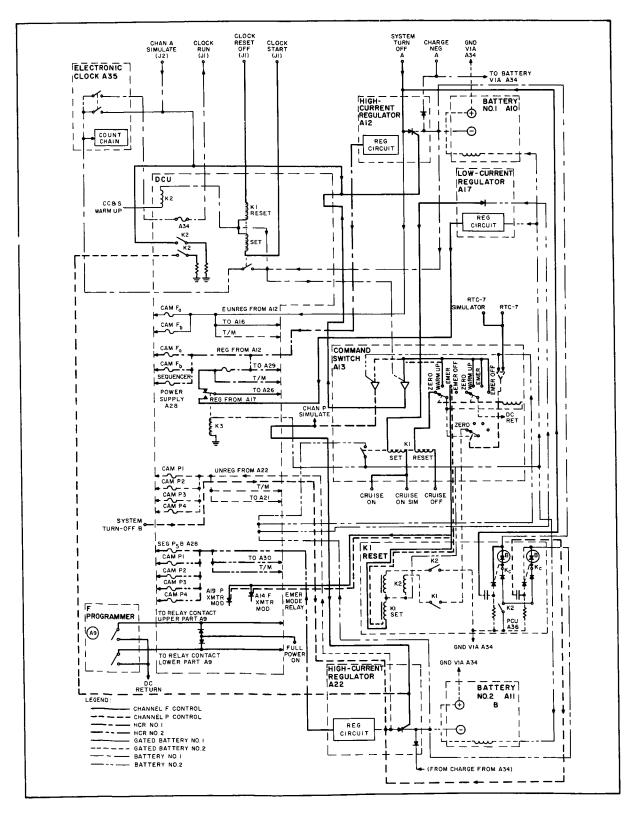


Figure D-13. Power Distribution and Control Assembly

'

Appendix E

Failure Effects Analysis of POST RANGER VI System Configuration

		FAILURE EFFECTS ANALYSIS		TABLE E-1 OF F-AND P-CHANNEL VIDEO COMBINER	OMBINER
Part	Assumed Failure	Symptoms and Local Effects	Compensating Provisions	Overall Effect	Remarks
F-CHANNEL R62	Open	No telemetry signal output and no input to differential amplifier.	None	F-video telemetry point of 90-point telemetry goes to zero.	
R63	Open	No telemetry signal output. Differential amplifier does not draw any collector current.	None	F-Video telemetry readout goes to 5V level.	
R64	Open	Differential amplifier acts as an emittor-driven low-impedance- input amplifier, being driven through the base diod of Qi4. Qi4 drive results in a reduced- output swing because of diod ef- fects of base-emitter junction of Q14.	None	F-Video telemetry output approaches zero.	
R65	Open	Collector current of Q15 goes to zero.	None	F-Video telemetry goes to zero. Complete loss of telemetry results.	
R66	Open	No circuit response because Q15 is placed in a fully saturated state.	None		DC output level does not represent video information. Tests for actual level should be made.
5	Open Shorted	Video signal appears in telemetry output. Sampling of telemetry level is variable and useloss. Same as that for opened RG2.	None	Substantial loss of useful telemetry. Same as that for opened R62.	Some recovery of useful telemetry may be possible at ground station through proper filtering.
<u>P-CHANNEL</u> The analysis of C8 have the same	the modified parts ir e effects on P-Channe	P-CHANNEL The analysis of the modified parts in the P-Channel Video Combiner is the same as that of the F-Channel, but affecting P-Channel. R47, R58, R59, R60, R61 C8 have the same effects on P-Channel operation as R62, R63, R65, R65 and C9 had on F-Channel operation.	the same as that of the F-Channel t66 and C9 had on F-Channel operati	, but affecting P-Channel. R	47, R58, R59, R60, R61 and

-

· .

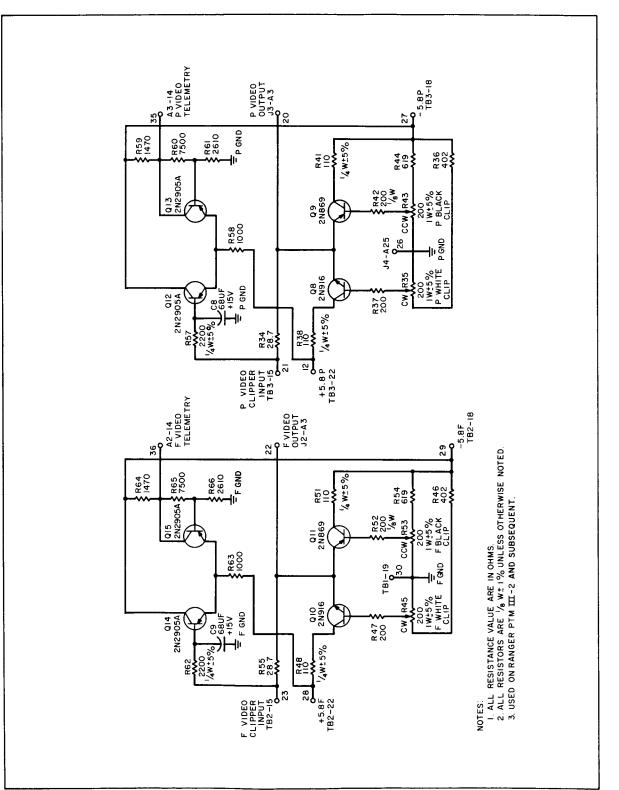


Figure E-1. Telemetry Amplifier and Video Clipper Circuits of the F- and P-Channel Video-Combiner Assembly

)

Bit Open E-Titere federecty orded varies Neur Entimetry data res of convex. Evaluation and data and da	Part	Assumed Failure	Symptoms and Local Effects	Compensating Provisions	Effect on Mission	Remarks
Open P-Timer telemetry duta arcuad 2g ± 3 volta. Nate between telemetry data arcuad 2g ± 3 volta. F-Timer telemetry data returned is not correct. Open P-Timer telemetry data arcuad 2g ± 3 volta. Nate arcuad 2g ± 3 volta. F-Timer telemetry data returned is not correct. Open Shift in normal range of telemetry None F-Timer telemetry data returned is not correct. 1. Open No None None 2. Short None None None	12.02	Open	F-Timer telemetry output varies around -1 ± 1 volt.	None	F-Timer telemetry data re- turned is not correct.	Full power is still obtainable, as designed.
Open F-Timer telemetry output varies None F-Timer telemetry data around 0 ± 1 col Open Biff, in normal range of telemetry None F-Timer telemetry data returned is not correct. 1. Open None None None 2. Short None None None	201	Open	F-Timer telemetry output varies around +2 ± 3 volts.	None	F-Timer telemetry data returned is not correct.	Interpretation of data should reveal where failure has occurred.
Open Built in normal range of talemetry Mone F-Timer talemetry data returned is not correct. 1. Open No manual reset capability of Relay Ki. None None 2. Short None None None	1200	Open	F-Timer telemetry output varies around $0 \neq 1$ volt.	None	F-Timer telemetry data returned is not correct.	
1. Open No manual reset capability of None None 2. Short None None	199	Open	normal range of telemetry	None	F-Timer telemetry data returned is not correct.	Telemetry output shifts from normal range of -2.4 volts nominal to -0.6 volts nominal to a range of -9 volts to $+2.5$ volts.
Note, normally Note	R77	1. Open	No manual reset capability of Relay K1.	None	None	
		2. Short	Note	None, normally	None	F-Chamel transmitter is susceptible to turn-on by shorted diode. Sufficient isolation should be pro- vided to make this failure triviai.

ALC: NO.

•

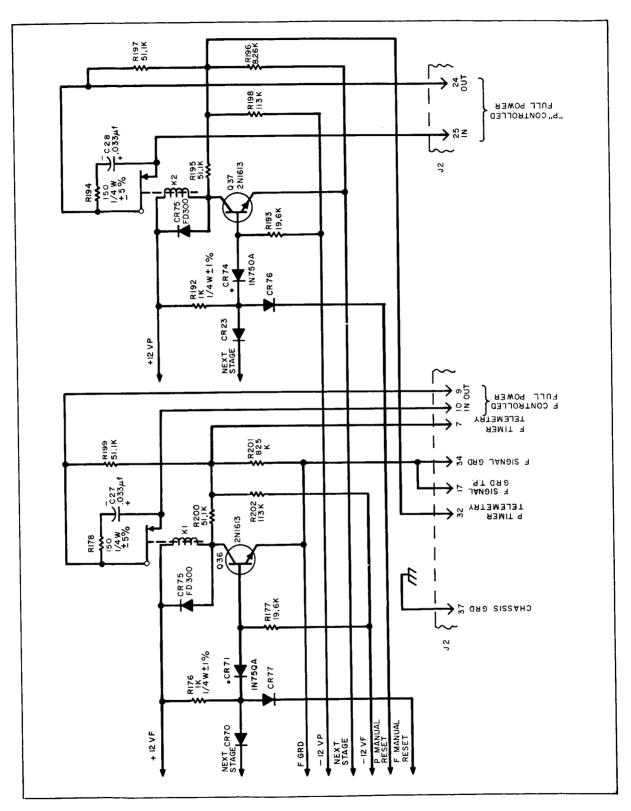


Figure E-2. Modulator Controller

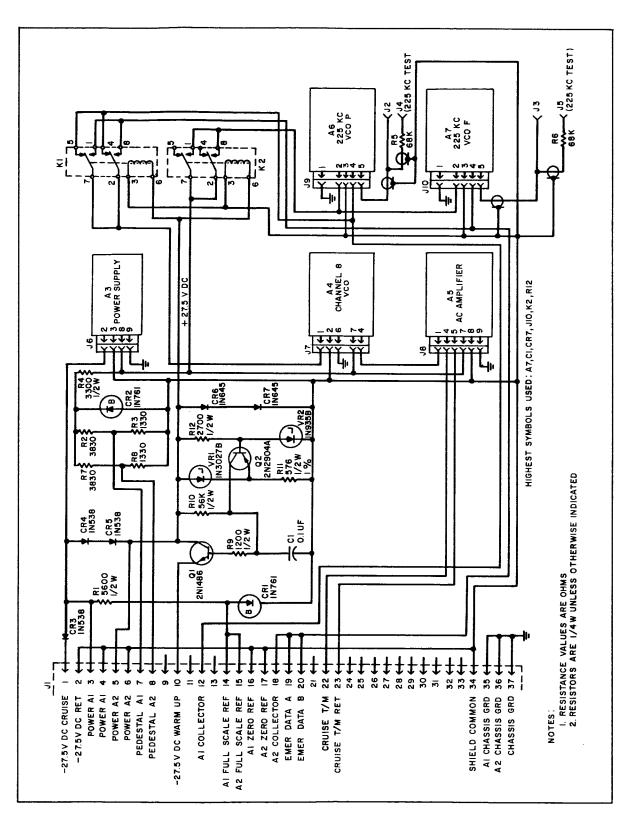
٠

.

		FAILURE EFFECT	TABLE E-3 FAILURE EFFECTS ANALYSIS OF THE	TELEMETRY ASSEMBLY	MBLY
tas	Assumed Failure	Sympioms and Local Effects	Compensating Provisions	Effect on Mission	Remorks
15-Point Telem- etry Data Point No.					
	1. Open thermistor		None	Loss of this data point.	
	2. Change of value	Temperature-scale-factor change.	None, except to refer to other temperature readings for correc- tion factor.	Temperature data received will not be accurate.	
≈ i	See Low-Current Vo	See Low-Current Voltage-Regulator output voltage telemetry points.	etry points.		
~ ~	See analysis of Curr See evaluation of CR	See analysis of Current Sensor Unit (Table E-4). See evaluation of CR3 and CR4 and R18 and R19 of F-Channel HCVR (Table E-7).	nnel HCVR (Table E-7).		
9	E De set fort fort of De	and the second official second			
e 0 10	see evaluation of Ra See evaluation of Cu	see evaluation of tranger clock (Table E-6). See evaluation of Current Sensor Unit (Table E-4).			
CR3	1. Open	No power input during cruise mode to: • Telemetry Power Supply; • -5 volt Reference Circuit; • 15-Point Commutator motor;	None during cruise mode. During warm-up mode, the regulator will perform a back-up function and supply the power.	Loss of 15-point telemetry during cruise mode.	A redundant parallel putr of diodes would reduce the probability of this failure.
	2. Short				
	a. Iburing Cruise Mode	None noticeable,	None	None	A redundant series pair of diodes would eliminate the effects of failure in the shorted mode.
	b. Warmup Mode	Current drain from the Regulator to the LCVR could develop.	None	Effect would depend on the magnitude of the current drain into the LCVR.	A quadrature configuration of diodes would reduce the probability of failure due to either a shorted or open failure mode in one diode.
CR4	1. Open	No effect, unless LCVR also fails during warmup.	None	None	The primary function of CR4 and CR5 is to allow the regulator to act as a back-up power supply for the LCVR during warmup mode.
	2. Short	None noticeable.	The reverse voltage rating of CR5 is adequate to provide blocking of LCVR voltage from the regulator, and assure normal circuit per- formance.	No effect unless CR5 also fuils.	Because of the series redundancy provided by CR4 and CR5, a short in one of these diodes would not affect mission performance.
CR5	1. Open	Same as 1 for CR4.	None	None	Same as 1 for CR4.
	2. Short	Same as 2 for CR4.	Same as 2 for CR4 with CR4 in place of CR5.	No effect unless CR4 also fails.	Same as 2 for CR4.
Ql Transistor	1. Collector-to- Emitter				
	a. Open	 a. Relay KI will not be ener- gized; Channel 8 VCO will not be switched from 15- to 90- point telemetry. 	None	Loss of 90-point telemetry data.	Transistor in parallel would reduce the probability of the mission being affected by this failure. 15-point telemetry data would be received during warmup through its cruise-mode path.
		b. Relay K2 will not be ener- gized; power will not be ap- plied to the two 225-ke VCO's.			

• .

	_	FAILURE EFFECTS ANALYSIS		TABLE E-3 OF THE TELEMETRY ASSEMBLY (Continued)	(Continued)
Part	Assumed Failure	Symptoms and Local Effects	Compensating Previsions	Effect on Mission	Remorks
QI Transistor (Continued)		 c. No power is applied to the 90- point telemetry Commutator motor. 			
	b. Short	Unregulated-Bus voltage is fed through the series regulator circuit. The performance of all circuits on this line operating with unregulated power would have to be determined.	None	15- and 90-point telemetry systems may be affected. There is a possibility that this failure would damage relays K1 and K2, the 15- and 90-point commutator motors, and the telemetry power supply.	The 15- and 90-point commutator motors would increase in speed.
	2. Emitter-to- Base				
	a. Opei	 No input current will be supplied to the series regulator. Relay K1 will not operate; Channel-8 will not be switched from 15- to 90- point telemetry. Relay K2 will not operate; no power applied to the two 225-kc VCO's. No power will be applied to the 90-point telemetry commutator motor. 	None	Loss of 90-point telemetry data.	Same as 1a.
	b. Shorted	 Series regulator is cut-off. No output from regulator. Relay KI will not operate; Channel-8 VCO will not be switched from 15- to 90-point telemetry. Relay K2 will not operate; no power applied to two 225-kc VCO's. No power applied to 90-power power applied to 90-power applied to 90-power power powe	None	Loss of 90-point telemetry data.	The 15-point telemetry data would be received through its cruise-mode path during warmup mode.
R9	Open	Same as 2a.	None	Loss of 90-point telemetry data.	Same as 2a for Q1 transistor.
R10	Open	Possible difficulties in turning on regulator	None	Possible loss of 90-point telemetry data.	15-point telemetry data would be received through its cruise-mode path if regulator fails to turn on.
IJ	1. Open 2. Short	Possible oscillation of regulator circuit. Transistor QI will operate in a saturated state. No regulator control: unregulated voltage will be applied to circuits through the regulator. R9 may burn up.	None None	Possible erratic operation of telemetry function. Same as 1b for Q1 transistor.	Same as 1b for Q1 transistor.


. '

VRI 1. Open 2. Short					
	Assumed Failure	Symptoms and Local Effects	Compensating Provisions	Effect an Mission	Remarks
2. Short		Base of QI conducts heavily. QI operates in a saturated stated. Loss of regulator control; un- regulated-bus voltage is fed directly to other circuits.	None	Same as 1b for transistor Q1.	Same as 1b for transiator Q1.
	-	Output of regulator circuit will be approximately 9 volts. Relays K1 and K2 may drop out, and 90- point telemetry commutator motor may turn slowly or stop.	None	Effect depends on state of the K1 and K2 relays.	 Provided the 90-point telemetry commutator motor continued to operate, the following conditions will preval: If relay Ki does <u>not</u> pull in and relay K2 does, 15- and 90-point telemetry data will be received; If relay K2 does <u>not</u> pull in, and relay K1 does, only 90-point telemetry data will be received; If <u>nether</u> relay K1 or K2 pull in, 15-point telemetry data will be received;
R11 Open		Transistor Q2 will be cut-off. Regulator output will be zero.	None	Loss of 90-point telemetry data.	15-point telemetry data will be received through its cruise-mode path during the warmup mode.
Q2 1. Collector-to- Emitter	ector-to- ter				
a. Open	uəd	No base input current to the series None regulator. Series regulator would be cut-off.	None	Loss of 90-point telemetry data.	15-point telemetry data will be received through its cruise-mode path during warmup mode.
b. Short	lort	Loss of regulator control; geries regulator will operate in a sat- urated state.	None	Same as 1b for transistor Q1.	Same as la.
2. Emitter-to- Base	ter-to-				
a. Open	en	No base input current to the series regulator. Series regu- lator would cut-off.	None	Loss of 90-point telemetry data.	Same as 1a.
b. Short	ort	Transistor Q2 will cut-off and regulator output will be zero.	None	Loss of 90-point telemetry data.	Same as ia.
R12 Open		Transistor Q2 cuts-off. No base input current to the series regu- lator; regulator cuts-off.	None	Loss of 90-point telemetry data.	Same as 1a for transistor Q2.
VR2 1. Open		Transistor Q2 conducts heavily. I Series regulator will operate in a saturated stato, feeding un- regulated-bus voltage directly to the circuits.	None	Same us 1b for Qi transistor.	Same as 1b for transistor Q1.
2. Short		Transistor Q2 cuts-off. Series 1 regulator circuit also cuts-off.	None	Loss of 90-point telemetry data.	15-point telemetry data will be received through its cruise-mode path during the warmup mode.
CR6 1. Open		Loss of transient-damping func- tion. Transtent is caused by in- terruption of unregulated-bus voltage.	None	Possible damage to tran- sistors Q1 and Q2, and VR1 and VR2 due to transients.	

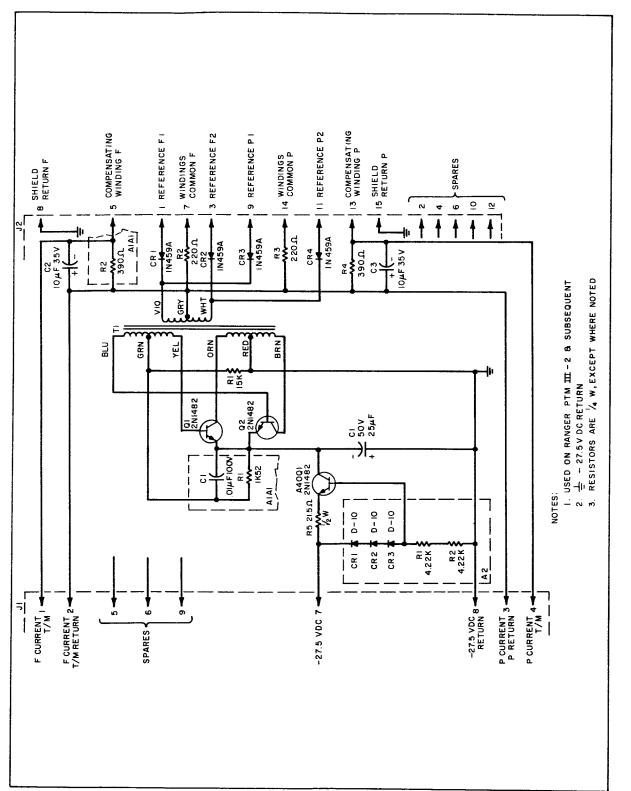
L'INCREME.

) - .

	<u> </u>			٦
(Continued)	Remarks			
TABLE E-3 FAILURE EFFECTS ANALYSIS OF THE TELEMETRY ASSEMBLY (Continued)	Effect on Mission	None	Same as 2 for CR6.	
	Compensating Provisions	CR7 performs transient damping function.	Same as 2 for CR6	
	Symptoms and Local Effects	No noticeable effect. CR7 will perform the transient-damping function.	Same as 2 for CR6.	
	Assumed Failure	2. Shorted	2. Shorted	
	Part	CR6 (Continued)		

. •

.


		FAILURE EFFECTS	TABLE E-4 ANALYSIS OF THE	CURRENT SENSOR	LINU
Part	Assumed Failure	Symptoms and Local Effects	Compensating Provisions	Effect on Mission	Remarks
A2R1 and A2R2 (Series Connected)	Open (either re- sistor)	Loss of base drive to transistor A40 Q1. Transistor A40 Q1 cuts- put and removes the -27.5 volt in- put voltage to the inverter. Bat- tery current-sensing capability is inhibited.	None	Loss of telemetry indication for F - and P - Battery currents.	Battery-evaluation capability is not completely lost. Drain on batteries can be estimated from F- and P-Battery voltage telemetry data.
A1A1 R1 (Inverter)	Open	DC bias level to chopper circuits is changed.	None	Negligible	Circuit will still operate. Study of telemetry data will not indicate this failure.
RI	Open	Loss of base bias on transistors Q1 and Q2; no converter oscilla- tion.	None. Power input to circuit goes to zero.	Loss of telemetry indication of F- and P-Battery cur- rents.	
AIAI R2	Open	Loss of DC effect of F-Channel compensating windings on Trans- former T1.	P-Battery current indication still available through other coil.	Loss of telemetry indication for F-Battery current.	Loss of F-Battery current indication does not change P-Battery current indication. Telemetry data will indicate 5 volts with zero load current.
R2	Open	Loss of F-Battery current telem- etry signal.	F-Battery current indication is still available. Not affected by the failure.	Loss of telemetry indication of F-Battery current.	Loss of F-Battery current indication does not affect P-Battery current indication. Telemetry output will read approximately 7 volts DC regardless of load current.
R3	Ореп	Loss of P-Battery current telem- etry signal.	Current telemetry signal for F- Battery not affected.	Telemetry indication of P- Battery current is lost.	Loss of one channel input does not affect the other half of this current indicator.
R5	Open	No input current to the A40 Q1 series regulator transistor.	None	Telemetry indication of F- and P-Battery currents goes to zero.	Loss of power input to the telemetry sensor DC-AC inverter results in loss of telemetry indication for F- and P-Battery currents.
A2CR1, A2CR2, and A2CR3	1. Open	Base of transistor A40 Q1 is now driven from A2R1 and A2R2 series combination, increasing current-passing capability beyond 10 ma.	Circuit is still capable of opera- tion.	Maximum failure short- circuit current of transis- tor A40 Q1 has now in- toreased, with short-circuit input current limited by the beta of A40 Q1.	The A40 Q1 series regulator transistor will still operate, however, at a higher base drive. Both F- and P-Battery current telemetry indications may be slightly higher than normal, due to the lower voltage drop across transistor A40 Q1.
	2. Short	Inverter circuit is still operable. Telemetry signal voltage for F- and P-Battery currents may read slightly high, and will do so together.	A series-connected, constant- current regulator, when shorted, will not inhibit circuit operation.	Constant-current-protection capability is now that of diode short-circuit current.	Constant-current protection capability is now pro- vided by the short-circuit current capacity of diode CR2. The circuit is still protected from a catastro- phic failure, such as a collector-to-ground short of transistors Q1 and Q2, by this means. However, the possibilities of such a failure occurring are remote.
CR1 and CR3 Combination	1. Open	Telemetry output voltage will read None approximately 2.5 volts DC with zero load current and increases with the load current.	None	Telemetry output voltage of F-Channel.	

•

. .

	Ľ	FAILURE EFFECTS ANALYSIS	TABLE E-4 LYSIS OF THE CURREP	TABLE E-4 OF THE CURRENT SENSOR UNIT (Continued)	(Continued)
tiad	Assumed Failure	Symptoms and Local Effects	Compensating Provisions	Effect on Mission	Remarks
CR1 and CR3 Combination (Continued)	2. Shorted	Telemetry output voltage reads approximately 1/8 to 1/4 normal value.	None	Telemetry output voltage for both F- and P-Channels.	Telemetry output voltage is zero with zero load current and increases to about 1 volt at 16 amperes of load current.
CR2 and CR4 Combination	1. Open	Same as 1 for CR1 - CR3	Same as 1 for CR1 - CR3	Same as 1 for CR1 - CR3 but for P-Channel.	
	2. Short	Same as 2 for CR1 - CR3	Same as 2 for CR1 - CR3	Same as 2 for CR1 - CR3 but for P-Channel.	
AIAI CI	1. Open	Operating voltage level of tran- sistors Q1 and Q2 changes. Value of A1A1 R1 will cause spikes in the base drive of transistors Q1 and Q2.	None	No observable change will occur in the telemetry output.	
	2. Short	Base current of transistors Q1 and Q2 increases with no imped- ance in transformer T1 base- drive windings. The current of transistors Q1 and Q2 collectors is set by series regulator A40 Q1 circuit.	Иопе		No telemetry data received if short occurs before Subsystem turn-on, but it will be received if the short occurs after turn-on.
C2 or C3	1. Open	Apparent rapid shifts in Battery current telemetry data due to ripple appearing at instant of telemetry-data sampling by com- mutator.	None	Battery-current telemetry levels at instant of readout on F -Channel for C-2, and P-Channel for C3,	Falture can be recognized by telemetry-data inter- pretation. Ripple will be at a 2-kc rate. Tolem- etry is sampled at a much slower rate.
	2. Short	Complete loss of telemetry data on channel whose output is shorted, other channel telemetry reads low.	Partial operation of non-shorted channel is possible. Current input to transistors Q1 and Q2 will not change, but secondary of trans- former T1 is loaded. Howver, Q1 and Q2 may fail to oscillate with this load.	F- and P-Channel output telemetry voltage, and calibration is affected.	Load current will increase by approximately 35 ma. Assuming 33 ma for the operable channel, the oper- ation will be limited by the short-circuit current capability of translator A40 Q1. Operation of the good channel will be marginal at high currents.
CR4	1. Open	 2.4 kc inverter not oscillating or oscillating at wrong frequency. Output telemetry voltage is off calibration. 	If oscillation is maintained and some telemetry ourrent signal is present at 1-2 and 3-4 of J1, some interpretation of data is possible.	Calibration level of telem- etry current is affected, for both the F- and P-Channels.	2-kc noise will appear at output of LCVR.
	2. Short	Complete loss of Battery current telemetry data for both F- and P-Channels.	Short does not cause a large bat- tery current to flow because tran- siator A40 Q1 is a constant- current regulator.	Telemetry data for both the F- and P-Battery currents goes to zero.	Input current to series regulator is held under con- trol. No mission degradation due to high-current battery drain is possible. (Battery voltage evalua- tion at other telemetry points would indicate a heavy current.)
ୟ ଦ	Short a. Cathode-to- Emitter	Transiators Q1 and Q2 do not os- ciliate: Transformer T1 does not furnish power to current-sensing circuit.	Short-circuit current does not appear across -27.5 volt bus due to constant-current regulator A40 Q1.	Telemetry voltage of F- and P-Battery current indi- cations goes to zero.	Collector current of transistor A40 Q1 will not be more than 20-percent higher than when circuit oper- ates normally. Battery currents can be evaluated by reading battery voltage.

		FAILURE EFFECTS ANALYSIS	TABLE E-4 ALYSIS OF THE CURRENT	INT SENSOR UNIT (Continued)	(Continued)
Part	Assumed Failure	Symptoms and Local Effects	Compensating Provisions	Effect on Mission	Remarks
Q1 - Q2 (Continued)	Short b. Base-to- Emitter	No circuit oscillation of Q1 and Q2.	Current input limited by transis- tor A40 Q1.	Telemetry voltage of F- and P-Battery current in- dications goes to zero.	Assumed failure may not be possible if current of transformer T1 base winding its limited by winding resistance. Cross-check of Battery voirages.
	c. Collector-to- Base	No 2.4 kc oscillation of Q1 and Q2.	-27.5 volt battery drain is lim- ited by A40 Q1.	Telemetry voltage of F- and P-Battery current in- dications goes to zero.	Cross-check battery voltages when Battery current indication goes to zero. Circuit is safe under all Q1 - Q2 short-circuit conditions.
A40 Q1	Short a. Cathode-to- Emitter	No series current protection from transistor A40 Q1. Tran- sistors Q1 and Q2 continue to operate, but at higher input voltage.		Calibration of Battery cur- rent telemetry for F- and P-Channels changes slight- ly.	Output of LCVR will go to zero. End result will be no cruise-mode telemetry.
	b. Base-to- Emitter	Collector-to-base junction may hold off collector-to-emitter current flow. No input power to current sensor circuit.	None, except that collector-to- emitter junction may allow con- duction and circuit operation.	F- and P-Battery current telemetry signal output.	Base-to-emitter short not very probable because of diodes in parallel with it. (CR1, CR2, CR3.)
	c. Collector-to- Base	A40 Q1 current regulator passes current through CR1, CR2, CR3, and possibly the Collector-to- emitter junction.	Dual path of diodes CR1, CR2, and CR3 provide current for scn- sor converter.	F- and P-Battery current telemetry signals.	No output. LCVR limited to 360 ma into maximum power transfer load.
IL	 Shorted turns, any winding (primary or secondary) 	No power inverter oscillation. Power input at maximum allowed by A40 Q1.	None, except that Battery drain is limited by transistor A40 Q1.	Battery-current telemetry signals (F- and P-Scan cameras) goes to zero.	Greatly reduced telemetry signal or no signal at all will result if transformer T1 primary or secondary is overloaded or shorted in any manner, as chances are that the inverter will not turn-on.
	2. Any primary winding open	No inverter oscillation at 2.4 kc.	None, except if one-half of any winding is open, the other side will allow maximum conduction of either Q1 or Q2 at approximately 40 ma.	Battery-current telemetry signal for F- and P-Chan- nels will go to zero.	No output signal. Checking of Battery voltage is still possible through other telemetry channels.
	 V10, GRY, and WHT windings, any one open. 	All Battery-current telemetry signals are at one-half their nor- mal values, and battery current appears to vary from sample to sample. This is due to ripple in output of channel that has opened.	Effects have a definite charactor- istic and can be evaluated if they are known.	Battery-current tolemetry voltago is affectod.	Effect will be the same on both channels since they are both driven from the same transformer.
	4. Any single winding shorted	Great reduction in output or com- plete failure of power inverter Q1 - Q2 to turn on. This effect depends upon loading and coupling inherent in transformer T1 de- sign.	Both channels will be affected if any winding is shorted. The chan- nel not completely shorted will have reduced output if the inverter does operate. Battery drain is still limited by A40 Q1.	Battery-current telemetry voltage and calibration levels are affected, if Q1 and Q2 are still functioning,	Actual test for affect is most desirable. Information should be recorded before launch.
					 or 2 Short: Current increases by ≈20 ma. Telemetry voltage is approximately 6.0 volts at any load current.
					3 Short: Curve will have much the same shape as R2 open.

• .

۰.

A2C2 A2R1 A1CR6 A1CR6

.

۰.

. 1

	FAILURE	RE EFFECTS ANALYSIS	TABLE E-5 5 OF THE COMMAND	AND CONTROL UNIT (Continued)	JNIT (Continued)
Part	Assumed Failure	Sympioms and Lacal Effects	Compensating Provisions	Effect an Mission	Remarks
ત્રાહા	 Open Collector- Collector- Collector- Base Short 	Same as open on A1CR6.	Same as open on AICR6.	Same as open on AICR6	
		Set coil of relay K4 is placed continuously on.	None		
AICR5	1. Open	No suppression of inverse decay-voitage spikes.	None	Processing of set com- mand of relay K4.	Safe operating region of transistor Q1 break- down potential (collector-to-emitter) may be surpassed. Failure of transistor Q1 is likely.
	2. Short	Set coil of relay K4 will be shorted out.	None	Same as 1.	Relay K4 can not be set. All effects associ- ated with failure of relay K4 apply.
A1R9	Open	Clock output pulse to base of transistor AlQ1 is not dif- ferentiated by AlR9 and AlC3. The voltage drop across the emitter-to-base junction of AlQ1 and the forward voltage drop across AlCR6 furnish the only restative loading to the Clock output pulse through C3.	None	Processing of set command to relay K4.	Bias on the base of transistor Alq1 is not readily determined, but depends upon the leukage resistance of AlC3 and the cut-off base-to-emitter resistance of transistor Alq1.
AIC3	1. Open	No set pulse to relay K4	None	Effectiveness of an RTC-5 command.	An open on AIC3 inhibits the 32-hour clock pulse from setting relay K4, which in turn, inhibits an RTC-5 command to the clock re- lay K1 in the DCU. Thus the clock cannot be stopped.
	2. Short	Continuous 32-hour Clock pulse is applied to relay K4 set coil after 32-hour output from Clock. Relay K4 can- not be reset.	None		An RTC-5 command will turn off the clock, even though it is not necessarily intended.
AlCR9 ;	1. Open 2. Short	Clock relay K1 in DCU can not be reset. None discernable.	None None	Clock can not be turned off.	RTC-5 command will not stop Clock.
Relays K1 or K2 (Ground- test Relays)	1. Open Coll	No cruise-mode capability during ground test.	None	Loss of Cruise- mode telemetry during launch.	Relays K1 and K2 are not used after launch.
	2. Open Contacts	Same as 1. However, one set of contacts is used to ensure clock turn-off. If it does not close, the clock will continue to run.		Loss of Cruise- mode telemetry during launch.	

•

•

· (

UNIT (Continued)	Remarks	Same as for AICR3 or AICR4.
AND CONTROL	Effect an Mission	
TABLE E-5 .E EFFECTS ANALYSIS OF THE COMMAND AND CONTROL UNIT (Continued)	Compensating Provisions	Same as 1 for AICR3 or AICR4. Same as 1 for AICR3 or AICR4.
	Sympioms and Local Effects	Same as 1 for AICR3 or AICR4. Same as 1 for AICR3 or AICR4.
FAILURE	Assumed Failure	1. Open 2. Short
	Part	A1CR7 or A1CR8

なたという

١.

.

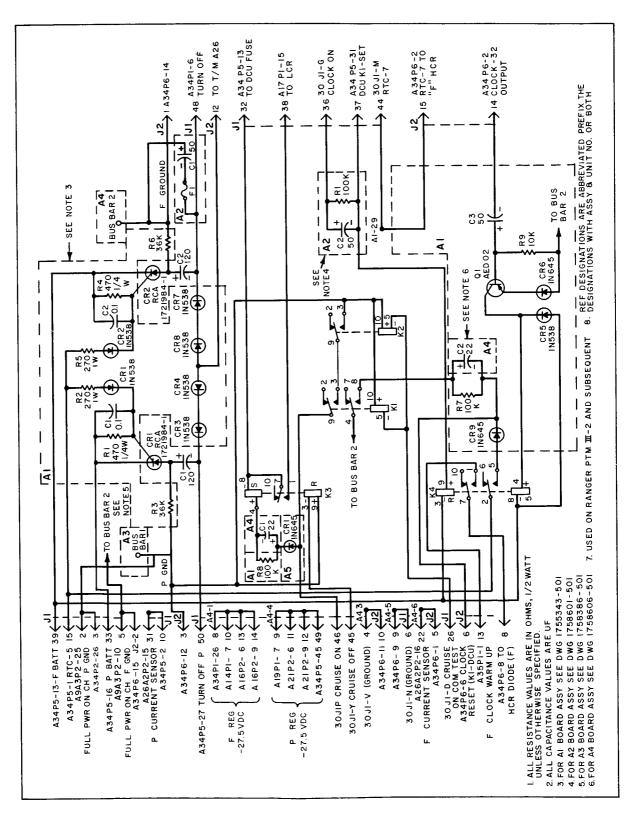
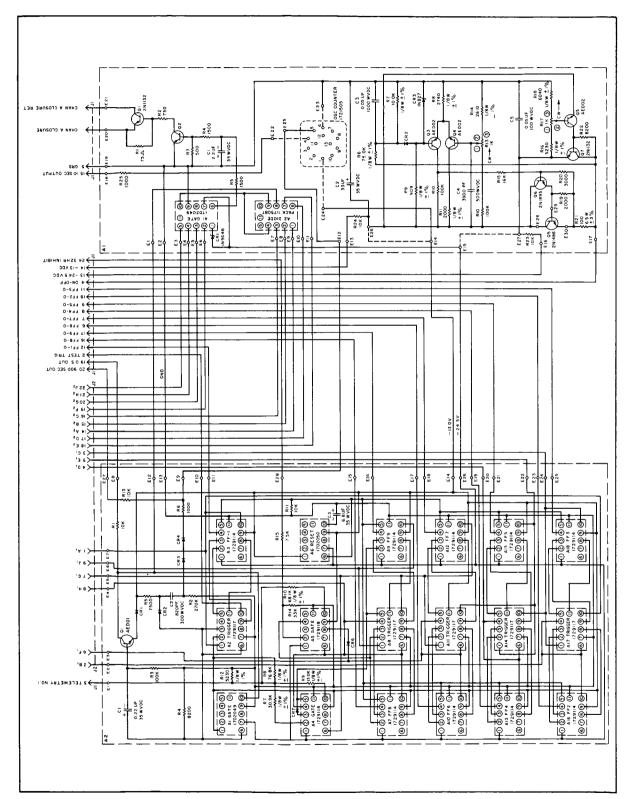



Figure E-5. Command Control Unit

TABLE E-6 FAILURE EFFECTS ANALYSIS OF THE ELECTRONIC CLOCK	Symptoms and Compensating Effect on Mission Remarks Local Effects Provisions	Image of the constant to relay K4 in the None Negligible The charge across C3 in the CCU is indeterminate. and Control Unit is in- Income of the control Unit is in- However, whether the failure of R14 occurs just prior to the 32-hour clock pulse or significantly prior to the 32-hour clock pulse or significantly prior to the set coil of the cCU would have stellar. I. Clock pulse is still Prior to the 32-hour clock pulse or significantly prior to the 22-hour clock pulse or significantly prior to the set coil of the constant. Annee in time constant. None Norticible Norticible	t None	r 0 to 8-hour telemetry None Clock telemetry 24- to 36-hour telemetry level will be received dur- tuton. Eight to 16-hour level indication is in error. Ing interval from 16 to 32 hours. instead.	ate A1 failure. None Clock telemetry indication Same as A1 Gate failure. Is in error.	44 to 32-hour telem- None Clock telemetry At the 32-hour time point a double step occurs in indication. Sixteen to indication. Sixteen to the time telemetry readout. Also, at the 48-hour indication is in error. temetry level indica- tenetry level indica- ot change. the time telemetry level does not change as it should. However, at the 64-hour time point, the time telemetry level indicated is correct.	logical "zero" input to None Clock telemetry indication Incorrect 24- to 32- tetry level indication.		alue.		5 board is inhibited fouring to the telem- been changed in the new design.
FAILURE EFF	Symptoms and Local Effects	Time constant to relay K4 in the Command Control Unit is fn- creased. Clock pulse is still coupled through to the set coil of the K4 relay. Slight change in time constant.	33-hour Clock pulse will not set the Clock-enable relay (K4) in the CCU.	Incorrector 0 to 8-hour telemetry level indication. Eight to 16-hour telemetry level indication appears in telemetry instead.	Same as Gate A1 failure.	Incorrect 24- to 32-hour telem- etry level indication. Sixteen to 32-hour telemetry level indica- tion does not change.	Continuous logical "zero" input to Gate A4. Incorrect 24- to 32- hour telemetry level indication.	Gate 1 of the A4 board is inhibited from contributing to the telemetry level. Some loss of telemetry accuracy but not significant.	Shift of telemetry value.	Gate 2 of A4 board is inhibited from contributing to the telem- etry level.	Gate 1 of A5 board is inhibited from contributing to the telem- etry level.
	Assumed Failure	1. Open 2. Change of value.	Open	Fails in logical "one" state.	Falls in logical "one" state on out- put to A1 Gate.	Fails in logical "zero" state	Fails in logical "zero" state.	 Open Change of value. 	Open or change of value.	Open or change of value.	Open or change of value.
	Part	A2R14	A2R15	A2 Gate A1	A2FF6	A4 Gate	A2FF7	A2R7	A2R8	A2R9	A2R10

Figure E-6. Electronic Clock Assembly

rage regulators	Remarks	The fullure of a single relay in this mode will not abort performance of the HCVR because of the redundancy provided in the SCR turn-on circuitry. If the failure is assumed to be caused by the stress environment imposed during faunch or separation, it is advisable to decoupte the relays, as much as possible, from seeing the same environment. This will reduce the possibility of the redundancy being negated.	Same us 1. In addition, the gate-to-cathode short across the SCR, provided by the normally closed contacts of relays K1 and K2, is lost. This effect provides SCR desensitizing to reduce the probability of an inadvertent turn-on, and is not a direct failure mechanism itself.	Proper operation of the TV Subsystem is entirely dependent on no inadvertent closure of switches in the JPL Bus that are associated with the RTC-7, CCSA, or 8 + 45 commanda. Thus, a positive lockout of the Subsystem does not completely exist during these intervals. An early turn-on of the Subsystem is possible with this inadvertent relay closure if ground is present at any of the mentioned JPL command lines.						An open of A1R1 alone is not sufficient to cause problems, since A1R1 is paralleled by A1C1. Which presents an AC low-impedance path to negate an inadvertent uurn-on of the SCR(A37CR5). The shorted contacts of relays A1K1 and A1K2 also
-CURRENT VOL	Effect on Mission	P-Channel turn-on is dependent on the reception, processing, and execution of a CC&S command.	Same as 1.	None	None	None	None	None	with the necessary	None
TABLE E-7 EFFECTS ANALYSIS OF P-CHANNEL HIGH-CURRENT VOLTAGE REGULATORS	Compensating Provisions	SCR turn-on can be accomplished by the enabling of relay AJK2 with a CC&S command.	Redundancy provided by enabling of relay A1K2 with a CC&S com- mand.	None	None	None	None	None	The notes applicable to relay A1K1 also apply generally to relay A1K2, with the necessary substitution of K2 for K1, etc.	Shorted contacts of relays A1K1 and A1K2.
	Symptoms and Local Effects	Contact closure of relay A1K1 will not occur. Turn-on of SCR (A37CR5) by RTC-7 command is inhibited.	No contact closure in either relay position; so that relay AJKI is effectively out of the circuit.	None, if a path to ground does not stmultaneously exist at the following JPL Bus inputs: • RTC-7 • CC&S. and • S+45.	Same as 3a.	Same as 3a.	If failure occurs during in-course correction, same as 3a,	If failure occurs during attitude correction, the effects are negligible under the anticipated mission profile.	The notes applicable to relay A1K1 substitution of K2 for K1, etc.	None
FAILURE	Assumed Failure	1. Open coll	 Loss of con- tinuity with either normally open or nor- mally closed contacts. Inadvertent contact 	a. A or prior to Aogena separation (S≤9)	 b. Between S + 0 and S + 17 	c. Between S + 17 and S + 45	d. After S + 30		Same as failures assumed for re- lay A1K1.	Open: a. Prior to AlKl or AlK2 Activate
	ta	AIKJ						16 / 1. ¹	AIK2	АІАІКІ

٠

	FAILURE EFFI	EFFECTS ANALYSIS OF P-	TABLE E-7 -CHANNEL HIGH-CURF	RENT VOLTAGE R	TABLE E-7 ANALYSIS OF P-CHANNEL HIGH-CURRENT VOLTAGE REGULATORS (Continued)
Part	Assumed Failure	Symptoms and Local Effects	Compensating Provisions	Effect on Mission	Remarks
A1A1R1 (Continued)					present a low DC resistance, maintaining SCR in the off state. Thus, only an AJRI open in conjunction with a bouncing or chattering of the AJKI or AJK2 contacts and a high potential across AJC1 is a pos- ible failure mode.
	b. After A1K1or A1K2Activate	None	None	None	
AIAJCI	1. Short	None prior to $S + 45$ minutes. At $S + 45$, it should be burned open if the $S + 45$ switch contacts in the JPL. Bus have the power capability: if not, then the SCR gate remains short-to-cathode.	None	P-Channel turn-on capability if lost if short persists.	A potential sufficiently close to ground should be present, thus enabling the P-Channel to turn on.
	2. Open	None	None	Probability of accidental turn-on of P-Channel is increased.	An open on A1C1 represents the loss of an effective AC short, and an increase in susceptibility to turn- on due to transients, etc.
AIAIR2	Open	Same as open in P-Cate Enable line. S + 45 command is inhib- ited.	None	P-Channel turn-on capability is lost.	
A1A1R3	Open	Negligible	None	None	
AIA1C4	1. Open	Relay AIK1 will note be activated by RTC-7 command.	P-Channel can be turned on by CC&S command activating relay A1K2 through A1A1C3 and A1A1R5.	Loss of P-Channel turn- on by RTC-7 command.	
	2. Short	Relay A1K1 is activated by RTC-7 command and the contacts will re- main closed for the duration of the command (momentary- closure capability is lost).	None	None	Coil of relay A1K1 may be overstressed if the P-Battery electromotive force (EMF) is high and the short on A1A1C4 can maintain the current level with-out opening. The value of a second RTC- 7 command would be doubthul.
AIAIR6	Open	Negligible	CC&S command capability	None	
A1A1C3 and A1A1R6	Failures associated appropriate associa	Failures associated with these parts have substantially the same effects as AIAIC4 and AIAIR5 described above. appropriate associated command is CC&S instead of RTC-7.	he same effects as AIAIC4 and AIAI -7.	R5 described above. The	
A1A1C2, A1A1R4, and A1A1CR1	These parts are not	These parts are not used for P-Channel operation. Normal part failure alone will not result in any Subsystem malfunction	mal part failure alone will not result	in any Subsystem malfunction	
CR3	1. Open	P-Battery telemetry-voltage out- put falls to zero.	None	Telemetry data of the P- Battery voltage is lost.	P-Battery telemetry voltage is zero continuously.
	2. Short	P-Battery telemetry output is overloaded. However, failure of CR3 will cause over dissipation in R28.	None	P-Battery telemetry portion of mission.	P-Battery telemetry voltage reads full scale (~5 volts) continuously.
CR4	Failure of CR4 (open	Failure of CR4 (open or short) will have the same effects as the failure of CR3.	s as the failure of CR3.		

•

, · · •

E-24

	FAILURE EFFI	EFFECTS ANALYSIS OF P	TABLE E-7 CHANNEL HIGH-CURF	RENT VOLTAGE R	TABLE E-7 ANALYSIS OF P-CHANNEL HIGH-CURRENT VOLTAGE REGULATORS (Continued)
Part	Assumed Failure	5ympioms and Local Effects	Compensating Provisions	Effect on Mission	Remarks
R28	Open	Current through P-Battery telemetry line is reduced.	None		R18 and R19 provide sufficient loads for tempera- ture-compensuing zener diodes CH3 and CH4. Calibration is displaced by upward shift of zener-diode operating point higher on the knee of characteristic curve. Otherwise, operation is normal.
CR6, CR7, and R29	These parts perforn on the output of the	n the same telemetry-conditioning fu P-Battery. Otherwise, the same ge	These parts perform the same telemetry-conditioning function on the output of the HCVR as CR3, CR4, and R28 perform on the output of the P-Battery. Otherwise, the same general comments apply (referenced to the Regulator output).	R3, CR4, and R28 perform the Regulator output)	
8	1. Open	Loss of AC by-pass across the SCR(CR5).	None		This failure would make the SCR (CRS) more prone to firing under transient conditions.
	2. Short	Same as I.	None		If C3 shorts, it would be destroyed by the power demand on its load side. Thus, its final state would be open. It could exists as a high-impedance short, but this would have little effect.
CR8	1. Open	Loss of unilateral action of CR8 and R27.	None		The effectivity of coupling in the forward direction is reduced, since C3 would now be in series with 47 ohme (R27).
	2. Short	Effectively places C3 across the plate to cathode of CR5.	None		Forward coupling is not changed significantly; the reverse coupling is now the same as forward.
R27	Open	Loss of reverse coupling due to blocking effect of CR5.	None		There is an increased sensitivity of the SCR to inadvertent turn-on by translents.
R26	Open	Loss of P-Battery monitoring function at prelaunch phase.		None	
R18	Open	No output to Telemetry Unit	Partial compensation exists in reading out regulated telemetry.	Loss of battery-voltage telemetry data.	
818	Open	No telemetry-point conditioning; voltage reads high depending upon loading effect of telemetry unit.		Loss of battery-voltage telemetry data.	

AGE REGULATORS	Remarks	HCVR, with the following additions.				The short of AlCRI is inconsequential to the clock-pulse input. However, with the plate of AlCRI at or near ground, it is possible that a CC&& command will not energize the AlK2 relay because of the loading now presented by AlAlC2.		
CURRENT VOLT	Effect on Mission	pplicable to the F-Channel						
TABLE E-8 EFFECTS ANALYSIS OF F-CHANNEL HIGH-CURRENT VOLTAGE REGULATORS	Compensating Provisions	The parts failures and their effects assumed for the P-Channel HCVR (See Table E-7) are also applicable to the F-Channel HCVR, with the following additions.	RTC-7 and CC & commands will still energize HCVR.	Same as 1	RTC-7 and CC&S command will still energize HCVR.	None	RTC-7 and CC&S commands will still energize HCVR.	
	Symptoms and Local Effects	l their effects assumed for the P-Char	Reiay A1K2 will not be ener- gized by Clock-pulse input - HCVR will not turn on.	None	Relay A1K2 will not be ener- gized by clock pulse. HCVR will not turn on.	Possibility that relay A1K2 will not be energized by a CC&S command.	Relay AlK4 will not be ener- gized by clock-pulse. HCVR will not turn on.	
FAILURE	Assumed Failure	The parts failures and	1. Open	2. Short	1. Open	2. Short	Open	
	Fart		A1A1C2		AIAICRI		A1A1R4	

٠

Figure E-7. High-Current Voltage Regulator Assembly

Appendix F Post Ranger VI Stress Analysis

• -

TABLE F-1 ASSEMBLIES TESTED					
Assembly	Designation	Stress Tabulation			
Camera	A1				
Decoupler	A1A1 to A1A4	F-4			
Preamplifier	A1A1 to A1A6	F -5			
Camera Electronics	A2 to A7				
Horizontal Sync Generator	A2	F-6			
Vertical Sync Generator	A2	F-7			
Deflection Amplifier	A2 to A5	F-8			
Deflection Programmer	A2 to A5	F-9			
G1 Regulator	A2 to A5	F-10			
Video Amplifier	A2 to A6	F-11			
Camera High-Voltage Regulator	A2 to A7	F-12			
Converter Power Supply	A2 to A7	F-13			
Low-Voltage Regulator	A2 to A7	F-14			
Deflection Programmer	A6, A7	F-15			
Deflection Amplifier	A6, A7	F-16			
G1 Regulator	A6, A7	F-17			
Shutter and Lamp Drive	A6, A7	F-18			
Video Amplifier	A6, A7	F-19			
Video Combiner	A8				
F-Scan Video Summing Amplifier		F-20			
Isolation Amplifier		F-21			
Tone Oscillator		F-22			
Control Programmer and Camera					
Sequencer	A9				
Dual Oscillator		F-24			
Controller Modulator		F-24			
P-Camera Controller		F-25			
P-Channel Counter		F-26			
High-Current Voltage Regulator	A12, A37	F-27			
Transmitter Power Supply	A16, A21	F-28			
Low-Current Voltage Regulator	A17	F-29			
Telemetry AC Amplifier	A26				
Telemetry Converter		F-30			
Telemetry Voltage Regulator		F-31 F-32			
	100				
Sequencer Power Supply	A28	F-33			
Telemetry Processor Assembly	A29, A30	F-34			
Distribution Control Unit	A34	F-35			
Electronic Clock	A35	F-36			
Command Control Unit	A39	F-37			

のないのである

、 ·

-

	LE F-2	
DRAWINGS AND	LISTS OF MATERIAL	
G1 Regulator P-Channel	1753177 B	1754355 B
Deflection Programmer P-Channel	1753014	1754132 B
Camera High-Voltage Regulator	1753007	1754136 B
Camera Shutter and Lamp Drive	1753099 D	1754189 D
Camera Low-Voltage Regulator	1754123 B	1754324 D
DC-DC Converter	1754122	1754143
Video Amplifier, P1 Camera	1753157	1754309 C
Camera Vertical Sync Generator	1703809 A	1754145 C
Camera Horizontal Sync Generator	1754163	1754142 A
Video Amplifier F-Camera	1753189	1754362 B
Deflection Amplifier F-Camera	1754360 A	1754363 B
Deflection Programmer F-Camera	1754253	1754376 C
G1 Regulator F-Camera	1753178 C	1754352*
Video Amplifier P2, 3, 4 Cameras	1753122 A	1754284 B
Deflection Amplifier P-Camera	8624826 F	8624846 J
Controller Modulator	1753142	1753144 C
Video Summing Amplifier F-Camera	1754073 C	1706355 J
Tone Oscillator	1725507	1706281 E
AC Amplifier, Channel 8	8481476 A	8626058
Telemetry Regulator	Sketch	
Telemetry Processor	8747475 D	
Video Summing Amplifier P-Camera	1173796 E	1706280 H
Telemetry Amplifier and Clipper	1725508	
Dual Oscillator	1703811 B	1073575 H
Counter P-Channel	1753140	1753136 B
Controller, P-Channel	1753037	1073571 M
Preamplifier, P- and F-Cameras	8747129 H	8747178 D
		8747152 E
High-Current Voltage Regulator	1706631 C	1706820 J
		1706852 E
Low-Current Voltage Regulator	1708611 F	1708947 G
Transmitter Power Supply	1183526 G	1182554
Electronic Clock	1753325	1753338 D
		1753326 D
Sequencer Power Supply	1753035	1073576 M
Telemetry Assembly, Telemetry Converter	1182555 B	
Sipican Modules*	1729114 A	
Sipican Modules*	1729117 B	
Sipican Modules*	1729118 A	
Sipican Modeles*	1702050 B	
Sipican Modules*	1702049 B	
Sipicar Modules*	1175087 B	
Camera Decoupling Assembly	1729592	

•

.

*Vendor supplied data, verified by combination of electrical measurements at terminals and circuit analysis.

	PARTS		TABLE F-3 OVE DERATING POL	ICY LEVELS		
Schematic	Subassembly	Circuit Symbol and Part Type	Measured Stress	Maximum Rating	% Stress	Derating Level %
1754122	Camera Electronics Al Frame Conver- ter	C6 100 µ f Wet Tantalum	22 volts	30 volts	74	70
1754360	F-scan Unit De- flection Amplifier	C14 10,000 µµf Mica	50 volts	100 volts	50	10
1753189	Video Amplifier F-scan	C-24 2.2µf Solid Tantalum	16 volts	20 volts	80	70
1753178	G1 Regulator F-scan	R5, R7 432KΩ	350 volts, 284mw	1/2 watts	56.5	50
1753178	G1 Regulator F-scan	C13 0.01µµf Ceramic	80 volts	200 volts	40	10
1753177	G1 Regulator P-scan	R34 100K Ω	70 volts to 100 volts 50% each, 75mw	1/8 watts	60	50
1754123	Low-current Voltage Regulator	C5A, B 0.22µf Mica	950 volts	1500 volts	63	10
1754123	Low-current Voltage Regulator	C15 3900µµf Ceramic	50 volts	200 volts	25	10
1754123	Low-current Voltage Regulator	С16 2700 µµf Mica	260 volts	1500 volts	17	10
1754123	Low-current Voltage Regulator	CR14 1N648	430 volts	PIV=5000	86	80
1753189	Video Amplifier F-Scan	Q17 2 N2432	V _{CE} =27	BV _{CEO} =30	90	80
1703809	Vertical Sync Generator	R15 870 C3	12V, 175mw 11 volts	1/4 watts 15 volts	70 74	50 70
		C6 C10 C12 C16 C18 C21 Q20	11 volts 12 volts 12 volts 12 volts 12 volts 12 volts 12 volts operation appears to be just on threshold of base control over dis- sipation & volt- ages not involved	15 volts 15 volts 15 volts 15 volts 15 volts 15 volts	74 80 80 80 80 80	70 70 70 70 70 70
1753035	Sequencer Power Supply	R2 R31 R10 R39 R16 R45	2.44 watts 2.45 watts 169 mw 169 mw 10 watts 10 watts	3.0 watts 3.0 watts 250 mw 250 mw 14 watts 14 watts	81 81 68 68 70 70	50 50 50 50 50 50 50

Solution of

Г

	PARTS OPER	ATED ABOVE DI	TABLE F-3 RATING POLICY LE	VELS (Continued	4)	
Schematic	Subassembly	Circuit Symbol and Part Type	Measured Stress	Maximum Rating	% Stress	Derating Level %
8747129	Preamplifier	C2 CL45, 4µf	50 volts	60 volts	83	70
1706631	High-Current Voltage Regulator	C1 CL15, 1000µf	27.2 volts	36 volts	76	70
1183526	Transmitter Power Supply	R1 470K	560 volts 670 mw	1000 mw	67	50
1183526	Transmitter Power Supply	R2 470K C1	535 volts 610 mw 1120 volts	1000 mw 1400 at 85° C	61 70	50
		C2 C3 C4 C6 C7	825 volts 280 volts 111 volts 30 volts 30 volts	1400 at 85° C 600 volts 200 volts 50 volts 50 volts	59 48 56 60 60	
1729592	Camera decoupling assembly	C1, C2	1000 volts	1600 volts	62	10
1753142	Counters	C28	35 volts	27.5 volts	82	70
1754360	Deflection Amplifier F-scan	Q3, 2N930	$V_{BE} > 12$ volts	BV _{BEO} =5 volts	240	80
1754360	Deflection Amplifier F-scan	Q8, 2N1893	$V_{BE}^{=7}$ volts	BV _{BEO} =7 volts	100	80
1753189	Video Amplifier F-scan	Q12, 2N930	V _{BE} =7 volts	BV _{BEO} =5 volts	140	80
1753122	Video Amplifier P2, 3, 4	Q12, 2N930	$V_{BE}^{=6.25}$ volts	BV _{BEO} =5 volts	125	80
1753157	Video Amplifier Pl	Q6, 2N930	$V_{BE}^{=6.25}$ volts	BV _{BEO} =5 volts	125	80
1753099	Shutter and Lamp Drive	R45, RC20GF	≈360 mw*	500 mw	72	50
1185526	Transmitter Power Supply	C5	100 volts peak	200 volts	50	10
1753325	Clock	Q2, 2N722	V _{CE} =41 volts	BVCEO	85	80

.

* Power dissipated depends on the selected value of the resistor. RA-7 values are 40 Ω or greater and has a maximum average power dissipation of 360 wm. Values on RA-8 and subsequent units will be checked for ohmic value and will be replaced by greater power-handling capability if less than 40 ohms.

	Part Desci	ription		Stress Analysis		
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
R1	RC07	10 K Ω, 1/4 watt	0			< 10
C1	1751107-1	0.01 μ f, 1600 volts DC	1000			62
C2	1751107-1	0.01 µf, 1600 volts DC	1000			62

AND R. R.

.

•

.

•

Roting 1.0 Meg Ω , 1/4 watt 100 K Ω , 1/4 watt 1.0 Meg Ω , 1/4 watt 1.0 Meg Ω , 1/4 watt 330 Ω , 1/4 watt 6.8 K Ω , 1/4 watt 2.2 K Ω , 1/4 watt 2.2 K Ω , 1/4 watt 2.9 0.01 μ f, 200 volts 4 μ f, 60 volts 4 μ f, 60 volts 29 0.01 μ f, 200 volts Nuvistor	Voltage (volts) 50 0 to 50 4.4 0.2 14.8 4.7 40 50 28.5 28.5 40 FIL = 6 to 6.3 P-Grd = 28.5	Current (milliamperes) 0.05 65 peak – –	Average Power (milliwatts) - 25 peak - - 32 10.5	Percent Rated Stress < 10 < 10 < 0. < 0. 13 < 10 20 83 48 48 48 20
$100 K \Omega, 1/4 watt$ $1.0 Meg \Omega, 1/4 watt$ $330 \Omega, 1/4 watt$ $6.8 K \Omega, 1/4 watt$ $2.2 K \Omega, 1/4 watt$ $2.2 K \Omega, 1/4 watt$ $0.01 \mu f, 200 volts$ $4 \mu f, 60 volts$ $4 \mu f, 60 volts$ $4 \mu f, 60 volts$ $29 0.01 \mu f, 200 volts$	0 to 50 4.4 0.2 14.8 4.7 40 50 28.5 28.5 28.5 40 FIL = 6 to 6.3		- - 32	< 10 < 0. < 30 13 < 10 20 83 48 48
1.0 Meg Ω , 1/4 watt 330 Ω , 1/4 watt 6.8 K Ω , 1/4 watt 2.2 K Ω , 1/4 watt 2.2 K Ω , 1/4 watt 0.01 μ f, 200 volts 4 μ f, 60 volts 4 μ f, 60 volts 29 0.01 μ f, 200 volts	4.4 0.2 14.8 4.7 40 50 28.5 28.5 40 FIL = 6 to 6.3	65 peak - -	- - 32	< 0. < 0. 13 < 10 20 83 48 48
$\begin{array}{c} 330 \ \Omega, \ 1/4 \ watt \\ 6.8 \ K \ \Omega, \ 1/4 \ watt \\ 2.2 \ K \ \Omega, \ 1/4 \ watt \\ 2.2 \ K \ \Omega, \ 1/4 \ watt \\ 0.01 \ \mu \ f, \ 200 \ volts \\ 4 \ \mu \ f, \ 60 \ volts \\ 4 \ \mu \ f, \ 60 \ volts \\ 4 \ \mu \ f, \ 60 \ volts \\ 29 \ 0.01 \ \mu \ f, \ 200 \ volts \\ \end{array}$	0.2 14.8 4.7 40 50 28.5 28.5 40 FIL = 6 to 6.3	_		< 0. 13 < 10 20 83 48 48
6.8 K Ω , 1/4 watt 2.2 K Ω , 1/4 watt 2.2 K Ω , 1/4 watt 0.01 μ f, 200 volts 4 μ f, 60 volts 4 μ f, 60 volts 4 μ f, 60 volts 0.01 μ f, 200 volts	14.8 4.7 40 50 28.5 28.5 40 FIL = 6 to 6.3	_		13 < 10 20 83 48 48
2.2 K Ω , 1/4 watt 0.01 μ f, 200 volts 4 μ f, 60 volts 4 μ f, 60 volts 4 μ f, 60 volts 29 0.01 μ f, 200 volts	4.7 40 50 28.5 28.5 40 FIL = 6 to 6.3			< 10 20 83 48 48
29 0.01 μ f, 200 volts 4 μ f, 60 volts 4 μ f, 60 volts 4 μ f, 60 volts 4 μ f, 60 volts 29 0.01 μ f, 200 volts	40 50 28.5 28.5 40 FIL = 6 to 6.3		10.5	20 83 48 48
$ \begin{array}{cccc} 4 & \mu f, & 60 \text{ volts} \\ 4 & \mu f, & 60 \text{ volts} \\ 4 & \mu f, & 60 \text{ volts} \\ 29 & 0.01 & \mu f, & 200 \text{ volts} \end{array} $	50 28.5 28.5 40 FIL = 6 to 6.3			83 48 48
$ \begin{array}{l} 4 \ \mu f, \ 60 \ volts \\ 4 \ \mu f, \ 60 \ volts \\ 29 0.01 \ \mu f, \ 200 \ volts \\ \end{array} $	28.5 28.5 40 FIL = 6 to 6.3			48 48
$ \begin{array}{c} 4 \mu f, \ 60 \ volts \\ 29 0.01 \mu f, \ 200 \ volts \end{array} $	28.5 40 FIL = 6 to 6.3			48
29 0.01 µf, 200 volts	40 FIL = 6 to 6.3			
	FIL = 6 to 6.3			20
Nuvistor				
	K-Grd = 15			
257	0.3			
330- 200 volts	6			< 10

TABLE F-5

. •

.

······	A55E	MBLY HORIZONTAL	SYNC GENERATOR	R, 1754163				
<u> </u>	Part Desc	ription	Stress Analysis					
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress		
R1	RC07	10 KΩ, 1/4 watt	5	0.5	2.5	< 10		
R2	RC07	$10 \text{ K}\Omega$, $1/4 \text{ watt}$	0.6	-	-	< 10		
R3	8447750-5	$25 \text{ K}\Omega$, $1/4 \text{ watt}$	5	0.2	1	< 10		
R4	RC07	$18 \text{ K}\Omega$, $1/4 \text{ watt}$	10	0.556	1	< 10		
R5	RC07	1.2 K Ω , $1/4$ watt	6	5	30	12		
R6	RC07	$3.1 \text{ K}\Omega$, $1/4 \text{ watt}$	0.6	-	_	< 10		
R 7	RC07	10 K Ω , 1/4 watt	6	0.6	4	< 10		
R 8	RC07	33 Ω , 1/4 watt	0.1	3.3	<1	< 10		
R9	RC07	3.3 K Ω , 1/4 watt	6.5	2	13.3	< 10		
R11	RC07	3.9 K Ω, 1/4 watt	3 peak	0.77	2.3	< 10		
R12	RC07	$27 \text{ K}\Omega$, $1/4 \text{ watt}$	7	0.25	1.6	< 10		
R13	8447750-3	$25 \text{ K}\Omega$, 1 watt	5	0.25	1	< 10		
R14	RC07	180 Ω , 1/4 watt	1.5	8.3	12.5	< 10		
R15	8447750-3	$5 K_{\Omega}$, 1 watt	3.5			< 10		
R16	RC07	3.3Ω , $1/4$ watt	6	1.8	1	< 10		
R19	RC07	3.9 K Ω , 1/4 watt	7	1.8	12.5	< 10		
R20	RC07	3.9 K Ω , 1/4 watt	5.5	1.4	7.8	< 10		
R21	RC07	$20 \text{ K}\Omega$, $1/4 \text{ watt}$	5	-	-	< 10		
R23	RC07	$1 \text{ K} \Omega$, $1/4 \text{ watt}$	4.5	4.5	20	< 10		
C1	Ceramic	0.02μ f, 50 volts	-5			< 10		
C2	Ceramic	0.01 µf, 200 volts	4.5			< 10		
C3	Ceramic	$0.05 \mu\mathrm{f}, 50\mathrm{volts}$	+5			< 10		
C4	Tantalum	15μ f, 10 volts DC	6			60		
CR1	1N916	250 mw at 25° C ambient	+0.6, -1.4	0.5 peak	0.3	< 10		
CR3	1N916	250 mw at 25° C ambient	+0.4	0.6 peak	-	< 10		
CR4	1N916	250 mw at 25° C ambient	+1.1, -1.0	1.3 peak	1.3 peak	< 10		
CR5	1N916	250 mw at 25° C ambient	+0.6, -1.2	1.3 peak	1.3 peak	< 10		

TABLE F-6ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICSASSEMBLY HORIZONTAL SYNC GENERATOR, 1754163

÷

· .

• •

Part Description			Stress Analysis			
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
CR8	1N916	250 mw at 25° C ambient	-0.5, +4.3	-	-	< 10
CR9	1N916	250 mw at 25° C ambient	+0.5, -5.5	-	-	< 10
CR10	1N916	250 mw at 25° C ambient	+0.5, -13	-	-	< 10
CR11	1N916	250 mw at 25° C ambient	+0.5, -7	-	-	< 10
CR12	1 N91 6	250 mw at 25° C ambient	+0.5, -6	-	-	< 10
CR13	1N916	250 mw at 25° C ambient	+0.5, -4	_	-	< 10
CR14	1N916	250 mw at 25° C ambient	+0.6, -0.9	1.3 peak	1.3 peak	< 1
Q1	2N718A	500 mw at 25° C ambient	BE + 0.6 CE + 10	0.556	0.3	< 1
Q3	2N718A	500 mw at 25° C ambient	BE + 0.6 $CE = 6$	5	3	< 1
Q4	2N718A	500 mw at 25° C ambient	BE + 0.6, -3.5 CE = 6	3	1.2	< 1
Q5	2N329A	390 mw at 25° C ambient	BE + 4, -4 CE = 5.5	2	1	< 1
Q8	2 N91 6	360 mw at 25° C ambient	$\begin{array}{c} \text{BE + 0.2, -0.8} \\ \text{CE = 7} \end{array}$	4.5	4	< 1

	ASS	EMBLY VERTICAL SYN	C GENERATOR, 17	703809			
	Part Description		Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliomperes)	Average Power (milliwatts)	Percent Rated Stress	
R1	RC07	5.1 KΩ, 5%, 1/4 watt	17		57	23	
R2	RC07	5.1 KΩ, 5%, 1/4 watt	17		57	23	
R3	RC07	100 Ω , 5%, 1/4 watt	0.75		5.7	2.3	
R4	RC07	3.3 KΩ, 5%, 1/4 watt	10		33	13.2	
R5	8447750-3	5 K Ω, 5%, 1 watt	5	1.8	9	< 10	
R6	RC07	1 KΩ, 5%, 1/4 watt	1.8	1.8	1.8	< 10	
R7	RC07	20 K Ω , 5%, 1/4 watt	5		1.25	< 10	
R8	RC07	3.3 KΩ, 5%, 1/4 watt	11.2		38	16	
R9	RC07	180Ω, 5%, 1/4 watt	4		8 9	36	
R10	RC07	33 K Ω, 5%, 1/4 watt	12.5	0.38	4.8	< 10	
R11	8447750-4	10 K Ω, 5%, 1/4 watt	5	0.38	2	< 10	
R12	RC07	$20~{ m K}\Omega$, 5%, $1/4~{ m watt}$	5		1.25	< 10	
R13	RC07	22 K Ω , 5%, 1/4 watt	12.5		7.1	< 10	
R14	RC07	$33~{ m K}\Omega$, 5% , $1/4~{ m watt}$	2.7		0.22	< 10	
R15	RC07	870 Ω, 5%, 1/4 watt	12		175	70	
R16	RC07	5.6 K Ω , 5%, 1/4 watt	12		25.8	10	
R17	8447750-3	5 K Ω , 5%, 1/4 watt	5.5	3.7	2.04	< 10	
R18	RC07	1 KΩ, 5%, 1/4 watt	3.7	3.7	13.7	< 10	
R19	RC07	$56~\mathrm{K}\Omega$, 5% , $1/4~\mathrm{watt}$	3		0.17	< 10	
R20	RC07	5.6 KΩ, 5%, 1/4 watt	2.5		1.1	< 10	
R21	RC07	10 K Ω , 5%, 1/4 watt	10		10	< 10	
R22	RC07	5.6 KΩ, 5%, 1/4 watt	11		22	< 10	
R23	RC07	22 K Ω , 5%, 1/4 watt	12.5		7.1	< 10	
R24	RC07	56 K Ω , 5%, 1/4 watt	3		0.16	< 10	
R25	RC07	1.5 K Ω, 5%, 1/4 watt	12		96	39	
R26	RC07	5.6 KΩ, 5%, 1/4 watt	7.5		10	< 10	
R27	847750-3	5 K Ω , 5%, $1/4$ watt	5	1.8	9	< 10	
R28	RC07	$1~{ m K}\Omega$, 5%, $1/4~{ m watt}$	4.5		20	< 10	
R29	RC07	56 K Ω , 5%, 1/4 watt	3		0.17	< 10	
R30	RC07	5.6 K Ω, 5%, 1/4 watt	2.5		1.1	< 10	

TABLE F-7ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICSASSEMBLY VERTICAL SYNC GENERATOR, 1703809

.

	Part Descri	ption		Stress Analysis		
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
R31	RC07	10 K Ω, 5%, 1/4 watt	12.5		15	< 10
R32	RC07	5.6 K Ω , 5%, 1/4 watt	12.5		28	11
R33	RC07	$22 \text{ K} \Omega$, 5%, $1/4 \text{ watt}$	12.5		7.1	< 10
R34	RC07	56 K Ω , 5%, 1/4 watt	1		0.02	< 10
R35	RC07	1.5 K Ω, 5%, 1/4 watt	12.5		104	42
R36	RC07	5.6 K Ω, 5%, 1/4 watt	12.5		28	11
R37	847750-3	$5 \text{ K}\Omega$, 5%, $1/4 \text{ watt}$	2.7	2.5	6.75	< 10
R38	RC07	$1 K \Omega$, 5%, $1/4$ watt	2.5	2.5	6.25	< 10
R39	RC07	56 K Ω , 5%, 1/4 watt	3		0.17	
R40	RC07	5.6 K Ω , 5%, 1/4 watt	3		0.17	< 10
R41	RC07	10 K Ω , 5%, 1/4 watt	12.5		15.6	< 10
R42	RC07	5.6 K Ω , 5%, 1/4 watt	12.5		28	11
R43	RC07	$22~\mathrm{K}\Omega$, 5%, 1/4 watt	10		4.6	< 10
R44	RC07	56 K Ω , 5%, 1/4 watt	0.63			< 10
R45	RC07	1.5 K Ω , 5%, 1/4 watt	11		81	32
R46	RC07	5.6 K Ω , 5%, 1/4 watt	11		22	< 10
R47	8447750-3	$5 K \Omega$, 5%, 1 watt	5	5	25	< 10
R48	RC07	$1~{\rm K}\Omega$, 5%, $1/4~{\rm watt}$	5	5	25	10
R49	RC07	56 K Ω , 5%, 1/4 watt	2.5		0.1	< 10
R50	RC07	5.6 K Ω , 5%, 1/4 watt	2.7		1.3	< 10
R51	RC07	10 K Ω , 5%, 1/4 watt	11		12.1	< 10
R52	RC07	5.6 K Ω , 5%, 1/4 watt	11		22	< 10
R53	RC07	22 K Ω , 5%, 1/4 watt	11		5.6	< 10
R54	RC07	56 K Ω , 5%, 1/4 watt	0.63			< 10
R55	RC07	1.5 KΩ, 5%, 1/4 watt	5		17	< 10
R56	RC07	5.6 K Ω , 5%, 1/4 watt	10		18	< 10
R57	8447750-3	$5 \ \mathrm{K}\Omega$, 5% , $1 \ \mathrm{watt}$	5	3.7	18.5	< 10
R58	RC07	$1 \ \mathrm{K}\Omega$, 5%, $1/4 \ \mathrm{watt}$	3.7	3.7	14	< 10
R59	RC07	56 K Ω , 5%, 1/4 watt	3.1		0.17	< 10
R60	RC07	5.6 KΩ, 5%, 1/4 watt	3.1		1.7	< 10

-

TABLE F-7
ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS
ASSEMBLY VERTICAL SYNC GENERATOR, 1703809 (Continued)

- · ·

Part Description		Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
R61	RC07	10 K Ω, 5%, 1/4 watt	11		12.1	< 10
R62	RC07	5.6 K Ω , 5%, 1/4 watt	11		22	< 10
R63	RC07	22 K Ω , 5%, 1/4 watt	11		6	< 10
R64	RC07	56 KΩ, 5%, 1/4 watt	0.75			< 10
R6 5	RC07	$1.5 K\Omega$, 5%, $1/4$ watt	11		81	33
R 66	RC07	5.6 K Ω , 5%, $1/4$ watt	11		22	< 10
R67	8447750-3	5 K Ω, 5%, 1/4 watt	3.2	1.3	4.2	< 10
R6 8	RC07	1 KΩ, 5%, 1/4 watt	1.3	1.3	1.7	< 10
R69	RC07	56 K Ω , 5%, 1/4 watt	6.3		0.71	< 10
R70	RC07	5.6 KΩ, 5%, 1/4 watt	3		1.6	< 10
R71	RC07	10 K Ω , 5%, 1/4 watt	12.5		15.6	< 10
R72	RC07	5.6 KΩ , 5%, 1/4 watt	11		21.6	< 10
R73	RC07	22 K Ω , 5%, 1/4 watt	11		5.5	< 10
R74	RC07	56 K Ω , 5%, 1/4 watt	0.63			< 10
R 75	RC07	1.5 KΩ, 5%, 1/4 watt	12.5		104	42
R77	RC07	20 K Ω , 5%, 1/4 watt	7.5		2.9	< 10
R79	RC07	33 K Ω , 5%, 1/4 watt	10		3.3	< 10
C1	8412778-96	100µ f, 15 volts	6			40
C2	8412778-312	33 µ f, 15 volts	9			60
C3	8412778-312	33 µ f, 15 volts	11			74
C4	СК06	0.01 µf, 200 volts	17			9
C5	СК06	0.01 µf, 200 volts	15			8
C6	8412778-57	10 µ f, 15 volts	11			74
C7	СК06	0.01 µf, 200 volts	10			5
C8	СК06	0.01 µf, 200 volts	13			7
C9	СК06	0.01 µf, 200 volts	6			1.5
C10	8412778-71	6.8 µ f, 15 volts	12			80
C11	CK06	0.01 µf, 200 volts	15			8
C12	8412778-58	68 µf, 15 volts	12			80
C13	8412778-36	0.1 µ f, 35 volts	17			50

TABLE F-7ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICSASSEMBLY VERTICAL SYNC GENERATOR, 1703809 (Continued)								
Part Description			Stress Analysis					
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress		
C14	CK06	0.01 μ f, 200 volts	13			7		
C15	CK06	0.01 μ f, 200 volts	18			9		
C16	8412778-71	6.8 µf, 15 volts	12			80		
C17	CK06	0.01 μ f, 200 volts	15			8		
C18	8412778-71	6.8 µf, 15 volts	12			80		
C19	CK06	0.01 μ f, 200 volts	18			9		
C20	CK06	0.01 μ f, 200 volts	12			6		
C21	8412778-57	10 μ f, 15 volts	12			80		
C22	СК06	0.01 μ f, 200 volts	17			9		
C23	СК06	0.01 μ f, 200 volts	21			10		
CR1	1N757	400 mw at 25° C ambient	9.1	3.6	33	< 10		
CR2	1N757	400 mw at 25° C ambient	9.1	3.6	33	< 10		
CR3	1N746	400 mw at 25° C ambient				< 10		
CR5	1N746	400 mw at 25° C ambient	+0.6, -3.0			< 10		
CR11	1N746	400 mw at 25° C ambient	±0.6			< 10		
CR13	1N746	400 mw at 25° C ambient	+0.6, -5			< 10		
CR14	1N916	75 ma max at 25° C ambient	+0.6, -0.6	0.38		< 10		
CR15	1N916	75 ma max at 25° C ambient	+0.6, -0.6	0.38		< 10		
CR16	1N916	75 ma max at 25° C ambient	+0.6, -4	0.38		< 10		
CR17	1N916	75 ma max at 25° C ambient	+0.6, -8	0.7		< 10		
CR18	1N916	75 ma max at 25° C ambient	+0.5, -10	0.38		< 10		
CR19	1N916	75 ma max at 25° C ambient	+0.5, -0.6	0.38		< 10		

•

.

F-14

TABLE F-7 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY VERTICAL SYNC GENERATOR, 1703809 (Continued)

•••

Part Description			Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
CR20	1N916	75 ma max at 25° C ambient	+0.4, -0.6	0.38		< 10	
CR21	1N753A	400 mw at 25° C ambient	+0.6, -5			< 10	
Q1	2N329A	250 mw at 25° C ambient	BE = 10, -5 CE = -12	3.7	44	18	
Q2	2N718A	400 mw at 25° C ambient	BE = 6.0, CE = 12	3.8	4 6	10.8	
Q3	2N722	400 mw at 25° C ambient	BE = +6, -0.6, CE = 12	154	180	45	
Q4	2N722	400 mw at 25° C ambient	BE = 2, -0.6 CE = 12	2.2	26	< 10	
Q5	2N718A	400 mw at 25° C ambient	BE = 0.6, -0.5 CE = 13	4.4	57	14.2	
Q6	2N722	400 mw at 25° C ambient	BE = 1.2, -0.6 CE = 9	8	72	18	
Q7	2N722	400 mw at 25° C ambient	BE = 2.5, -0.6 CE = -12.0	2	24	< 10	
Q8	2N718A	400 mw at 25° C ambient	BE = 0.8, -0.4 CE = 13	4.4	57	14.2	
ଦ୍ର୨	2N722	400 mw at 25° C ambient	BE = 0.4, -0.6 CE = 12	8	96	24	
Q10	2N722	400 mw at 25° C ambient	BE = 2, -0.6 CE = 11	2	22	< 10	
Q11	2N718A	400 mw at 25° C ambient	BE = 0.6, -3 CE = 13	4.4	57	14.2	
Q12	2N722	400 mw at 25° C ambient	BE = 0.4, -0.7 CE = 7.5	8	60	15	
Q13	2N722	400 mw at 25° C ambient	BE = 2.5, -0.6 CE = 12	2	24	< 10	
Q14	2N71 8	400 mw at 25° C ambient	BE = 0.8, -0.4 CE = 13	4.4	58	14.5	
Q15	2N722	400 mw at 25° C ambient	BE = 0.4, -0.7 CE = 12	8	96	24	
Q16	2N722	400 mw at 25° C ambient	BE = 2, -0.6 CE = 10	2	20	< 10	

	TABLE F-8 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY DEFLECTION AMPLIFIER, 8624826 (Continued)									
Part Description			Stress Analysis							
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress				
Q17	2N718A	400 mw at 25° C ambient	CE = 13	4.4	57	14.2				
Q18	2N722	400 mw at 25° C ambient	BE = 0.7, -0.5 CE - 10	8	80	20				
Q19	2N722	400 mw at 25° C ambient	BE = 0.4, -0.6 CE = 11	2	22	< 10				
Q20	2N718A	400 mw at 25° C ambient	BE = 0.5 $CE = 13$	4.4	57	14.				
Q21	2N722	400 mw at 25° C ambient	BE = 0.3, -0.6 CE = 7.5	8	60	15				

		TABLE F-8
ELECTRIC	AL STRESS	ANALYSIS OF THE CAMERA ELECTRONICS
	ASSEMBLY	DEFLECTION AMPLIFIER, 8624826

Part Description			Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
R1	RC07	10 KΩ, 5%, 1/4 watt	1.0	0.1	0.1	< 10	
R2	RN65	5110 Ω , 1%, 1/4 watt	2.5	0.49	1,22	< 10	
R3	RC07	10 K Ω , 5%, 1/4 watt	1.0	0.1	0.1	< 10	
R4	RN65	5110 Ω , 1% 1/4 watt	2.5	0.49	1,22	< 10	
R5	RN65	2.37 K Ω , 1%, 1/4 watt	4.0	1,69	6.8	< 10	
R6	RN65	3.37 K Ω , 1%, 1/4 watt	1.5	0.63	0.95	< 10	
R7	RN65	100 KΩ, 1%, 1/4 watt	2.5	0.025	0.063	< 10	
R8	RC07	100 K Ω , 5%, 1/4 watt	2.0	0.02	0.04	< 10	
R9	8977933-66	47.5 Ω , 1%, 1/8 watt	0.75	16.1	12.1	< 10	
R10	RC07	1.5 K Ω , 5%, 1/4 watt	5.0	3.33	16.7	< 10	
R11	8977939-239	3.01 K Ω , 1%,1/4 watt	2.5	0.83	2.1	< 10	
R12	8977933-66	47.5 Ω , 1%, 1/8 watt	0.1	2.1	0.21	< 10	
R13	8977939-209	1.47 K Ω , 1%, 1/4 w	6.2	4.2	26.1	10.4	
R15	RC07	2200Ω , 5%, 1/4 watt	5	2.27	11.4	< 10	
R16	8977939-147	332Ω , 1%, 1/4 watt	0.2	0.6	0.12	< 10	
R17	RC07	470 Ω , 5%, 1/4 watt					
R18	8 977939-2 58	4750Ω , $1\%~1/4$ watt	5	1.05	5.25	< 10	
R19	8977939-289	10 K Ω , 1%, 1/4 watt	30	3.0	90	36	
R20	RC07	$22~{ m K}\Omega$, 5%, $1/4~{ m watt}$	22	1.0	22	< 10	
R21	RC07	270Ω , 5%, $1/4$ watt	0.1	3.7	0.37	< 10	
R22	8977939-339	33.2 K Ω , 1%, 1/4 watt	7.5	0.226	1.7	< 10	
R23	RC20	27Ω , 5%, $1/2$ watt	0.5	19	9.5	< 10	
R24	RC20	27Ω , 5%, $1/2$ watt	0.1	3.7	0.37	< 10	
R25	RC07	4.7 KΩ, 5%, 1/4 watt	7	1.5	10.5	< 10	
R26	RN75	511 Ω , 1%, 1 watt	5.0	9.8	49	< 10	
R27	RC07	10 K Ω , 5%, 1/4 watt	6	0.6	3.6	< 10	
R28	RC65	5110 Ω , 1%, 1/4 watt	20	3.9	78	31	
R29	RC07	10 KΩ, 50%,1/4 watt	5.0 peak	0.5	2.5	< 10	
R30	RN65	5110 Ω , 1%, 1/4 watt	2.4	0.47	1.1	< 10	
R31	RN65	2.37 K Ω , 1%, 1/4 watt	2.5	1.1	2.6	< 10	

	TABLE F-8 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY DEFLECTION AMPLIFIER, 8624826 (Continued)									
Part Description			Stress Analysis							
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress				
R32	RN65	10 KΩ, 1%, 1/4 watt	5.0 peak-to-peak	0.5	2.5	<10				
R33	RN65	100 K Ω , 1%,1/4 watt	15	0.15	2.3	<10				
R34	RC07	100 K Ω , 5%, 1/4 watt	2	0.02	0.04	<10				
R35	8977933-66	47.5 Ω , 1%, 1/8 watt	0.12	2.8	0.31	<10				
R 36	RC07	1.5 K Ω , 5%, 1/4 watt	5.0	3,3	16.5	<10				
R37	8977939-239	3010Ω , 1%, 1/4 watt	3.0	1	3	<10				
R3 8	8977933-66	47.5Ω, 1%, 1/8 watt	0.05	1	0.05	<10				
R39	8977939-209	1.47 KΩ, 1%, 1/4 watt	6.0	4.1	24.6	<10				
$\mathbf{R40}$	RC07	100Ω , 5%, $1/4$ watt	0.05	0.5	0.025	<10				
R41	RC07	2200Ω , 5%, $1/4$ watt	5	2.1	10.5	<10				
R42	8977939-147	332Ω , 1%, $1/4$ watt	1.8	5.4	10	<10				
R43	RC07	100Ω , 5%, $1/4$ watt	1.2	12	14.4	<10				
$\mathbf{R44}$	8977939-258	4750Ω , 1%, 1/4 watt	6	1.3	7.8	<10				
$\mathbf{R45}$	8977939-289	10 KΩ, 1%, 1/4 watt	40	4	160	64				
R46	RC07	22 KΩ, 5%, 1/4 watt	22	1	22	<10				
R47	RC07	270Ω , 5%, $1/4$ watt	0.2	0.8	0.16	<10				
R4 8	8977939-339	33.2 K $_{\Omega}$, 1%, 1/4 watt	24	0.7	17	<10				
R49	RC20	27Ω , 5%, $1/2$ watt	0.2	8	1.6	<10				
R50	RC20	27Ω, 5%, 1/2 watt	0.25	9	2.3	<10				
R51	RC07	6.2 KΩ, 5%, 1/4 watt	22	3.6	78	31				
R52	RN75	316Ω , 1%, 1 watt	5	1.6	8	<10				
R53	RC07	10 K Ω , 5%, 1/4 watt								
R54	RC07	10 K Ω , 5%, 1/4 watt								
R56	RC07	560Ω , 5%, 1/4 watt								
C1	8447748-1	1µf, 10%, 100 volts	4			<10				
C2	8412778-80	0.15μ f, 10%, 35 volts				<10				
C3	CK05CW102K	1000 pf,10%, 200 volts				11				
C4	8924416-232	8300 pf, 2%, 300 volts				<10				
C5	CK05CW102K	1000 pf, 10%, 200 volts				<10				
C6	8914319-345	750 pf, 5%, 300 volts	24			<10				

. .

-

F-18

TABLE F-8 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY DEFLECTION AMPLIFIER, 8624826 (Continued)

•

.

Part Description			Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
C 7	8447748-1	1µf, 10%, 100 volts	4			< 10	
C8	CK05CW102K	1000 pf, 10%, 200 volts	3			< 10	
C9	CK05CW102K	1000 pf, 10%, 200 volts	24			12	
C10	CK05CW102K	1000 pf, 10%, 200 volts	22			11	
C11	CK06CW222K	2200 pf, 10%, 200 volts	1			< 10	
CR1	1 N91 6	250 mw at 25° C ambient	0.6	19.5	11.7	16	
CR2	1 N91 6	250 mw at 25° C ambient	0.6	19.5	11.7	16	
CR3	1N916	250 mw at 25° C ambient	0.6	2.3	1.4	< 10	
CR4	1N916	250 mw at 25° C ambient	0.6	2.3	1.4	< 10	
CR5	1N916	250 mw at 25° C ambient	0.6	3.0	1.8	< 10	
CR6	1N916	25 mw at 25° C ambient	0.6	3.0	1.8	< 10	
CR7	1N2032	750 mw at 25° C ambient	4	5	20	< 10	
CR8	1N916	250 mw at 25° C ambient	0.6	6	3.6	< 10	
CR9	1 N91 6	250 mw at 25° C ambient	0.6	6	3.6	< 10	
CR10	1N916	250 mw at 25° C ambient	0.6	2.1	1.3	< 10	
CR11	1N916	250 mw at 25° C ambient	0.6	2.1	1.3	< 10	
CR12	1 N91 6	250 mw at 25° C ambient	0.6	4	2.4	< 10	
CR13	1N916	250 mw at 25° C ambient	0.6	4	2.4	< 10	
CR14	1N2032	750 mw at 25° C ambient	4	5	20	< 10	
Q1	2N943	250 mw at 250° C ambient	CE = +2.5 BE = -7	2	5	< 10	

	TABLE F-8 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY DEFLECTION AMPLIFIER, 8624826 (Continued)								
Part Description				Stress Analysis					
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress			
Q2	2N943	250 mw at 250° C ambient	EC = 2.5 BE = -3.5	1	2.5	<10			
Q3	2N930	300 mw at 250° C ambient	EC = 5 $BE = 0.75$	< 1	< 5	<10			
Q4	2N722	400 mw at 25° C ambient	EC = 6 $EB = 0.5$	16	96	24			
Q5	2N930	300 mw at 25° C ambient	EC = 3.5 $EB = 0.6$	2.1	7.4	<10			
Q6	2N930	300 mw at 25° C ambient	EC = 4 $EB = 0.6$	0.6	2.4	<10			
Q7	2N722	400 mw at 25° C ambient	EC = 25 $EB = 0.5$	1.1	27.5	<10			
Q 8	2N718A	500 mw at 25° C ambient	CE = 30 $BE = 0.5$	3.7	111	24.			
Q9	2N718A	500 mw at 25° C ambient	CE = 30 $BE = 0.6$	2	60	12			
Q10	2N498	4 watts at 25° C case	CE = 30 $BE = 0$	19	570	14			
Q11	2N1244	1 watt at 25° C case	BE = 0.75 $CE = 30$	3.7	111	11			
Q12	2N943	250 mw at 25° C ambient	BE = 5 CE = 3 peak	1.1	3,3	< 10			
Q13	2N943	250 mw at 25° C ambient	BE = 1.5 $CE = 3$	0.5	1.5	<10			
Q14	2N930	300 mw at 25° C ambient	BE = 0.5 $CE = 5$	<0.1	< 0.5	< 10			
Q15	2N722	400 mw at 25° C ambient	BE = 0.6 $CE = 5$	2.8	14	< 10			
Q16	2N930	300 mw at 25° C ambient	BE = 0.6 $CE = 3.5$	1	3.5	< 10			
Q17	2N930	300 mw at 25° C ambient	BE = 0.5 $CE = 4$	5.4	21.6	<10			
Q18	2N722	400 mw at 25° C ambient	BE = 0.5 $CE = 25$			< 10			
Q19	2N718A	500 mw at 25° C ambient	BE = 0.9 peak $CE = 35$	0.8	28	< 10			

-

Part Description			Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
Q20	2N718A	500 mw at 25° C ambient	BE = 0.6 $CE = 35$	4	140	28	
Q21	2N498	4 watts at 25° C case	BE = 0.6 $CE = 35$	8	280	<10	
Q22	2N1244	1 watt at 25° C case	BE = 1 CE = 40	9	360	36	

TABLE F-8 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY DEFLECTION AMPLIFIER, 8624826 (Continued)

• •

TABLE F-9 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY DEFLECTION PROGRAMMER, 1753014										
	Part Descri	ption		Stress Analysis						
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress				
	RC07	4700 Ω, 1/4 w	8	1.7	14	<10				
R2*	8977939-193	1000 Ω, 1/4 w	13 max	13 max	169 max	34				
R3	RC07	2200 Ω, 1/4 w	6.5 peak	3 peak	19	<10				
R4*	8977939-193	1000Ω, 1/4 w	12	12 max	144 max	29				
R5	8977933-318	20 KΩ, 1/8 w	11	0.55	6	<10				
R6	8977933-318	20 K Ω, 1/8 w	11	0.55	6	<10				
R7	RC07	33 KΩ, 1/4 w	17	0.52	9	<10				
R8	8977933-289	10 KΩ, 1/8 w	12	1.2	14.4	12				
R9	RC07	4700Ω, 1/4 w	4.5 peak	0.94	4	<10				
R10	RC07	120 K Ω, 1/4 w	12	0.1	1.2	< 0				
R11	RC07	10 KΩ, 1/4 w	5	0.5	2.5	<10				
R12	RC07	180 KΩ, 1/4 w	20.5	0.11	2.3	<10				
R13	RC07	10 KΩ, 1/4 w	5	0.5	2.5	<10				
R14	8447750-5	25 KΩ, 1 w	20	0.8	16	<10				
R 16	8447750-5	25 KΩ, 1 w	20	0.8	16	<10				
R17	RC07	180 KΩ, 1/4 w	20	0.11	2.2	<10				
R19	8977933-269	6.19 KΩ, 1/8 w	6	1	6	<10				
R20	RC07	120 KΩ, 1/4 w	11	<0.1	10	<10				
R21**	8977949-193	1000Ω, 1/4 w	12	12	21	<10				
R22	8977933-234	2.67 KΩ, 1/8 w	6	2.18	13.5	1				
R23	8977933-234	2.67 KΩ, 1/8 w	5	1.9	9.5	<10				
R24	8977933-269	6.19 KΩ, 1/8 w	1	0.13	0.13	<1				
R25	8977933-314	18.2 KΩ, 1/8 w	5	0.27	1.4	<10				
R26	RC07	75 KΩ, 1/4 w	7	<0.1	<1	<				
R27	8977939-193	1000Ω, 1/4 w	6	6	36	1				
R28	8977933-330	26.7 KΩ, 1/8 w	11	0.41	4.5	<10				
R29	8977933-234	2.67Ω, 1/8 w	2.1	0.79	1.7	1				
R30	8447750-50	25 KΩ, 1 w	20	0.8	16	<1				
R31	8447750-50	25 KΩ, 1 w	20	0.8	16	<10				
R33*	8977939-193	1000Ω, 1/4 w	12	12 max	144 max	2				

• •

	ASSEMBLY	DEFLECTION PROG	RAMMER, 1753014	(Continued)			
,	Part Descri	ption	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
R34	RC07	2200Ω, 1/4 w	6	2.8	17	<10	
R35*	8977939-193	1000 Ω , 1/4 w	12	12 max	144 max	29	
R36	8977933-318	20 KΩ, 1/8 w	11	0.55	6	<10	
R37	8977933-318	20 KΩ, 1/8 w	11	0.55	6	<10	
R38	RC07	33 KΩ, 1/4 w	14	0.5	6	<10	
R39	8977933-289	10 KΩ, 1/8 w	13	1.3	17	14	
R40	RC07	4.7 KΩ, 1/4 w	4	0.8	3.5	10	
R41	RC07	120 K Q , 1/4 w	12	0.1	1.2	< 0	
R42	RC07	10 KΩ, 1/4 w	5	0,5	2.5	<10	
R43	RC07	180 KΩ, 1/4 w	20	0.1	2.2	< 0	
R44	RC07	10 KΩ, 1/4 w	6	0.6	3.6	10	
R45	8447750	25 KΩ, 1 w	20	0.8	16	<10	
R47	8 447750- 5	25 K Ω , 1 w	20	0.8	16	<10	
R48	RC07	180 KΩ, 1/4 w	20	0.11	2.2	< 0	
R50	8977933-269	6.19 KΩ, 1/8 w	5	0.8	4.1	<10	
R51	RC07	75 KΩ, 1/4 w	6	0.08	<1	< 0	
R52	8977939-193	1000Ω, 1/4 w	6	6	36	14	
R53	8977933-234	2.67 KO, 1/8 w	2.5	0.94	2.4	< 0	
R54	8977933-330	26.7 KΩ, 1/8 w	12	0.45	5.4	<10	
R55	8447750-5	25 K Q , 1 w	20	0.8	16	<10	
R57	8447750-5	25 KΩ, 1 w	20	0.8	16	<10	
R58	RC07	2.7 KΩ, 1/4 w	2.6	0.97	2.5	<10	
R59	RC07	2.7 KΩ, 1/4 w	26	0.97	25	10	
R60	RC07	6.8 KΩ, 1/4 w	10 peak-to-peak	1.5 peak	15 peak	<10	
R61	RC07	6.8 KΩ, 1/4 w	10 peak-to-peak	1.5 peak	15 peak	<10	
R62	RC07	6.8 KΩ, 1/4 w	10 peak-to-peak	1.5 peak	15 peak	<10	
R63	RC07	6.8 KΩ, 1/4 w	5.3			<10	
R68	8977933-289	10 KΩ, 1/8 w	Test Point			<10	
R75	8977933-318	20 KG, 1/8 w	10 peak-to-peak			<10	
R76**	8977933-269	6.19 KΩ, 1/8 w	13 peak-to-peak			<10	

TABLE F-9ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICSASSEMBLY DEFLECTION PROGRAMMER, 1753014 (Continued)

TABLE F-9 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY DEFLECTION PROGRAMMER, 1753014 (Continued)										
	Part Description		Stress Analysis							
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress				
R77	RC07	470 KΩ, 1/4 w	7			<10				
R78	8977933-281	8.25 KΩ, 1/8 w	12 peak-to-peak			<10				
R79	8977933-330	26.7 K Q , 1/8 w	20			12				
R80	RC07	1.1 KΩ, 1/4 w	5.5			11				
C1	8987915-6	120 pf, 200 volts	10			<10				
C2	8987915-6	120 pf, 220 volts	12			<10				
C3	CK05CW102K	0.001 µf, 200 volts	14			<10				
C4	8987915-6	120 pf, 200 volts	4			<10				
C5	8987915-6	120 pf, 200 volts	11			<10				
C6	8987915-6	120 pf, 200 volts	11			<10				
C8	8987915-6	120 pf, 200 volts	10			<10				
C9	8987915-6	120 pf, 200 volts	13			<10				
C10	8924416-131	6200 pf, 300 volts	8			<10				
C11	CK05CW102K	0.001 µf, 200 volts				<10				
CR1	1N2039	750 mw at 25 ⁰ C ambient	18			<10				
CR2	1N916	75 ma max at 25 ⁰ C	-5.5			<10				
CR3	1N916	75 ma max at 25 ⁰ C	+0.4			<10				
CR4	1N916	75 ma max at 25 ⁰ C	-6			<10				
CR5	1N916	75 ma max at 25 ⁰ C	0.5			<10				
CR7	1N916	75 ma max at 25 ⁰ C	-5			<10				
CR8	1N916	75 ma max at 25 ⁰ C	-4.5			<10				
CR9	1N916	75 ma max at 25 ⁰ C	-17			<10				
CR10	1N916	75 ma max at 25 ⁰ C	-5			<10				
CR12	1N916	75 ma max at 25 ⁰ C	-9			<10				
CR13	1N916	75 ma max at 25 ⁰ C	-9			<10				
CR14	1N916	75 ma max at 25 ⁰ C	-6			<10				
CR15	1N916	75 ma max at 25 ⁰ C	-9			<10				
CR16	1N916	75 ma max at 25 ⁰ C	-9			<10				
CR17	1N916	75 ma max at 25 ⁰ C	-7			<10				

٠ ٠

TABLE F-9 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY DEFLECTION PROGRAMMER, 1753014 (Continued)

/ ·

- -

	Part Desc	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
CR18	1N916	75 ma max at 25 ⁰ C	-6			<10
CR19	1N916	75 ma max at 25 ⁰ C	0.5			<10
CR20	1N916	75 ma max at 25 ⁰ C	-6			<10
CR21	1N916	75 ma max at 25 ⁰ C	0.5			<10
CR23	1N916	75 ma max at 25 ⁰ C	-9			<10
CR25	1N747	400 ma at 25 ⁰ C ambient	2			<10
CR26	1N916	75 ma max at 25 ⁰ C	0.8			<10
CR27	1N916	75 ma max at 25 ⁰ C	0.8			<10
Q1	2N1132	600 mw at 25 ⁰ C ambient	EB=0.8, CE=4			<10
\mathbf{Q}^2	2 N9 16	360 mw at 25 ⁰ C ambient	EB=-0.8, 0.4 CE=12, 0.5			<10
Q3	2N916	360 mw at 25 ⁰ C ambient	EB=-0.8, 1.2 CE=12, 0.3			<10
Q4	2N869	360 mw at 25 ⁰ C ambient	EB=0.5, 6 CE=6, 11			<10
Q5	2N943	250 mw at 25 ⁰ C ambient	EB=0.5, 10 CE=0, 11			<10
Q6	2N943	250 mw at 25 ⁰ C ambient	EB=0.5, 10 CE=12, 0.6			<10
Q7	2N916	360 mw at 25 ⁰ C ambient	EB=0.5, 5 CE=3, 14			<10
ୟଃ	2N916	360 mw at 25 ⁰ C ambient	EB=-5 CE=-14.5			<10
ୟ୨	2N916	360 mw at 25 ⁰ C ambient	EB=-5 CE=-12			<10
Q10	2N916	360 mw at 25 ⁰ C ambient	EB=-5.5 CE=-5.5			<10
Q11	2N916	360 mw at 25 ⁰ C ambient	EB=-0.8 CE=-11.5			<10
Q12	2N916	360 mw at 25 ⁰ C ambient	EB=0.8 to -1.1 CE=1, 12			<10
Q13	2N86 9	360 mw at 25 ⁰ C ambient	EB=7 CE=5.5, 6.5			<10

	Part Des	cription		Stress Analysis			
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
Q14	2N943	250 mw at 25 ⁰ C ambient	EB=0.4 CE=0.4		<u></u>	<10	
Q15	2N943	250 mw at 25 ⁰ C ambient	EB=0.4 CE=1.1			<10	
Q16	2N916	360 mw at 25 ⁰ C ambient	EB=5 CE=1.5, 2.7			<10	
Q17	2N916	360 mw at 25 ⁰ C ambient	EB=5.5 CE=2.2, 2.7			<10	
Q18	2N 91 6	360 mw at 25 ⁰ C ambient	EB=0.7, -0.6 CE=6.3, 5.5			<10	
Q19	2N916	360 mw at 25 ⁰ C ambient	EB=+6.0, -0.5 CE=-10			<10	

	ASSEMBLY G1 REGULATOR, 1753177B								
	Part Descr	iption		Stress Analysis					
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress			
R1	8977933-384	100 K Ω , 1/8 w	Test Point			<10			
R2*	8977933-261	5.11Ω, 1/8 w	9 peak-to-peak			13			
R4	RC07	120 KΩ, 1/4 ẃ	9 peak		- - -	<10			
R5	8977933-385	102 KΩ, 1/8 w	22 peak		- - -	<10			
R6	8977933-353	46.4 KΩ, 1/8 w	14 peak			<10			
R 7	RC07	82 K Ω , 1/4 w	5.5 peak			<10			
R8	8977933-293	11 K Q , 1/8 w	13 peak			12			
R9	8977933 -9 7	100 Ω , 1/8 w	1.5 peak			18 peak			
R10	847750-4	10 K Ω , 1 w	10 peak			<10			
R11	847750-5	25 K Ω , 1 w	4 peak			<10			
R12	8977933-243	3.32 K Ω , 1/8 w	11.5 peak			32 peak			
R13**	8977933-243	3.32 KΩ, 1/8 w	7 VDC avg. plus 7 p c ak			18			
R14	RC07	470 KΩ, 1/4 w	1.0			<10			
R15	RC07	1 Meg Ω , 1/4 w	1.0			<10			
R16	8977933-369	68.1 KΩ, 1/8 w	30			11			
R17	RC07	100 K Ω, 1/4 w	2.5			25			
R18	8977933-369	68.1 K Ω , 1/8 w	25			<10			
R20	8977933-326	24.3 KΩ, 1/8 w	3.5			<10			
R21	8977933-371	73.2 KΩ, 1/8 w	28			<10			
R 22	8977933-328	24.3 KQ, 1/8 w	7			<10			
R23	8977933-289	10 KΩ, 1/8 w	14			<10			
R24	8447750-3	5 K Q , 1 w	7			<10			
R25	8977933-269	6.19 K Q , 1/8 w	4.5			<10			
R26**	8977933-281	8.25 KQ, 1/8 w	15 to 25			30			
R27	8977933-289	10 KΩ, 1/8 w	4			<10			
R28	8977933-377	84.5 KΩ, 1/8 w	7			<10			
R29**	8977933-409	182 K Ω , 1/8 w	20 to 26		1	<10			
R30**	8977933-365	61.9 KΩ, 1/8 w	6 to 18			<10			

TABLE F-10ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICSASSEMBLY G1 REGULATOR, 1753177B

۰.

.

	Part Descri	ption	Stress Analysis			
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
R31**	8977933-325	23.7 KΩ, 1/8 w	6 to 26			11
R32	847750-5	25 K Ω, 1 w	10			<10
R33	8977933-329	26.1 KΩ, 1/8 w	10			<10
R34**	8977933-384	100 K Ω, 1/8 w	70 to 100			40 max
R35**	RC07	56 KΩ, 1/4 w	50			<10
R36	8977933-384	100 KΩ, 1/8 w	Test Point			<10
R37	RC07	10 KΩ, 1/4 w	2.5 peak-to-peak			<10
R38	RC07	91 KΩ, 1/4 w	20 peak			<10
R39	RC07	3.3 Meg Ω, 1/4 w	19			<1
R4 0	RC07	47 KΩ, 1/4 w	3.0			<10
R41	RC07	2.4 Meg Ω , 1/2 w				
R 42	RC07	2.4 Meg Ω , 1/2 w				
R43	RC07	2.4 Meg Ω , 1/2 w		-		
R44	RC07	2.4 Meg Ω, 1/2 w				
R45	RC20	3.3 Meg Ω, 1/2 w				
R 46	RC07	18 KΩ, 1/4 w	3.5			<10
R47	RC07	10 K Ω , 1/4 w	2.0			<10
R48	RC07	10 KΩ, 1/4 w	2.0			<10
R49	RC07	10 K Ω , 1/4 w	2 peak			<1
R50	RC07	91 KΩ, 1/4 w	20 peak			<1
R51	RC07	3.3 Meg Ω , 1/4 w	10			<10
R52	RC07	47 KΩ, 1/4 w	3.0 peak			<1
R53	RC07	1 KΩ, 1/4 w	-	-	-	<1
R54	RC07	100 KΩ, 1/4 w	Test Point			<1
R55	RC07	10 K Ω , 1/4 w	1.4			<1
R56	RW59	1 Ω , 3 w	0.1			<1
R57	RC07	39 KΩ, 1/4 w	25			<1
R 66	RC07	10 KΩ, 1/4 w	2.5 peak-to-peak			<1
R 67	RC07	270 KΩ, 1/4 w	5			<10

F-28

Γ

· · · · · · · · · · · · · · · · · · ·	Part Desc	ription	Stress Analysis				
Designation	Туре	Rating	Voltage {volts}	Current (milliomperes)	Average Power (milliwatts)	Percen Rated Stress	
R68	RC07	18 KΩ, 1/4 w	45			45	
R69**	RC07	1000 Ω , 1/4 w	9 peak			15	
R70	RC07	330 KΩ, 1/4 w	3 peak			11 peak	
R71	RC07	330 K Q , 1/4 w	9 peak			<10	
R72	RC07	75 KΩ, 1/4 w	3.5 peak			<10	
R73	RC07	24 K Ω , 1/4 w	1.6 peak			<10	
R74	RC07	20 K Ω , 1/4 w	1.0			<10	
C2	CP09A1KE 154K	0.15 µf, 400 volts	280			70	
C3	8412778-41	4.7 μ f, 35 volts	-	-	-	<10	
C4	8412778-76	22 µf, 15 volts	5			33	
C5	8412778-76	22 μ f, 15 volts	3.5			23	
C6	CK06CW103K	0.01 μ f, 200 volts	7 peak			<10	
C7	CK06CW103K	0.01 μ f, 200 volts	7 peak			<10	
C8	8412778-41	4.7 μ f, 35 volts	7 peak			20 peak	
C9	8412778-50	100 μ f, 20 volts	0.8			<10	
C10	8412778-53	47 μ f, 35 volts	14			40	
C11	8412778-44	2.2 μ f, 35 volts	25			71	
C12	8914319-316	47 pf, 500 volts	4			<10	
C13	8914319-316	47 pf, 500 volts	19			<10	
C14	CK06CW103K	$0.01 \mu f$, 200 volts	45			23	
C15	8412778-10	15 μ f, 20 volts	2			10	
C16	8412778-10	15 μ f, 20 volts	2.6			13	
C19	8412778-19	47 μ f, 6 volts	1.1			18	
C20	8412778-61	22 μ f, 35 volts	12			34	
C21	8412778-61	22 μ f, 35 volts	10			29	
CR1	1N457	200 mw at 25 ⁰ C ambient	-1.4 peak	-	-	<10	
CR2	1N457	200 mw at 25º C ambient	2 peak	-	-	<10	

Part Description			Stress Analysis			
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
CR3	1N457	200 mw at 25 ⁰ C ambient	0.6	0.5	-	<10
CR4	1N457	200 mw at 25 ⁰ C ambient	0.6 peak	0.5	-	<10
CR5	1N457	200 mw at 25 ⁰ C ambient	0.6 peak	0.5	-	<10
CR6	1N746A	400 mw at 25 ⁰ C ambient	-1.6	-	-	<10
CR7	1N962 B	500 mw at 25 ⁰ C case	10	1	10	<10
CR8	1N457	200 mw at 25 ⁰ C ambient	2.5	-	-	<1
CR9	1N457	200 mw at 25 ⁰ C ambient	3.0	-	-	<1
CR10	1N457	200 mw at 25 ⁰ C ambient	2.0	-	-	<1
CR11	1N457	200 mw at 25 ⁰ C ambient	+0.7	1	1	<1
CR16	1N645	400 ma max at 25 ⁰ C ambient	-70	-	_	<1
CR17	IN3041B	1 w at 25 ⁰ C case	70	1	70	<1
CR18	1N916	205 mw at 25 ⁰ C case	+0.7 -12	9	6.3	<1
CR19	1N916	250 mw at 25 ⁰ C case	+0.4	-	-	<1
CR20**	1N963	500 mw at 25 ⁰ C case	12	9	<54	1
Q1	2N930	300 mw at 25 ⁰ C ambient	BE=0.4 CE=3 to 6	<1	< 3	<1
$\mathbf{Q}2$	2N718A	500 mw at 25 ⁰ C case	BE=7.5 CE=12	<1	<12	<1
Q3	2N722	270 mw at 25 ⁰ C ambient	BE=2 peak CE=3 peak	<4	12	<1
Q4	2N722	270 mw at 25 ⁰ C ambient	BE=0.5 CE=25	-	-	<
Q 5	2N930	300 mw at 25 ⁰ C ambient	BE=0.25 CE=18	<1	<18	<

F-30

. ·

.

	Part Des	scription	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
Q6	2N718A	500 mw at 25 ⁰ C case	BE=0.4 CE=1.2	1	1.5	<10	
Q7	2 N930	300 mw at 25 ⁰ C ambient	BE=0.5 CE=16	0.3	4.8	<10	
Q 8	2N1656	250 mw at 25 ⁰ C ambient	BE=0.5 CE=20	1	20 peak	<10	
Q9	2N722	270 mw at 25 ⁰ C ambient	BE=0.5 CE=18	-	-	<10	
Q10	2N1656	250 mw at 25 ⁰ C ambient	BE=6 CE=50	0.25	13	<10	
Q11	2N1656	250 mw at 25 ⁰ C ambient	BE=0.7 CE=25 to 75	1 peak	25 peak	<10	
Q 12	2N930	300 mw at 25 ⁰ C ambient	BE=0.5 CE=10	-	-	<10	
Q13	2N 722	270 mw at 25 ⁰ C ambient	BE=0.5 CE=8	0.2	<2	<10	
Q14	2N930	300 mw at 25 ⁰ C ambient	BE=0.5 CE=9	-	-	<10	
Q15	2N722	270 mw at 25 ⁰ C ambient	BE=0.5 CE=1.5	<1	1.5	<10	
Q 18	2N930	300 mw at 25 ⁰ C ambient	BE=0.5 CE=25	-	-	<10	
*Square wa	, ave						

TABLE F-10 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY G1 REGULATOR, 1753177B (Continued)

- -

	Part Desc	ription	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
	RC07	47 KΩ, 5%, 1/4 w	2.5	<0.1	<1	<10	
R2	RC07	47 KΩ, 5%, 1/4 w	2.5	0.06	<1	<10	
R3	RC07	10 KΩ, 5%, 1/4 w	18	1.8	32.5	13	
R4	RC07	5100 Ω , 5%, 1/4 w	4.2	0.8	3.4	<10	
R5	RC07	4.7 KΩ, 5%, 1/4 w	1.9	0.4	0.8	<10	
R6	RC07	47 K Ω , 5%, 1/4 w	0.6	<0.1	<1	<10	
R7	RC07	68 Ω , 5%, 1/4 w	0.05	0.7	<1	<10	
R8	RC07	1500Ω , 5%, $1/4$ w	0.25	0.2	<1	<10	
R9	8447750-3	5 K Ω	0.75	0.2	<1	<10	
R10	RC07	6200 Ω , 5%, 1/4 w	10	1.6	16	<10	
R11	RC 07	39Ω , 10%, 1/4 w	0.025	0.6	<1	<10	
R12	RC 07	1000 Ω , 5%, 1/4 w	7	7	49	20	
R13	RC07	3600Ω , 5%, 1/4 w	3	0.8	2.5	<10	
R14	RC 07	1500 Ω , 5%, 1/4 w	11.0	7.5	80	32	
R15	RC 07	47 K, ±5%, 1/4 w	0.6	<0.1	<1	<10	
R16	RC 07	47 K, ±5%, 1/4 w	1	<0.1	<1	<10	
R17	RC07	220Ω , $\pm 5\%$, $1/4$ w	0.25	1.1	<1	<10	
R 18	RC 07	6200Ω , ±5%, 1/4 w	11	1.8	19.5	<10	
R19	RC07	4700 Ω , ±5%, 1/4 w	6	1,3	8	<10	
R20	RC07	220Ω , $\pm 5\%$, $1/4$ w	0.3	1.4	<1	<10	
R21	RC 07	430Ω , ±5%, 1/4 w	5	11.6	58	23	
R22	RC 07	47Ω , $\pm 5\%$, $1/4$ w	0.65	13.8	9	<10	
R23	RC 07	10 K Ω , ±5%, 1/4 w	18	1.8	33	13	
R24	RC 07	56 K Ω , ±5%, 1/4 w	-	-	-	<10	
R25	RC 07	100 KΩ, ±5%, 1/4 w	5	<0.1	<1	<10	
R26	RC 07	100 K Ω , ±5%, 1/4 w	5	<0.1	<1	<10	
R27	RC 07	100 KΩ, ±5%, 1/4 w	5	<0.1	<1	<10	
R28	RC 07	10Ω , ±5%, 1/4 w	0.1	10	<1	<10	
R29	RC 07	27 KΩ, ±5%, 1/4 w	6	0.22	1.3	<10	

TABLE F-11 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY VIDEO AMPLIFIER, 1754284, 1753157, OR 1753189 (Continued)

Part Description		Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
R30	RC07	4.7 KΩ, ±5%, 1/4 w	6	1.3	7.8	<10
R31	RC 07	33 K Ω , ±5%, 1/4 w	5	0. 15	<1	<10
R32	RC07	5600 Ω , ±5%, 1/4 w	2 peak	0.36	<1	<10
R33	RC07	2200 Ω , ±5%, 1/4 w	1.5	0.68	<1	<10
R34	RC07	8200 Ω , ±5%, 1/4 w	3 peak	0.37	<1	<10
R 35	RC07	10 KΩ, ±5%, 1/4 w	10	1	10	<10
R36	RC07	180Ω , ±5%, 1/4 w	0.75	4.2	3.1	<10
R37	RC07	10Ω , ±5%, $1/4$ w	0.01	1	<1	<10
R38	RC07	10 KΩ, ±5%, 1/4 w	10 peak	1	10	10
R39	RC07	470Ω , ±5%, 1/4 w	2.5	5.3	13.4	<10
R40	RC07	4.7 KΩ, ±5%, 1/4 w	12	2.6	31	12
R41	RC07	10 KΩ, ±5%, 1/4 w	12	1.2	14.4	<10
R42	RC07	3.3 KΩ, ±5%, 1/4 w	10	3	3	<10
R43	RC07	10 KΩ, ±5%, 1/4 w	5	0.5	2.5	<10
R44	RC07	1.2 KΩ, ±5%, 1/4 w	7.5	6.3	47	19
R45	844750-3	5 K Ω , 0.8 w at 70° C	3, 5	0.7	2.5	<10
R46	RC07	11 K Q , ±5%, 1/4 w	5.5	5	27.5	11
R47*	RC07	6.2 K Ω , ±5%, 1/4 w	10	1.6	16	<10
R48	RC07	10 KΩ, ±5%, 1/4 w	10	1	10	<10
R49	RC07	10 K Ω , ±5%, 1/4 w	0.65	<0.1	<1	<10
R50*	RC07	20 KΩ, ±5%, 1/4 w	5	0.25	1.3	<10
R51	RC07	3.3 K Q , ±5%, 1/4 w	3	1	3	<10
R52	RC07	27 K Ω , ±5%, 1/4 w	10	0.37	3.7	<10
R53*	RC07	47 K Q , ±5%, 1/4 w	7.0	0.15	1.1	<10
R54	RC07	270 KΩ, ±5%, 1/4 w	0.75	<0.1	<1	<10
R55*	RC07	6.2 K Ω , ±5%, 1/4 w	6	1	6	<10
R56	RC 07	6.2 K Ω , ±5%, 1/4 w	6.5	1,1	7.1	<10
R57	RC 07	8.2 K Ω , ±5%, 1/4 w	20	2.4	48	20
R58	RC07	3900Ω, ±5%, 1/4 w	0. 7	0.2	<1	<10

	Part Descr	iption	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
R59	RC 07	560 Ω , ±5%, 1/4 w	6	10.7	64	26	
R60	RC 07	15 KΩ, ±5%, 1/4 w	5	0.33	1.6	<10	
R61	RC 07	10 KΩ, ±5%, 1/4 w	2	0.2	<1	<10	
R62	RC07	$1 \text{ K}\Omega, \pm 5\%, 1/4 \text{ w}$	0	0	0	<10	
R63	RC 07	100 K Ω , ±5%, 1/4 w	7.5	< 0.1	<1	<10	
R64	RC 07	18 K Ω , ±5%, 1/4 w	2 8	1.6	45	18	
R65	RC 07	100 K Ω , ±5%, 1/4 w	0	0	0	<10	
R67	RC 07	6.2 KΩ, ±5%, 1/4 w	10	1.6	16	<10	
R68	RC 07	22 KΩ, ±5%, 1/4 w	12	0.55	6.6	<10	
C1	8412778-95	6.8 μ f, ±20%, 35 volts	7.5			21	
C 2	8412778-95	6.8 μ f, ±20%, 35 volts	14			40	
C 3	8412778-70	$1 \ \mu f$, ±20%, 35 volts	6.8			19	
C4	CK06	3300 pf, 200 volts	2			<10	
C 5	8414319-340	470 pf, 300 volts	11.5			<10	
C6	8412778-95	6.8 μ f, ±20%, 35 volts	11,5			33	
C7	8412778-95	6.8 μ f, ±20%, 35 volts	7.5			21	
C 8	8412778-95	6.8 μ f, ±20%, 35 volts	12			34	
C9	8412778-7	2.2 μ f, ±20%, 35 volts	11			31	
C10	8414319-340	470 pf, 300 volts	11			<10	
C11	8412778	4.7 μ f, ±20%, 35 volts	11			31	
C 12	8412778-95	6.8 μ f, ±20%, 35 volts	9.0			26	
C 13	8412778-95	6.8 μ f, ±20%, 35 volts	12			34	
C 14	8914 319-3 16	47 pf, ±5%, 400 volts	20			<10	
C 15	C P09A 1KB 104K3	0.1 μ f, ±10%, 100 volts	20			20	
C 16	8914319-341	510 pf, ±5%, 300 volts	10			<10	
C 17	8412778-30	40 µf, ±20%, 10 volts	6			60	
C18	8987915-25	0.0047 μf, ±10%, 200 volts	2.0			<10	
C20	8412778-30	4.0 μ f, ±20%, 10 volts	6			60	

TABLE F-11 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY VIDEO AMPLIFIER, 1754284, 1753157, OR 1753189 (Continued)

F-34

TABLE F-11 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY VIDEO AMPLIFIER, 1754284, 1753157, OR 1753189 (Continued)

) .

Part Description			Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
C 23	8914319-316	47 pf, ±5%, 500 volts	2.5			<10	
C24	8412778-7	2.2 µf, ±20%, 20 volts	6			30	
C 25	8412778-95	6.8 μf, ±20%, 35 volts	AC 5 peak-to-peak, 11 Total			31	
C 26	8412778-58	68 μf, ±20%, 15 volts	AC = 1.2 on 2 DC			20	
CR1	1N755AZ	400 mw at 25° C ambient	7.5	1	7.5	<10	
CR2	1N755AZ	400 mw at 25° C ambient	7.5	15.2	114	2 8.5	
CR3	1N963B	400 mw at 25° C ambient	12	15. 2	182	45,5	
CR4	1N 75 7A	400 mw at 25° C ambient	9	11.6	105	26	
CR5	1N963B	400 mw at 25° C ambient	11	11.6	128	32	
CR7	1N916	75 ma at 25° C ambient	+0.7	3, 5	<2.5	<10	
CR8	1N916	75 ma at 25° C ambient	+0.7, -10	3, 5	2.5	<10	
CR9	1N457	75 ma at 25° C ambient	+0.7	1.6	1.1	<10	
CR10	1N457	75 ma at 25° C ambient	+0.6, -5	-	-	<10	
CR11	1N459	100 ma at 25° C ambient	-7.5	-	-	<10	
CR12	1N457	75 ma at 25° C ambient	-10	-	-	<10	
CR13	1N758A	400 mw at 25° C ambient	-10	2.4	24	<10	
CR14	1N459	100 ma at 25° C ambient	+0.7 -7	1	<1	<10	
CR15	1N457	75 ma at 25°C ambient	+0.7 -7	1.1	1	<10	
CR16	1N968B	400 mw at 25° C ambient	19	10.7 peak	202 peak	51 peak	
CR19*	1N916	75 ma at 25° C ambient and 250 mw max dissipation	+0.7 -6	3	2.1	<10	

	Part Des	cription	Stress Analysis			
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
CR20*	1N916	75 ma at 25° C ambient and 250 mw max dissipation	+0.7 -7.5	3	2,1	<10
CR18**	1N746A	400 mw at 25° C ambient	3, 3	2.4	8	<10
CR18*	1N 74 7B	400 mw at 25° C ambient	3.6	2.4	8.7	<10
Q1	2N930	300 mw at 25° C ambient	BE = 0.6 $CE = 4$	0.4	1.6	<10
Q2	2N930	300 mw at 25° C ambient	BE = 0.6 CE = 7.5	0, 8	6,0	<10
ୟ 3	2N930	300 mw at 25° C ambient	BE = 0.6 $CE = 7.5$	0.8	6.0	<10
Q4	2N930	300 mw at 25° C ambient	BE = 0.6 $CE = 10$	1.1	11	<10
Q5	2N930	300 mw at 25° C ambient	BE = 0.65 CE = 10	1.4	14	<10
Q6	2N930	300 mw at 25° C ambient	BE = 0.7 to -4 CE = 6	1.8	11	<10
Q7	2N943	250 mw at 25° C ambient	BE = 0.6 to -6.5 CE = -12.5	1.3	8	<10
Q 8	2N916	1.2 w at 25° C case	BE = 1.25+ CE = 12.5	5,3	66	<10
Q9	2N916	1.2 w at 25° C case	BE = -2.7 CE = +12	4.2	51	<10
Q10	2N943	250 mw at 25° C ambient	BE = -9 peak CE = +7, -10	0.5	5	<10
Q11	2N 72 2	220 mw at 25° C ambient	BE = +0.6 $CE = +7$	6.3	44	20
Q12	2N930	300 mw at 25° C ambient	BE = -5 peak $CE = +6.3 peak$	1	6,3	<10
Q13	2N916	1.2 w at 25° C case	BE = +0.75 CE = +0.75	1	0,75	<10
Q14*	2N916	$1.2 \text{ w at } 25^{\circ} \text{ C case}$	BE = -6 $CE = +6$	1	6	<10

•

F-36

	Part Des	cription	Stress Analysis				
esignation .	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
Q15	2N 722	220 mw at 25° C ambient	BE = +0.5, -3 $CE = +12.5$	1.1	13.7	<10	
Q16	2N930	300 mw at 25° C ambient	CE = 15 $BE = +0.5$	0.2	3	<10	
Q17	2N916	1.2 w at 25° C case	CE = +28 BE = +0.65	1.6	45	<10	
Q18	2N943	250 mw at 25° C ambient	BE = -4 $CE = +0.15$	-	-	<10	

TABLE F-11 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY VIDEO AMPLIFIER, 1754284, 1753157, OR 1753189 (Continued)

• •

Part Description			TAGE REGULATOR, 1753007 Stress Analysis				
Designation	Type	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
R1	RB17	20 Ω , 1/2 w	1.8	90	162	32	
R2	8977933-218	$1820\Omega, 1/8 w$	3	1.7	5	<10	
R3	8977933-261	5.11 KΩ, 1/8 w	16	3.1	50	40	
R4	8977933-289	10 K Ω , 1/8 w	20	2	40	32	
R5	8977933-261	5.11 K Ω , 1/8 w	3.5	<1	2.4	<10	
R6	8977933-128	$200\Omega, 1/8 w$	1.5	< 8	<12	<10	
R8	8977933-184	806 Ω , 1/8 w	6	7.5	44.5	36	
R10	8977933-289	10 KΩ, 1/8 w	10	1	10	<10	
R11	8977933-229	2.37 KΩ, 1/8 w	10	4.2	42	34	
R12	8977933-289	10 KΩ, 1/8 w	10	1	10	<10	
R13	8447750-1	100Ω, 1 w	0.7	7	5	<10	
R14	RC07	22 KΩ, 1/4 w	5.5	<0.5	<1	<10	
R15	RC20	1 KΩ, 1/2 w	0,06	-	-	<10	
R16	RC 07	12 K Ω , 1/4 w	11	1	10	<10	
R17	8977939-293	11 KΩ, 1/4 w	11.5	1	12	<10	
R18	RC 07	470Ω , 1/4 w	-	-		<10	
R19	RC 07	4.7 KΩ, 1/4 w	1.8	< 0.5	<1	<10	
R20	RC 07	4.7 KΩ, 1/4 w	2.5	0.5	1.3	<10	
R21	8977939-285	9.09 KΩ, 1/4 w	8	<1	9	<10	
R22	RC 07	22 KΩ, 1/4 w	5	-	-	<10	
R23	RC20	1 KΩ, 1/2 w	0.1	-	-	<10	
R24	RC07	12 KΩ, 1/4 w	11	1	10	<10	
R25	8977939-293	11 KΩ, 1/4 w	11	1	10	<10	
R26	RC07	470 Ω , 1/4 w	-	-		<10	
R27	RC07	4.7 KΩ, 1/4 w	1.3	-	-	<10	
R2 8	RC07	4.7 KΩ, 1/4 w	2.5	0.5	1.3	<10	
R29	8977939-285	9.09 KΩ, 1/4 w	8	<1	9	<10	
R33	RC07	39 KΩ, 1/4 w	3.5	-	-	<10	
R34	RC07	2.7 K Ω , 1/4 w	2	-	-	<10	

- - -

.

F-38

TABLE F-12ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICSASSEMBLY HIGH-VOLTAGE REGULATOR, 1753007 (Continued)

	Part Descrip	tion	Stress Analysis			
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
R35	RC07	39 KΩ, 1/4 w	3	-	-	<10
R36	RB58	500 KΩ, 2 w	500	1	500	40
R37	RB58	500 KΩ, 2 w	500	1	500	40
R3 8	8977 93 9-197	1.1 KΩ, 1/4 w	12	1,1	127	52
R39	RC07	39 KΩ, 1/4 w	8	-	-	<10
R40	RC07	39 KΩ, 1/4 w	24	0.6	15	<10
R41	RC07	39 KΩ, 1/4 w	18 peak	-	-	<10
R42	RB56	5 K Ω , 0.15 w	6	1.2	7.2	<10
R43	8447750-3	5 K Ω, 1 w	4.5	-	-	<10
R44	89 77933-3 84	100 K Ω , 1/8 w	Test Point			<10
R45	8977933-384	100 K Ω, 1/8 w	Test Point			<10
R46	8977939-125	196 Ω , 1/4 w	1.1 peak	-	-	<10
R47	89 77933 -	16.4 K Ω to 150 K Ω , selected at 1/8 w	8	0.5	<4	<10
R48	8977939-125	196 Ω , 1/4 w	4	20.4	81,5	33
R49	8977933-361	56.2 K Ω , 1/8 w, selected value	8	-	-	<10
R51	8977933-169	562 Ω , 1/8 w	-	-		<10
R52	RC 32	1000 Ω , 1 w	18	18	324	32
R53	RC07	100 Ω , 1/4 w	0.5 peak	5	2.5	<10
R54	RC07	5.6 K Ω , 1/4 w	5,6	1	5.5	<10
C7	CK06CW103M	0.01 µf, 200 volts	20			10
C8	CL45BH400SP3	40 µf, 30 volts	20			67
C9	CK06	0.01 µf, 200 volts	20			10
C 10	C L45	40 μ f, 30 volts	20			67
C13	1729503-1	0.001 µf, 1500 volts	1000			67
C14	1751107-1	0.01 µf, 1600 volts	1000			63
C 16	CL45	100 µf, 30 volts	18			60
C17	CK06	3900 pf, 200 volts	3.5			<10
C 18	HP5B30D1	5 µf, 30 volts	16			53

TABLE F-12 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY HIGH-VOLTAGE REGULATOR, 1753007 (Continued)									
Part Description		Stress Analysis							
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power {milliwatts}	Percen Rated Stress			
CR16	8447747–1 (1N1530A)	250 mw at 25° C ambient	8	11	88	35			
CR19	1N 816	150 mw at 25° C ambient	+0.6	1	0.6	<10			
CR20	1N 816	150 mw at 25° C ambient	+0.6	1	0.6	<10			
CR21	1N 816	150 mw at 25° C ambient	+0.6	-	-	<10			
CR22	1N 816	150 mw at 25° C ambient	+0.6	-	-	<10			
C R 25	8447747-1 (1N1530A)	250 mw at 25° C ambient	8	1.1	9	<10			
CR26	1N 765	250 mw at 25° C ambient	2	<5	<10	<10			
Q10	8447743-1 (2N389)	85 w at 25° C case	BE = 0.6 $CE = 8.5$	100 peak	850	<10			
Q11	2N 1132	600 mw at 25° C ambient	BE = 0.6 $CE = 22$	2	44	<10			
Q12	2N 722	400 mw at 25° C ambient	BE = 0.6 $CE = 14.5$	1	15	<10			
Q13	2N 718A	500 mw at 25° C ambient	BE = 0.6 $CE = 0.6$	3, 1	2	<10			
Q14	2N 7 18A	500 mw at 25° C ambient	BE = 0.6 CE = 13.5	1	14	<10			
Q15	2N 722	400 mw at 25° C ambient	BE = 0.6 $CE = 14.5$	1	15	<10			
Q17	2N 722	400 mw at 25° C ambient	BE = 0.6 $CE = 5$	5	25	<10			
Q18	2N 722	400 mw at 25° C ambient	BE = 0.6 $CE = 6$	1	6	<10			
Q19	2N 722	400 mw at 25° C ambient	BE = 0.6 $CE = 21$	1	21	<10			
Q20	2 N 718A	500 mw at 25° C ambient	BE = 0.6 $CE = 7$	0.5	3,5	<10			

TABLE F-12ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICSASSEMBLY HIGH-VOLTAGE REGULATOR, 1753007 (Continued)

(19.00)

	Part De	scription		Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress		
Q21	2N 718A	500 mw at 25° C ambient	BE = 0, 6 $CE = 6$	0.5	3	<10		
Q22	2N 718A	500 mw at 25° C ambient	BE = 0.7 $CE = 1.8$	20.4	3 8	<10		
Q23	2N 718A	500 mw at 25° C ambient	$BE = 0.5$ $CE \approx 5$	2	10	<10		
Q24	2N 718A	500 mw at 25° C ambient	BE = 0.6 $CE = 20$	1	20	<10		
Q25	2N 722	400 mw at 25° C ambient	BE = 0.6 $CE = 7$	1	7	<10		
Q26	2N 722	400 mw at 25° C ambient	BE = 0.6 $CE = 7$	0.5	3.5	<10		
Q28	2N 718A	500 mw at 25° C ambient	BE = 0.5 $CE = 8.0$	1	8	<10		
Q29	2N 1656	250 mw at 25° C ambient	BE = 0.4 $CE = 21$	0.6	13	<10		
Q30	2N 1656	250 mw at 25° C ambient	BE = 0.4 $CE = 35 peak$	0.6	<20	<10		
Q31	2N 718A	500 mw at 25° C ambient	BE = 0.4 $CE = 8$	1	8	<10		
ୟ 33	2N 1613	800 mw at 25° C ambient	BE = 0.6 $CE = 3.0$	5	15	<10		
						:		

		MBLY CONVERTER PO				
	Part Descript	ion	Stress Analysis			
Designation	Туре	Rating	Voltagé (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
 R3*	RC20	100 Ω, 1/2 w	3	3	9	18
К3 R4*	RC07	22 Ω, 1/4 w	0.5	23	14	<10
	RC20	1800 Ω, 1/w	26	14.5	375	38
R5	RC20	120 Ω , 1/2 w	2.5	20	52	10
R6*	RC20 RC20	180 Ω , 1/2 w	2.8	8	11	<10
R8*	[[22 Ω, $1/4$ w	0.5	23	14	<10
R9*	RC07	5.6 K Ω , 1 w	23	4.1	94	<10
R11	RC32	120 Ω, $1/2$ w	2.5	20	52	10
R12*	RC 32	$60 \ \mu f, 50 \ volts$	26			52
C2	CL45	25 μ f, 50 volts	23			46
C 5	CL45		22			73
C6	CL45	100 μ f, 30 volts	25			<10
C8 CR3	8924416-310 1N645	1000 pf, 500 volts 600 mw max at 25° C	+0.75, -1.8	14.5	11.4	<10
CR6	1N645	ambient 600 mx max at 25° C ambient	+0.8, -0.2	4.1	3, 3	<10
Q1**	2N1486	25 w at 25° C case	BE = 0.6, -5 CE = 50	92	90	<10
Q2**	2N 1486	25 w at 25° C case	BE = 0.6, -5 CE = 50	92	90	<10
Q3**	2N 1486	25 w at 25° C case	BE = 0.6, -5 CE = 43	188	180	<10
Q4**	2N 1486	25 w at 25° C case	BE = 0.6, -5 CE = 43	188	180	<10
Q5**	2N 1485	25 w at 25° C case	BE = 0.6 DC $CE = 4$	188	750	<10
L1	8701590-263	I rating = 760 ma R = 0.65 Ω	0.3 DC		NA	
L2	8701590-263	I rating = 760 ma R = 0.65 Ω	0.3 DC		NA	
T1	1175301-1	Toroidal Transformer	Not As	certained		
T2	1175301-2	Toroidal Transformer	Not As	certained		

.

F - 42

	ASS	EMBLY LOW-VOLTAG	E REGULATOR, 175	54123B	-		
· · · · · · · · · · · · · · · · · · ·	Part Descri	ption	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
R1*	RC07	220 Ω, 1/4 w	Peak 3 Avg. d-c 1	13. 7 peak	4.1	40	
R2	RC07	220 Ω, 1/4 w	-	-		<10	
R3	8977933-1	10 Ω, 1/8 w	0.01	1.0	0.01	<10	
R4	8977933-	10 Ω, 1/8 w	-	-	-	<10	
R5	8977939-24	3.16 KΩ, 1/4 w	6	1.9	11.4	<10	
R6	RC07	4.7 KΩ, 1/4 w	0.8	0.17	0.136	<10	
R7	8977939-26	5.11 KΩ, 1/4 w	5.5	1.08	6,0	<10	
R8	RC07	220 Ω, 1/4 w	2 peak-to-peak	9.1 peak	18 peak	<10	
R9	RC07	220 Ω, 1/4 w	-	-	-	<10	
R10	RC20	2.7 KΩ, 1/2 w	26	9,6	2 50	50	
R11	RC20	1.8 KΩ, 1/2 w	20	11.1	222	44	
R12	8977933-	196 Ω, 1/8 w	0.1	0,51	0,05	<10	
R13	8977933-	90.9 Ω, 1/8 w	0.1	1,1	0,11	<10	
R14	8977939-241	3.16 KΩ, 1/4 w	6.5	2,06	13.4	<10	
R15	RC 07	4.7 KΩ, 1/4 w	0.5	0,106	0.053	<10	
R16	8977739-261	5.11 KΩ, 1/4 w	6	1,17	7.02	<10	
R17	RC07	39 KΩ, 1/4 w	42	1.08	45,5	18	
R19	RC07	470 Ω, 1/4 w	1.5 peak	3, 2	4.8	<10	
R20	RC 07	470 Ω, 1/4 w	1.5 peak	3.2	4.8	<10	
R21**	8447750-5	25 KΩ, ww 1w, P51	25 d-c +50 peak	4 peak	5.0	<10	
R22	RC20	360 KΩ, 1/2 w	290 peak	0.81	235 peak	47 peak	
R23***	RC07	270 Ω , 1/4 w	0.5 d-c + 4 peak	52 peak	43, 4	17,5	
R24***	RC07	270 Ω, 1/4 w	1.0 d-c + 4 peak- to-peak	3.52 peak	52.2	21	
R25	RC20	130 KΩ, 1/2 w	115	0.113	13.0	<10	
R26	RC20	4.7 Ω, 1/4 w	1 peak-to-peak	106	53	21	
R27	RC20	4.7 Ω, 1/4 w	1 peak-to-peak	106	53	21	
R2 8	8977933-384	100 KΩ, 1/8 w	Test Point			<10	
R29	RC07	470 Ω, 1/4 w	1.2 d-c + 9 peak	19.2 peak	4.8	<10	
R30	RC 07	470 Ω, 5%, 1/4 w	1.2 d-c + 9 peak- to-peak	19.2 peak	4.8	<10	

TABLE F-14 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY LOW-VOLTAGE REGULATOR, 1754123B

• .

-

Part Description		Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
R31	847750-5	25 KΩ, 1 w	50	2	100	<10
R32	RC 07	51 KΩ, 1/4 w	1.8	0.035	0,06	<10
R33	8977933-384	100 KΩ, 1/8 w	2.5	0.025	0,063	<10
R34	RC20	360 KΩ, 1/2 w	290 peak	0.8 peak	232	47 pe
C1	C L45	170 μ f, 15 volts	7			47
C 2	C L45	100 μ f, 30 volts	6			47
C 3	C L45	170 µf, 15 volts	7			47
C4	CL45	100 μ f, 30 volts	6			20
C 5A	1175388-2	0.22 μf, 1500 volts	950			63
C5B	1175388- 2	0.22 µf, 1500 volts	950			63
C7	8980848-576	0.15 µf, 600 volts	290			48
C 8	8980848-576	0.15 µf, 600 volts	280			47
C 9	8980848-514	0.15 µf, 200 volts	120			60
C 10	8980848-514	0.15 μf, 200 volts	115			58
C 11	CL45	60 μ f, 50 volts	25			50
C 12	CL45	40 μ f, 75 volts	30			40
C13	CL45	40 μ f, 75 volts	48			64
C14	CL45	40 μ f, 75 volts	32			43
C 15 ‡‡	CK06	3900 pf, 2000 volts	50			25
C 16 ‡‡	UDM	2700 pf, 1500 volts	260			17
CR1 •	1N 3189		0.8	300	240 peak	12
CR2 •	1N 3189		0.8	300	2 40 peak	12
CR3 •	1N 3189		0.8	300	240 peak	12
CR4 •	1N 3189		0.8	300	- 240 peak	12
CR 5	1N827		6.0	9	- 54	22
CR6	1N816		0.6	1.2	0.7	<10
CR7 •	1N 3189		0.8	300	240 peak	12
CR8 •	1N 31 89		0.8	300	240 peak	12
CR9 •	1N3189		0.8	300	240 peak	12
CR10 •	1N3189		0.8	300	240 peak	12

	Part Description		Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
CR11	1N827		6.0	9	54	22	
CR12	1N816		0.6	1.2	0.7	<10	
CR13	PS2419		+4, -1200	1.2	5	< 10	
CR14	1N648		+1,	3.5	3.5	<10	
CR15	1N648		+1	3, 5	3.5	<10	
CR16	1N648		+1	3.5	3.5	<10	
CR17	1N648		+1	3.5	3.5	<10	
CR18	1N646		+1, -120	22	2	<10	
CR19	1N646		+1, -120	22	2	<10	
CR20	1N646		+1, -120	22	2	<10	
CR21	1N646		+1, -120	22	2	<10	
CR22	8982499–1 1N645	400 mw at 25° C ambient	+0.7, -28	105	75	<20	
CR23	8982944-1 1N645	400 mw at 25°C ambient	+0.7, -28	105	75	<20	
CR24	8982944–1 1N645	400 mw at 25°C ambient	+0.7, -28	105	75	<20	
CR25	8982944–1 1N645	400 mw at 25°C ambient	+0.7, -28	105	75	<20	
CR26	898 2944-1 1N645	400 mw at 25°C ambient	+0.7, -36	100 -	70	<20	
CR27	8982944-1 1N645	400 mw at 25°C ambient	+0.7, -36	100	70	<20	
CR28	8982944-1 1N645	400 mw at 25°C ambient	+0.7, -36	100	70	<20	
CR29	848 294 4-1 1N645	400 mw at 25°C ambient	+0.7, -36	100	70	<20	
CR30	848 2944-1 1N645	400 mw at 25°C ambient	+0.7, -50	2.6	18	<10	
CR31	8482944-1 1N645	400 mw at 25°C ambient	+0.7, -50	2.6	18	<10	
CR32	848 2944-1 1N645	400 mw at 25°C ambient	+0.7, -50	2.6	18	<10	

. .

Part Description			Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
CR33	8482944-1 1N645	400 mw at 25°C ambient	+0.7, -50	2.6	18	<10	
Q1	2N722	270 mw at 25°C ambient	BE = 0.6 $CE = 6.0$	13.7	82	30	
Q2	2N1485	9.4 w at 25°C ambient	BE = 0.7 $CE = 0.8$	1000	800	<10	
Q3	2N 7184	500 mw at 25° C ambient	BE = 0.4 $CE = 5.0$	1	5	<10	
Q4	2 N1485	9.4 w at 25° C ambient	BE = 0.6 $CE = 0.9$	1000	800	<10	
Q5	2N722	270 mw at 25°C ambient	BE = 0.6 $CE = 5.0$	9	45	17	
Q6	2N718A	500 mw at 25°C ambient	BE = 0.6 $CE = 5.0$	1	5	< 10	
L1	1X3000L			NOT ASC	ERTAINI	ED	
L2	1X3000L						
L3	1X3000L						
L4	1X3000L						
					<u> </u>		

· · ·

F-46

	Part Desc	iption		Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress		
R1	RC 07	1100 Ω , 1/4 w	6	5,45	32.7	13		
R2	RC 07	4700 Ω , 1/4 w	7	1.5	10.4	<10		
R3	RC 07	10 KΩ, 1/4 w	Test	Point		<10		
R4	8977933-269	6190 Ω , 1/8 w	12	1.95	23, 3	19		
R5	8977933-318	20 K Ω , 1/8 w	8.5	0.425	3,5	<10		
R6	8977933-269	6190 Ω , 1/8 w	5	0.83	4	<10		
R 7	8977933-289	10 KΩ, 1/8 w	3			<10		
R 8	RC 07	6.2 KΩ, 1/4 w	7	1,5	10.4	<10		
R9	RC 07	6.2 KΩ, 1/4 w	5.5	0.85	5	<10		
R10	8977933-346	39.2 KΩ, 1/8 w	12.5	0.32	0.3	<10		
R11	RC 07	39 K Q , 1/4 w	1			<10		
R12	RC 07	120 KΩ, 1/4 w	13			<10		
R13	8977933-193	1 KΩ, 1/8 w	0.8	0.8	0.64	<10		
R14	RC 07	100 KΩ, 1/4 w	18			<10		
R15*	8977939-193	1000 Ω , 1/4 w	2 VDC plus 12 peak	12 peak	18	<10		
R16	8977933-234	2670 Ω , 1/8 w	2.5	1	2.4	<10		
R17	8977933-330	26 KΩ, 1/8 w	22	0,83	18,4	15		
R18	RC 07	10 KΩ, 1/4 w	12	1.2	14	<10		
R19	RC 07	6.2 KΩ, 1/4 w	12	2	24	<10		
R20	RC 07	15 KΩ, 1/4 w	11	7.5	8	<10		
R21	RC 07	10 KΩ, 1/4 w	16	1.6	25,6	<10		
R22	RC 07	6200 Ω , 1/4 w	18	3	54	21		
R23	RC 07	15 K Q , 1/4 w	10	0,67	7	<10		
R24	RC 07	33 KΩ, 1/4 w	10	0, 33	3	<10		
R25	RC 07	1 KΩ, 1/4 w	4	4	16	<10		
R26	RC 07	1 KΩ, 1/4 w	6	6	36	14		
R27	8977933-314	18.2 KΩ, 1/8 w	12.5	0.69	8.6	<10		
R28	1700383-5	2 KΩ, 1 w	2			<10		
R29	1700383-9	25 KΩ, 1 w	6.5		1.7	<10		
R30	RC 07	$33 \text{ K}\Omega, 1/4 \text{ w}$	5			<10		

TABLE F-15 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY DEFLECTION PROGRAMMER, 1754253

Part Description		Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
R31	RC 07	1 KΩ, 1/4 w	5	5	25	<10
R32	RC 07	680 Ω , 1/4 w	5	7.35	37	18
R33	1700383-9	25 KΩ, 1 w	18	0.72	15	<10
R34	RC 07	$4300\Omega, 1/4 w$	4	1	4	<1
R35	RC 07	15 KΩ, 1/4 w	30	2	60	2
R36	RC 07	120 KΩ, 1/4 w	20	0.167	3, 3	<1
R37	RC 07	100 KΩ, 1/4 w	11	0.11	1.2	<1
R38	RC 07	1 KΩ, 1/4 w	0.2			<1
R39	RC 07	1 K Ω , 1/4 w	0.3			<1
R40	1700383-9	25 K Ω , 1 w	20	0,8	16	<1
R41	RC 07	120 KΩ, 1/4 w	20	0.167	3, 3	<1
R42	RC 07	100 KΩ, 1/4 w	11	0.11	1.2	<1
R43	RC 07	51 K Ω , 1/4 w	18	0.4	6.4	<1
R44	RC 07	100 KΩ, 1/4 w	10			<1
R45	1700383-7	10 KΩ, 1 w	20	2	40	<1
R46	1700383-9	25 KΩ, 1 w	20	0.8	16	<1
C1	CK05	0.001 μ f, 200 volts	17			< 1
C2	CK05	120 pf, 200 volts	3			<1
C 3	СК05	0.001 μ f, 200 volts	17			<1
C4	CK05	6200 pf, 200 volts	11			<1
CR1	1N916	250 mw at 25°C ambient	+0.5, 7.0	1	0.5	<1
CR2	1N2039B	750 mw at 25°C	20	1.5	30	<:
CR3	1N916	250 mw at 25°C ambient	+0.5, -10.0	2 plus 12 peak	6 peak	<
CR4	1N916	250 mw at 25°C ambient	+0.4, -11.0	2 plus 12 peak	5 peak	<
CR5	1N916	250 mw at 25°C ambient	+0.5, -16			<
CR6	1N916	250 mw at 25°C ambient	+0.6, -7.0	4	2,5	<

F-48

Γ

		TABLE F	-15		
ELECTRICAL S	STRESS AN	ALYSIS OF	THE CA!	MERA EL	ECTRONICS
ASSEMBLY D	DEFLECTION	PROGRA	MMER, 17	′54253 (Continued)

· •

-

	Part Descri	ption		Stress Analysis				
Designation	Туре	Roting	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress		
CR7	1N916	250 mw at 25°C ambient	+0.5, -15	1 peak	0.5	<10		
CR8	USAF 1N645	600 mw at 25°C ambient	+0.7	12 peak	8.4	<10		
CR9	USAF 1N645	600 mw at 25°C ambient	+0.7, -5.5	12 peak	8.4	<10		
Q1	2N2432	300 mw at 25°C ambient	BE = -10, +0.7 CE = 11.5	2 peak	1.4	<10		
Q2	2N1132	600 mw at 25°C ambient	BE = 0.6 $CE = 4.0$	5.5	3, 3	<10		
Q3	2N916	360 mw at 25°C ambient	BE = 1.2 CE = 5.5	1	1.2	<10		
Q4	2N2432	300 mw at 25°C ambient	BE = 10 $CE = 9$	12 peak	7.2 peak	<10		
Q5	1175999 (2N943)	250 mw at 25 C ambient	BE = 4.5, -0.7 CE = 0.9	2	2	<10		
Q6	2N869	360 mw at 25°C ambient	BE = 0.9 $CE = 12$	2	2	<10		
Q7	2N916	300 mw at 25°C ambient	BE = -3.5, +0.8 CE = 11.5	6	25	<10		
Q8	2N2432	300 mw at 25°C ambient	BE = 0.7, -1.5 CE = 7.5	1	1	<10		
Q9	1175999	250 mw at 25°C ambient	BE = 7.5 $CE = 4.0$	1	1	<10		
Q10	1175999	250 mw at 25°C ambient	BE = 5.0 $CE = 6.5$	1	1	<10		
Q11	2N2432	300 mw at 25°C ambient	BE = 5.5 CE = 11.0	7.5	5	<10		
Q12	2N2432	300 mw at 25°C ambient	BE = 11, 0.6 CE = 0.5	12	7	<10		
Q13	2N2432	300 mw at 25°C ambient	BE = 11.5 CE = 0.5	10	5	<10		
Q14	1175999	250 mw at 25°C ambient	BE = 16 $CE = 0.6$	10	5	<10		
*10% duty cycle								

	Part Descrip	tion	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
R1	RC 07	10 K Ω , 5%, 1/4 w	5	0.5	2,5	<10	
R2	RN65	5,11 K Ω, 1/4 w	10	2	20.	<10	
R5	RN65	2.37 KΩ, 1/4 w	5			<10	
R7	RN65	100 K Ω , 1/4 w	4			<10	
R8	RC 07	100 K Ω , 5%, 1/4 w	3			<10	
R9	8977933-66	47.5 Ω , 1/8 w	0.3	7	2	<10	
R10	RC 07	1.5 K Ω , 5%, 1/4 w	5	3.3	16.5	<10	
R11	8977939-239	3.01 KΩ, 1/4 w	4			<10	
R12	8977933-66	47.5 Ω, 1/8 w	0.04			<10	
R13	8977939-209	1.47 K Ω , 1/4 w	5 to 9	6.2 max	55 max	22	
R15	RC 07	1 KΩ, 5%, 1/4 w	5	5	25	<10	
R16*	8977939-147	332 Ω , 1/4 w	0 to 4	12 max	24	<10	
R17	RC 07	27 Ω , 5%, 1/4 w	0.02 to 0.12			<10	
R18	8977939-258	4.75 K Ω , 1/4 w	5			<10	
R19	8977939-289	10 KΩ, 1/4 w	45	4.5 peak	200 peak	40	
R20	RC 07	22 KΩ, 5%, 1/4 w	24	1.1	28	11	
R21**	RC 07	$270 \Omega, 1/4 w$	0.5			<10	
R22*	8977939-339	33.2 K Ω , 1/4 w	+24 to -24	<1	18	<10	
R23	RC20	$27 \Omega, 1/2 w$	1.6 peak	60	96 peak	19 pe	
R24	RC20	$27 \Omega, 1/2 w$	2.2 peak	81	180 peak	36 pe	
R25*	RC07	4.7 KΩ, 5%, 1/4 w	+20 to -20	50 peak	103	41	
R26	RN75C	511 Ω , 1 w	+ 5 to -7	14 peak	96 peak	<10	
R27	RC07	6.2 KΩ, 1/4 w	1.7			<10	
R28	RN65C	2.37 K Ω , 1/4 w	7.5	3, 1	24	<10	
R29	RC 07	6.2 KΩ, 1/4 w				<10	
R30	RN65C	2.37 K Ω , 1/4 w	8	3, 3 peak	27	11 pe	
R31	RN65C	1.0 KΩ, 1/4 w	3	3.0 peak	9	<10	
R32	RN65C	1.0 KΩ, 1/4 w	3.5	3.5 peak	13	<10	
R33	RN65C	100 KΩ, 1/4 w	8			<10	

• •

.

F-50

	ASSEMBLY DEFLECTION AMPLIFIER, 1754360 (Continued)										
	Part Descri	ption	Stress Analysis								
Designation	Туре	Rating	Voltage (voits)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress					
R34	NC07	100 KΩ, 1/4 w	2			<10					
R35	8977933-66	47.5 Ω, 1/8 w	0.5	3	0.5	<10					
R36	RC07	$1.5 \mathrm{K}\Omega, 1/4 \mathrm{w} \mathrm{DC}$	5	3.3	17	<10					
R37	8977939-239	3.01 KΩ, 1/4 w	3.5	1.5	4.1	<10					
R38	8977933-66	47.5 Ω, 1/8 w	0.10	2	0.2	<10					
R39	8977939-209	1.47 KΩ, 1/4 w DC	6	4	24	<10					
R40	RC07	100 Ω, 1/4 w				<10					
R41	RC07	2.2 KΩ, 1/4 w	5	2.3	11	<10					
R42	8977939-147	332 Ω, 1/4 w	0.8	2.4 peak	2.4	<10					
R43	RC07	100 Ω, 1/4 w				<10					
R44	8977939-258	4.75 KΩ, 1/4 w	5	1.1	5.5	<10					
R45	8977939-289	10 KΩ, 1/4 w	40	4 peak	160 peak	64 peak					
R46	RC07	22 KΩ, 1/4 w	22	1	22	<10					
R47	RC07	270 Ω, 1/4 w	0.2	<1 peak	<1	<10					
R48	8977939-339	33.2 KΩ, 1/4 w	22	<1 peak	<22	<10					
R49	RC20	27 Ω, 1/2 w	0.5	18	9	<10					
R50	RC20	27 Ω, 1/2 w	0.5	18	9	<10					
R51	RC07	6.2 Ω, 1/4 w	27 peak-to-peak	2.2	59	23					
R52	RN75C	316 Ω, 1 w	+3.5 to -6	19 peak	79	<10					
R53	RC07	10 KΩ, 1/4 w	Test	Point		<10					
R54	RC07	10 KΩ, 1/4 w	Test	Point		<10					
R56	RC07	560 Ω, 5%, 1/4 w	0.1	<1	<1	<10					
R59**	RC07	1.5 KΩ, 1/4 w	15 peak-to-peak	10 peak	50	<10					
R60	RC07	30 Ω , 5%, 1/4 w	-	-	-	<10					
C1	1729236-1	3.0 µf, 150 volts	8			<10					
C2	1729236-1	3.0 μ f, 150 volts	8			<10					
C3	1729236-1	3.0 µf, 150 volts	8			<10					
C4	8412778-87	1.0 μ f, 35 volts	6			17					
C5	VK30	6200 µf, 200 volts	22			11					
C6	1171712-3	10,000 µf, 100 volts	6			<10					

TABLE F-16ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICSASSEMBLY DEFLECTION AMPLIFIER, 1754360 (Continued)

- •

TABLE F-16 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY DEFLECTION AMPLIFIER, 1754360 (Continued)									
	Part Descr	iption	Stress Analysis						
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress			
C 7	CK05	1000 pf, 200 volts	3			<10			
C 8	8914319-345	750 pf, 300 volts	50 peak			17			
C 9	CK05	1000 pf, 200 volts	25			13			
C10	CK05	1000 pf, 200 volts	25 peak			13			
C11	CK05	1000 pf, 200 volts	3			<10			
C 12	CK06	2200 pf, 200 volts	1.5			<10			
C 13	1171712-3	10,000 pf, 100 volts	6			<10			
C14	8914319-336	330 pf, 100 volts	+25 to -25			2 5			
C 15	CK05	6.2 pf, 200 volts	22			11			
CR1	1N916	250 mw at 25° C ambient	0.7	<7	<5	<10			
CR2	1N916	250 mw at 25° C ambient	0.7	<7	<5	<10			
CR3	1N645	600 mw at 25° C ambient	0.65	<6	<5	<10			
CR4	1N645	600 mw at 25° C ambient	0.65	<6	<5	<10			
CR5	1N916	250 mw at 25° C ambient	0.7	<6	<5	<10			
CR6	1N916	250 mw at 25° C ambient	0.7	<6	<5	<10			
CR7	1N2032	750 mw at 25° C ambient	4	1	4	<10			
CR8	1N916	250 mw at 25° C ambient	0.7	<5	<5	<10			
CR9	1N916	250 mw at 25° C ambient	0.7	<5	<5	<10			
CR10	1N916	250 mw at 25° C ambient	0.6	<5	<5	<10			
CR11	1N916	250 mw at 25° C ambient	0.6	<3	<5	<10			
CR12	1N916	250 mw at 25° C ambient	0.75	<6	<5	<10			

-

F-52

	Part De	escription	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliomperes)	Average Power (milliwatts)	Percen Rated Stress	
CR13	1N916	250 mw at 25° C ambient	0.7	<6	<5	<10	
CR14	1N2032	750 mw at 25° C ambient	4	5 peak	20	40	
Q1	2N943	250 mw at 25° C ambient	BE = +3, -0.4 CE = 10	2 peak	1	<10	
ୡଃ	2N930	300 mw at 25° C ambient	BE = +0, 6 $CE = 6$	6	3.6	<10	
Q4	2N 722	400 mw at 25° C ambient	BE = +0.6 $CE = 6$	12 peak	72	18	
Q5	2N930	300 mw at 25° C ambient	BE = 0.6, -2.5 $CE = 4$	1	4	<10	
Q6	2N930	300 mw at 25° C ambient	BE = +0.7 CE = 4.5	12 max	54	18	
Q7	2N 722	400 mw at 25° C ambient	BE = +0.6 $CE = 24$	1	24	<10	
Q8	2N1893	800 mw at 25° C case	BE = +0.6, -7 CE = 50 peak	1.8	93	12	
ହ୍ର	2N1893	800 mw at 25° C case	$BE = 0, 6, -3 \max CE = 50$	4.5	22 5	27	
Q10	2N498	4 w at 25° C case	BE = 0.6 $CE = 50$	18	900	23	
Q11	2N1244	1 wat 25°C case	BE = 12.5, -1.8 $CE = 50$	81	145	14.5	
Q12	2N943	250 mw at 25° C ambient	BE = 0.6, -5 $CE = 0.5, -7.5$	3 peak	1.5	<10	
Q13	2N943	250 mw at 25° C ambient	BE = 0.6, 8 CE = 0.5, 8	3.5 peak	2.2	<10	
Q14	2N930	300 mw at 25° C ambient	BE = +0.6, -3 CE = -5, -6 peak	<0.1	<1	<10	
Q15	2N 722	400 mw at 25° C ambient	BE = 0.8, -0.7 CE = 5, -6 peak	3	18	<10	
Q16	2N930	300 mw at 25° C ambient	BE = 0.6 $CE = 4$	2	8	<10	
Q17	2N930	300 mw at 25° C ambient	BE = 0.6 to -2.5 CE = 4.5	2.4	11	<10	

TABLE F-16 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY DEFLECTION AMPLIFIER, 1754360 (Continued)

•

•

·	Part Des	cription		Stress Analysis			
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
Q18	2N 722	400 mw at 25° C ambient	BE = 0.6 $CE = 25$	1.1	28	<10	
Q19	2N 718A	500 mw at 25° C ambient	BE = 0.6, -0.3 CE = 40	1 peak	40	<10	
Q20	2N718A	500 mw at 25° C ambient	BE = 0.6, -6 CE = 50	4	40	<10	
Q21	2N498	4 w at 25° C case	BE = 0.6, -0.3 CE = 40	18	720	18	
Q22	2N 1244	1 w at 25° C case	BE = 0.6, -1 CE = 15, 54	18	270	27	
	I	I					
* Appro * *Square * ** 30% d	ximately 50% duty cy e wave ntw cycle	cle					

.

ASSEMBLY G1 REGULATOR; 1753178										
	Part Descri	ption		Stress Analysis						
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress				
R1	8977933-384	100 KΩ, 1/8 w	Te	st Point		< 10				
R2	8977933-384	100 KΩ, 1/8 w	Те	st Point		< 10				
R3	RC07	180 KΩ, 1/4 w	6			< 10				
R4	RC07	300 KΩ, 1/4 w	8			< 10				
$\mathbf{R5}$	8977940-437	432 KΩ, 1/2 w	300	0.70	210	42				
R6	RC07	8200 Ω, 1/4 w	6	0.73	4.4	< 10				
R7	8977940-437	432 KΩ, 1/2 w	350	0.81	283	57				
R8	8977933-281	8250 Ω, 1/8 w	15 to 25	1.82 to 3.04	51	42				
R9	8977933-289	10 KΩ, 1/8 w	1 to 10	1	10	< 10				
R10	8977933-377	84.5 KΩ, 1/8 w	25	0.30	7.5	< 10				
R11	RC07	1 Meg Ω, 1/4 w	1			< 10				
R12	RC07	470 KΩ, 1/4 w	1.5			< 10				
R13	8977933-269	6190 Ω, 1/8 w	2	0.32	0.65	< 10				
R14	8447750-5	25 KΩ, 1 w	35	1.4	49	< 10				
R15	RC07	100 KΩ, 1/4 w	2.5	-	-	< 10				
R16	8977940-429	294 KΩ, 1/2 w	250	0.85	220	43				
R18	8977933-325	23.7 KΩ, 1/8 w	6 to 25	0.38 to 1.1	1.6 to 27	< 10 to 21 max				
R19	8977933-365	61.9 KΩ, 1/8 w	5 to 18	0.08 to 0.29	0.4 to 5.2	< 10				
R20	8977933-409	182 K Q , 1/8 w	20 to 52	0.11 to 0.14	2.2 to 3.4	< 10				
R21	RC07	100 KΩ, 1/4 w	70 max	0.70	49	20 max				
R22	8977933-365	61.9 KΩ, 1/8 w	15	0.24	3.6	< 10				
R23	8447750-5	25 KΩ, 1 w	8	0.32	2.5	< 10				
R24	844749-1	200 KΩ	40	0.2	8	< 10				
R2 5	8977933-421	243 KΩ, 1/8 w	120	0.50	60	48				
R26	RC20	2.4 MegΩ, 1/2 w 350 volts	320	0.144	40	< 10				
R27	RC20	2.4 Meg Ω, 1/2 w	220	0.096	20	< 10				

TABLE F-17 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY G1 REGULATOR; 1753178

 \bullet

) .

	TABLE F-17 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY G1 REGULATOR; 1753178 (Continued)										
	Part Desc	ription	Stress Analysis								
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress					
R2 8	RC20	2.4 MegΩ, 1/2 w 350 volts	180	0.075	17	<10					
R29	RC20	2.4 Meg Ω , 1/2 w	3.5	-	-	<10					
R30	RC20	3.3 MegΩ, 1/2 w	290	-	-	<10					
R31	RC 07	18 K Ω, 1/4 w	3.5	0.2	7	<10					
R32	RC07	10 KΩ, 1/4 w	3	0.3	1	<10					
R33	RC07	10 KΩ, 1/4 w	6.3	0.63	4	< 10					
R41	RC07	10 KΩ, 1/4 w	2	-	-	<10					
$\mathbf{R42}$	RC07	75 K Ω, 1/4 w	10	0.13	1.3	<10					
R43	RC07	3.3 Meg Ω , 1/4 w	10	-	-	<10					
R44	RC07	47 KΩ, 1/4 w	6.3	-	-	<10					
R45	RC07	10 K Ω, 1/4 w	3	0.3	1	<10					
R46	RC07	100 KΩ, 1/4 w	25	0.25	6.25	<10					
R47	RC07	3.3 MegΩ, 1/4 w	8	-	-	<10					
R 48	RC07	4.7 KΩ, 1/4 w	6.3	0.14	1	<10					
R49	RW 59	1 KΩ, 3 w		150	22	< 10					
R50	RC07	1K Ω, 1/4 w	-	-	-	< 10					
R51	RC07	10 KΩ, 1/4 w	5	0.5	2.5	< 10					
R52	RC07	39 KΩ, 1/4 w	27.5	0.7	19	<10					
R53	RC07	100 KΩ, 1/4 w	Te	est Point		<10					
R 55	RC07	18 KΩ, 1/4 w	45	2.5	112	45					
R 56	RC07	330 KΩ, 1/4 w	-	-	-	<10					
R57	RC07	330 KΩ, 1/4 w	5	-	-	<10					
R58	RC07	330 KΩ, 1/4 w	7	-	-	<10					
R 59	RC07	75 KΩ, 1/4 w	3	-	-	<10					
R60	RC07	24 K Ω, 1/4 w	1	-	-	<10					
R61	RC07	43 KΩ, 1/4 w	1.5	-	-	<10					
C1	CP09	0.033 μ f, 600 volts	295			49					
C2	CP09	0.015 μ f, 600 volts	295			49					
C3	8412778-76	22 μ f, 15 volts	6			40					

F-56

TABLE F-17						
ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS						
ASSEMBLY G1 REGULATOR; 1753178 (Continued)						

.

Part Description			Stress Analysis			
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
C4	8914319-316	47 pf, 500 volts	10			< 10
C5	8412778-76	22 µf, 15 volts	7			47
C6	СК06	0.01 μ f, 200 volts	70 max			35 max
C7	8914319-316	47 pf, 500 volts	20			<10
C10	8421778-304	180 µf, 6 volts	1.5			25
C11	8421778-10	15 µf, 20 volts	3			15
C12	8421778-10	15 µf, 20 volts	4			20
C13	CK06	0.01, 200 volts	80			40
C14	8421778-61	22 µf, 35 volts	8			23
C15	8421778-61	22 µf, 35 volts	10			29
CR1	JAN1N457	75 ma at 25 ⁰ C ambient	0.7	4	28	<10
CR2	JAN1N457	75 ma at 25 ⁰ C ambient	4	0	0	<10
CR3	USN1N978B	400 mw at 25 ⁰ C ambient	4.0	0	0	<10
CR4	JAN1N457	75 ma at 25 ⁰ C ambient	+0.6, -5.0			< 10
CR5	JAN1N457	75 ma at 25° C ambient	+0.6, -5.0			< 10
CR6	USN1N989B	400 mw at 25 ⁰ C ambient	140	0.24	36	<10
CR7	USN1N989B	400 mw at 25 ⁰ C ambient	140	0.24	36	< 10
CR11	JAN1N457	75 ma at 25 ⁰ C ambient	+0.6, -7.0	-	-	<10
CR12	JAN1N457	75 ma at 25 ⁰ C ambient	+0.6, -10	-	-	<10
CR13	JAN1N457	75 ma at 25 ⁰ C ambient	0.6	-	-	<10
CR14	1N9 1 6	75 ma at 25 ⁰ C ambient	+0.6 peak, -0.4	0.73		<10
CR15	USN1N645	400 ma at 25 ⁰ C ambient	-75 peak	100	7.5	<10
CR16	USAF1N3041	1 w at 25° C case	75	4	300	30
CR17	1N916	75 ma at 250 C ambient	-0.5	$I_R = 0$	-	< 10

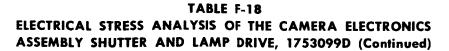
DesignationTypeRatingVoltage (volts)Current (milliamperes)Aver Pov (milliv)CR181N91675 ma at 25° C ambient-10CR191N91675 ma at 25° C ambientCR201N963400 mw at 25° C ambient9Q12N916360 mw at 25° C ambientBE = 2.0, 0.6 CE = 6 to 0.60.734.2Q22N722400 mw at 25° C ambientBE = +0.6 to -0.6 CE = 0 to 1923Q32N718A500 mw at 25° C ambientBE = 0.6 to 0 CE = 0.6 to 00.320.2Q42N722400 mw at 25° C ambientBE = 0.5 CE = 250.0250.6Q52N1656250 mw at 25° C ambientBE = 1.0 CE = 7553Q62N1656250 mw at 25° C ambientBE = 8 CE = 270.3211	er Rated
CR191N916 $75 \text{ ma at } 25^{\circ} \text{ C} \\ \text{ambient}$ CR201N963400 mw at $25^{\circ} \text{ C} \\ \text{ambient}$ 9-Q12N916360 mw at $25^{\circ} \text{ C} \\ \text{ambient}$ BE = 2.0, 0.6 \\ CE = 6 \text{ to } 0.6 \\ CE = 6 \text{ to } 0.6 \\ CE = 0 \text{ to } 19 \\ CE = 0 \text{ to } 19 \\ CE = 0 \text{ to } 19 \\ CE = 0.6 \text{ to } 0 \\ CE = 0.6 \text{ to } 0 \\ CE = 25 \\ CE = 25 \\ CE = 25 \\ CE = 75 \\ CE = 75 \\ CE = 75 \\ CE = 75 \\ CE = 8 \\ CE = 8 \\ CE = 8 \\ CE = 1.0 \\ CE = 75 \\ CE = 8 \\ CE = 8 \\ CE = 1.0 \\ CE = 75 \\ CE = 75 \\ CE = 8 \\ CE = 8 \\ CE = 1.0 \\ CE = 75 \\ CE = 75 \\ CE = 8 \\ CE = 8 \\ CE = 1.0 \\ CE = 75 \\ CE = 75 \\ CE = 8 \\ CE = 8 \\ CE = 8 \\ CE = 1.0 \\ CE = 75 \\ CE = 8 \\	<10 <10 <10 6
CR201N963ambient9-Q12N916360 mw at 25° C ambientBE = 2.0, 0.6 CE = 6 to 0.60.734.2 4.2Q22N722400 mw at 25° C ambientBE = +0.6 to -0.6 CE = 0 to 190.3223Q32N718A500 mw at 25° C ambientBE = 0.6 to 0 CE = 0.6 to 00.320.2 0.32Q42N722400 mw at 25° C ambientBE = 0.6 to 0 	<10 <10 6
Q12N916360 mw at 25° C ambientBE = 2.0, 0.6 CE = 6 to 0.60.734.2 4.2Q22N722400 mw at 25° C ambientBE = +0.6 to -0.6 CE = 0 to 190.734.2 23Q32N718A500 mw at 25° C 	< 10 6
Q22N722400 mw at 25° C ambientBE = +0.6 to -0.6 CE = 0 to 1923Q32N718A500 mw at 25° C ambientBE = 0.6 to 0 	6
Q32N718Aambient $CE = 0$ to 1923Q42N722400 mw at 25° C ambientBE = 0.6 to 0 CE = 0.6 to 00.320.2Q42N722400 mw at 25° C ambientBE = 0.5 CE = 250.0250.6Q52N1656250 mw at 25° C ambientBE = 1.0 CE = 7553Q62N1656250 mw at 25° C ambientBE = 1.0 CE = 7553	
Q42N722ambient $CE = 0.6 \text{ to } 0$ 0.027 0.027 Q52N1656250 mw at 25° C ambient $BE = 0.5$ $CE = 25$ 0.025 0.6 Q62N1656250 mw at 25° C ambient $BE = 1.0$ $CE = 75$ 53 Q62N1656250 mw at 25° C ambient $BE = 8$ 0.32	< 10
Q52N1656250 mw at 25° C ambientBE = 1.0 CE = 7553Q62N1656250 mw at 25° CBE = 80.3211	
Q6 2N1656 250 mw at 25° C $BE = 8$ 0.32 11	<10
	21
	<10
Q7 2N722 400 mw at 25° C ambient BE = 0.5 C = 8 0.3 2.4	< 10
Q102N930300 mw at 25° C ambientBE = 0.6 CE = 260.051.3	<10
Q112N930300 mw at 25° C ambientBE = 0.6 CE = 100.1341.3	< 10
Q122N930300 mw at 25° C ambientBE = 0.6 CE = 10 0.14 1.4	< 10
Q13 $2N722$ 220 mw at 25° C $BE = 0.6$ 0.7 2.8 $CE = 4$	< 10

	Part Des	cription		Stress Analysis		
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
R1	RC07	6.2 KΩ, 1/4 w	7.5	1.2	9.0	<10
R2	RC07	10 KΩ, 1/4 w	4	0.4	1.6	<10
R3	RC07	10 KΩ, 1/4 w	1	0.1	0.1	< 10
R4	RC07	3.3 KΩ, 1/4 w	5	1.5	7.5	<10
$\mathbf{R5}$	RC32	1KΩ, 1w	16	16	256	26 pea
R6	RC07	330 KΩ, 1/4 w	2			<10
R7*	RC07	3.3 KΩ, 1/4 w	+5 to +15	4.5 peak	68 peak	27 pea
R8	RC07	120 KΩ, 1/4 w	18	0.15	2.5	< 10
R9	RC07	20 KΩ, 1/4 w	12	0.6	7.2	<10
R10	RC07	6.2 KΩ, 1/4 w	15	2.4	36	<10
R11	RC07	6.2 KΩ, 1/4 w	15	2.4	36	< 10
R12	RC07	20 KΩ, 1/4 w	11	0.55	6.0	<10
R13	RC07	120 KΩ, 1/4 w	18	0.15	2.5	< 10
R14	RC07	3.3 KΩ, 1/4 w	15	4.5	67.5	27
R15	RC07	330 KΩ, 1/4 w	2	0.006	0.012	< 10
R16	RC07	33 KΩ, 1/4 w	27	0.82	22	<10
R17	RC07	1KΩ, 1/4w	4.5	4.5	20	< 10
R18**	RC20	1 KΩ, 1/2 w	20	20	19	<10
R19	RC07	1 KΩ, 1/4 w	4	4	16	<10
R20	RC20	220 Ω, 1/2 w	3	13.7	41.1	< 10
R21	RC07	1KΩ, 1/4w	0.7	0.7	0.49	< 10
R22	RC32	22 Ω, 1 w	1.2	55	66	< 10
R23	RC07	820 Ω, 1/4 w	1	1.25	1.25	<10
R24	RC07	220 Ω , 1/2 w	3.5	16.0	56	11
R25	RC32	10 Ω, 1 w	0.5	50	. 25	<10
R26*	Type RS-2	1.0 Ω, 3 w	1.6	1600	122	< 10
R27*	Type RS-2	1.0 Ω, 3 w	1.6	1600	122	< 10
R28	RC32	10 Ω, 1 w	0.6	60	36	<10
R29	RC20GF	220 Ω, 1/2 w	4	18.2	72.8	15
R30***	Type RS-2	1.0Ω, 3w	1.6	1600	225	< 10

TABLE F-18ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICSASSEMBLY SHUTTER AND LAMP DRIVE, 1753099D

operation of

•


. .

	Part Descrip	otion	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
R31	RC32GF	22 Ω, 1 w	1.0	45.5	45.5	<10	
R32	RC20GF	220 Ω, 1/2 w	3	13.6	40.8	<10	
R 33	RC07GF	1 KΩ, 1/4 w	0.8	0.8	0.64	< 10	
R34	RC07GF	1 KΩ, 1/4 w	0.8	0.8	0.64	<10	
R35**	RC20GF	1 KΩ, 1/2 w	20	20	19	<10	
R36	RC20GF	1 KΩ, 1/4 w	5	5	25	10	
R37	RC07GF	33 KΩ, 1/4 w	27	0.82	22	<10	
R38	RC07GF	10 KΩ, 1/4 w	0.3	0.03	0.009	<10	
R39	RC07GF	10 KΩ, 1/4 w	0.3	0.03	0.009	< 10	
R41***	RC07GF	200 Ω, 1/4 w	6	30	18	<10	
R42	RC07GF	2.2 KΩ, 1/4 w	+2.5 to -4.5	3.2	11.2	< 10	
R43	RC07GF	5.6 KΩ, 1/4 w	-3, +6	1.6	14.4	<10	
R44	RC07GF	10 KΩ, 1/4 w	15	1,5	22.5	<10	
R45	RC07GF	68 Ω, 1/2 w	17 peak	250 peak	400 (P) 27 (F)	80 <10	
R46	RC07GF	10 KΩ, 1/4 w	Те	st Point		< 10	
C1	8987915-129	$0.01 \mu f$, 200 volts	+11 to -10			<10	
C2	8987915-129	$0.01 \mu f$, 200 volts	+11 to - 9			< 10	
C4	8412778-10	15 µf, 20 volts (150 D)	11			55	
C6****	CS13AD680K	68 µf, 15 volts	0				
CR1	1N916	75 ma at 25 ⁰ C ambient	+0.6, -2	1.2	<1	<10	
CR3	1N3020B	1 w at 25 ⁰ C ambient	10	16	160	16	
CR4	1N916	75 ma at 250 C ambient	+0.7	3	2.1	< 10	
CR5	1N916	75 ma at 25 ⁰ C ambient	-13			<10	
CR6	1N916	75 ma at 25 ⁰ C ambient	-13			<10	
CR7	1N916	75 ma at 25 ⁰ C ambient	+0.7	3	2.1	< 10	
CR8	1N916	75 ma at 25 ⁰ C ambient	+0.5, -10	1	9	< 10	
CR9	1N916	75 ma at 25° C ambient	+0.4 to +0.6			< 10	
CR10	1N916	75 ma at 25° C ambient	+0.6, -0.7	1	1	<10	
CR11	1N538	750 ma at 25 ⁰ C ambient	-24			< 10	

TABLE F-18

.

F-60

•••

•

	Part Desi	ription	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
CR12	8447742-1 (1N1583)	6 amps	+0.4 to +0.9	1600 max	1400 max	16	
CR13	1N538	750 ma at 25 ⁰ C ambient	-24			<10	
CR14	8447742–1 (1N1583)	6 amps	+0.9	1600 max	1400 max	16	
CR15	1N916	75 ma at 25 ⁰ C ambient	+0.6, -10	2.4	1.5	< 10	
CR16	1N916	75 ma at 25 ⁰ C ambient	+0.6, -4			<10	
CR17	1N916	75 ma at 250 C ambient	+0.6, -0.7	2.5	1.6	< 10	
CR19	1N916	75 ma at 250 C ambient	+0.6, -1.2	<2 peak		< 10	
Q1	2N916	360 mw at 250 C ambient	BE = +0.7, -0.9 CE = -12	1.5 max	18 max	< 10	
Q2	2N916	360 mw at 25 ⁰ C ambient	BE = +0.7, -1.2 $CE = 12$	4.5 peak	54 max	15	
Q 3	2N916	360 mw at 25 ⁰ C ambient	BE = +0.8, -1.2 CE = -12	4.5 peak	54 max	15	
Q4	2N1132	600 mw at 25 ⁰ C ambient	BE = +0.6, -0.7 CE = -32	20 peak	12 peak	< 10	
Q5	2N1132	600 mw at 25 ⁰ C ambient	BE = -0.9, +3 CE = -22	5	110 peak	<20	
Q6	8447741-1 (2N1208)	45 w at 25 ⁰ C case	BE = 0.8 $CE = +27$	55	1500	<10	
Q7	2N697	800 mw at 25 ⁰ C case	BE = +0.6, 5 CE = 1.8, 32	18	33	<10	
Q8	8447741–1 (2N1208)	45 w at 25° C case	BE = +1, -0.5, CE = 32	45	1440	< 10	
Q9	8447741-1 (2N1208)	45 w at 25 ⁰ C case	BE = +1, -0.5 CE = 32	45	1440	<10	
Q10	2N697	800 mw at 25 ^o C case	BE = +0.9 $CE = 32$	18	33	< 10	
Q11	2N722	270 mw at 25 ⁰ C case ambient	BE = -0.7 $CE = 5$	1.25	6.25	< 10	
Q12	8447741-1 (2N1208)	45 w at 25 ⁰ C case	BE = 0.9 CE = 0.9 to 22	1600 peak	1440	<10	

Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
2N1132	600 mw at 25 ⁰ C ambient	BE = $+3$, -1 CE = 22, 0.7	13.6 peak	10 peak	< 10
2N1132	600 mw at 25 ⁰ C ambient	BE = +5, -5 CE = 32, 0.7	20 peak	14 peak	< 10
2N916	360 mw at 25 ⁰ C ambient	BE = -0.5, +0.8 $CE = 6, 0.7$	30	21	< 10
2N722	270 mw at 25 ⁰ C ambient	BE = 0.7 CE = -28, 0.7	30	21	<10
2N1486	25 w at 25 ⁰ C case	BE = +0.8, 0.4 $CE = 28, 0.7$	250	175	<10
	2N1132 2N1132 2N916 2N722	2N1132600 mw at 25° C ambient2N1132600 mw at 25° C ambient2N916360 mw at 25° C ambient2N722270 mw at 25° C ambient	TypeRoting(volts) $2N1132$ $600 \text{ mw at } 25^{\circ} \text{ C}$ ambient $BE = +3, -1$ $CE = 22, 0.7$ $2N1132$ $600 \text{ mw at } 25^{\circ} \text{ C}$ ambient $BE = +5, -5$ $CE = 32, 0.7$ $2N916$ $360 \text{ mw at } 25^{\circ} \text{ C}$ ambient $BE = -0.5, +0.8$ $CE = 6, 0.7$ $2N722$ $270 \text{ mw at } 25^{\circ} \text{ C}$ ambient $BE = 0.7$ $CE = -28, 0.7$ $2N1486$ $25 \text{ w at } 25^{\circ} \text{ C case}$ $BE = +0.8, 0.4$	TypeRating(volts)(miliamperes)2N1132 $600 \text{ mw at } 25^{\circ} \text{ C}$ ambientBE = +3, -1 CE = 22, 0.713.6 peak 20 peak2N1132 $600 \text{ mw at } 25^{\circ} \text{ C}$ ambientBE = +5, -5 CE = 32, 0.720 peak 302N916 $360 \text{ mw at } 25^{\circ} \text{ C}$ ambientBE = -0.5, +0.8 CE = 6, 0.7302N722 $270 \text{ mw at } 25^{\circ} \text{ C}$ ambientBE = 0.7 CE = -28, 0.7302N1486 $25 \text{ w at } 25^{\circ} \text{ C case}$ BE = +0.8, 0.4 250	TypeRating(volts)(milliamperes)(milliamperes) $2N1132$ $600 \text{ mw at } 25^{\circ} \text{ C}$ ambient $BE = +3, -1$ $CE = 22, 0.7$ 13.6 peak 10 peak $2N1132$ $600 \text{ mw at } 25^{\circ} \text{ C}$ ambient $BE = +5, -5$ $CE = 32, 0.7$ 20 peak 14 peak $2N916$ $360 \text{ mw at } 25^{\circ} \text{ C}$ ambient $BE = -0.5, +0.8$ $CE = 6, 0.7$ 30 21 $2N722$ $270 \text{ mw at } 25^{\circ} \text{ C}$ ambient $BE = 0.7$ $CE = -28, 0.7$ 30 21 $2N1486$ $25 \text{ w at } 25^{\circ} \text{ C case}$ $BE = +0.8, 0.4$ 250 175

	Part Desc	ription		Stress Analysis		
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
R1	RC07	47 KΩ, 1/4 w	3			<10
R2	RC 07	47 KΩ, 1/4 w	+2.4			<10
R3	RC 07	10 KΩ, 1/4 w	20	2	40	16
R4	RC07	5.1 KΩ, 1/4 w	2.2			<10
R5	RC 07	4.7 KΩ, 1/4 w	1.8			<10
R6	RC 07	47 KΩ, 1/4 w	1.0			<10
R 7	RC 07	68 Ω, 1/4 w				<10
R8	RC 07	1.5 KΩ, 1/4 w	1.2			<10
R9	8447750-3	5KΩ, 1/4 w	0.5 peak-to-peak			<10
R10	RC 07	6.2 KΩ, 1/4 w	10	1.6	16	<10
R11	RC 07	39 Ω, 1/4 w	0.07 peak-to-peak			<10
R12	RC 07	1 KΩ, 1/4 w	7	7	49	20
R13	RC 07	3.6 KΩ, 1/4 w	6	1.7	10	<10
R14	RC 07	1.5 KΩ, 1/4 w	1.2			<10
R15	RC07	47 KΩ, 1/4 w	3			<10
R16*	RC07	47 KΩ, 1/4 w	-3 to +2			<10
R17*	RC07	82 Ω, 1/4 w	0 to +0.8	10	8	<10
R18*	RC07	6.2 KΩ, 1/4 w	+10 to +13	1.9	24	<10
R19*	RC07	4.7 KΩ, 1/4 w	8	1.7 peak	14 peak	<10
R20*	RC07	82 Ω, 1/4 w	0.5	6	3	<10
R21	RC07	430 Ω, 1/4 w	6	14	84	33
R22	RC07	47 KΩ, 1/4 w	0.6			<10
R23*	RC 07	10 KΩ, 1/4 w	10 to 20	2 peak	23	<10
R24*	RC 07	56 KΩ, 1/4 w	±5			<10
R25	RC07	100 KΩ, 1/4 w		Test Point		<10
R26	RC07	100 KΩ, 1/4 w		Test Point		<10
R27	RC07	100 KΩ, 1/4 w		Test Point		<10
R28	RC07	10 Ω, 1/4 w	0.15	15	3	<10
R29	RC 07	56 KΩ, 1/4 w	+6 to -10			<10
R30	RC07	4.7 KΩ, 1/4 w	-10	2	20	<10

TABLE F-19ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICSASSEMBLY VIDEO AMPLIFIER, 1753189B

•

		TAB AL STRESS ANALYSI EMBLY VIDEO AMPL			CS .		
	Part Descr	iption	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
R31	RC 07	33 KΩ, 1/4 w	5			<10	
R32	RC 07	5.6 KΩ, 1/4 w	2			<10	
R33	RC 07	$2.2 \text{ K}\Omega, 1/4 \text{ w}$	1.8		has star	<10	
R34	RC 07	8.2 KΩ, 1/4 w	6			<10	
R35	RC 07	10 KΩ, 1/4 w	10			<10	
R36	RC 07	$180 \Omega, 1/4 w$	0.4 to 1.2	4.5	4	<10	
R37	RC 07	10 Ω, 1/4 w	0.13			<10	
R38	RC 07	$10 \Omega, 1/4 w$	9			<10	
R39	RC 07	470 Ω , 1/4 w	3.0 to 0.6	3.8	8	<10	
R40	RC 07	4.7 KΩ, 1/4 w	11	2.4	26.4	11	
R41	RC 07	10 KΩ, 1/4 w	11			<10	
R42	RC 07	$3.3 \mathrm{K}\Omega, 1/4 \mathrm{w}$. 8	2.4 max	19	<10	
R43	RC 07	10 KΩ, 1/4 w		0.7 peak		<10	
R44	RC 07	1.2 KΩ, 1/4 w		10	96	39	
R45*	8447750-3	5KΩ, 1 w	5			<10	
R46*	RC 07	11 KΩ, 1/4 w	5			<10	
R48*	RC 07	10 KΩ, 1/4 w	9	>1	2	<10	
R49*	RC 07		0.6			<10	
R51	RC 07	3.3 KΩ, 1/4 w	0.8			<10	
R52	RC 07	27 KΩ	15 max	0.56 max	8.4	<10	
R54	RC 07	270 KΩ	2.5 max			<10	
R56	RC 07	6.2 KΩ	5 max		4	· <10	
R57*	RC 07	8.2 KΩ, 1/4 w	5 to 17	2.1 max	15	<10	
R58*	RC 07	3.9 KΩ, 1/4 w	1.5			<10	
R59	RC 07	560 Ω, 1/4 w	7.0	12.5	90	38	
R60	RC 07	5.6 KΩ, 1/4 w	9 peak	1.6 peak	14.5 peak	<10	
R61	RC 07	10 KΩ, 1/4 w	5	0.5	<3	<10	
R62	RC 07	1 KΩ, 1/4 w		Test Point		<10	
R63	RC 07	30 KΩ, 1/4 w	7			<10	
R64	RC 07	18 KΩ, 1/4 w	28	1.6	43.5	17	

.

	Part Descri	ption		Stress Analysis		
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
R65	RC07	100 KΩ, 1/4 w		Test Point		< 10
R67	RC07	10 KΩ, 1/4 w	10 m a x	1 max	10 max	< 10
C1	8412778 -9 5	6.8 μf, 35 volts	7			20
C2	8412778-95	6.8 µf, 35 volts	15			43
C3	8412778-70	$1 \ \mu$ f, 35 volts	7			20
C4	8987915-25	4700 pf, 200 volts	2.5			< 10
C5	8914319-340	470 pf, 300 volts	12			< 10
C6	8412778-95	6.8 µf, 35 volts	12			34
C7	8412778-95	6.8 µf, 35 volts	8			23
C8	8412778-95	6.8 µf, 35 volts	12			34
C9	8412778-7	2.2 µf, 20 volts	10			50
C10	8914319-340	470 pf, 300 volts	11			< 10
C11	8412778-24	4.7 µf, 10 volts	0.6			< 10
C12	8412778-95	6.8 µf, 35 volts	10			29
C13	8412778-95	6.8 µf, 35 volts	12			3
C14	8914319-316	47 µf, 500 volts	20			< 1
C15	CP09	0.1 µf, 100 volts	20			2
C16	8914319-341	510 pf, 300 volts	±5			< 1
C17	8412778-30	40 µf, 10 volts	6			6
C18	8987915-25	0.0047 µf, 200 volts	2			< 1
C20	8412778-30	40 µf, 10 volts	6			6
C24	8412778-7	2.2 µf, 20 volts	15			8
C26	8412778-95	6.8 µf, 35 volts	10			2
CR1	1N755A	400 mw at 25°C ambient	7.2	2	14	<1
CR2	1N755 A	400 mw at 25°C ambient	7.2	8	58	<1
CR3	1N963B	400 mw at 25°C ambient	12	8	96	2
CR4	1N757A	400 mw at 25°C ambient	9	15	135	3

TABLE F-19 ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY VIDEO AMPLIFIER, 1753189B (Continued)

. .

.

•

ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICS ASSEMBLY VIDEO AMPLIFIER, 1753189B (Continued)									
	Part Des	cription	Stress Analysis						
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress			
CR5	1N963B	400 mw at 25 °C ambient	12	15	180	4			
CR7	1N9 1 6	250 mw at 25 °C ambient	-10, +0.6	3 peak	2	< 1			
CR8	1N916	250 mw at 25 °C ambient	-8, +0.6	3 peak	2	< 1			
CR11	1N916	250 mw at 25 °C ambient	-5, +0.5	< 1		<1			
CR12	1N916	250 mw at 25 °C ambient	-10, +0.5	< 1		< 1			
CR13	1N964B	400 mw at 250°C ambient	13	1.4	18.5	< 1			
CR14	1N916	250 mw at 250 °C ambient	+0.6, +5	2		<1			
CR15	1N916	250 mw at 250 °C ambient	+0.6, -10	2		<1			
CR16	1N968B	400 mw at 250 °C ambient	20	10.4	208	5			
CR18	1N946	400 mw at 250 °C ambient	0.6 to 2.1			-			
Q1	2N930	300 mw at 250 °C ambient	BE = 0.6 CE = 5	1	5	< 1			
Q2	2N930	300 mw at 250 °C ambient	BE = 0.6 $CE = 8$	1	8	< 1			
Q3	2N930	300 mw at 250 °C ambient	BE = 0.6 CE = 8	1.7	14	< 1			
Q4	2N930	300 mw at 250 °C ambient	BE = 0.6 $CE = 12$	10 peak	60	2			
Q5	2N930	300 mw at 250°C ambient	BE = 0.6 $CE = 9.0$	6	54	< 2			
Q6	2N930	300 mw at 250 °C ambient	BE = 0.6 $CE = 9$	2	18	<:			
Q7	2N943	250 mw at 25 °C ambient	BE = 0.6, -0.6 CE = 12.5	2	25				

	Part Des	cription	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
Q8	2N916	360 mw at 24 ⁰ C ambient	BE = +0.8 CE = 12.5	4	50	14	
ୟ୨	2N916	360 mw at 24 ⁰ C ambient	BE = 0.6, -2.5 CE = 12.5	4.5 max	56	<16 ma	
Q10	2N943	250 mw at 25°C ambient	BE = 0.6, -12 $CE = 0.7, +7$	3 peak	<3	<10	
Q11	2N722	400 mw at 25°C ambient	BE = 0.6 $CE = 8$	10	80	29	
Q12	2N930	300 mw at 25°C ambient	BE = 0.6, -7 CE = 7.0	1	7	<10	
Q13	2N916	360 mw at 25°C ambient	BE = 0.6 $CE = 2.0$	1	2	<10	
Q14	2N722	400 mw at 25°C ambient	BE = 0.4, -4 $CE = 0.7, +12$	2	1.5	<10	
Q16	2N930	300 mw at 25°C ambient	BE = 0.6 $CE = 15$	2	30	10	
Q17	2N2432	300 mw at 75°C ambient	BE = 0.6, -5 $CE = 0.8, 27$	2	1.2	<10	
Q18	2N943	250 mw at 25°C ambient	$BE = 0.6, -4 \\ CE = 1.5$	-2	3	<10	
					, ,		

TABLE F-19ELECTRICAL STRESS ANALYSIS OF THE CAMERA ELECTRONICSASSEMBLY VIDEO AMPLIFIER, 1753189B (Continued)

. . .

- .

•

	ELEC ASSE/	TA TRICAL STRESS ANA MBLY F-SCAN VIDEO	BLE F-20 LYSIS OF THE VIDEC SUMMING AMPLIFI	COMBINER ER, 17540730	c			
	Part D	escription	Stress Analysis					
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress		
R1	RC07	8.2 KΩ, 1/4 w	1.6		0.31	C10		
R3	RC07	25 K Ω , 1/4 w	3.5		0.5	<10		
R16	RC60C	10 KΩ, 1/8 w	2.4		0.625	<10		
R17	RN60B	200 Ω , 1/8 w	0.025		0.025	<10		
R19	RN60B	200 Ω, 1/8 w	0.025		0.03	<10		
R20	RC60C	10 KΩ, 1/8 w	2.4		0.62	<10		
R21*	RN60C	100 Ω, 1/8 w	0.05 to 0.1		0.02	<10		
R22	RN65C	1 KΩ, 1/4 w	1.6		2.6	<10		
R23*	RN60C	100 Ω , 1/8 w	0.05 to 0.1		0.1	<10		
R24*	RN60C	4.32 K Ω , 1/8 w	3 to 5.5		7	<10		
R 25*	RC07	1.2 KΩ, 1/4 w	5 to 7.5		47	<10		
R 26*	RC07	100 Ω , 1/4 w	0.5 to 0.75		5.6	19		
R 27*	RN60C	10.5 KΩ, 1/8 w	0 to 0.8		0.064	<10		
R28	RC07	2 KΩ, 1/4 w	0.4		0.004	<10		
R29*	RN60C	10.5 KΩ, 1/8 w	0 to 0.8		0.064	<10		
R30	RN60C	1.3 KΩ, 1/8 w			0.004	<10		
R44	RC07	12 KΩ, 1/4 w	12		12	<10		
R45	RC07	10 KΩ, 1/4 w	0.12		0.014	<10		
R46	RC07	2.7 KΩ, 1/4 w	7		18	<10		
R47	RC07	2 KΩ, 1/4 w	5			<10		
R48	RC07	5.1 K Ω, 1/4 w	7		12.5 10	<10		
R49	RC07	820 Ω, 1/4 w	6			<10		
R50	RC07	1.5 KΩ, 1/4 w	4		44 10	18		
R51	RC07	1.5 KΩ, 1/4 w	4			<10		
R52	RC07	820 Ω , 1/4 w	6		10	<10		
R53	RC07	5.1 KΩ, 1/4 w	7		44 10	18		
R54*	RN60C	10 KΩ, 1/8 w	0 to 0.75		Í	<10		
R64	RN60C	182 KΩ, 1/8 w			0.056	<10		
R79	RC07	820 Ω, 1/4 w	Test	Point		<10		

Γ

TABLE F-20 ELECTRICAL STRESS ANALYSIS OF THE VIDEO COMBINER ASSEMBLY F-SCAN VIDEO SUMMING AMPLIFIER, 1754073C (Continued)

No.

	Part Descr	iption		Stress Analysis		
Designation	Туре	Roting	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
R80	RC07	1 KΩ, 1/4 w				<10
R83	RC07	3.9 K Q , 1/4 w				<10
R84	RN60C	10 KΩ, 1/8 w	5		2.5	<10
R85	RC07	680 KΩ, 1/4 w	5.5			<10
R86	RC07	910 Ω, 1/4 w	0.01		0.0001	<10
R 87	8883168-5	200 Q , 1/8 w				<10
C2	CS13	6.8µf, 35 v	4	i		11
C4	8914319-316	47 pf, 500 v	2			0
C7	8924416-307	750pf, 500 v	0.8			0
C8	CL45	15 µf,15 v	5			34
C9	CL45	15 μf, 15 v	5			34
CR4*	4-1N916's	75 ma each at 25 ⁰ C ambient	-0.6, -1.8	0.5	0.9	<10
CR7	1N645	400 ma at 25 ⁰ C ambient	+0.75, -6	12	9	<10
CR8	1N645	400 ma at 25 ⁰ C ambient	+6, -0.75	12	9	<10
CR9	1N645	400 ma at 25 ⁰ C ambient	+6, -0.7	12	9	<10
CR10	1N645	400 ma at 25 ⁰ C ambient	-6, +0.7	12 ·	9	<10
ୟ 3	2N930	300 mw at 25 ⁰ C ambient	BE = 0.6 $CE = 4$	0.6	2.4	<10
Q4	2N930	300 mw at 25 ⁰ C ambient	$\mathbf{BE} = 0.6$ $\mathbf{CE} = 4$	0.6	2.4	<10
Q 5	2N869	360 mw at 25 ⁰ C ambient	BE = 0.65 $CE = 9$	11.6	100	28 max
Q 6	2N869	360 mw at 25 ⁰ C ambient	BE = 0.7 CE = 5	2.2	11	<10
Q7	2N869	360 mw at 25 ⁰ C ambient	BE = 0.95 $CE = 5$	5	25	<10

TABLE F-20 ELECTRICAL STRESS ANALYSIS OF THE VIDEO COMBINER ASSEMBLY F-SCAN VIDEO SUMMING AMPLIFIER, 1754073C (Continued)								
	Part Des	cription		Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress		
Q10	2N869	360 mw at 25 ⁰ C ambient	$BE = 0.9, +5 \\ CE = 0.25, 7$	<1	<5	<10		
Q 11	2N869	360 mw at 25 ⁰ C ambient	BE = 0.75, 0.15 CE = 0.6, 8	7	4.2	<10		
*Sine wave	I							

		CAL STRESS ANALY			ILY)		
	Part Descri	ption	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
R45	8983168-5	200 Ω, 1 w	2	40	20	<10	
R46	8977933-155	402 Ω, 1/8 w	3.5	8.7	3 0	25	
R47	8977933-258	200 Ω, 1/8 w	0.01			<10	
R48	RC07	110 Ω, 1/4 w				<10	
R51	RC07	110 O , 1/4 w	0.01			<10	
R52	8977933-126	200 Ω, 1/8 w	0.01			<10	
R53	8983168-5	200 Ω, 1 w	1.2	12	14.4	<10	
Q10	2N916	360 mw at 25° C ambient	BE = 1 CE = 0.7 to 6	52 peak	52	<15	
Q11	2N869	360 mw at 25° C ambient	BE = 0.6 CE = 0.7 to 5.5	52 peak	40	11	
:							

-

TABLE F-21 ELECTRICAL STRESS ANALYSIS OF THE VIDEO COMBINER ASSEMBLY ISOLATION AMPLIFIER, 1725508A (F-CHANNEL ONLY)

.

	Part Descri	otion	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
R8*	RC 07	240 KΩ, 1/4 w	+4.5 -1			<10	
R9*	RC 07	39 KΩ, 1/4 w	10 to 14	0.3	3.4	<10	
R10	RC07	200 Ω, 1/4 w	0.02 peak			<10	
R11*	RC07	20 KΩ, 1/4 w	1.1			<10	
R12	RC07	1 KΩ, 1/4 w	5	5	25	10	
R13*	8977933-249	3.83 KΩ, 1/8 w	0.35			<10	
R14*	8977933-249	3.83 KΩ, 1/8 w	0.5			<10	
R22*	8977933-153	383 Ω, 1/8 w	0.05			<10	
R23*	8977933-153	383 Ω, 1/8 w	0.05			<10	
C 8	8924416-322	3600 pf, 500 volts	3.5			<10	
C 9	8924416	Selected, 500 volts	8			<10	
C 10	Mica	7500 pf, 100 volts	8			<10	
C 11	Mica	1500 pf, 500 volts	8			<10	
C 12	Mica	200 pf, 500 volts	8			<10	
C 13	Mica	1600 pf, 500 volts	16			<10	
C 14	Tantalum	0.47 µ f, 35 volts	2			<10	
C 22	Ceramic	0.02 μ f, 30 volts	6			20	
C 23	Ceramic	0.02 μ f, 30 volts	6			20	
Q3*	2N916	360 mw at 25° C ambient	BE = +0.7 to -1.4 $CE = 0 to 3.5$	0.3	1	<10	
Q4*	2N916	360 mw at 25° C ambient	CE = 1.7 to 2.4	5	9.5	<10	
L2*	1175627	1.12 mh	+4 to -4				
Y2	1175498	144 kc					

	AND C	AMERA SEQUENCER	DUAL OSCILLATO	DR, 1703811B				
	Part Descr	iption		Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress		
R1	8977933	1.78 K Q , 1/8 w	6	3, 4	20	16		
R2	8977933	2.61 K Q , 1/8 w	4.5	1.7	7.6	<10		
R3	8977 933	2.61 K Q , 1/8 w	5	1.9	9.5	<10		
R6	8977933	5.11 K Q , 1/8 w	10	2	20	16		
R7	8977933	2.61 KO, 1/8 w	5	1.9	9.5	<10		
R 8	8977933	2.61 K Q , 1/8 w	4.5	1.7	7.6	<10		
R9	8977933	1.78 KΩ, 1/8 w	6	3.4	20	16		
R10	8977933	5.11 K Q , 1/8 w	10	2.0	20	16		
R13	8977933	39.2 KΩ, 1/8 w	9	0.23	2	<10		
R14	8977933	10.0 KΩ, 1/8 w	2.5	-	-	<10		
R15	8977933	3.32 KΩ, 1/8 w	3.0	1	2.7	<10		
R16	8977933	1.21 K Q , 1/8 w	1.5	1	1.9	<10		
R17	8977933	2.37 KΩ, 1/8 w	3.4	1.5	4.9	<10		
R18	8977933	4.22 KΩ, 1/8 w	8.0	2	15	12		
R20	RC07	220 Ω, 1/4 w	3	13.6	41	16		
R21	RC 07	1.8 K O , 1/4 w	14	7.8	109	43,6		
R22	RC07	3.3 KΩ, 1/4 w	4.5	1.5	6.1	<10		
R23	RC07	33 KΩ, 1/4 w	15	0.5	6.8	<10		
R25	8977933	6.81 K Ω , 1/8 w	7	1	7.2	<10		
R31	8977933	39.2 KΩ, 1/8 w	9.0	0.23	2	<10		
R32	8977933	10.0 K Q , 1/8 w	2,5	-	-	<10		
R33	8977933	3.32 KO, 1/8 w	3.0	1	2.7	<10		
R34	8977933	1.21 K Q , 1/8 w	1.5	1	1.9	<10		
R35	8977933	2.37 K Ω , 1/8 w	3.4	1.5	4.9	<10		
R36	8977933	4.22 KΩ, 1/8 w	8.0	2	15	12		
R38	RC 07	220 Ω, 1/4 w	3	13.6	41	16		
R39	RC 07	1.8 KΩ, 1/4 w	14	7.8	109	43.6		
R40	RC 07	3.3 KΩ, 1/4 w	4.5	1.5	6.1	<10		
R41	RC 07	33 KΩ, 1/4 w	15	0.5	6,8	<10		
R44	RC07	6.2 KΩ, 1/4 w	2	-	-	<10		

TABLE F-23ELECTRICAL STRESS ANALYSIS OF THE CONTROL PROGRAMMERAND CAMERA SEQUENCER DUAL OSCILLATOR, 1703811B

•

	Part Des	cription	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
R45	8977933	3.83 K Ω , 1/8 w	5	1,3	6,5	<10	
R46	8977933	3.83 KΩ, 1/8 w	5	1,3	6,5	<10	
R47	8977933	19.6 KΩ, 1/8 w	11	0.5	6.7	<10	
R48	8977933	3.83 KΩ, 1/8 w	3,5	1	3, 5	<10	
R49	8977933	6.81 K Ω , 1/8 w	3,5	0.5	1.8	<10	
R50	8977933	6.81 K Ω , 1/8 w	3,5	0.5	1.8	<10	
R51	8977933	3.83 KΩ, 1/8 w	3.5	1	3.2	<10	
R52	8977933	3.83 KΩ, 1/8 w	5	1.3	6.5	<10	
R53	8977933	3.83 KΩ, 1/8 w	3.5	1	3.2	<10	
R54	8977933	3.83 K Q , 1/8 w	5	1.3	6.5	<10	
R55	RC07	3.0 KΩ, 1/4 w	7	2.3	16	<10	
R56	RC07	1.5 K Ω , 1/4 w	10	6.7	67	27	
R57	RC07	3.0 KΩ, 1/4 w	7	2,3	16	<10	
R58	RC07	1.5 K Ω , 1/4 w	10	6.7	67	27	
R59	8977933	6.81 K Q , 1/8 w	7	1	7.2	<10	
R60	8977933	3.83 KΩ, 1/8 w	3.5	1	3.2	<10	
C1	CP09	0.047 μ f, 100 volts	12	-	-	12	
C 2	СР09	0.1 μ f, 100 volts	8	-		<10	
C 3	CP09	0.047 μ f, 100 volts	6	~	-	<10	
C 5	CP09	0.047 μ f, 100 volts	12	-	-	12	
C 6	CP09	0.1 μ f, 100 volts	8	-	-	10	
C 7	CP09	0.047 μ f, 100 volts	6	-	-	<10	
C 8	CS13	33 μ f, 35 volts	7	-	-	20	
CR3	1N916	250 mw at 25° C ambient	+0.7, -7.0	1.5	1.1	<10	
CR4	1N916	250 mw at 25° C ambient	+0.7, -7.0	1.5	1.1	<10	
CR5	1N916	250 mw at 25° C ambient	+0.7, -7.0	1.5	1.1	<10	
CR6	1N916	250 mw at 25° C ambient	+0.6, -7.0	1.5	1.1	<10	

TABLE F-23

TABLE F-23ELECTRICAL STRESS ANALYSIS OF THE CONTROL PROGRAMMERAND CAMERA SEQUENCER DUAL OSCILLATOR, 1703811B (Continued)

a solution

*

	Part Descri	ption	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power {milliwatts}	Percent Rated Stress	
CR7	1N916	250 mw at 25° C ambient	+0, -5	-	-	<10	
CR8	1N916	250 mw at 25° C ambient	+0, -6.0	-	-	<10	
CR9	1N916	250 mw at 25°C ambient	+0.6	2.6 peak	1,6	<10	
Q1	2N916	360 mw at 25° C ambient	BE = 0.6 $CE = 10 peak$	2 peak	5	<10	
Q2	2N869	360 mw at 25°C ambient	BE = 0.7 to 2.2 $CE = 8 peak$	2.4 peak	11	<10	
Q3	2N916	360 mw at 25° C ambient	BE = 0.6 CE = 11 peak	14 peak	80	22	
Q4	2N869	360 mw at 25° C ambient	CE = 4	1	4	<10	
Q5	2N916	360 mw at 25° C ambient	BE = 0.7 $CE = 8 peak$	4.4	35	<10	
Q6	2N916	360 mw at 25° C ambient	BE = 0.7 $CE = 8 peak$	4.4	35	<10	
Q8	2N916	360 mw at 25° C ambient	BE = 0.6 $CE = 10 peak$	2 peak	5,3	<10	
Q9	2N869	360 mw at 25° C ambient	BE = 0.7 to 2.2 $CE = 8 peak$	2.4 peak	11	<10	
Q10	2N916	360 mw at 25° C ambient	BE = 0.6 $CE = 11 peak$	14 peak	80	22	
Q11	2N 869	360 mw at 25° C ambient	CE = 4	1	4	<10	
Q12	2N916	360 mw at 25° C ambient	BE = 0.7 CE = 5.5 peak	-	-	-	
L1	8723001-401	1.5 mh	-	-	-	<10	
L2	8723001-401	1.5 mh	-	-	-	<10	
Y1	1077463-1	RH-8, 18 kc	-	-	-	<10	
Y2	1077463-1	RH-8, 18 kc	-	-	-	<10	

	Part Desc	iption	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
R146	RC 07	1 KΩ, 1/4 w	4.5	4.5	20	<10	
R147	RC07	3.3 KΩ, 1/4 w	3	1	3	<10	
R148	RC 07	10 KΩ, 1/4 w	24	2.4	57,6	23	
R149	RC 07	6.8 KΩ, 1/4 w	12	1.8	21.2	<10	
R150	RC07	4.7 KΩ, 1/4 w	10	2, 11	21	<10	
R151	RC07	6.8 KΩ, 1/4 w	12	1.8	21.2	<10	
R152	8977939	1 KΩ, 1/4 w	11	11	121	48	
R153	8977933	19.6 K Ω , 1/8 w	11	0.56	6.2	<10	
R154	RC07	6.8 KΩ, 1/4 w	0	-	-	<10	
R192	8977939	1 KΩ, 1/4 w	7	14 peak	98 max	39 maz	
R193	8977933	19.6 KΩ, 1.8 w	14	10	10	<10	
R194	RC07	150 Ω, 1/4 w	0	-	-	<10	
R195	RN60B	51.1 K Ω , 1.8 w	17 max	0. 33	5.7	<10	
R196	RN60B	$8.25 \text{ K}\Omega, 1/8 \text{ w}$	5 max	0.61	3	<10	
R197	RN60B	51.1 K Q , 1/8 w	27 max	0.53	14	11	
R198	RN60B	113 KΩ, 1/8 w	12 max	0.1	10	<10	
C 26	CS13	6.8 μ f, 35 volts	2			<10	
C 28	150D	0.033 μ f, 35 volts	27.5			82	
CR51	1N 75 8A	400 mw at 25° C ambient	11	26	66	17	
CR52	1N 75 8A	400 mw at 25° C ambient	11	6	66	17	
CR53	1N916	250 mw at 25° C ambient	0, +1	3	3	<10	
CR54	2N1871A	1.25 amps	CA = 0.8 CG = 0.8	12	9.6	<10	
CR55	1N916	250 mw at 25° C ambient	+1.0, 0	11	11	<10	
CR56	1N 75 0A	400 mw at 25° C ambient	4	1.5	6	<10	

TABLE F-24

.

TABLE F-24ELECTRICAL STRESS ANALYSIS OF THE CONTROL PROGRAMMER ANDCAMERA SEQUENCER CONTROLLER MODULATOR, 1753142 (Continued)

	Part Desc	ription	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliomperes)	Average Power (milliwatts)	Percent Rated Stress	
CR74	1N750A	400 mw at 25° C ambient	6	4	16	<10	
CR75	FD300	500 mw at 25° C ambient	-12			<10	
CR76	1N916	250 mw at 25° C ambient	+0.6	-	-	<10	
Q27	2N869	360 mw at 25° C ambient	BE = 0.7 $CE = 0.3$		2	<10	
Q28	2N1613	800 mw at 25° C ambient	BE = 2.2		-	<10	
Q37	2N1613	800 mw at 25° C ambient	$\mathbf{C}\mathbf{E}=0.8$	2.5		<10	
K2	1077484-1	Contacts Closed - V Coil	12				
						-	

	Part Descrip	tion	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
R30	8977933	3.83 KQ, 1/8 w	6	1.57	9.1	<10	
R31	8977933	3.83 KΩ, 1/8 w	1.2	-	-	<10	
R32	8977933	19.6 KΩ, 1/8 w	11	0.56	6.2	<10	
R279	RC07	1.5 KΩ, 1/4 w	12	8	91	38	
C3	CY FM15C	1000 pf, 300 volts to 500 volts	7.0			2 ma	
C13	8945696-403	5000 pf, 100 volts	14			14	
CR21	1N916	250 mw at 25 ⁰ C ambient	-3.5, +0.6	+0.6	0.4	<10	
CR22	1N916	250 mw at 25 ⁰ C ambient	-5.5, +0.6	+0.6	0.4	<10	
CR23	1N916	250 mw at 25 ⁰ C ambient	-2.5, +0.6	0.6	0.4	<10	
Q10	2N916	360 mw at 25 ⁰ C ambient	CE = 7.0 $BE = 0.75$	8	6	<10	

TABLE F-25

F-78

Γ

TABLE F-26 ELECTRICAL STRESS ANALYSIS OF THE CONTROL PROGRAMMER AND CAMERA SEQUENCER ASSEMBLY P-CHANNEL COUNTER, 1753140

** == *	Part Descrip	otion	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress	
	NOT E:	There are 18 identical flip-flop circuits in- cluding steering net- works and 82 identical gates. One flip-flop circuit and one gate were measured and the results are recorded below.					
R73*	8977933-249	3.83 KΩ, 1/8 w	11 peak	2.9 peak	12	10	
R74	RC07	220 Ω, 1/4 w	0.7	-	-	<10	
R75	8977933-249	3.83 KΩ, 1/8 w	0.07	-	-	<10	
R76	8977933-249	3.83 KΩ, 1/8 w	11 peak	2.9	31	25	
R77	8977933-249	3.83 KΩ, 1/8 w	0.05	-	-	<10	
R78	RC07	220 Ω, 1/4 w	0.7 peak	-	-	<10	
R79	8977933	2.26 KΩ, 1/8 w	7.5 peak	3.3	25	20 peak	
R80	8977933	2.26 KΩ, 1/8 w	7 peak	3.1	22	17 peak	
R81	8977933	2.26 KΩ, 1/8 w	6 peak	2.7	16	13 peak	
R82	8977933	2.26 KΩ, 1/8 w	12 peak	5.4 peak	32 peak	52 peak	
R83	8977933	11.5 KΩ, 1/8 w	12 peak	1	12	S 10	
R84	8977933	11.5 KΩ, 1/8 w	12 peak	1	12	SI0	
C13	CY FM15C	1000 pf, 300 volts to 500 volts	11			<10	
C14	CYFM15C	1000 pf, 300 volts to 500 volts	8			<10	
CR13	1N916	250 mw at 25 ⁰ C ambient	-13 +0	-	-	<10	
CR14	1N916	250 mw st 25 ⁰ C ambient	-10 +0	-	-	<10	

TABLE F-26 ELECTRICAL STRESS ANALYSIS OF THE CONTROL PROGRAMMER AND CAMERA SEQUENCER ASSEMBLY P-CHANNEL COUNTER, 1753140 (Continued)									
	Part Descr	iption		Stress Analysis					
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress			
Q13	2N914	360 mw at 25 ⁰ C ambient	CE = 0.75, 7.5 $BE = 0.75, -1.8$	5.4 peak	4.1	<10			
Q14	2N914	360 mw at 25 ⁰ C ambient	CE = 0.75, 7.5 BE = 0.75, -1.8	5.4 peak	4.1	<10			
i									
						8			
*40% duty cycle									

	Part Desc	ription	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
R1	RC20	6.8 KΩ, 1/2 w	18.9	2.78	52.5	<11	
R 2	RC20	3.0 KΩ, 1/2 w	8.2	2.73	22.4	<10	
R3	1175270-3	500 Ω , 1 w at 70 ^o C	0.13	0.26	0.026	<10	
R4	RC20	7.5 KΩ, 1/2 w	16.9	2.25	38.0	<10	
R5	RC20	7.5 KΩ, 1/2 w	16.7	2.22	37.0	<10	
R6	RC20	1.8 KΩ, 1/2 w	7.8	4.33	34.6	<10	
R7	RC20	2 KΩ, 1/2 w	18.9	9.45	179	36	
R8	RC20	1 KΩ, 1/2 w	3.8	3.8	14.5	<10	
R9	RC20	1.2 KΩ, 1/2 w	10	8.3	83.0	17	
R10	RE70G	0.2Ω, 15 w	0.45	2250	1000	<10	
R11	RE70G	0.2Ω, 15 w	0.5	2500	1250	<10	
R12	RC20	150 Ω, 1/2 w	1.8	13	23.4	<10	
R13	RC20	11 KΩ, 1/2 w	25.9	2, 36	61.2	12	
R14	RC20	2.7 KΩ, 1/2 w	6.4	2.36	15.2	<10	
R15	RC20	220 Ω, 1/2 w	-	-		<10	
R16	RC20	1 KΩ, 1/2 w	4.6	4.6	20.2	<10	
R17	RC20	1.5 KΩ, 1/2 w	2.4	1.6	3.84	<10	
R18	RN65E	51.1 KΩ, 1/4 w	6.1	0.12	0.73	<10	
R19	RN65E	31.6 KΩ, 1/4 w	3.8	0.12	0.45	<10	
R22	RN65E	226 KΩ, 1/4 w	27.9	0.12	3.42	<10	
R23	RN65E	31.6 KΩ, 1/4 w	4.0	0.12	0.5	<10	
R24	RN65E	20 KΩ, 1/4 w	1.9	0.095	0.18	<10	
R25	RN65E	31.6 KΩ, 1/4 w	3.0	0.095	0.285	<10	
R26	RC20	10 KΩ, 1/2 w	-	_	-	<10 <10	
R27	RC20	47 Ω, 1/2 w	_	-	-	<10	
R28	RC10GF392J	3.9 KΩ, 1/4 w	14	3.6	50	<10	
R29	RC10GF272J	2.7 KΩ, 1/4 w	5.5	2	11	<10	
C1	CL15D	1000 µf, 36 volts	27.2	-	**		
C2	CP09	0.22 μf, 100 VDC	25			75.5 25	

TABLE F-27 ELECTRICAL CTRESS ANALYSIS OF THE HIGH CURRENT

•

.

		ICAL STRESS ANALYS				
	Part Descript	ion		Stress Analysis		
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
CR1	1709319 - 1 (CD411)	250 mw at 25 ⁰ C ambient	8.4	9.4	79	
CR2	1N457A	100 mw at 25 ⁰ C ambient	-4	-	-	<10
CR3	1N945B	500 mw at 25 ⁰ C	11.7	2.6	30	<10
CR4	1N945B	500 mw at 25 ⁰ C	11.7	2.6	30	<10
CR5	C50DR309	90 amps		16000		36
CR6	1N945B	500 mw at 25 ⁰ C	11.7	2	24	<10
CR7	1N945B	500 mw at 25 ⁰ C	11.7	2	24	<10
Q1	2N329A	390 mw at 25 ⁰ C ambient	CE = 2.7 $BE = 0.5$	2.2	6	<10
$\mathbf{Q}2$	2N329A	390 mw at 25 ⁰ C ambient	BE = 0.54 CE = 2.7	9.45	26	<10
Q 3	2N329A	390 mw at 25 ⁰ C ambient	$\mathbf{BE} = 0.6$ $\mathbf{CE} = 14$	4	56	15
Q 4	2N329A	390 mw at 25 ⁰ C ambient	BE = 0.54 $CE = 15$	4.6	69	18
Q 5	2N1486	25 w at 25 ⁰ C case	CE = 3 $BE = 0.64$	13	69	<10
Q 6	2N1490	75 w at 25 ⁰ C case	CE = 4.3 BE = 1.3	2500	. 10800	15
Q7	2N1490	75 w at 25 ⁰ C case	CE = 4.3 $BE = 1.3$	2250	9700	14
K-1	SCD11DB-36	36 volts nominal coil voltage at 1250 ohms and 2 amps contact rating within specifica- tion.				
K-2	SCD11DB-36	36 volts nominal coil voltage at 1250 ohms and 2 amps contact rating within specifica- tion.				

	Part Descri	ption		Stress Analysis		
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
A1A1R1	RC20	470 Ω, 1/2 w	_	-	-	_
A1A1R2	RC20	270 Ω, 1/2 w	1	4	4	
A1A1R3	RC20	100 KΩ, 1/2 w	35	0.35	13	
A1A1R4	RC20	100 KΩ, 1/2 w	36	0.36	13	
A1A1R5	RC20	100 K Ω, 1/2 w	36	0.36	13	
A1A1R6	RC20	100 KΩ, 1/2 w	36	0.36	13	
A1A1C1	CS13	0.1 μ f, 50 volts	36			60
A1A1C2	CS13	50 μ f, 50 volts	36			60
A1A1C3	CS13	50 µf, 50 volts	36			60
A1A1C4	CS13	50 μ f, 50 volts	36			60
A1A1C3	CP09A1KB- 104K3	0.1 μf, 100 VDC	36			36
A1A1CRI	1N645	400 ma at 25 ⁰ C ambient	-	0.36	0.4	<10
A1A1CR	1N645	400 ma at 25 ⁰ C ambient	36	0.14 peak	5 peak	<10

TABLE F-27 ELECTRICAL STRESS ANALYSIS OF THE HIGH-CURRENT VOLTAGE REGULATOR, 1706631E (Continued)

•

•

•

	Part Descrip	otion	Stress Analysis			
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
R1	RC32	470 KΩ, 1 w	560	1,19	0.67	67
$\mathbf{R2}$	RC32	470 KΩ, 1 w	535	1.12	0.61	61
R3	RC42	220 KΩ, 2 w	410	1.86	0.765	38.
$\mathbf{R4}$	RC42	220 KΩ, 2 w	420	1,91	0.8	40
R5	RC42	100 KΩ, 2 w	280	2.8	0.784	39.
R6	RW57	40Ω, 6.5 w	7	175	1,225	18.
$\mathbf{R7}$	RW57	40Ω, 6.5 w	7	175	1.225	18,
R 8	RHM-25	250Ω, 25 w	40 peak-to-peak	80	6.8	27.
R9	RHM-50	7Ω, 50 w	8	1,142	9.15	18.
R10	RH10-200	200Ω, 10 w	4			40
R11	RH10-200	200Ω, 10 w	12.5		0.78	7.
C1	118P15501014	1.5 μf, 1400 volts at 85 ⁰ C	+1120			80
C2	118P15501014	1.5 μf, 1400 volts at 85 ⁰ C	-825			59
C3	118P25596T4	2.5 μ f, 600 volts	+280			47.
C 4	118P12602T4	12 µf, 200 volts	+111			55
C5	CP09A1KC3341	0.033 µf, 200 volts	100			50
C6	1709733-502	40 µf, 50 volts	30			60
C7	1709733-502	40 µf, 50 volts	30			60
CR1	PS2813	2000 volts piv, Diode bridge, 150 ma at 4 volts	+4 -1000	135	67.5	45
CR2	PS2812	1000 volts piv, Diode bridge, 100 ma at 2 volts	+2 -750	60	30	30
CR3	PS2813	2000 volts piv, Diode bridge, 150 ma at 4 volts	+4 -280	6	24	<10
CR4	1N1126A	1 w at 25 ⁰ C case	+0.9 -100	300	270	27
CR5	1N1126A	1 w at 25 ⁰ C case	+0.9 -100	300	270	27
CR6	1N1126A	400 volts piv, 1a at 1.1 volts	100	300		10
CR7	1N1126A	400 volts piv, 1a at 1.1 volts	100	300		10

TABLE F-28

.

F-84

Γ

TABLE	F-28
ELECTRICAL STRESS ANALYS	IS OF THE TRANSMITTER
POWER SUPPLY ASSEMBLY	r, 1183526 (Continued)

State and

	Part Descri	ption		Stress Analysis		
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
CR8*	1N1381A	400 volts piv	36			<10
CR9	1N645	400 ma at 25 ⁰ C ambient	60			<10
CR10	1N645	400 ma at 25 ⁰ C ambient	18			<10
CR11	1N645	400 ma at 25 [°] C ambient	27.5			<10
CR12	1N645	400 ma at 25 [°] C ambient	27.5			<10
Q1	2N2124	250 mw at 25 ⁰ C ambient	BE=16 peak-to-peak CE=50 peak-to-peak			1 1
Q2	2N2124	250 mw at 25 [°] C ambient	BE=16 peak-to-peak CE=58 peak-to-peak			1 1
L-1**	MIL-T-27A	Inductor	4		-	<10
						•
*Measured und **Square wave	ler no load conditions	4				

	Part Desc	ription		Stress Analysis		
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
R1	RC20	2 KΩ, 1/2 w	19	9.5	180	36
$\mathbf{R2}$	RC20	560 Ω , 1/2 w	7.8	14	109	22
R3	RC20	1.2 KΩ, 1/2 w	11.1	9.2	102	21
R4	RC20	6.8 KΩ, 1/2 w	18.5	2.7	50	10
R5	Trimpot	500Ω, 1 w	0.85	-	-	<10
R6	RC20	3 KΩ, 1/2 w	7.6	2,53	19.5	< 10
R7	RC20	1.2 KΩ, 1/2 w	5	4,17	21	<10
R8	RC20	56 KΩ, 1/2 w	6.8	0.12	-	-
R9	RN65	20 KΩ, 1/4 w	1.9	0.1	-	-
R10	RN65	31.6 KΩ, 1/4 w	3	0.1	-	-
R11	RN65	$221~{ m K}\Omega$, $1/4~{ m w}$	35	0,16	6	<10
R12	RN65	31.6 KΩ, 1/4 w	5		-	_
R14	RC20	27 KΩ, 1/2 w	4.9	0.2	-	-
C1	Vitramon Q	0.1 µf	34.5		100	34.8
CR1	CR4111	250 mw at 25 ⁰ C ambient	8.4	9,5	80	32
CR2	1N945B	500 mw at 25 [°] C ambient	11.7	0.3	3.5	_
CR3	1N945B	500 mw at 25 ⁰ C ambient	11.7	0.3	3.5	_
Q1	2N1132	600 mw at 25 [°] C ambient	CE=26.5 BE= 0.61	0.12	3.3	<10
Q2	2N1132	600 mw at 25 [°] C ambient	CE= 8.4 BE= 0.65	9.2	78	13
The followir	 g portion is on ; '	Schematic Drawing No. 17089	944			
Q1	2N1486	750 mw at 25 ⁰ C	CE=12.5 BE=0.71	360 max	255 max	34

R1 RC20 R2 RC20 R3 RC20 R4 RC20 C1 151D23 WO	56 K 4.7 I 3.3 I 2.3 µ 5X9010 2.3 µ 150 m ambi	Rating $\Omega, 1/2 w$ $\Omega, 0$ $\Omega, 0$	Voltage (volts) 22 2 6. 2 3. 7 3. 7	Current (milliamperes) 1, 2 - 1, 3 1, 1	Average Power (milliwatts) 27 - 8.2 4.2	Percen Rated Stress 11 <10 <10 <10 <10
R2 RC20 R3 RC20 R4 RC20 C1 151D23 WO C2 151D23 WO Q1 2N336	56 K 4.7 I 3.3 I 2.3 µ 5X9010 2.3 µ 150 m ambi	Ω, 1/2 w XΩ, 1/2 w XΩ, 1/2 w 4f, 35 volts 4f, 35 volts w at 25 ⁰ C	2 6.2 3.7 3.7	- 1.3	- 8.2	<10 <10 <10
R3 RC20 R4 RC20 C1 151D23 WO C2 151D23 WO Q1 2N336	4.71 3.31 2.34 5X9010 2.34 150 m ambi	 XΩ, 1/2 w XΩ, 1/2 w Af, 35 volts Af, 35 volts w at 25⁰ C 	6.2 3.7 3.7		8.2	<10 < 10
R4 RC20 C1 151D23 WO C2 151D23 WO Q1 2N336	3.3 I 5X9010 2.3 µ 5X9010 2.3 µ 150 m ambi	<Ω, 1/2 w 4f, 35 volts 4f, 35 volts 1w at 25 ⁰ C	3.7 3.7			< 10
C1 151D23 WO C2 151D23 WO Q1 2N336	5X9010 2.3 µ 5X9010 2.3 µ 150 m ambi	uf, 35 volts uf, 35 volts nw at 25 ⁰ C	3.7	1.1		
WO C2 151D23 WO 2N336	5X9010 2.3 µ 150 m ambi	4f, 35 volts w at 25 ⁰ C				
Q1 WO 2N336	150 m ambi	w at 25 ⁰ C				
	ambi			1 1		<10
T1 UTC D	0 T36	0111	BE= 0.6 CE=23.3	1.1	26	<10
	~ 100		1	1		
1						

TABLE F-30 LECTRICAL STRESS ANALYSIS OF THE TELEMETRY ASSEMBLY A-C AMPLIFIER, 8481476

	Part Des	cription		Stress Analysis		
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
R1	RC20	4.7 KΩ, 1/2 w	30	6.4	192	38
$\mathbf{R2}$	RC20	120 Ω, 1/2 w	0.7	0.58	< 1	<10
R3	RC20	1 KΩ, 1/2 w	1	1	1	<10
C1	CS13	40 μ f, 50 volts	30			60
C2	CS13	40 μ f, 50 volts	30			60
C3	CP09	0.022 μ f, 50 volts	28			56
C4	CS13	40 µf, 50 volts	27			54
C5	CS13	40 μ f, 50 volts	27			54
CR1	1N645	400 ma avg. at 25 ⁰ C ambient	+ 0.6, -9 peak	-	-	<10
CR2	1N645	400 ma avg. at 25 [°] C ambient	+ 0.6, -9 peak	-	-	<10
CR3	1N3037	51 volts, 1 w at 25 [°] C case	51	100 peak for 4 µsec	-	<10
CR4	PS2810	22.5 piv Diode Bridge 100 ma at 1 volts fwd.	+ 1.0, -31.5	22	22	22
CR5	1N645	400 ma avg. at 25 [°] C ambient	+ 0.7	<1	<1	<10
CR6	1N645	400 ma avg. at 25 ^C C ambient	+ 0.7	<1	<1	<10
CR7	1N3030	1 w at 25° C case	27	<1	27	<10
Q1	2N1484	25 w at 25 [°] C case	+ 1, -51	100 peak	100 peak	<10
Q2	2N1484	25 w at 25 [°] C case	+ 1, -51	100 peak	100 peak	<10
Q3	2N338	800 mw at 25 [°] C case	CE=1.5	2	3	<10
Q4	2N1485	25 w at 25 [°] C case	CE=2.5	62	155	< 10
L1	BP1140	120 µh, 750 ma	-	100	-	<10
L2	BP1140	120 µh, 750 ma	-	100	-	<1
L3	BP1140	120 µh, 750 ma	-	100	-	<10
T1	E6524-2			Not asce	rtained	

TABLE F-30ELECTRICAL STRESS ANALYSIS OF THE TELEMETRY ASSEMBLY A-C AMPLIFIER, 8481476

٠

	Part Descrip	ption		Stress Analysis		
Designation	Туре	Roting	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
R1	RC20	1200 Ω, 1/2 w		2.7	8.8	<10
R2	RC20	56 KΩ, 1/2 w		0.07	0.27	<10
R3	RN7OC	576 Ω, 1/2 w		14.6	123	25
R4	RC20	2700 Ω, 1/2 w		7.2	140	28
C1	СР09А1КВ104- КЗ	0.1 µf, 100 volts	34	-	-	34
CR1	1N538	750 ma at 25 ⁰ C ambient	1	190	190	25
CR2	1N538	750 ma at 25 ⁰ C ambient	1	190	190	25
CR3	1N538	750 ma at 25 ⁰ C ambient	1	190	190	25
CR4	1N3027	1 w at 25 ⁰ C case	20	12	240	24
CR5	1N935B	500 mw at 25 ⁰ C ambient	9	7.2	65	13
CR6	1N645	600 mw at 25 ⁰ C ambient	1		<60	<10
CR7	1N645	600 mw at 25 ⁰ C ambient	1		<60	<10
Q1	2N1486	25 w at 25 ⁰ C case	10	160	1600	<10
Q2	2N2904A	600 mw at 25 ⁰ C ambient	25	2.7	67	11

	Part Des	cription		Stress Analysis		-
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
Only one po	wer supply was	considered since they are	e essentially duplicate	s.		
R1	RW59	20 Ω, 3 w	2.5	125	313	10
R2	RW59	500 Ω, 3 w	35	70	2450	81.5
R3	RW59	0.5 Ω, 3 w	0.25	500	125	<10
R4	RC20	820 Ω, 1/2 w	6	7.3	44	<10
R5	8977933	46.4 Ω, 1/8 w	0.02	-	-	<10
R6	8977933	5.11 K Ω, 1/8 w	6	1.2	7	<10
R7	8977933	46.4 Ω, 1/8 w	0.03	-	-	<10
R 8	8977933	6.81 K Ω, 1/8 w	4.5	0.67	3.4	<10
R9	RC07	1.8 K Ω, 1/4 w	0	-	_	0
R10	RC07	1.0 K Ω, 1/4 w	13	13	169	68
R11	RC07	3.3 K Ω, 1/4 w	14	4.3	60	24
R12	RW59	1Ω, 3 w	0.3	300	90	3
R13	RN60	1 K Ω, 1/8 w	5.5	5.5	30	24
R14	8954937	500 Ω, 1 w	2.5	5	12.5	<10
R15	RN60	1 K Ω, 1/8 w	5	5	25	20
R16	RW56	20 Ω, 14 _. w	14	700	9800	70
R17	8977933	825 Ω, 1/8 w	3.5	4.25	14.5	12
R 18	8977933	46.4 Ω, 1/8 w	0.03	-	-	<10
R19	8977933	5.11 K Ω, 1/8 w	3.5	-	-	<10
R20	8977933	46.4 Ω, 1/8 w	0.02	_	-	<10
R21	8977933	6.81 K Ω, 1/8 w	2.5	-	-	<10
R22	RC07	1.8 K Ω, 1/4 w	0	-	-	<10
R23	RC07	15 K Ω, 1/4 w	19	1.3	24	10
R24	RC 07	3.3 K Ω, 1/4 w	18	5.5	98	39
R25	RW56	50 Ω, 14 w	9	180	1620	12
R26	RW59	1Ω, 3w	0.15	150	23	<10
R27	RN60	1 K Ω, 1/8 w	5.5	5.5	30	24
R28	8954937	500Ω, 1 w	2.5	5	12.5	<10
R29	RN60	1 K Ω, 1/8 w	5.5	5.5	30	41

ſ

	Part Descri	ption	Stress Analysis			
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
R45	RW56	25 Ω, 14 w	14	560	8000	73
C1	CL65	47 µf, 50 volts	30			60
C2	118 P10402S4	0.1 µf, 200 volts	70			35
C3	CL65	47 µf, 50 volts	28			56
C4	CL65	47 μf, 50 volts	28			56
C 5	118P22302S4	0.022 µf, 200 volts	9			<10
C6	CL65	47 μf, 50 volts	12			24
C7	CL65	47 µf, 50 volts	12			24
C8	118P22302S4	0.022 µf, 200 volts	10			<10
C9	CL65	47 µf, 50 volts	12			24
C10	CL65	47 µf, 50 volts	12			24
CR1*	USAF 1N1204	6 amps	+0.7, -28	500	350	<10
CR2*	USAF 1N1204	6 amps	+0.7, -28	500	350	<10
CR3*	U S AF 1N1204	6 amps	+0.7, -28	500	350	<10
CR4*	USAF 1N1204	6 amps	+0.7, -28	500	350	<10
CR5	USN 1N821	250 mw at 25 ⁰ C ambient	6.2	10	62	25
CR6	U S N 1N750A	250 mw at 25 ⁰ C ambient	5.2	13	68	27
CR8	USN 1N821	150 mw at 25 ⁰ C ambient	6.3	4	25	10
Q1	99240-177 (2N1486)	21 w at 25 ⁰ C case	BE= 2 CE=60	200	6000 peak	25
Q2	99240–177 (2N1486)	21 w at 25 ⁰ C case	BE= 1 CE=60	200	6000 peak	25
Q3	2N916	310 mw at 25 ⁰ C ambient	BE= 0.6 CE= 7	1.2	9	<10
Q4	2N916	310 mw at 25 ⁰ C ambient	BE= 0.6 CE= 1.6	1.2	2	<10
Q5	2N869	310 mw at 25 ⁰ C ambient	BE= 0.6 CE= 9	0.3	2.7	<10

-

	Part Des	cription		Stress Analysis		
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
Q6	2N916	310 mw at 25 ⁰ C ambient	BE= 0.6 CE= 8	4	32	10
Q7	2N1485	21 w at 25 ⁰ C case	BE= 0.7 CE=14	300	4200	20
Q 8	2N869	310 mw at 25 ⁰ C ambient	BE= 0.6 CE= 7	0.6	4.2	<10
Q9	2N869	310 mw at 25 ⁰ C ambient	BE= 0.6 CE= 5	0.6	3	<10
Q10	2N335	150 mw at 25 ⁰ C ambient	BE= 0.6 CE=11	1.2	13	<10
Q11	2N916	310 mw at 25 [°] C case	BE= 0.6 CE=12	5,3	64	20
Q12	2N1485	21 w at 25 ⁰ C case	BE= 0.7 CE=12	150	1800	<10

Part Description			Stress Analysis			
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress
R1	RC32	1 Meg Ω, 1 w	370			14
R2	RC32	1 Meg Ω, 1 w	320			10
R3	RC32	1 Meg Ω, 1 w	339.6			<12
R4	RC07	10 K Ω, 1/4 w	0.1			<10
R5	RC20	3900 Ω, 1/2 w	26.5			36
R 6	RC20	2200 Ω, 1/2 w	18.5			31
R 7	RC07	10 K Ω, 1/4 w	6.7			<10
R 8	RC07	10 K Ω, 1/4 w	1.8			<10
R11	RC07	10 K Ω, 1/4 w	0			<10
R13		1 K Ω, 3 w	4.8			<10
R14	RC07	10 K Ω, 1/4 w	0			<10
R15	RC07	68 K Ω, 1 w	37.2			<10
R18	RC20	10 Ω, 1/2 w	1.2			29
R19	RH10	3500 Ω, 10 w	61.2		:	11
CR1	1N761	400 mw at 25 ⁰ C ambient	-0.5	7.5	38	15.
CR2	1N758A	400 mw at 25 ⁰ C ambient	-8.5	1	8.5	<10
CR3	1N761	400 mw at 25 ⁰ C ambient	4.8	11.8	56.6	23
Q1	2N424	85 w at 25 [°] C case	37.8	120	4536	5.

TABLE F-34 STRESS ANALYSIS OF THE TELEMETRY PROCESSOR ASSEMBLY

	Part Desc	ription	Stress Analysis				
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
C1	8938348-16	50 µf, 60 VDC	36			60	
CR1	1N538	750 ma at 25 ⁰ C ambient		30	30	<10	
CR2	1N538	750 ma at 25 ⁰ C ambient		30	30	<10	
CR3	1N538	750 ma at 25 ⁰ C ambient		30	30	<10	
CR5	1N538	750 ma at 25 ⁰ C ambient		relay coil transient	-	<10	
CR6	1N538	750 ma at 25 [°] C ambient		relay coil transient	-	<10	
CR7	1N538	750 ma at 25 ⁰ C ambient		30	30	<10	
F1	17500596-1	fuse, S10-B10, 5A		3500	NA	1	
F6	1175965-4	fuse, wire 3A, (2.2 amp vacuum)		3500	NA		

	Part Desc	ription		Stress Analysis		
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power {milliwatts}	Percent Rated Stress
		BOARD A1				
R1	RC07	75 Ω, 1/4 w	1.5			12 peal
R2*	RC07	750 Ω, 1/4 w	41	54		
R3	RC07	1.5 K Ω, 1/4 w	0.2 to 0.9			<10
R 4	RC07	1.5 K Ω, 1/4 w	-5			<10
R5	RC07	1.5 K Ω, 1/6 w	12			38 pea
R6	RN60C	75 K Ω, 1/8 w	33	-	15.6	12
R 7	RN60C	10 K Ω, 1/8 w	5	0.5	2.5	<10
R8	RN60C	2.74 K Ω, 1/8 w	-6	2.2	13.5	11
R9	RN60C	909 Ω, 1/8 w	7	7.7	54	43
R10	RC07	100 K Ω, 1/4 w	18	-	-	<10
R11	RN60C	2.0 K Ω, 1/8 w	4	-	-	<10
R12	RN60C	2.67 K Ω, 1/8 w	6	2.24	13.4	11
R13	1175270-12	1000 Ω, 1 w	2.2	2.2	5	<10
R14	RN60C	2.61 KΩ, 1/8 w	6	2.25	13.4	11
R15	RC07	16 K Ω, 1/4 w	6	-	_	<10
R16	RN60C	5.23 K Ω, 1/8 w	9	1.7	15.5	12
R17	1175270-12	1000 Ω, 1 w	2.2 to 1.8	2.2	5	<10
R1 8	RN60C	6.04 K Ω, 1/8 w	12	2	24	19
R19	RC07	2.0 K Ω, 1/4 w	-1.3	1.3	1.7	<10
R20	RC07	3.0 K Ω, 1/4 w	0.6	-	-	<10
R21	RW57	100 Ω, 6.5 w	3.5	35	110	<10
R22	RC07	8.2 K Ω, 1/4 w	15	1.8	27	11
C1	Sprague 150 D	2.2 µf, 35 volts	6			17
C2	Sprague 150 D	33 µf, 35 volts	13			37
C3	1175259-14	0.05 µf, 100 volts	4			<10
C4	1175251-225	3900 µf, 500 volts	3			<10
C5	1175259-14	0.05 µf, 100 volts	24.5			25

TABLE F-36 ELECTRICAL STRESS ANALYSIS OF THE ELECTRONIC CLOCK ASSEMBLY 1753325D

.

-

	Part Descrip	tion	Stress Analysis					
Designation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress		
		BOARD A2						
R1	RC07	10 K Ω, 1/4 w	0.3	-	-	<10		
$\mathbf{R2}$	RC07	270 K Ω, 1/4 w	+0.8 to -5	-	-	<10		
R3	RC07	100 K Ω, 1/4 w	12	0.2 peak	4 peak	<10		
R4**	RC07	8.2 K Ω, 1/4 w	13 peak	1.6 peak	10	<10		
$\mathbf{R5}$	RC07	7.5 K Ω, 1/4 w	6	0.8	4.8	<10		
$\mathbf{R6}$	RC07	1 K Ω, 1/4 w	-	-	-	<10		
R7	RN60C	30.9 K Ω, 1/8 w	-	-	-	<10		
R8	RN60C	76.8 K Ω, 1/8 w	-	-	-	<10		
R9	RN60C	13.0 K Ω, 1/8 w	4.5	-	-	<10		
R10	RN60C	68.1 K Ω, 1/8 w	2.5	-	-	<10		
R11	RC07	10 K Ω, 1/4 w	-	-	-	<10		
R12	RN60C	5.23 K Ω, 1/8 w	4	< 1	3	<10		
R13	RC07	10 K Ω, 1/4 w	-	-	-	<10		
R14	RC07	33 K Ω, 1/4 w	13	0.4	5.2	<10		
R15	RC07	7.5 K Ω, 1/4 w	7.5 peak	1	7.5	<10		
C1	Sprague 150 D	0.22 µf, 35 volts	6	-	-	20		
C2	1175250-349	820 µf, 300 volts	-13			<10		
C3	Sprague 150 D	6.8 µf, 35 volts	15			43		
CR1	USN1N914	250 mw at 25 ⁰ C ambient	-0.5	1.5 peak	0.75	<10		
CR2	U S N1N914	250 mw at 25 ⁰ C ambient	-	-	-	<10		
CR3	USN1N914	250 mw at 25 ⁰ C ambient	+0.4	-	-	<1(
CR4	USN1N914	250 mw at 25 ⁰ C ambient	-	-	-	<10		
CR5	USN1N914	250 mw at 25 ⁰ C ambient	+0.4	-	-	<10		
CR6	USN1N914	250 mw at 25 ⁰ C ambient	+0.4, -6.5	-	-	<1		
				-	-			

TABLE F-36 ECTRICAL STRESS ANALYSIS OF THE ELECTRONIC CLOCK ASSEMBLY 1753325D (Continued

Part Description		Stress Analysis				
esignation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percent Rated Stress
	USN1N914	250 mw at 25 [°] C	+0.6, -1.3	-	-	<10
CR8	USN1N914	ambient 250 mw at 25 ⁰ C	+1.7, -0.8	-	-	<10
Q1	2N718A	ambient	BE= 0.4, 1.7 CE=+0.4	1.5 peak	2 peak	<10
		BOARD A3			-	<10
R23	RC07	10 K Ω, 1/4 w	-	_	_	<10
R24	RC07	10 K Ω, 1/4 w	0.4		-	<10
R25	RC07	1 K Ω, 1/4 w	-	7	91	23
CR1	1N964B	500 mw at 25 ⁰ C ambient	13	•		<10
CR2	1N914	250 mw at 25 ⁰ C ambient	-1.3	-	-	
CR3	1N827	250 mw at 25 [°] C ambient	6.3	7	44	1
Q1	2N1893	800 mw at 25 [°] C	BE=+0.7 CE=-41	100	70 peak	<1
Q2	2N722	ambient 400 mw at 25 [°] C	BE= 0.7 CE=-0.7, 41	34	24 peak	<1
Q3	2N722	ambient 400 mw at 25 [°] C	$BE \approx +0.4$ $CE = 4$	1	0,5	<1
Q4	2N722	ambient 400 mw at 25 ⁰ C	BE=+0.5 CE= 4	1	0.5	<
-	2N1486	ambient 25 mw at 25 ⁰ C	BE= 1.3 $CE=24$	34	840	<
Q5	2N1893	ambient 800 mw at 25 [°] C	BE= 1.3 CE= 2.4	1.5	36	<
Q6	2N1132	ambient 600 mw at 25 ⁰ C	BE= 0.3 CE=17	2	34	<
Q7 Q8	2N722	ambient 400 mw at 25 ⁰ C ambient	BE= 0.3 CE=13	2	26	<

•

	Part Desc	ription	Stress Analysis					
Designation	Туре	Rating	Voltage (volts)	(m	Current nilliamperes	Average Power (milliwatte		Percen Rated Stress
COMP	BOARD A1			+-		+	+	
$\mathbf{R7}$	RC20	100 KΩ, 1/2 w	36					
R8	RC20	100 KΩ, 1/2 w	36		0.36	<1		<10
R9	RC20	10 KΩ, 1/2 w	-		0.4	<1		<10
C3	CL65CK500KP		7.5		0.8	6 pea	k	<10
CR3*	1N538	750 ma at 25° C ambient	13	1)	180	1) 110	1)	$26 \\ 17$
CR4*	1N538	750 ma at 25 ⁰ C ambient		2) 1)	370 180	2) 225 1) 110	2) 1)	35 17
CR5	1N538	750 ma at 25 ⁰ C ambient	35	2)	370 26	2) 225 29	2)	35 <10
CR6	JAN1N645	400 ma at 25 ⁰ C ambient			26	29		<10
CR7*	1N538	750 ma at 25 ⁰ C ambient		1) 2)	180	1) 110	1)	17
CR8*	1N538	750 ma at 25 ⁰ C ambient		2) 1) 2)	370 180 270	 2) 225 1) 110 	2) 1)	3517
CR9	JAN1N645	400 ma at 25 ⁰ C ambient		2)	370 26	2) 225 29	2)	35 <10
Q1	2N722	400 ma at 25 ⁰ C ambient	36		26	39 peak		16
COMP. 1	BOARD A2							
R1	RC20	100 K Ω , 1/2 w	34					
C2	CL65	50 μ f, 60 volts DC	34		0.36	<1		<10
COMP. B	OARD A4							57
C1	CS13A	$22 \mu f$, 50 volts						
C2	CS13A	$22 \mu f$, 50 volts	34					68
K1**	1708001-1	Coil: 36 volts Nom., 1250 Ω Contacts: 2A	34 36		29 1	000 peak		68

Part Description			Stress Analysis				
esignation	Туре	Rating	Voltage (volts)	Current (milliamperes)	Average Power (milliwatts)	Percen Rated Stress	
K2**	1608001-1	Coil: 36 volts Nom., 1250 Ω Contacts: 2A	36	29	1000 peak		
K3	1708871-1	Coil: 36 volts Nom., 1400 Ω , 1 w Contacts: 2A	36	26	900 peak		
K4	1708871	Coil: 36 volts Nom., 1400 Ω, 1 w Contacts: 2A	36	26	900 peak		

TABLE F-37

-

.

Appendix G Ranger Standard Parts Lists

.

-

Type Description is rear From the constraint of the constraint			т	TABLE G-1 DARD PARTS LIS			
ResistorCC 1/4W, 45% , 750RC07GF751JA. B.ML-R-11CA35ResistorCC 1/4W, 45% , 1500RC07GF163JA. B.ML-R-11CA35, A4ResistorCC 1/4W, 45% , 100KRC07GF164JA. B.ML-R-11CA35, A4ResistorCC 1/4W, 45% , 16KRC07GF163JA. B.ML-R-11CA35, A4ResistorCC 1/4W, 45% , 16KRC07GF302JA. B.ML-R-11CA35, A4ResistorCC 1/4W, 45% , 3KRC07GF302JA. B.ML-R-11CA35, A4ResistorCC 1/4W, 45% , 3KRC07GF103JA. B.ML-R-11CA35, A4ResistorCC 1/4W, 45% , 70KRC07GF22JA. B.ML-R-11CA35, A4ResistorCC 1/4W, 45% , 70KRC07GF752JA. B.ML-R-11CA35ResistorCC 1/4W, 45% , 70KRC07GF752JA. B.ML-R-11CA35Resistor1/2W, 45% , 36K CCRC20GF223JA. B.ML-R-11CA27Resistor1/2W, 45% , 36K CCRC20GF282JA. B.ML-R-11CA26-3Resistor1/2W, 45% , 16K CCRC20GF10KA. B.ML-R-11CA26-3Resistor1/2W, 45% , 16K CCRC20GF10ZKA. B.ML-R-11CA26-3Resistor1/2W, 40% , 140%, 14K CCRC20GF142JA. B.ML-R-11CA26-3Resistor1/2W, 40% , 140%, 14K CCRC20GF123JA. B.ML-R-11CA26-3ResistorCC, 1/4W, 5\%, 5KRC07GF263JA. B.ML-R-11CA22 (A11Resisto		Subassemblies Where Used	MIL SPEC	Vendor	Procurement No.	Description of Part	Туре
ResistorCC 1/4W, $\pm 5\%$, 1500RC07GF152JA.B.MIL-R-11CA35, A3ResistorCC 1/4W, $\pm 5\%$, 16KRC07GF163JA.B.MIL-R-11CA35ResistorCC 1/4W, $\pm 5\%$, 16KRC07GF163JA.B.MIL-R-11CA35ResistorCC 1/4W, $\pm 5\%$, 2KRC07GF102JA.B.MIL-R-11CA35ResistorCC 1/4W, $\pm 5\%$, 3KRC07GF102JA.B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 1KRC07GF102JA.B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 1KRC07GF103JA.B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 1KRC07GF24JA.B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 7.5KRC07GF74JA.B.MIL-R-11CA35ResistorCC 1/4W, $\pm 5\%$, 7.5KRC07GF74JA.B.MIL-R-11CA35Resistor1/2W, $\pm 5\%$, 7.5KRC07GF74JA.B.MIL-R-11CA27Resistor1/2W, $\pm 5\%$, 8.2CRC20GF22JA.B.MIL-R-11CA27Resistor1/2W, $\pm 5\%$, 8.2CRC20GF263JA.B.MIL-R-11CA26Resistor1/2W, $\pm 5\%$, 8.2CRC20GF102KA.B.MIL-R-11CA26-3,Resistor1/2W, $\pm 5\%$, 8.6KRC07GF37JA.B.MIL-R-11CA26-3,Resistor1/2W, $\pm 0\%$, 1K CCRC20GF102KA.B.MIL-R-11CA26-3,Resistor1/2W, $\pm 0\%$, 56KRC07GF37JA.B.MIL-R-11CA26-3,ResistorCC, 1/4W, 5\%,		A35	MIL-R-11C	A.B.	RC07GF750J	CC 1/4W, ±5%, 75	Resistor
ResistorCC 1/4W, $\pm 5\%$, 100KRC07GF104JA. B.MIL-R-11CA35, A3ResistorCC 1/4W, $\pm 5\%$, 16KRC07GF163JA. B.MIL-R-11CA35, A3ResistorCC 1/4W, $\pm 5\%$, 3KRC07GF202JA. B.MIL-R-11CA35, A3ResistorCC 1/4W, $\pm 5\%$, 3KRC07GF102JA. B.MIL-R-11CA35, A3ResistorCC 1/4W, $\pm 5\%$, 1KRC07GF102JA. B.MIL-R-11CA35, A3ResistorCC 1/4W, $\pm 5\%$, 10KRC07GF102JA. B.MIL-R-11CA35, A3ResistorCC 1/4W, $\pm 5\%$, 10KRC07GF72JA. B.MIL-R-11CA35, A3ResistorCC 1/4W, $\pm 5\%$, 270KRC07GF72JA. B.MIL-R-11CA35ResistorCC 1/4W, $\pm 5\%$, 7.5KRC07GF72JA. B.MIL-R-11CA35Resistor1/2W, $\pm 5\%$, 22 C CRC20GF22JA. B.MIL-R-11CA27Resistor1/2W, $\pm 5\%$, 36K CCRC20GF22JA. B.MIL-R-11CA26Resistor1/2W, $\pm 0\%$, $\pm 3\%$, 22 C CRC20GF22JA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 0\%$, $\pm 3\%$, 22 C CRC20GF22JA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 0\%$, $\pm 3\%$, 22 C CRC20GF22JA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 0\%$, $\pm 3\%$, 22 C CRC20GF47ZKA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 0\%$, $\pm 5\%$, 56KRC07GF153JA. B.MIL-R-11CA26-3ResistorCC, $1/4W$, $\pm 5\%$, 56KRC07GF153JA. B.<		A35	MIL-R-11C	A. B.	RC07GF751J	CC 1/4W, ±5%, 750	Resistor
ResistorCC 1/4W, $\pm 5\%$, 16KRC07GF163JA. B.MIL-R-11CA35ResistorCC 1/4W, $\pm 5\%$, 2KRC07GF202JA. B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 3KRC07GF102JA. B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 1KRC07GF102JA. B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 16KRC07GF103JA. B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 10KRC07GF22JA. B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 270KRC07GF22JA. B.MIL-R-11CA35ResistorCC 1/4W, $\pm 5\%$, 270KRC07GF22JA. B.MIL-R-11CA35ResistorC1/4W, $\pm 5\%$, 270KRC07GF22JA. B.MIL-R-11CA27Resistor1/2W, $\pm 5\%$, 820 CCRC20GF22JA. B.MIL-R-11CA26Resistor1/2W, $\pm 5\%$, 836 CCRC20GF363JA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 10\%$, 10%1C CRC20GF12ZKA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 10\%$, 10%4. KCCRC20GF12ZKA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 10\%$, 5%S6KRC07GF353JA. B.MIL-R-11CA26-3ResistorCC, 1/4W, 5%, 56KRC07GF12JA. B.MIL-R-11CA26-3ResistorCC, 1/4W, 5%, 56KRC07GF13JA. B.MIL-R-11CA2 (11-ResistorCC, 1/4W, 5%, 59KRC07GF13JA. B.MIL-R-11C		A35, A5 (4, 5, 6 (A10, 2, 4)	MIL-R-11C	A.B.	RC07GF152J	CC 1/4W, ±5%, 1500	Resistor
ResistorCC 1/4W, $\pm 5\%$, 2KRC07GF202JA. B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 3KRC07GF302JA. B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 1KRC07GF103JA. B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 10KRC07GF103JA. B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 10KRC07GF22JA. B.MIL-R-11CA35, A4ResistorCC 1/4W, $\pm 5\%$, 7.5KRC07GF752JA. B.MIL-R-11CA35Resistor1/2W, $\pm 5\%$, 7.5KRC07GF752JA. B.MIL-R-11CA27Resistor1/2W, $\pm 5\%$, 82C CRC20GF22ZJA. B.MIL-R-11CA27Resistor1/2W, $\pm 5\%$, 836K CCRC20GF25JA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 5\%$, 36K CCRC20GF25JA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 5\%$, 36K CCRC20GF102KA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 0\%$, 120 CCRC20GF12KA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 0\%$, 12K CCRC07GF53JA. B.MIL-R-11CA26-3ResistorCC, 1/4W, 5% , 56KRC07GF563JA. B.MIL-R-11CA2 (11-ResistorCC, 1/4W, 5% , 56KRC07GF203JA. B.MIL-R-11CA2 (11-ResistorCC, 1/4W, 5% , 30KRC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, 1/4W, 5% , 30KRC07GF753JA. B.MIL-R-11CA2 (11- <td>2 (13), A2 (3)</td> <td>A35, A2 (13), A3</td> <td>MIL-R-11C</td> <td>A.B.</td> <td>RC07GF104J</td> <td>CC 1/4W, ±5%, 100K</td> <td>Resistor</td>	2 (13), A2 (3)	A35, A2 (13), A3	MIL-R-11C	A.B.	RC07GF104J	CC 1/4W, ±5%, 100K	Resistor
ResistorC C 1/4W, $\pm 5\%$, 3KR C07GF302JA. B.MIL-R-11CA35, A4ResistorC C 1/4W, $\pm 5\%$, 1KR C07GF102JA. B.MIL-R-11CA35, A4ResistorC C 1/4W, $\pm 5\%$, 10KR C07GF103JA. B.MIL-R-11CA35, A4ResistorC C 1/4W, $\pm 5\%$, 10KR C07GF124JA. B.MIL-R-11CA35, A4ResistorC C 1/4W, $\pm 5\%$, 7.5KR C07GF22JA. B.MIL-R-11CA35ResistorC C 1/4W, $\pm 5\%$, 7.5KR C07GF752JA. B.MIL-R-11CA35Resistor1/2W, $\pm 5\%$, 7.5KR C20GF22JA. B.MIL-R-11CA27Resistor1/2W, $\pm 5\%$, 820 CCR C20GF26JJA. B.MIL-R-11CA26Resistor1/2W, $\pm 5\%$, 36K CCR C20GF963JA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 5\%$, 36K CCR C20GF12JKA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 5\%$, 36K CCR C20GF663JA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 5\%$, 36KR C07GF653JA. B.MIL-R-11CA26-3ResistorC C, 1/4W, 5% , 47KR C07GF63JA. B.MIL-R-11CA2 (A11ResistorC C, 1/4W, 5% , 30KR C07GF73JA. B.MIL-R-11CA2 (A11ResistorC C, 1/4W, 5% , 30KR C07GF73JA. B.MIL-R-11CA2 (A11ResistorC C, 1/4W, 5% , 30KR C07GF73JA. B.MIL-R-11CA2 (A11ResistorC C, 1/4W, 5% , 30KR C07GF753JA. B.MIL-R-11C<		A35	MIL-R-11C	A.B.	RC07GF163J	CC 1/4W, ±5%, 16K	Resistor
ResistorCC 1/4W, $\pm 5\%$, 1KRC07GF102JA. B.MIL-R-11CA35 (A2 A2 (1, 2) A2 (1, 2) A2 (1, 2)ResistorCC 1/4W, $\pm 5\%$, 10KRC07GF103JA. B.MIL-R-11CA35, A3 A2 (1, 2)ResistorCC 1/4W, $\pm 5\%$, 10KRC07GF762JA. B.MIL-R-11CA35, A3 A35, A3ResistorCC 1/4W, $\pm 5\%$, 270KRC07GF752JA. B.MIL-R-11CA35ResistorCC 1/4W, $\pm 5\%$, 2.2K CCRC20GF22JA. B.MIL-R-11CA35Resistor1/2W, $\pm 5\%$, 36K CCRC20GF82JA. B.MIL-R-11CA27Resistor1/2W, $\pm 5\%$, 36K CCRC20GF963JA. B.MIL-R-11CA26Resistor1/2W, $\pm 0\%$, $\pm 0\%$, $\pm 0\%$ RC20GF102KA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 10\%$, $\pm 0\%$, -10% RC20GF12JA. B.MIL-R-11CA26-3Resistor1/2W, $\pm 10\%$, $\pm 0\%$ RC07GF12JA. B.MIL-R-11CA26-3ResistorCC, 1/4W, $\pm 5\%$, 56KRC07GF563JA. B.MIL-R-11CA2 (A11ResistorCC, 1/4W, $\pm 5\%$, 56KRC07GF47JA. B.MIL-R-11CA2 (A11ResistorCC, 1/4W, $\pm 5\%$, 91KRC07GF33JA. B.MIL-R-11CA2 (A11ResistorCC, 1/4W, $\pm 5\%$, 30KRC07GF33JA. B.MIL-R-11CA2 (11-ResistorCC, 1/4W, $\pm 5\%$, 30KRC07GF33JA. B.MIL-R-11CA2 (11-ResistorCC, 1/4W, $\pm 5\%$, 30KRC07GF33JA. B.MIL-R-11CA2 (11-Resistor <td>.2 (A10)</td> <td>A35, A2 (A10)</td> <td>MIL-R-11C</td> <td>A.B.</td> <td>RC07GF202J</td> <td>CC 1/4W, ±5%, 2K</td> <td>Resistor</td>	.2 (A10)	A35, A2 (A10)	MIL-R-11C	A.B.	RC07GF202J	CC 1/4W, ±5%, 2K	Resistor
AesistorCC $1/4W$, $\pm 5\%$, 10KRC07GF103JA.B.MIL-R-11CA35, A2AtesistorCC $1/4W$, $\pm 5\%$, 82KRC07GF22JA.B.MIL-R-11CA35, A2ResistorCC $1/4W$, $\pm 5\%$, 270KRC07GF72JA.B.MIL-R-11CA35ResistorCC $1/4W$, $\pm 5\%$, 7.5KRC07GF72JA.B.MIL-R-11CA35Resistor1/2W, $\pm 5\%$, 32K CCRC20GF22JA.B.MIL-R-11CA27Resistor1/2W, $\pm 5\%$, 36K CCRC20GF363JA.B.MIL-R-11CA26-3Resistor1/2W, $\pm 5\%$, 36K CCRC20GF12KA.B.MIL-R-11CA26-3Resistor1/2W, $\pm 10\%$, 1K CCRC20GF12KA.B.MIL-R-11CA26-3Resistor1/2W, $\pm 10\%$, 120 CCRC20GF472KA.B.MIL-R-11CA26-3Resistor1/2W, $\pm 10\%$, 12X CCRC20GF472KA.B.MIL-R-11CA26-3ResistorCC, 1/4W, 5% , 56KRC07GF13JA.B.MIL-R-11CA2 (A11ResistorCC, 1/4W, 5% , 56KRC07GF43JA.B.MIL-R-11CA2 (A11ResistorCC, 1/4W, $\pm 5\%$, 30KRC07GF33JA.B.MIL-R-11CA2 (11-A2)ResistorCC, 1/4W, $\pm 5\%$, 330KRC07GF33JA.B.MIL-R-11CA2 (11-A2)ResistorCC, 1/4W, $\pm 5\%$, 330KRC07GF33JA.B.MIL-R-11CA2 (11-A2)ResistorCC, 1/4W, $\pm 5\%$, 330KRC07GF33JA.B.MIL-R-11CA2 (11-A2)ResistorCC, 1/4W, $\pm 5\%$, 530RC07GF33JA.B.MIL-R-11CA	9 (A6)	A35, A9 (A6)	MIL-R-11C	A.B.	RC07GF302J	CC 1/4W, ±5%, 3K	Resistor
ResistorCC $1/4W$, $\pm 5\%$, $8.2K$ RC07GF822JA. B.MIL-R-11CA35, A3ResistorCC $1/4W$, $\pm 5\%$, $270K$ RC07GF274JA. B.MIL-R-11CA35ResistorCC $1/4W$, $\pm 5\%$, $7.5K$ RC07GF752JA. B.MIL-R-11CA35Resistor $1/2W$, $\pm 5\%$, $2.2K$ CCRC20GF22JA. B.MIL-R-11CA27Resistor $1/2W$, $\pm 5\%$, 820 CCRC20GF821JA. B.MIL-R-11CA27Resistor $1/2W$, $\pm 5\%$, 820 CCRC20GF363JA. B.MIL-R-11CA26Resistor $1/2W$, $\pm 10\%$, $10C$ CCRC20GF102KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 120 CCRC20GF121KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 120 CCRC20GF472KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 5% , $5K$ RC07GF124JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $5K$ RC07GF473JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF473JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, 5% , $47K$ RC07GF913JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, 5% , $47K$ RC07GF920JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $30K$ RC07GF934JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $30K$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, ± 5	2) (A11-2), A9(2) 2, 11-1-3) A2(6)		MIL-R-11C	A.B.	RC07GF102J	CC 1/4W, ±5%, 1K	Resistor
ResistorCC $1/4W$, $\pm 5\%$, 270KRC07GF274JA.B.MIL-R-11CA35ResistorCC $1/4W$, $\pm 5\%$, 7.5KRC07GF752JA.B.MIL-R-11CA35Resistor $1/2W$, $\pm 5\%$, 2.2K CCRC20GF22JA.B.MIL-R-11CA27Resistor $1/2W$, $\pm 5\%$, 820 CCRC20GF22JA.B.MIL-R-11CA27Resistor $1/2W$, $\pm 5\%$, 36K CCRC20GF363JA.B.MIL-R-11CA26Resistor $1/2W$, $\pm 5\%$, 36K CCRC20GF102KA.B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 120 CCRC20GF121KA.B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 4.7K CCRC20GF472KA.B.MIL-R-11CA26-3ResistorCC, $1/4W$, $\pm 5\%$, 12K CCRC07GF263JA.B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , 47KRC07GF473JA.B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , 47KRC07GF473JA.B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, 5% , 47KRC07GF203JA.B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 30KRC07GF334JA.B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 30KRC07GF33JA.B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, 30KRC07GF23JA.B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, 30KRC07GF33JA.B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, 6.8KRC07GF23JA.B.	.2 (10, 3)	A35, A2 (10, 3)	MIL-R-11C	A.B.	RC07GF103J	CC 1/4W, ±5%, 10K	lesistor
ResistorCC $1/4W$, $\pm 5\%$, 7.5KRC07GF752JA. B.MIL-R-11CA35Resistor $1/2W$, $\pm 5\%$, 2.2K CCRC20GF222JA. B.MIL-R-11CA27Resistor $1/2W$, $\pm 5\%$, 820 CCRC20GF821JA. B.MIL-R-11CA27Resistor $1/2W$, $\pm 5\%$, 36K CCRC20GF363JA. B.MIL-R-11CA36Resistor $1/2W$, $\pm 10\%$, 1K CCRC20GF102KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 120 CCRC20GF121KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 120 CCRC20GF472KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 12K CCRC07GF563JA. B.MIL-R-11CA26-3ResistorCC, $1/4W$, 5% , 56KRC07GF563JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , 47KRC07GF473JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , 91KRC07GF913JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 30KRC07GF334JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 50KRC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 50KRC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 50KRC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 56KRC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 56KRC07GF763J <td>.2 (11-1)</td> <td>A35, A2 (11-1)</td> <td>MIL-R-11C</td> <td>A.B.</td> <td>RC07GF822J</td> <td>CC 1/4W, ±5%, 8.2K</td> <td>Resistor</td>	.2 (11-1)	A35, A2 (11-1)	MIL-R-11C	A.B.	RC07GF822J	CC 1/4W, ±5%, 8.2K	Resistor
Resistor $1/2W$, $\pm 5\%$, $2.2K$ CCRC20GF222JA. B.MIL-R-11CA27Resistor $1/2W$, $\pm 5\%$, $36K$ CCRC20GF821JA. B.MIL-R-11CA27Resistor $1/2W$, $\pm 5\%$, $36K$ CCRC20GF863JA. B.MIL-R-11CA36Resistor $1/2W$, $\pm 10\%$, $1K$ CCRC20GF102KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 120 CCRC20GF121KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 10% CCRC20GF472KA. B.MIL-R-11CA26-3Resistor $1/4W$, $\pm 5\%$, $12K$ CCRC07GF124JA. B.MIL-R-11CA26-3ResistorCC, $1/4W$, 5% , $5K$ RC07GF563JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF473JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF913JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $91K$ RC07GF913JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $91K$ RC07GF203JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330 RC07GF243JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330 RC07GF23JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, 330 RC07GF243JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, 5.6 RC07GF243JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$,		A35	MIL-R-11C	A.B.	RC07GF274J	CC 1/4W, ±5%, 270K	Resistor
Resistor $1/2W$, $\pm 5\%$, 520 CCRC20GF821JA. B.MIL-R-11CA27Resistor $1/2W$, $\pm 5\%$, $36K$ CCRC20GF363JA. B.MIL-R-11CA36Resistor $1/2W$, $\pm 10\%$, $1K$ CCRC20GF102KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 120 CCRC20GF121KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, $4.7K$ CCRC20GF472KA. B.MIL-R-11CA26-3Resistor $1/4W$, $\pm 5\%$, $12K$ CCRC07GF124JA. B.MIL-R-11CA26-3ResistorCC, $1/4W$, $\pm 5\%$, $56K$ RC07GF563JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF473JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF913JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $30K$ RC07GF934JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $30K$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $330K$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330 RC07GF331JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, 330 RC07GF682JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, $5.6K$ RC07GF102KA. B.MIL-R-11CA2 (12-Resistor $1/4W$, $\pm 5\%$, $4.7C$ RC07GF102KA. B.MIL-R-11CA2 (10)Resistor $1/4$		A35	MIL-R-11C	А.В.	RC07GF752J	CC 1/4W, ±5%, 7.5K	Resistor
Resistor $1/2W$, $\pm 5\%$, $36K$ CCRC20GF363JA. B.MIL-R-11CA36Resistor $1/2W$, $\pm 10\%$, $1K$ CCRC20GF102KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 120 CCRC20GF121KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, $12K$ CCRC20GF472KA. B.MIL-R-11CA26-3Resistor $1/4W$, $\pm 5\%$, $12K$ CCRC07GF124JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $56K$ RC07GF563JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF473JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF913JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $30K$ RC07GF203JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $330K$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $330K$ RC07GF243JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330 RC07GF243JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, 330 RC07GF2682JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, $6.8K$ RC07GF102KA. B.MIL-R-11CA2 (12-Resistor1/4W, $\pm 5\%$, 47 CCRC07GF102KA. B.MIL-R-11CA2 (10,Resistor1/4W, $\pm 5\%$, 47 CCRC07GF105JA. B.MIL-R-11CA2 (10,Resistor1/4		A27	MIL-R-11C	A. B.	RC20GF222J	1/2W, ±5%, 2.2K CC	Resistor
Resistor $1/2W$, $\pm 10\%$, $1K CC$ RC20GF102KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, $120 CC$ RC20GF121KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, $4.7K CC$ RC20GF472KA. B.MIL-R-11CA26-3Resistor $1/4W$, $\pm 5\%$, $12K CC$ RC07GF124JA. B.MIL-R-11CA26-3Resistor CC , $1/4W$, 5% , $56K$ RC07GF563JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $56K$ RC07GF473JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF474JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $91K$ RC07GF913JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $30K$ RC07GF334JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $330K$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $330K$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330 RC07GF243JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330 RC07GF331JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $5.6K$ RC07GF682JA. B.MIL-R-11CA2 (12-Resistor1/4W, $\pm 5\%$, $6.8K$ RC07GF102KA. B.MIL-R-11CA2 (10,Resistor $1/4W$, $\pm 5\%$, 470 CCRC07GF105JA. B.MIL-R-11CA2 (10,Resistor		A27	MIL-R-11C	A. B.	RC20GF821J	1/2W, ±5%, 820 CC	Resistor
Resistor $1/2W$, $\pm 10\%$, $1K$ CCRC20GF102KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, 120 CCRC20GF121KA. B.MIL-R-11CA26-3Resistor $1/2W$, $\pm 10\%$, $4.7K$ CCRC20GF472KA. B.MIL-R-11CA26-3Resistor $1/4W$, $\pm 5\%$, $12K$ CCRC07GF124JA. B.MIL-R-11CA26-3ResistorCC, $1/4W$, 5% , $56K$ RC07GF563JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF473JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, 5% , $47K$ RC07GF913JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $91K$ RC07GF93JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $91K$ RC07GF33JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $30K$ RC07GF33JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $30K$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330 RC07GF33JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, 5.30 RC07GF682JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, $6.8K$ RC07GF682JA. B.MIL-R-11CA2 (10-Resistor1/4W, $\pm 5\%$, $6.8K$ RC07GF102KA. B.MIL-R-11CA2 (10, A2 (10-Resistor1/4W, $\pm 5\%$, 470 CCRC07GF105JA. B.MIL-R-11CA2 (10, A2 (10-Resist		A36	MIL-R-11C	A. B.	RC20GF363J	1/2W, ±5%, 36K CC	Resistor
Resistor $1/2W$, $\pm 10\%$, 120 CCRC20GF121KA. B.MIL-R-11CA26-3,Resistor $1/2W$, $\pm 10\%$, $4.7K$ CCRC20GF472KA. B.MIL-R-11CA26-3Resistor $1/4W$, $\pm 5\%$, $12K$ CCRC07GF124JA. B.MIL-R-11CA26-3ResistorCC, $1/4W$, 5% , $56K$ RC07GF563JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF473JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF473JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $91K$ RC07GF913JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $20K$ RC07GF33JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $30K$ RC07GF73JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $30K$ RC07GF33JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $330K$ RC07GF33JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $5K$ RC07GF23JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, $6.8K$ RC07GF682JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, $6.8K$ RC07GF102KA. B.MIL-R-11CA2 (10-Resistor $1/4W$, $\pm 5\%$, $6.8K$ RC07GF102KA. B.MIL-R-11CA2 (10,Resistor $1/4W$, $\pm 5\%$, 470 CCRC07GF105JA. B.MIL-R-11CA2 (10,Resistor <t< td=""><td></td><td>A26-3</td><td>MIL-R-11C</td><td>A. B.</td><td>RC20GF102K</td><td>1/2W, ±10%, 1K CC</td><td>Resistor</td></t<>		A26-3	MIL-R-11C	A. B.	RC20GF102K	1/2W, ±10%, 1K CC	Resistor
Resistor $1/2W, \pm 10\%, 4.7K CC$ RC20GF472KA. B.MIL-R-11CA26-3Resistor $1/4W, \pm 5\%, 12K CC$ RC07GF124JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W, 5\%, 56K$ RC07GF563JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W, 5\%, 47K$ RC07GF473JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W, 5\%, 47K$ RC07GF474JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W, 5\%, 470K$ RC07GF913JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W, \pm 5\%, 91K$ RC07GF203JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W, \pm 5\%, 30K$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W, \pm 5\%, 330K$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W, \pm 5\%, 330$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W, \pm 5\%, 330$ RC07GF243JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W, \pm 5\%, 330$ RC07GF682JA. B.MIL-R-11CA2 (12-Resistor1/4W, $\pm 5\%, 6.8K$ RC07GF682JA. B.MIL-R-11CA2 (10)Resistor1/4W, $\pm 5\%, 6.9K$ RC07GF102KA. B.MIL-R-11CA2 (10)Resistor1/4W, $\pm 5\%, 6.9K$ RC07GF105JA. B.MIL-R-11CA2 (10)Resistor1/4W, $\pm 5\%, 6.9K$ RC07GF105JA. B.MIL-R-11CA2 (10)Resistor1/4W, $\pm 5\%, 5.0$ (CCRC07GF105JA. B.M	A2(10)	A26-3, A2(10)	MIL-R-11C	A. B.	RC20GF121K	1/2W, ±10%, 120 CC	Resistor
Resistor $1/4W, \pm 5\%, 12K CC$ RC07GF124JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W, 5\%, 56K$ RC07GF563JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W, 5\%, 56K$ RC07GF473JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W, 5\%, 47K$ RC07GF473JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W, 5\%, 47K$ RC07GF474JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W, 5\%, 470K$ RC07GF913JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W, \pm 5\%, 91K$ RC07GF203JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W, \pm 5\%, 30K$ RC07GF334JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W, \pm 5\%, 30K$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W, \pm 5\%, 330$ RC07GF203JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W, \pm 5\%, 75K$ RC07GF203JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W, \pm 5\%, 330$ RC07GF203JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W, \pm 5\%, 330$ RC07GF203JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W, \pm 5\%, 6.6K$ RC07GF682JA. B.MIL-R-11CA2 (12-Resistor1/4W, $5\%, 47$ CCRC07GF102KA. B.MIL-R-11CA2 (10-Resistor1/4W, 5\%, 1 meg CCRC07GF105JA. B.MIL-R-11CA2 (10-Resistor1/4W, 5\%, 1 meg CCRC07GF561JA. B.	. ,	A26-3	MIL-R-11C	A. B.	RC20GF472K	1/2W, ±10%, 4.7K CC	Resistor
ResistorCC, $1/4W$, 5% , $56K$ RC07GF563JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF473JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $47K$ RC07GF474JA. B.MIL-R-11CA2 (A11ResistorCC, $1/4W$, 5% , $470K$ RC07GF913JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $91K$ RC07GF203JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $20K$ RC07GF334JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $75K$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $75K$ RC07GF73JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $75K$ RC07GF73JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $75K$ RC07GF243JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330 RC07GF682JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, $6.8K$ RC07GF682JA. B.MIL-R-11CA2 (20-Resistor $1/4W$, $\pm 10\%$, $1K$ CCRC07GF102KA. B.MIL-R-11CA2 (10-Resistor $1/4W$, 5% , 47 CCRC07GF105JA. B.MIL-R-11CA2 (10-Resistor $1/4W$, 5% , 470 CCRC07GF105JA. B.MIL-R-11CA2 (10)Resistor $1/4W$, 5% , 560 CCRC07GF561JA. B.MIL-R-11CA2 (10)Resistor <td< td=""><td>1-2, 11-1, 3)</td><td>A2 (A11-2, 11-1</td><td>MIL-R-11C</td><td>A. B.</td><td>RC07GF124J</td><td>$1/4W$, $\pm 5\%$, 12K CC</td><td>Resistor</td></td<>	1-2, 11-1, 3)	A2 (A11-2, 11-1	MIL-R-11C	A. B.	RC07GF124J	$1/4W$, $\pm 5\%$, 12K CC	Resistor
ResistorCC, $1/4W$, 5% , $470K$ RC07GF474JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 91KRC07GF913JA. B.MIL-R-11CA11-A2ResistorCC, $1/4W$, $\pm 5\%$, 20KRC07GF203JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 30KRC07GF334JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330KRC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 75KRC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 75KRC07GF243JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330RC07GF331JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 6.8KRC07GF682JA. B.MIL-R-11CA2 (12,Resistor1/4W, $\pm 5\%$, 6.3KRC07GF102KA. B.MIL-R-11CA2 (10,Resistor1/4W, $\pm 5\%$, 5.20 CCRC07GF221JA. B.MIL-R-11CA2 (10,Resistor1/4W, 5% , 470 CCRC07GF105JA. B.MIL-R-11CA2 (10,Resistor1/2W, $\pm 5\%$, 560 CCRC07GF561JA. B.MIL-R-11CA2 (10,Resistor1/4W, $\pm 5\%$, 5.1K CCRC07GF512JA. B.MIL-R-11CA2 (A10,Resistor1/4W, $\pm 5\%$, 5.1K CCRC07GF512JA. B.MIL-R-11CA2 (A10,	1-2, A11-1)	A2 (A11-2, A11-	MIL-R-11C	A. B.	RC07GF563J	CC, 1/4W, 5%, 56K	Resistor
ResistorCC, $1/4W$, $\pm 5\%$, $91K$ RC07GF913JA. B.MIL-R-11CA11-A2ResistorCC, $1/4W$, $\pm 5\%$, 20KRC07GF203JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330KRC07GF334JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 75KRC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 75KRC07GF243JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330RC07GF243JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330RC07GF331JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, 6.8KRC07GF682JA. B.MIL-R-11CA2 (12-Resistor $1/4W$, $\pm 10\%$, 1K CCRC07GF102KA. B.MIL-R-11CA9 (2Resistor $1/4W$, 5% , 220 CCRC07GF221JA. B.MIL-R-11CA2 (10-Resistor $1/4W$, 5% , 470 CCRC07GF105JA. B.MIL-R-11CA2 (10)Resistor $1/2W$, $\pm 5\%$, 470 CCRC20GF471JA. B.MIL-R-11CA2 (10)Resistor $1/4W$, 5% , 560 CCRC07GF561JA. B.MIL-R-11CA2 (A10)Resistor $1/4W$, $\pm 5\%$, 5.1K CCRC07GF512JA. B.MIL-R-11CA2 (A10)Resistor $1/4W$, $\pm 5\%$, 5.1K CCRC07GF512JA. B.MIL-R-11CA2 (A10)	1-1, A11-2)	A2 (A11-1, A11-	MIL-R-11C	A. B.	RC07GF473J	CC, 1/4W, 5%, 47K	Resistor
ResistorCC, $1/4W$, $\pm 5\%$, $91K$ RC07GF913JA. B.MIL-R-11CA11-A2ResistorCC, $1/4W$, $\pm 5\%$, 20KRC07GF203JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330KRC07GF334JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 75KRC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 75KRC07GF243JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330RC07GF243JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330RC07GF331JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, 6.8KRC07GF682JA. B.MIL-R-11CA2 (A12-Resistor $1/4W$, $\pm 10\%$, 1K CCRC07GF102KA. B.MIL-R-11CA9 (2, -Resistor $1/4W$, 5% , 220 CCRC07GF221JA. B.MIL-R-11CA2 (10, -Resistor $1/4W$, 5% , 47 CCRC07GF105JA. B.MIL-R-11CA2 (10, -Resistor $1/4W$, 5% , 1 meg CCRC07GF105JA. B.MIL-R-11CA2 (10, -Resistor $1/2W$, $\pm 5\%$, 500 CCRC07GF561JA. B.MIL-R-11CA2 (A10, -Resistor $1/4W$, $\pm 5\%$, 5.1K CCRC07GF561JA. B.MIL-R-11CA2 (A10, -Resistor $1/4W$, $\pm 5\%$, 5.1K CCRC07GF561JA. B.MIL-R-11CA2 (A10, -	-1, 11-2), A2(3)	A2 (11-1, 11-2),	MIL-R-11C	A.B.	RC07GF474J	CC, 1/4W, 5%, 470K	Resistor
ResistorCC, $1/4W$, $\pm 5\%$, $330K$ RC07GF334JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $75K$ RC07GF753JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $75K$ RC07GF243JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $24K$ RC07GF331JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, $6.8K$ RC07GF682JA. B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, $6.8K$ RC07GF682JA. B.MIL-R-11CA2 (A12-Resistor $1/4W$, $\pm 10\%$, $1K$ CCRC07GF102KA. B.MIL-R-11CA9 (2, -Resistor $1/4W$, 5% , 47 CCRC07GF470JA. B.MIL-R-11CA2 (10)Resistor $1/4W$, 5% , 47 CCRC07GF105JA. B.MIL-R-11CA2 (10)Resistor $1/4W$, 5% , 470 CCRC07GF561JA. B.MIL-R-11CA2 (10)Resistor $1/4W$, $\pm 5\%$, 500 CCRC07GF561JA. B.MIL-R-11CA2 (A10-Resistor $1/4W$, $\pm 5\%$, $5.1K$ CCRC07GF512JA. B.MIL-R-11CA2 (A10-	2	A11-A2	MIL-R-11C	A. B.	RC07GF913J	CC, 1/4W, ±5%, 91K	Resistor
ResistorCC, $1/4W$, $\pm 5\%$, $75K$ RC07GF753JA.B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $24K$ RC07GF243JA.B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, $24K$ RC07GF243JA.B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330 RC07GF331JA.B.MIL-R-11CA2 (12-ResistorCC, $1/4W$, $\pm 5\%$, $6.8K$ RC07GF682JA.B.MIL-R-11CA2 (A12-Resistor $1/4W$, $\pm 10\%$, $1K$ CCRC07GF102KA.B.MIL-R-11CA9 (2, -Resistor $1/4W$, 5% , 220 CCRC07GF221JA.B.MIL-R-11CA2 (10, -Resistor $1/4W$, 5% , 47 CCRC07GF105JA.B.MIL-R-11CA2 (10, -Resistor $1/4W$, 5% , 1 meg CCRC07GF105JA.B.MIL-R-11CA2 (10, -Resistor $1/2W$, $\pm 5\%$, 470 CCRC20GF471JA.B.MIL-R-11CA2 (10, -Resistor $1/4W$, $\pm 5\%$, 500 CCRC07GF561JA.B.MIL-R-11CA2 (A10, -Resistor $1/4W$, $\pm 5\%$, $5.1K$ CCRC07GF512JA.B.MIL-R-11CA2 (A10, -	-2) A2(2)	A2 (11-2) A2(2)	MIL-R-11C	A.B.	RC07GF203J	CC, 1/4W, ±5%, 20K	Resistor
Resistor CC, 1/4W, ±5%, 24K RC07GF243J A.B. MIL-R-11C A2 (11- Resistor CC, 1/4W, ±5%, 330 RC07GF331J A.B. MIL-R-11C A2 (12, Resistor CC, 1/4W, ±5%, 6.8K RC07GF682J A.B. MIL-R-11C A2 (12, Resistor 1/4W, ±5%, 6.8K RC07GF682J A.B. MIL-R-11C A2 (A12, Resistor 1/4W, ±10%, 1K CC RC07GF102K A.B. MIL-R-11C A9 (2, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4		A2 (11-2)	MIL-R-11C	A.B.	RC07GF334J	CC, 1/4W, ±5%, 330K	Resistor
ResistorCC, $1/4W$, $\pm 5\%$, 24KRC07GF243JA. B.MIL-R-11CA2 (11-ResistorCC, $1/4W$, $\pm 5\%$, 330RC07GF331JA. B.MIL-R-11CA2 (12,ResistorCC, $1/4W$, $\pm 5\%$, 6.8KRC07GF682JA. B.MIL-R-11CA2 (12,Resistor $1/4W$, $\pm 10\%$, 1K CCRC07GF102KA. B.MIL-R-11CA9 (2, -4)Resistor $1/4W$, 5% , 220 CCRC07GF221JA. B.MIL-R-11CA2 (10,Resistor $1/4W$, 5% , 47 CCRC07GF470JA. B.MIL-R-11CA2 (10,Resistor $1/4W$, 5% , 470 CCRC07GF105JA. B.MIL-R-11CA2 (10)Resistor $1/2W$, $\pm 5\%$, 470 CCRC20GF471JA. B.MIL-R-11CA2 (10)Resistor $1/4W$, $\pm 5\%$, 560 CCRC07GF561JA. B.MIL-R-11CA2 (A10)Resistor $1/4W$, $\pm 5\%$, 5.1K CCRC07GF512JA. B.MIL-R-11CA2 (A10)		A2 (11-1, 11-2)				CC, 1/4W, ±5%, 75K	Resistor
Resistor CC, 1/4W, ±5%, 330 RC07GF331J A.B. MIL-R-11C A2 (12, Resistor CC, 1/4W, ±5%, 6.8K RC07GF682J A.B. MIL-R-11C A2 (A12, Resistor 1/4W, ±5%, 6.8K RC07GF682J A.B. MIL-R-11C A2 (A12, Resistor 1/4W, ±10%, 1K CC RC07GF102K A.B. MIL-R-11C A9 (2, -4, -4, -4, -1)C A9 (2, -4, -4, -1)C A2 (10, -4, -1, -1)C A2 (10, -4, -4, -1, -1)C A2 (10, -4, -4, -1, -1)C A2 (10, -4, -4, -4, -1)C A2 (10, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4	•	A2 (11-1, 11-2),		A.B.	RC07GF243J	CC, 1/4W, ±5%, 24K	Resistor
Resistor CC, 1/4W, ±5%, 6.8K RC07GF682J A.B. MIL-R-11C A2 (A12 Resistor 1/4W, ±10%, 1K CC RC07GF102K A.B. MIL-R-11C A9 (2, 42) Resistor 1/4W, 5%, 220 CC RC07GF221J A.B. MIL-R-11C A2 (10, Resistor 1/4W, 5%, 47 CC RC07GF470J A.B. MIL-R-11C A2 (10) Resistor 1/4W, 5%, 1 meg CC RC07GF105J A.B. MIL-R-11C A2 (10) Resistor 1/2W, ±5%, 470 CC RC07GF501J A.B. MIL-R-11C A2 (10) Resistor 1/4W, ±5%, 560 CC RC07GF561J A.B. MIL-R-11C A2 (A10) Resistor 1/4W, ±5%, 5.1K CC RC07GF512J A.B. MIL-R-11C A2 (A10)	, 13)	A2 (12, 13)	MIL-R-11C	A.B.	RC07GF331J		Resistor
Resistor 1/4W, ±10%, 1K CC RC07GF102K A. B. MIL-R-11C A9 (2, 4) Resistor 1/4W, 5%, 220 CC RC07GF221J A. B. MIL-R-11C A2 (10, Resistor 1/4W, 5%, 47 CC RC07GF470J A. B. MIL-R-11C A2 (10) Resistor 1/4W, 5%, 1 meg CC RC07GF105J A. B. MIL-R-11C A2 (10) Resistor 1/4W, 5%, 470 CC RC20GF471J A. B. MIL-R-11C A2 (10) Resistor 1/2W, ±5%, 500 CC RC07GF561J A. B. MIL-R-11C A2 (10) Resistor 1/4W, ±5%, 5.1K CC RC07GF512J A. B. MIL-R-11C A2 (A10)	-	A2 (A12, 10, 13	MIL-R-11C	A. B.	RC07GF682J		Resistor
Resistor 1/4W, 5%, 220 CC RC07GF221J A.B. MIL-R-11C A2 (10, Resistor 1/4W, 5%, 47 CC RC07GF270J A.B. MIL-R-11C A2 (10, Resistor 1/4W, 5%, 47 CC RC07GF470J A.B. MIL-R-11C A2 (10, Resistor 1/4W, 5%, 1 meg CC RC07GF105J A.B. MIL-R-11C A2 (10) Resistor 1/2W, ±5%, 470 CC RC20GF471J A.B. MIL-R-11C A2 (10) Resistor 1/4W, ±5%, 560 CC RC07GF561J A.B. MIL-R-11C A2 (A10) Resistor 1/4W, ±5%, 5.1K CC RC07GF512J A.B. MIL-R-11C A2 (A10)		A9 (2, 4)	1				lesistor
Resistor 1/4W, 5%, 47 CC RC07GF470J A.B. MIL-R-11C A2 (10) Resistor 1/4W, 5%, 1 meg CC RC07GF105J A.B. MIL-R-11C A2 (10) Resistor 1/2W, ±5%, 470 CC RC20GF471J A.B. MIL-R-11C A2 (10) Resistor 1/4W, ±5%, 560 CC RC07GF561J A.B. MIL-R-11C A2 (A10) Resistor 1/4W, ±5%, 5.1K CC RC07GF512J A.B. MIL-R-11C A2 (A10)		A2 (10, 9) A9(6)			1		
Resistor 1/4W, 5%, 1 meg CC RC07GF105J A.B. MIL-R-11C A2 (10) Resistor 1/2W, ±5%, 470 CC RC20GF471J A.B. MIL-R-11C A2 (10) Resistor 1/4W, ±5%, 560 CC RC07GF561J A.B. MIL-R-11C A2 (10) Resistor 1/4W, ±5%, 5.1K CC RC07GF561J A.B. MIL-R-11C A2 (A10)							
Resistor 1/2W, ±5%, 470 CC RC20GF471J A.B. MIL-R-11C A2 (10) Resistor 1/4W, ±5%, 560 CC RC07GF561J A.B. MIL-R-11C A2 (A10) Resistor 1/4W, ±5%, 5.1K CC RC07GF512J A.B. MIL-R-11C A2 (A10) Resistor 1/4W, ±5%, 5.1K CC RC07GF512J A.B. MIL-R-11C A2 (A10)			1				
Lesistor 1/4W, ±5%, 560 CC RC07GF561J A. B. MIL-R-11C A2 (A10) Lesistor 1/4W, ±5%, 5.1K CC RC07GF512J A. B. MIL-R-11C A2 (A10)							
Lesistor 1/4W, ±5%, 5.1K CC RC07GF512J A.B. MIL-R-11C A2 (A10)		A2 (A10)				- -	
	-	A2 (A10)	1				
Resistor 1/4W, ±5%, 68 CC RC07GF680J A.B. MIL-R-11C A2 (A10		A2 (A10)					
		A2 (A10, 12)		-			

alan alan t

		STANDARD	TABLE G-1 PARTS LIST (Co	ontinued)	
Туре	Description of Part	Procurement No.	Vendor	MIL SPEC	Subassemblies Where Used
Resistor	1/4W, ±5%, 3.6K CC	RC07GF362J	A. B.	MIL-R-11C	A2(A10)
Resistor	1/4W, ±5%, 430 CC	RC07GF431J	A. B.	MIL-R-11C	A2(10)
Resistor	1/4W, ±5%, 11K CC	RC07GF113J	A. B.	MIL-R-11C	A2(10)
Resistor	1/4W, ±5%, 3.9K CC	RC07GF392J	A. B.	MIL-R-11C	A2(10, 1) A9(7)
Resistor	1/4W, ±5%, 560 CC	RC07GF561J	A. B.	MIL-R-11C	A2(10)
Resistor	1/4W, ±5%, 30K CC	RC07GF303J	A. B.	MIL-R-11C	A2(10)
Resistor	1/4W, ±5%, 4.7K CC	RC07GF472J	A. B.	MIL-R-11C	A2(10, 3, 4)
Resistor	1/4W, ±5%, 39K CC	RC07GF393J	A. B.	MIL-R-11C	A2(11-1, 3)
Resistor	1/4W, ±5%, 18K CC	RC07GF183J	A. B.	MIL-R-11C	A2(1), A(8)
Resistor	1/4W, ±5%, 1.2K CC	RC07GF122J	A. B.	MIL-R-11C	A2(1), A9
Resistor	1/4W, ±5%, 33 CC	RC07GF330J	A. B.	MIL-R-11C	A2(1), 8
Resistor	1/4W, ±5%, 27K CC	RC07GF273J	A. B.	MIL-R-11C	A2(1, 3)
Resistor	1/4W, ±5%, 180 CC	RC07GF181J	A. B.	MIL-R-11C	A2(1, 2, 10)
Resistor	1/4W, ±5%, 820 CC	RC07GF821J	A. B.	MIL-R-11C	A2(2)
Resistor	1/4W, ±5%, 100 CC	RC07GF101J	A. B.	MIL-R-11C	A2(2, 4)
Resistor	1/4W, ±5%, 3.3K CC	RC07GF332J	A. B.	MIL-R-11C	A2(2, 6)
Resistor	1/2W, ±5%, 2K CC	RC20GF202J	A. B.	MIL-R-11C	A17
Resistor	1/2W, ±5%, 560 CC	RC20GF561J	A. B.	MIL-R-11C	A17
Resistor	1/2W, ±5%, 1.2K CC	RC20GF122J	A. B.	MIL-R-11C	A17
Resistor	1/2W, ±5%, 6.8K CC	RC20GF682J	A. B.	MIL-R-11C	A17
Resistor	1/2W, ±5%, 3K CC	RC20GF302J	A. B.	MIL-R-11C	A17
Resistor	1/2W, ±5%, 1.2K CC	RC20GF122J	A. B.	MIL-R-11C	A17
Resistor	1/4W, ±5%, 2.7K CC	RC07GF272J	A. B.	MIL-R-11C	A8
Resistor	1/4W, ±5%, 680K CC	RC07GF684J	A. B.	MIL-R-11C	A8
Resistor	1/4W, ±5%, 910 CC	RC07GF911J	A. B.	MIL-R-11C	A8
Resistor	1/4W, ±5%, 110 CC	RC07GF111J	A. B.	MIL-R-11C	A8
Resistor	1/4W, ±10%, 10K CC	RC07GF103K	A. B.	MIL-R-11C	A29, A14-(5), A13(98)
Resistor	1/2W, ±10%, 680 CC	RC20GF681K	A. B.	MIL-R-11C	A14(1)
Resistor	1/4W, ±10%, 27 CC	RC20GF270K	A. B.	MIL-R-11C	A14(1)
Resistor	1/4W, ±10%, 5.6K CC	RC20GF562K	A. B.	MIL-R-11C	A14(1)
Resistor	1/4W, ±10%, 1.5 Meg CC	RC20GF155K	A. B.	MIL-R-11C	A14(1)
Resistor	1W, ±10%, 18K CC	RC32GF183K	A. B.	MIL-R-11C	A14(1)
Resistor	1/4W, ±10%, 22K CC	RC07GF223K	A. B.	MIL-R-11C	A14(2)
Resistor	1/4W, ±10%, 47 CC	RC07GF470K	A. B.	MIL-R-11C	A14(2)
Resistor	1/4W, ±10%, 27K CC	RC07GF273K	A. B.	MIL-R-11C	A14(2)
Resistor	1/4W, ±10%, 5.6K CC	RC07GF562K	A. B.	MIL-R-11C	A14(2)
Resistor	1W, ±10%, 10 CC	RC32GF100K	A. B.	MIL-R-11C	A14(2)
Resistor	1W, ±10%, 150 CC	RC32GF151K	A. B.	MIL-R-11C	A14(2)
Resistor	1/2W, ±5%, 1.8K CC	RC07GF182J	A. B.	MIL-R-11C	A2 (9)
Resistor	1/2W, ±5%, 360K CC	RC20GF364J	A. B.	MIL-R-11C	A2(9)

G-4

	I	F	-T		T
Туре	Description of Part	Procurement No.	Vendor	MIL SPEC	Subassemblies Where Us e d
Resistor	1/2W, ±5%, 420 Meg CC	RC20GF427J	A. B.	MIL-R-11C	A2(9)
Resistor	1/4W, ±5%, 300K CC	RC07GF304J	А. В.	MIL-R-11C	A2(11-1)
Resistor	1/4W, ±5%, 180K CC	RC07GF184J	A. B.	MIL-R-11C	A2(11-13)
Resistor	1/4W, ±5%, 330K CC	RC07GF334J	A. B.	MIL-R-11C	A2(11-1)
Resistor	1/4W, ±5%, 43K CC	RC07GF433J	A. B.	MIL-R-11C	A2(11-1)
lesistor	1/4W, ±5%, 82K CC	RC07GF823J	A. B.	MIL-R-11C	A2(A11-1)
Resistor	1/2W, ±10%, 18K CC	RC20GF183K	A. B.	MIL-R-11C	A26(5)
Resistor	1/2W, ±10%, 56K CC	RC20GF563K	A. B.	MIL-R-11C	A26(-5)
lesistor	1/2W, ±10%, 4.7K CC	RC20GF472K	A. B.	MIL-R-11C	A26(5)
Resistor	1/2W, 10%, 3.3K CC	RC20GF332K	A. B.	MIL-R-11C	A26(5)
Resistor	2W, 10%, 39 CC	RC42GF390K	A. B.	MIL-R-11C	A14(5)
Resistor	2W, 10%, 120K CC	RC42GF124K	A. B.	MIL-R-11C	A14(5)
Resistor	1W, 10%, 1 Meg CC	RC32GF105K	A. B.	MIL-R-11C	A14(5), A29, A30
Resistor	1/4, 10%, 1 Meg CC	RC07GF105K	A. B.	MIL-R-11C	A14(3)
Resistor	2W, 10%, 56 CC	RC42GF560K	A. B.	MIL-R-11C	A14(5)
lesistor	1/4W, 5%, 2.2K CC	RC07GF222J	A. B.	MIL-R-11C	A2(13)
lesistor	1/4W, 5%, 1.1K CC	RC07GF112J	A. B.	MIL-R-11C	A2(3)
lesistor	1/4W, 5%, 6.2K CC	RC07GF622J	A. B.	MIL-R-11C	A2(3, 4) A9(6)
lesistor	1/4W, 5%, 680 CC	RC07GF681J	A. B.	MIL-R-11C	A2(3)
esistor	1/4W, 5%, 15K CC	RC07GF153J	A. B.	MIL-R-11C	A2(3)
esistor	1/4W, 5%, 51K CC	RC07GF513J	A. B.	MIL-R-11C	A2(3)
lesistor	1/4W, 5%, 10 CC	RC07GF100J	A. B.	MIL-R-11C	A12
lesistor	1/4W, 5%, 33K CC	RC07GF333J	A. B.	MIL-R-11C	A12
lesistor	1/2W, 10%, 3.9K CC	RC20GF392K	A. B.	MIL-R-11C	A(29, 30)
lesistor	1/2W, $10%$, 3. 5K CC	RC20GF222K	A. B.	MIL-R-11C	A(29, 30)
Resistor	1W, 10%, 68K CC	RC32GF683K	A. B.	MIL-R-11C	A(29, 30)
lesistor	1/4W, 5%, 22K CC	RC07GF223J	A. B.		
lesistor	1/4W, 5%, 22K CC 1/4W, 5%, 820 CC	1	A. B.	MIL-R-11C	A2(4)
Resistor	1/4W, 5%, 200 CC	RC07GF821J RC07GF201J	A.B.	MIL-R-11C MIL-R-11C	A2(6)
lesistor	1/4W, 5%, 200 CC 1/4W, 5%, 5.6K CC				A2(6)
		RC07GF562J	A.B.	MIL-R-11C	A2(6)
lesistor	1/4W, 5%, 15 CC	RC07GF150J	A.B.	MIL-R-11C	A2(6)
lesistor	1/4W, 5%, 18 CC	RC07GF180J	A.B.	MIL-R-11C	A2(6)
lesistor	1/4W, 5%, 22 CC	RC07GF220J	A. B.	MIL-R-11C	A2(6)
lesistor	1/4W, 5%, 27 CC	RC07GF270J	A. B.	MIL-R-11C	A2(6)
esistor	1/4W, 5%, 33 CC	RC07GF330J	A. B.	MIL-R-11C	A2(6)
lesistor	1/4W, 5%, 68 CC	RC07GF680J	A. B.	MIL-R-11C	A2(6)
lesistor	1/4W, 5%, 10 CC	RC07GF100J	A. B.	MIL-R-11C	A2(6)
Resistor	1/4W, 5%, 20 CC	RC07GF200J	A. B.	MIL-R-11C	A2(6)
Resistor	1/4W, ±5%, 30 CC	RC07GF300J	A. B.	MIL-R-11C	A2(6)
lesistor	1/4W, ±5%, 36 CC	RC07GF360J	A.B.	MIL-R-11C	A2(6)

-

		STANDARD P	TABLE G-1 ARTS LIST (Continu	ed)	
Туре	Description of Part	Procurement No.	Vendor	MIL SPEC	Subassemblies Where Used
Resistor	1/4W, +5%, 39 CC	RC07GF390J	A. B.	MIL-R-11C	A2(6)
Resistor	1/4W, ±5%, 43 CC	RC07GF430J	A. B.	MIL-R-11C	A2(6)
Resistor	1/4W, ±5%, 47 CC	RC07GF470J	А. В.	MIL-R-11C	A2(6)
Resistor	1/4W, ±5%, 51 CC	RC07GF510J	A. B.	MIL-R-11C	A2(6)
Resistor	1/4W, ±5%, 56 CC	RC07GF560J	A. B.	MIL-R-11C	A2(6)
Resistor	1/4W, ±5%, 62 CC	RC07GF620J	A. B.	MIL-R-11C	A2(6)
Resistor	1/4W, ±5%, 75 CC	RC07GF750J	A. B.	MIL-R-11C	A2(6)
Resistor	1/8W, ±1%, 75K FF	RN60C7502F	Electra Weston	MIL-R-10509D	A(35)
Resistor	1/8W, ±1%, 10K FF	RN60C1002F	Electra Weston	MIL-R-10509D	A(35)
Resistor	1/8W, ±1%, 2740 FF	RN60C2741F	Electra Weston	MIL-R-10509D	A(35)
Resistor	1/8W, ±1%, 909 FF	RN60C9090F	Electra Weston	MIL-R-10509D	A(35)
Resistor	1/8W, ±1%, 2K FF	RN60C2000F	Electra Weston	MIL-R-10509D	A(35)
Resistor	1/8W, ±1%, 2670 FF	RN60C2671F	Electra Weston	MIL-R-10509D	A(35)
Resistor	1/8W, ±1%, 2610 FF	RN60C2611F	Electra Weston	MIL-R-10509D	A(35)
Resistor	1/8W, ±1%, 6.04K FF	RN60C6041F	Electra Weston	MIL-R-10509D	A(35)
Resistor	1/8W, ±1%, 17.8K FF	RN60C1782F	Electra Weston	MIL-R-10509D	A(35)
Resistor	1/8W, ±1%, 28.7K FF	RN60C2872F	Electra Weston	MIL-R-10509D	A (35)
Resistor	1/8W, ±1%, 11K FF	RN60C1102F	Electra Weston	MIL-R-10509D	A (35)
Resistor	1/8W, ±1%, 5230 FF	RN60C5231F	Electra Weston	MIL-R-10509D	A(35)
Resistor	WW 6.5W, ±5%, 100 ohms	RW57V101	Ohmite, Ward-Leonard	MIL-R-26C	A(35)
Resistor	WW 3W, $\pm 5\%$, 1	RW59V1R0	Ohmite	MIL-R-26C	A(35), A2(11-1)
Resistor	Fix Film, 1/8W, 5110	8977933-261	Corning Glass & Electra	MIL-R-10509D	A2(11-2), A(28)
Resistor	Fix Film, 1/8W, 46400	8977933-353	Corning Glass & Electra	MIL-R-10509D	A2(11-2)
Resistor	Fix Film, 1/8W, 68100	8977933-369	Corning Glass & Electra	MIL-R-10509D	A2(11-2)
Resistor	Fix Film, 1/8W, 46.4	8977933-65	Corning Glass & Electra	MIL-R-10509D	A28
Resistor	Fix Film, 1/8W, 6810	8977933-273	Corning Glass & Electra	MIL-R-10509D	A28, A9(6)
Resistor	Fix Film, 1/8W, 3830	8977933-249	Corning Glass & Electra	MIL-R-10509D	A9(5)
Resistor	WW, 6.5W, ±5%, 300	RW57V301	Ohmite, Ward-Leonard	MIL-R-26C	A13
Resistor	WW, 6.5W, ±5%, 160	RW57V161	Ohmite, Ward-Leonard	MIL-R-26C	A13
Resistor	Fix Film, 1/8W, 19600	8977933-317	Corning Glass & Electra	MIL-R-10509D	A9(2), A9(6)
Resistor	Fix Film, 1/8W, 18200	8977933-314	Corning Glass & Electra	MIL-R-10509D	A2(10, 3)
Resistor	Fix Film, 1/8W, 1000	8977933-193	Corning Glass & Electra	MIL-R-10509D	A2(10), A(8)
Resistor	Fix Film, 1/8W, 221000	8977933-417	Corning Glass & Electra	MIL-R-10509D	A2(10)
Resistor	Fix Film, 1/8W, 200,000	8977933-413	Corning Glass & Electra	MIL-R-10509D	A2(10)
Resistor	Fix Film, 1/8W, 2150	8977933-225	Corning Glass & Electra	MIL-R-10509D	A(8)
Resistor	Fix Film, 1/8W, 46.4	8977933-65	Corning Glass & Electra	MIL-R-10509D	A(8)
Resistor	Fix Film, 1/8W, 56200	8977933-361	Corning Glass & Electra	MIL-R-10509D	A(8)
Resistor	Fix Film, 1/8W, 4220	8977933-253	Corning Glass & Electra	MIL-R-10509D	A(8)
Resistor	Fix Film, 1/8W, 11,000	8977933-293	Corning Glass & Electra	MIL-R-10509D	A(8)
Resistor	Fix Film, 1/8W, 825	8977933-185	Corning Glass & Electra	MIL-R-10509D	A(8)

		STANDARD	TABLE G-1 PARTS LIST (Conf	tinued)	
Туре	Description of Part	Procurement No.	Vendor	MIL SPEC	Subassemblies Where Used
Resistor	Fix Film, 1/8W, 4750	8977933-258	Corning Glass & Electra	MIL-R-10509D	A(8)
Resistor	Fix Film, 1/8W, 28.7	8977933-45	Corning Glass & Electra	MIL-R-10509D	A(8)
Resistor	Fix Film, 1/8W, 402	8977933-155	Corning Glass & Electra	MIL-R-10509D	A(8)
Resistor	Fix Film, 1/8W, 200	8977933-126	Corning Glass & Electra	MIL-R-10509D	A (8)
Resistor	Fix Film, 1/8, 464	8977933-161	Corning Glass & Electra	MIL-R-10509D	A14(1)
Resistor	Fix Film, 1/8, 5620	8977933-265	Corning Glass & Electra	MIL-R-10509D	A14(1)
Resistor	Fix Film, 1/8W, 10,000	8977933-289	Corning Glass & Electra	MIL-R-10509D	A14(1), A9(3)
Resistor	1/4, ±1%, 31.6K FF	RN65E3162F	A. B.	MIL-R-10509D	A17
Resistor	1/4, ±1%, 221K FF	RN65E2213F	A. B.	MIL-R-10509D	A17
Resistor	1/4, ±1%, 158K FF	RN65E1583F	A. B.	MIL-R-10509D	A17
Resistor	1/8W, ±1%, 182K FF	RN60C1823F	Corning Glass & Electra	MIL-R-10509D	A(8)
lesistor	1/8W, ±1%, 100K FF	RN60C1003F	Corning Glass & Electra	MIL-R-10509D	A(8)
lesistor	1/8W, ±1%, 2K FF	RN60C2001F	Corning Glass & Electra	MIL-R-10509D	A (8)
lesistor	1/8W, ±1%, 10K FF	RN60C1002F	Corning Glass & Electra	MIL-R-10509D	A (8)
lesistor	Fix Film, 1/8W, 1%, 200	RN60B2000F	Corning Glass & Electra	MIL-R-10509D	A8
lesistor	1/8W, ±1%, 100 FF	RN60C1000F	Corning Glass & Electra	MIL-R-10509D	A (8)
lesistor	1/8W, ±1%, 10.5K FF	RN60C1052F	Corning Glass & Electra	MIL-R-10509D	A (8)
lesistor	1/8W, ±1%, 1.3K FF	RN60C1301F	Corning Glass & Electra	MIL-R-10509D	A (8)
lesistor	1/4W, ±1%, 1K FF	RN65C1001F	Electra Weston	MIL-R-10509D	A (8)
lesistor	Fix Film, 1/2W, 10	8977940-1	Corning Glass & Electra	MIL-R-10509D	A (29)
lesistor	Fix Film, 1/8W, 10	8977933-1	Corning Glass & Electra	MIL-R-10509D	A2(9)
lesistor	Fix Film, 1/8W, 196	8977933-125	Corning Glass & Electra	MIL-R-10509D	A2(9)
esistor	Fix Film, 1/8W, 10	8977933-1	Corning Glass & Electra	MIL-R-10509D	A2(9)
esistor	Fix Film, 1/8W, 19.6	8977933-29	Corning Glass & Electra	MIL-R-10509D	A2(9)
esistor	Fix Film, 1/8W, 28.7	8977933-45	Corning Glass & Electra	MIL-R-10509D	A2(9)
esistor	Fix Film, 1/8W, 38.3	8977933-57	Corning Glass & Electra	MIL-R-10509D	A2(9)
esistor	Fix Film, 1/8W, 51.1	8977933-69	Corning Glass & Electra	MIL-R-10509D	A2(9)
esistor	Fix Film, 1/8W, 68.1	8977933-81	Corning Glass & Electra	MIL-R-10509D	A2(9)
esistor	Fix Film, 1/8W, 90.9	8977933~93	Corning Glass & Electra	MIL-R-10509D	A2(9)
esistor	Fix Film, 1/8W, 121	8977933-105	Corning Glass & Electra	MIL-R-10509D	A2(9)
esistor	Fix Film, 1/8W, 147	8977933-113	Corning Glass & Electra	MIL-R-10509D	A2(9)
esistor	Fix Film, 1/2W, 357,000	8977940-437	Corning Glass & Electra	MIL-R-10509D	A2(11-1)
esistor	Fix Film, 1/8W, 100,000	8977933-384	Corning Glass & Electra	MIL-R-10509D	A2(11-1)
esistor	Fix Film, 1/8W, 243,000	8977933-421	Corning Glass & Electra	MIL-R-10509D	A2(11-1)
esistor	Fix Film, 1/8W, 84,500	8977933-377	Corning Glass & Electra	MIL-R-10509D	A2(11-1)
esistor	Fix Film, 1/8W, 61,900	8977933-365	Corning Glass & Electra	MIL-R-10509D	A2(11-1)
esistor	WW, 14W, ±5%, 220 ohms	RW56V221	Ohmite	MIL-R-26C	A(34)
esistor	Fix Film, 1/8W, 6190	8977933-269	Corning Glass & Electra	MIL-R-10509D	A2(3)
esistor	Fix Film, 1/8W, 39,200	8977933-346	Corning Glass & Electra	MIL-R-10509D	A2(3)
esistor	Fix Film, 1/8W, 2670	8977933-234	Corning Glass & Electra	MIL-R-10509D	A2(3)

NAME OF COLUMN

			TABLE G-1 PARTS LIST (Conti	nued)	
Туре	Description of Part	Procurement No.	Vendor	MIL SPEC	Subassemblies Where Used
Resistor	Fix Film, 1/8W, 26,700	8977933-330	Corning Glass & Electra	MIL-R-10509D	A2 (3)
Resistor	Fix Film, 1/8W, 8250	8977933-281	Corning Glass & Electra	MIL-R-10509D	A2(3)
Resistor	Fix Film, 1/8W, 3650	8977933-247	Corning Glass & Electra	MIL-R-10509D	A9(3)
Resistor	Fix Film, 1/8W, 2610	8977933-233	Corning Glass & Electra	MIL-R-10509D	A9(3)
Resistor	Fix Film, 1/8W, 3010	8977933-239	Corning Glass & Electra	MIL-R-10509D	A2(4)
Resistor	Fix Film, 1/2W, ±1%, 140	RN70B1400F	Corning Glass & Electra	MIL-R-10509D	A12
Resistor	Fix Film, $1/2W$, $\pm 1\%$	RN70B78R7F	Corning Glass & Electra	MIL-R-10509D	A12
Resistor	Fix Film, 1/2W, 1.47K	RN70E1471F	Corning Glass & Electra	MIL-R-10509D	A12
Resistor	Fix Film, 1/2W, ±1%, 1.91K	RN70B1911F	Corning Glass & Electra	MIL-R-10509D	A12
Resistor	Fix Film, 1/2W, ±1%, 511	RN70B5110F	Corning Glass & Electra	MIL-R-10509D	A12
Resistor	Fix Film, 1/2W, ±1%, 562	RN70B5620F	Corning Glass & Electra	MIL-R-10509D	A12
Resistor	Fix Film, 1/2W, ±1%	RN70B26R1F	Corning Glass & Electra	MIL-R-10509D	A12
Resistor	Fix Film, 1/2W, ±1%, 2.15K	RN70B2151F	Corning Glass & Electra	MIL-R-10509D	A12
Resistor	Fix Film, 1/2W, ±1%, 10.7K	RN70B1072F	Corning Glass & Electra	MIL-R-10509D	A12
Resistor	Fix Film, 1W, ±1%, 3.92K	RN75B3921F	Corning Glass & Electra	MIL-R-10509D	A12
Resistor	Fix Film, 1W, ±1%, 3.83K	RN75B3831F	Corning Glass & Electra	MIL-R-10509D	A12
Resistor	Fix Film, 2W, ±1%, 232	RN80B2320F	Electra Weston	MIL-R-10509D	A12
Resistor	WW Variable, 200 Submin.	8954937-55(236P-1- 201)	Bourns	MIL-R-93B	A12
Resistor	Fix Film, 1W, ±1%, 511	RN75C5110F	Corning Glass & Electra	MIL-R-10509D	A2(4)
Resistor	Carbon Film, 9.09K, ±1%, 1/8W	RN60B9093F	Electra		A35
Resistor	Carbon Film, 7.5K, ±1%, 1/8W	RN60B7503F	Electra		A35
Resistor	Carbon Film, 56.2K, ±1%, 1/8W	RN60B5624F	Electra		A35
Resistor	17.8K, ±1%, 1/10W	CF - 1/10	Electra		A35
Resistor	15K, ±1%, 1/10W	CF - 1/10	Electra		A35
Resistor	100K, ±1%, 1/10W	CF - 1/10	Electra		A35
Capacitor	Solid Tant. , 68 µf ±10%, 15V	CS13AD680K	Sprague Kemet	MIL-C-26655B	A2(6)
Capacitor	Ceram., 0.01µf ±20%, 200V	CK06CW103M	Glenco Vitramon	MIL-C-11015B	A2 (6)
Capacitor	Paper, 0.033µf, 0.022µf ±20%, 200V	CP09A1KC223M	Cornell Dublier Sprague	MIL-C-25C	A26(3)
Capacitor	Wet Tant., $4\mu f \pm 20\%$, 60V	CL45BK040MP3	Fansteel	MIL-C-3965B	A2(12, 13)
Capacitor	Ceram., 0.01µf ±15%, 200V	8987915-29	Glenco Vitramon	MIL-C-11015B	A2(12)
Capacitor	Glass, $1000 \mu \mu f \pm 5\%$	CYFM15C102J	Corning Glass	MIL-C-11272B	A9(1, 5, 4)
Capacitor	Mica, $91 \mu\mu f \pm 5\%$, 500V	8914319-323	Elmenco	MIL-C-5B	A2(10)
Capacitor	Mica, $270 \mu \mu f \pm 1\%$, 500V	8914319-34	Elmenco	MIL-C-5B	A2(10)
Cupacitor					

G-8

TABLE G-1 STANDARD PARTS LIST (Continued)								
Туре	Description of Part	Procurement No.	Vendor	MIL SPEC	Subassemblies Where Used			
Capacitor	tor Paper, 0.1µf±10%, 200V CP09A1KC104K3		Cornell Dublier Sprague	MIL-C-25C	A2(10)			
Capacitor	Ceram., 4700µµf ±15%, 200V	8987915-25	Glenco Vitramon	MIL-C-11015B	A2(10)			
Capacitor	Mica, 1000µµf±5%, 500V	8924416-310	Elmenco	MIL-C-5B	A2(8)			
Capacitor	Wet Tant., $60\mu f {}^{+30\%}_{-15\%}$, 50V	CL45BJ600SP3	Fansteel	MIL-C-3965B	A2(8)			
Capacitor	Wet Tant., 25µf ^{+30%} , 50V -15%, 50V	CL45BJ250SP3	Fansteel	MIL-C-3965B	A2(8)			
Capacitor	Wet Tant., 100µf ^{+30%} _{-15%} ,30V	CL45BH101SP3	Fansteel	MIL-C-3965B	A2(3), A2(9)			
Capacitor	Ceram., special dielectric 125°C, 0.02µf, 50V	8945696-405	Aerovox		A2(1), A9(7)			
Capacitor	Solid Tant., $0.47\mu f \pm 20\%$, 35V	CS13AFR47M	Sprague Kemet	MIL-C-26655B	A9(7)			
Capacitor	Mica, $3000\mu\mu f \pm 5\%$, $500V$	8924416-320	Elmenco	MIL-C-5B	A9(7)			
Capacitor	Mica, $6200\mu\mu f \pm 5\%$, $300V$	8924416-331	Elmenco	MIL-C-5B	A9(7)			
Capacitor	Mica, $1100\mu\mu f \pm 5\%$, 500V	8924416-311	Elmenco	MIL-C-5B	A9(7)			
Capacitor	Mica, $3600\mu\mu f \pm 5\%$, 500V	8924416-322	Elmenco	MIL-C-5B	A9(7)			
Capacitor	Mica, $150\mu\mu f \pm 5\%$, $500V$	8914319-328	Elmenco	MIL-C-5B	A9(7)			
Capacitor	Mica, $220\mu\mu f \pm 5\%$, 500V	8914319-332	Elmenco	MIL-C-5B	A9(7)			
Capacitor	Mica, $180\mu \mu f \pm 5\%$, 500V	8913419-330	Elmenco	MIL-C-5B	A9(7)			
Capacitor	Paper, 0.1µf±10%, 100V	CP09A1KB104K3	Sprague	MIL-C-25C	A17, A9(6)			
Capacitor	Wet Tant., $15\mu f \pm 20\%$, $15V$	CL45CE150MP3	Fansteel	-	A8			
-	Mica, $750\mu \mu f \pm 5\%$, 500V	8924416-307	Elmenco	MIL-C-5B	A8			
Capacitor	Mica, $300\mu \mu f \pm 5\%$, $500V$ Mica, $300\mu \mu f \pm 5\%$, $500V$	8914319-335	Elmenco	MIL-C-5B	A8			
Capacitor		8914319-345	Elmenco	MIL-C-5B	A8, A2(4)			
Capacitor	Mica, $750\mu \mu f \pm 5\%$, $300V$	8914319-326	Elmenco	MIL-C-5B	A8			
Capacitor	Mica, $120\mu \mu f \pm 5\%$, 500V	8914319-326	Aerovox	-	A14(1)			
Capacitor	Ceram., special dielectric 125°C, 0.005µf +20%, 50V			_				
Capacitor	Ceram., special dielectric 125° C, 0.01μ t +20%, 50V	8945696-4	Aerovox	-				
Capacitor	Mica, 4300µf ±5%, 300V	8924416-324	Elmenco	MIL-C-25C	A14(1)			
Capacitor	Mica, $130\mu\mu f \pm 5\%$, 500V	8914319-327	Electr Motive	MIL-C-25C	A14(1)			
Capacitor	Mica, $430\mu\mu f \pm 5\%$, $300V$	8914319-339	Electr Motive	MIL-C-25C	A14(2)			
Capacitor	Mica, $15\mu\mu f \pm 5\%$, 500V	8914319-305	Electr Motive	MIL-C-25C	A14(2)			
Capacitor	Mica, $12\mu\mu f \pm 5\%$, 500V	8914319-304	Electr Motive	MIL-C-25C	A14(2)			
Capacitor	Mica, $8200\mu\mu f \pm 2\%$, $300V$	8924416-232	Elmenco	MIL-C-25C	A2(4)			
Capacitor	Ceram., 22µµf±10%, 200V	CK06CW22K	Glenco Vitramon	MIL-C-11015B	A2(4)			
Capacitor	Ceram., 3900µµf±10%, 200V	CK06CW392K	Glenco Vitramon	MIL-C-11015B	A2 (9)			
Capacitor	Wet Tant., $170\mu f + 30\%$, 15%	CL45BE171SP3	Fansteel	MIL-C-3965B	A2 (9)			
Capacitor	Paper, $0.033 \mu f \pm 10\%$, $600 V$	CP09A1KF333K3	Cornell Dublier	MIL-C-25C	A2(11-1)			

	TABLE G-1 STANDARD PARTS LIST (Continued)								
Туре	ype Description of Part Procurem		Procurement No. Vendor		Subassemblies Where Used				
Capacitor	Paper, $0.015 \mu f \pm 10\%$, 600V	CP09A1KF153K3	Cornell Dublier	MIL-C-25C	A2(11-1)				
Capacitor	Ceram., 0.01µf ±10%, 200V	CK06CW103K	Glenco Vitramon	MIL-C-3965B	A2(11-1)				
Capacitor	Mica, $47\mu\mu f \pm 5\%$, 500V	8914319-316	Elmenco	MIL-C-25C	A2(11-1)				
Capacitor	Solid Tant., 33µf ±20%, 35V	CS13AF330M	Sprague Kemet	MIL-C-26655B	A9(6)				
Capacitor	Ceram., 120µµf±20%, 200V	CK05CW121M	Glenco Vitramon	MIL-C-11015B	A2(3)				
Capacitor	Ceram., 1000µµf±10%, 200V	CK05CW102K	Glenco Vitramon	MIL-C-11015B	A2(3)				
Capacitor	Ceram., 6200µµf±10%, 200V	CK05CW622K	Glenco Vitramon	MIL-C-11015B	A2(3)				
Capacitor	Mica, $6200\mu\mu f \pm 1\%$, $300V$	8924416-131	Elmenco	MIL-C-5B	A2(3)				
Capacitor	Ceram., 120µµf±10%, 200V	8987915-6	Glenco Vitramon	MIL-C-11015B	A2(3)				
Capacitor	Glass, $100\mu\mu f \pm 5\%$	CYFM15C101J	Corning Glass	MIL-C-11272B	A9(4)				
Capacitor	Solid Tant., 6.8µf±10%, 6V	CS13AB6R8K	Sprague Kemet	MIL-C-26655B	A9(3)				
Capacitor	Ceram., 56µµf±10%, 200V	8987915-2	Glenco Vitramon	MIL-C-11015B	A2(13)				
Capacitor	Ceramic 820µf ±10%, 200V	CK05CW821KW	Vitramon		A35				
Capacitor	Paper Dielectric, 0.33µf, 300V	CP09A1KC339K	Sprague		A16				
Capacitor	Plain Foil Polarized, 40µf±20%, 50V	1709733(6K105AA)	GE		A16				
Transistor	2N1132	MIL-S-19500/173	TI, Hughes, Fairchild	MIL-S-19500	A(35), A(17)				
Transistor	2N1893 (USN)	MIL-S-19500/182	Fairchild, GE	MIL-S-19500	A(35), A(12)				
Transistor	2N338 (USN)	MIL-S-19500/69	GE	MIL-S-19500	A26(3), A14(1)				
Transistor	2N916	-	Fairchild, GE	-	A9(1, 7), A(8), A2(10, 6 11-1, 9)				
Transistor	2N914	-	Fairchild, GE	_	A9(1, 5)				
Transistor	2N722	-	Fairchild, TI, Hughes	MIL-S-19500/177	A2(10, 6, 11-1, 9)				
Transistor	2N930	-	Fairchild, GE, TI	-	A2(10, 11-1)				
Transistor	2N718A	-	Fairchild, GE, TI	-	A2(1, 11-1, 9)				
Transistor	2N869		Fairchild, TI, Hughes, Raytheon	-	A9(7, 6), A(8)				
Transistor	2N1613	MIL-S-19500/181	Raytheon, Fairchild	MIL-S-19500	A(12)				
Fransistor		(AED-01) 2N718A	Fairchild		A35				
Diode	USN 1N964B	MIL-S-19500/117	Motorola	MIL-S-19500	A(35)				
Diode	USN 1N914	MIL-S-19500/116	ті	MIL-S-19500	A(35)				
Diode	USN 1N827	MIL-S-19500/159	Transitron	MIL-S-19500	A(35), A(12)				
Diode	1N1583	MIL-E-1/1108	Westinghouse	MIL-E-1	A(17)				
Diode	1N645 - USAF	MIL-E-1/1143	TI	MIL-E-1	A26(3), A2(11-2, 3)				
Diode	USN 1N3043-B	MIL-S-19500/115	Motorola	MIL-S-19500	A14(3)				
Diode	USN 2N1 871A	MIL-S-19500/198	Solid State Products	MIL-S-19500	A9(3)				

STANDARD PARTS LIST (Continued)								
Туре	Description of Part	Procurement No.	Vendor	MIL SPEC	Subassemblies Where Used			
Diode	USN 1N746A	MIL-S-19500/127	TI	MIL-S-19500	A2(11-2)			
Diode	USN 1N962B	MIL-S-19500/117	Motorola	MIL-S-19500	A2(11-2)			
Diode	JAN 1N457		ті		A2(11-2, 11-1)			
Diode	USN 1N963B		Motorola		A2(10)			
Diode	1N757A	MIL-S-19500/159	ті	MIL-S-19500	A2(10)			
Diode	USN 1N978B	MIL-S-19500/117	Motorola	MIL-S-19500	A2(11-1)			
Diode	USN 1N989B	MIL-S-19500/117	Motorola	MIL-S-19500	A2(11-1)			
Diode	1 N816W	MIL-S-19500/199	Transitron	MIL-S-19500	A2(9)			
Diode		USN 1N438B	PSI		A35			
		1N1126A	N. A. E.	MIL-S-19500/104	A16, A21			
Connector	JACK Submin. SKT-1 1000 VRMS (50,000 ft)	8983191	Sealectro	MIL-F-6751	A (29)			
Connector	RF Cable Connector	8722717	Sealectro	MIL-F-6751	A14(5)			
Connector	RF Cable Connector	8722717	Sealectro	MIL-F-6751	A14(5)			
Choke	RF Molded $39\mu h$ Q=60 at 2.5 Mc, 0.65 Ω DC	87015 90-263	Delvan	MIL-C-15305	A2(8)			
Transistor		2N335	TI		A(28)			
		2N329A	Raytheon		A2(1, 2)			
		2N498	GE, TI		A2(4, 5)			
		2N706	TI, Fairchild		A14(1)			
		2N1490	RCA		A(13)			
		2N1485	RCA		A12, 34, A2(4, 8, 9), A(28)			
Resistor	Fixed Comp., 1/2W, 1 megohm ±10%	RC07GF105K	А. В.	MIL-R-11	A14(3)			
Transistor		2N1486	RCA		A28			
Diode		1N3189	Motorola	MIL-S-19500/155	A2 (9)			
Diode		1 N648	ТІ	MIL-E-1/1193	A2			
Diode		11821	Transitron	MILS/19500	A2, A28			

- .

•

TABLE G-2 NON-STANDARD PARTS LIST							
Type Description of Part		Description of Part Procurement No.		Vendor MIL SPEC			
Resistor	Variable, Comp. 1000 ohms ±10%, 3W	KA1L040S102NC	A. B.		A(29)		
Resistor	Variable, Trimmer 1K ±5%, 0.5W	1175270-12	Bourns		A (35)		
Resistor	3250L 1-502, 1K ±5%, 0-1W	8447750-3	Bourns		A2(11-2, 10, 9, 2)		
Resistor	3250L-1-103, 10K ±5%, 0-1W	8447750-4	Bourns		A2(11-2, 2)		
Resistor	3250L-1-253, 25K ±5%, 0-1W	8447750-5	Bourns		A2(11-2, 1, 9, 11-1, 3)		
Resistor	Variable Trimmer 500 ohms $\pm 5\%$, 0.5W	1175270-3	Bourns		A(17)		
Resistor	Variable, WW, 200 ohms $\pm 5\%$, 1W	8983168-5	Bourns		A (8)		
Resistor	Variable, WW, 1000 ohms ±5%, 1W	8983168-7	Bourns		A (8)		
Resistor	235-1-204, 200K ohms ±20%, 0-0.25W	8447749-1	Bourns		A2(11-1)		
Resistor	(RH-50), 100 ±1%, 20W	8483207-2	Dale		A14(5)		
Resistor	Variable Trimmer, WW, 25K ohms ±5%, 0.5W	224-S-1-253	Bourns		A14(5)		
Resistor	10W, Power WW Chassis Mt.	RHM-10	Dale		A14(5)		
Resistor	$32501-1-202$, $2K \pm 5\%$, $1W$	1700383-5	Bourns		A2(3)		
Resistor	3250L-1-103, 10K ±5%, 1W	1700383-7	Bourns		A2(3)		
Resistor	25K ±5%, 1W	1700383-9	Bourns		A2(3)		
Resistor	Fixed, 1 ohm ±3%, 3W, WW	RS-2	Dale		A2(6)		
Resistor	Axial lead, fixed, 1 meg, 0.33W, WW	1250	Daven		A(27)		
Transistor	99240-177 (2N1486)		RCA		A(35)A2(8), A(17)A2(6)		
Transistor	1171588-1		Fairchild		A(35)		
Transistor	8447741-1 (2N1208)		Transitron		A2(6)		
Transistor	1729706		Fairchild Semiconductor		A (12)		
Transistor	2N2432		TI		A2(3)		
Transistor	2N1493		RCA		A14(2)		
Transistor	8536787-1		PSI		A14(2)		
Transistor	2N424		TI		A (29)		
Relay	1708871-5 (SC11DD)		Potter Brumfield		A(36)		
Relay	1708001~9 (SL11DD)		Potter Brumfield		A(36)		
Connector	DM53744-0000		Cannon and Cinch Co.		A (29)		
Connector	8748046-501		Minicon Corp.		A(29)		
Tube	7870		RCA		A14(4)		

G-12

TABLE G-2 NON-STANDARD PARTS LIST (Continued)								
Туре	ype Description of Part Procurement No.		Vendor	MIL SPEC	Subassemblies Where Used			
Coil	8483720-1		Delvan, RCA		A14(2)			
Coil	8483720-2		Delvan, RCA		A14(2)			
Coil	8483720-3		Delvan, RCA		A14(2)			
Coil	8483720-4		Delvan, RCA		A14(2)			
Coil	BP1140		Delvan		A26(3)			
Coil	8482231-1		Coil R. F. Part of JFD SC-131		A14(3)			
Coil	8530446-1		Coil R. F. Part of JFD SC-131		A14(3)			
Coil	1175627		Universal Torroid		A9(7)			
Crystal	8530488-2		МсСоу		A14(1)			
Nuvistor	N5247		RCA		A2(12)			
Nuvistor	A15247B		RCA		A2(13)			
Switch	1708219-1		Oak Mfg. Co.		A13			
Fuse	1700596-1		Little Fuse		A34			
Frans- former	DO-T36		U. T. C.		A26(5)			
Diode	1N916		Fairchild		A9(1,4,2,3,5,6) A(8) A2(10,2,1,6,3,4,11-1)			
Diode	1N3057-B		Motorola		A(26)(8)			
Diode	1N3041-B		Motorola		A2(11-2), A2(11-1)			
Diode	1N754		TI		A(36)			
Diode	1N457		TI		A2(10)			
Diode	1N968B		TI		A2(10)			
Diode	1N967		PSI		A2(10)			
Diode	1N747		TI		A2(10,3)			
Diode	1N746A		TI		A2(10,2)			
Diode	848293-1		RCA		A2(10)			
Diode	1N753-A		TI		A2(2)			
Diode	8482944-1		RCA		A2(8), A2(9)			
Diode	1N645		TI		A2(8), A(8)			
Diode	1709319		Continental Devices		A17			
Diode	1N761		Transitron		A(29), A(30)			
Diode	8447742-1 (1N1583)		TI		A2(6)			
Diode	1N2039-B		Motorola		A2(3)			
Diode	1N704		PSI		A14(1)			
Diode	1N251		Transitron		A14(1)			
Diode	1N3031B		Motorola		A14(1)			
Diode	1N3027B		Motorola		A14(1)			
Diode	PSI122 (8536786-7)		PSI		A14(1) A14(2)			
Diode	1N2032		Transitron		A14(2) A2(4)			

•

•

٠

TABLE G-2 NON-STANDARD PARTS LIST (Continued)								
Туре	Description of Part	Procurement No.	Vendor	MIL SPEC	Subassemblies Where Used			
Diode	1 N963		TI		A2(11-1)			
Diode	1N646		TI		A2(9)			
Diode	PS2419		PSI		A2(9)			
Diode	2N683		TI, Motorola		A(36)			
Capacitor	Solid Tant. Polar 15µf ±20%, 20V	8412778-10	Sprague Kemet		A2(6,11-2,11-1)			
Capacitor	Solid Tant. Precond.	1175260-194	Sprague		A(35)			
Capacitor	Solid, Tant. Precond.	1175260-208	Sprague		A (35)			
Capacitor	Solid, Tant. Precond.	1175260-182	Sprague		A(35)			
Capacitor	Solid, Tant. Precond.	1175260-200	Sprague		A(35)			
Capacitor	Dipped Mica, Precond.	1175250-349	El-Menco		A(35)			
Capacitor	Dipped Mica, Precond.	1175251-225	El-Menco		A (35)			
Capacitor	Fixed Ceram. Plate 560444f, ±10%, 200V	1175255-14	Aerovox		A(35)			
Capacitor	Solid Tant. Polar 4.7µf, 35V	8412778-41	Sprague		A2(11-2,10)			
Capacitor	Solid Tant. Polar 22µf, 15V	8412778-76	Sprague		A2(11-2,11-1)			
Capacitor	Solid Tant. Polar 100µf, 20V	8412778-50	Sprague		A2(11-2)			
Capacitor	Solid Tant. Polar 47µf, 35V	8412778-53	Sprague		A2(11-2,10)			
Capacitor	Solid Tant. Polar 3.2µf, 35V	8412778-44	Sprague		A2(11-2)			
Capacitor	Solid Tant. Polar 47µf, 6 VDC	8412778-19	Sprague		A2(11-2, 11-1)			
Capacitor	Solid, Polar 22µf, 35 VDC	8412778-61	Sprague		A2(11-2, 11-1)			
Capacitor	Wet Slug Tant. 47 µf	CL65CJ470MP3	Sprague, GE		A(28)			
Capacitor	Fixed Tant. 6-100W VDC 109D's $4\mu f$, 270 μf	8938348	Sprague		A (13)			
Capacitor	Solid Tant. Polar 15µf, 20V	150D156X0020B-2-10	Sprague		A2(10)			
Capacitor	Solid Tant. Polar (150D) 4.7 μ f, 20V	8412778-34	Sprague		A2(10)			
Capacitor	Solid Tant. Polar 60µf, 6V	8412778-11	Sprague		A2(10)			
Capacitor	Solid Tant. Polar 330µf, 6V	8412778-86	Sprague		A2(10)			
Capacitor	Solid Tant. Polar 40µf, 10V	8412778-30	Sprague		A2(10)			
Capacitor	Solid Tant. Polar 6.8µf, 35V	8412778-95	Sprague		A2(10) A14(1)			
Capacitor	Solid Tant. Polar 1µf, 35V	8412778-70	Sprague		A2(10)			
Capacitor	Solid Tant. Polar 2.2µf, 20V	8412778-7	Sprague		A2(10) A14(1)			

G-14

TABLE G-2 NON-STANDARD PARTS LIST (Continued)								
Туре	Description of Part	Procurement No.	Vendor	MIL SPEC	Subossemblies Where Used			
Capacitor	Solid Tant. Polar 4. 7µf, 10V	8412778-24	Sprague		A2(10)			
Capacitor	Solid Tant. Polar 15µf, 10V	8412778-27	Sprague		A2(1)			
Capacitor	Solid Tant. Polar 4.7µf, 6V	8412778-1	Sprague		A2(1,4)			
Capacitor	Solid Tant. Polar 100µ ^f , 15V	8412778-96	Sprague		A2(2)			
Capacitor	Solid Tant. Polar 33µf, 15V	8412778-312	Sprague		A2(2)			
Capacitor	Solid Tant. Polar 10µf, 15V	8412778-57	Sprague		A2(2)			
Capacitor	Solid Tant. Polar 6. 8µf, 15V	8412778-71	Sprague		A2(2)			
Capacitor	Solid Tant. Polar 68µf, 15V	8412778-58	Sprague		A2(2)			
Capacitor	Solid Tant. Polar 0. 1µf, 35V	8412778-36	Sprague		A2(2) A29, A30			
Capacitor	Tant. Foil, Non-Polar 120µf, D75 VDC	CL54CL121-UN3	3 GE (With Glass A36 (hermetically seal)		A(36)			
Capacitor	Glass Trimmer 0.8 - 8.5 pf	SC133	J. F. D.		A14(1)			
Capacitor	Tant. Foil, Non-Polar 2µf, 60 VDC	CL22TK020C	GE		A14(1)			
Capacitor	Ceramic 1000 pf, 500W VDC	8950912-15	Erie		A14(2)			
Capacitor	Tubular Ceramic 0.01 μ f, 600V	DD6-103	CentraLab		A14(2)			
Capacitor	Ceramic Trimmer	538-001	Erie		A14(2)			
Capacitor	Metallized Film 15µf, 600 VDC	8980848-576	Sprague		A2(9)			
Capacitor	Metallized Film 0.15µf, 200 VDC	8980848-514	Sprague		A2(9)			
Capacitor	Dipped Mica 2700 pf, 1000V	UDM30272J	Arco El-Menco		A2(9)			
Capacitor	Solid Tant. Polar 180µf, 6 VDC	8412778-304	Sprague		A2(11-1)			
Capacitor	Solid Tant. Non-Polar 23µf, 10V	151D235X9010W0	Sprague		A26(5)			
Capacitor	Mylar, Mylar Wrap	CTM333VAJ	Arco		A12			
Capacitor	Solid Tant. Polar 22µf, 15V	350D226X9015	Sprague		A12			
Capacitor	Solid Tant. Polar 15µf, 35V	350D156X9035	Sprague		A12			
Capacitor	Solid Tant. Polar 47µf, 35V	350D476X9035	Sprague		A12			
Capacitor	Solid Tant. Polar 0.033µf, 35V	150D333X9035A2	Sprague		A9(3)			

٠

•

Type Description of Part Procurement No. Vendor MIL SPEC Subassemb								
Туре	Description of Part	Description of Part Procurement No.		MIL SPEC	Subassemblies Where Used			
Capacitor	Glass Trimmer, SC-131, 0.8-4.5 pf	898778-1, 2	J. F. D.		A14(3)			
Capacitor	Glass Trimmer, 0.8 - 4.5 pf	841434-1	J. F. D.		A14(3)			
Capacitor	Fixed Tant. 50µf, 60 W VDC	8938348-16	Sprague		A (34)			
Trans- former	Step-Down Res. Load Freq. Range 1500	1076703	RCA	MIL-T-27A	A (28)			
Frans- Cormer	Toroidal ~23.5 volts to 22.5 volts	1175301	Universal Torroid		A2(8)			
Coil		1175626	Forbes and Wagner		A(16)			
Frans- former	Power - 29.5 volts	1180553	Forbes and Wagner		A(16)			
frans- former	Auto - Transformer Step-Up - Transformer	1185083	RCA		A16			
ſrans- former	OSC-Pwr. Transformer	1185086	Forbes and Wagner	MIL-T-27A	A26			
Diode	C50DR309 SCR	1721896-1	GE		A12			
Frans- former	2ZPP-2073-Gen	1721981	JPL		A41			
Diode	SN-169	8545229-1	National		A14(2)			
Fransistor	2N389	8447743	TI		A2(3)			
Capacitor	Metallized Paper 150 WDC	(121P) 1729623	Sprague		A14(3)			
Diode		IN965	PSI		A14			
Diode		IN705A	Hughes		A9			
Diode		IN703	Hughes		A9			
Diode		IN755A	Hughes		A9			
Diode		IN2835B	Motorola		A14			
Diode		IN3004B	Motorola		A14			
Diode		IN3028B	Motorola		A14			
Diode	Altered (IN530A)	8447747-1	Hoffman		A12			
Diode		IN970B	PSI		A14			
Diode		IN976B	PSI		A14			
Diode		IN765	Transitron		A28			
Diode		IN341B	Transitron		-			
Coil	RF Molded 1500h	8723001-401	Delvan		A14			
Relay	Coil Res. 1400 36VDC SL11DB-36	1708871-1	Potter and Brumfield		A34			
Capacitor	Fixed Silvered Mica	8481434	RCA		A14(3)			
Capacitor	Fixed, Ceramic Miniature Tubular	1175259	Aerovox		A35			
Capacitor	Encapsulated Fabmika	1175388	Sprague		A2			
Capacitor	Ceramic, Disc High Voltage	1751107	Maida Development		A1			

•

G-16

TABLE G-2 NON-STANDARD PARTS LIST (Continued)							
Type Description of Part		Procurement No.	Vendor	MIL SPEC	Subassemblies Where Used		
Capacitor	Stacked Foil High Temp.	200M224x9152 8447751	Sprague				
Capacitor	Ceramic Dielectric Special 125°C	8447758 C-80	Aerovox				
Fuse	315005	1700596	Little Fuse		A34		
Fuse	Exothermic 0.155 ohms/ft	1175965-1	Pyrofuze		A34		
Fuse	Exothermic 0.62 ohms/ft	1175965-4	Pyrofuze		A34		
Capacitor	Metallized Paper 1.5µf ±20% at 1400V 85° C	118P155010T4	Sprague		A16		
Crystal	RH-8, 18.0 Kc	1077463-1	Reeves, Hoffman		A9(6)		
Coil	1X3000L 3.H		Universal Torroid		A2		
Capacitor	0.15µf ±10%, 35V	8412778-80	Sprague		A2(4)		
Diode	CAP at 9 VDC at 50 Mc Max VDC - 100 10μμf	PSI-PC-115-10	PSI		A(14-1)		
Capacitor	1000 µµf 500V	8950912-15	Erie		A(14-1)		
Transistor	Diss. at 25° C -0.25W Volt at VCE=18 volts	117599 2N943	Sperry		A2(4-10, 3)		
Coil	RF Molded 1.5mh	8723001-401	Delvan		A9(6)		
Relay	DPDT Coil Res. 2000 ohms Coil Disap. 1.5W at 25° C	1077484-1	C.P. Clare		A9(3)		
Coil	RF 1.5mh		Telonic, RCA		A14-1		
Coil	RF 2.2mh		Telonic, RCA		A14-1		
Fransistor	Disap. 25° C=0.15W Volt at VCB-45V hfe=200	2N336	Fairchild		A26(5)		
Diode	Varactor	MA4348D	Microwave Assoc.		A14(3)		
Diode	Silicon Low Leaking	8482943 JAN IN457	TI		A2		
Coil	Line Filter	E-7266(1185054-1)	Forbes Wagner		A16		
Frans- ormer		E-6463-3	Forbes Wagner	i	A16		
Filter		SP196	Filtron		A28		
Diode		MZ 18V05	IRC		A27		
Diode		MZ 112V25	IRC		A27		
Diode		FA 4000	Fairchild		A(8)		
Capacitor	Metallized paper mylar 0.022µf	118P22302S4	Sprague		A28		
ransistor		2N1656	Raytheon		A2(7,11-2)		
ransistor		2N2124	Westinghouse		A(16,21)		
Coil		746916	RCA		A14(4)		
loil	RF 8mh	MM3	UTC		A14(1)		
telay	27.50 DC-Hi Voltage RES=2500 ohms R-5	8984958-1	Resitron		A16,21		
liode		IN758	TI, Transitron		A9, A26		
liode		CD4111	Continental Devices		A17		

.

Туре	Description of Part	Procurement No.	Vendor	MIL SPEC	Subassemblies Where Used
Diode		IN1204	North American		A9
Diode Diode		IN2032	Transitron		A2
		IN2039	Motorola	ĺ	A2
Diode	RF 2.2mh	No. VIV-0.22	Nytronics		A14(2)
Coil	10.960 Mc	8530488-1	McCoy		A14(1)
Crystal Relay	DPDT Gen. Purpose J26B1H6A	8748087-2	Filtors		A14(1)

.

.

Appendix H

Summary of Malfunction Reports

These tables present a history of malfunctions that occurred to equipment on the TV Subsystem, from the initiation of the splitsystem through final flight model testing at ETR, prior to the launch of Ranger IX.

The tables are arranged by assembly and by serial number for each assembly.

The malfunctions are in chronological order for each serial number.

.

	1				T
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	•	<u> </u>		Camera Fail	ures S/N 004
1376 (PFR 3152) 5/28/64		Discon- timued camera operation	Thermal-vacuum (JPL venting tests)	Nonassignable	Camera operation discontinued, and a fluctuation was observed on the 100- volt monitor. Subsequent testing of the Assembly revealed a 12K-ohm short between two printed-circuit connections of the high-voltage regulator A2 frame. These connections were previously common, but the printed-circuit path had been cut to incorporate a design change. The Camera Electronics Assembly had operated successfully when tested at RCA and JPL prior to the application of conformal coating by JPL. Since the printed-circuit board in all flight models was previously modified to eliminate the close spacing of the 1000-volt and ground terminals, a failure of this nature was not likely to occur in any flight units. The failure in Camera Electronics Assembly, Serial No. 004, has been attributed to a breakdown of insulation between two connections on the printed-circuit board. The cause for such a breakdown could be impurities in the structure of the printed-circuit board, breakdown of the basic material as a result of time or exposure to thermal-vacuum conditions, or random arcing in thermal-vacuum that could result in the formation of a carbon path in the printed-circuit board.
				Camera Faib	<u> </u>
3381 6/12/63	Capacitor C16	Poor black- to-white transition	Room (integration)	Design	The pictures obtained from this camera had poor quality black-to-white transition and were unacceptable to JPL. The peaking capacitor (C16) value was changed from 91 pf to 200 pf and the failure was corrected.
2617 8/26/63	Shutter (Serial No. 3011) Detent spring	Excessive noise	Room (JPL)	Wearout	It was noted that this shutter created considerably more noise than the other shutter. A detent spring was found broken. This shutter had accumulated is excess of 666,000 operations.
2620 9/23/63	Shutter Coil	Jammed coil	Special test after MVT No. 2 at JPL.	Workmanship	The shutter coil jammed. This shutter coil is part of the 3050 through 3061 series. Improvements in the manufacturing process prevented the recur- rence of this type of malfunction.
4794 3/14/64	Capacitor C3	Polarity reversed	Ambient	Workmanship	Investigation into an incorrect waveform exhibited during the malfunctioning of the shutter revealed that capacitor C3 was installed with polarity reverse. The capacitor was replaced and normal operation of the shutter was restored
5811 3/19/64	Capacitor C3	Over- stressed	Ambient	Workmanship	Investigation into why the free-running mode would not operate after rework revealed that capacitor C3 was improperly installed. This resulted in a re- verse voltage being applied to the capacitor and, although the capacitor checked properly except for being slightly erratic, the capacitor was re- placed. (Refer to MR 4794).
		L		Camera Fail	ures S/N 007
2616 7/30/63	Shutter (Serial No. 3019)	Failed to operate	Room (JPL)	Design	The shutter failed to operate on half of the cycles because the shutter block would not stay in the up-position due to a broken detent spring. The detent spring was sent for analysis. This disclosed that, along with some wear caused by the detent rubbing across the spring, material fatigue had been accelerated by the improper application of the staking compound used to hold down the detent-spring mounting screw. The compound should have been applied perpendicularly to the spring instead of parallel. An ECN was issued describing the correct method of applying the staking compound.
2619 9/14/63		Broken spring	Room (JPL)	Workmanship	Cause of saturation of P2 camera was broken detent spring. The tool used fabricate the detent springs put a crease in the spring, resulting in breakag of the spring. Manufacturing then began use of a new tool to fabricate the detent springs.

	TABU	LATION	OF MALFU		ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		· <u> </u>		amera Failures	S/N 007 (Continued)
4792 3/12/64	Choke L2	Lead broken	Ambient	Nonassignable	Investigation into the loss of 300-volt power revealed that the lead on choke L2 was broken. The location of the Subsystem when this lead was broken could not be pinpointed because no Subsystem test was performed on the PTM upon its receipt from JPL. An instruction entitled "Electrical Test on TV Subsystem Received from the Field" was issued. This specified that all Subsystems, when received, be tested in accordance with Appendix G of RTSP-1100A. (Chokes L2 and L3 were also replaced because the leads were potted together. Refer to MR 4793 and 5802.)
4793 3/12/64	G1 Regulator	No +1000 volts	Ambient	Design	Investigation into the loss of the +1000 volts revealed that the coaxial cable into connector A3J3A1 was broken. Refer to MR 5826 for analysis. The connection was resoldered, inspected, and conformally coated.
5821 3/24/64	Coaxial Connector	Loss of video	Ambient	Wearout	This coaxial connector has been pushed out. The retaining shoulder of the connector had been worn by the lateral motion of the insert. The vendor was consulted about this malfunction and recommended the use of back potting or nylon rings. The coaxial connectors on Flight Model III-2 were back-potted. This process was continued on Flight Models III-3 and III-4. The nylon ring was not used.
5826 3/28/64	Harness A3A3P3-A1	Wire broken	Ambient	Design	A broken wire at A3A3P3-A1 was attributed to lack of potting. Although the potting was applied as required by the latest drawing, it did not provide strain relief. All harness drawings were then modified to extend potting on all right-angle connectors for a distance of 0.50 ± 0.12 inch. This was then included on all Ranger TV Subsystems.
2171 6/30/64	Shutter	Mounting screw missing	Ambient (postvibration inspection)	Accident	During the postvibration inspection, it was noticed that a screw was missing from the shutter mount. A screw, with the shock mount still attached, was found on the floor and was probably the missing one. Examination showed that the nylock button on the screw was deformed so bally that no selflocking was possible. Flight Models III-2, III-3, and III-4, and the spares, all had Kel F long-lok screws (rather than the nylock button) which have high driving torque and are limited to one insertion for flight use. Thus, no further corrective action was required.
			<u></u>	Camera Fai	lures S/N 008
5825 3/27/64	Harness 30W10, Serial No. 0005	Wire broken	Ambient	Accident	Wire A6A3P3-A1 of harness 30W10 was found to be broken off at the solder joint in the connector. The wire was quite stiff because of the heavy insula- tion required for the 1000 volts for the vidicon mesh. The wire entered the connector at right angles to the pins and it is believed that it was broken be- cause of careless handling during disconnection and reconnection of the plug. Personnel were instructed not to exert any force on the wire itself.
2172/3770 7/7/64	Shutter, Serial No. 004	Shutter jammed	Ambient (system test following a special vibration test)	Workmanship	When the shutter was disassembled, an excessive amount of metallic particles and a scar mark were found on the aluminum guide of the pole piece The cause of the failure was attributed to the metal particles being wedged between the inside of the coil and the coil guide thus jamming the shutter. Extra precautions were since taken to remove all residual metallic particles from the shutter during the assembly process.
	· I		.	Camera Fai	lures S/N 009
2986 4/1/63	Connector and Cable	Connector contact not making contact	Ambient	Accident	Contacts of vidicon connector were distorted and failed to make contact; improper insertions and extraction.
2984 4/2/63	Camera Head	Camera out of focus	Ambient	Workmanship	Cameras were not torqued properly when they were mounted after optical alignment. QC began inspecting mounting on all flight units.
2670 4/4/63	Vidicon 311	Cracked vidicon	Ambient	Accident	Glass accidentally cracked during manipulation of connector. New design reduced mechanical stress on vidicon.
1420 4/4/63	Lens 25-mm Angenieux	Particles of metal on in- side surface of lens		Nonassignable	Metal particles could have been the result of extensive machining of the cam- era shutter when the new lens was mounted.

.

Party Contraction

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		J		Camera Failures	S/N 009 (Continued)
2680 4/4/63	Transistor 2N1656 Q11	High- voltage arc	Ambient	Secondary	Secondary to (MR 2670): cracked vidicon caused high-voltage arc.
3382 6/12/63	Shutter Blade	Video saturation	Room (in- tegration)	Workmanship	The shutter had a blade aperture of a millisecond rather than the specified 2 milliseconds. The shutter was disassembled and the following were noted: wear on the edge of the shutter blade; shift in position of the detent lockmuts; powdery deposits on the housing.
					The following corrective actions were initiated: replacement of the shutter blade; coating of the detent locknuts with a locktight material; and a chemi- cal analysis of the powdery deposits.
3386	Lenses,	Loss of	Room (integra-	Secondary	Picture resolution was lost during debugging.
6/12/63	Vidicon, Shutter	picture resolution	tion)		The camera heads were disassembled and deposits were found on the lenses, shutters, and vidicon face plates.
					The deposits were chemically analyzed by the RCA Laboratories but could no be identified.
					The conclusion reached was that normal wear of the shutter could result in this deposition. The subject was discussed at a design review, and design changes were recommended which would keep this deposition to a minimum.
2302 6/30/64	Nuvistor (type 7586)	Open filament	Ambient (post- vibration system test)	Random	P3 camera video was lost at C+49 of postvibration system test 14. It was noted that the P3 Camera had been slow turning on during warmup. In a subsequent system test, P3 Camera video was intermittent. The muvistor was removed and returned to AED where analysis revealed that the lead soldered to pin 4, (control grid) was loose. The lead, a solid wire, had been wrapped around the pin with a single turn and soldered. Further evaluation of the muvistor (electrical test with all wire leads removed) indicated that the filament operation was intermittent. A multiple-wrap technique was initiated for use on Cameras serial no. 042 through 049 and on all replace- ments after July, 1963.
				Camera Fai	hures S/N 010
1757 3/9/63	Shutter (P) 3003	Open	Room (integration)	Workmanship	Shutter coil checked open; internal inspection revealed a broken contact spring that was twisted. This shutter was assembled by engineering with no QC. Shutters for all flight units were made by RCA under QC inspection.
2851 3/11/63	Shutter (P) 3031	Open	Room (integration)	Design	Shutter coil checked open. internal inspection revealed a broken contact spring. This early shutter model was used on the PTM to maintain test schedules. It did not have all of the modifications made to shutter design for flight units.
2854 3/16/63	Resistor, 20Ω 1/2 W, wire- wound (R1)	Open	Room (integration)	Random	The camera had a faulty video output which was traced to an open resistor in the focus current regulator of the High Voltage regulator. No other parts were bad nor did an analysis reveal any overstress condition. The resistor was a commercial item, and it was recommended that a MIL-R-93 type RB17CE20R00F be substituted. This was the first reported failure of R1.
3383 5/12/63	Shutter Blade	Video saturation	Room (integration)	Workmanship	See MR 3382 on Camera S/N 009.
3385 5/12/63	Vidicon		Room (integration)	Workmanship	The vidicon was loose and had a 1/16-inch play. The vidicon was removed and a piece of nylon was found jammed onto the yoke threads. This made it impossible to tighten the vidicon.
					The nylon was removed and the mounting retorqued.
384 /12/63	Loose Shutter Detent Locknuts		Room (integration)	Workmanship	The detent locknuts were found to be loose when the shutters were removed to change the blades. This condition was due to a lack of the required lock- tight coating. The required coating was applied.
153 :/1/64	P4 Camera Assembly (PTM)	Micro- phonics on P4 Camera Video	Ambient	Nonconfirmed	Microphonics caused no serious degradation to the picture content. Due to the noncritical nature of the problem and the unavailability of the PTM for re- placement of the vidicon, no action was taken at this time.

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		t		Camera Failu	ures S/N 011
2985 4/5/63	Shutter Detent	Shutter detents lost magnetism	Ambient	Random	Loss of shutter action immediately after installation on structure. Detents removed and remagnetized. Reinstalled and operated successfully. First occurrence of this nature.
58v2 3/18/64	Resistor R46	Lead broken	Ambient	Nonassignable	Inspection of the assembly revealed that the lead from resistor R46 was broken. Refer to MR 4792 on Camera Electronics S/N 007 for analysis. The lead was properly resoldered.
				Camera Failu	ures S/N 014
2943 8/8/63	Capacitor C2 Tantalum Type	High leakage current	Room (manu- facturing bench test)	Random (part)	During the flight acceptance testing, the video signal was found to be in- verted. Testing of the circuitry revealed that capacitor C2 had an excessive leakage current that caused transistor Q1 to remain saturated.
2947 8/25/63	Shutter (Serial No. 024)	Open coil	Room (manu- facturing)	Nonassignable	The shutter would not operate because of an open coil. The strip had broken 1/16 of an inch above the solder joint during the initial manufactur- ing bench tests. The shutter had only 10,500 operations prior to this failure. This was only the second such failure.
4008 9/22/63	Contact Strip	Broken contact	Room (manu- facture)	Nonassignable	The shutter failed during manufacturing bench testing. Failure was due to broken contact strip that had experienced only 34,000 operating cycles.
		strip			The past history of this full-scan shutter was not determinable since it had no serial number on it. It was believed to be an engineering test shutter.
					The shutter was thoroughly reworked, tested, and assigned a serial number
2838 10/11/63	Vidicon Serial No. 66	Micro- phonic	Room (engineering)	Workmanship (vendor)	This camera had successfully passed flight-acceptance testing. During bent testing of the Block III cameras, the tube exhibited excessive microphonics It was decided that the tube would not be used for flight but could be used during tests conducted in engineering or manufacturing.
2112 6/28/64		Reported overscan out-of- specifi- cation	Therma-vacuum (at 0° C)	None	A minimum overscan was specified as 8% for a Pl Camera; however, no maximum was specified. The measured overscan of 15% at 0° C constitute a more-than-adequate safety margin for this test. Therefore, this was no considered a malfunction.
2113 6/29/64	Vidicon, Serial No. 840	Low resolution	Thermal- vacuum	Random	When initially checked, the resolution of vidicon, Serial No. 840, was 7 percent at 630 lines at 25° C. However, during thermal-vacuum testing at 40° C, the resolution dropped to 1 percent at 671 lines. The Camera Electronics Assembly was functioning properly during this period. It was therefore concluded that the vidicon was temperature-sensitive and it was replaced.
3772 7/9/64		Telem- etry voltage not within specified limits	Ambient	Nonconfirmed	The G1 and focus telemetry voltage was measured as -1.72 to 1.82 , respectively. The specified minimum range is -2.0 to 3.0 volts. These readings were a function of the vidicon beam-current requirements for be resolution. This particular vidicon required a high negative G1 voltage. The G1 and focus telemetry circuits performed satisfactorily. MR 100-64 131 was approved by JPL, indicating acceptability of this condition.
3883 8/18/64		Excessive vibration	Vibration	Accident	Camera Head received an excessive vibration shock when the input tape recorder of the test equipment failed to operate properly because of a defective connector and a dirty tape head. The camera was exposed to a random burst of noise at approximately 15g for one second. Camera Head Serial No. 014, was electrically tested, revibrated, and electrically teste- once more. No changes in operating characteristics were encountered. A procedure for cleaning the input tape-recorder heads on a regular basis
					was generated, and the heads were to be inspected prior to operation.

H-6

MR Number and Date	Component Part	Failure Mede	Test Environment	Cause of Failure	Analysis and Corrective Action
				Camera Failures S/1	N 014 (Continued)
3792 9/19/64	Vidicon, Type C74072-D	Exces- sive video gain	Ambient	Accident	Vidicon, type C74072-D, is twice as sensitive as the vidicon originally employed. Consequently, the range of the vidicon target voltage should have been reduced in order for the existing adjustment of the Camera Electronics assembly to maintain proper gain control. A reduction of the target supply voltage from 30 to 25 volts restored proper operation. This target-voltage reduction was also required for suppression of vidicon beam oscillations which were experienced with the 30-volt target supply.
					to assure that the vidicon parameters established on high minimum and the testing were maintained.
1357 10/9/64	Shutter	Stuck shutter	Ambient	Workmanship	The shutter stuck during the performance of a special engineering test. Analysis indicated that the core assembly of the shutter was defective. Excess epoxy which had not been removed interfered with the movement of the shutter coil. There was also a buildup of brazing material on the cross arm of the coil. These defects were corrected. However, during re- assembly of the shutter, the core was cracked.
					A new core was to be installed when available. The Product Quality Control Check List No. 121 was revised to include special inspection items, so that closer surveillance of shutter assembly workmanship would be undertaken.
1371 10/20/64	Vidicon Serial No. J03360	Loss of video	Ambient	Accident	The malfunction occurred during a special test (investigation of defocusing) when the video signal was lost. The failure was attributed to a broken G2 lead in the connector A1P3 of the test harness. However, upon repair of the connector, the restored video was of poor quality, and further analysis indicated a 1000-ohm short between the cathode and G1 grid of vidicon, Serial No. J03360. Vendor analysis indicated that the broken G2 lead may have caused the internal short. With an open G2 lead, the input to the G1 regulator was not present. Therefore, the G1 grid was operating at zero bias for a brief period of time, possibly several minutes. The G1 grid normally operated at zero bias during the preparation portion of the cycle,
					but not for the remainder of the cycle. The viniton was pixe interval aging cycle for new tubes. After operation at a filament voltage of 8 volts, the tube was found to have normal characteristics. Later, at AED, the tube again displayed erratic performance but stabilized after a brief period of operation. Operation at a filament voltage of 8 volts evidently cleared the internal short. The tube was coded to indicate a rejected item not suitable for flight use.
1529 10/29/64		Telem- etry out of specifica-	Ambient	Workmanship	The 1000/300 telemetry-point voltage was measured as 2.5 volts, which was not within the specified range of 3.6 to 4.7. Investigation revealed that this low voltage resulted from a break in the 300-volt lead to the telemetry circuit. The break was at the terminal on the printed-circuit board.
		tion			During repair of the wire, it was found that the wire may have been stressed During repair of the wire, it was found that the wire may have been stressed by a tie wrap adjacent to the printed-circuit terminal. In addition, con- nector A3J3 was replaced and extensive trouble shooting was performed on this printed-circuit board. The combination of the possible stress and probing in the process of troubleshooting resulted in the break of this wire.
1547 11/19/64	Nuvistor	High noise level	Ambient	Design	(See MR2073) The replacement of microphonic muvistors in camera preamplifiers was not umsual and not normally reported as malfunctions. This was because muvistors must be specifically selected for each camera using microphonics as the parameter of primary interest. Due to the construction of the tube and its location in the camera head (close proximity with the shutter), these tubes often become increasingly microphonic, making replacement necessary. Some changes were incorporated to protect the muvistor when mounted, such as long leads, use of blue-solithane potting material, and the use of improved shutter-shock isolation. Even with the changes, some muvistors exhibited degraded microphonic performance as a function of time, making replacement necessary.

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
				Camera Failures :	5/N 014 (Continued)
1547 11/19/64 (Continued)					A screening test for selection of nuvistors for low microphonics was established. The set-up consisted of a shutter, a camera housing, and a mount for mounting the nuvistor to the housing. Utilizing the same shutter drive voltages, the relative noise level of nuvistors was readily discernible Since noise in the tube is a function of the axis involved, the tube was tester twice (at 90°C) to assure a low level of noise in both axes. The set-up was checked utilizing noisy nuvistors for comparison, and the test appeared capable of selecting the better nuvistors.
2074 11/21/64	Video Amplifier	Noise on output	Ambient	Workmanship	During camera calibration tests, there were 10 mv of noise on the video amplifier output. In an attempt to improve camera performance the noise was traced to zener diode CR1. One end of the diode was disconnected. Th diode was replaced with a 1N757A and operated satisfactory for a short time It was discovered that the wrong diode was placed in the circuit. After the proper diode, 1N755A, was put in the circuit, the camera operated at a noise level of less than 5 millivolts. Inspection of color photographs of the board revealed that the original diode was a 1N757, which exceeded leakage specification.
2073 11/22/64	Nuvistor	Nuvistor micro- phonics	Ambient	Workmanship	The camera was rejected due to a high level of nuvistor microphonics. Whe a replacement nuvistor was installed, the camera still had 35 mv of noise in the white-field video. This nuvistor appeared to cause the preamplifier to go into oscillation. Another nuvistor was installed. The camera operated satisfactorily and the component was potted in the camera preamplifier. The original nuvistor was found to have a mu value of 35.2, which differed from comparable Ranger nuvistors by a factor of four.
					The nuvisior was returned to the vendor for an analysis. The oscillations were found to be internal to the nuvistor and were the result of a defective grid assembly. A new procedure was put into effect to alert manufacturing to the possibility of this failure.
1545 11/27/64		Double image on video	Thermal- vacuum	Accident (test equipment induced)	During thermal-vacuum testing of Flight Model III-4, the display of the F_b Camera video output exhibited a double image, vertically displaced near the center of the scanned raster. Investigation of the problem revealed that the mirror employed in the collimator prevented simultaneous focusing on bars and numbers. A telescope was used to view the mirror and the double image was again evident. An optical laboratory camera was then used to photograph the collimator target using the mirror. A smear was definitely visible when the photograph was compared io one taken while looking directly into the collimator. This verified a definite mirror defect. Temperature has a definite effect on mirror image. At colder temperatures, the double image worsens, while at higher temperatures, the double-image effect clears. Double image is thought to be an effect caused by the bonding of the mirror to metal with epoxy. This problem is recognized and the design and fabrication of a new mirror was initiated.
					The optical laboratory continued investigation to obtain a better reflective surface for use over the temperature ranges stipulated for spacecraft tests. When a new mirror was procured, the mounting configuration would be redesigned to prevent stressing of the mirror due to thermal expansion and contraction of its metal supporting structure.
				Camera Failu	res S/N 015
342 /3/63	Transisotr (Q19) 2N722	External short	Vibration	Design	Loss of horizontal sync output following vibration. Emitter of Q19 was externally in contact with the emitter of Q9 of the horizontal sync. Circuit layout for modification of the horizontal sync board placed the two tran- sistors adjacent to each other. The insulation broke down due to wear during vibration. The circuit layout was corrected to eliminate this failure mode.
963 /10/63	Sync Generator	Out of sync	Room	Design	The Sync Disable mode was activated while taking outside pictures. During this period, the camera went out of sync once in every five operations. The vertical sync generator circuit was redesigned. Diode CR8 was changed from a type 1N746 to a type 1N753. The ECN, No. 92705, to RCA drawing No. 1703809 was issued on July 18, 1963.

H-8

÷.

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
				Lamera Failures S	/N 015 (Continued)
337 4 7/23/63	Lens (75mm)	Loose lens	Room (integration)	Vendor workmanship	When the Camera was removed for optical alignment it was noted that the front lens element was loose. It appeared that a highspot had existed under the lens element in the lens housing. This highspot had worn down under vibration and the lens no longer fit snugly.
3980 9/10/63	Solenoid Coil Detent Spring	Broken binding	After thermal- vacuum test (integration)	Workmanship	Following removal of the spacecraft from the Thermal-Vacuum Test Chamber and following electrical check-out, shutter P4, S/N 3058 (FR A3979) was removed. When the spacecraft was reassembled, shutter P1, S/N 3056, did not operate due to a jammed coil and broken detent spring.
					All shutter solenoid coils used in shutters 3050 through 3061 were replaced A program of testing, review, and inspection was initiated and all responsible persons reviewed procedures and specifications.
5813 3/25/64	Potentiometer R31	Misad- justed	Ambient	Accident	Following an intentional misadjustment of the deflection controls to check for vidicon shading, the subsequent realignment resulted in misalignment of the horizontal centering potentiometer. The resultant mask extension was only 12 microseconds instead of 15. The centering potentiometer was readjusted.
3935 4/3/64	Shutter, Serial No. 3030R1	Loose nut	Ambient	Workmanship	Inspection of Flight Model III-2 by Quality Control revealed that the mut on the screw holding the "C" contact spring was insufficiently torqued. The mut was properly torqued.
3830 3985 4/22/64	Vidicon S/N 708	Noisy video	Thermal- vacuum	Nonassignable	Two malfunction reports were written. MR 3985 covers a malfunction that occurred during thermal-vacuum testing; MR 3830 covers a malfunction that occurred during subassembly testing after the subassembly was removed from the Ranger VII structure. During a post thermal-vacuum test, there was a loss of video for a 10-second period. The loss was caused by external noise triggering the erase flip-flop in the vertical sync generator during a read cycle.
					The vidicon, Serial No. 708, was returned to the vendor for analysis, was found to be electrically satisfactory, and was not found to be microphonic. The shutter used was not identical to a Ranger shutter. The vidicon was returned to RCA. A shock greater than a single shutter operation was re- quired to start the microphonics. However, once started, the shock from the shutter was sufficient to maintain the microphonics. The tube was returned to the vendor for dissection and examination. The faceplate was removed. The mesh and mesh mounting were found to be normal. The disassembled vidicon was returned to RCA. It was concluded that the vidicon was microphonic and that the microphonics were associated with the mesh structure.
1783 5/7/64		Mask deviation time	Ambient (pre- vibration)	Accident	The mask deviation time during the free-running mode was out of specifica- tion. This malfunction occurred because the mask deviation time during free-running mode was not checked during bench test. The test procedure for this assembly was revised to include a check of the free-running mode and any necessary adjustments.
3752 5/16/64		Shading out of specified limits	Thermal- vacum	Nonconfirmed	The P1 Camera Subassembly was apparently out of the specified limits for shading when tested to RTSP-1112A while in thermal-vacuum condition. RTSP-1112A however, does not require that shading measurements be mad under thermal-vacuum conditions. The P1 Camera subassembly was tested at ambient conditions and successfully completed acceptance test. A variation of the shading limits was reviewed with JPL personnel and approved.
2120 8/31/64		Defective test cable	Ambient	Accident	This malfunction was reported as an inoperative shutter. However, a chec of the waveform for the shutter revealed that it was operating properly. Th trouble was traced to test cable No. 2 where an open existed in the shutter return wire (A1J1-3 to J19). This, then, was a malfunction to the test equipment.

Component Part	Failure Mode	Test Environment	Cause of Failure	Corrective Action
			Camera Failu	res S/N 016
Lamp Drive S/N 016	Short B to C	Bench	Design	Leakage current caused unit to remain in the ON position and stressed the transistor; B to C short resulted. Recommended use of 2N1496 MIL part with tighter leakage-current
Vidicon Serial No. 162P	Noisy	Room (manufacturing)	Wearout	The performance of the vidicon was marginal after being installed in a camera. Further testing disclosed the tube to be defective because it had low sensitivity, poor signal-to-noise ratio, and very poor resolution. This was all attributed to low emission due to aging. The tube was subjected to approximately a year of cycling on and off. This tube was removed from u except for engineering test.
Vidicon (Serial No. 438)	Micro- phonic and loose mesh	Vibration	Random	Vidicon tube was found microphonic and meshy after vibration. The elements inside the vidicon tube were found to have changed their relative position. The grid was in focus on the vidicon photoconductor layer. Dur- ing readout this tube picked up the mesh and it appeared on the picture.
Transistor Q5 (type 2N930	Short, base to collector	Room (manufacturing)	Accident (test error)	Examination of the failure revealed that the failure could only be attributed to an unnoticed and unreported testing error. This assumption was sup- ported by the fact that immediately after replacement of transistor Q5, it was again destroyed by test error. Test personnel were again instructe to report all test errors.
Transistor Q10 (type 2N1656	Open emitter		1	to report all test errors.
Transistor Q11 (type 2N1656)	Short, emitter to collector			
Transistor Q5 (type 2N930)	Open base			
Transistor Q11 type 2N1656) Transistor	Shorted, collector to emitter Shorted,	Thermal- vacuum (Manu- facture)	Accident (test error)	During thermal-vacuum testing the electrical power was accidentally applied while pumping through the critical pressure point. A review of all previous failures in thermal-vacuum was made to determine which other parts may have been overstressed.
Q28 (type 2N718A)	base to emitter and col- lector to emitter			
Transistors Q29 and Q30 Type 2N1656	Shorted, collector to emitter			
Transistor Q10 Type 2N389	Shorted, base to emitter and base to col- lector			
Transistor Q3 Type 2N718	Shorted, collector to emitter	r		
	Lamp Drive S/N 016 Vidicon Serial No. 162P Vidicon (Serial No. 438) Transistor Q5 (type 2N930 Transistor Q10 (type 2N1656 Transistor Q11 (type 2N1656) Transistor Q11 (type 2N1656) Transistor Q11 (type 2N1656) Transistor Q11 (type 2N1656) Transistor Q11 (type 2N1656) Transistor Q28 (type 2N18A) Transistor Q28 (type 2N18A) Transistor Q29 and Q30 Type 2N1656	Lamp Drive S/N 016Short B to CVidicon Serial No. 162PNoisyVidicon (Serial No. 138)Micro- phonic and loose meshTransistor Q10 (type 2N1656Short, base to collectorTransistor Q10 (type 2N1656Open emitterTransistor Q11 (type 2N1656Short, emitter to collectorTransistor Q11 (type 2N1656Open emitterTransistor Q11 (type 2N1656Short, emitter to collectorTransistor Q11 (type 2N1656Shorted, collectorTransistor Q28 (type 2N300)Shorted, collectorTransistor Q28 (type 2N1656Shorted, collector to emitter and col- lector to collectorTransistor Q29 and Q30 Type 2N1656Shorted, collectorTransistor Q3089Shorted, collectorTransistor Q309Shorted, collectorTransistor Q309Shorted, collector	Lamp Drive S/N 016Short B to CBenchVidicon Serial No. 162PNoisy Micro- phonic and loose meshRoom (manufacturing)Vidicon (Serial No. 138)Micro- phonic and loose meshVibrationTransistor Q10 (type 2N1656Short, base to collectorRoom (manufacturing)Transistor Q10 (type 2N1656Open emitterRoom (manufacturing)Transistor Q11 (type 2N1656Open emitterRoom (manufacturing)Transistor Q2 (type 2N1656Open base collectorThermal- vacuum (Manu- facture)Transistor Q28 (type 2N1656Shorted, base to collectorThermal- vacuum (Manu- facture)Transistors Q28 (type 2N1656Shorted, collectorThermal- vacuum (Manu- facture)Transistor Q29 and Q30 Type 2N1656Shorted, base to collectorShorted, collectorTransistor Q3 TypeShorted, base to collectorShorted, collectorTransistor Q3 TypeShorted, collectorShorted, collector	Lamp Drive S/N 016Short B to CBenchDesignVidicon Serial No. 162PNoisy B to CRoom (manufacturing)WearoutVidicon (Serial No. 438)Micro- phonic and loose meshVibrationRandomTransistor Q10 (type 2N930Short, base to collectorRoom (manufacturing)RandomTransistor Q10 (type 2N1656Short, collectorRoom (manufacturing)Accident (test error)Transistor Q11 (type 2N1656Short, collectorRoom (manufacturing)Accident (test error)Transistor Q5 (type 2N1656)Shorted, to emitterThermal- vacuum (Manu- facture)Accident (test error)Transistor Q28 (type 2N930)Shorted, collectorThermal- vacuum (Manu- facture)Accident (test error)Transistor Q28 (type 2N1656)Shorted, collectorThermal- vacuum (Manu- facture)Accident (test error)Transistor Q28 (type 2N1656Shorted, collectorThermal- vacuum (Manu- facture)Accident (test error)Transistor 2N1656Shorted, collectorCollector to emitter and col- lector to col- lectorShorted, collectorImage: Shorted, collectorTransistor 2N389Shorted, collectorShorted, collectorImage: Shorted, collectorImage: Shorted, collectorTransistor 2N389Shorted, collectorShorted, collectorImage: Shorted, collectorImage: Shorted, collectorTransisto

H-10

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
				L Camera Failures S	/N 016 (Continued)
4005 9/17/63	Vidicon, S/N 896	Blemish on face- plate	Room (manu- facture)	Noncomfirmed	It was noted that a spot, caused by a blemish on the vidicon free, was ap- pearing on all monitor photographs. Manufacturing rejected these vidicom for their blemishes. When engineering received the table, they accepted the vidicons since the blemishes did not exceed the specified dimensions.
4004 9/18/63	Transistor Q10 (type 2N1656)	Shorted, collector to emitter and base to collector	Room (engineering test)	Accident (test error)	In an attempt to induce the Q10 and Q11 failures in the Camera Electronics the plus 1000 volts was shorted to ground. This did not cause either Q10 or Q11 to fail. While doing this, the plus 300 volts was shorted to Q10, destroying it.
4094 12/4/63	Broken wire	Broken wire	Ambient (JPL)	Workmanship	The 275-volt-supply lead of connector A3J6 was found to be broken after the return of the deflection amplifier to JPL. The lead had been too short upon installation, and broke when stress was applied.
4479 12/23/63	Potentiom- eter R32	Open center contact	Room	Workmanship	The G1 switching voltage was lost during calibration and alignment for the six-camera bench test. Investigation revealed that potentiometer R32 had an open circuit. It was found that the lead into the potentiometer was broken. Microanalysis revealed that the lead had been twisted until it snapped. When the potentiometer was replaced, normal operation was restored.
4480 12/23/63	Transistor Q2 (type 2N718)	Shorted, base to emitter	Room	Nonassignable	During the investigation of the malfunction noted in Malfunction Report 447 transistor Q2 was found to be shorted: base to emitter. The transistor we found to have failed because of a transient voltage applied between the base and emitter for a short period of time.
4098 12/28/63	Gl Regu- lator	Broken wire	Room	Accident	Following the repairs necessitated by Malfunction Reports 4479 and 4480, the Assembly was tested. Investigation of abnormal operation revealed the a wire to pin 33 of J6 was broken. It is believed that the wire was broken during the investigation for the two aforementioned MR's. The wire was replaced and normal operation restored.
4588 12/30/63	Transistor Q21 (type 2N722)	Low beta	Room	Nonconfirmed	This transistor was removed from the Assembly because of suspected erratic operation. Testing of the transistor showed that all static characteristics were within specification limits. The DC beta was found to be 55; the specified minimum is 20.
1361 10/12/64		Incorrect waveform	Ambient	Workmanship	When an oscilloscope was connected to the telemetry point for the shutter and lamp voltage on Camera Electronics, Serial No. 016, a sawtooth wave- form was obtained, rather than the expected steady d-c waveform. Investigation revealed that a trace existed between terminals on the printed circuit board, but should have been open, as shown in the photomaster for this circuit. The presence of this trace allowed the shutter input palse to be routed directly to the base of output transistor Q18. When this trace was opened, the correct waveform was obtained.
					An analysis of the circuit, with the trace on the printed-circuit board, indicated that no overstresses were introduced, but this effect should be taken into account when telemetry is observed. Since this trace posed no real threat to camera operation, it was not necessary to rework Cameras, Serial Nos. 022 and 037, which also had this extra trace. It was felt that opening of the Camera Electronics Assemblies at this point would only have introduced unnecessary program delay and undue reliability hazards.
1366 10/16/64	Shutter Hardware	Micro- phonics	Ambient	Design	The measured noise was 80 millivolts, while the maximum specified value is 50 millivolts. The shutter mounting screws were loosened one-half turn, increasing the shutter-to-Camera Head clearance to 0.055 inch. This reduced the measured level of microphonics to 20 millivolts. The clearance was now set at the upper limits of the specification (tolerance for the clearance were given as $0.050 + 0.005$, -0.001 inch).

<u>हु</u>ि ?

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	• • • • •			Camera Fail	ures S/N 017
849 2/7/63	Wire	Open	Ambient (integration)	Workmanship	There was insufficient slack in the wire. When laced down, the wire was overstressed resulting in a break at J6. Wire was replaced with proper wire length. Quality Control was instructed to exercise closer checks for this fault.
3274 7/5/63	Transistor Q9 (type 2N1893)	Open emitter	Room	Accident (test error)	The connections for the vertical yoke were reversed. The test positions were more clearly marked to prevent further accidents of this type.
2295 7/25/63	Transistor Q2 (type 2N1485)	Open, emitter to collector	Room (bench)	Accident (test error)	The Assembly was placed in a new test rack and power applied. Smoke and the odor of burning followed. A check of the equipment revealed that the transistor Q2 was burned. This failure was caused when a 6.3-volt line shorted to the shield of a cable.
3349 8/21/63	Transistor Q28 (type 2N718)	Low beta	Thermal-vacuum (engineering)	Accident	Emitter current was being shunted to the base of the transistor.
255 4 12/14/64	N/A	Beam oscilla- tions and telemetry out of specifica- tion	Ambient	Accident	During a postvibration electrical test of Camera, Serial No. 017/017, beam oscillations with amplitudes of 300 mv were encountered. Also, the horizontal telemetry read -5.23 volts, rather than the nominal -3.4 to -5.0 volts. Review of previous test data revealed that the horizontal sweep telemetry had a reading of -4.8 to -5.26 volts on $12/11/64$; the beam oscillations were eliminated by adjustment of the G1, G2, and focus currents MRA-100-64-216 was written to cover the telemetry readings, and MRA-100-64-217 was written to cover the beam oscillations.
				Camera Fail	ures S/N 018
3962 7/6/63	Shutter S/N 3035	Open coil	Room (integration)	wearout	This shutter had experienced approximately 300,000 operations when one of its beryllium-copper contact springs broke. The design life of the P-Scan Shutters was 200,000 operations.
5819 3/27/64	Potenti- ometer R15	Cracked	Ambient	Accident	Excessive potting used to hold down the G1 regulator cable flowed over on potentiometer R15. During mating of the A2 and A3 frames, this excessive potting stressed the potentiometer and cracked it. Thereafter, when potting was applied, a straight edge was passed over mating surfaces to check for protruding areas.
3776 7/14/64	N/A	Cathode blanking not within specified limits	Ambient	Design	During the previbration electrical test the waveform of the cathode blanking was not within specified limits. Investigation revealed that the deviation resulted from an insufficient "off" blas on transistor Q17 in the video- amplifier circuit during the dark-current sample and shutter intervals. Transistor Q17 was blased slightly in the forward direction during this interval, resulting in low noise at the base of the transistor being amplified and displayed at the collector. This condition was corrected by alleviating the low-bias situation on transistor Q17, and decreasing the worst-case zero level of the erase pulse to 0 volts dc.
3840 7/24/64		Video waveform out of specifica- tion	Ambient	Accident	During previbration testing, the mask scan of the clamped video waveform was read at 116 microseconds. Investigation revealed that during electrics check prior to assembly, the value of the waveform was 110 microseconds, at the upper limit of the specified value. The adjustment had accidentally been made on the high limit of the specified value.
1362 10/13/64		G1 and focus telemetry voltage out of speci- fication	Ambient	Random	During test of P1 Camera Electronics, Serial No. 018, the G1 and focus telemetry voltage was out of specification in the fail mode. This telemetry voltage measured -1.43 volts, while the specified range was 0 to 0.5 volt in the fail mode. The G1 failed should have been -0.7 to -1.3 volts, but read -2.28 volts.

H-12

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Carrective Action
				Camera Failures	S/N 018 (Continued)
1362 10/13/64 (Continued)					An investigation revealed that all vidicon operating voltages were within the specified range; however, the voltage of the 1000/4 high-voltage test point was higher than normal (222 volts rather than 216 volts). This caused the ± 27.5 -volt supply voltage to read ± 27.8 volts, which forward-biased transistor Q1 in the telemetry circuit and permitted a 3-volt, peak-to-peak. 20-msec pulse to be applied to charging capacitor C5. The telemetry output transistor, therefore, remained turned on and resulted in the out-of-specification telemetry readings in the fail mode. By adjusting the high-voltage (1000/4) test point from 222 to 216 volts, the supply voltage was reduced from 27.8 to 27.0 volts, removing the forward bias from transistor Q1. With this adjustment, normal operation was restored.
					Test Method -1-1754616 was revised, so that telemetry voltages would be checked immediately after any adjustment of vidicon operating voltages.
1551 10/26/64		Loss of Video	Ambient	Accident	During test of Pl Camera Electronics, Serial No. 018, the video signal was lost. The malfunction was traced to an intermittent failure of the -27.5 - volt supply. The loss of voltage was attributed to a broken wire at connector A2J4-36. The wire was frayed and appeared to have been holding by only a few strands prior to the break. The wire was repaired and normal video was restored.
· · · · · · · · · · · · · · · · · · ·		,		Camera F	ailures S/N 020
2613 6/12/63		No +1000 volts	Ambient	Random	In the F-Scan Camera Electronics for the LTM, the 1000-volt supply was lost because of the arcing between the 1000-volt terminal and a printed circuit carrying 40 volts. A secondary failure was the shorting of the 1000 volts to a 300-volt wire with broken insulation.
2825 6/24/63	Transistor Q8 (type 2N2436)	Open	Room (bench)	Workmanship	During the preliminary tests it was found that the +1000-volt supply was producing only +645 volts and all other positive voltages were low. Trouble- shooting revealed that the emitter of transistor Q6 was grounded by the cathode lead of diode CR7. Diode CR18 in the video amp was wired in backwards and the lead that was supposed to go to the anode side of this diode was missing. Further, the wire in the deflection amplifier that supplied the +6 volts for sweep was broken off.
				Camera Fa	ilures S/N 021
646 /7/63	Vidicon	Cracked envelope	Room	Accident	Vidicon envelope developed a crack across the base; the crack extended along the side of tube. Failure occurred during one of the repeated socket insertions and withdrawals. The harmess connection to the vidicon was modified to remove the mechanical loading from the vidicon pins.
647 /17/63	Bourns Trimpot 3250L	Pot open	Ambient	Random	One of the potentiometer leads opened at egress from the molded body. Cause of failure could not be determined.
648 /17/63	Transistor Q17 2N916		Ambient	Non- assignable	No blanking current from video amplifier. Transistor Q17(2N916) in the Video Amplifier was confirmed as having a low beta and defective E to B junction. This was the first reported failure of Q17. The malfunction occurred during modification of Block III-1.
322 /19/63	Vidicon P- Scan Serial No. 102	Micro- phonics	Room (bench)	Random	It was impossible to obtain satisfactory pictures from this vidicon due to High High microphonics.
23 19/63		Micro- phonic	Room (bench)	Non- assignable	This muvistor was removed and replaced when the camera still had approximately 250 mv of microphonics with the vidicon disconnected.
		Low resolution	Room (JPL)	Nonassignable	Following alignment and calibration, the Camera did not pass acceptance tests because of low resolution. All voltages to the vidicon were normal. The tube was replaced with Serial No. 942 and normal operation of the Camera was obtained.

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			1	Camera Fai	ures S/N 022
3345 8/15/63	Transistor Q5 (type 2N1485)	Short, col- lector to emitter	Room (manu- facturing)	Accident	The video was lost after approximately 20 hours of bench testing. This was found to be due to an accidental short between transistor $Q5$ and a voltage source.
4269 1/24/64	Cable Shield	Improp- erly wired	Room	Workmanship	The G1 regulator was not switching properly during a bench test. The shielded cable from J3 to A3 frame was found to be improperly wired and resulted in ground being placed on the R33-R34 junction when the test cable was connected. The wiring error was corrected and reinspected for quality acceptance.
5817 4/3/64	Lens, Serial No. 1887	Black particles	Ambient	Nonconfirmed	A visual inspection of the lens revealed loose black particles within the lens structure. Although they did not affect camera operation, the lens was disassembled to determine the nature and source of these particles. It was believed that the particles were pieces of black lacquor which resulted from scraping occurring during the past two years. The vendor was informed of the problem to prevent recurrence. Personnel were instructed not to disassemble the lenses for this problem because it did not affect camera operation.
5818 4/5/64	Diode CR9, Resistors R37, R38, R39, and R40 Capacitor C15	Telem- etry output out of specified limits	Ambient	Nonconfirmed	The telemetry output of the horizontal scan read -1.3 volts. The specified limits were 0 to -1.25 volts. Various components were removed and found to be satisfactory. A review of the specified limits as well as the failure simulation method resulted in the specified limit being changed to -1.5 volts.
2253 11/11/64	Shutter, Serial No. 3043R-1	Noise spikes in raster	Ambient (JPL)	No failure	A review of the 35-mm film of the video output obtained during a special test at JPL revealed noise spikes in the output of the P2 Camera. The nois usually appeared at alternate operations of the P2 Camera shutter and was generally grouped within a few TV lines near the top of the scanned raster. The duration of the noise spikes varied from a few microseconds to 50 microseconds. The level went to saturated white but recovered with little of no ringing. The P2 shutter was replaced as an exploratory measure (not because of a shutter maffunction), but this did not provide any improvement However, in later tests, the noise spikes were somewhat lessened.
					No additional action was taken since the noise spikes were actually within acceptable limits and the camera was still operating well within require- ments.
2252 11/13/64		Reversed plugs	Ambient (JPL)	Accident	During installation of the P2 Camera Assembly for a special test, plugs A2P2 and A3P5 were accidentally reversed. Power had been applied for 2 minutes and 15 seconds before the plug reversal was discovered. The A2P connector carried supply voltages to the preamplifier, while the A3P5 con- nector carried telemetry voltages. The plug reversal terminated all camera telemetry circuits in the preamplifier and supply voltages were terminated at the 90-point telemetry commutator. It was determined that no overstressing of parts occurred in the Channel 8 or P-Channel voltage controlled oscillators or in the affected telemetry circuits. All jacks and plugs were clearly stencilled. However, extra care was taken when these particular plugs were mated since they were the same type.
					In a duplication of the malfunction condition reported in MR 2252, a specia test was performed on capacitors C3, C4, and C2 in the camera preamplif circuit. All of these capacitors were CL45BK040MP3, polarized wet-shug types. During the actual malfunction, the input to C3 and C4 circuit had a reverse voltage of 3.5 volts for 2 minutes 15 seconds, and the circuit of capacitor C2 had a reverse voltage of 2.8 volts for the same period of tim
					In a series of three test configurations, no significant increase in leakage current was detected when subjected to identical failure modes. This finding supported the previous opinion of capacitor specialists and the ven- that the stress induced by the malfunction of MR 2252 was not severe enough to affect the reliability of the capacitors in P2 Camera, Serial No. 022/022. Two sample capacitors used in the tests were dissected and found to be clean internally. There was no evidence of silver migration

.

•

Analysis and Corrective Action arres S/N 022 (Continued) med Severe microphonics occurredin the final frames of the P2 Camera during Ranger VIII Mission. The flight data was compared with preflight test performance which indicated that the P2 Camera flight performance was consistent with the test performance at AED and JPL during the thermal- vacuum runs. The increase in microphonics during the mission was due to rising vidicon temperature. This was not considered a malfunction. a Failures S/N 023 med The data point used to monitor the lamp-drive circuit indicated a failure. The related circuits were checked and found to operate satisfactorily. a Failures S/N 024 Initially, P4 acted as if it had a slow warm-up. However, it functioned satisfactorily at the end of the run and during all subsequent test runs. a Failures S/N 025 The analysis and corrective action for this malfunction Report is the same as presented in Malfunction Report 2616 on P2 Camera Assembly S/N 007. The P-Shutter was found to have a broken contact strip. The shutter had operated for only five days before this failure, its second. The first failure in the shutter occurred after 300,000 operations. One of the contact strips broke and was replaced. However, the remaining contact strip was not changed and after five days of operation, also failed. On all subsequent reworks, both contact strips were to be replaced. hlip A broken contact strip resulted in an open coil in the shutter. Inspection of the strip revealed that it had been soldered to the coil on an angle. Thus the contact strip was subjected to twisting when operated and it snapp
med Severe microphonics occurredin the final frames of the P2 Camera during Ranger VIII Mission. The flight data was compared with preflight test performance which indicated that the P2 Camera flight performance was consistent with the test performance at AED and JPL during the thermal- vacuum runs. The increase in microphonics during the mission was due to rising vidicon temperature. This was not considered a malfunction. a Failures S/N 023 med The data point used to monitor the lamp-drive circuit indicated a failure. The related circuits were checked and found to operate satisfactorily. a Failures S/N 024 Initially, P4 acted as if it had a slow warm-up. However, it functioned satisfactorily at the end of the run and during all subsequent test runs. a Failures S/N 025 The analysis and corrective action for this malfunction Report is the same as presented in Malfunction Report 2616 on P2 Camera Assembly S/N 007. The P-Shutter was found to have a broken contact strip. The shutter had operated for only five days before this failure, its second. The first failure in the shutter occurred after 300,000 operations. One of the contact strips broke and was replaced. However, the remaining contact strip was not changed and after five days of operation, also failed. On all subsequent reworks, both contact strips were to be replaced. hhlp A broken contact strip resulted in an open coil in the shutter. Inspection of the strip revealed that it had been soldered to the coil on an ang
Ranger VIII Mission. The flight data was compared with preflight test performance which indicated that the P2 Camera flight performance was consistent with the test performance at AED and JPL during the thermal-vacuum runs. The increase in microphonics during the mission was due to rising vidicon temperature. This was not considered a malfunction. a Failures S/N 023 med The data point used to monitor the lamp-drive circuit indicated a failure. The related circuits were checked and found to operate satisfactorily. a Failures S/N 024 Initially, P4 acted as if it had a slow warm-up. However, it functioned satisfactorily at the end of the run and during all subsequent test runs. a Failures S/N 025 The analysis and corrective action for this malfunction Report is the same as presented in Malfunction Report 2616 on P2 Camera Assembly S/N 007. The P-Shutter was found to have a broken contact strip. The shutter had operated for only five days before this failure, its second. The first failure in the shutter occurred after 300,000 operations. One of the contact strip was not changed and after five days of operation, also failed. On all subsequent reworks, both contact strips were to be replaced. hilp A broken contact strip resulted in an open coil in the shutter. Inspection of the strip revealed that it had been soldered to the coil on an angle. Thus the contact strip was abjected to twisting when operated and it snapped. Shutter S/N 3032 was thereafter used only for preliminary testing of flight
med The data point used to monitor the lamp-drive circuit indicated a failure. The related circuits were checked and found to operate satisfactorily. a Failures S/N 024 Initially, P4 acted as if it had a slow warm-up. However, it functioned satisfactorily at the end of the run and during all subsequent test runs. a Failures S/N 025 The analysis and corrective action for this malfunction Report is the same as presented in Malfunction Report 2616 on P2 Camera Assembly S/N 007. The P-Shutter was found to have a broken contact strip. The shutter had operated for only five days before this failure, its second. The first failure in the shutter occurred after 300,000 operations. One of the contact strip was not changed and after five days of operation, also failed. On all subsequent reworks, both contact strips were to be replaced. hip A broken contact strip resulted in an open coil in the shutter. Inspection of the strip was ubjected to twisting when operated and it snapped. Shutter S/N 3032 was thereafter used only for preliminary testing of flight
The related circuits were checked and found to operate satisfactorily. a Failures S/N 024 Initially, P4 acted as if it had a slow warm-up. However, it functioned satisfactorily at the end of the run and during all subsequent test runs. a Failures S/N 025 The analysis and corrective action for this malfunction Report is the same as presented in Malfunction Report 2616 on P2 Camera Assembly S/N 007. The P-Shutter was found to have a broken contact strip. The shutter had operated for only five days before this failure, its second. The first failure in the shutter occurred after 300,000 operations. One of the contact strip was not changed and after five days of operation, also failed. On all subsequent reworks, both contact strips were to be replaced. hip A broken contact strip resulted in an open coil in the shutter. Inspection of the strip revealed that it had been soldered to the coil on an angle. Thus the contact strip was usbected to twisting when operated and it snapped. Shutter S/N 3032 was thereafter used only for preliminary testing of flight
Initially, P4 acted as if it had a slow warm-up. However, it functioned satisfactorily at the end of the run and during all subsequent test runs. a Failures S/N 025 The analysis and corrective action for this malfunction Report is the same as presented in Malfunction Report 2616 on P2 Camera Assembly S/N 007. The P-Shutter was found to have a broken contact strip. The shutter had operated for only five days before this failure, its second. The first failure in the shutter occurred after 300,000 operations. One of the contact strip was not changed and after five days of operation, also failed. On all subsequent reworks, both contact strips were to be replaced. hlip A broken contact strip resulted in an open coil in the shutter. Inspection of the strip revealed that it had been soldered to the coil on an angle. Thus the contact strip was ubjected to twisting when operated and it snapped. Shutter S/N 3032 was thereafter used only for preliminary testing of flight
satisfactorily at the end of the run and during all subsequent test runs. a Failures S/N 025 The analysis and corrective action for this malfunction Report is the same as presented in Malfunction Report 2616 on P2 Camera Assembly S/N 007. The P-Shutter was found to have a broken contact strip. The shutter had operated for only five days before this failure, its second. The first failure in the shutter occurred after 300,000 operations. One of the contact strips broke and was replaced. However, the remaining contact strip was not changed and after five days of operation, also failed. On all subsequent reworks, both contact strips were to be replaced. hip A broken contact strip resulted in an open coil in the shutter. Inspection of the strip revealed that it had been soldered to the coil on an angle. Thus the contact strip was ubjected to twisting when operated and it snapped. Shutter S/N 3032 was thereafter used only for preliminary testing of flight
The analysis and corrective action for this malfunction Report is the same as presented in Malfunction Report 2616 on P2 Camera Assembly S/N 007. The P-Shutter was found to have a broken contact strip. The shutter had operated for only five days before this failure, its second. The first failure in the shutter occurred after 300,000 operations. One of the contact strips broke and was replaced. However, the remaining contact strip was not changed and after five days of operation, also failed. On all subsequent reworks, both contact strips were to be replaced. A broken contact strip resulted in an open coil in the shutter. Inspection of the strip revealed that it had been soldered to the coil on an angle. Thus the contact strip was ubjected to twisting when operated and it snapped. Shutter S/N 3032 was thereafter used only for preliminary testing of flight
 as presented in Malfunction Report 2616 on P2 Camera Assembly S/N 007. The P-Shutter was found to have a broken contact strip. The shutter had operated for only five days before this failure, its second. The first failure in the shutter occurred after 300,000 operations. One of the contact strips broke and was replaced. However, the remaining contact strip was not changed and after five days of operation, also failed. On all subsequent reworks, both contact strips were to be replaced. hip A broken contact strip resulted in an open coil in the shutter. Inspection of the strip revealed that it had been soldered to the coil on an angle. Thus the contact strip was ubjected to twisting when operated and it snapped. Shutter S/N 3032 was thereafter used only for preliminary testing of flight
 operated for only five days before this failure, its second. The first failure in the shutter occurred after 300,000 operations. One of the contact strips broke and was replaced. However, the remaining contact strip was not changed and after five days of operation, also failed. On all subsequent reworks, both contact strips were to be replaced. A broken contact strip resulted in an open coil in the shutter. Inspection of the strip revealed that it had been soldered to the coil on an angle. Thus the contact strip was subjected to twisting when operated and it snapped. Shutter S/N 3032 was thereafter used only for preliminary testing of flight
of the strip revealed that it had been soldered to the coil on an angle. Thus the contact strip was subjected to twisting when operated and it snapped. Shutter S/N 3032 was thereafter used only for preliminary testing of flight
a Failures S/N 026
hip The camera sweeps were found inoperative. Investigation disclosed that diode CR2 had been opened by a solder splash on the circuit board shorting the diode to a 6.3 volt source. Upon replacement of the diode and cleaning of the board, the unit operated satisfactorily.
In order to find the vidicon tube that performed best in a camera, several were installed, tested, and then removed. During one of these tests, two wires in the vidicon connector were crossed allowing plus 300 volts to be shorted to G1 resulting in the shorting of transistor Q5.
During a postvibration check of Camera Head, Serial No. 026, microphonic of 100-mv amplitude were experienced on the clamped video signal. The muvistor was replaced, and the noise was greatly reduced and signal level improved. While removing the original muvistor, however, a hole was accidently punched in its metal case, breaking the seal and making an electrical analysis impossible. Mechanical analysis of the muvistor from this unit revealed that the tube had a defective grid structure. Several of th grid supports had not been attached during manufacture of the tube. This permitted the grid to move, and constantly changed the grid-to-cathode spacing.

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	<u> </u>	<u> </u>		Camera Fail	ures S/N 028
3371 3372 3280 7/28/63	Transistor Q11 (Type 2N1656) Transistor Q17 (Type 2N916) Transistor	Open, base to collector Short, collector to emitter	Room (bench)	Accident	The G1 regulator would not operate constantly with respect to the ground reference and the video amplifier had no cathode blanking. Analysis revealed that only a short between the G1 head and the cathode lead of the vidicon could cause these three transistor failures. The short could have occurred in the cable, the connector, or from an external cause.
2948 8/26/63	Q10 (Type 2N1656) Vidicon S/N 288	Loose mounting	Room (manu- facturing)	Workmanship	The vidicon turned in the camera head when attempts were made to torque it down during assembly. A visual inspection of the phenolic sleeving on the tube verified that the tube was acceptable.
		i.			A check of the yoke revealed it to be slightly larger when compared to other cameras. The vidicon S/N 288 was installed in Camera S/N 028 and appeared to fit well.
4473 11/22/63	Connector A1A1J1	Improper mating	Ambient (integration)	Workmanship	Investigation as to the loss of video from the P1 Camera revealed that coax insert A1A1J1 was pushed out. The investigation further revealed that because of improper potting, it was impossible to mate the connector properly. The connector was replaced on the harness. QC has been requested to inspect all connectors very closely.
3802 5/4/64 3809 5/5/64		Variation	Ambient	Nonconfirmed	The average white level of the P1 Camera was considerable lower than that of the P2 Camera when tested with their respective collinators. A check was made by interchanging the P1 and P2 collimators and then using a calibrated light gun. In the test with the interchanged collimators, the difference in the average white levels of the P1 and P2 Camera was approximately 75 mv. The peak white level of the P1 Camera was approximately 15 percent low when determined by the use of the light gun. The P1 and P2 collimators were at 2450 and 4000 foot-lamberts respectively during these tests. The collimator difference was caused by the replacement of the bulbs without recalibration of the collimators. The low sensitivity of the P1 camera was caused by shutter replacement at JPL.
2195 5/15/64		Video noise burst	Postvibration	Nonassignable	During a postvibration system test performed in accordance with JPL test procedure 3R 300.12, a very fast noise burst was observed on the 35-mm film of the P1 Camera video (Reference MR 2192). This noise burst occurred near the top of the frame at the time of P3 Camera shutter opera- tion or during F Camera shutter operation. Thus, the noise appeared to be microphonically induced. The interference resulting from the noise burst was mincr (much less than 1 percent of the picture), so no immediate action was recommended. The amount of noise varied among tests; e.g., the second thermal-vacuum test (cold) had only a few frames in which the noise appeared.
2192 5/22/64		Noise	Ambient (JPL)	Nonconfirmed	Prior to mounting the Subsystem on the JPL Bus, a short test in accordance with Appendix R of RTSP 1100 was performed. The Thermal Shrouds and collimators were mounted on the Subsystem during this test. Examination of the 35-mm film revealed short noise pulses on the Pl video during both normal and sync-disable operation. Although the problem is not serious enough for camera disassembly, the video will be watched for signs of further degradation.
2055 6/26/64	Deflection Yoke	Open	Ambient	Workmanship	A check of the focus coil of the deflection yoke indicated an open between pins 1 and 9. The yoke was disassembled and the coil unwound to locate the open. It was found that the coil wire had been physically cut. The deflection yoke had been previously reworked to correct a stripped thread of a screw hole in the yoke collar. The damage to the coil wire was caused either by the tapping operation to enlarge the screw-hole size from No. 4 to No. 6 or by the use of a screw longer than specified by the deflection-yoke assem- bly drawing (RCA drawing No. 1754325. Note 5).

•

٠

	TABU	LATION	OF MALF	UNCTIONS	ON FLIGHT EQUIPMENT (Continued)
ME Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
				Camera Failures	b/N 028 (Continued)
1306 8/1/64 2118 8/21/64		Horizontal over-scan Video saturation	Thermal- vacuum Ambient	Workmanship (vendor) Design (AED)	Camera Electronics, Serial No. 018, exhibited shutter mistriggering, horizontal overscan, and out-of-specification resolution at 25° C. Pre- liminary investigation indicated that the video blank level was 300 mv rather than the nominal 70 mv. Additional investigation revealed the presence of distortion in the unclamped video waveform at the beginning of each horizontal line. Since the clamp circuit sampled during this interval, the action of the clamp caused the vertical black level to set on the distortion. Further investigation of the camera electronics isolated the problem to the
					vidicon yoke. An attempt was made to disassemble the yoke for analysis; however, the coils were so well potted that they were damaged to the extent that the source of the problem could not be determined visually. Resist- ance and inductance measurements indicated that the horizontal-deflection coil had approximately 68 turns shorted. Although these shorted turns ap- peared to be out of the circuit, the shorted portion of the coil was still mutually coupled to the remainder of the coil, providing a dampening effect, which affected the linearity of the waveform at the beginning of each horizontal line. Replacement of the vidicon yoke eliminated the horizontal overscan problem.
					During subsequent testing of this camera, erratic shutter operation was encountered. During bench tests to determine the cause of the shutter problem, saturated white video problems occurred, which were capable of being induced by adjusting the vidicon-target voltage from 30 to 37 volts. The correction to offset the vidicon was accomplished by reducing the vidicon target potential to 25 volts. Camera operation returned to normal, with only a very slight loss in sensitivity.
					The shutter problem was attributed to noise on the shutter-pulse output from the vertical sync generator, with the noise occurring almost coincidentally with the trailing edge of the shutter pulse. The noise problem was traced to a faulty transistor (Q21) in the vertical sync generator, whose beta value was too low to maintain saturation for the duration of the shutter pulse. As result, low-level noise spikes at the transistor base were amplified and impressed on the shutter drive input. Replacement of transistor Q21 restored normal shutter operation.
					When the camera was again tested in the thermal-vacuum environment, the vertical dark-field shading was out of specification. This is a common occurrence when vidicons undergo temperature variations. However, the shading was still too high at the end of the test, so an investigation was performed to determine the source of the problem. The erase, shading, and resolution characteristics of the camera were normal; however, the light-transfer characteristic (gamma) of the vidicon tube was more than 1.1 The gamma was modified to slightly less than 1.0 by the use of a 75-ohm lamp-driving resistor. The unit was tested in the thermal-vacuum environment and operation was normal.
					In order to eliminate video-saturation problems, the vidicon target voltage of each camera has been set at a value lower than the 30-volt range; the value of the voltage is established in accordance with a setup procedure.
					The failure of transistor Q21 from low beta indicates that the unit had been at marginal level at the time of installation. In future modifications or new cameras, transistor type AED-02, which has a minimum beta of 40 at 5- ma collector current, would be utilized as the lamp-drive transistor Q21. In addition the transistor base-drive current would be increased by de- creasing the 22-k ohm series resistor to 10-k ohms.
3963 8/20/64		Loose shutter	Vibration	Nonconfirmed	During thrust-axis vibration it appeared that the shutter had worked loose. An inspection of the Camera Head by the mechanical-integration activity showed that the shutter mounting and associated hardware met all specifica- tions. This, therefore, did not constitute a true malfunction.

TABLILATION OF MALEUNCTIONS

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
·	· · · · · · · ·		C	amera Failures S	5/N 028 (Continued)
1536 11/14/64	Video Amplifier	No video output	Ambient	Accident	During a test for microphonics, no video signals were obtained. During the previous rework, a lead that had a nick in the insulation was disconnected. A piece of thermo-fit sleeving was placed over the insulation at this point. When the lead was reconnected, the shield was connected to the pre-amp output and the center conductor was connected to ground. When the camera head was attached to the electronics, all video signals were shorted to ground at the pre-amp output. A stress analysis indicated that components C2 and Q1 were the most susceptible to stress. These components were not overstressed.
				Camera Fai	llures S/N 029
2688 2689 2690 6/25/63	Transistor Q8 (Type 2N1208) Resistor R26 Transistor Q7 (Type 2N697)	Short, collector to emitter Open Overstress	Room (integration)	Accident (test error)	Transistor Q8 (2N1208) was shorted from the collector to the emitter. Resistor R26, a 1 ohm 3 watt wire-wound resistor was open and completely destroyed. Transistor Q7 (2N697) was replaced since it was overstrased. It is unlikely that a component failure would have caused such extensive damage. Therefore, it is believed that an external short-to-ground of the collector on transistor Q8, caused the damage. This short probably occur- red at the shutter coil terminals since they were the only accessible points where an external short could be applied.
		.	•	Camera Fa	ilures S/N 031
4234 12/8/63	"C" Ring Spring	Lost	Ambient (JPL)	Design	 During a routine maintenance test, the ring used to lock the shutter block as sembly to its drive rod was found to be missing. The shutter had undergone approximately 150,000 operations. Because the ring could not be located, it is believed that it was missing at the time the shutter was installed. However, inspection of the shutter block disclosed staking compound which indicated that a ring had been present. The following recommendations were implemented to prevent a recurrence of this problem: Impose a 100% inspection of all rings and pins for proper dimensioning, Bond the ring with staking compound with the opening 90° away from the line of thrust, and Change the groove dimensions on Drawing No. 1170149 to 0.074 +0.002 -0.000 for the groove diameter to improve worst-case fit.
2178 5/13/64		Video line missing	Postvibration	Random	A postvibration verification test in the Z-axis was performed on Flight Model III-2. This test was conducted in accordance with JPL test proce- dure 3R311.03 The review of 35-mm film from the test revealed that on frame No. 45 a line was missing (P1 Camera) and on frame No. 52 a line was missing (P4 Camera). This problem was not observed in any subsequent testing. Therefore, the malfunction was considered to be a random occur- rence.
2179 5/13/64		Nuvistor micro- phonics	Postvibration	Nonconfirmed	During a postvibration electrical test, the P1 Camera exhibited an increase in mivistor microphonics of approximately 13 kc as compared to previous tests. The magnitude of the microphonics was not known, and to determine this level would have required the opening of several connectors on the TV Subsystem. An investigation of this nature was not warranted at that time. This microphonics condition appeared and disappeared with all cameras. A later test revealed that it existed on a limited number of frames. The phe- nomena were continually scrutinized when evaluating camera performance
				Camera F	ailures S/N 032
4002 9/7/63	Solenoid Coil	Jammed Solenoid	Room (manufacturing)	Vendor Workmanship	During testing of Camera S/N031, the shutter stopped functioning. Inspec- tion of Shutter S/N3054 indicated the solenoid coil was jammed. The glass epoxy coil was removed and quality control performed several measure- ments. This coil was found to be out-of-round at the narrow end of its taper and was smaller than the minimum as specified on the mechanical specification. An additional number of solenoid coils were ordered and the were to be fabricated under the close supervision of quality control and man ufacturing. In addition, several extra coils would be constructed at the san time. These coils would be tested by engineering and quality control.

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	<u> </u>	<u> </u>	C	amera Failures S	/N 032 (Continued)
4009 9/28/63	Transistor Q4 (Type 2N722)	High voltage	Room (manufacturing)	Nonconfirmed	The G1 and Focus Telemetry point measured out of specification limits, minus 27 volts, during manufacturing test. The transistor was found to be good following its removal.
4262 11/24/63	Shutter Serial No. 013	Magnetic detent not holding shutter	Ambient (JPL)	Design	The F_a Camera was saturating although no light was applied. Although a reading was obtained when the shutter reached the top of its stroke, the magnetic detent was not holding the shutter in the up position. Close inspection revealed the shutter was rebounding off new shock bumpers. An FCN has been issued to shorten the shock bumpers to prevent interference with the shutter.
3870 6/20/6 4		Broken wire	Ambient	Workmanship	The Camera Electronics Assembly (Serial No. 032) failed to operate during initial bench-check test. Examination of this assembly revealed an open wire in the high-voltage chopper circuit. When the open was corrected, the assembly operated normally.
1302 7/29/64	Preamplifien Serial No. 112	No target voltage	Ambient	Accident	During ambient test, target voltage was not being applied to the vidicon. Investigation revealed that preamplifier, Serial No. 112, had previously been opened for inspection of the nuvistor. In replacing the cover, the tar- get-voltage lead was pinched between the cover and case, breaking through the insulation and shorting the lead. Analysis of the circuit showed that a short at this point did not overstress the low-voltage regulator, preampli- fier, or vidicon. The shorted lead was replaced and proper operation was restored.
				Camera Fail	ures 5/N 034
2826 6/19/63	Vidicon (S/N 708)	Dark cur- rent tilt	Room (bench)	Nonconfirmed	A defective vidicon test cable caused poor video and improper shutter opera- tion. Even with the new cable the vidicon had an excessive slant on the dark field. The vidicon was tested in several cameras including the engineering bench setup. In all cameras, varying degrees of slope were present. The vidicon was replaced with S/N 402.
3271 7/1/63	Beryllium copper strip	Broke	Room	Wearout	The shutter failed due to a broken beryllium contact strip. This shutter had logged in excess of 350,000 operations. A procedure was established by en- gineering for the attachment of contract strips to the solenoids requiring the use of minimum solder. The strips previously failed due to flexure at the end of the solder flow. The new procedure would prevent the solder from flowing along the strip and would reduce the failure potential.
3380 8/2/63	Transistor Q4 (type 2N930)	Short, base to emitter	Room (manufacturing)	Workmanship	The vertical sweep telemetry point failed to indicate a malfunction upon the disabling of the sweep, as called for in the bench test procedure. Inspection revealed that excessive heat, probably during either rework or the test program, had been applied externally to the base lead of transistor Q14.
4698 4/10/64		Monitor signal missing	Ambient	Nonassignable	Investigation of the lack of the cathode blanking signal on pin 11 of jack A3A3J1 revealed an open circuit from the isolation resistor to the test point With the agreement of JPL, this condition was to remain unless the assem- bly was removed from the Subsystem for some other purpose (because the Assembly was working properly and could not be worked upon while integra- ted).
			<u></u>	Camera Fai	lures S/N 035
2833	Diodes CR6	Open	Room (bench)	Workmanship	During manufacturing bench test, the G1 Regulator did not operate. Investi
2834 2835 7/18/63	and CR7 (Type 1N989B) Transistors Q and Q6 (Type 2N1656)				gation revealed that the plus and minus 27.5-volt lines had been wired in reverse. Diodes CR6 and CR7, and Transistor Q2 all had opened due to the in correct wiring. Transistors Q3, Q5, and Q6 were all replaced due to an overstress.
	Transistor Q2 (Type 2N722)	Open			
	Transistor Q3 (Type 2N718A)	Overstress			

	TABU	LATION	OF MALFU	JNCTIONS	ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			C	Camera Failures S	J/N 035 (Continued)
3936 3/21/64		Telemetry out of spe- cification	Ambient	Nonconfirmed	A malfunction at the Vertical Sweep Telemetry Terminal on Test Rack 001 was indicated. Investigation revealed that Test Rack 001 was malfunction- ing. Replacement of the test rack restored normal operation of the failure indication circuit.
3937 3/23/64		Clamp pulse and mask level out of spe- cified limits	Ambient	Accident	The measured clamp pulse and mask level measured 65 microseconds. The specification incorrectly stated that 70 microseconds was the specified minimum. The specification was revised on March 30, 1964 so that the minimum is 65 microseconds.
4785 3/23/64	Potentiometer R17	Misad- justed	Ambient	Design	Potentiometer R17 was readjusted to return the horizontal-erase-sweep overscan to within specification limits. The assembly was set aside for 4 to 5 hours, then operated for one hour, and then rechecked. The overscan remained within limits. The Test Specification, RTSP-1111A, did not speci fically designate the original adjustments. It was since corrected to detail the necessary adjustments.
3938 3/30/64		No video	Ambient	Workmanship	Investigation into the loss of video from the camera revealed that the wire to A2J1-1 was broken. During the investigation two resistors with incorrect values were found. The wire was repaired, the resistors were replaced, and normal operation, as verified by a subsequent test, was restored.
				Camera Fa	ilures S/N 036
3554 8/29/63	P Vidicon S/N 115	Micro- phonic and meshy	Thermal-vacuum (manufacture)	Vendor Workmanship	The vidicon S/N 115 became microphonic and very meshy during 40°C ther- mal vacuum test. When analyzed by engineering, failure was confirmed and vidicon was replaced.
3990 4/26/64		Out of focus	Thermal-vacuum (-10° C)	Nonconfirmed	The video obtained from the P_2 Camera on Flight Model III-2 during the ther mal-vacuum testing of the Subsystem provided a resolution near the mini- mum acceptable individual camera resolution performance. Review of the data by both JPL and RCA personnel resulted in the conclusion that the Camera was acceptable for use.
2194 5/15/64		Super- imposed video	Postvibration	Random	During a postvibration system test performed according to JPL procedure 3R 300.12, the video signals of P_2 and P_4 Cameras were superimposed on frame 252 of the 35-mm film. This superimposition of video was an isolated incident attributed to a transient that caused the position pulse of the P_4 Camera to occur at the same level as the position pulse of the P_2 Camera. This condition was not observed on subsequent frames of the film. This failure was therefore classified as random and tests will be closely moni- tored for recurrence. No action was warranted at this time.
				Camera Fail	lures S/N 037
3978 9/3/63	Detent Spring	Broken spring	Room (integration)	Wearout	The shutter was operating slowly and erratically. This was caused by a broken detent spring.
					This shutter had accumulated in excess of 330,000 operations. Both detent springs were replaced along with both contact strips.
3979 9/9/63	Solenoid Coil	Jammed solenoid	Thermal-vacuum (integration)	Vendor Workmanship	The shutter coil became jammed in thermal-vacuum test. When the shutter was disassembled, it was found that the glass epoxy solenoid coils were out of round at the narrow end. Also the minimum dimension measured on this coil was below the minimum allowable.
4022 9/13/63	Solenoid Coil	Jammed coil	Thermal-vacuum test (integration)	Accident (test error)	This shutter was installed on the spacecraft when shutter S/N 3058 failed during thermal-vacuum testing (MR 3979). Shutter S/N 3050 was installed on the spacecraft in order to continue the test, even though the shutter was marked by quality control as a defective part. Shutters S/N 3050 through 3061 had new solenoid colls installed.
3991 4/28/64		Camera out of focus	Thermal-vacuum	Nonconfirmed	During thermal-vacuum testing, the picture obtained from the P_4 Camera appeared to be out of focus; however, the camera was operating within all required specification limits. After a review of camera data by RCA and JPL, a mutual agreement was made to retain the camera on the Ranger VII Spacecraft.

A Barran Sant

MR Number and Date	Component Port	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Car		/N 037 (Continued)
3599	Wire	Broken	Ambient	Accident	A broken wire was found on pin 17 of connector J6, frame A3. Because of
5/12/64		DIOREM		Account 1	the location of this pin, it was thought that the wire was broken by the hand- ling and unintentional stress applied to the soldered connection when the cable was formed over the receptacle.
2268 12/28/64	N/A	Shntter- induced noise bursts	Ambient (JPL)	Design	Review of the 35-mm film from the SFOF systems test revealed severe noise bursts in the P_2 Camera video output. The noise was concentrated in the top one-third of alternate frames from the camera. The problem was only pres- ent during the terminal portion of the SFOF test when the TV Subsystem was mounted in a horizontal position. When the Subsystem was tested in the ver- tical position, the noise bursts were not present on the P_3 Camera video out- put (similar situations have been noted with different cameras on every spacecraft). It appears that the electrostatic charge and discharge of shutter components contributed heavily to the appearance of white-level noise spikes in the video presentation. Substantial reduction of the noise was demonstra- ted experimentally by ground conditions on all shutter parts. A limited mum- ber of spare shutters were modified to eliminate the noise and became avail- able as flight spares. Flight experience with the Ranger VII Spacecraft indi- cated that the frequency of noise occurrence was significantly reduced with operation of the camera in a zero g environment.
			1	Camera Fai	lures S/N 038
2644 1/12/63	Transistor Q14 (type	Short, B to C	Bench	Design	Leakage current caused unit to remain in the ON position and stressed the transistor; B to C short resulted.
	2N1068)		Recommended use of 2N1486 MIL part with tighter leakage-current specification.		
3275 7/13/63	Transistor Q13 (type 2N916)	No video output	Room (bench)	Secondary	No video output was evident during tests. The trouble was with the Deflectio Amplifier, allowing the erase voltage to fall to a negative 1/2 volt.
3276 7/14/63	Transistor Q18 (type 2N943)			Secondary	Transistors Q13 and Q18 were damaged when vidicon, Serial No. 573, was cracked. The transistors were overstressed when operated with a damaged vidicon.
3277 7/15/63	Transistor Q22 (type 2N1244)			Accident	Transistor Q22 of the Deflection Amplifier was found to be shorted collector to emitter caused by a scope probe being placed across the transistor and resistor R52.
4007 9/18/63	Nylon track	Binding coil	Room (manufacturing)	Vendor Workmanship	The F-scan shutter had a steel pin which held the activating rod to the sole- noid coil. This pin extended through the coil and slid in two nylon tracks. The presence of some outside material on these tracks caused the shutter coil to bind. The outside material was probably an epoxy from the assembly of the shutter.
					The tracks were cleaned with a fine pile and a crocus cloth.
4089 11/2/63	Dowel Pin (RCA Dwg. 8482050)	Undersize	Room	Workmanship	A loose dowel pin on the shutter blade became wedged in the gibs, jamming the shutter. When the dowel pin was removed from the actuator block and measured, it was found to be marginal on one end of the pin. Specifications required the nin diameters to be 0.0005 ± 0.0000
					required the pin diameter to be 0.0635 -0.0000 -0.0003. More rigid quality-control procedures were to be maintained during the
					manifacture of this part.
4 651 12/2/6 3	Contact Strip	Shutter in- operative	Room (integration)	Workmanship	Investigation into the shutter failure after approximately 13,000 operations revealed that the contact strip had broken because it had not been soldered into its proper location on the actuator. A fixture was devised to hold the coil and contact strip while they were being soldered.
39 39 3/24/64	Vertical and Horizontal Telemetry	Output not within specified limits	Ambient	Nonconfirmed	During preliminary testing it was reported only from visual observation that the outputs were not within specified limits. However, during a later test performed with a revised specification, proper operation was noted. It is assumed that the preliminary test was performed with an obsolete issue of the specification.

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
				Camera Fail	ures S/N 038 (Continued)
3884 8/21/64		Loose lens housing	Vibration	Workmanship	During a two-axis vibration, several bolts on the lens housing were found to be loose. The bolts could be turned by hand, indicating that they had not been properly tightened during mechanical assembly. The Camera Head was returned to mechanical assembly for replacement of shutter hardware. An ECN was generated to assure that all future shutters would have new hardware and grommets with correct spacing.
1580 10/19/64	N/A	Video out of focus	Ambient (JPL)	Accident	During the postshipment operational checkout of Flight Model III-3 at JPL, the F_a -Camera video was out of focus. Since the reticles exhibited sharp focus, the collimator was suspected. This was verified by substituting the PTM collimator. Optical testing reaffirmed defocusing of the F_a Collimator. The defocusing was attributed to the filter being screwed on to its mechani- cal limits, which also engaged and turned the front element of the collimator, resulting in the defocus. The collimator was re-aligned optically. To pre- vent a recurrence of the problem, a mechanical stop was provided on the camera adapter so that the stop engaged the end of the collimator barrel be- fore the adapter made contact with the focus ring.
				Camera Fai	lures S/N 039
2839 8/19/63	Resistor	Open	Ambient (JPL)	Workmanship	As the assembly warmed up, the video signal faded. Investigation with the assembly at 50°C revealed an open circuit in the first stage of the video amplifier. An open resistor allowed the circuit to limit as the temperature increased. The resistor had been potted in such a way that stress was put on a lead and finally broke.
4021 9/12/63	"E" Spring Washer	Jammed shutter	Thermal-vacuum test	Workmanship	The E-spring that was used to hold the rod-end to the shutter-block came off. This lock-spring was not broken nor mechanically stretched. It therefore appeared that this spring was not installed properly during assembly, finally worked loose, and caused the shutter-block to jam under the magnetic shield- ing.
4097 1/6/64	Transistor Q8 (type 2N1208)	Shorted, collector to emitter	Room	Accident	The shutter stopped functioning during investigation for Malfunction Report 4590. It was found that one of the shutter-drive transistors was shorted, collector to emitter. It is believed that this transistor was shorted during the tests performed on this camera.
4711 1/19/64	Nuvistor V1 (type 7586) Capacitor C4	Erratic filament operation Leaked electrolyte	Thermal-vacuum (35°C)	Workmanship	The video level went to clamp, then reappeared after a short interval. This condition was reproduced experimentally by disconnecting the nuvistor fila- ments. During the replacement of the nuvistor, capacitor Cl was found to be leaking electrolyte. The opening of this capacitor would not affect cam- era operation because there was another of the same value in parallel. The electrolyte was found to be acidic.
					Further investigation of the nuvistor revealed that the leads soldered to the tube pins were not firmly attached. The manufacturer of the nuvistor re- ported that it met all electrical and mechanical specifications.
2196 5/13/64		Loss of single line of video	Postvibration	Nonassignable	During a postvibration system test performed in accordance with JPL test procedure SR 300.12, investigation of the 35-mm film of video revealed that a single line of P_3 Camera video was lost. This problem did not recur in subsequent tests and was therefore believed to be the result of random noise.
2154 5/31/64		Spot on P3 Camera mask	Thermal-vacuum	Workmanship	During mission verification test no. 2 at low temperature (53° F) , a spot was encountered on the P ₃ Camera mask. This spot, affecting the clamp function was probably a defect in the photoconductor. The region was 1 mil in diam- eter and had a higher dark current than the surrounding photoconductor. The mask appeared to be intact since the spot was also present when the camera viewed a dark field. In the thermal-vacuum test, the spot occurred during the clamped portion of the scan and affected 3 or 4 scan lines. At ambient conditions, only 1 scan line was normally affected. The problem of the spot was discussed with JPL and they did not consider it to be serious.
2102 6/12/64	Vidicon Serial No. 581	Incorrect wiring	Ambient	Accident	Investigation of the loss of video during optical alignment revealed that the vidicon socket had been wired incorrectly. This vidicon had an external mask while the socket was wired for an internal mask. A notch was located on the side of the vidicon to indicate the short pin and to orient the vidicon. The socket must be wired to match the vidicon.

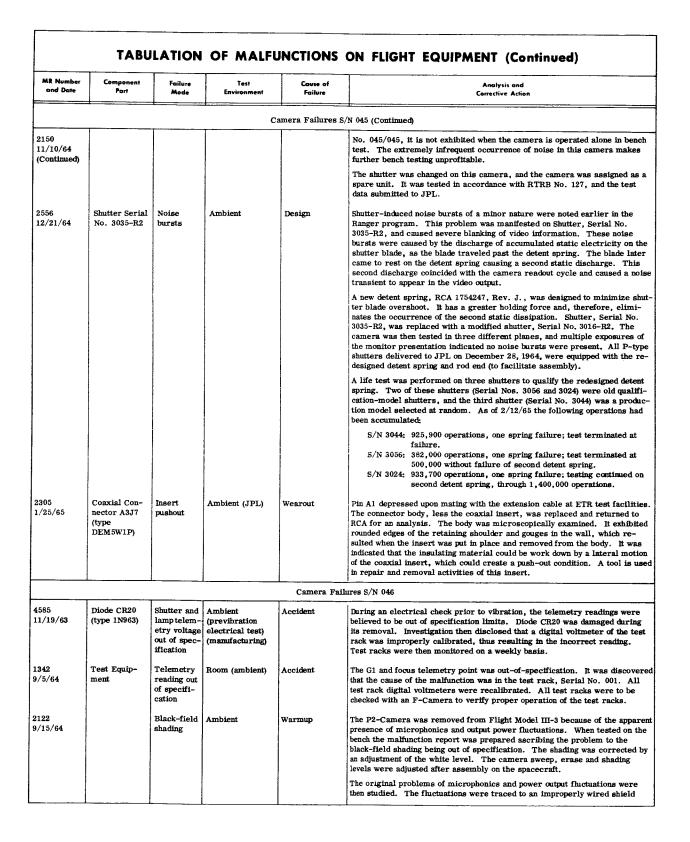
Г

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			C٤	mera Failures S	/N 039 (Continued)
2102 6/12/64 (Continued)					Manufacturing procedures were revised to ensure proper orientation of the vidicon. A stress analysis of the camera and camera electronics assembly revealed that transistor Q5 (Type 2X1485) of the Converter Power Supply, and resistor R17 (39 K ohms 1/4 watt) of the Low Voltage Regulator were overstress- ed. These parts were replaced. The vidicon, although it performed satis- factorily, was also replaced.
1350 9/14/64 1539 11/19/64	- - Transss.or Q9 on Shutter Drive	Micro- phonics Micro- phonics Micro- phonics	Ambient Ambient Ambient	Nonassignable Nonassignable Nonassignable	Microphonics are not easily eliminated nor is it entirely possible to define the predominant inducing agent of the problem. Three prime contributing factors of microphonics existed in the Ranger TV cameras. They were: the muvistor and vidicon, both of which were susceptible to external excitation; the shutter and shutter mounting; and the Camera Head Assembly. In order to eliminate the microphonics problem entirely, considerable re- design would be required in the following areas: • Shutter; • Camera Housing; and • Method of mounting the TV cameras to the TV Subsystem structure. The muvistor and vidicon for each TV camera were specifically selected on the basis that minimum microphonics are a major criterion for determining an acceptable unit. Camera Heads were reworked and retested with the result that the micro- phonics were reduced to an acceptable level. During test and investigation of noise problems, the P ₂ Camera shutter be- came nonoperative. The electronics was removed from the structure, and the failure was diagnosed as a shorted or open 2N1208 transistor for the shutter-drive circuitry. The problem was traced to transistor Q8, which
					was shorted emitter to collector. Transistor Q10 and shutter 3053-R2 were also replaced. The malfunction had been encountered previously and resulte when the shutter coil shorted leaving a 1-ohm impedance in the emitter cir- cuitry for current limitations through the transistors. It was believed that a probe was accidentally applied against the shutter coil causing it to short and resulting in nonoperation of the coil.
		· · · · · · · · · · · · · · · · · · ·		Camera Fai	hres S/N 040
2828 2829 6/21/63	Trimpots R24 and R32 (Bourns No. 3250-L-1)	Open leads	Room	Workmanship	Both trimpots, when checked in the circuit, showed continuity across one side to the wiper but were open from the other side to the wiper. The opens were in the leads under a mound of potting compound used to hold the back to the circuit board. A review of the potting compound and method of applying it failed to reveal any problems.
2832 7/15/63	Transistor Q3 (type 2N930)		Thermal-vacuum (0°C)	Vendor Workmanship	During thermal-vacuum test, at 0° C, there was excessive drift on the verti cal read sweeps. Transistor Q3 had a resistance of 5 megohms between col- lector and emitter. A large cut was found in the internal portion of the emit ter lead.
4231 10/8/63	Shutter Serial No. 3054	Broken detent	Ambient	Workmanship	The tool used to fabricate the detent springs put a crease in the spring. The crease later resulted in the spring breaking. Manufacturing began use of a new tool to fabricate the detent springs.
2840 Jan. 64	Vidicon Serial No. 306	Burn spot in center of mask	Room (JPL)	Accident	Investigation into the loss of sensitivity around the center reticle disclosed a burn spot which covered about 20% of the tube. The spot was first noticed following optical alignment and focusing at JPL. It is suspected that the alignment telescope used in the optical alignment was the cause of the burn. A test run on this telescope indicated that it operated at a safe level of 500 foot-candles. However, it is the total illumination dose that causes perma- nent surface damage once a safe level is exceeded. It is believed, therefore that the vidicon, Serial No. 306, was exposed to sufficient illumination duri optical alignment at JPL to cause a burn. Camera personnel were informed to restrict both the amount and the duration of application of illumination in order to prevent future malfunctions.

	····-				ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	· · · · ·			Camera Fai	lures S/N 041
3363 6/7/63	Transistor (2N930) Q6 Q16	Open Open	Room (bench)	Nonassignable	There was no vertical or horizontal sweep. This occurred during the bench debugging of equipment after the split-system revisions had been made.
3344 6/13/63	Beryllium- Copper Con- tact	Broken contact strip	Room (bench)	Nonassignable	The shutter stopped functioning while the camera was operating on the bench The camera head was opened and one of the beryllium-copper strips was found broken. The strip appeared to have been properly soldered to the coil and there was no indication of twisting or wear.
2824 6/20/63	Magnetic Pole Piece	Jammed	Room (bench)	Accident (test error)	The magnetic pole piece had broken away from the solenoid guide inside the shutter. This is a chemical, not mechanical bond.
3961 7/11/63	Vidicon S/N 573	Open fila- ment	Room (bench)	Design	The potting compound used to bond the pin cover to the vidicon base failed to set. When the tube was turned for positioning it cracked the glass envelope causing the filament to open. The chemical laboratory added a 6-hour bake at 48° C to the potting procedure, in addition to normal twenty-four hour setting time, to correct this situation.
4789 3/29/64 3951 3/29/64 1776 4/15/64	Shutter Serial No. 001	Shutter slide jammed	Ambient	Workmanship	Investigation into the jamming of the shutter slide revealed that the nylatron coupler was broken, and was undersize. The pins in the side of the solenoid with which the coupler mates, were found to be to specification. This re- sulted in a tight fit and a stress being placed on the coupler. The shutter was replaced and normal operation of the Camera was restored.
2187 5/18/64	Shutter Serial No. 021	Loose shutter	Postvibration	Workmanship	The four Nylock screws used to mount the shutter on the \mathbf{F}_b Camera Subassembly were found to have no locking action after the system vibration test. This condition permitted shutter to have a side-to-side motion. The screws were replaced as were the bumpers that had been damaged in the removal of the screws. Investigation revealed that the Nylock screws were initially tightened down and then loosened slightly. This caused the locking capabilit of the screws to be reduced. Nylock screws and bumpers were to be replaced when shutters were replaced.
	1			Camera Fa	ilures S/N 042
4087 10/25/63	Transistor Q5 (type 2N930)	Open emit- ter to base	Room	Accident (test error)	During six-camera bench test, a short occurred in the cables to the G1 regulator. The assembly was returned to manufacturing for tests which revealed that the G1 regulator circuit was not functioning properly.
4090 11/6/63	Transistor Q4 (type 2N722)	Open col- lector lead	Room	Workmanship	One of the camera assembly screws was tightened down on the collector lead of transistor Q4. This caused the lead to open and some arcing. The col- lector leads will be re-routed to remove the possibility of a short to the as- sembly screws.
4095 12/6/63	-	Potentiom- eter R10 turned fully clockwise	(manufacturing)	Accident	A misadjustment of potentiometer R10 induced oscillation causing the G1 an Focus Telemetry point to indicate a malfunction. The potentiometer was properly adjusted.
4692 1/28/64	Solenoid Coil, Serial No. 153	Binding	Room	Workmanship	Investigation of erratic operation of the shutter disclosed a curved ridge in- side the solenoid coil. The ridge was similar to the spiral grooves in a rifl bore. Because the ridge was curved, it could not have been caused by oper tion, because this would have resulted in a straight-line ridge. This curved ridge could only have occurred during construction.
2125 6/5/64		Shorted leads	Ambient	Workmanship	When the A2 and A3 frames of the Camera Electronics Assembly were as- sembled, the collector lead of transistor Q12 in the A2 frame made contact with the base lead of transistor Q7 in the A3 frame. The leads are normall covered with a sleeving material, and conformally coated to prevent contact The base lead of transistor Q7 was dressed too close to the collector lead o transistor Q12 and insufficient conformal coatings were applied. The sleeving material on the base lead of transistor Q7 was pierced by the collector lead of transistor Q12 causing a short. Erratic operation of the G1 Regulat occurred until the short was cleared. No parts were subjected to electrical stress as a result of this failure.

•

H-24


MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			C:	L	/N 042 (Continued)
3763		Low reso-	Ambient	Accident	Resolution of the P1 Camera Assembly was consistently low during the pre-
6/22/64		lution	(pre-thermal- vacuum)		thermal-vacuum electrical test. When the proper equipment was employed and the focus control readjusted, the Camera resolution was restored. Marked changes in the performance indicate trouble in the Camera and Camera Electronics Assemblies and should be the cause of immediate rejection.
3762 6/22/64		Shorted -6.3 volts filament pin of vidi- con	Thermal-vacuum	Accident	During the thermal-vacuum, flight-acceptance testing of Camera, Serial No. 042, the -6.3 filament pin of the vidicon was accidentally shorted to ground inside the bell jar. Removal and correction of the short condition restored normal camera operation. The power supply was carefully checke and no overstressed parts were found. The vidicon was not damaged.
3764 6/23/64	Capacitor C3 CL45BK040- MP3	Leaked electrolyte	Ambient	Workmanship	Capacitor C3 was removed because of noise and poor resolution. The capac- itor was found to be leaking electrolyte and was returned to the vendor for a failure analysis. Parameter measurements made by the vendor confirmed the failure. A dent was noted in the side of the smaller diameter portion of the case. A hole, which apparently was caused by a pick or probe, was noted in the inner portion of the crimped roll. The hole was probably made before in sertion of the capacitor into the circuit because the hole was covered with epoxy.
					The malfunction was the result of the capacitor leaking electrolyte. This was caused by rough handling and subsequent damage to the unit.
3960 6/25/6 4		Pressure of bell jar out of spe- cified limit	Thermal-vacuum	Nonconfirmed	During electrical testing of the Camera Electronics Assembly (Serial No. 042) under thermal-vacuum conditions, the pressure in the Bell Jar increased to 1.4×10^{-6} torr (the specified limit is 1.0×10^{-4} torr) while the Assembly was operating. The increase in pressure was probably caused by outgassing of the collimator but the environmental test equipment was at fau since it did not compensate for this increase in pressure. The Bell Jar was supplemented by the addition of a cold trap and use use of liquid nitrogen. The test was repeated with pressures of 4.0×10^{-6} to 6.6×10^{-9} torr, and was successfully completed.
3961 6/27/ 64		Incorrect voltage reading and erase sweep over-scan	Ambient	Accident	While performing operating-voltage measurements on the P1 Camera Elec- tronics Assembly, a 40-mv reading was obtained where the specified value was 0 volts. The trouble was traced to a wiring error in the test rack. During the sweep-voltage measurement, the erase sweep overscanned the read sweep in excess of the specified value of 15 percent. The 15-percent requirement is not applicable to the P1 Camera since it is set up in the free run mode of operation. RTSP-1112 was revised to specify a minimum of 8 percent overscan but no maximum for the P1 Camera erase sweep overscan
1351 and 1352 9/17/64		Scanning of the erase video output	Ambient	Nonconfirmed	During the free-running mode on Camera P1 there exists a 19% probability that the sequencer will stop providing the normal timing at a time when the P1 Camera is in a position to scan the erase video output. This does not represent a malfunction.
. .		I	. <u>.</u>	Camera Fai	lures S/N 043
2830 9/3/63	Transistors Q11 and Q12 (type 2N916)	Open	Room (manufacturing)	Wormanship (Vendor)	Investigation of vertical drift in the sweep circuitry revealed two open tran- sistors that were improperly installed in the deflection programmer. Investigation of horizontal drift revealed many parts incorrectly installed. Tran- sistors Q5 and Q6 were reversed and Transistor Q9 was replaced. The replacement was not due to a failure, however.
4105 9/16/63	Zener Diode CR13 (type 1N758A)	Improper value	Room (manufacturing)	Accident	The reference voltage in the video amplifier could not be adjusted to the proper level. Diode CR13 is specially selected to provide the proper refer- ence level. Replacement restored the proper level.
4006 9/17/63	Vidicon S/N 893	Blemish on faceplate	Room (manufacturing)	Nonconfirmed	It was noted that a spot, caused by a blemish on the vidicon face, was appeading on all monitor photographs. The tubes were accepted, since the blemistics es did not exceed the specified dimensions.
2117 7/1/64		Dark field shading not within spec- ified limits	Ambient	Nonconfirmed	During flight-acceptance subassembly testing, the dark-field shading was measured as being out of specification. The measured values were 70+200, -30 mv, while the specified value is 70±40 mv. This condition resulted from recent optimization of the Camera to obtain-improved

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	<u> </u>		Ca	mera Failures S/	N 043 (Continued)
2117 7/1/64 (Continued)					resolution and erase characteristics. MRA No. 100-64-128 was approved by JPL.
3844 10/11/64		Horizontal sweep te- lemetry reading not within specified limits	Ambient	Design	When a simulated-failure mode was applied to Camera, Serial No. 043, the horizontal-sweep telemetry reading was -2.2 volts. This was not within the specified limits of 0 to -1.5 volts. An investigation of the history of Camera, Serial No. 043, revealed that a Material Review Action (MRA) was issued in October 1963, to modify the de- flection-amplifier circuit of the Camera Electronics Assembly. A resistor was moved from the Camera Electronics to the Camera Head to reduce ex- cessive ringing that was being displayed on the clamped video level. This problem was a function of the particular vidicon yoke used with Camera, Serial No. 043, and was not encountered in any other camera. Moving the resistor to the Camera Head provided a better damping circuit. However, the test method used to simulate a malfunction in the horizontal- sweep circuit is to open a lead from the Camera, Serial No. 043, disconnects the damping resistor from the circuit. In all other cameras, the resistor remained in the circuit, and any failure in the circuit provided a telemetry reading that was in the specified limit. But, in Camera, Serial No. 043, the open in the circuit would give an out-of-specification telemetry indication. MRA-100-64-181 was issued to compensate for this defective telemetry data so that this was not an actual malfunction.
				Camera Fai	lures S/N 044
4582 11/5/63	Lens Mounting (RCA Dwg. 1707688)	Undersize	Room	Vendor Workmanship	Difficulty was incurred in removing the lens from the mounting flange. An examination revealed scoring of the Martin hardcoat surface, indicating the pilot diameter was slightly undersized.
4591 11/18/63	Transistor Q1 (type 2N916)	Short, base-to- collector	Ambient (postvibration)	Accident	This malfunction occurred during board testing and was not detected until final testing. The procedure for board testing was changed. Test personne were informed to correct a failure of this type as soon as it was detected. The transistor was replaced.
4686 1/8/64	Core Assembly	Core broken	Room	Workmanship	Investigation into the failure of the shutter to operate revealed that the sole- noid coil was broken where two pieces of the core were epoxied together. Insufficient epoxy had been applied.
4696 1/23/64	Thermistor Lead	Shorted	Room	Workmanship	The thermistor lead in the F-Camera Electronics Assembly was found to be shorted during a test in accordance with Appendix G of RTSP 1100A and re- sulted in the reading of the telemetry points Nos. 43, 44, 45, 85, and 86 going to zero volts. The relocation of the lead to prevent shorting returned the outputs to normal values.
3600 3853 5/12/64		Incorrect wiring	Ambient	Workmanship	 The Camera Electronics Assembly did not function after assembly. Examination of the unit revealed several wiring errors. The -150 volt supply had been applied to the +6.3 volt supply, resulting in the overstressing of parts. A detailed stress analysis was performed and the following components replaced in the Camera Electronics Assembly: In the Low-Voltage Regulator Resistors R23 and R24 Coil L3 Deflection Programmer Transistors Q1, Q3, Q4, Q6, and Q7 Resistors R13, R18, and R26 Video Amplifier Transistor Q17 The Camera Electronic Assembly (Serial No. 044) performed satisfactorily
3780 8/24/64	Coil L3 and Capacitor C6	Noise spikes in power supply	Ambient	Workmanship	after replacement of the overstressed parts. The camera was removed from the spacecraft due to excessive noise in the video output. The noise was traced to a choke in the low-voltage regulator of the power supply.

ļ

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			C	amera Failures S/	N 044 (Continued)
3780 8/24/64 (Continued)					It was found from a review of photographs of Camera Electronics Power Supply that capacitor C6 in the dc-to-dc converter was missing. The capacitor itor had been removed during rework and was not replaced. When capacitor C6 and coil L3 were replaced, normal operation was obtained.
1538 11/16/64	Telemetry	Indication of abnor- mal opera- tion from telemetry point No. 3	Ambient	Nonassignable	Telemetry point No. 3 of the 90-point commutator indicated 0 volts on the strip chart recordings taken during the Appendix R test. Camera operation during this test was good. An investigation was initiated in which the cable associated with the test point were subjected to continuity checks, the pins were subjected to the pin retention test, and the telemetry commutator oper ation was reviewed. No anomalies were found. The cabling and connectors were reassembled. The camera was retested, and all telemetry points wer normal.
1543 11/30/64	Shutter, Serial No. 033	Alternate video satu- ration and	Ambient	Workmanship	During the final test run for boresighting of Flight Model III-4, F_a -Camera, was saturating on one shutter stroke and had a low response on the other shutter stroke.
		low re-			Examination of shutter, Serial No. 033, showed that the slide assembly woul not remain in place on the upstroke, while the shutter was mounted in an up- right position. This shutter had been timed and was to specification. The shutter was disassembled, but no dimensional discrepancies of any parts could be found.
					Another core assembly was installed in the shutter, and timed for an expo- sure speed of 3.9 msec on the instroke with a detent action sufficient to re- tain the blade with the shutter in any position. The core assembly that had been removed was remagnetized, installed in the shutter and timed. The exposure time at instroke was 4.0 msec, and the detents held with the shut- ter in any orientation.
					It was concluded that the original core assembly in shutter, Serial No. 033, was not fully magnetized and the detenting action was marginal from the time of installation.
					A method of determining when the shutter pole piece has sufficient magneti- zation was developed and incorporated into the F-Shutter manufacturing pro- cedure and test procedure.
2263 12/14/64	N/A	Reduced level video for first frame only	Ambient (JPL)	Design	When F-Channel went into full power, the first frame of F_a -Camera video displayed the RETMA pattern at a reduced level (appeared to be a residual image only). This problem with the first F_a -Camera readout after full-power turn-on appears to be an unexposed frame. Transients generated by the operation of the full-power relays in the GSE could reset the steering flip-flop in the shutter drive circuitry of the Camera Electronics Assembly. Thus, the shutter drive was out of synchronization with the shutter position, and one frame of video was lost before synchronization was re-established.
272 ///65		Noise spikes	Ambient (JPL)	Nonassignable	During a special TV Subsystem test in which the Subsystem was oriented at three different angles, noise spikes were exhibited on the output of the F_a -Camera. These noise spikes were at a frequency of approximately 3 kc and were 50 to 75 mv in amplitude as viewed on the scope. The problem was viewed only in the first of a series of four tests. The Subsystem was not in a flight configuration for these tests, as the thermal shields were not installed. Two additional tests were performed with the Subsystem in the same configuration; however, there was no further occurrence of the problem. The interference observed was not coherent on a line-to-line basis and was determined to be approximately 3 kc at 50 mv. Two special tests were performed in an attempt to simulate and isolate the interference, with the Subsystem in the same system in the same nonflight configuration.
				Camera Failu	ures S/N 045
111 /27/63	(type 2N916)	1	Room (manufacturing)	Workmanship	The horizontal read could not be obtained because the case of transistor Q3 was laying on a printed circuit board trace, causing the transistor to indicate a collector-to-emitter short. The transistor was tested and found to be within specification, but was replaced.

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	<u> </u>		Ca	umera Failures S/I	N 045 (Continued)
2111 5/28/64		Vertical black shading out of specifi- cation	Ambient	Workmanship	Vertical black field shading read 70 +70, -0 mv instead of the specified 70 +40, -30 mv. Readjustment of the clamp reference for an average of 70 mv brought the shading value within specification limits. The Camera successfully completed acceptance testing. It was concluded that the initial shading adjustments were in error.
3572 10/2/64	Shutter Serial No. 3071	Broken contact spring	Ambient	Workmanship	The Shutter stopped during a focusing of the camera and was removed from the camera and examined. A contact strip was found to be fractured approx- imately one-half inch from the top terminal. This indicated either that the terminal nut was not tightened enough to prevent shifting of the contact strip or that when the terminal nut was tightened, the contact strip was not cor- rectly positioned. Instructions for a closer inspection of the positioning and tightening of the terminal nuts were issued.
1363 10/14/64	Shutters Nos. 3032R1 3074	Shutter jammed	Room ambient	Accident	During a boresight test, the camera bracket assembly was adjusted. The P3- and P4-Camera shutters did not operate during Subsystem operation. An investigation disclosed that the camera bracket was adjusted almost to the maximum tolerance resulting in shutter contact with the structure, whic produced a force sufficient to stop the shutter operation. The bracket was readjusted to provide a sufficient clearance between the shutter and the structure. Specification RTSP-1100A, Appendix H was changed to stipulate a minimum allowable clearance between shutter and structure.
2150 11/10/64	N/A	Noisy Raster	Ambient (JPL)	Nonassignable	During system testing of Ranger VIII at JPL, the raster of P4 Camera, Serial No. 045/045, was noisy. The appearance of the noise was unique and could not be ascribed to any previously experienced failure mode. The unit was returned to RCA, where, after a review of the 35-mm film obtained during previous system tests at JPL, the clamped-video test point of the Camera Electronics was monitored and exhibited high-amplitude, random noise. Further review of the 35-mm films as a function of the record time showed that this noise occurrence was completely random and apparently no attributable to a timing sequence from another camera. The system ground lines were checked and it was found that the preamplifier shield ground of t P4 Camera was connected to the P2-Camera head ground lead. This situa- tion was corrected and a systems test rerun. The 35-mm film of the P4 Camera video output revealed some noise on two out of approximately 200 frames. This noise, however, was more in the nature of a random spike rather than the high-amplitude, random type previously experienced. Fur- ther investigation revealed that a screw was missing from the 1000-volt mesh filter ground. This situation would make the camera very susceptibl to noise pickup. After replacement of this screw, the output video signal o served on a scope revealed random noise spikes at very infrequent interval When monitored over a 5-hour period, it was found that the same type of noise spikes could be induced by the turn-on and turn-off of test equipment the area. The camera output was then played through the GSE, and 750 frames of video were recorded with no observation of noise. P4 Camera, Serial No. 045/045, was integrated on Flight Model III-4 (Ranger IX). A review of the film record of a systems-test run revealed several frames that exhibited noise. It was also noted that the video output of F_b Camera, Serial No. 017/017, exhibited the same characteristic nois This noise was attributed to a digital voltmeter which was grounded to the TV Subsystem struc
					After assembly, the video output signal from the camera was played throw the GSE. Review of 500 frames, taken with an F-type camera grounded to the same mounting bracket and operating, revealed occasional noise by the F-shutter. Then, 500 frames of 35-mm film were taken with the v con of Camera, Serial No. 045/045, inoperative but with an F-Camera op ating. This was to isolate the Camera Electronics as the source of the no Review showed these films to be free of noise. The original noisy-raster condition was markedly improved on the Ranger VIII Spacecraft. The 1000-volt mesh-filter return may have been disconce ed or making erratic contact with ground when the original, unique noise

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	<u></u> t		C;	amera Failures S/N	N 046 (Continued)
2122 9/15/64 (Continued)			<u>- 1998</u>		ground in the G1 Regulator. In addition an instability in the G1 Regulator was corrected by installing a capacitor, C15, across the low-voltage regu- lator input. This capacitor was installed only when necessary to reduce the effects of the choppers. The microphonics were measured and found to be at an acceptable level.
3797	Transistors Q12 and Q7	Shading out of specifica- tion	Ambient	Accident	The microphonics were measured and found to be at an acceptable local When the A2 and A3 frames of the Camera Electronics Assembly, Serial No. 046, were mated, the collector lead of transistor Q12 on the A2 frame was accidentally shorted to the base lead of transistor Q7 on the A3 frame. This electrical short resulted in erratic operation of the G1 regulator. When the short was cleared, normal operation was resumed.
					Quality Control issued PQC Checklist No. 4, Revision A which described a procedure for detecting possible interference between adjacent mating frames. This procedure received wide distribution to cognizant inspection personnel, with additional emphasis on the sections related to interference problems.
3846 10/17/64		Intermit- tent video	Ambient	Nonassignable	During preliminary bench test the video signal became severely attenuated on two occasions; the signal was compressed to less than 20 mv amplitude. Troubleshooting indicated that the problem existed in the Camera Electronic Assembly. Connector A3J2 was removed and then replaced. The malfunc- tion disappeared and could not be made to recur. Camera Electronics, Serial No. 046, was opened and all interframe connectors cleaned, and a pin retention test performed on all connector pins. Pin A3J7-A1 failed. Significantly, this pin carries the video signal from the preamplifier, and a loose connection or defective contact at that point could be responsible for an intermittent-video condition. The unit was re-assembled and resealed, and the bench test was completed with normal operation.
i					This unit was later disassembled and the frames and connectors scrutinized under a microscope. No further evidence of defective workmanship could be detected, which might be responsible for the intermittent video malfunction. The unit has subsequently operated for 20 hours and was vibration tested, with no further indication of the problem. It is reasonable, at this time, to attribute this malfunction to a defective connector, which has been corrected through the cleaning and repair of the connector.
1370 10/19/64		Shutter- pulse wave-	Ambient	Accident	P2 Camera Electronics, Serial No. 046, encountered the following out-of- specification conditions during previbration electrical tests:
		form and horizontal overscan			 Shutter pulse was -27.0 volts, DC; specified limit was 23±3 volts, DC; and
		not within specified			 Measured horizontal overscan was 15.5 percent; specified limit wa 10+5, -2 percent.
		limits			The test data obtained, as well as the test procedures, were reviewed and analyzed. Evaluation of the shutter-pulse waveforms and the shutter-drive circuitry indicated that a change in specification limits would be necessary. A worst-case analysis was performed and new limits for the shutter-pulse waveform were established. The specification then became -26±3 volts DC: thus the measured value of -27 volts, DC was acceptable.
					A special engineering test was performed to determine the out-of-specifica- tion condition of the horizontal overscan. The horizontal overscan measure during this test was approximately 13 percent. This was within the specifi- cation limit and seemed to refute the value measured during the previbratio test. It was therefore concluded that there was actually no malfunction in the horizontal-overscan measurement, but an error in measurement technique.
2306 1/26/65	Capacitor C2, Type CL45BK040 MP3 Ohmite	Noisy raster	Ambient (JPL)	Workmanship (Vendor)	During gain-level adjustment of P2 Camera, Serial No. 046, at JPL, a noir raster was displayed. The problem was caused by a defective capacitor C2 in the preamplifier circuit. The conformal-coating material in the area of the capacitor was blackened, which is indicative of a leakage of electrolyte from the unit. Initial measurements on the unit under ambient conditions a after thermal cycling indicated some variation of leakage current, but insig nificant changes in capacitance.

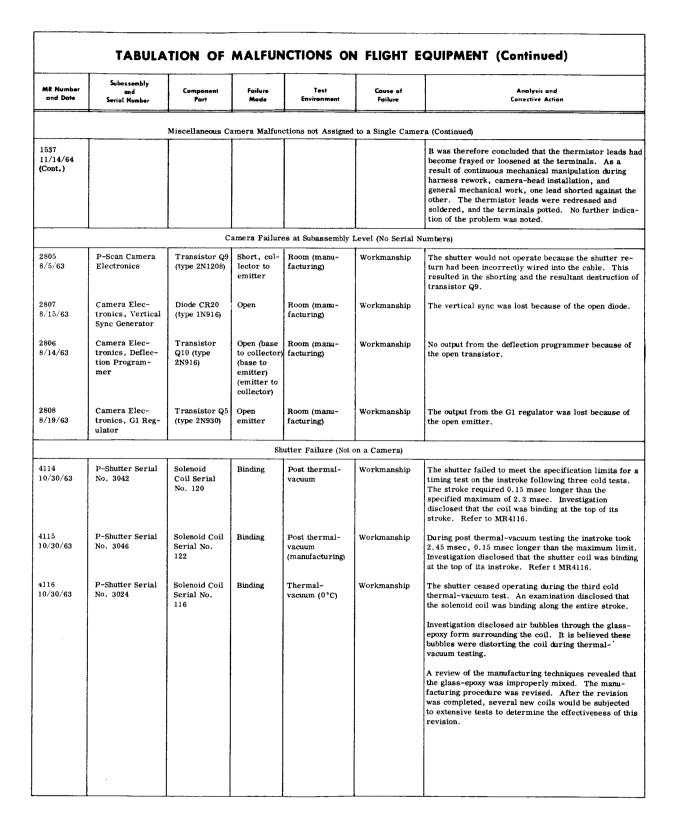
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Ca	mera Failures S/I	N 046 (Continued)
306 /26/65 Continued)					Examination of the elastomer seal failed to indicate any substantial evidence of electrolyte leakage. The defective unit was then weighed on an analytic balance and was found to be 1.7596 grams. Comparison of the weight of the defective unit with the weights of several identical-type capacitors indicated loss of electrolyte, but the exact amount could not be determined from this type of measurement. Capacitor experts indicate that up to 25 percent of electrolyte could escape and not affect the performance of this type capacitor An additional seal test using the Turco dye check method was performed at ambient temperature and at +85° C. No further electrolyte leakage was de- tected. The failed capacitor was returned to the vendor for analysis to determine the cause of the electrolyte leakage. The analysis, consisting mainly of physica measurements of the capacitor case, concluded that the case had been de- formed in some manner causing the elastomer seal to be destroyed.
					Additional tests were performed at AED in an attempt to locate the exact point of the electrolyte leakage. The capacitor was placed in a vacuum chamber so that the seal could be observed through the chamber window. Thymol blue indicator was placed in and around the seal, and the chamber was evacuated. After approximately 10 minutes, the indicator bubbled and turned a deep red color, indicating the presence of acid. The chamber evacuation continued until the entire indicator material had evaporated leav- ing only a dark red stain on the elastomer seal. The capacitor was removed from the chamber and electrically tested. The capacitance was still 4.35 farada, but the dissipation factor had increased to 2.4 percent indicating some electrical change. The capacitor was again weighed and found to be 1.7596 grams as previously.
					The capacitor was then dissected and the parts were analyzed. An identical type capacitor was also dissected for comparison. The differences noted in the defective capacitor were:
					 There was approximately 50 percent less electrolyte in the defective capacitor than in the sample;
					 Radial cracks were noted in the elastomer seal, in and around the opening through which the lead passes;
					 The tantalum slug showed evidence of electrolyte leakage around the lead seal by the presence of dye on the tantalum disc; and
					 There was dirt or grease on the inside surface of the elastomer seal.
					The radial cracks in the elastomer seal were attributed either to pressure applied before or during installation, or to a manufacturing defect. The malfunction caused a noisy video raster which was the result of an intermit tent resistance short to ground through the capacitor. All voltage readings were normal during troubleshooting, indicating that no parts of the preampl fier were overstressed by this failure. Replacement of capacitor C2 re- stored normal operation to the P2 Camera.
1510 1/30/65		Dark-field shading not within spec- ification	Ambient	Accident	Following replacement of capacitor C2 in the preamplifier circuit, Camera and Camera Electronics Assembly, Serial No. 046, was bench-tested to the requirements of RTSP-1112A. The initial measurement of the dark-field shading failed to meet the specified requirements. The measured wahe was 70, $+60$, -5 mv., while the specified limits were 70, $+40$, -20 mv. Revie of the history of the camera revealed that it had been mounted and operated on the Spare TV Subsystem. In many instances, the camera sweeps, erass and shading levels had to be adjusted when taken from the bench and mounto on a Subsystem or vice versa. Therefore, it was possible for a camera to indicate unsatisfactory shading level when no real problem existed. The dark-field shading levels were reset to bench-test level and the bench test was completed satisfactorily.
		_ i		Camera Fa	ilures S/N 047
3964 10/2/63	Transistors Q6 and Q16 (type 2N930)	Opened	Room	Workmanship	Due to a wiring error that caused a short between the +6.3-volt and 27.5-vo supplies, transistors Q6 and Q16 and the muvistor filament filter capacitor were destroyed. In addition, many parts were overstressed in the Deflecti

	TABU	LATION	OF MALFU	INCTIONS	ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Ca	mera Failures S	/N 047 (Continued)
3964 10/2/63 (Continued)					Amplifier, Deflection Programmer Video Amplifier, G1 regulator, and the Low-Voltage Regulator. All suspected components were removed and replaced with preconditioned
4586 4587 4589 11/20/63 4474 11/23/63	Transistors Q16, Q17, and Q6 (type 2N930) Vidicon Serial No, 736	Open Open filament	Ambient	Accident	parts. While investigating the malfunction noted on MR 4093, the horizontal and vertical sweeps were found to be missing. Following the replacement of the three faulty transistors, no video was present. The vidicon filaments were found to be open. The vendor of the vidicon determined that an over-voltage of sufficient duration to melt the alumina coating around the filaments (thus the open filaments) could not have been caused by the short duration of the high voltage which opened the transistors.
4093 11/25/63	Transistor Q1 (type 2N916)	Open	Ambient	Accident	This malfunction was the same as that noted in Malfunction Report for Camera S/N 044, and the same corrective action applies. The transistor was replaced.
3594 5/3/64		Loss of horizontal and verti- cal scan	Ambient	Accident	Investigation of the loss of the horizontal and vertical scan revealed that the lead on pin 5 on connector J4 was broken, which resulted in the loss of +6.3 volts to the deflection programmer and amplifier. Movement of the connector is believed to have broken the lead which must have been nicked or excessively stressed prior to potting.
3781 3782 8/24/64	Harness 30W12 Serial No. 001	Broken coaxial cable	Ambient	Accident	During camera testing, there was no video output from the F_b Camera. An open connection was found between A1A6P3-A1 and A7A3P3-A1 and between A1A6P3-A3 to A7A3P3-A3. The center conductor on the camera head end o both coaxial cables had broken. The potting had not adhered to the surface of the cable. When the connector was inserted and withdrawn several times all stresses were applied to the solder joint. The cable was resoldered and inspected throughout the entire potting cycle. A continuity check and high-potential test was then performed to assure that the cable conformed to electrical specification.
1578 9/29/64	Test Equip- ment Collima- tor	Broken lead	Thermal-vacuum	Accident	The collimator did not light during the hot run. Test and observation dis- closed an open lead at lamp socket. The lead was resoldered.
3570 10/2/64	Resistor R17 and Transistor Q5	Vidicon and socket mis- aligned	Ambient	Workmanship	Following optical alignment, Camera was operated for 2 minutes, when it was discovered that the vidicon was mismated with its connector socket. Th connector had been accidentally rotated so that pin No. 1 of the vidicon en- gaged jack No. 8 of the socket. A stress analysis of the Electronics Assem bly resulted in the replacement of two components on the A1 frame: resisto R17 in the low-voltage-regulator circuit, and transistor Q5 in the converter power-supply circuit. The vidicon was not affected.
					To prevent a recurrence of this malfunction in other cameras without re- quiring a manufacturing modification, a cognizant Quality-Control repre- sentative would be present at the mating of the vidicon and connector to assure proper alignment. Also, prior to assembly of the camera housing, the connector would be inspected by Quality Control to ensure that the pins are properly aligned. These operations would be certified in the appropri- ate camera log, and Test Method TM-1-1754616, Paragraph 4.6.6, Note 1 would comprise the acceptance criteria.
1358 10/7/64		Poor reso- lution	Thermal-vacuum	Nonconfirmed	The camera did not meet the minimum resolution specification. During sub sequent thermal-vacuum tests, resolution was found to be within acceptable limits.
1364 10/13/64	Cable Harness Connector 30W 12 Serial No. 3	No video	Ambient	Workmanship	Measurements at the G2 test point indicated a short-to-ground. Subsequent testing did not reveal a short. The cable harness indicated leakage and breakdown during high-voltage test. The potting compound was removed, and there was no leakage during a high-voltage test. Inspection of the 300 volt terminal, A3, revealed that the insulation was turning black and that solder was near the wire. The wire was removed and a small burned area, which indicated that leakage and breakdown had occurred, was found. Re- pair of this item corrected the problem. The immediate recommended cor- rective action was to pot the inside of the coax connector insert. Considera tion was given to replacing this insert with a high-voltage insert in rework

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
. <u>in</u>	44		Can	nera Failures S/N	047 (Continued)
364 0/13/64 Continued)	Transistor Q1	Shorted	Room ambient	Secondary	or in new units. The action to be taken would be the altering of the present configuration by adding some chemical insulation such as urethane. This change would be implemented as new cabling builds and only on existing cables if rework were required for other reasons. The G1 and focus telemetry point reading was out of specification. Investi-
368 0/16/6 4	2N916	base-to- emitter			ation revealed that transistor Q1 in the G1 regulator was shorted base-to- emitter. This failure was considered to be a result of malfunction noted in MR 1364. Transistor Q1 and diode CR14 were replaced. Tests indicated satisfactory performance after the replacement.
	1	4		Camera Fail	res S/N 048
986 222/64 989 2/28/64 995 2/30/64	Video Ampli- fier and Power Supply	Video noise	Thermal-vacuum	Nonconfirmed	Investigation into the video noise observed on the picture taken by the P3 Camera during thermal-vacuum tests revealed that noise of the particular type is not covered by any specification and is not detrimental to camera operation since it can be separated from the picture. However, the camera and camera electronics were removed from the Subsystem for investigation. Diodes CR1, CR2, and CR3, and transistor Q4 were replaced in an attempt to reduce the observed noise. The camera was still considered to be opera- tional within the specification limits.
2376 5/11/64	Vidicon Serial No. 930	Loss of resolution	Ambient	Nonassignable	The center resolution of this vidicon was not within specified limits. A test performed for gas contamination, indicated that the tube was normal. In order to allow return of the tube to the vendor for further analysis, the pen- end of the tube was soaked in an epoxy solvent to remove the fiberglass base During this process, it was discovered that some of the solvent was being drawn into the vidicon envelope. When the socket assembly was removed, the glass tip of the tube broke off flush with the vidicon base. Because the solvent had penetrated the vidicon, it was not possible to further analyze the tube except to conjecture that the tube was cracked prior to installing the fiber base cover but that the epoxy prevented it from leaking until subjected to the solvent.
3753 5/18/64 3754 5/19/64		Telemetry voltage in- dication out of specified limits		Nonconfirmed	The shutter and lamp telemetry voltages read -3.48 volts at 40° C and -3.4 volts at 0° C. These were not within the specified limits of -3.5 to -4.5 volts at the time of test. The specification was changed on May 22, 1964 ar the recorded telemetry voltages were then within limits and acceptable.
3755 5/19/64		Shading out of specified limits		Nonconfirmed	The P3 Camera Subassembly was apparently out of the specified limits for shading when tested to RTSP-111A while in thermal-vacuum conditions. RTSP-1112A, however does not require that shading measurements be mad under thermal-vacuum conditions. The P3 Camera Subassembly was then successfully tested at ambient conditions.
1338 9/1/64 1322	-	Micro- phonics Micro-	Ambient Ambient	Nonassignable Nonassignable	Microphonics are not easily eliminated nor is it entirely possible to define the predominant inducing agent of the problem. Three prime contributing factors of microphonics existed in the Ranger TV cameras. They were: the musistor and vidicon, both of which were susceptible to external excitation;
9/17/64		phonics			the shutter and shutter mounting; and the Camera Head Assembly. In order to eliminate the microphonics problem entirely, considerable red sign would be required in the following areas:
					 Shutter; Camera Housing; and Method of mounting the TV cameras to the TV Subsystem structure
					The nuvistor and vidicon for each TV camera were specifically selected on the basis that minimum microphonics were a major criterion for determin an acceptable unit. This method was continued.
					Camera Heads, Serial Nos. 048 and 039, were reworked and retested with the result that the microphonics were reduced to an acceptable level.

					ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			C	amera Failures S	S/N 048 (Continued)
2259 12/7/64		Defocusing	Thermal-vacuum (JPL)	Design	During Mission Verification Test No. 1 in a thermal-vacuum environment (98° F), P4 Camera defocused. Review of the 35-mm film of the P4 Cam- era video output revealed that optical defocusing occurred, resulting in a limiting resolution of less than 140 TV lines, the lowest frequency on the test chart. The defocusing was characterized by a reversal of signal in the resolution wedges. At 20° C, camera performance exhibited greatly im- proved focus with a limiting resolution of 180 TV lines. At 12° C, resolu- tion was greater than 200 TV lines. This improved performance at lower temperatures indicated that the camera was focused at one side of the depth of focus for the lens, There was probably a focus change of 0,0025 inch between the high and low temperatures.
					Since the P4 Camera provided acceptable performance in the temperature range below 25°C, no corrective action was planned. The nominal temper- ature range for the mission was 14°C to a maximum of 20°C. Focusing the camera to give satisfactory performance at all temperatures would have required removal of the camera from the spacecraft.
	.			Camera Failu	res S/N 049
3760 5/26/64		Dark field shading out of specified limits	Ambient	Design	Two conditions were noted in testing the Camera Electronics Assembly (Serial No. 049). The video was underpeaked and dark-field frames shading out of specified limits. Underpeaking was technically not a malfunction and had been covered by a correction procedure. The dark-field shading was reviewed by Material Review Action (MRA) as the overall performance of the Camera was satisfactory.
3786 8/30/64 1346		Saturation of video Saturation	Ambient Ambient	Design Design	These four malfunctions occurred during both ambient and thermal-vacuum testing of Flight Model III-3. The malfunctions were all manifested as a loss of video information, either through saturation or by complete loss of video signal. The primary cause of the problem was a loss of the dark
9/11/64 3794 9/20/64		of video Saturation	Thermal-vacuum	Design	reference mask due to secondary emission in the vidicon. When further testing was performed to isolate the cause of the saturation it was also de- termined that the shutter on this camera was sticking.
1354 9/30/64		of video Shutter sticking	Ambient	Workmanship	The saturation problem was alleviated by a reduction in the target voltage, which eliminated the secondary emission and recreated a stable dark refer- ence mask. The preliminary vidicon test procedure has been modified to reflect this change.
					The shutter, Serial No. 3047-R1, which is believed to be responsible for the loss of video, was sticking.
4112 10/2/64	Capacitor C2	Short	Room (manufacturing)	Workmanship (vendor)	Investigation of why the 27.5-volt power supply was drawing excessive cur- rent revealed that capacitor C2 was shorted. Examination of the capacitor disclosed a distorted shoulder on the tantalum slug. The shoulder had been cut through the rubber gasket and allowed the electrolyte to leak out. The vendor was informed of the failure and the defective component was re- turned to discover what part of the manufacturing cycle could have caused the failure.
1356 10/4/64	Resistor R17 and Transistor Q5	Vidicon and socket mis- aligned	Ambient	Workmanship	The vidicon and tube socket of Camera, Serial No. 049, were misaligned during assembly, resulting in a mismating of the vidicon pins and connector jacks. This malfunction was identical to MR 3570 for Camera S/N 047 and the analysis of the Camera Electronics Assembly and the recommended corrective actions were also identical.
1360 10/12/64 1367 10/16/64 2068 10/22/64	Shutters 3047-R1 3038-R2	Improper shutter operation	Ambient	Workmanship	Shutter No. 3047 -R1 stuck in the half-opened position at room temperature, but operated properly at 55° C (MR 1360). Shutter No. 3038 -R2 stopped operating during the second thermal-vacuum test at 0° C (MR 2068). As noted in MR 1367, shutter 3038 -R2 failed to meet the specification limits on the time cycle. A test was then run at room ambient conditions. Shut- ters 3047 -R1 and 3038 -R2 did not operate. An investigation disclosed that colls 219 and 264 had a change in inside diameter, which appeared to be caused by a glass epoxy blister near the dampening ring. The colls were cut and it was found that glass epoxy did not adhere properly to the damp- ening ring surface, and that the glass cloth did not cover the sleeve com- pletely. Coll 264 showed definite raising and cracking of the epoxy where the glass cloth was absent. It was recommended that glass sleeving be con- sidered as a replacement for the glass tape and that a cleaning process for

umber Compo	nent Failure	Test	Cause of Failure	ON FLIGHT EQUIPMENT (Continued) Analysis and Corrective Action
Date Pa	mede		amera Failures	S/N 049 (Continued)
2/64 5/64 2/64 tinue0) 3892 10/23/64		Super- imposed signal		 the inside copper surface where the glass idering is obtained in the sile of glass time was increased to assure complete coverage of the dampening ring. A new cleaning procedure for the dampening ring was incorporated in manifacturing specification 2021008. The mandrel was to be covered with a silicone finish to prevent the epoxy from adhering to the mandrel and the general cleaning solvent was changed from methyl eithyl letone to isopropyl alcohol. Manifacturing specification 2021008 was invoked and proceedure MP 2-1707239 was revised. The corrective actions taken as a result of MR 1360, 1367, and 2068 comprised improvements to the manifacturing process of the shutter coils and did not affect the design of the children. The design of the coil assembly was not changed by the manifacturing process was precipitated by a quality problem associated with the manifacturing yield of the coil secondly a quality problem associated with the manifacturing yield of the coil form. The process improvements were twofold: A new cleaning proceedure for the copper right was instituted as the result of an analysis which indicated that the encornered binding of the abutters was due to bistering of the coil form because of the observation of bistering of the coil form because of the observation of bistering was infacturing yields. Coils were rejected because the inner walls of the coil form did not meet quality-control requirements. Quality-control standards to which the coil assemblies were fabricated were not changed. Basically, these standards were: No air bubbles in potting method: No bare spots on the glass tape; and Smooth inner surface of the coil. Review of shuiter-malimetion history with respect to easily failnes reveating in the same standards were in additional facuring operations reported for all classes of feets, exclusive of these shuiters replaced after 250,000 operations, 5 (14 per easily closs), 000 operations, 5 (14 per easily closs), 000 oper


(Continued)

MR Number and Date	Bast	ilure Test ode Environm	Courses	Analysis and
			Camera Failur	Corrective Action res S/N 049 (Continued)
3892 10/23/64 (Continued) ³⁹ ³⁹ ¹ /64	Decrease in camer resolution out of specifica- tion	a	m Nonconfirmed	Camera, Serial No. 049/049, displayed low-level, 60-kc noise, which w misinterpreted as mesh noise. The problem was localized as an instabl in the focus-current regulator. At the time of the investigation, it was i plicolarized that increasing the value of capacitor C17 from 380 place-amplitude worst case for component values indicated that stability should be exhibited with the original capacitance (165°, -0 db; 180°, -30 However, the presence of a problem indicated probable parasitic effects that were not accounted for in the theoretical approach. Such effects mis be: inductance of capacitor C16; lead inductance of the -27. S volt bas; at capacitance of the circuit; and parasitic effects added to the circuit by tes configuration cabling. Through an increase in the capacitance value of capacitor C17, the theore- ical phase margin at 60 kc increased by approximately 3 degrees and gain margin by approximately 4 db which was not a substantial safety margin, but was sufficient to suppress any recurrence of instability in the focus- current regulator. This characteristic was monitored closely in all cam- eras of Ranger VIII and Ranger IX and spares. The instability displayed by P4 Camera, Serial No. 049/049, was limited the first 10 to 15 minutes of operation, with all interface conditions norm only by increasing the collectors supply voltage of the focus- current regulator. C17 was increased. Camera, Serial No. 045/045, abowed no evidence of instability during test; however, capacitor C17 was changed to 10,000 picofarads during recent revork. Cameras, Serial No. 048/048, was tested, but capacitor C17 was not changed. Cameras, Serial Nos. 042/042, 043/043, 044/044, and 047/047, had the value of capacitor C17 -hanged during previous testing, when instability was detected. This change was approved by a Material Review Action. No other cameras ex- hibited the instability problem.

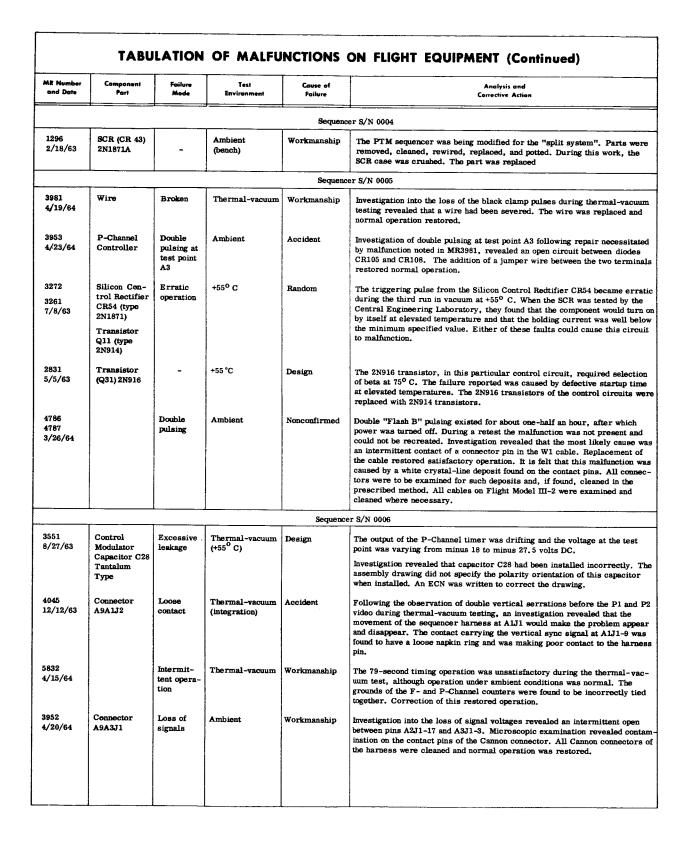
AR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		4	c	amera Failures S/	N 049 (Continued)
896 1/4/46 Continued)					The camera was retested under thermal-vacuum conditions. The resolu- tion was 14.8 percent at 0° C, and 12.5 percent at +40° C, well above the minimum specified value. In addition to the resolution problem, the horizontal-erase overscan was out of specification during thermal-vacuum testing. The erase overscan measured 6.7 percent of the read sweep size, while the minimum specified value was 8 percent. An evaluation of the test data in- dicated that the minimum erase overscan at either end of the read sweep
072 1/4/64		TLM	Room ambient	Nonconfirmed	should have been 3 percent during thermal-vacuum testing. This change is specification was incorporated into RTSP-1112A. During final acceptance tests the G1/Focus telemetry value was 1.85 volts which deviated from the value listed in the test data sheets. However, the statement contained in the RTSP 1112A specification concerning telemetry deviations indicated no malfunction in this unit. On future telemetry deviat
					tions, engineering would evaluate data to determine whether or not a mal- function exists.

MR Number and Date	Subassembly and Serial Number	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		Miscellar	eous Camera	Malfunctions not As	signed to a Single	e Camera
3810 3811 5/5/64	P3 and P4 Camera and Camera Elec- tronics Subas- semblies, Serial Nos. 021 and 039, and 037 and 040 (Flight Model III-2)		Variation in light levels	Ambient	Nonconfirmed	P1 collimator was at 2450 foot-lamberts and the P2 collimator at 4000 foot-lamberts during the test. This difference was attributed to the replacement of collimator bulbs and failure to recalibrate the col- limators. The low sensitivity of the P1 Camera was caused by the shutter replacement at JPL, JPL in- dicated that these levels were acceptable and the collimators were recalibrated after vibration. During test at JPL, it was determined by use of a calibrated light gun that the average white level of the P3 Camera varied 75 mv between successive shutter strokes. The variation on the P4 Camera
						was 100 mv between successive shutter strokes. These variations are consistent with test data on these Cameras since their installation in the Flight Model III-2 Subsystem. The variations were related to the up and down stroke-time variations which were within the specified limits. These white-level vari- ations were reviewed with JPL and considered acceptable.
2138 7/2/64	(Flight Model III-2)		RF inter- ference	Explosive safe area (reduced power)	None	Cameras F_a , F_b , and P3 indicated RFI problems during the reduced power test (conducted per JPL Specification No. 3R 317.02) caused by the omni- antenna radating under the Agena shroud; the radiation was picked up by the camera electronics and trans- mitted with the video. The JPL specification for this test was revised to cause a mode change from the directional to the omni-antenna to evaluate the video during the 30-second null at switch over. This situation was considered a test problem.
3793 9/20/64 3795	P2 Camera Serial No. 22/22 P1 Camera Serial No. 42/42 P2 Camera Serial No. 22/22 P3 Camera Serial No. 40/39		Camera defocusing	Thermal-vacuum	Design	Camera defocusing was found to be caused by the change in the index of refraction in going from ambien pressure to a vacuum and by the increase in distance between the lens and the vidicon caused by the increase in temperature.
3800 10/5/64	P1 Camera Serial No. 42/42					
1353 9/26/64	Spare Camera Serial No. 014/ 014 (Flight Model III-3)					
1537 11/14/64	Camera Bracket (Flight Model III-4)	Thermistor	Short	Ambient	Accident	During TV Subsystem electrical tests, telemetry point No. 86, which monitored the camera bracket tem- perature, read 6.2 volts, indicating that the sensing thermistor was in some way shorted out of the circuit. A check of the temperature sensor revealed no ab- normalities. Continuity tests of the thermistor and application of physical pressure failed to reveal any discrepancies. Tests of connectors and cables also failed to reveal any problem. The problem did not recur during subsequent electrical tests.

MR Number and Date	Subassembly and Serial Number	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Carrective Action
	• · · · · •		Shutter I	failure (Not on a Ca	mera) (Continue	d)
4471 11/14/63	P-Shutter, Serial No. 3020	Detent Spring (RCA Dwg. 1171488-1)	Excessive tension	Post thermal- vacuum	Workmanship	The outstroke exceeded specification 2.0 0.3 msec by 0.2 msec. The coil side detent was found to be exerting too much pressure against the shutter blade. The detent was removed and a new one installed along with a thinner shim material under it.
			1			A gram gage is now used to check detent spring tension during shutter fabrication.
4472 11/15/63	F-Shutter, Serial No. 020	Shutter	Timing deviation	Room	Design	Following vibration test, shutter in-stroke was timed at 3.9 msec ; Specifications: $4.5 \text{ msec} \pm 0.3 \text{ msec}$. The voltage source used to drive the shutter in the test has been specified as 18.1 volts .
4600 12/19/63	F-Camera Shutter, Serial No. 030	Loose locknut	Binding	Thermal-vacuum (40°C)	Workmanship	Investigation revealed a loose locknut on the shutter push rod. The nut was replaced. The slide assembly was found to be binding because of either coil deforma- tion or the yoke-driver coupler binding to the core guide. The coil was replaced with one of revised tolerances.
4726 1/17/64	F-Shutter Serial No. 030	Core Piece	Jamming	Thermal-vacuum (0° C and 1 x 10 ⁻⁴ torr)	Design	Investigation into binding of the coil during thermal- vacuum testing revealed that excessive compression on the core assembly had caused the forward guide to bow c .ward causing the solenoid coil to bind. 0.020 inch was milled off the cap piece of the forward guide, relieving the compression.
4727 1/20/64	P-Shutter Serial No. 3054	Magnetic Core	Timing out of specifi- cation	Room	Workmanship	The difference in time of the shutter-pulse width be- tween instroke and outstroke of this shutter was 0.34 msec. The specification only allows 0.30 msec. The core was remagnetized and subsequent tests showed that the strokes were within specification limits. Be- fore the cores were considered to be fully saturated, they were now given a test in which they must support 100-gram weight after they have been magnetized.
4703 4705 1/27/64	P-Channel Shutters, Serial Nos. 3053R1 and 3045R1	Cores	Time of stroke not within specified mits	Ambient	Accident	The difference in timing between the outer and inner strokes of these shutters exceeded the specified maximum of 0.3 msec. In both cases, remagnetizatio of the core restored operation within specified limits. Refer to Malfunction Reports 4704 and 5816 for recommendations.
4704 1/27/64 5816 4/1/64	P-Shutter, Serial No. 3047R1 Flight Model III-2	Magnetic Core	Time of stroke not within specified limits	Ambient	Accident	The timing difference between the outer and inner strokes was 0.4 msec (the specified maximum is 0.3 msec. A retest was performed, the timing difference was still not less than the specified maximum. Re- magnetization of the core resulted in the timing difference being 0.1 msecs.
4706 2/4/64	F-type Shutter Serial No. 034	Dowel Pin and Actuator Block	Intermittent shutter operation	Thermal-vacuum	Workmanship	Investigation revealed that a dowel pin in the actuator block had become loose and was binding against the shutter frame. Further investigation also revealed th the actuator block holes were drilled oversize and out round. New actuator blocks and dowel pins were to be used on all future refurbished units to ensure that this failure mode would not recur.

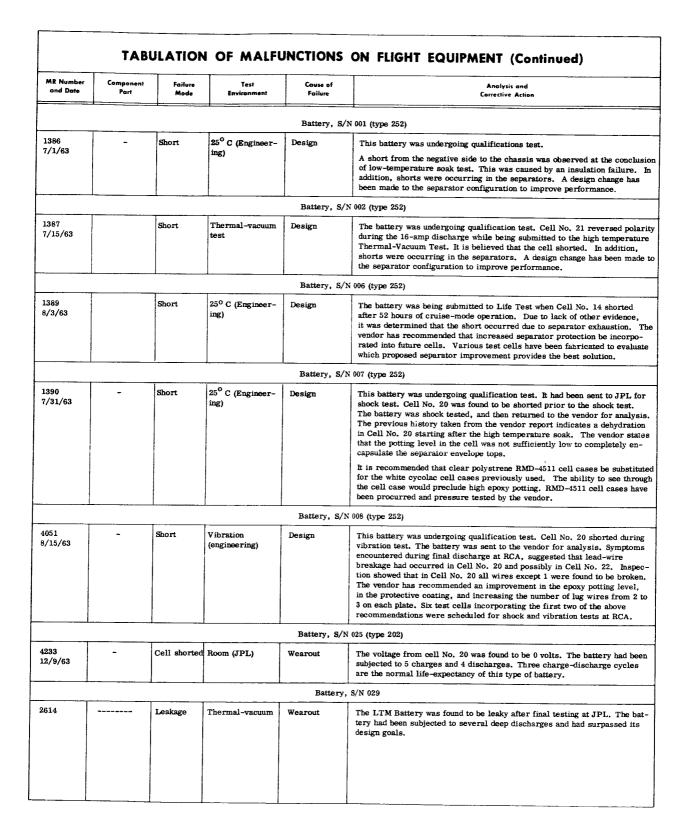
- · -

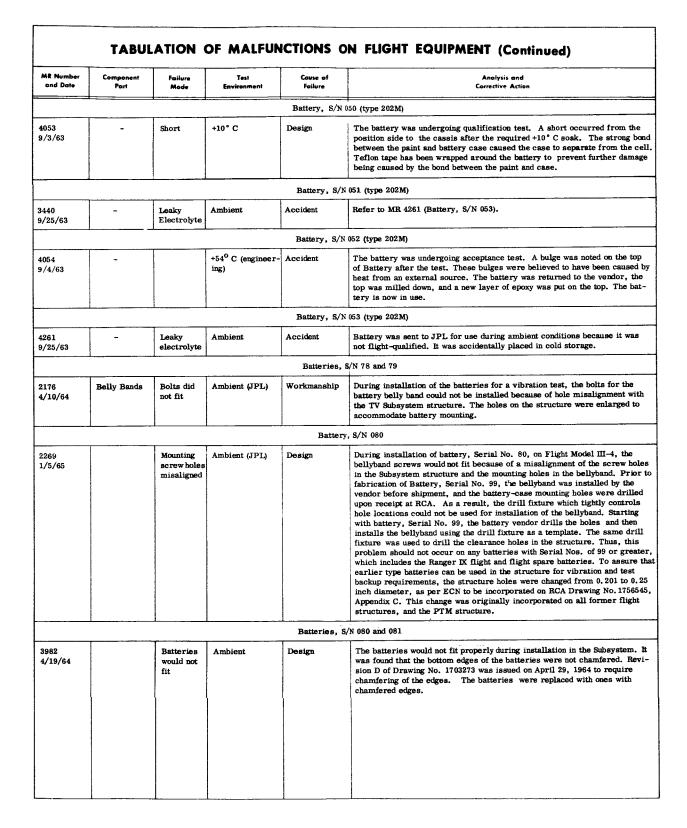
MR Number and Date	Subassembly and Serial Number	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Shutter	Failure (Not on a	Camera) (Continue	d)
4781 2/20/64	P-type Shutter Assembly Serial No. 3073		Shutter stroke timing differ- ential exceeds specified limits	Ambient	Accident	The P-type shutter in-out stroke timing differential exceeded the specified maximum by 1.7 msec. In- vestigation revealed that the magnetized core was defective. Replacement of the magnetized core re- stored normal operation of the shutter. Recommenda- tions for corrective action to be taken to ensure again a recurrence of this malfunction have been issued in Ranger Project Office Memo No. 94410-2, dated April 29, 1964.
3992 4/29/64 3997 5/3/64	Shutters, Serial Nos. 3032-R1 and 3026-R	Pole Pieces	Timing deviation	Ambient	Accident	The timing differential between the in and out strokes of these shutters was not within specified limits durin testing. Several changes have been made to the maunfacturing and handling processes and procedures to prevent a recurrence of this problem.
8891 10/22/64		Shutter Serial No. 3058-R2	Non- operative shutter	Thermal- vacuum	Workmanship	The shutter stopped operating. Investigation disclose shutter binding at the gibs at 60° C. A new set of gib restored operation of shutter. Retesting of the re- worked shutter gave no indication of binding at 60° C.
						A review of gib shutter slide materials indicated that temperature differentials of 35° C can cause change in the spacing between the gib track and slide of approximately 1 mil, which is sufficient to cause bind ing if the assembly is too tight initially. A shutter-gi alignment tool is now used to prevent this malfunction from recurring. Shutters manufactured prior to this date, which have passed flight acceptance tests, do no exhibit this problem.


<u> </u>				Cause of	ON FLIGHT EQUIPMENT (Continued) Analysis and
AR Number and Date	Component Part	Failure Mode	Test Environment	Failure	Corrective Action
				Power Control U	Jnit, S/N 001
3278 7/18/63		Intermittent	Room (manu- facturing)	Workmanship (vendor)	A set of contacts on relay K2 would not close. When this relay was opened, an excessive gap was found between the set of contacts.
				Power Control	Unit, S/N 002
3358 7/10/63	Silicon Control Rectifier CR6 (type 2N638)	Open gate	Room	Accident	While investigating the PCU turn-off problem, the gate of the Silicon Con- trol Rectifier CR6 was shorted to the spacecraft frame. This caused the gate to fuse open and at the same time caused the zener diode CR7 to open.
	Diode CR7 (type 1N754)				In order to resolve the turn-off problem in the PCU, it was necessary to redesign the circuitry. The SCR gates were then connected together using back-to-back diodes and random gating contacts.
		L		Thermistor, S	5/N 2-125
3978 4/19/64	-	Physically damaged	Ambient	Accident	Thermistor 2-128 used to monitor temperature on Flight Model III-2 was found to have one of its terminals bent. A resistance check of the circuit measured open. Replacement of the thermistor restored normal operation.
			 Th	ermistor, S/N 3	-2 (type 44-20 TE 1)
1349 9/14/64	-	Changed internal resistance	Ambient	Random	The telemetry data received during test of the TV Subsystem indicated erratic behavior of the thermistor No. 3-2, monitoring the temperature of the F_b Camera Electronics (A7). The thermistor was removed and the in- ternal resistance was measured at 120 K ohms instead of 50 K ohms. Prior to this test the thermistor had been functioning correctly and had bee calibrated satisfactorily. The thermistor was carefully inspected, including X-ray, and no external flaws were in evidence in the potting nor were there any noticeable flaws in the thermistor wafer. The fact that no flaws were discovered does not mean that flaws too small to find were not present. There have been very few problems with these thermistors because of the protective assembly procedures and the 100% testing following assembly.
_	<u> </u>	4	<u>1</u>	Video Combin	ner S/N 001
3361 5/26/63	Bourns Trim- pot (R86) 3250L	Frozen adjustment screw	Room ambient	Workmanship	Potentiometer was conformally coated on all sides, freezing the adjustment screw. This prevented final adjustment of the summing amplifier during camera bench checkout.
	1			Video Comb	iner S/N 004
3425 11/21/63	Transistor Q4 (type 2N930)	Loss of F video	Pre-thermal- vacuum (ambient) (JPL)	Nonconfirmed	Investigation into the loss of hard-line and RF video indicated that transist Q4 was defective. However, later tests performed on the transistor failed to reveal any defects.
2151 5/28/64		Loss of video from Camera F _a	Ambient	Workmanship	During post-integration checkout, F_a Camera was inoperative. Investigation revealed that a short existed between the center conductor and shield coax connector A32 on the F_a Video Combiner. This connector had been previously sleeved to correct pin retention. Upon removal of the sleeve, the short was cleared. It appears that the connector had an initial discrepancy that normally did not affect the capability. However, the aggravation of the additional sleeving affected it to the point where failure occurred.
				Video Comb	Diner S/N 006
3930 4800 3/24/64	Printed Circuit Board	Wrong circuit traces	Ambient	Workmanship	not been removed as required by the latest configuration. The trace was removed and proper operation resulted.
3931 3/24/64		Reading not within spe- cified limit	.	Accident	The operator was confused by an ambiguity in the test procedure which was since corrected.
	L	_!		Video Com	biner S/N 008
4081 10/21/63	Printed Cir- cuit Between Resistor R67 and R64	Broken	Ambient	Workmanship	The printed-circuit path between resistors R67 and R64 was found to be of on terminal board TB3 during the determination of no output from the asso bly. Quality Control has been instructed to inspect this path on future assemblies.

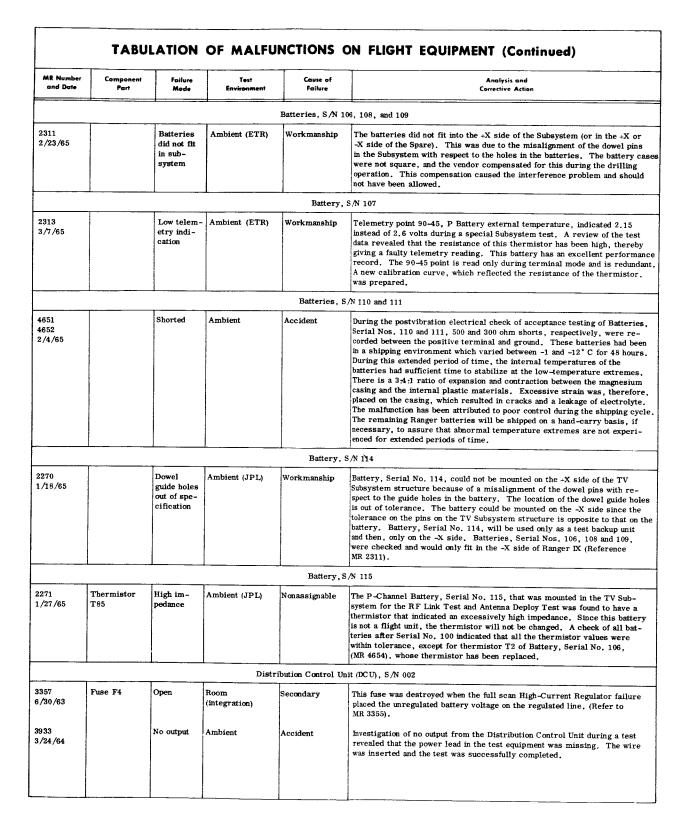
•

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Vic	ieo Combiner S/N	(008 (Centrund)
A4100	Connector	Pushed out	Room	1	
1/6/64	A6J4	Publict out	BUOM	Secondary	During the initial electrical checkout of Flight Model III-4, connector A&J4-A2 was pushed out by the crooked pin in cable A2-P. The defective connector was replaced following completion of the electrical checkout of the subsystem.
				Video Combi	ner S/N 009
3279 8/8/63	Trimpot R53 (Bourns No. 32506-L)	Would not change value	Room (manu- facturing)	Design	The trimpot would not change value when adjusted in the circuit. This type of trimpot failure had occurred before but always during an initial alignmen It was recommended by both Reliability and the vendor that only parts with a date code later than 6143 be used for replacements.
					Because the part was not considered a reliability risk, it was not recom- mended to remove all parts with an earlier date code from finished equipment.
					The malfunction part was date coded 6115 B and, therefore, was suspected of failing because of the design in use at that time.
				Video Combin	er S/N 010
4010 9/30/63	Transistor Q6 (type 2N869)	Open base lead	Room (manu- facturing)	Workmanship	Examination of the broken base lead of transistor Q6 disclosed that the lead had been nicked in some manner prior to installation.
4583 11/12/63	Insulating board (RCA Dwg. 1702969)	Not installed	Room	Workmanship	When the Video Combiner was returned from conformal coating for final acceptance testing, all signals were shorted to the chassis ground. An in- vestigation revealed that the insulating board behind the component assemble board had been left out.
					Quality Control instituted inspection procedures to verify that all insulating boards were cemented down to the chassis prior to the bonding of the com- ponent board assembly.
3828 4/20/64	Coaxial Connector	Shorted	Ambient	Workmanship	Investigation into the inability to adjust the P2 Camera video revealed an extraneous wire soldered in the connector causing a short in the inner con- ductor of the coax. The extraneous wire was removed and normal operation was obtained.
3832 4/21/64	Telemetry Amplifier	Telemetry output not within spe- cified limits	Ambient	Workmanship	Investigation into why the telemetry output was not within specified limits revealed that transistor Q12 was incorrectly wired. Resistor R25 was of the wrong value, and a jumper wire was missing. The transistor and resistor were replaced and correctly wired and the jumper wire was in- serted. Normal operation resulted.
3988 4/28/64		Output not within spe- cified limits	Ambient	Accident	Operator failed to connect oscillator through the test panel resulting in incorrect test data being recorded. With test connections corrected, the test was satisfactorily performed.
		• ·····		Video Combin	er S/N 011
3956 3957 5/5/64	Transistor Q6 (type 2N869)	Shorted	Ambient	Random	Investigation of the DC output of the F-Channel in the Video Combiner with respect to temperature resulted in the replacement of six transistors. The first five components were removed unnecessarily. Review of this mal- function disclosed that because the DC output was only marginally out of specified limits, no other associated components were overstressed.
				Video Combiner	S/N (Unknown)
1957	Transistor Q3 (2N390) Transistor Q4 (2N390)	Drift@0°C. 55°C	Acceptance thermal-vacuum	Design	Transistors were used in a different amplifier. Mismatch occurred at ex- treme temperatures. Transistors for this box would be selected for prope match.
	d		Control Pr	ogrammer and C	amera Sequencer S/N 0002
2987 5/2/63	Transistor (Q32) 2N916	Low B-C breakdown voltage	Vibration	Random	Improper operation after vibration. An internal inspection revealed a broken base connection. This equipment was subject to two qualification vibration tests and was probably mechanically overstressed.


MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Control Program	mer and Camera	Sequencer S/N 0002 (Continued)
3769		Wiring errors	Ambient	Nonassignable	During the initial electrical test following rework, improper operation of the Sequencer was experienced. Examination revealed wiring errors to be at fault. A detailed analysis was then performed. No overstressing of parts occurred as a result of this malfunction.
4085 4086 10/23/63	Interconnecting Cable 013, 014	Double puls- ing of the shutter pulse and F verti- cal blanking	Ambient	Workmanship	Although a continuity check of the cables was satisfactorily performed, bubbles were noted in the potting component of the connector and the cables were replaced. The sequencer then operated normally.
4239 2/6/64		Early P- Channel turn-on	Ambient (JPL)	Design	A two-minute early turn-on of the P-Channel was associated with noise spikes that appeared on the manual reset line for the P-Channel 5-minute ac cumulator. The circuit was redesigned so that only a 79-second time delay was provided. In addition, the manual reset line was eliminated.
1527 1526 10/23/64			Ambient	Nonassignable	During testing it was noted that the horizontal sync pulses of the P1 Camera were of a lower amplitude and shorter duration than the other P-Cameras. A series of tests indicated that the sequencer malfunctioned. The sequencer and power supply were removed and bench tested. Operation was normal. The unit was installed in the spacecraft; operation was not normal. More tests were conducted. Observation of the modulator A video 1, terminal A9A2P2-5, showed a P1 vertical gate pulse of 6.6 volts, 200 msec with no horizontal serrations. An investigation revealed a fault in the fail-safe circuit. The sequencer worked satisfactorily during bench test because the bench test did not simulate the sync generation "not read pulse" from the camera to sequencer. The sequencer and power supply were removed from the structure, tested, and remounted. Throughout tie down and mounting, the signal at A9A2P2-5 was observed to be normal. For a third time, the sequencer was bench tested with the test rack modified. The sequencer operated satisfactorily until A2J1-5 of cable W1-8 was moved. At this time the video serration disappeared. A check of the harness indicated a dis- continuity between the male and female contacts. The A2 frame was removed from the sequencer and the potting compound was removed from the contact. The solder connection was found to be acceptable. The harness was remated The sequencer did not malfunction. No contamination or loose contacts were found. However, contamination could have been present and removed during demating and mating of the connector. All connectors on the sequencer and cable S1-8 were therefore cleaned as specified in ME160 and the bench test racks were modified to test the fail-safe not read circuits. One rack was modified and all remaining equipment was pernamently connected. The sequencer was tested after the connector cleaning. At JPL's request, cable W1-8 was replaced by W1-10 and returned to space status.
			Contr	ol Programmer	and Camera Sequencer S/N 0003
3375 thru 3379 7/25/63	Diodes CR67 and CR73 (type 1N916) Diode CR74 (type 1N750) Transistors Q3 and Q26 (type 1N1613)		Room (after vibration) (manu- facturing)	Nonassignable	Relay K2 in the controller modulator would not energize following vibration test. Three diodes and two transistors in the P-Channel Controller Modulate Subassembly, were found to be defective. Indications were that transistor Q did operate relay K2 at the start of the investigation, but subsequently becan defective.
3348 8/22/63	Transistor Q2 (type 2N914)	Intermittent	Thermal-vacuum (manufacturing)	Workmanship	The F-Channel timer should have operated for a period of 302 seconds. How ever, the timer failed to operate after 138 seconds. Transistor Q2 of the F controller timer was intermittent during a thermal-vacuum test. While re- placing the transistor, a bad solder joint was found on one of the transistor leads. This was corrected.


MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
				Sequence	r S/N 0008
3553 8/29/63	Control Modu- lator Capacitor C28	Installed with wrong polarity	Room (manufact- uring)	Design	A visual inspection was performed on Camera Sequencer S/N 0008 and this unit had capacitor C28 wired into the circuit with the wrong polarity. An ECN was issued to correct the affected schematic diagram to show the cor- rect polarity more clearly.
4795 4/2/64	Control Modu- lator Capacitor C28	Over- stressed	Ambient	Accident	The Sequencer test procedure was revised in anticipation of a circuit modi- fication and an unmodified assembly was tested to it. As a result, a re- verse voltage was applied to tantalum capacitor C28. The capacitor was replaced.
3950 5/2/64		Loss of full- power output	Ambient (JPL)	Nonconfirmed	The JPL test procedure initiated warm-up of the Subsystem by using a jumper connection at the breakout box. The procedure then required turn- on into full power at 70 seconds. The jumper wire was removed as soon as verification of full power was received; this resulted in the Subsystem re- turning to warm-up. However, the 80-second accumulator was counting and turned the Subsystem back into full power, resulted in a short loss of output. JPL was notified to change its test procedure to indicate either that the pre- ceding would happen or that the jumper connection should be kept in for longer than 80 seconds.
		.l <u> </u>	Sequenc	er Power Supply,	S/N 0004
1297 2/25/63	Transistor Q9 (type 2N-1485)	Short	Ambient (bench)	Accident	Noise was noted during camera tests using the "split-system" PTM se- quencer and sequencer power supply. To detect the source of the noise, the load was accidently removed from the power supply which resulted in a current overstress of Q9. Camera test personnel were made aware of the precautionary note included in the sequencer test procedure concerning the removal of load from the energized power supply.
3336 6/11/63	Capacitor C7	Short	Room (integra- tion)	Accident	Capacitor C7 in the power supply shorted after the PTM had completed all tests. C7 was replaced, and C6 was replaced because it may have been overstressed.
		1	Sequenc	er Power Supply S	5/N 0005
3356 6/28/63	Transistors Q13 and Q14 (type 2N1486)		Room (integra- tion)	Secondary	When the High-Current Regulator S/N 0005 failed (MR3355), the unregulated 33 volts DC were allowed through to the Regulator output. The only load on the Regulator at the time was the Sequencer Power Supply. The two F-Chan nel Choppers (transistors Q13 and Q14) were destroyed.
4075 10/10/63	Capacitor C1 (CL65 CJ470- MP3)	Shorted	Room	Design	The input power supply circuit breaker tripped during manufacturing testing Investigation led to capacitor C1, which had been installed with incorrect polarity.
					The mechanical layout drawing has been revised to show the proper polarity of C20. (See RCA Dwg. 1073576, Revision K.)
1534 11/12/64	Capacitor C10	No output	Ambient	Nonassignable	During final bench-testing of sequencer 0005, there was no power output from the supply. It was indicated that capacitor C10 shorted. After the capa- tor was removed from the power supply it was tested and found to be good. In a later check it was found that the capacitor could short if the leads were moved.
					The vendor reported that capacitor C10 was normal at room temperature by exceeded leakage specifications at a temperature of 35° C with rated voltag and stress on the anode lead applied. Internal examination of the capacitor revealed a crystalline silver deposit, which could cause a high leakage or an intermittent short if contact between the anode and cathode were made by this silver deposit. The deposit is caused by a periodic or continuous voltage reversal of slight magnitude. There is no reversal during normal operation.
					During another investigation of this malfunction, four capacitors of the sam type used in the circuit were removed for testing. Leakage currents were within specification. A black deposit found inside the capacitor was con- sidered normal by the vendor.

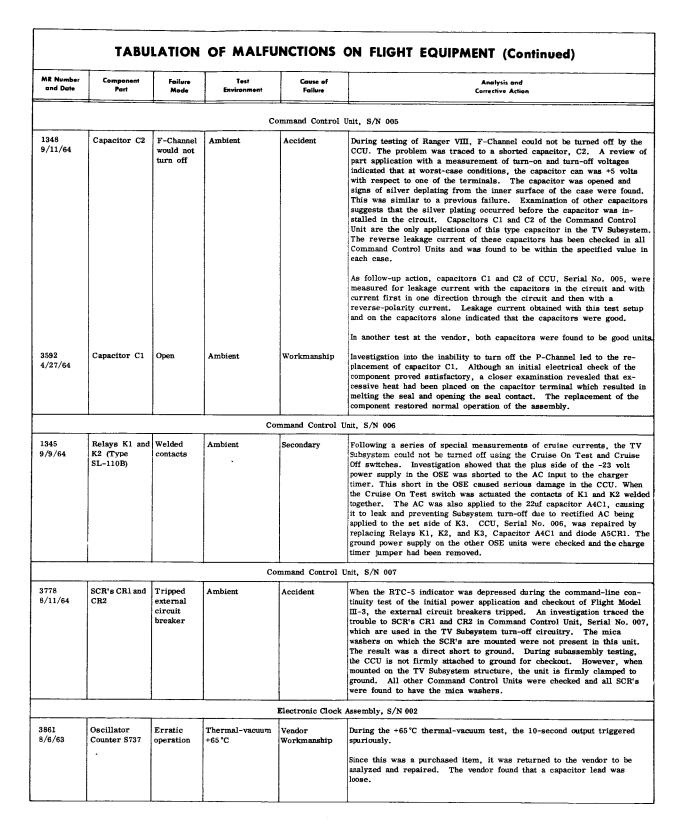
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Sequence	r Power Supply S/	N 0006
2950 9/20/63 3560 9/20/63	Transistor Q20 (type 2N869) Capacitors C18 & C19 (type CL65CJ - 470MP3)	-	Room (manufactu- ring) Room (manufactu- ring)	Accident (test error) Accident (test error)	This Sequencer Power Supply was being used to check out a new test fixtur in the manufacturing area. Several problems in this test rack caused transistor Q20 to be destroyed and at the same time C18 and C19 were re- moved. The loss of these components removed the -12 volt DC from the 1 Cameras.
4084 10/14/64	Zener Diode (type 1N821)	Over- stressed	Room (manufactu- ring)	Secondary	As a precaution against failure at a later time, this diode was replaced be cause it had been overstressed during accidental damage to the power sup ply. The damage occurred during the checking out of a new test stand. Several other components in the circuit were destroyed. Refer to Malfunc- tion Reports 2950 and 3560.
			Sequence	Power Supply S/	N 0007
3998 5/3/64		Improper grounding	Ambient	Accident	Investigation of no isolation between F and P ground circuits revealed that there was a wiring error in the power supply which tied the two grounds to gether. The wiring error was corrected.
			Sequence	Power Supply S/	N 0009
3940 4/8/64		Reading of thermo- couple off scale	Thermal-vacuum (+55 ⁰ C)	Nonconfirmed	During a special thermal-vacuum test requested by JPL, the reading of a thermocouple was off scale. The test was performed with the thermo couples stabilized at +55° C prior to turn-on of the equipment. There were no specified limits for temperatures after turn-on as this was a special test. Therefore, this cannot be classified as a malfunction.
			Sequence	Power Supply S/	N 0010
1541 11/24/64	Capacitor C1	Excessive video noise	Ambient	Workmanship	Excessive noise was encountered on the video output of the P1, P2, and P4 cameras during electrical tests on Flight Model III-4. After extensive testing of these cameras failed to reveal any reason for the noise, a check was made of the Sequencer and Sequencer Power Supply, which revealed noise on the P-Channel output of the Sequencer Power Supply. Sequencer Power Supply, Serial No. 0005, was incorporated into Flight Model III-4 and the observed noise was reduced considerably.
					A bench check showed that Sequencer Power Supply Serial No. 0010, exhibited excessive noise spikes on the -27.5 -volt supply line at the emitter of transistors Q1 and Q2. Capacitor C1 was suspected of not filtering the high-frequency component of the signal, and when this component was replaced, the noise dropped to a normal level. The removed capacitor was found to have a value of 48.5 microfarads with a leakage of less than 1 microampere and a dissipation factor of 17.5 percent. The high-dissipation factor indicates that the capacitor would not filter as it should. This change in characteristic indicates a leak in electrolyte. When the capacitor was examined under a microscope a small hole in the rubber seal was revealed and the entire seal under the conformal coating had changed to a red color indicating a defective seal.
					The vendor stated that the seal had been punctured by the tantalum wire. It was postulated that this opening had allowed electrolyte to leak out, thus causing the dissipation factor to increase. Seal tests with hlue thymol re- vealed no evidence of electrolyte leakage. The vendor analysis indicated t there was a presence of silver deposit which suggests some reverse volta was applied that could cause high internal pressure. The vendor further stated that this increase in internal pressure could loosen the seal to such an extent that the volatile constituents of the electrolyte could escape and affect the conductivity of the electrolyte. This would increase the equivale series resistance, thus causing an increase in the dissipation factor. It is RCA's position that the hole in the seal was the cause of the loss of
					electrolyte and the resultant increased dissipation factor. The silver de- posits were insufficient to increase the leakage current associated with the capacitor, and therefore, would not have affected the internal temperature of the device.


MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		1.:		Filter Assem	bly, S/N 004
4791 3/5/64	-	Low resis- tance	Ambient	Accident	During an inspection performed immediately after the receipt of this as- sembly, an AC voltage was applied to which resulted in the application of a reverse voltage across polarized capacitors. The capacitors were replaced and the inspection procedure revised so that this malfunction could not recur.
2191 5/21/64	Connector	Loose pin	Ambient (JPL)	Wearout	Wearout of pin 12 of connector A38P1 caused the pin to fail the one-ounce pin retention test. The JPL sleeve was inserted; the pin was retested and passed the test.
	<u> </u>			Filter Assen	bly S/N 006
3596 5/11/64	Filter	Incorrect frequency response	Ambient	Accident	Investigation into the inability of the Filter Assembly to comply with the response specifications of RTSP-1164 resulted in the revision of the response curve. The test specification, RTSP-1164, was revised.
			Fili	ter Assemblies,	S/N 007 and S/N 010
4788 3/28/64 4790 4/4/64	Capacitor Capacitor	Low resistance	Room (bench)	Accident	During inspection performed immediately after the receipt of these assem- blies, an AC voltage was applied which resulted in the application of a reverse voltage across a polarized capacitor. In each case, the capacitor was replaced. The inspection procedure was revised subsequent to the analysis.
·			L	Filter Assen	bly S/N 012
2551 11/2/64		Resistance Out of spe- cified range	Ambient	Accident	During previbrational electrical testing, Filter Assembly, Serial No. 012, failed to comply with specified DC resistance values of RTSP-1164. An electrical-continuity measurement between pins 1 and 4 and between pins 9 and 12 of connector J1 indicated 1.7 ohms, while the specified resistance between these contacts is 2.0 ohms \pm 10 percent.
					The 1.7 ohm values were obtained with a VTVM, RCA Model WV98C, as specified in Test Method No. TM-1-1752265. When the resistances were re- measured with a wheatstone bridge, J1-1 to J1-4 measured 1.84 ohms, an J1-9 to J1-12 measured 1.82 ohms. These values were considered the cor- rect resistances because of meter tolerances (3 percent for the VTVM, compared to 0.5 percent for the wheatstone bridge). The parts between pir 1 and 4 and pins 9 and 12 are two 5-millihenry choke coils, and the value of resistance for each 0.92 ohm. Therefore, the specified resistance value between these pins should be 1.84 ohms \pm 10 percent. With this interpre- tation, the 1.7-ohm resistances measured would be within the specified range. RTSP-1164 has been modified to reflect this change in resistance value.
2070 11/7/64		Response curve out of specifica- tion	Thermal-vacuum	Workmanship	During the first 0° C test, the response curve plotted was out of specifica- tion at 1000 cycles. This was corrected by connecting the cable shielding to the output load ground. This effectively removed a ground loop caused by the 16 feet of cable at the output of the filter assembly. A test was run and all data points were acceptable. The 0° C test was not necessary. A response test in thermal-vacuum exceeds the acceptance test require- ments of Specification RTSP-1164. It was recommended that the test method be revised to reflect the test requirements of the specification.
1533 11/8/64		Frequency response was out of specifica- tion	Ambient	Nonconfirmed	The Filter Assembly was rejected during final acceptance tests. The fre- quency response was out of specification at 2500 and 3000 cycles per second. Filter performance was not degraded. This unit had a better than normal filter response characteristic.

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
				Battery, S/N (132 (type 202)
3434 9/17/63	-	Internal short	Room (JPL)	Secondary	The batteries were overcharged, resulting in overheating. This caused the electrolyte to leak onto the battery-monitor connector.
				Battery, S/N)36 (type 202)
3431 9/14/63		Low battery voltage	Room (JPL)	Nonconfirmed	Batteries were completely discharged. Recharged batteries.
				Battery, S/N	1 037 (type 202)
3432 9/14/63		Low battery voltage	Room (JPL)	Nonconfirmed	Batteries were completely discharged. Recharged batteries.
3421 9/24/63		Cell No. 2 was 0.05 volts	MVT No. 2 100 ⁰ F Test	Wearout	Cell No. 2 would not accept a charge after 20 minutes. Other cells read 1.94 volts. The vendor indicated that the cell had shorted because of normal wearout.
	i		I	Battery, S/I	N 038 (type 202)
2618 9/17/63		Voltage below speci- fication	Thermal-vacuum (41 ⁰ F)	Wearout	The battery had been operated with the terminal voltage below the minimum specified level. An attempt to recharge this battery failed. Cell No. 1 measured zero volt when tested. In addition, electrolyte was noted leaking from around the terminal.
					This battery had been subjected to four charge-discharge cycles prior to its failure. The vendor guarantees this type of silver-zinc battery for only two recharge cycles. These batteries deteriorate very rapidly with increase use.
	1		Bat	tery, S/N 039 (ty	pe 202)
3438 9/17/63	-	Internal short	Room (JPL)	Secondary	The shorting of the pins on the battery monitoring cable caused further shorting of cells in the battery.
					The battery sensing switch in the GSE was not operating. Battery voltage was read as 38 volts when it was actually 42.5 volts.
				Battery, S/	N 042 (type 202)
4266 10/4/63	-	-	Thermal-vacuum (low-temp.)(JPL)	Nonconfirmed	During a low-temperature thermal-vacuum test at JPL, a drop in cell voltage was indicated. When the battery was removed from the chamber, the connector was found to be covered with electrolyte.
					Later investigation proved that Battery Serial No. 44 had failed and leaked onto the connector.
					Battery Serial No. 42 was checked out by the vendor and found to be satisfactory.
			1	Battery, S,	/N 044 (type 202)
4265 10/4/63	-	Suspected shorted Cel No. 14	Thermal-vacuum 1 (low-temp.)(JPL)	Wearout	During thermal-vacuum testing at JPL, large quantities of electrolyte leake from cell No. 14. The voltage of the cell dropped to 0.14 volt. This battern had received five charge and discharge cycles prior to its wearout. Battery voltages were to be closely monitored to detect end-of-life before it occurr and, thus, prevent damage caused by leakage of electrolyte.
ļ		I	_ _	Battery, S	/N 049 (type 202M)
4052 7/31/63	-	Leakage of electrolyte	25 ⁰ C (engineering	g) Design	The battery was undergoing qualification test. It was sent to JPL for shock test, at which time an electrolyte lead was observed. A pinhole was de- tected in the potting. The strong bond between the paint and battery case caused the case to separate from the cell. Teflon tape has been wrapped around the battery to prevent further damage being caused by the bond be- tween the paint and case.

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure		Analysis and Corrective Action	
				Batter	7, S/N 089		
4655 2/1 7/ 65	~	Shorted	Ambient (special test)	Not Applicable	flight batteries, Seria special test was perfe	al Nos. 110 and 111, (see ormed on two batteries, S d flight acceptance testing	ailure-mode conditions of two MR 4651 and 4652). The erial Nos. 84 and 89, which . The initial electrical checks
					Battery	Average Cell Voltage	Resistance (+ Terminal to Case)
					Serial No. 84 Serial No. 89	1.86 volts 1.86 volts	100 K megohoms 150 K megohms
					during test. Battery, while Battery, Serial file was defined utili: Bureau for the Trent 1965 (time of shipme were then placed in a was duplicated for 54 monitored continuous controlled. The resi	zing temperature data obta on, New Jersey, area for nt of Batteries, Serial Noi temperature chamber, an i hours. The positive terr 19, and the battery temper istance readings remained	d in a shipping container, . The test temperature pro- nined from the U.S. Weather the weekend of January 29, s. 110 and 111). The batterie nd the temperature profile ninal-to-case resistance was
					ditions detected in pr failures (Serial Nos. vibration electrical t lateral plane, Batter ohms from positive t case. Battery, Seria	re- or post-vibration elect 110 and 111) were detecte est. Thirty-six hours lat y, Serial No. 89, was fou erminal to case, indicatin	plane with no abnormal con- rical tests. Both previous ed in the thrust-plane post- er, before vibration in the nd to have a resistance of 300 g a leakage of electrolyte to mpleted the lateral-plane
					89, had its metal cas found. A voltage rev was cut, cleaned, an	se removed. The cells we versal had occurred betwe	analysis. Battery, Serial No. ere cleaned and no cracks wer en cells 13 and 14. Cell 13 no signs of cracks or leakag 84.
					ture profile, follower perience the same ty Nos. 110 and 111.	d by vibration in the thrus pe failure mode experience	s subject to a similar temper: t plane, can be made to ex- ed by flight Batteries, Serial by the vendor were incon- ode.
							eport does not represent an ntentionally destroyed in a
	·····			Battery	, S/N 106		· · · · · · · · · · · · · · · · · · ·
4654 2/11/65	Thermistor T2	High impedance	- Ambient	Nonassignable	age. This condition I were made on the th ferences in the resis a function of the hear ing the test. The th detected. The unit v expose the cracks. is attached to a term cast 2651 for protect the potting operation not be determined.	had existed during the entire ermistor with different me- stive values (170 k, 430 k, t generated as a result of ' ermistor was then X-raye was carefully polished to r This type of thermistor is ninal board and the entire tion. The part had been the the exact cause of the	sensor T2 indicated a high vol retest cycle. Resistance check easuring devices. The dif- and 530 k ohms) obtained are larger currents in the unit duu d and two hair-line cracks we remove the surface material a extremely fragile. The unit assembly is potted with Sty- necked and was acceptable afte cracks in this thermistor coul Serial No. 106, restored

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
<u>. </u>			Distribution	Control Unit (DC	U), S /N 002 (Continued)
5931 4/15/64		Wiring error	Ambient	Workmanship	The loss of the telemetry from the Clock was the result of an interface wiring error in the DCU. Two changes resulting from Revision H to the wiring list Drawing No. 1703981 had not been incorporated. The unit was reworked and normal operation was obtained.
	<u> </u>	ļ	· · · · · · · · · · · · · · · · ·	Distribution Contr	rol Unit, S/N 005
4778 3980 4/17/64		Low diode reverse resistance reading	Ambient	Accident	Investigation into the low reverse resistance measurement on diode CR3 revealed that a test equipment selector switch was in the wrong position. With the switch in the proper position, a correct measurement was obtained.
3788 9/3/64		Error in wiring	Ambient	Workmanship	Distribution Control Unit, Serial No. 005, was modified to the Flight Model III-3 configuration. During an electrical continuity check prior to vibration, an open circuit was detected. Investigation revealed that a jumper wire between pins 29 and 43 of connector J5 was missing. The jumper was in- stalled and testing resumed with normal performance.
<u> </u>	L	<u> </u>		Distribution Contr	rol Unit, S /N 006
4026 1/4/64		Short in terminal E5	Room	Workmanship	The investigation of why the DCU was drawing 5 amps (instead of 2 amps) when the F Channel was on, disclosed a short from A3415-33 to chassis ground. This short was caused by a lead on resistor R1 being too long and touching the chassis. The resistor was not affected and only the terminal needed to be replaced. Because of the possibility of this type of short "floating" and going undetected if the chassis is not connected to ground during testing, it was again emphasized that all chassis should be grounded during test.
		. _	L	Distribution Cont	rol Unit, S/N 007
1759 3/7/63		Short	Room (integration)	Design	Leads within the unit were shorted to ground by one of the mounting screws. The harness was repaired and protected with a chaffing corner. In addition terminal E7 was moved out of line of a mounting screw.
2173 8/26/64	C apacitor C 27	No video output from F-channel	Ambient	Design	During test of the PTM, no video output was received from the F-Channel. At first, it was thought that the problem existed in the sequencer. This unit was returned to AED and tested. Operation was normal, except that the telemetry voltage for the F-Channel timer was 0.6 volt rather than the ex- pected -2.14 volts. This problem was traced to connector J2 on the se- quencer where two leads had been reversed, placing an incorrect polarity or capacitor C27. Investigation showed that these leads had been deliberately reversed during rework to compensate for a wiring error in PTM harness 30W1, and expedite delivery of the PTM. In modifying the PTM to the Ranger VIII configuration, a new harness was installed. Since the reversed leads in the sequencer had not been corrected, the result was a reversed polarity on capacitor C27 and an incorrect telemetry reading; actual se- quencer operation was normal in every other respect.
					In the meantime, further troubleshooting of the PTM spacecraft revealed that the lack of F-Channel video was due to the fact that a ground circuit was missing in Distribution Control Unit, Serial No. 007, because of the design changes incorporated for the Flight Model III-3 configuration. The PTM wa then modified to the Flight Model III-3 configuration by providing the requir- ground circuit, and the Subsystem then performed normally.
				Distribution Cont	trol Unit, S/N 009
5831 4/16/64	Wire	Extra	Ambient	Workmanship	An extraneous wire was left in the Distribution Control Unit (DCU) following rework of the unit to Revision H of Drawing 1703981. The wire was dis- covered during a manufacturing test and was removed.
	- + <u>.</u>	·	_1	Command Sv	vitch, S/N 003
3335 5/19/63	Capacitor C1 Fuse F1	, Overload Fuse Fl	Room ambient	Workmanship	Electrolytic capacitor was found to be wired in backwards. Quality Control had not checked out PTM component modifications.



ſ

.

MR Number	Component	Failure	Test	Cause of	Analysis and
and Date	Part	Mode	Environment	Failure	Amerysis and Corrective Action
				Command Swi	tch, S/N 004
2856 3/22/63	Zener Diode CR4 (type 1N2970B)	Short	Room (integration)	Accident	Channel B would not turn on. Diode CR4 in the command switch had been accidentally shorted to ground during test.
3331 5/9/63	Diode CR4 (type 1N2970B)	Shorted	Room ambient	Nonassignable	An internal inspection revealed a burned element due to an applied over- stress condition. Cause of failure could not be determined.
2988 6/3/63	Diode CR3 (type 1N2970B)	Shorted	Room (integration)	Accident	While investigating 'turn-on' and 'turn-off' transients across diode CR3, the diode was short-circuited to ground. This occurred while an oscillo- scope was connected across A13-J1 through the use of a breakout box. Investigation revealed that the scope was grounded to the payload through a digital voltmeter. The diode was replaced and operation was normal.
	· ·		<u> </u>	Command Sw	ttch, S/N 005
3360 7/13/63	Diode CR4 (type 1N2970)	Short	Room (integration)	Workmanship	P-Channel would not command ON due to a shorted zener diode. This mal- function was caused by the incorrect connection of the Subsystem to the OSE Video Amplifier. A special test cable had not been properly modified for split-system operation and placed the Silicon Control Rectifier gate to OC ground. The battery voltage was thus placed across the zener diode causing it to short.
				Command Sw	ttch, S/N 006
4023 12/7/63	Transistor Q1 (type 2N1720)	Open	Vacuum- chamber (door open) Ambient	Accident	Investigation into the inability to initiate cruise mode with the RTC -7 com- mand revealed a damaged Command Switch. The connector inside the thermal-vacuum chamber was reversed and, as a result, the wrong polarity
	Transistor Q2 (type 2N1720)	Open	(integration)		had been placed on the Command Switch.
	Transistor Q4 (type 2N1490)	Shorted			
	Diode CR3 (type 1N2970B)	Stressed			
	Diode CR4 (type 2970B)	Stressed			
	Diode CR5 (type 1N538)	Stressed			
	Diode CR6 (type 1N458)	Stressed			
	Resistor R7	Charred			
	Resistor R12	Charred			
	Resistor R13	Low Value			
	Resistor R17 Resistor R19	Burned-up Charred			
		1			
	Resistor R21 Capacitor C1	Charred Stressed			
	Capacitor C1 Capacitor C2	Stressed			
	Capacitor C2	Stressed			
	Capacitor C4	Stressed			
	Cupucitor Of		······	Command 6-4	tab 8 At 008
20.32	Diode	Ommed		Command Swi	internation in the second s
2932 5/31/63	Diode (1N485B) CR7	Opened	Thermal-vacuum (+55°C)	Accident	This Command Switch had successfully passed thermal-vacuum tests at 0, 25, and 55° C, and then was left to soak for several hours. When commanded to "warm-up" during subsequent testing, the K1 relay failed to close because diode CR7 was open. J1-47 was accidentally touched to J1-46 and excessive reverse voltage was applied to CR7.

	TABUI	LATION	OF MALFU	NCTIONS	ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	J <u></u>		Com	mand Switch, S/	N 008 (Continued)
3343 6/4/63	Diode 1N2970B CR3	Partial short	Room	Nonassignable	The voltage at the SCR gate should have been 32.2 ± 1 volt and was actually approximately 35.5 volts. This occurred after the diode CR7 (see MR 2932) had been replaced and potted in the Command Switch and while the Command Switch was being rechecked. Diode CR3 was tested and found to be partially shorted. A new diode was installed and the operation was normal.
3552 8/27/63	Capacitor C1	Shorted to switch	Room (manufac- turing)	Workmanship	The defective CR3 diode was lost in the mail, thus making an analysis impossible. Minus 22 volts was found at pin J1-40 during system testing instead of the expected zero volts. Investigation disclosed that the epoxy coating on capacitor C1 had been penetrated, allowing electrical connection with contact 10 on switch S1B. The penetration had occurred after the unit had successfully passed the necessary vibration, thermal-vacuum, and electrical tests.
	1			Command Swite	ch, S/N 009
2949 9/28/63	Transistor Q1 (type 2N1720)	Open base	Room (manufac- turing)	Workmanship	During testing following the reworking of the LTM Command Switch As- sembly to the "split system" design, the base of transistor Q1 opened because of an improperly wired circuit.
4028 1/4/64	Transistor Q4 (type 2N1490)	Shorted	Room	Workmanship	During initial electrical check of the Subsystem, an attempt was made to turn-on the Subsystem by the RTC-7 command. The Subsystem did not respond to this command and it was noted that the line current was excessive. Investigation disclosed a shorted Q4 transistor believed caused by a wiring error which resulted in the base of the transistor being shorted to ground. This would have resulted in the battery voltage being placed across the base-to-emitter junction.
				Command Swit	tch, S/N 011
4072 10/3/63	Zener Diodes CR3 and CR4 (type 1N2970B)	Shorted	Room (manufac- turing)	Workmanship	An investigation into the failure of the Command Switch Assembly to func- tion properly disclosed two shorted diodes. The diodes had been shorted by a screw that cut into the harness, resulting in a short to the frame. The screw has been shortened to prevent the recurrence of this malfunc- tion.
4088 10/30/63	Diode CR3 (type 1N2970B)	Shorted	Room (post- vibration)	Workmanship (vendor)	The diode was found to be shorted following the vibration tests. Through- out the tests, the voltage output was monitored at the SCR gate. At the end of the test, the voltage was normal. Upon examination of the de- fective diode, it was noted that a black material was covering the anode lead.
		1	C	ommand Control	Unit, S/N 001
5822 3/24/64	Capacitor C1	Voltage Polarity, Reversed	Ambient	Design	Investigation into the inability to turn-off Cruise Mode revealed that capa citor C1 was installed incorrectly. The schematic drawing showed the capacitor installed with the wrong polarity resulting in the application of reverse voltage and destruction of the capacitor. ECN's have effected manufacturing changes and Revision H to Drawing No. 1755337.
		•	c	ommand Control	Unit, S/N 002
3927 4/2/64	-	Resistance measure- ments not within specified limits	Ambient	Accident	The operator used a Senior Volt Ohmyst VTVM instead of the specified Simpson Model 270 VTVM to make the resistance measurements. Use o the specified meter provided satisfactory results.
	_ .	- J	c	ommand Control	Unit, S/N 004
3835 4/28/64	-	Change in charging current	Ambient	Accident	Investigation of the inability of the Command Control Unit to operate properly revealed that the test method was in error. The test method has been corrected.

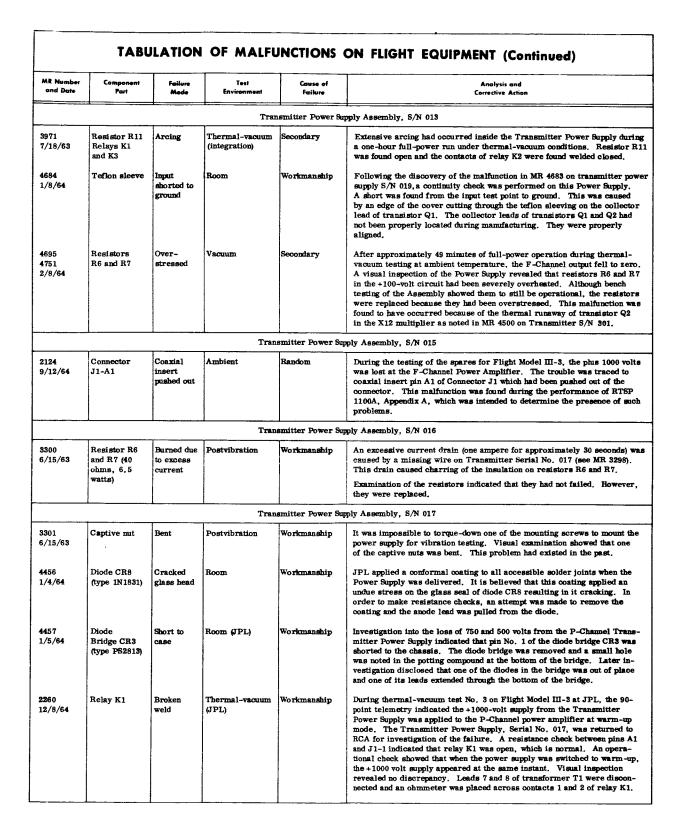
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		<u></u>	Electron	nic Clock Assemb	oly, S/N 002 (Continued)
3863 8/8/63			Room (engineering)	Workmanship (vendor)	Following vibration the 10-second interval was not within specification limits. A test was made at plus 40° C and the 10-second interval was again not within specification limits.
					These failures occured on the Clocks, two on the QTM, and one on a flight unit. All failures were noted during the postvibration check. The units did not meet the time specification, and were returned to the vendor for failure analysis and repair. These units are completely encapsulated. It is be- lieved that the core of the magnetic oscillator was changing its position with respect to the windings. AN RC oscillator (solid-state) was used to replace the magnetic oscillator.
3511 8/19/63	Oscillator Counter (Serial No.	Out of specification	Postvibration (+65° C)	Workmanship (vendor)	During postvibration, a check at plus 65° C revealed that the 900-second interval was not within specification limits because of drift in the 100-cps oscillator following a qualification-level vibration test.
	(Serial No. S758)				These failures occurred on the Clocks, two on the QTM, and one on a flight unit. All failures were noted during the postvibration check. The units did not meet the time specification, and were returned to the vendor for failure analysis and repair. These units are completely encapsulated. It is believed that the core of the magnetic oscillator was changing its position with respect to the windings. An RC oscillator (solid-state) was used to replace the magnetic oscillator.
		L	J	Electronic Clock	Assembly, S/N 003
3862 8/8/63	Oscillator Counter (Serial No.	Out of specification	Postvibration (engineering)	Workmanship (vendor)	During postvibration, checks of the 900-second and 10-second intervals revealed them not to be within specification limits because of drifting in the oscillator counter.
	S745)				These failures occurred on the Clocks, two on the QTM, and one on a flight unit. All failures were noted during the postvibration check. The units did not meet the time specification, and were returned to the vendor for failure analysis and repair. These units are completely encapsulated. It is believed that the core of the magnetic oscillator was changing its position with respect to the windings. An RC oscillator is being used to replace the magnetic oscillator.
_		· · · ·	E	Electronic Clock	Assembly, S/N 005
3877 3/24/64		Timing not within specified limits	Ambient	Accident	Investigation of why the timing of the Electronic Clock was not as specified revealed that although the counter used to count the pulses had been last calibrated within an acceptable period, it was now out of calibration. A properly calibrated counter was utilized and the timing of the Electronic Clock was found to be within specified limits.
4700 4/15/64		No telemetry	Ambient	Nonconfirmed	Investigation of the inability to receive a telemetry output from the Elec- tronic Clock after sending a Clock Start command resulted in the removal of the Clock. The operation of the Clock, however, was found to be satis- factory and further investigation revealed that the malfunction was caused by a wiring error in the DCU. Refer to MR 5931.
		_1		Electronic Clock	Assembly, S/N 007
2075 11/29/64		Failed to operate	Thermal-vacuum	Accident	The TV Subsystem was not turned on by the 63-1/2-hour clock pulse during the simulated-mission thermal-vacuum testing of Flight Model III-4. In- vestigation revealed that the cruise-mode switch had not been activated by test personnel as required by the test procedure to enable the SCR gates. The SCR gates were enabled by depressing the "Cruise-Mode On" indicato on the test console. This permitted activation of the F-Channel at the 63- 3/4-hour clock pulse. The 63-1/2-hour clock pulse would be verified during thermal-vacuum testing at JPL.
	1	I	. <u>L</u>	Electronic Clock	Assembly, S/N 008
4681 1/6/64		Loose connector	Room	Workmanship	During the initial electrical checkout of the Subsystem, the connector on the clock timer could not be fastened. The nut which secures the connectors a gether was not mounted tightly to the connector housing. This prevented the screw on the opposite plug from tightening when the units were joined. The locking nut was properly torqued into a locking position.

The second

•

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Electr	onic Clock Assem	t bly, S/N 008 (Continued)
2258 12/ 4/64		Clock turn- on late	Thermal-vacuum (JPL)	Workmanship	Turn-on of F-Channel by a Clock output occurred 5 minutes 53 seconds lat during high-temperature thermal-vacuum testing of Flight Model III-3 at JPL. This was not within the specified limits of ±5 minutes for turn on. The Clock, Serial No, 008, was returned to RCA where a series of tests o the regulated voltages and the 900-second count isolated the problem to the Incremag unit. With regulated input voltages of 31 and 41 volts, the 900- second count was recorded at 948, 99 and 939.526 seconds, respectively. The Incremag was returned to the vendor, where capacitor C3, a type PN1100 mylar unit, between the oscillator and pulse-forming network, was found to be bad. The capacitor was damaged so that the failure mechanism could not be firmly established. Measurement of the leakage current indicated that the value was less than 1 microampere which is within specification. It had first been thought that the leakage current had increased. Measurement of dissipation factor and capacitance revealed that these parameters varied as a function of the damaged area on the capacitor showed evidence of potting material which appeared to adhere to the metal portion of the com- ponent. A gouge was found in the capacitor. The vendor indicated that no special tools are utilized during assembly of the SCR dumping circuit and all assembly is by hand. The gouge has been attributed to improper han- dling of a soldering iron. The vendor concluded that the capacitor was damaged before or during as- sembly of the Incremag unit and that subsequent environmental testing had caused the unit to receive varying degrees of mechanical stress, which, ir turn, caused the capacitance or dissipation factor to vary. The degree of parameter variation is thought to be directly related to the number of en- vironmental stresses encountered by the unit. The failed capacitor C3 was replaced and the Incremag unit performed normally. Clock, Serial No. 008, has been assigned to the spare category. Clock, Serial No. 007, has been installed on the Ranger VIII S
	L		1	Electronic Clock	k Assembly, PTM
2165 3816 5/8/64		F-Channel did not turn on	Thermal-vacuum (JPL)	Nonconfirmed	During MVT No. 2, F-Channel did not turn on in warm-up when the Clock was to turn on. Investigation revealed that JPL had not provided an enable of the Subsystem because the "Hydraulic Timer Switch" and "Solar Panel Deployed Switch" were open. The "Solar Panel Deployed Switch" was closed and 30 minutes later, when a second clock turn-on command was sent, F-Channel turned on. Changes were suggested to JPL procedures to ensure that this problem did not recur.

MR Number and Date	Subassembly Serial Number	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Cab	le and Harness Asso	embly Failures	
3972 7/27/63	Cable 30W12, S/N 001(Block III-1)		Broken wire	Room (integration)	Workmanship	Excessive handling of this Cable caused a wire to break, making Camera ${\rm F}_{\rm A}$ inoperable.
3436, 3435, 3437 9/17/63	Cable S/N 001 Cable S/N 004 Cable S/N 004	30W29 30W31 30W34	Damaged by battery shorting	Room (JPL)	Secondary	The Cable was resoldered and potted. Failures were the result of MR 3438 and MR 3434. These cables were damaged when the battery monitor- ing cable shorted.
1687 8/8/63	Harness As- sembly 30W27, S/N 004 (Block III-1)	R-F Con- nector (A24P3)	Binding Mechan- ically	Room (inte- gration)	Wearout	This type of mechanical failure would have no effect on normal spacecraft operation because this removal would not be necessary except during certain electrical tests.
						These connectors are not designed to be repeatedly con- nected and then disconnected. Thus, after several such operations, they tend to bind and become difficult to in- stall or remove.
3975 8/10/63	Thermistor Cables, 30J6, 3014 (Block III-1)	Leads	Short	Room (integra- tion) (pre- thermal-vacuum)	Workmanship	Channel F would not turn on by use of either Simula- tion or CC&S warm-up commands. By the use of the RTC-7 command, the turn on was finally achieved. However, neither the cruise mode nor the 225-ke telemetry circuits were operating.
						Upon removal of the spacecraft shrouds, two cables were found to be pinched causing the two low-current voltage regulators to be shorted to ground. This shorting had disabled the telemetry power supply re- sulting in channel 8 and both 225-ke VCO's being in- operative. The cables were replaced and rerouted so that they no longer interfered with the shrouds.
4263 11/26/63	Cable 30W31, Serial No. 005 (Flight Model III-1)		Orienta- tion of connector and cable	Ambient (JPL)	Design	Attempts to connect the battery monitor cable, 30W21, Serial No. 005, were unsuccessful because the con- nector was attached to the reversed direction. An ECN has been written to show the orientation of the connector with respect to the cable.
4029 4030 1/6/64	Video Cable A 8 -P3, Serial No. A 2 -A3, Video Cable A 3 -P4, Serial No. A2 (Flight Model III-4)		Epoxy in seating ring plug off-center	Room	Workmanship	During initial electrical test on the Subsystem, these cables were replaced because of poor workmanship.
2193 4/15/64	Harness Assem- blies, 30W30 and 30W31 PTM		Harness interfer- ence	Ambient (JPL)	Workmanship	When an attempt was made to make the Subsystem to the JPL Bus, it was found that harnesses 30W30 and 30W31 and the midcourse propulsion system fuel tank interfere with one another. The harness location was changed by JPL to eliminate the interference.
3779 8/13/64	Harness 30W29, Serial No. 001, Flight Model III-3		Cable arcing	Ambient	Accident	During the initial power application and check-out test o Flight Model III-3, application of power to the High- Current Voltage Regulators was required by step A-3-1- of RTSP-1100A, Appendix A. Since the battery cables a not brought through the power control relay at this time an adapter cable could not be used. Jumper plugs were obtained and when installed sparks occurred that caused the wire between pins B and A of the jumper to burn. Also, pin G of jack 30J14 was scorched.



•

-

MR Number and Date	Subassembly Serial Number	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Cable ar	ud Harness Assemi	bly Failures (Cor	tinued)
3779 8/13/64 (Continued)						Investigation revealed that the jumper plug employed was of an older variety that had been used on an earlier TV Subsystem which differed from Flight Model III-3. This plug had pins F and G jumpered together and when the plug was inserted into jack 30J14, a direct short was placed across the F-Battery. The 30W29 cable, Serial No. 001, was removed along with the two Current Transformer Units and the Current Sensing Unit. These were replaced with other units.
2274 2/8/65	Cable Harness Connector (Flight Model III-4)		Telemetry reading out of specifica- tion	Ambient (JPL)	Random	During a special test of the TV Subsystem, the output of the P-Channel unregulated bus telemetry point (data point 90-46) dropped from the normal 3.8 volts to approximately zero volt. Investigation disclosed that the failure was caused by a considerable increase in the pin resistance in the cable harness connector to the DCU. Since the current carried by the pin in question is only a few microamperes, the connection can be classified as a dry circuit. Operating under this condi- tion for an extended period of time, it is not unusual for the resistance of the connection to increase consider ably. When the connector was wiped by mating and demating, the condition was cleared. Since this circuit is a telemetry reading and is semi-redundant (un- regulated bus voltage can be detected by at least two other telemetry points), no further action other than cleaning is recommended at this time. The connectors were inspected, cleaned, and remated. A pin retention test was performed and all pins were satisfactory.
1584 3/2/65	Cable Harness 30W318, Serial No. 001 (Spare No. 1)		P2 Camera malfunction	Ambient (ETR)	Accident	The plotting boot, at right-angle connector A1A2P3 of the cable, separated, and a wire or solder joint opened causing a P ₂ Camera malfunction. The connector is subjected to bending stresses after installation on the camera. The connector was laced into place to support the cable. Final system testing has been completed and there were no plans for the operation of the spare. The cable would be replaced prior to further operation of the spare spacecraft.

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	<u> </u>		Trans	mitter Power Suj	pply Assembly, S/N005
2894 4/11/63	Relay K2, -750 volt	No -750 volts	Thermal-vacuum	Nonconfirmed	Relay would not operate in thermal-vacuum. Passed bench test. The High Voltage Relay was tested and found to be good.
3295 6/4/63	2N2124 Q1J Q2 IN645	Overstress	Room	Accident	The input voltage was accidentally applied with the wrong polarity by test personnel. This occurred while the power supply was being used for a special test designed to determine the need for silicon grease.
	CR11 Capacitor C6, C7				Inspection and test of the power supply showed that Q1 and Q2 were shorted CR11 had opened, and C6 and C7 may have been overstressed.
		L	Trans	mitter Power Su	pply Assembly, S/N007
2076 2077 6/10/64	Diode CR11 (type 1N645)	Short	Thermal-vacuum	Random	The Transmitter Power Supply was returned to AED for testing and was operated at high temperatures without failure. When exposed to thermal- vacuum testing, the diode shorted, causing the circuit breaker to open (MR 2076). This diode had no previous record of relevant failures. Sev- eral failures of the diode had occurred when 28 volts were applied in the forward direction because of wiring errors or reversing of power leads. The replacement diode shorted (MR 2077) because of reverse wiring.
2104 3881 6/12/64	Diode Bridges CR1 and CR2 (type PS2813 and PS2812)	Loss of +1000 volts and -750 volts	Thermal-vacuum	Accident	During an investigation of power fluctuations, this Transmitter Power Supply was operated at a temperature of 55° C and with an input voltage of 23 volts. The input voltage was increased to 35 volts, and after 14 minutes of operation, the -750 volt and +1000 volt diode bridges failed. Investigation showed that one leg of each bridge failed catastrophically; -750 volt bridge (zero ohm short) and +1000 volt bridge (1200 ohm short). The failures were attributed to a special test under abnormal, overstressed conditions, specifically intended to isolate a previous failure.
		.1	Tran	smitter Power Su	pply Assembly, S/N009
2879 2/6/63	Resistor R11 200 Q, 10 w	Open	Ambient (bench)	Secondary	This failure mode was due to a short in the IPA. IPA (S/N 023) (MR 2841) had an intermittent power tube short which overstressed R11.
			Tran	smitter Power Su	pply Assembly, S/N010
4032 8/28/63	Diode Bridge CR3 (type PS2813)	High leakage	Room (JPL & engineering)	Nonconfirmed	This power supply was on the LTM. While the failure occurred on 8/20/63 it wasn't reported until engineering worked on the power supply on 9/6/63. No output from the -750 volt power supply was thought to be due to a defec tive relay, K2 (MR 4034). The diode bridge was checked and showed a low reverse impedance. When the bridge was checked by Reliability, the diodes were found to be
					good. As a result of this check, the engineering group also reviewed the component and found it to be good.
					The problem does not appear to be in the power supply. It may be in the test setup or the test equipment.
			Tran	smitter Power S	upply Assembly, S/N011
4033 8/26/63	Transistors Q1 and Q2 (type 2N2124)		Room (engineering test)	Test Error (Accident)	During testing, personnel accidentally put a VTVM, with the ground con- nected, to +1000 VDC output and grounded it.
			Trar	smitter Power S	upply Assembly, S/N012
2895 4/23/63	Diode 1N645 CR11	Diode open	Bench test	Accident	Test harness had wrong polarity for relay and put wrong polarity on diode harness was changed.
3307 7/10/63	Resistor R11	Open, and element shorted to core	Room (manufacturing)	Secondary	When the IPA tube shorted, resistor R11 opened and the resistor element shorted to the metallic case.

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	÷		Transmitter	Power Supply A	ssembly, S/N 017 (Continued)
2260 12/8/64 (Continued)					When the power supply was switched to warm-up, the contacts remained open. When full-power was applied, the contacts closed; and in reduced- power mode, the contacts opened. This is normal operation.
(0011111000)					Leads 7 and 8 of Transformer T1 were reconnected, and the failure re- curred. The contacts of relay K1 were disconnected again and an ohmmeter placed across contacts 1 and 2. This time the failure occurred. Relay K1 was found to be intermittent. A resistance check proved acceptable. How ever, when the relay was energized, the contacts remained opened. Upon slight shaking of the coil, a rattling noise was heard, and when the coil was de-energized, the contacts closed and remained closed. The glass at the terminal weld was cut and the contact was viewed with a microscope. It was concluded that the weld between the terminal and the moving arm of the contact was improperly made and became loose in the glass capsule.
					This caused an intermittent failure. This is the second problem of this nature encountered with relay K1. It is attributed to a poor weld joint. The relay contacts were clean and not pitted, and exhibited no evidence of arcing. Evaluation of the indvertent application of the 1000 volts to the power amplifier concluded that the tube was not damaged and is satisfac- tory for flight use. The relay K1 was replaced and the Transmitter Power Supply tested in accordance with RTRB No. 128A. The failure is failure is fueld an isolated instance; however, relays in stock and new procursments would be preconditioned for a minimum of 2000 cycles and a maximum of 3000 cycles of mechanical operation.
	<u> </u>		Tran	smitter Power Su	pply Assembly, S/N 019
4683 1/8/64		Shorted input	Room	Workmanship	Investigation into the shorted input disclosed a nick or flaw in the hardcoat directly under the collector of the chopper transistor resulting in its being shorted to ground. It is believed that the nick was mechanically caused. An insulating mica washer was installed between the collector and the chassis. Also, a teflon sleeve was placed over the stud on the transistor.
3785 8/24/64	Diode (type IN1126A) CR4, 5, 6 and 7	Excessive noise	Ambient	Workmanship (vendor)	During an electrical test of Flight Model III-3, noise spikes were noted on P-Channel video output. The problem was traced to the Transmitter Power Supply, where the diodes of the 100-volt diode bridge were ringing exces- sively. An investigation revealed that the diodes employed in this particu- lar power supply were units manufactured by General Instrument, Inc. rather than diodes manufactured by North American Electronics, which were originally used. Comparison testing of the diodes from the two man- ufacturers indicated significant differences in characteristics. The diodes manufactured by General Instrument, Inc. resulted in noise that was 4 to 5 times higher than experienced with the North American Electronics units. A specification control drawing was issued and specified the use of 1N1126A diodes manufactured by North American Electronics in the 100-volt diode bridge of the Transmitter Power Supply.
3888	Transformer, Serial No. 701237	High- current surge	Thermal-vacuum	Workmanship	In the cold cycle of thermal-vacuum test on Transmitter Assembly, Serial No. 211, a high-current surge was observed during warm-up mode. Sub- sequent tests of the transmitter indicated abnormally high line current, varying erratically from 5 to 10 amperes. Normal current is between 4.5 and 5 amperes. Resistance measurements traced the source of the prob- lem to the transformer of Transmitter Power Supply. Serial No. 019. Low-resistance paths were measured from terminals 7, 8, 11, and 12 to case (900 ohms) and between terminals 11 and 12 to 7 and 8 (1400 ohms). A leakage test was performed, which indicated a small leak existed at the potting seal seam in the vicinity of terminal 14; this was indicative of voids in the potting material in the area of that terminal. When the transformer was opened, a void and carbonized area was found at terminals 7 and 11. The leak was not in this area, but this defect could have accelerated the conditions that caused electrical breakdown.
					During system tests of the Ranger IX Spacecraft at JPL, the chopper pulse from the Transmitter Power Supplies were viewed on a scope for any presence of corona or arc-over. No evidence of corona or arc-over was found.

の記念

.

ţ

•

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Tran	smitter Power Su	pply Assembly, S/N 020
4461 12/6/63	Diode Bridge CR1 (type PS2813)	Shorted	Thermal-vacuum (0°C) (eng.)	Secondary	During qualification testing in the thermal-vacuum chamber, the RF power output disappeared. Investigation revealed that pins 2 and 3 of the 1000- void diode bridge were shorted. This failure was caused by the breakdown of the power transformer described in MR 4462,
454 5 12/11/63	Diode Bridge CR1 (type PS2813)	Shorted	Thermal-vacuum (eng.)	Secondary	The diode bridge again failed because of the defective power transformer referred to in MR 4462.
4462 12/11/63	Transformer T1	Loss of RF power	Thermal-vacuum (0°C)	Workmanship	Investigation following the loss of power after 8 minutes of full power re- vealed that transformer T1 had failed. A break in the seal of the trans- former was found and air bubbles were noted when the transformer was placed in an oil bath. An epoxy void in the transformer had become filled with air and failed when exposed to a thermal-vacuum environment.
3967 1/4/64	Transformer T1	Shorted turns in	Vacuum (JPL)	Workmanship	The T1 transformer of the P-Channel Transmitter Power Supply was found to have shorted turns in windings 7 and 8.
		high- voltage winding			An analysis on the transformer revealed several discrepancies: (1) air voids in the potting material, (2) insulation around the high-voltage windin not thoroughly impregnated, and (3) definite signs of corona breakdown.
					All five transformers received in the same lot as this one were removed from equipment. RCA Quality Control personnel then monitored the con- struction of replacement transformers at the vendor.
4492 1/21/64	Diode CR11 (type 1N645)	Shorted	Room	Accident	Following repairs to the power supply because of the malfunction mention in MR 3967, the assembly was being prepared for thermal-vacuum testing During an electrical checkout, the line current was observed to be exces- sive when an attempt was made to turn the power supply on. Investigation disclosed the polarity of the 27.5-volt supply had been reversed.
		1		Transmitter As	isembly, S/N 003
2902 3/11/63	Transistor RCA 2N1493 (Q1)	Intermittent	Room (integration)	Nonassignable	Output power was intermittent, subject to tapping on X12 Multiplier case. Q1 was replaced and X12 Multiplier functioned properly. DC beta checked lower than nominal but was not considered a likely cause of intermittency. Replacement of Q1 and R1, together with cable reconnections, may have cleared a poor solder joint or connection.
2889 3/12/63	Resistor 220 Q , 1/4 W, (R1) Carbon Composition	Change in resistance	Room (integration)	Accident	Remistor was accidentally shorted to 70-volt line during trouble-shooting.
2890 3/12/63	Trimmer Capacitor, JFD SC-133	Jammed piston	Room (integration)	Wearout	Tuning piston jammed. Failure was attributed to wear of adjusting screw due to an excessive number of trimming adjustments performed on the PTM. The MIL specification had a 75-cycle rotational limit.
	(C 32)				Adjustments were then limited to a maximum of 20.
2901 3/12/63	Transistor, S/N 109 (Q4)	Shorted	Room (bench)	Accident	Transistor was accidently overstressed when input drive was not reduced before tuning the output.
2852 3/13/63	Right-Angle Connector (AVL945-011) in RF Cable	Intermittent	Room (integration)	Wearout	Reduced output power was at first thought to be due to a transmitter mal- function. However, it was discovered that the RF cable from the 4-point hybrid to the antenna had a loose connection which increased the VSWR. The cable had been used for numerous tests at AED and JPL requiring nu connections and removals. Metallic filings were found indicating thread wear.
2853 3/14/63	Cable (30W18)	Degradation	Room (integration)	Wearout	No power output. The transmitter and cable impedence could not be matched. The connector was not firmly fastened to the cable and the shielding was loose and frayed. Failure is believed to be due to excessiv connections and removals, together with maintenance induced mechanical stress.

	T ·· · ·	, ,			
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	1	11	 Tran	smitter Assembly	7, S/N 003 (Continued)
4044 3/16/63	IPA Cavity Serial, S/N 008	No power output	Room	Design	The Serial No. 008 cavity was replaced with Serial No. 010 following no power output from the transmitter. The cavity, less tube, was returned to the vendor for analysis. A redesign of the Ranger transmitter for Flight Models III-3, and III-4 and spare units replaced the IPA cavity with a Resde IPA. This redesign made the failed IPA cavity obsolete.
2855 3/22/63	IPA Tube	Low power output	Room (integration)	Accident	Power output was low. The IPA tube was replaced and the unit retuned. The vendor attributed the failure to external overstress of the screen grid. To reduce overloading of the tube, checkout at reduced power was then limited. Also tube handling during test and troubleshooting was carefully controlled to avoid grounding of the -750 volts DC and subsequent overstres of the screen. The second IPA was eliminated by the redesign. The IPA tube performance was to be closely monitored.
2845 4/11/63	Bourns Trim Pot (200R) 207L-51-201 R9	Arcing to metal case, -750 volts shorted to ground	Thermal-vacuum	Design	The resistor was mounted incorrectly. Flight equipment will use a Bourns 3020L which does not have a metal case.
2847 4/11/63	Choke, 0.22 ph.	Choke over- stressed and discolored		Secondary (see MRA 2845)	IPA tube screen drew excessive current. Choke was discolored. Choke was replaced and passed electrical test.
2846 4/11/63	Tube 7870	Tube over- stressed	Thermal-vacuum	Secondary (see MRA 2845)	R9 shorted -750 volts to ground. This placed ≈ 0 volt on anode and cathode while +250 volts with respect to cathode was present on screen grid. Screen drew excessive amount of current.
2843 4/11/63	Clark Transistor S/N. 109 (Q4)	Shorted C to E	Thermal-vacuum	Workmanship	Transistor not properly fastened to its heat sink. No silicone grease was used around transistor.
3293 6/4/63	Diode 1N 3028	Incorrect frequency	Room	Design	It was impossible to align the modulator properly (F _{Emerg.} = F _N); there was a difference of 1.5 volts. Examination showed that the diode (CR8) wa operating at 18 volts (within specification, the nominal value is 22 volts).
					An Engineering Change Notice (ECN) was issued which replaced the CR8 (1N3028) with a type 1N3029 which has a nominal value of 24 volts.
3292 6/4/63	50 Dummy Load on J2	Erratic change of bias voltage	Room	Design	The bias voltage at the modulator, J1, was erratic and the DC deviation was twice its normal value. The Dummy Load was visually examined and the connector was found to be damaged. The Dummy Load was redesigned as follows: the coax-connector was capped; the value of R2 was changed to 366 ohms; and the input end was grounded.
4041 9/10/63	Capacitor Mounting Bracket	Broken	Vibration (engineering test)	Wearout	It was not possible to retune the X12 multiplier to regain the IPA power output to ground. This failure was caused by a broken bracket for capacito C32. This was the first history of this type of a failure. No corrective action was deemed necessary at this time since this subassembly had been exposed to three qualification-level vibration tests.
4468 5885 3/20/64		Low voltage at J1	+40° C bench test	Accident	Investigation of low voltage at connector J1 of the X12 multiplier revealed that a terminal post was shorted. During rework, excessive heat had been placed on the terminal and had caused solder to flow down the center of the terminal. The terminal was replaced.
2182 5/8/64		F-Channel RF power fluctuations	Thermal-vacuum	Secondary	During mission verification test No. 2, F-Channel full power was lost at approximately C+55 minutes. The F-Channel external power supply break opened. No reason for the breaker tripping could be found. A 5-second power fluctuation was noted during which time the video was intermittently lost. The telemetered P-Channel regulated bus dropped below 21 volts an three seconds later the P-Channel current was 3 amperes high. The tran- sients in the P-Channel High-Current Voltage Regulator. Analysis of this High-Current Voltage Regulator, S/N 003, indicated arcing had oc- curred in the mounting arrangement of transistor Q6 (see MR 2199).

,

.

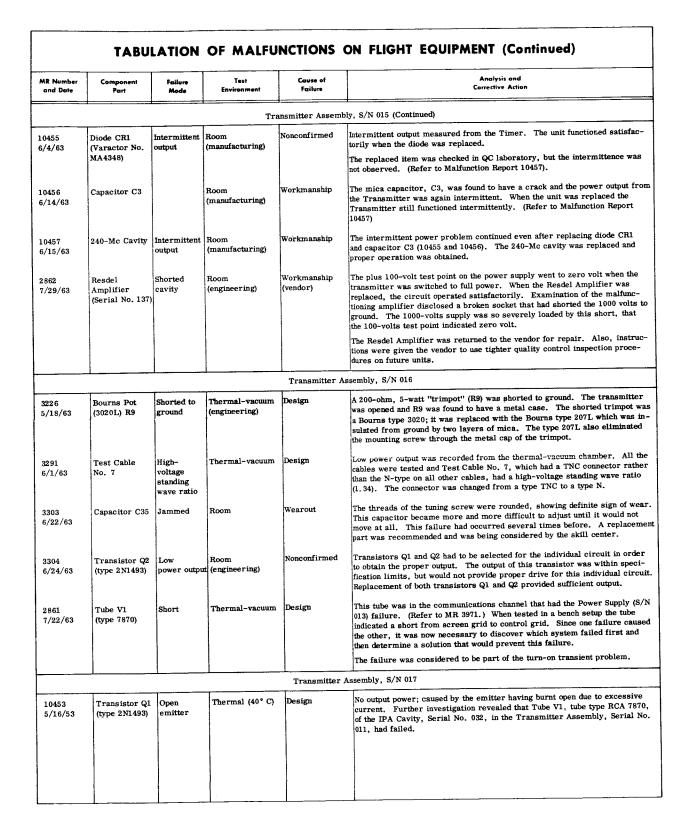
-

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	<u>+</u>	- · · · · · · · · · · · · · · · · · · ·		Transmitter A	
3228 5/22/63	Varactor PSI-122	Loss of RF power	Postvibration	Workmanship	The transmitter operated intermittently during postvibration electrical tests. The transmitter was opened and visual inspection of the X12 Multiplier revealed that the varactor (CR6) was broken. This break was apparently caused by improper wiring of the varactor to the board. The varactor wa replaced.
3229 5/23/63	Connector J2	Loose connector	Room (bench)	Accident	Tapping on the X4 Multiplier caused the output power to fluctuate. This occurred after the repair of the X12 Multiplier (see MR 3228). The complete X4 Multiplier was replaced with a spare unit and the replaced unit was returned to RCA for analysis. The spare X4 Multiplier operated satisfactorily when the output jack from the X4 Multiplier to the IPA stage was tightened. Apparently the trouble was caused by a loose connector at the output stage of the X4. Investigation began of methods to limit the number of required removals.
4040 10/7/63	Varactor Diode CR2 (type MA4843D)	Change in character- istics	Room (JPL)	Random	During operation of the Subsystem at JPL, the RF output could not be measured, although all inputs were normal. Investigation disclosed that the varactor diode CR2 was defective. Because of their internal construc- tion, these diodes tend to change characteristics after being subjected to numerous thermal cycles. The vendor produced a new type of varactor diode that would not be subject to this fault.
4464 3/18/64	Transistor Q4 (type B/N 109)	Power output below normal	Ambient	Nonconfirmed	The output of the X12 multiplier during testing following rework was con- sidered to be below normal although within specified limits. Retuning did not increase the output and transistor Q4 was replaced with a type S/N 11: The replaced transistor was later found to be fully operational. The actual cause of the low output is described in MR 4465.
4466 4467 3/18/64	Capacitors C25 and C27	Broken	Ambient	Workmanship	During the replacement of resistor R21 (refer to MR 4465) these compone were broken. The components were replaced. Personnel were instructed to use more care during the replacement of components.
4465 3/18/64	Resistor R21	Changed value	Ambient	Workmanship	The inability to correct the below-normal output by the replacement of transistor Q4 resulted in the discovery that the resistance from resistor R21 to ground was 30 rather than 10 ohms. During rework, six compo- nents including resistor R21 had been resoldered. Excessive heat had been placed on this resistor resulting in discoloration and a change of value. Replacement of the resistor resulted in higher output.
	.1	-1		Transmitter A	ssembly, S/N 005
2764 10/13/62	Crystal Y1	a) Cracked crystal - center frequency shift b) Loose wires	Qualification- vibration	Wearout (vibrational fatigue)	Vendor Analysis: Faihres in the FM Modulator of the QTM Transmitter following the quali- fication vibration test were investigated. Observed failures were: (1) a possible cracked crystal; (2) a disconnection of the negative lead of C6; ar (3) a loosening of the junction of R18 and R19. The exact cause of these failures could not be determined. This particuls modulator had undergone approximately five (5) vibration tests. It is be-
					lieved that these failures were pomoly directly connected to the excessive number of vibration tests. The crystal and capacitor were replaced and the junction was resoldered. The unit then operated satisfactorily.
2892 4/3/63	Varactor Diode CR1, CR2, MA 4348D	X4 would not start	Thermal-vacuum	Nonassignable	X4 would not start in thermal-vacuum nor on the bench. Varactor diodes were replaced, and X4 operated satisfactorily. The varactor diodes (CR1, CR2) were sent for analysis. One of the diode was found to be "open" and the other was all right. The cause for the "open" could not be determined.
2844 4/11/63	20R Resistor 6.5 W (R?) Wirewound	Over- stressed and blistered	Thermal-vacuum	Secondary	Resistor was an incorrect type. All other units were checked for correct type.

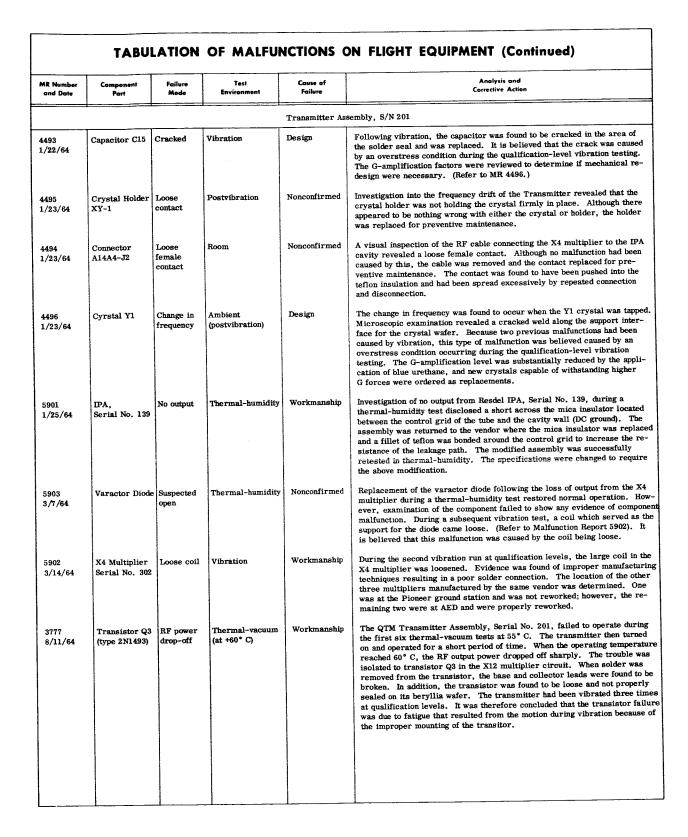
TABULATION OF MALEUNCTIONS ON SUCHT FOUR

			UF MALFU		ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			· Tra	nsmitter Assemb	ly, S/N 005 (Continued)
2869 9/6/63	Vacuum tube (type 7870) S/N MIL-B-209	O pen filaments	Room	Nonassignable	After less than two hours operation at full power the IPA output went from 9.4 watts to zero. The tube was returned to the vendor for analysis. He determined that the filaments were intermittently opened. In addition to a a static electrical check the tube was opened for a microscopic examination of the interior. Here he noted signs of overheating, arcing and melting of the tube element. A spectrographic analysis was performed on the materi- on the external heater contact.
					This material turned out to be a soft solder such as was used in the cavity filament contact. This tube was an original qualification test unit and was exposed to over-
					voltage in the old power supply configuration.
4043 9/15/63	Relay K1	Open coil	Vibration (engineering qualification- level test)	Random	During the electrical testing of the Modulator following vibration, it was noted that there was no difference in normal frequency and the emergency frequency at a bias of -0.875 volt. When the bias was raised to 1.875 volt (the upper limit) and switched to "emergency", the unit continued to opera at "normal" frequency. Upon investigation it was determined that relay K would not operate due to an open coil.
					No corrective action was deemed necessary since this unit has been sub- jected to four previous qualification-level vibration tests. The affected relay was replaced with a spare and the unit was tested again.
4045 9/25/63	Transistor Q2 (type 2N706)	Low power output	Ambient	Nonconfirmed	Replacement of transistor Q2 resulted in normal power output. The beta of the transistor was checked and found to be 40. (Specification limits we 20 to 60). However, the RF specifications of the transistor could be checked. Investigation did reveal some signs of degradation.
		L		Transmitter A	ssembly, S/N 008
2876	Capacitor C6 6.8 µf, 35 volts	Short	Ambient (bench)	Accident (maintenance induced man- ipulation)	The capacitor was shorted due to excessive soldering heat during modifi- cation of "random rate response" on the PTM No protective heat sink we used. PTM was under engineering redesign, and changes were not made by manufacturing. Changes on all flight models were made by trained wiremen under Q. C. surveillance.
2887 2/27/63	Tube RCA 7870	Intermittent short	Ambient (bench)	Awaiting Analysis	There was no output from IPA when in full-power mode. Shorting occurr in IPA. The tube was replaced and returned to the vendor for analysis. The RCA 7870 IPA tube failures were reviewed by the vendor. The vendo attributed the failures to external overstress of the screen grid. To re- duce overloading of the tube, checkout at reduced power was limited. All tube handling during test and troubleshooting was to be carefully controlle to avoid grounding of the -750 volts DC and subsequent overstress of the screen. The second IPA was eliminated by the redesign. The IPA tube performance was to be closely monitored.
1678 5/2/63		Power drop-off	Thermal-vacuum	Nonassignable	The transmitter displayed a power drop-off and loss of video which lasted for approximately 23 milliseconds.
1680 5/23/63					An examination of the carriers showed an amplitude drop in the P-Channe transmitter carrier. The LTM was returned to AED from JPL, and the communication system was to be examined under the thermal-vacuum environment.
					These malfunctions were all associated with momentary drop-outs of pow that occurred during the testing of the LTM at JPL. This problem was still under investigation by AED and was thought to be associated with the Four-Port Hybrid Assembly. These malfunctions usually could not be as sociated with a loss of video data. The effect of these malfunctions on ar actual mission could not be determined. For detail, refer to the Mission Verification Report for the LTM issued on November 15, 1963.
1677 5/9/63 2900 5/13/63	Tube RCA 7870	Low output	Thermal-vacuum	Nonconfirmed	Low power output from transmitter (008). IPA cathode current was in- creased in an attempt to increase output, but it was ineffective. Tubes were placed in a good system and output was still degraded. The IPA tub 7870 was removed from the LTV B-Channel Transmitter, and returned to the manufacturer for analysis. The tests indicated that the tube met specifications.

.


MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
				Transmitter As	J
2882 2/12/63	Connector A14 A2J7 (Selectro)	Intermittent	Ambient (integration)	Accident (maintenance induced manipulation)	The female connector on RF cable between the X4 and X12 multipliers was distorted. This caused drop-off in power. Mating of connectors was not made with proper alignment. Care was then taken during integration to properly mate connectors.
2886 2/24/63	Capacitor, Varactor JFD- SC 133 C24	Jammed adjusting mechanism	Ambient (bench)	Wearout	It was not possible to adjust capacitor. A similar malfunction was analyzed and attributed to wear of the screw adjustment. Trimming adjustments on flight units were limited to a maximum of 20 adjustments as compared to a limit of 75 cycles in the MIL Spec. Engineering was instructed against applying heavy torques which could force a mechanical stop.
1663 3/30/63	Transistor Q4 TA2084	Transistor shorted	Thermal-vacuum MVT #3 at JPL	Workmanship	Transistor shorted. Heat sink not properly mounted. TA2084 was to be replaced in all flight models with Clark S/N 115.
2911 5/31/63		Power drop-off	Thermal-vacuum	Nonassignable	After 49 minutes of operation, the combined power output of the two TV transmitters dropped 5 db for about 0.25 second.
					Subsequent investigation revealed that the temperature of the system had been dropped below the specified levels.
2612 6/8/63		Power drop-off	Thermal-vacuum	Nonassignable	A power drop-off of 3 db occurred approximately 36 seconds after full- power was turned on; the drop-off lasted for about 0, 25 second. The trans- mitters were to be investigated when the LTM was returned to AED from JPL.
					Malfunctions reported in MR's 1680, 1678, 2911, and 2612 were all asso- ciated with momentary drop-outs of power that occurred during the testing of the LTM at JPL. This problem was still under investigation by AED and was thought to be associated with the Four-Port Hybrid Assembly. These malfunctions usually could not be associated with a loss of video data. The effect of these malfunctions on an actual mission could not be determined. For detail, refer to the Mission Verification Report for the LTM issued on November 15, 1963.
				Transmitter A	ssembly, S/N 010
2798 1/14/63	Variable Capacitor C 15 0. 8 to 8.5 pf	Could not adjust	Bench	Wearout	Adjustment screw binding. The vendor attributed the jamming of the trim- mer capacitor to either excessive tuning excursions or the application of a heavy torque at a mechanical stop. The MIL Specification rotational limit was 75 cycles. Engineering required a maximum of 20 adjustments to tune the equipment. The engineers were advised to exercise caution whe applying turning torques to avoid forcing the "stop," and to minimize the number of trimming cycles to prevent fatigue of the adjustment mechanism
1673 4/19/63	Power Amplifier	Low power output	Thermal-vacuum MVT #6 at JPL	Nonassignable	Power amplifier was retuned. Previously 2nd IPA required retuning.
1674 4/26/63	Transmitters	RF power drop-off 7 db	Thermal-vacuum MVT #7 at JPL	Design	RF breakdown in the RF cables.
1675 4/29/63	Power Amplifier	Low power output	Post thermal- vacuum MVT #7 at JPL	Nonassignable	C7 was machined down. Reported arcing questioned. Care should be ex- ercised in tuning the communication equipment.
10458 6/15/63	Tube V1 (type 7870)	O pen filament	Manufacturing	Workmanship (vendor)	After approximately 4 hours of operation the transmitter power went to zero. A check of the IPA tube revealed that it had an open filament. The QC report verified this open filament.
					With only four hours this tube could fall into the infant mortality group.
3308 10459 7/10/63	Tube V1 (type 7870	Short, G1 to G2	Manufacturing	Workmanship (vendor)	The tube was only in the system for 1/2 hour when a short occurred betwee the screen and control grid of the IPA tube. The IPA problem was still under investigation at this time.
4038 9/1/63	IPA Cavity Serial No. 025	Power drop of 1 db	Thermal-vacuum	Nonassignable	The power output dropped 1 db for approximately 1 second. Later, during instrumented test, the power output dropped to zero and then recovered within 3 seconds. The cavity was disassembled and examined. No physic damage was found. The causes of the power drop and loss of power could not be determined.

	IABU	LATION	OF MALFU	NCTIONS (DN FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Tre	ansmitter Assemb	ly, S/N 010 (Continued)
- 4046 10/20/63	Tube (type 7870)	Drawing excessive current	Postvibration	Workmanship (vendor)	During postvibration testing, the power output dropped to zero, I_L rose to 10.6 amperes, and the test-harness fuse for minus 750 volts opened. The IPA tube was tested and found to have low transconductance and excessive current drain. Inspection under a microscope revealed extensive crazing and some chipping on the cathode.
5886 3/25/64		Oscillating	+40° C previbra- tion test	Accident	Oscillation of the Transmitter during a +40° C operation prior to vibratio was found to have been caused by improper tuning of the X4 and X12 mul- tipliers. The assembly was carefully retuned and normal operation was restored.
5861 3/26/64		Low power output	Postvibration	Accident	The output power was found to be less than the specified limit during a postvibration test. Investigation disclosed that the assembly had been improperly tuned during rework. Proper tuning provided an output within specified limits.
3825 4/1/64		RF output too high	Ambient (JPL)	Accident	Investigation of the level of the corrected RF output of the Subsystem bein too high resulted in changing the correction factor from 8.3×10^5 to 7.65×10^5 . Personnel were instructed to closely monitor the power-measurin equipment.
3949 5/2/64		RF output too high	Ambient (JPL)	Accident	Investigation of the level of the corrected RF output of the Subsystem bein too high resulted in changing the correction factor from 1.32×10^4 to 1.0×10^3 . Personnel were instructed to closely monitor the power-measurin equipment.
3818 5/8/64		RF power increase	Thermal-vacuum	Nonconfirmed	At T+1 minute, an increase in Transpitter output power from 54.2 to 59 watts occurred within 0.5 second. A similar increase was observed durin test at AED and was caused by the inability of the regulator in the Telem- etry Processor Assembly to reach and hold the regulated-current level during the initial stabilization period. At turn-on, the Intermediate Power Amplifier and Power Amplifier were detuned to a degree that the regulato could not reach its regulated state. This resulted in a low-power output. The output power generally started at a lower level and gradually increas to its optimum level. The sudden increase in output power, although un- usual, could be considered a normal function of the warm-up stabilization period of the cavities and the regulator.
				Transmitter A	Assembly, S/N 011
2883 2/15/63 2884 2/18/63	Crystal Y1	Incorrect frequency Varactor PS115-10 CR10	Ambient (bench)	Random Random	The crystal was replaced when it was not possible to bring the transmitter to desired frequency. However, this did not completely correct the fault When the new crystal failed to bring the transmitter exactly on frequency the diode was replaced. The unit was then operating on frequency. The suspected varactor in the FM Modulator was sent to RCA Central Engineering for analysis. Capacitance at 50 Mc and minus four volts DC bias was 7.93 pf. The nominal value was 10 pf $\pm 20\%$. The absolute capa
					tance value was marginal and under a worst-case combination of tolerance might have accounted for the difficulty in bringing the transmitters to the desired frequency. Replacement of the varactor corrected the problem. This was the first reported malfunction of this nature.
10454 6/3/63	Tube V1 (type 7870)	High plate current	Room	Design	The low-power output and the plate current became intermittently high.
				Transmitter A	ssembly, S/N 012
3227 5/9/63		Oscillation	Room (bench)	Design	The use of a spectrum analyzer showed that the transmitter was oscillat at approximately 6 Mo on the carrier, thus indicating that the X4 Multipl was not properly biased at "turn-on". The addition of a 2.2-megohm, 1/4-watt resistor in parallel with the X4 bypass diode corrected this sin tion and restored normal operation. The 2.2-megohm, 1/4-watt resistor was added to all Block III models.
2864 7/3/63	Tube (type 7870)	Erratic operation	Room (engineering)	Secondary	The proper power output could not be attained even though the biases wer twice their normal value. The IPA tube was then removed and tested. During the testing, the filament wire was broken. The wire would weld together when the cavity was jarred sharply. The tube was then broken


	TABU	ILATION	OF MALFU	INCTIONS	ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	•		Tr	ansmitter Assem	biv, S/N 012 (Continued)
2864 7/3/63 (Continued)					open. Inspection under a microscope disclosed that the filament wire had broken at a point between the colled helix and the ceramic mounting bar. It could be determined that the wire had broken and welded several times. In addition, there was some discoloration on both the plate and grid. This tube had been used in an unmodified power supply. All power supply
				}	were then modified to prevent the conditions which caused the erratic operati
	·		.	Transmitter A	ssembly, S/N 013
1666 3/30/63	Tube 7870	Low power	Thermal-vacuum MVT #3 at JPL	Nonassignable	Low power output. New tube restored the power. Cause believed to be aging and deterioration of tube. The 2nd IPA stage was then obsolete.
2155 5/31/64		Low F-Channel output power	Thermal-vacuum	Accident	During the first 5 minutes of thermal-vacuum mission test No. 2 at 53° F the F-Channel Transmitter output power was low and not within the speci- fied limits. The Battery voltage was also low but higher than the specific minimum voltage of 30.5 volts. The cause of the low output power was believed to be the low temperature. The Transmitter was retested at am bient conditions and the power profiles were normal. The Transmitter could be retuned for low-temperature conditions, but this would result in a small decrease in power at high temperature. The present power profil was such that after the Transmitter bad warmed up, retuning at low- temperature conditions was not warranted.
2870 8/20/6 3	Vacuum Tulme (type 7870) S/N 792	Power drop-off	Room (engineering test)	Nonassignable	The initial output power was satiafactory but after several minutes of op- eration it dropped off. When the tube was removed several small sphere of metal were found between filament rings. These spheres were remove and the tube installed in a cavity where it operated properly for some tim before having power difficulties.
					The vendor's static analysis indicated several points of failure and the visual inspection revealed the tube has been excessively overheated. The particles originally found between the heater and cathode are suspected of coming from the cavity. The responsible engineering group has been assigned the task of measuring and monitoring all of the applied voltage, current, and transients applied to these IPA tubes under actual operation.
4031 8/20/63	Vacuum Tube (type 7870) S/N MIL-B- 828	Power drop-off	Room (engineering test)	Nonassignable	The power output dropped off after 3 hours operation. When the tube and cavity were inspected, several small metallic particles were found in be- tween the heater regulator and the tube base. When cleaned out and rè- tested, the power again dropped off after approximately 3 hours. The tub was returned to the vendor for analysis. Nothing was found to be wrong with the tube in a static test nor in a Ranger cavity. When the tube was opened and visually inspected, the screen showed signs of having been overstressed. In addition, a heavy deposit of material was noted around the anode, and a slight layer of the same material on the cathode. The deposites were not carbon. The heater coating was still in good condition As requested by the vendor, extensive monitoring of the voltages, current and transients were to be performed by RCA engineering under actual op- erating condition. In addition, the engineering group would determine the internal cavity temperature under operating conditions.
3806 5/1/64		RF inter- ference	Ambient (JPL)	Nonconfirmed	The Subsystem without Thermal Shrouds was mated with the Bus for the match-mate test. The interference was noted when the high-gain antenna was in the launch position, but not when the antenna was deployed so that is radiated into free space. It is believed that the interference was caused b the antenna radiating back into the Subsystem. This interference was not considered to be a malfunction because the test was performed with the Subsystem in a nonflight configuration.
3948 5/2/64		Power fluctuations	Ambient (JPL)	Nonconfirmed	During the postshipment test of the Subsystem, 0.15-db fluctuations were noted in the RF power output. These fluctuations were very minor and con be accounted for by changes in light level on the cameras and by changes is tuning. Because the fluctuations were very minor, were not always prese and did not produce a malfunction, they could be classified as noncritical even though they did occur on other Subsystems. This classification could be further substantiated by the fact that there did not appear to be any effe on either camera or telemetry performance. Subsystem operation was to closely monitored to determine if any degradation occurred.

Station.

-	TABUL	ATION	OF MALFUI	NCTIONS O	N FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Carrective Action
	J <u></u> 1			Transmitter Ass	embly, S/N 014
1672 4/19/63	Transistor Q4 (TA 2084)	Low power, low beta Arc-over	Thermal-vacuum MVT #6 at JPL Bench, cold	Design	Power output low and intermittent. The component was returned to AED. Oscillation occurred in thermal-vacuum. Unit returned to subcontractor for repair and alignment. TA2084 was replaced with Clock S/N 115. Arc-over occurred about 50 to 60 seconds after a pan of liquid nitrogen
3297 6/13/63	Feedthrough Capacitor C5	Alt-Over	(-0° C)	(test procedure)	was placed on the baseplate to lower the transmitter temperature to -10° C. Examination showed that some frost and moisture had collected on com-
					ponents when the system was open to atmosphere. The capacitor was replaced.
3296 6/13/63	Transistor Q4 (type 2N115)	Low power	Room (bench)	Random	Initial testing of this transmitter showed low and unstable output power. Closer investigation showed low output power from the X12 and X4 Multipliers.
					Apparently the low power was due to the new Q4 transistor type S/N 115.
					Transistor Q4 of the X12 Multiplier in the Transmitter Assembly, Serial No. 014, was replaced. This part was returned to the RCA Central Engi- neering Laboratory for analysis. The part appeared to be marginal since it measured 2.9 volts as compared with the one-volt maximum specified by RCA for VCE (sat.).
3302 6/18/63	IPA Tube V1 (type 7870)	Open filaments	Room	Secondary	This tube failed after 8 minutes of full-power operation. It had previously been subjected to a severe overstress when capacitor C5 arced to ground, (Refer to MR 3297.) With the -750 volt line grounded, the screen voltage became +250 and it conducted an excessive amount of current. Due to the circuitry and tube configuration when the -750 volt line drew an excessive current, it could have an adverse affect upon the tube filament.
					The tube was cut open and extensive discoloration and signs of arcing on the screen were noted. In addition, the external base of the tube around the centering pin was discolored and showed signs of solder.
2865 8/22/63	Transistor Q4 (type 2N115)	Short, col- lector to emitter	Thermal-vacuum (0°C)	Workmanship	During the Thermal-vacuum test, at 0° C, the line current increased and no spectrum feed-through was evident. Investigation disclosed that tran- sistor Q4 in the X12 Multiplier had a resistance of 9 ohms between the col- lector and ground. Further investigation revealed that there was no sili- cone grease around the transistor.
					Assembly methods at that time did not call for the installation of transistor requiring silicone grease until after all cleaning operations were complete. However, subsequent cleaning following rework could wash out the silicone grease. Instructions were then disseminated that warned personnel to avoid erroneous washing away or removal of the silicone grease.
2867 8/23/63	Transistor Q4 (type 2N115)		Room (engineering)	Secondary	Following the repairs required under Malfunction Reports 2865 and 2866, another attempt was made to retune the X12 Multiplier. During the un- successful retuning, the collector current of transistor Q4 exceeded the maximum limit. It was replaced. The failure to retune the unit was be- cause of the difficulties discovered under Malfunction Report 2868.
2866 8/23/63	Capacitor C34 (Trimmer)	Broken case	Room (engineering)	Accident (test error)	After the replacement of transistor Q4 under Malfunction Report 2865, the X12 Multiplier had to be returned. In attempting to adjust capacitor C34, which was locked with epoxy, a small section of the rotating cover was broken. Although the capacitor still performed electrically, it was replaced for preventive maintenance reasons.
2868 8/24/63	Transistor Q1 (type 2N338)	Base not connected	Room (engineering)	Accident (test error)	Investigation of an inability to vary the voltage at test point VJ4 revealed that the base lead of transistor Q1 was disconnected. When properly soldered, the modulator functioned correctly. This disconnection probably occurred during the troubleshooting and repairs performed during the investigations for Malfunction Reports 2865 and 2866.
				Transmitter A	ssembly, S/N 015
1662 3/14/63		Detuned	Room	Design	Low power output during Mission Verification Test No. 1 at JPL. The cause of the second IPA detuning could not be definitely assigned. How- ever, the aging of the tube and parts required retuning of the amplifier. The second IPA was eliminated by the system redesign and would not be included in the flight units. The transmitter was retuned by RCA personne at the JPL site.

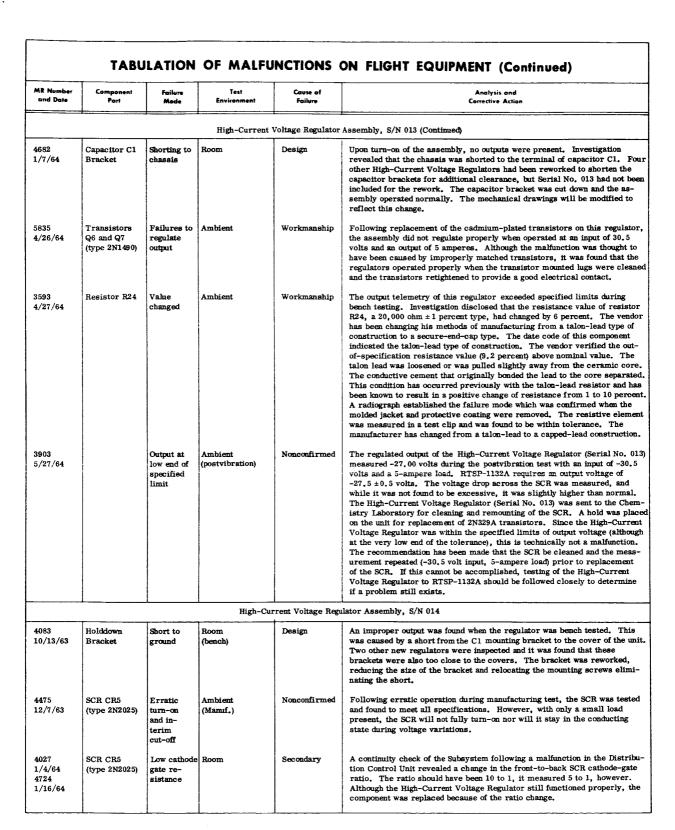
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			،	ransmitter Assemb	l
3298 6/15/63	Zener CR1 (1N2835B)	Shorted	Room (postvibration)	Workmanship	Diode CR1 was shorted during a repair. Examination showed that the load was not connected and all the current flowed through the zener diode (CR1). At the same time, resistors R6 and R7 were damaged.
					A new inspection procedure, requiring an engineer or qualified technician to supervise all rework, was instituted. This new procedure also required that all reworked units have the critical B+ points checked with an ohmmete prior to being electrically checked.
3299 6/15/63	Subminiature Connector A14, A2J10, to A14, A3J1		Room	Workmanship	A visual inspection of the cable assembly revealed that one of the connector was assembled with a teflon insulator missing and that there was a hairline crack on the metal connector. These defects apparently did not affect the cable assembly performance during testing. The defective cable assembly was returned to the vendor, and the vendor was directed to review and en- force the manufacturing and quality control procedures.
3305 6/29/63	Feed-through Capacitors C5 and C7	Chipped and discolored	Room (bench)	Accident (test error)	The transmitter was performing erratically for the first 10 seconds of op- eration. Capacitor C5 was chipped and capacitor C7 showed signs of arcing These capacitors were removed and subjected to a 1500-volt high-pot, whic they passed successfully. Even with the capacitors replaced, the system did not function properly. (Refer to MR 3306.)
3306 7/5/63	IPA Cavity (S/N 020)	Breakdown of -750-volt circuit	Room (bench)	Secondary	This Cavity had just been returned to the system following repairs caused when areing occurred on capacitors C5 and C7 due to moisture. A partial shorting in the -750-volt line was indicated. This short did not stop when the tube was replaced. After replacing the entire Cavity, the Transmitter functioned satisfactorily.
4235 12/17/63	Modulator	Frequency shift	Ambient (JPL)	Nonconfirmed	A frequency shift was noted during the electrical test following vibration testing of the Subsystem at JPL. Investigation of a shift in frequency in Transmitter Serial No. 017 of Flight Model III-2 indicated that the L4 coil was defective. The coil was returned to AED for testing. The results of the testing, including test under extreme high temperature, disclosed no abnormal operation.
2103 6/9/64	Transistor Q1 (type 2N1493)	Incorrect wiring	Ambient	Workmanship	This malfunction involved the lack of RF output from the X12 Multiplier. This was attributed to the incorrect wiring of transistor Q1 (type 2N1493). This X12 Multiplier unit had been returned to Manufacturing for rework that involved the removal of transistor Q1. The transistor was incorrectly wire at the completion of the rework.
2105 6/16/64	Diode CR11 (type 1N251)	Open	Ambient	Design	Test point No. 2 which monitored the output of the modulator was void of a reading. Investigation revealed that diode CR11 (type 1N251), which was in series with test point No. 2, was open. Replacement of diode CR11 corrected this condition. CR11 was a protective diode in the test-point circuitry and had no electrical function in the FM modulator. The "fall-open" mode was the intended operation of this diode in the event of an overstress.
2106 6/16/64	Varactor Diode CR1	Low output power	Ambient	Random	Low output power from the Z4 Multiplier was attributed to a faulty varactor diode (CR1). Proper operation was restored with the replacement of the diode. The failed diode was electrically checked and found to have a break- down voltage of 16 volts (specification called for a 120-volt breakdown volt- age). X-ray of the diode revealed no anomalies. This malfunction was detected during the first electrical test following rework of the Transmitter Since this diode was extremely sensitive to handling, damage probably oc- curred during rework. The electrical stress was rechecked and was found to be applied properly.
2107 6/18/64	Capacitor C8	Incorrect capacitance value	Ambient	Workmanship	Initial bench check of the Transmitter revealed that the modulation output was high and the modulation range poor. Investigation revealed that capaci- tor C8 of the X12 Multiplier measured 9 picofarads instead of the specified 15 picofarads. Replacement of this capacitor restored proper Transmitter operation after retuning.

	TABU	LATION	OF MALF	UNCTIONS	ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		1	Tra	nsmitter Assembly	, S/N 201 (Continued)
2174 8/30/64 2175 8/31/64	Resistor	Overheating and incor- rect telem- etry indi- cation	Ambient	Nonassignable	When the P-Channel transmitter was turned on following installation on the PTM, smoke came from the transmitter power supply. No RF power was observed during the time power was applied; the only abnormality noted we that the power supply output was 95 instead of 100 volts. Resistance meas urements made on the spacecraft indicated a drop in resistance from A21P to ground. The zener diode was measured as being shorted to ground. The diode was found to be good. The transmitter and power supply were re- turned for integration into the spacecraft. The unit operated satisfactorly but plus 30 volts instead of a minus voltage was obtained at TP1. A check indicated a resistance of 7.5 ohms instead of 100 ohms from TP1 to groun The plus voltage and low resistance could not be explained. Resistor R3 of the transmitter was charred and indicated that a high-power dissipation has taken place. The only source of plus voltage of this magnitude was the 100 volts. Following this second malfunction, the unit was returned to AED. During testing, a break in the insulation was found in the 70-volt wire goin to the X12 multiplier. If the wire had touched the case during operation of the PTM, it would account for the drop in the 100-volt line. In addition, it would have been no RF output. This wire could have been crimped between the X4 multiplier and the modulator cover and could have beeome loose during removal of the unit from the PTM. The smoke probably came from R6 and R7 wired into the 100-volt circuit of the transmitter power supply.
				Transmitter As	sembly, S/N 204
2065 7/6/64	Resdel Inter- mediate Power Amplifier, Serial No. 124	Drop in output power	At +63 ° C	Workmanship	At the conclusion of a one-hour operating test at $+63^{\circ}$ C, a sudden and shard drop in the transmitter output power from 7 watts to 1 watt was experience. Tuning the transmitter failed to restore the 7-watt output. The unit was cooled to 50° C, and the normal 7-watt output power was obtained. When the transmitter was allowed to heat to 60° C, a similar power dropoff occurred. Investigation revealed that the aluminum cover of the Resdel IPA cavity wa rapidly changing in shape with temperature. The physical change of the cavity shape changed the RF electrical parameters of the cavity and result in a detuning of the IPA with an associated reduction of RF power output. A measure of the distance between the cavity sides and the grid separator plate that forms one end of the eavity revealed a spacing of 0.006 inch on one side and 0.007 inch on the other side. These values exceeded the maximum allowable tolerance of 0.003 inch.
					touching the cover plate. This was later found to be excessive lactate. The cavity of each Resdel IPA was measured and those out of specification were returned to the vendor.
3774 7/10/64	Capacitor C4	Broken	Ambient	Accident	Trimmer capacitor C5 was accidently broken while removing the potting material to retune the X4 Multiplier after incorporation of the Resdel IPA modification. Upon replacement of Capacitor C5, normal operation was restored.
3799 9/24/64	IPA Tube 3CX100A5	Power reduction	Ambient	Random	The P-Channel Transmitter was replaced on Flight Model III-3 after a re- duction in output power was noted. When tested, the output of the X4 meas ured normal, and the problem was traced to an aging of the tube in the IPA The bias resistor was reduced from 470 to 340 ohms and the power output was restored to 8 watts. A 24-hour test was then performed with no furthe evidence of aging of this tube. The tube was removed and returned to the vendor for analysis. The vendor tests indicated that the emission of the tu was greatly reduced and that the transconductance was one-half the normal value. Readings indicated that a change in the spacing of the elements had occurred. Further examination revealed that some cathode material was on the plate in the form of a black deposit. The previous history of this tube showed that the IPA, Serial No. 117 had been involved in 3 one-hour runs and 2 one-half-hour runs with a filament voltage of 7.4 volts. It was the conclusion of RCA and the tube vendor that

MR Number and Date	Component Part	Failure Mode	Test En vironment	Cause of Failure	Analysis and Corrective Action
			Trans	mitter Assembly	S/N 204 (Continued)
3799 9/24/64 (Continued)					the first 100 hours of operation, the severe reduction in power output that was experienced with this particular IPA could only be explained by opera- tion for a long period of time at an excessive filament voltage.
3796 9/24/64	Double Carrier		Ambient	Nonconfirmed	During the testing of the P-Channel telemetry on Flight Model III-3, a double carrier was reported to exist. Investigation disclosed that the double carrier was actually the marker used on the display of the spectrum analyzer.
	L		l	Transmitter A	ssembly, S/N 205
4652 2/28/64		Loss of RF power	Ambient	Accident	During the preshipment test, CC&S Warmup was used to initiate Subsystem operation; full power came on after the 5-minute warmup period. After 8 minutes of full power, the Command Switch was stepped to Emergency. One minute later, the CC&S Warm-up command was released to allow tur- off with RTC-7 commands. At this point the P-Channel RF disappeared. F-Channel remained in full power. The P-Channel emergency telemetry was missing and the telemetry was switched to the F-Channel 225kc VCO. The telemetry indicated that P-Channel had been reset and was in warm-up. An attempt was made to place the P-Channel back in full power by use of the CC&S Full Power command. However, the RF output from P-Channel was barely visible on the spectrum analyzer. The CC&S Full Power command was released and the Subsystem turned off by stepping the Command Switch to zero. The operation of P-Channel was closely monitored during the inte- gration and testing of Flight Model III-3.
3796 9/22/64		Power drop	Thermal-vacuum	Accident (Design)	The F-Channel RF power output displayed a gradual decrease during the one-hour thermal-vacuum test. The measured decrease was from 19.4 to 19.1 watts. The specified minimum output was 19.5 watts both during and at the conclusion of the test. A retuning of this transmitter was accom- plished before the test. An additional retuning of the IPA restored the per- formance to within specification but the output was still considered to be low. The cathode biasing resistor was changed resulting in an increase in power output from the IPA to 9 watts. All future cathode biasing resistors were to be selected to provide a power output of from 8 to 9 watts.
	_	J	1	Transmitter As	sembly, S/N 208
1531 11/3/64	Resdel IPA Serial No. 123	RF caused variation in amplifier output	Ambient	Design	RF was present on the minus 500-volt DC line to the 4-pin connector to the RF amplifier. The output of the amplifier varied 1 watt when the DC line was touched. It was recommended that a 330-pf, 1000-volt capacitor be added across capacitor C5. The trouble was traced to the Resdel IPA (ser ial No. 123), which was removed from the transmitter and returned to the vendor for a failure analysis. The output variations were confirmed, but the oscillation could not be repeated during test. Capacitors C3, C4, and C5 (330 pf, 1000 volts) were replaced without any noticeable improvement. A similar capacitor was placed in parallel with capacitor C5, and the prob lem was solved. A Material Review was conducted, and MRA 100-64-196 was issued approving the addition of a capacitor in parallel with C5.
3897 11/10/64			Thermal-vacuum (45°C)	Accident	The transmitter operated successfully for three runs at 0° C. During the first run in thermal-vacuum at 45° C, the power output of the Residel IPA decreased. During a run made at 28° C in thermal-vacuum, the power output continued decreasing. The unit was then operated at normal pressure and at room temperature in an attempt to find the trouble. After capacitor C7 was adjusted, power increased. However, the problem was mode, but power decreased. However, the problem was node, but power decreased. The J1 setting was returned to the original position and power did not decrease. Several runs were made at room temperature with no power decrease. The unit was operated in a bell jar atmospheric pressure with temperature was stabilized at 55° C and power decreased. The transmitter was retuned. The unit was capted at 55° C and power decreased. The transmitter was retuned. The unit was capted at a figs apare. The maifunction was caused by: (1) The transmitter not being returned to compensate for the mismatch of the longer bell jar cables; (2) Th

	TABU	LATION	OF MALFU	NCTIONS	ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Tran	smitter Assembly	, S/N 208 (Continued)
3897 11/10/64 (Continued)					tube being more sensitive to temperature change and being subject to more than normal detuning at the upper temperature tuning at T+8 rather than T+5 minutes compensated for this particular tube characteristic; and (3) A permanent change that may have occurred in the plate capacitance in this tube.
				Transmitter As	sembly, S/N 211
3890 10/5/64	Capacitor C18	Transient response not within specified limit	Ambient	Workmanship	The transient response (Paragraph 4.3.7 of RTSP-1150A) of Transmitter, Serial No. 211, was not within the specified limits. A review of the histor of this unit revealed that this out-of-specification condition existed pre- viously, but had no effect on the performance of the Transmitter. Closer investigation revealed that capacitor C18 in the modulator circuit was not the correct value. It measured 130 picofarads rather than the specified 27 picofarads. When the proper-value capacitor was installed, normal performance was restored.
		•	J	Transmitter As	sembly, S/N 301
4500 2/8/64	Transistor Q2 (type 2N1493)	Shorted, base to collector	Vacuum	Workmanship	After 49 minutes of full-power operation, the RF output from the F-Chanm- was lost. An unsuccessful attempt was made to obtain full-power operatio by operating the channel through a five-minute warmup cycle. Investigation of the loss of power revealed that the +100-volt supply was open. Two re- sistors (Refer to MR 4498 and 4499) were severely overstressed. Further investigation revealed that this overstress had been caused by a collector- to-base short in transistor Q2 of the X12 multiplier. This short is believe to have been caused by thermal runaway of the transistor caused by either an insufficient amount of silicone grease under the transistor or the failure of the transistor to be firmly attached to its heat sink.
					Quality Control has been instructed to closely inspect all transistors that use a wall-type mounting to ensure that sufficient silicone grease is prese and that the transistor is firmly mounted. If any transistors are found not to be firmly mounted, they are to be removed, additional silicone grease is to be applied, a new beryllium wafer and tefion insulator are to be added, and the transistor is to be firmly supported so that no movement is allowe
4498 4499 2/8/64	Resistors R12 and R13	Open	Thermal-vacuum	Secondary	During the investigation of the malfunction noted in Malfunction Report 450 these resistors were found to be open. While the short remained on that transistor, these resistors tried to dissipate over six times their rated values and were destroyed.
4470 2/11/64	Capacitors C6 and C7	Cracked insulation	Ambient	Workmanship	Although the ceramic insulation on these feed-through capacitors was fount to be cracked, this is not a true malfunction as defined in AED-708 becaus the equipment had not been operated. The components are believed to have been damaged during rework. Procedures, standards, and instructions were examined and found adequate to prevent this type of problem.
3999 4/2/64	Capacitor C11 Choke L5 Resistor R8	Chipped	Ambient	Accident	A cracked ceramic capacitor was noted during rework. Although the as- sembly operated normally during a brief electrical test, the capacitor was replaced. During the replacement, choke L5 and resistor R8 were broken These components were also replaced.
3857 5/23/64	Capacitors C22 and C29	Parts damaged	Ambient	Nonconfirmed	While investigating the Transmitter Assembly (Serial No. 301) to evaluate rate-response distortion (See MR 3859), capacitors C22 and C29 required adjustment. These components are miniature trimmer capacitors that had to be bonded in a fixed position. Attempts to adjust the capacitors resulte in the rotor stripping from the adjustment screw. The epoxy bond was stronger than the bond of the rotor to the screw. All personnel have been informed of the damage that may occur to epoxled trimmer capacitors should readjustment be required.
3858 5/25/64	IPA tube, Serial No. 1415	Output power drop	Ambient	Random	The output power of the IPA dropped from 7 to 5 watts. The IPA tube, Ser ial No. NILB 1415, was replaced by Serial No. NILB 216 and normal oper tion was restored. The failed tube was tested and instability and low emiss sion were verified. During this testing, the tube was operated without cool and serious overheating resulted. The tube was returned to the vendor for analysis but no definite conclusions could be reached as to the cause of failur

.


MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			• • • • • • • • • • • • • • • • • • • •	Transmitter As	sembly, S/N 303
3859 5/22/64		Excessive distortion	Ambient	Nonconfirmed	The excessive distortion reported in this FM modulator was found to be due to a subtle degradation in test equipment used for this measurement. The defective unit, a receiver, was replaced by one having a lower inherent distortion error and the FM modulator was then within the specified dis- tortion requirements.
				PTM Transmi	tter Assembly
2168 2180 2181 2183 5/2/64 5/5/64 5/12/64		Power fluctuations	Thermal-vacuum	Secondary	The power fluctuations associated with these malfunctions of the PTM Com munications Group are believed to be attributed to the Transmitter Power Supply Assembly (Serial No. 007). This power supply was associated with a previous problem in the F-Channel on November 23, 1963. Transmitter Power Supply (Serial No. 007) was replaced in the PTM on May 27, 1964 and no indications of the power-fluctuation problem have been encountered since that time.
2164 6/3/64		Poor Power Profile	Ambient	Nonconfirmed	The Transmitter chains of the PTM were not retuned at AED after they had been reworked to the Ranger VII flight configuration. Several extended power runs contributed to the acceleration of the detuning. The F- and P- Channel Transmitter chains have now been retuned and the power profile is normal.
	1	1	I	FM III-2 Transn	hitter Assembly
2169 6/8/64		RF inter- ference	Ambient	Nonconfirmed	Prior to the closing of the chamber for a thermal-vacuum test, a TV reference test was performed, at ambient conditions, on the Flight Model III-2 TV Subsystem mated to the JPL Bus. This test is performed in accordance with JPL test procedure 3R320.01, dated June 8, 1964. For the TV reference test, no wires are connected to the Subsystem and no collimators are employed, however, the shrouds and batteries are installed. The TV Subsystem is mounted on the JPL Bus with the high-gain antenna folded and facing the floor of the 25-foot chamber. A microwave-absorbent material (Echosorb) was lined on the floor, however, structural metal members of the chamber were between the antenna and the absorbent material. During the test, the F _B and P ₃ Camera Subassemblies encountered RF interference and severe interference was noted in the telemetry. In new test configurations such as this, a prototype model should be employed to define interference vironment. JPL was notified of this problem. During the initial set-up of the test, no precaution was taken by JPL to determine the effects of the chamber structural members. The antenna was not deployed in flight configuration during this test.
			High-Cur	rent Voltage Reg	ulator Assembly, S/N 002
1382 2/2/63	-	Poor regu- lation	Thermal (+5 to +60° C)	Workmanship	Unit was out of regulation with a 30.5-volt input and 5.6-amp. load. A visual inspection revealed corrosion around the base of the SCR (2N2025), Q6 and Q7. When the corrosion was removed, the unit operated correctly. This PTM regulator did not have a protective finish applied (iridite). All flight units are protectively coated.
1758 3/7/63	Transistor Q7 (type 2N1490)	Short	Room (integration)	Secondary	Regulator output voltage was -32 volts instead of -27.5 volts. This regula tor has been subjected to many overloads during the life of the PTM, in- chding shorts in the DCU (reported in MR 1759). It is believed that the parameters of one of the matched control transistors changed, under these conditions, resulting in an overstress of Q7.
5801 3/17/64	Transistors Q6 and Q7 (type 2N1490)	Reading out of specified limits	Ambient	Accident	A voltage reading taken during testing was 0.23 volt lower than the specific minimum of 27.0 volts. This reading, however, was taken at the end of a 5-foot cable that presented sufficient resistance to reduce the voltage level below the specified minimum. The transistors were replaced, before the real cause of the misreading was discovered, and were found to be fully operable.

	T		······		
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	* 1		High-Current V	oltage Regulator	Assembly, S/N 002 (Continued)
2197 5/24/64	SCR	Broken lead	Ambient (visual inspection)	Workmanship	This failure was detected during a visual inspection of the High-Current Voltage Regulator, Serial No. 002, and is not an electrical failure. Part of the SCR lug was protruding through the thermofit sleeving, and removal of the sleeving revealed the broken lead. The connecting welded part had been removed and was not available for analysis. The conclusion was that this failure was a random fault of workmanship. All High-Current Voltage Regulators, except Serial Nos. 002, 003 and QTM, were inspected and the weld points have been reinforced with a coating of conductive epoxy and covered with a coating of nonconductive spray.
			High-Cur	rrent Voltage Reg	ulator Assembly, S/N 003
1383 4/24/63	Silicon Control Rectifier	Battery short to heat sink of SCR	Thermal-vacuum	Design	Insulation was worn. (-) Battery lead was grounded to mounting screw of SCR heat sink. Corrective Action: Wire routing will be specified; Wires will be epoxied down; Mounting screws will be covered with epoxy; and additional insulation will be used.
2199	Transistor Q6 (type 2N1490)	Shorted	Ambient	Workmanship	An attempt to use the RTC-7 command to turn-on the P-Channel into warm- up resulted in the tripping of the P-Channel external-power-supply circuit breaker. Subsequent attempts gave the same results. The P-Channel High-Current Voltage Regulator (Serial No. 003) was removed from the Subsystem and investigation revealed that both the regulated and unregulate outputs were shorted to ground. The unit was returned to AED and tested. Transistors Q5, Q6, and Q7 were removed and replaced. Transistors Q5 and Q7 were found to be satisfactory; however, transistor Q6 was shorted base-to-emitter, and collector-to-base. The mica insulator appeared to be the basic cause of the failure. The transistor mounting screw abraded the mica when it was installed and caused cracking and flaking. Arcing at this point eventually led to a complete short. A teflon insulating washer, which has a tendency to cold flow, compounded the problem and may have resulte in a loss of secure mounting. Flight units have been modified to correct this situation, but the PTM was not corrected since it was at JPL.
3333 5/8/63	Transistor Q6 (type 2N1490)	Shorted collector- emitter	Room (ambient)	Nonassignable	An inspection of the failed part revealed a burned element due to an applied overstress. Failure Modes & Effects Analyses were performed but the cause of failure could not be determined or predicted. Transistors Q6 and A7 were replaced with a matched pair.
		-I ·	High-Cu	rrent Voltage Reg	lator Assembly, S/N 005
3355 6/28/63	Transistors Q6 and Q7 (type 2N1490)	Open emitter	Room (integration)	Accident, test error	The test console "turn off" voltage had been turned up to 150 volts when it should have been 70 volts.
3351	Transistors Q6 and Q7 (type 2N1490)	Short, collector to emitter	Room	Accident	A portion of this problem is apparently due to the same cause as that liste in MR 3355, i.e. extremely high "turn off" voltage in the test console. A further cause is due to operating the High-Current Voltage Regulators without sufficient load on their output.
					To correct this problem a change has been made in the SCR turn-off procedure. When there is no load on the output of the High-Current Voltage Regulators, the voltage is now turned down on the GSE using the variac on the Console Power Supply. All integration and ground station personnel have been warned not to tamper with the console SCR turn-off supply unless the pro- cedure is closely monitored with a meter and the test director is notified.
		·	High-Cu:	rrent Voltage Reg	ulator Assembly, S/N 006
1959 1/2/63	Ground wire	Shutter did not operate	System test (ambient)	Workmanship	Ground-return wire for P1 camera shutter missing. Wire was installed. ECN change not put into FM-2.
1661 3/11/63	Pyrofuse wire	Open	Room	Accident	Malfunction occurred at JPL. No battery voltage indicated on GSE during presystem test of TV. Accidental short of battery monitor cable opened the fuses in the High-Current Voltage Regulator.

i.

tumber i Date	Component Part	Failure Mode	Test Environment	Cause of Failure	N FLIGHT EQUIPMENT (Continued) Analysis and Corrective Action
			High-Curr	ent Voltage Regul	ator Assembly, S/N 007
3 8/64 4 5/64		Output voltage out of specified limits	Ambient	Workmanship	The output of the HCVR during testing failed to meet the specified minimum requirement. Replacement of transistors $Q5$, $Q6$, and $Q7$ did not remedy the malfunction. Further investigation revealed that a wire connecting the emitter of transistor $Q6$ to resistor R11 was broken. Replacement of the wire restored normal operation of the HCVR. The replaced transistors were checked and found to be fully operational.
51 12/64	Insulation	Leakage	Ambient	Workmanship	Investigation of the inability of this regulator to pass the insulation and leakage test following reassembly after vibration testing revealed that the cover had been improperly attached and had caused the printed circuit board to shift. The QTM was considered a nonflight unit, and, therefore, did not receive the latest ECN which relieved the sharp areas on the corner post of the right-side plate.
70 11/64		Failed bench test	Ambient	Workmanship	Following the modification of the SCR gate levels to the Ranger VII flight configuration, the High-Current Voltage Regulator (Serial No. 097) failed the electrical bench check test. Investigation revealed that electrically conductive epoxy had been improperly applied to the SCR by the JPL Chem- istry Laboratory, and a short resulted between the gate and the anode of the SCR. The epoxy was removed and the SCR recoated in accordance with the procedure specified for flight units. This HCVR then successfully passed bench test.
	<u> </u>			rent Voltage Re	gulator Assembly, S/N 008
.055 /28/64	Transistors Q6 and Q7 (type 2N1490)	White deposit	Thermal-vacuum	Design	Investigation into white deposits found on the series regulator transistors Q6 and Q7 in the High-Current Voltage Regulator revealed the deposits to be composed of cadmium and, in minor amounts, cadmium hydroxide. Th source of the cadmium was found to be the cadmium plating on the transis- tors. Although the two transistors were electrically undamaged, micro- scopic examination revealed signs of arcing on the sides of the transistors Measurements across the deposits at the mica insulators revealed the de- posits to be conductive. All cadmium-plated transistors have been re- placed by the gold-plated type used on Flight Model III-2 and subsequent equipment.
4783 3/21/64	Resistor R9	No r egu- lation	Ambient	Workmanship	the wrong value for resistor and the correct value was installed and normal stalled for one of 1.2 k ohms. The correct value was installed and normal operation was obtained.
5814 3/30/64	Mica washer	Cracked	Ambient	Accident	Investigation of the inability of this High-Current Voltage Regulator to part the electrical case leakage test disclosed a cracked mica washer under it SCR. Excessive tightening of the mounting screws probably caused the mica washer to crack. Another possibility could be that the surface on which the washer was mounted on was not thoroughly cleaned prior to mounting. A directive has been issued specifying the correct torque.
3962 8/18/64	SCR Type 1706820	Suspecte bent SCR lead		Nonconfirm	and of Wigh-Current Voltage Regulator, Serial No. 008,
1					Regulator Assembly, S/N 009
3352 6/23/63	Transistor Q6 and Q7	C-E	High- Room (integration)	Accident test error	The test console "turn off" voltage had been turned up to 150 volts when should have been 70 volts. To correct this problem a change has been in the SCR turn-off procedure.
	(type 2N14	90)	High	-Current Voltage	Regulator Assembly, S/N 010
3929 4057		Reading within ified li	g not Thermal-vacu spec- (+55°C)	1	Investigation of a reading not within specified limits disclosed that the fixture was incorrectly wired. The battery was directly shorted by the switch, there was no possibility of damage to the Assembly. The test ture was wired correctly and the test was completed satisfactorily.

MR Number and Date	r Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		<u> </u>	High-C	urrent Voltage Re	gulator Assembly, S/N 011
4237 2/7/64	Fuse F1	Open	Room	Accident (JPL)	During investigation of a malfunction of sequencer, the negative battery terminal was shorted to ground through fuse F1 by a grounded terminal on a digital voltmeter.
			High-C	urrent Voltage Re	gulator Assembly, S/N 012
4013 9/5/63	Potentiometer R3	Erratic operation	Ambient	Accidental	The trim potentiometer was damaged at the CW end and its wiper was burned during testing because of an accidental overstress.
4012 9/5/63	Resistor R1	-	Ambient	Nonconfirmed	Resistor R1 was replaced because the regulated voltage could not be ad- justed. The resistor was then tested and found to be within specification limits.
4011 9/6/63	Transistor Q6 (type 2N1490)	Short, emitter to collector	Ambient	Accidental	Transistor Q6 was found to be shorted, emitter to collector. Investigation disclosed that this was caused by either an overstress in the test set-up or the shorting of a test probe.
4080 10/11/63		Short to ground	Room	Nonconfirmed	The chassis of the regulator was shorted to the ground. A check of the tess set-up revealed a defective test lead. The lead was shorted internally be- tween the shielding and conductor. This is the DC return on the digital voltmeter.
4238 2/7/64 2262	HCVR S/N 012 (III-3) Resistor R24	Open	Room (JPL)	Accident	During an investigation, the negative battery terminal was shorted to grour through the fuse by a grounded terminal on a digital voltmeter.
12/10/64	(type RN65E2002E)	Output voltage not within specified limit	Thermal-vacuum	Design	During thermal-vacuum testing at JPL, High-Current Voltage Regulator, Serial No. 012, was not operating within specified limits. Telemetry data indicated an output voltage of -26.0 volts, with an indication of one momen- tary drop to -23.0 volts. However, at no time did the communications or video output indicate an insufficient input-power condition. The assembly was returned to RCA, where troubleshooting revealed that resistor R24 in the regulated output telemetry circuit was changing resistance value. The component varied from 20 kohms normal to 15 kohms when heated. The resistor was replaced in the HCVR. High- and low-temperature tests were performed with no measurable change in the telemetry voltage after 30 min- utes of operation. The resistor was then permanently installed, and the HCVR was acceptance tested.
					X-rays of the failed resistor revealed that one of the internal leads had separated from the resistive element. In resistors of this type, the leads are attached to a talon insert, which is bonded to the resistive element by a conductive cement. The cement is a mixture of silver and an organic binder, in which unseen cracks or voids occasionally occur during the cur- ing process. This failure mode has occurred before. The previous failure was reported in Malfunction Report No. 3593 and involved the same resistor R24 in HCVR, Serial No. 13. The vendor is aware of the failure mechanism and indicated that it is an unusual occurrence. In order to increase part reliability, construction of this type of resistor has been changed from the talon lead, which failed, to a capped-lead construction. New resistor pro- curements will be of the end-cap configuration. A review of the TV Subsystem design indicated that RN65-type resistors
					are also employed in the Video Combiner, Low-Current Voltage Regulator, and High-Current Voltage Regulator Circuits.
			High-Curr	ent Voltage Regula	ator Assembly, S/N 013
		Collector F o emitter	loom		The regulator failed during initial turnon. An inspection of the regulator revealed a shorted transistor, Q6, and a foreign material spread over the transistor and heat sink. This material was found by the chemistry labora- tory to be alkaline. This deposit was not a contributing factor to the mal- function. However, all replacement transistors were gold-plated. The malfunction was caused either by improper loading of the regulator or by an improper turn-off procedure.

LOBO MONT

	· · · · · · · · · · · · · · · · · · ·		···- · · · · · · · · · · · · · · · · ·	т	
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			High-Current V	/oltage Regulator	Assembly, S/N 014 (Continued)
4027 1/4/64 4724 1/16/64 (Continued)					When the Distribution Control Unit was shorted, 3.5 amperes passed through the cathode-gate junction of the SCR. The maximum allowable gate current is only 2 amperes. The gate current, therefore, was 1.5 amperes over the specified limit and resulted in damage to the junction of the SCR.
					In order to prevent a recurrence of this malfunction, a procedure has been issued which states that the chassis of each unit is to be grounded during bench testing. This will prevent "floating" shorts.
4707 1/24/64	Transistor Q4 (type 2N329A)	Open collector	Thermal-vacuum (+55°C)	Workmanship (vendor)	Investigation of intermittent operation of the High-Current Voltage Regulated during a thermal-vacuum test revealed a defective Q4 transistor. Opening of the transistor disclosed a defective bond between the collector lead and the transistor junction. A review of the previous Ranger malfunction indi- cated that no previous type 2N329A transistors had failed. However, sub- sequent problems were revealed with the Raytheon Transistor and they wer replaced with Sperry and National units. No documentation change was re- quired to implement this replacement.
4056 4/9/64		Poor regulator	Ambient	Workmanship	Investigation of a low output voltage from the HCVR (26,86 volts as opposed to 27 ± 0.5 volts) revealed an excessive voltage drop across SCR CR5. The SCR was replaced; however, during the replacement, deposits of flux and oxidation were discovered on the sides of the heat sinks where the cable lugs are attached. This contamination was established as the cause of the malfunction after a check on the SCR (removed from the HCVR) proved it to be fully operational. Instructions for cleaning the heat-sink contact surfaces have been issued and are now in effect.
4797 4/12/64		SCR would not trigger	Ambient	Workmanship	Investigation into the inability of SCR to trigger revealed the installation of a resistor of the wrong value in the test set-up. The correct value resisto was installed but the SCR still would not trigger. Further investigation re- vealed a 600-ohm short from the junction of C3, R27, and CR8 to ground. This malfunction was caused by a pinched wire that was improperly routed Replacement of the wire in its correct route restored normal operation of the SCR.
	L	L	High-Cu	rrent Voltage Reg	llator Assembly, S/N 015
3559 9/17/63	Potentiometer R3 (type 22UL 500-501)	Poten- tiometer open	Ambient	Accidental	Potentiometer was open at the lower end. Vendor analysis indicated that the element at the CW end over the termination-tab area and the wiper were burned because of an overstress due to a test error.
4082 10/12/63	Hold-Down Bracket	Short to ground	Room	Design	An improper output was found when the regulator was bench tested. This was caused by a short from the C1 hold-down bracket touching the cover of the unit. Two other new regulators were inspected and it was found that these brackets were also too close to the cover.
					The hold-down bracket was reworked, reducing the size of the bracket and relocating the mounting screws eliminating the problem.
4685 4702 1/8/64	Transistor Q6 (type 2N1490)	Shorted, collector- to-emitter	Room	Secondary	Following the repairs necessitated by Malfunction Report No. 4683, it was found that the output from the High-Current Voltage Regulator was 32, 3 volts. This indicated a shorted series transistor. Transistors Q6 and Q7 were both replaced because they are a matched pair. It is believed that th shorted input noted in MR 4683 on transmitter power supply 019 caused thi malfunction.
4798 4/16/64	Wires	Shorted	Ambient	Workmanship	Investigation of shorting which appeared during testing of the High-Current Voltage Regulator disclosed four wires within the Assembly that were eithe pinched or chafed and were shorted to the chassis. The wiring errors were corrected. Cable rerouting and modified wiring information are being is- sued that will prevent a recurrence of this malfunction.
			High-Cu	rrent Voltage Reg	ulator Assembly, S/N 016
4477 4478 12/13/63	Lead	Poor regulation	Room	Workmanship	The High-Current Voltage Regulator exhibited poor regulation during the si camera bench test. Investigation disclosed that the lead used to connect th emitter of transistor Q5 to resistor R12 had been pinched and severed dur- ing assembly. The damaged wire and several other leads were replaced.

MR Number and Date	Component Port	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	3		Fou	r-Port Hybrid A	ssembly, S/N 004
4497 1/12/64		Power fluctuation	Partial vacuum	Workmanship	Investigation into a power fluctuation of 0.2 db during the high-power, ionization-breakdown acceptance test of this stripline hybrid revealed a severe scratch extending across the copper center-conductor strip on the J-connector strip. This scratch had almost completely severed the strip. This scratch had occurred prior to the plating process because gold plating was noted along the edge of the scratch. All contact strips will be examined under a magnifying glass to prevent future failures of this type.
	<u> </u>		Fa	ır-Port Hybrid /	Assembly, S/N 006
4491 1/3/64	Cable 30W28, Serial No. 012	Power fluctuation	Partial vacuum	Workmanship	A power fluctuation of 0.3 db occurred during high-power ionization- breakdown acceptance tests. The fluctuations appeared to depend more on temperature than on the partial vacuum and were not affected at all by the presence of Cobalt 60. After replacement of the Hybrid with Serial No. 004 did not cure the malfunction, the cable was replaced and the malfunction disappeared. An X-ray examination of the cable revealed that a solder void of 45 percent existed between the center conductor and the connector pin at A24P4. It
					should be noted that the high-power ionization test will always reveal this type of malfunction in an RF cable.
		I	4	Dummy Load A	ssembly, S/N 004
3932 3970 5881 3/24/64		High leak rate	Ambient	Design	The malfunction reports recorded three consecutive times that the assembly did not pass the leak test. One malfunction was attributed to the cutting of the silicon-rubber spacing pads. However, all malfunctions occurred prior to the issuance of a requirement for increased torquing of the screws used to fasten the cover of the pressure vessel. Following retorquing, the as- sembly passed the leak test.
	_ _	1	<u>.</u>	Dummy Load A	ssembly, S/N 009
3423 10/3/63	Valve Core	Gas leak	Room (JPl)	Workmanship	Two failures were discovered on this unit. First the unit was leaking pres- sure and second it had a high VSWR. Preliminary analysis indicated that tapping the unit would change the VSWR. The problem was investigated by AED mechanical engineers, and it is believed to be a fabrication weakness. The responsible personnel have issued revisions to manufacturing and fabrication control drawings.
3966 10/10/63	Dummy Load (RCA Dwg. 8483238)	High VSWR	Room	Random	When tested the Dummy Load was found to be tap-sensitive. (Tapping woul cause the VSWR to increase.) The unit was disassembled for examination and then reassembled so additional tests could be performed. The unit was no longer tap-sensitive and had an acceptable VSWR. The failure could not be duplicated and the vendor was unable to furnish any possible reason for this failure.
		_L	<u> </u>	Dummy Load A	ssembly, S/N 011
4267 1/15/64	Valve Core	Leaky	Room (AMR)	Accident	Investigation into the drop in pressure of the pressure vessel for the Dumm Load from 15 to 5 psig revealed that the valve core had been crushed allow ing it to leak. The pressure gage and tank filler can be tightened so that the valve core is crushed. Only the individuals who have been properly in- structed in the proper use of the filler and pressure gage should make the pressure measurements. Also, all valve cores which have not been changy since December 13, 1963 should be replaced because prior to that date, all pressure checks were made without the realization that the core could be damaged.
		1	1	Dummy Load	Assembly, S/N 012
2784 8/28/63	Pressure Valve	Sheared off	Room (engineering test)	Accident (test error)	The pressure valve was sheared off at the threaded end when the valve cap was torqued on without using the proper tools (torque wrench).

TABULATION OF MALFUNCTIONS ON FLIGHT EQUIPMENT (Continued)						
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Actian	
			Dum	my Load Assembl	y, S/N 012 (Continued)	
5880 4/16/64	Cable RG 142 A/U	Broken fiber jacket	Ambient	Workmanship	It is believed that during the installation of the Dummy Load in its housing, the proper procedures were not followed, attempts were made to force-fit the cable into the housing, and the fiberglass jacket of the RG 142 A/U cable was ruptured. The proper procedure has again been brought to the attention of manufacturing and quality control personnel.	
				Dummy Load As	ssembly, S/N 026	
4024 12/13/63	Pressure Valve, (Model 300-1)	Loss of pressure	Thermal-vacuum (integration)	Accident	During the thermal-balance testing when the malfunction of Malfunction Report A4045 occurred, the output power was noticed to drop below norma Following the replacement of the Sequencer Assembly, a power profile on the P-Channel was performed. The power profile revealed excessive re- flected power. A check of the pressure vessels revealed that the pressure in the Dummy Load Assembly was zero psi. It was determined that the pressure valve core had been deformed by the pressure gauge. The "O" ring, pressure valve, valve core, and RF connector were all replaced. All personnel have been informed to use care when pressurizing the Dummy Load pressure vessel.	
3375 7/13/64	Coaxial Connector	Damaged	Ambient	Accident	The Voltage Standing-Wave Ratio (VSWR) was measured as 1.52. The maximum allowable value is 1.30. The unit was disassembled and found to have a damaged coaxial connector. One of the contact leaves of the center conductor was broken. The unit was returned to the manufacturer for repair; however, it was decided to procure a new load and scrap Serial No. 026. The new load, Serial No. 031, has been installed in the pressure housing, Serial No. 006, and has satisfactorily passed its acceptance test.	
			- b	Dummy Load As	sembly, S/N 027	
1544 11/30/64		Decrease in internal pressure	Post-thermal- vacuum	Nonassignable	During the post-thermal-vacuum pressure check of the dummy load, it was found that the pressure dropped from 13 psig to 7 psig. The core valve and the purged valve gasket were replaced. The unit was pressurized to 15 psig, and the valve was torqued to 30 inch-pounds. The core and cap were checked and found to be good. Leak rate was within specification limits.	
				Dummy Load As	sembly, S/N 031	
3575 1/6/65	Cable Ser- ial No. 034A	High VSWR	Ambient	Workmanship	During acceptance testing of spare Dummy Load, Serial No. 031, the initial VSWR measurement read entirely off the meter scale. Troubleshooting isolated the problem to an RF cable, Serial No. 034A, in the pressure vessel, Serial No. 006. The cable, when checked with an ohmmeter, was found to have a short from the center conductor to the shield. Examination of the cable revealed that the female contact of the cable connector was ben to one side, and in this position, the male contact of the feedthrough con- nector shell on the bulkhead would not mate properly. This would indicate that the female contact of the cable had slipped down along the side of the feedthrough male contact instead of over it, thus making a connection from the center conductor to the outer shell. This short would not have occurre if the connector at the pressure-vessel end of the cable had been properly assembled. Inspection of the connector revealed that the front teflon insu- lator had not been installed. This insulation is a detached part and must be installed as the final step prior to installation of the connector outer shell and potting of the cable. The cable was replaced.	
1504 1/21/65 1548 1/22/65 1549 1/26/65	Purge Screw, Purge-Screw Gasket, "O" Ring	Excessive leak rate	Vacuum	Wearout	Following installation of the internal RF cable (MR 3575), Pressure Vessei and Dummy Load, Serial Nos. $006/031$, were retested and failed the leak test. The leak rate was measured as 1.95×10^{-5} cc per second, while the maximum specified value is 1×10^{-5} cc per second. The excessive leak rate was thought to be due to a worn purge screw. The purge screw, purge-screw gasket, and "O" ring were replaced. The unit was repres- surized and again failed the leak test with a measured leak rate of 2.95×10^{-5} cc per second. The unit was disassembled, carefully examined for nicks or burrs, cleaned, and reassembled with a new "O" ring. The unit again failed the leak test with a measured leak rate of 1.5×10^{-5} cc per second. At this time, it was discovered that the wrong-sized "O" ring had	

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
· · · · · · · · · · · · · · · · · · ·			Dur	nmy Load Assemb	iy, S/N 031 (Continued)
1504 1/21/65 1548 1/22/65 1549 1/26/65 (Continued)					been used. The unit was assembled with the proper size "O" ring, pres- surized, and successfully completed the leak test. The initial failure was attributed to the worn purge screw. All wrong-sized "O" rings were re- moved from stock.
				Dummy Load A	ssembly, S/N 301
2109 3882 6/20/64		Excessive leak rate	Ambient (leak test)	Accident	Dummy Load Assembly, Serial No. 301, was found to have an excessive leak rate. The unit was disassembled, resealed, and retested. The ex- cessive leak rate was still present. The unit was again disassembled and examined. Several scratches were found across the seal area of the "O" ring mating area. Most of the scratches were inflicted after iriditing and appear to be caused by handling. The scratches were polished, and the mating surfaces refinished. When the unit was reassembled and tested, the leak rate measured within the specified value (8.8 x 10^{-6} std ccHe per second).
			Low-Cu	urrent Voltage Reg	ulator Assembly, S/N 004
3926 3/25/64		Measure- ments not within spec- ified limits	Ambient	Accident	Investigation of the inability of this Assembly to pass the acceptance test indicated the possibility of operator error. Therefore, the test was repeated with satisfactory results.
			Low-Cu	urrent Voltage Reg	ulator Assembly, S/N 005
5815 3/31/64	Mica Washer	Cracked	Ambient	Accident	Investigation of the inability of this Assembly to pass the electrical leakage test revealed that the mica washer was cracked. The washer was replaced and the Assembly passed the test. It is believed that either excessive tightening, foreign material under the washer, or surface irregularities were the cause of the washer cracking. The proper torque to be used has been disseminated and all mounting surfaces will be carefully cleaned and inspected in order to prevent recurrence of this malfunction.
	1		Low-C	urrent Voltage Reg	ulator Assembly, S/N 007
3783 8/28/64	Resistor R4		Ambient	Design	This is not a true malfunction, but is a design modification required by the replacement of the Instrument Development Laboratories, Commutators with units manufactured by the Fifth Dimension, Inc., on Flight Models III-3 and III-4 and the Spare TV Subsystem. This change of Commutators reduced the load requirements on the Low-Current Voltage Regulator from 250 ma to 150 ma. In order to maintain an output voltage of exactly -27.5 volts at 150 ma, it is required that resistor R4 of the Low-Current Voltage Regulator, Serial No. 007, has not deviated from its voltage tolerances during any tests.
3842 9/26/64		Leakage to chassis out of speci- fication	Ambient	Nonconfirmed	During a leakage test on Low-Current Voltage Regulator, Serial No. 007, a measurement of -0.145 volt was read on a digital voltmeter. This ex- ceeded the specified limit of -0.1 volt. The measurement was repeated with two different digital voltmeters and the leakage was found to be within the specified limit, indicating the original voltmeter employed was defec- tive. However, a calibration procedure was performed and the voltmeter was found to be within specification. A leakage measurement was again taken with this voltmeter and this time a normal value was obtained. The digital voltmeter is still considered to be the probable source of this malfunction. If a malfunction of this nature recurs, the test equipment wi be thoroughly investigated internally to determine the cause of the failure.

					ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Low-Cur	rent Voltage Regu	lator Assembly, S/N 009
4775 4/14/64		Monitored voltage not within spec- ified limits	Ambient	Accident	Investigation of a monitored voltage not being within specified limits dis- closed that a resistor of the wrong value had been installed in the circuit. The drawing had been accidentally changed to call for this resistor. Both the Assembly and the drawing were corrected.
	- I		Te	lemetry Power Su	pply and Regulator
5883 5884	Transistor Q2 (type 2N1490A)	Stressed	Ambient	Design	Investigation into the tripping of the circuit breaker at initial turn-on re- vealed that excessive current had been drawn by the shorting of diode CR5
3/24/64	Diode CR2 (type 1N935)	Shorted			and the resultant overstressing of transistor Q^2 . This had been caused by the interchanging of two wires and the nicking of the teflon sleeving in the base of transistor Q^2 . The nicking was caused by the hat of the diode bein pressed into the base of the transistor. Both the diode and the transistor were replaced and the base leads of the transistor were rerouted. Norma operation was obtained.
5888 3/26/64	-	Voltage out of specified limits	(-10°C)	Accident	An insulation diode had been added in series with the input to the Telemetr Power Supply and resulted in an input of only -26.6 volts rather than -27.0 ± 0.3 volts. The specification is being changed to permit -26.5 ± 0.5 volts In addition, the output voltage varied from 26.0 to 26.9 volts although the specification called for 28 ± 1.4 volts. Because the reference voltage may vary 1.5 volts, the specification is being changed to permit an output volta of 27 ± 2 volts. The frequency of the VCO was found to be 6 cycles low at -10° C because of the lower voltages. It should be noted that although the specified maximum variation is 5 cycles, this is at 0° C and allowances should be made for lower operating temperatures.
5871 3/27/64	-	Low input voltage	Ambient	Design	The addition of a diode (type $1N538$) in series with the input from the powe supply resulted in a voltage drop of 0.5 to 1.0 volt which provided an input voltage below the specified minimum. The specification was revised to indicate a lower specified minimum. The operation of the assembly is satisfactory.
5889 3/27/64	-	Frequency out of specified limits	Thermal-vacuum (0°C)	Accident	The measurements made on the assembly while undergoing testing at 0° C were compared to the limits specified for ambient operation. The measured values were not within these limits and the assembly was, at first, considered to have failed the testing. However, the measured values did compare favorably with the limits specified for operation at 0° C in RSP 1140A. A new data sheet is being prepared that will specify the limits during operation at 0° C, -10° C, and $+45^{\circ}$ C (Refer to MR 5890).
5890 3/27/64	-	Frequency out of spec- ified limits	Thermal-vacuum (+45°C)	Accident	The same problem as noted in MR 5889 occurred on this malfunction except that the values measured during operation at $+45^{\circ}$ C were being compared to the limits specified for operation at ambient.
5873 4/1/64	-	Corrosion on printed board trace	Ambient	Workmanship	Green surface corrosion was found on the printed circuit wiring. Further examination revealed incomplete removal of the solder flux and bare coppe streaks on some of the printed traces. These problems are believed to have been caused by an inadequate rinse after removal of the board from the plating bath. All corrosion was removed and the printed wiring was covered with a heavy, smooth solder coating. This is the only occurrence of this type of problem and it in no way affected the electrical operation of the circuit.
3826 4/20/64	Filter Capacitor	Shorted	Ambient	Design	Investigation of the shorting of the filter capacitor revealed that this type of capacitor is manufactured using the case-within-a-case type of con- struction. This type of construction is prone to shorting between lead to case on both ends of the capacitor thus resulting in a shorting of the capaci- tor. All capacitors of this type will be replaced with type 6K105AA or, in one instance, with type 29F1563.
3829 4/24/64	-	Power sup- ply input below specified limits	Ambient	Design	The input to the Telemetry Assembly power supply was below the minimum specified voltage; however, operation of the Telemetry Assembly was normal and within other specification conditions. Data from the test were reviewed by JPL and operation of the telemetry chassis was considered acceptable.

MR Numbe and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	1		Telen	netry Power Supply	v and Regulator (Continued)
3987 4/27/64	Capacitor	Mylar insulatior cut	Thermal- vacuum	Accident	A heavy load on the negative voltage supply was found to have been caused to the cutting of the mylar insulation sleeve during the mounting of the capaci- tor into the supporting clip. The damage was repaired and normal operation restored.
3878 5/6/64	Transformer	Open winding	Qualification (vibration)	Wearout	Investigation of the loss of pedestal reference levels during the second qualification level vibration test for the commutators (5D Inc.) revealed an open primary in the transformer. The leads had broken at the terminal end of the toroid. This Telemetry Assembly and Power Supply has under- gone at least six vibration tests at qualification levels. Therefore, the malfunction is considered to have been caused by vibration fatigue.
3765 6/23/64	-	Input voltage below specified value	Thermal (at 0°C)	Nonconfirmed	The telemetry power-supply input voltage read -25.74 and -25.77 volts at 0° C. The specified value is -27.5 ±1.5 volts. MRA 100-64-130 has been approved by JPL indicating acceptability of this condition. This reduction in input voltage will not affect the operation of Voltage Controlled Oscillator or the telemetry power-supply output.
				90-Point Comm	utator, S/N 1002
2898 5/3/63	-	Incorrect data point	Room (ambient)	Design	Incorrect data read from point No. 85. The commutator was returned to the vendor to increase brush pressure and add lubricant to switch contacts to prevent build-up of film.
4264 11/26/63	-	Telemetry points erratic	Ambient (JPL)	Nonconfirmed	Following erratic indications from telemetry points Nos. 46, 41, and 66, the commutator was replaced with a spare. The malfunctioning commutator was returned to RCA for tests and was found to be good. It is possible that a connector was responsible for the missing telemetry points.
				90-Point Commu	
A2836 4/9/63	-	Data point missing	(0°C)	Design	Data point missing. Returned to vendor to increase brush pressure to approximately 15% and add lubricant to switch contacts to prevent build-up of film.
				90-Point Commu	ator, S/N 1005
2983 4/12/63	-	Data point missing	Thermal- vacuum	Design	Data points missing. Returned to vendor. Vendor will increase brush pressure to approximately 15% and add lubrication to switch contacts to prevent build-up of film.
1236 /5/64	-	Open points	Room (JPL)	Workmanship	The 90-point commutator was returned to the vendor for analysis because it was reading open on point Nos. 3, 5, 7, 9, 11, and 13. During the leak tests to which all returned commutators are subjected, this commutator exhibited excessive leakage around the speed-adjust potentiometer. The capsule that contained the air-conditioning agent was found to be empty. This resulted in contamination to the contacts.
				90-Point Commuta	tor, S/N 1006
671 /19/63 669 /12/63	-	Data point missing	Thermal- vacuum	Design	Data point missing. Returned to the vendor to increase brush pressure by approximately 15% and add lubricant to switch contacts to prevent build-up of film.
	·····			90-Point Commuta	tor, S/N 1008
399 /3/63		Incorrect telemetry voltage	Room (ambient)	Design	Point No. 88 read a positive instead of a negative voltage value. Believed to be due to an incorrect switch wiring. The commutator was returned to the vendor (IDL) for repair, modification, and analysis.
					The opinion of the vendor was that contact bounce was responsible for the er- ratic data on this point. The increased brush contact pressure and the lubri- cation of the contact corrected this malfunction. All flight commutators will receive the same modification.
09 59 11/63	-		Room (integration)	(venuor)	Erratic operation of the Telemetry Assembly on the Subsystem was verified on the bench. The 90-point commutator was faulty at every other data point. This commutator was returned to the vendor for analysis.

	TABU	LATION C	OF MALFUN		N FLIGHT EQUIPMENT (Continued)
R Number Ind Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			90-Poi	nt Commutator, S	/N 1008 (Continued)
309 359 /11/63 Continued)					It was discovered that a plastic bag, containing a conditioner, had developed a leak. This fluid is a conductor and formed parallel conductive paths, allowing the switch to contact. The vendor considers the makeup of this conditioner and its need in the switch to be proprietary and will not reveal this information. They state that they have had very few failures, if any, of this type and several of their bags of conditioners are used in all of the switches that they make.
		<u> </u>	1	90-Point Commuta	ator, S/N 1012
9977 4/18/64	-	Loss of data points	Ambient	Workmanship	The voltage output from point Nos. 64, 66, 68, and 70 of the 90-point com- mutator were positive with respect to the zero reference. Investigation re- vealed that this was caused by contact contamination resulting from a loss of air conditioning fluid caused by air leaks in the sealed unit. All IDL commutators are being reworked and in addition, a second source from Fifth-Dimension, Inc. is being tested for qualification and, if approved, all IDL commutators will be replaced.
				90-Point Commut	ator, S/N 4986
3958 5/5/64	-	Telemetry noise	Vibration	Secondary	The commutator (Serial No. 4986) was returned to the vendor after noise was detected during the operating vibration test. The unit had failed initially (See MR 4000) and it was discovered that the brushes had been damaged but not replaced after the failure. The brushes were replaced and the unit successfully completed the operating vibration test.
4000 5/5/64	-	Noisy operation	Qualification (vibration)	Workmanship	The output from the 90-point commutator became noisy during the qualifica- tion vibration testing. The noise was only on the leading edge of the data points and all information could be interpreted. Operation of the unit withour vibration was normal, but when subjected to flight vibration, again became noisy. An examination of the unit by the vendor revealed that an insufficient amount of epoxy has been applied to the "C" clamp and rotor resulting in the "C" clamp loosening and allowing some slight movement of the rotor about its shaft. The amount of bonding material has been increased so that the epoxy is now applied to the entire "C" clamp.
			l	90-Point Comm	utator, S/N 4987
2140 7/12/64	-	Data points No. 75 and 80 reversed	Ambient (camer calibration veri fication)	a Design	Improper data were received from data points Nos. 75 and 80 during the camera calibration verification. This situation occurred after the thermal- vacuum test performed on April 26, 1964. Confirmation of the failure was not possible until recently when both channels of the commutator were operated independently. Examination of the commutator revealed that the wiring of data points No. 75 and 80 was interchanged. These points are for the heat-sink telemetry; the correct notation is as follows. Data Point No. 75: P-channel PA heat-sink temperature (Sensor No. Data Point No. 80: F-channel PA heat-sink temperature (Sensor No. The applicable data sheets were corrected and the cognizant RCA represent ative (SDAT) was notified of the condition. Specifications are being revised to reflect the change.
				15-Point Comr	nutator, S/N 1001
1664 3/28/63	-	Loss of data point	Thermal- s vacuum	Design	Loss of points 8, 9, 10, 11 data. Returned to vendor. Vendor will in- crease brush pressure approximately 15% and apply lubricant to the switch contacts to prevent build-up of film.
				15-Point Com	mutator, S/N 1003
5875 4/2/64	-	High and erratic current drains, grinding noise	Ambient	Workmanshi	have the 15-point commutator was reported as making a

	TAB	ULATION	OF MAL	UNCTIONS	ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		-		15-Point Com	nutator, S/N 1010
4241 4/20/64	-	Noisy data point	Ambient (JPL)		
				15-Point Comm	utator, S/N 1012
3979 4/19/64	-	Loss of data points	Ambient	Workmanship	Investigation into the loss of output from point Nos. 7 through 13 revealed a condition similar to that discussed under MR 3977. In addition, it was found that epoxy was flaking off the brushes and was reacting with the cramaline used to lubricate the contact surfaces. Refer to MR 3977 for recommendations.
				15-Point Comm	utator, S/N 5948
2307 2/4/65	-	Telemetry out of specifica- tion	Ambient (ETR)	Nonassignable	cated that the output from data both N_0 ranger Vill collimator alignment indi- cated that the output from data point No. 12 (full-scale reference) of the 15-point telemetry Commutator, Serial No. 5948, was only half its normal width and normal amplitude. On the next telemetry frame, the amplitude was reduced to a small spike. All subsequent telemetry frames indicated an output of +0.2 volt for data point 12 which is an indication of open-circuit condition.
					The unit was replaced by spare Commutator, Serial No. 5949, and normal operation for all data points, including data point No. 12, was restored. All pins of the disconnected cables were given a pin-retention check and were normal.
					The failed unit was installed on the Spare TV Subsystem and operation of all data points including data point No. 12 was normal. The Commutator was returned to the vendor where a contact-resistance test indicated that all data points were normal (0.2 ohm). The specification value is less than 1 ohm. This test indicated good contact and good connection for all circuits of data point No. 12. The following items were then examined under a microscope with no indications of abnormalities: the pins of the commutator connector, wire side of the connector with the commutator disassembled, the wires, brushes, and commutator segments. The vendor could not con- ceive of any failure mode, which would affect only one data point, that was not checked in these tests.
					Two connectors and a cable, the telemetry unit, and the commutator com- plete the circuit. The reference voltages for the 15- and 90-point Com- mutators are obtained from the same source. The full-scale reference voltage for the 90-point Commutator was normal during the time that the full-scale reference voltage for the 15-point Commutator indicated the abnormal +0.2 volt. The Commutator will undergo further tests at RCA if required to support the Ranger IX Subsystem.
		—————		Channel-8 VC	O, S/N 037
757 - *22/64			Thermal- vacuum (qualifi- cation level)	Accident	The center frequency of the Channel-8 VCO was out of specification limits when lested at 45 °C under thermal-vacuum qualification-level conditions. The center frequency measured 2993.7 cps, while the specified limit is 3000 ± 5 cps. The Channel-8 VCO was then tested at ambient conditions and the center frequency was still out of specified limits. The center fre- quency was readjusted at ambient and subjected to temperature extremes. The center frequency then remained within specified limits. The malfunc- tion was attributed to parts not screened at high-temperature, and as a re- sult of operation at +65° C, these parts assumed a permanent set. This Channel-8 VCO was retested under thermal-vacuum conditions.
58 – 59 22/54		Apparently out of specified limits	Ambient	Nonconfirmed	The Telemetry Assembly was inadvertently tested to the unrevised RTSP- 1140, Appendix B, and the Channel-8 VCO and Channel-P VCO were con- sidered out of specification. When tested to the revised RTSP-1140, Appendix B (revised May 5, 1964), the Channel-8 VCO and Channel-P VCO were considered with the specification limits.

R Number	Component	Failure	Test	Cause of	Analysis and Corrective Action
nd Date	Part	Mode	Environment	Failure	
				Channel-8 VCO	
85 20/63	-	Excessive frequency change	Thermal- vacuum (+55°C)	Workmanship (vendor)	Center frequency changed by 60 cps at $\pm 55^{\circ}$ C during thermal-vacuum test. The allowable change is ± 5 cps. Unit was returned to the vendor for analysis. The vendor found an intermittent lead connection between R12 and R18. The vendor will institute tighter assembly and quality control inspection procedures.
934 /7/64	-	Frequency not within specified limits	(-10°C)	Workmanship	This malfunction was previously analyzed under MR 5874. This is the second malfunction report written on the same problem.
872 /3/64 874 /7/64	-	Frequency out of specified limits	Ambient and -10° C	Workmanship	At -10° C the frequency output of the VCO was 3.2 cycles below the speci- fied limit of 2995 cps. During subsequent testing under ambient conditions, the VCO could not be modulated. Following replacement with VCO Serial No. 3431, the malfunctioning VCO was microscopically examined. This disclosed considerable flaking and wear of the gold plate on the contacts. The malfunctioning was believed to have been caused by either shorting between the contacts because of loose gold flakes or by an open circuit because of foreign matter being trapped at discontinuities of the plating. The cleaning of the contacts restored proper operation.
				Channel-8 VC	O, S/N 3431
3761 6/1/64	-	Center frequency out of specified limits	Thermal- vacuum (+45° C)	Accident	When tested under thermal-vacuum conditions at $+45^{\circ}$ C, the center frequency of the Channel-8 VCO was measured at 3005.1 cps, while the specified limits for the center frequency are 3000 ±5 cps. If was concluded that the Channel-8 VCO has assumed a permanent set due to temperature bake in thermal-vacuum. The center frequency can be brought into specified limits by retuning. This deviation was reviewed by Material Review Action and approved by JPL.
			L	Channel-8 V	CO, S/N 3433
3955 5/8/64	-	Variation in output	Ambient	Workmanship	The output of the Channel-8 VCO varied during a check-out test following vibration testing. Examination of the unit revealed a poor solder connection on the chassis connector. Proper soldering of the connector restored normal operation.
			<u> </u>	Channel-8 V	CO, S/N 3435
3767 6/29/64	-	Center- frequency reported out of specifica- tion	+45°C)	Nonconfirmed	the Channel-8 VCO drifted from 3001.8 cps (the
				Channel-8 V	/CO, S/N 4007
5876 4/2/64	-	Loss of output	Ambient	Random	After attempts to alter the output amplitude only resulted in a loss in amp tude, the assembly was returned to the vendor for analysis because it is sealed and proprietary. The vendor removed the potentiometer, measured the resistance, dis- covered an open circuit, and then inadvertently discarded the failed poten
1					tiometer. Therefore, the reason for this part failure could not be could lished. No previous open-potentiometer failures have been encountered this VCO.
3771 7/6/64	-	Low output voitage	Thermal (at 0°C)	Nonconfirme	During thermal test at 0° C, the output voltage of the Channel-8 VCO, Serial No. 4007, was measured at 5.8 volts, peak-to-peak. The specific minimum output voltage is 6.0 volts. Channel-8 VCO, Serial No. 4007, an early design which incorporates a series resistor and a tapped potent eter for a variable output. Later designs employ a single fixed resistor The output voltage at 25° C measured 6.5 volts, peak-to-peak; at 0° C in vacuum, measured 6.2 volts; and at 45° C was 7.1 volts. The performa of the TV Subsystem will not be affected by this condition. MR 100-64- has been approved by JPL, indicating acceptability of this condition.

1

i

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Faiture	Analysis and Corrective Action
		ł <u></u> ł	(Channel-8 VCO, S	N 4007 (Continued)
3787 8/31/64	-	Frequency shift	Ambient	Accident	During a recheck of the F-Channel of Flight Model III-3 TV Subsystem, the frequency of the Channel-8 VCO shifted as the F-Channel current was increased. The actual frequency appeared normal when viewed on an oscilloscope. Further testing revealed that high-frequency noise on the 3-kc input to the counter was causing the counter to be falsely triggered. When the gain on the counter was reduced, the frequency of the Channel-8
					VCO became stable and within specification.
		1		Channel-8 V	CO, S/N 4010
2897 5/2/63	-	Unstable center frequency	Vibration	Workmanship (vendor)	Center frequency was unstable and could be shifted by tapping the case. The VCO was returned to the vendor for analysis. The vendor found that capacitors C1 and C2 were intermittent, transistor Q3 had low gain, and Q4 was open. The VCO was repaired and the vendor instituted tighter receiving and quality control test procedures.
	······	J (225-kc, V	CO, S/N 002
2264 12/17/64		High out- put level	Ambient	Accident	During testing of Flight Model III-4 at JPL, the output of F-Channel VCO, Serial No. 002, was 3 db higher than nominal. This unit, manufactured by Datatronics, had replaced VCO, Serial No. 1034, manufactured by Vector, on this Flight Model. Specification requires that the output of the VCO is to be adjusted for 1.5 volts, peak-to-peak, measured across a 10-kilohm load at the end of flight-length subminiature cable. Resistor R5 in the modulator circuit must be adjusted to provide the proper telemetry devia- tion for a 1.5-volt input to the IF modulator. The encountered problem occurred because the Vector VCO is not an emitter-follower output-type (output impedance is 20kilohms) as the Datatronics unit, and is affected by modulator input impedance which varies from unit to unit. Therefore, the Datatronics VCO is not a direct replacement for the Vector unit without adjustment.
					Resistor R5 in the modulator has been adjusted so that the telemetry side- bands are 0 db below peak carrier amplitude.
	L			225-kc VC	D, S/N 004
3766 3768 6/23/64 6/29/64	-	Center- frequency out of specifi- cation	Thermal- vacuum (at +0° C +45° C	Nonconfirmed	The center-frequency of the F-channel VCO was 224. 324 kc during the 0° C test and was 225. 760 kc during the $+45^{\circ}$ C test (the specification tolerance is 225 ± 0.5 kc). Furthermore, the VCO was slow in stabilizing when it was turned on. The trouble was traced to an HP counter which was found to be reading 1% low (by 2.25 kc at the VCO center-frequency). The VCO was adjusted to 1% high in frequency and then subjected to electrical acceptance tests. The center-frequency was readjusted, using a calibrated counter, and normal operation was restored.
4039 10/2/63	-	No output	Room (engineering)	Workmanship (vendor)	The VCO was removed and sent to the vendor for analysis because of no output. The vendor reported that the decoupling capacitor was defective. This capacitor is a mylar, polycarbonite sheet inside the case of the VCO. The vendor further reported that this sheet had yellowed, probably because of subjection to an excessive amount of heat that resulted in the lessening of the dielectric strength and thus allowing the capacitor to short.
<u> </u>			<u> </u>	225-kc VC	D, S/N 005
2108	-	Unstable	Ambient	Workmanship	The P-Channel output of the 225-kc VCO was unstable. The output fre-
6/18/64		Silstavie		(vendor)	quency varied for a fixed-voltage input after a warm-up period of approxi- mately 15 minutes. This VCO was replaced by Serial No. 009. Examination of the faulty VCO revealed potting compound on pins 4, 5, 8, and 9 of its connector. The connector was cleaned and retested. Operation was still unstable, so the unit was returned to the vendor for analysis. The vendor confirmed the failure. Some foreign material was found be- tween the collector-resistor and emitter-resistor leads of the input tran- sistor on the printed circuit board. The foreign material was removed, the board cleaned, and operation was normal. The material was not analyzed.

1

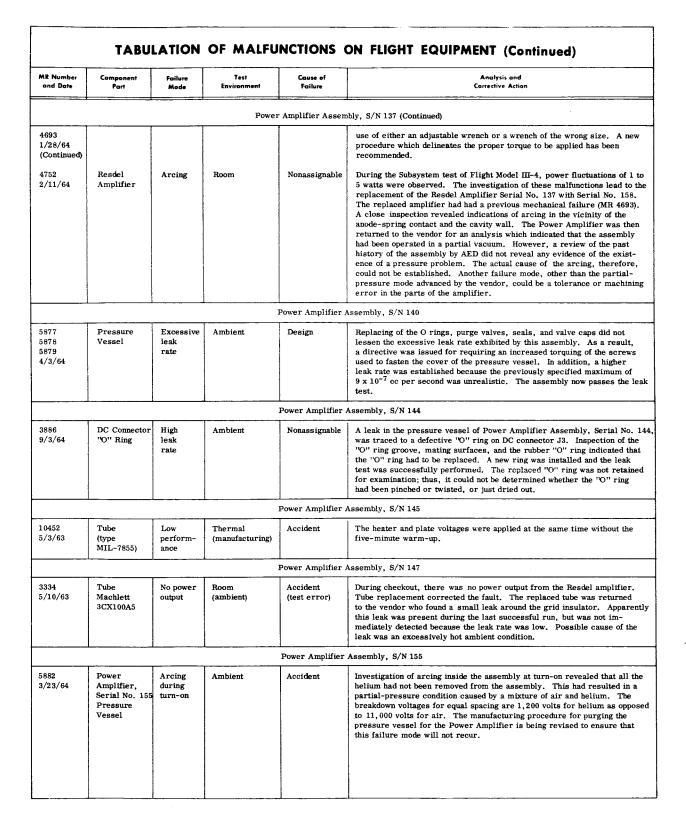
	TABU	JLATION	OF MALFU		ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
	t	<u></u>		225-kc VC	L O, S/N 015
4653 2/8/65	-	Frequency deviation Out of specifica- tion	Thermal-vacuum	Accident	During thermal-vacuum testing, at 45 °C, of the 225-kc VCO, Serial No. 015, the frequency deviation was higher (10.544 kc) than the specified upper limit of 10.5000 kc. In addition, the output level for a +1.25-volt input was lower (1.28 volts) than the specified minimum value of 1.30 volts. How- ever, the frequency deviation was linear throughout the entire range. Re- view of the history of this unit revealed that the center frequency was ad- justed at ambient condition, and that the input-voltage extremes (+1.25 to -5.0 volts, DC) were checked for conformance to the frequency specifica- tion. The unit had not been checked for frequency deviation at +45° C, which would include the +1.25-volt input. This check is not required, but is usually performed as a precaution before flight acceptance testing. The VCO was checked in a Tenny chamber at +45° C for frequency deviation, and the sensitivity, center frequency, and pulse amplitude were adjusted for optimum operation. The VCO performed normally during this test. This out-of-specification condition has been referred to JPL on MRA No. 100-65-002 and has JPL concurrence.
				225-kc VCO	, S/N 1023P
2800 1/25/63	-	Adjust- ment	Bench test after commutator burn-in	Rundom	Could not set peak-to-peak deviation to 10 kc. Unit functioned properly during initial tests. Returned to vendor for analysis. The vendor has re- ported that this is the first failure of the type encountered. It was random in nature and not due to design, operations, or processes. The subcon- tractor was requested to furnish more detailed failure analyses, as a matter of record, in the event additional malfunctions are reported.
				225-kc VCO	, S/N 1026P
2863 7/25/63	-	Loose potentiom- eter	Room (engineer- ing)	Workmanship (vendor)	The output potentiometer on the VCO was found to be loosely mounted. While no changes in the unit's electrical characteristics could be attributed to this mechanical problem, the loose potentiometer prevents the VCO from being used on a spacecraft. The VCO, Serial No. 1026P was replaced.
	<u> </u>	- I		225-ke VCO	, S/N 1047P
3595 5/1/64	-		Ambient	Accident	The apparent failure of the F-Channel, 225-kc VCO to operate was caused by the failure of the operator to perform the test in accordance with the latest revision of RTSP-1140A. During a test in accordance with this speci- fication, the unit did operate although not correctly. However, this com- ponent was utilized only to complete telemetry change for Qual testing other components. These VCO's are being replaced by Datatronics.
3996 5/1/64	-	Output not within specified limits	(0°C)	Secondary	During a new series of re-qualification tests performed because of changes in the Telemetry Assembly for Flight Model III-2, the output of this VCO was noted to be out of specified limits. This VCO was included only to pro- vide proper power supply loading and was known to be operating improperly. (Refer to MR 3595)
				225-ke VCO	, S/N 1468
3773 7/11/64	-	Center frequency not within specified limits	Thermal- vacuum (at 45°C)	Nonconfirmed	The center frequency of Channel-F VCO, Serial No. 006, measured 224.43 kc during flight acceptance subassembly testing under thermal-vacuum conditions at 45° C. The specified limit for the center frequency is 225 ± 0.5 kc. Allowable center frequency and deviation are governed by the band-width of the ground-receiver discriminator. The 70-cycle shift en- countered is well within the capability of the ground-receiver discriminator and will have no effect on receiver operation or telemetry received.
2148 10/28/64	-	Center frequency out of specifica- tion	Explosive safe (JPL)	Workmanship	During an Explosive Safe Area TV full-power test, the F-Channel 15-point Telemetry was erratic. The frequency of the F-Channel, 225-kc Voltage Controlled Oscillator was measured as a function of input bias, using telemetry calibration chassis A-100. The frequency deviation was normal, approximately 10 kc; however, the center frequency deviation was normal, thigh, which made the recovery of telemetry impossible. This VCO, manu- factured by Vector, was removed and replaced with an equivalent unit manu- factured by Datatronics. A linearity plot of the VCO was performed and no adjustments were required. Operation of the TV Subsystem was normal. The failed unit was scrapped. Only Datatronics 225-kc VCO's will be used on Flight Units.

.

H-94

i

		_	·	·	
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		• •		225-ke VC0), S/N 1469
2878 2/5/63	*	Excessive drift	Thermal- vacuum (0°C)	Design (vendor)	Unit drifted by 1 kc during thermal-vacuum exposure at 0° C. The limit is ±500 cps. The VCO was returned to the vendor for further analysis. The vendor has changed several parts and modified the design. However, for proprietary reasons, detailed changes were not disclosed.
		_		225-ke VC0	D, S/N 1471
3879 5/9/64	-	Drift in output frequency	Thermal- vacuum	Accident	Investigation of why the output frequencies differed from the specified values in RTSP-1140 revealed that these specified values were incorrect. The RTSP has been corrected.
	L			225-kc VCO,	Miscellaneous
2158	_	Noisy 90-point telemetry	Ambient	Nonconfirmed	The 90-point P-Channel telemetry was very noisy. The telemetry deviation for the P-Channel 225-kc VCO was found to be low. While the specified amplitude of the first sideband is -20 . 8 db below the carrier amplitude, it was measured at -22 db. The frequency of the 225-kc VCO was found to be approximately 0.5 kc off center frequency. This would be a contributing factor to the noise experienced on the 90-point telemetry. The discriminan tors were replaced and the noise was decreased. The reason that changing the discriminators decreased the noise is that the second discriminator limits at a lower input-signal level (225 kc) and therefore results in less noise on the detected output signal. The deviation was increased by retuni the 225-kc VCO.
2877 2/6/63	-	Low volt- age output	Pre-thermal- vacuum	Workmanship (vendor)	On VCO's, S/N 1038P, 1034, and 1468, vendor used a 47-k instead of a 20-k reactor, which reduced the voltage to less than 1 volt p-p. The units will be repaired. The vendor attributed the low output to the use of an in- correct resistance value. Resistance values used for the Ranger assemblies are different from those used for the vendor's standard design and specified output voltages of the units were accidentally checked against the wrong specification.
5887 3/26/64	-	Frequency not within specified limits	(-10°C)	Accident	Investigation into the frequency output of the VCO not being within specified limits during a -10° C test revealed that although the thermocouple did record a temperature of -10° C, the air that was blowing directly on the VCO was at -20° C resulting in the VCO being at approximately -20° C. A baffle was added and the temperature of the VCO was stabilized at -10° C. The test was rerun successfully. The test specification has been modified to include the baffle.
	I	44	Т	elemetry Malfunc	tions, Miscellaneous
4699 4/14/64	-	Wire reversed	Ambient	Accident	The input wiring for F and P Channel at the input jacks on the Telemetry Assembly was reversed. The drawings are being changed so that the assemblies will reflect this configuration rather than re-work the wiring o the Assemblies.
3827 4/21/64	-	Broken wire	Pre-vibration test (0°C)	Workmanship	Investigation of a reading of zero at test point 4 instead of 27 ± 1.4 volts revealed that one end of the lead from test point 4 to capacitor C5 was broken at lug C5. The lead was resoldered and normal operation was obtained.
3944 5/2/64	JPL Test Equipment	Cruise mode did not operate	Thermal- vacuum (JPL)	Nonconfirmed	The cruise mode did not turn on when activated during the 16-hour simulat mission performed in thermal-vacuum. The cruise mode had previously been turned off by the unit 18 console but the JPL hydraulic time switch ha not been de-energized. This caused the integrating circuit on the cruise- mode relay to remain charged resulting in the inability to reactivate cruise mode by the unit 18 console. Cruise mode could be activated, however, by switching the power select relay off, then on again. This gave the appear- ance that the power control relay was defective; later proved not to be true The JPL procedure has been reviewed and suggestions have been made to ensure that this type of problem does not recur.


Sale -

MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
- <u></u>			Telemetry		liscellaneous (Continued)
3942 5/5/64	-	Cruise mode did not oper- ate	Thermal- vacuum (JPL)	Nonconfirmed	During MVT No. 2, the JPL test director requested turn on of the cruise mode by the "Solar Panel Deployment" command. The cruise mode did not respond because the hydraulic timer switch had not been opened. (Refer to MR 3944.) Cruise mode was initiated by opening the hydraulic timer switch and providing the "Solar Panel Deployment" command. The recommenda- tion has been made to include into the test the "Solar Panel Deployment" command for enabling of the Subsystem.
2185 5/14/64	-	Cruise mode turned on too early	Ambient (JPL)	Nonconfirmed	Cruise mode turned on when power was applied to the Subsystem although no cruise-on command had been initiated. The Subsystem was turned off and several attempts were made to cause a repeat of the problem; all with- out success. Investigation disclosed that during center-of-gravity and weight measurements, the solar panels had been deployed by using a jumper plug which had inadvertently activated the cruise-on relay resulting in the initiation of cruise mode as soon as power was applied.
1542 11/27/64	-	Erratic telemetry reading	Thermal- vacuum	Accident	During thermal-vacuum testing of Flight Model III-4, Telemetry Point No. 10 of the 15-point, channel 8 telemetry indicated 2.25 volts during one frame and returned to its normal level of 0.5 telemetry volt during the next frame. A check of the battery voltage indicated that a very slight voltage drop had occurred; but if the magnitude of the current indicated by the telemetry were drawn across the entire battery, the battery voltage drop would have been four times the drop that was indicated. Review of the battery cell-monitoring circuit showed that a voltmeter in parallel with a digital voltmeter is used for cell monitoring. The circuit employs a current-limiting resistor in series with the meters to protect the battery from unusual current surges should a short occur in the voltmeter or digi- tal voltmeter.
					While the value of this current-limiting resistor is normally 1200 ohms, the resistor in use at the time of the problem was only 12 ohms. The only explanation for this problem is that a momentary short occurred between signal ground and chassis ground of the digital voltmeter. Since the oper- ator was approximately one-third to one-half way through the cell monitor- ing procedure, the voltage was approximately 12 to 14 volts dropped across the 12-ohm resistor. This would give a current indication of 1.2 amperes through the Current Sensing Unit. This value compares very closely to the current monitored at that test point during short intervals. Although this is the only possible conclusion, momentary shorts in any of the digital volt- meters in the Ranger Program have not been confirmed,
	I	I	P	ower Amplifier A	Assembly, S/N 003
2896 5/6/63	RF Connector (J2) Rings KA-19-d	Broken pin	Room (Ambient)	Wearout	During integration of the power amplifier on the structure, the coaxial female contact was seen to have a broken spring quadrant. The cable was replaced. Failure was attributed to wearout due to numerous insertions and manipulations.
3422 9/28/63		Leaky	Room (JPL)	Workmanship (vendor)	During initial testing at JPL, the pressure in the vessel was measured at only 10 psig. Several days later, a remeasurement was made and only 8 psig was recorded. The vessel was repressurized to 15 psig and a leak de- tector was utilized. It was found that all jacks in the vessel were leaking. The malfunction report was not immediately written because the leak rate a which a failure occurred was not defined.
					Because extensive rework would have been necessary to replace the pressu vessel, all jacks on the Serial No. 003 vessel were replaced with those from the Serial No. 015 vessel. AED engineering investigation into the leakage around the RF connectors from these pressure vessels revealed that the pressurized RF conductor with a standard type 2022C RF fitting was de- signed incorrectly. The groove of the 2022 C connector is such that none o the available O-rings would provide a proper fill. The thickness of the O- ring groove was 125 percent of the width of the O-ring groove. This re- sulted in a very poor seal at the connector and a high leakage rate that is greatly accelerated through rapid temperature changes.
					All of the pressure vessels are to have the standard RF 2022C type fittings removed and replaced with Automatic Connector type 101-T3101-75 fittings

.

Number	Component	Failure	Test Environment	Cause of Failure	Analysis and Corrective Action
d Date	Part	Mode			11. C/N 006
				Power Amplifier A	ssembly, S/N 000
35 20/63	RF Cable	Loose Connector	Room (engineering)	Workmanship	The connector on the RF input cable which connects the pressurized housing to the Power Amplifier broke off. Because of a loop in the cable, a twisting force is always present on this connector. The excess cable is required for installation and removal of the Power Amplifier.
36 22/63	Resdel Amplifier	Low power output	Bench	Workmanship (vendor)	The Resdel Amplifier was replaced because the power output was only 20 watts after 2 to 5 minutes of 8 watts of input. The unit was returned to the vendor. The vendor discovered several of the metal contact fingers between the tube housing and active cavity were bent out of position. These fingers were bent during manufacturing when the tube cavity was joined to the cavity. The loss of these contacts would cause a decrease in RF power output.
				Power Amplifier	Assembly, S/N 013
463 /6/64 .mplifier /N	Vacuum Tube (Type ML-7855)	Open filament	Room (post vibration)	Workmanship	Investigation into the opening of the filament of the tube during vibration revealed that the interior elements of the tube, i.e., plates, grids, and cathode emmisive coating, showed no evidence of overheating or dis- coloration. The filaments were found to have broken at the point the helix is welded to the terminal. It appeared that the filaments were crushed when welded, thus breaking when vibrated.
				Power Amplifier	Assembly, S/N 015
4690 1/27/64	Connector	Binding	Room	Accident	The P2 connector was binding when removed from the Resdel amplifier. Visual inspection of the connector failed to reveal any reason for this. After the connector shell was cut open, the binding disappeared. It is believed that the shell had been deformed because of being tightened or removed by use of an adjustable wrench or a wrench of the wrong size. The connector was replaced. A new procedure, delineating torque re- quirements, has been implemented.
				Power Amplifie	r Assembly, S/N 018
2842 3/29/63	Pressure Valve (Shraeder)	Loss of pressure	Thermal- vacuum	Design	Pressure could not be stabilized in test chamber. When removed from chamber, a pressure check of Power Amplifier housing revealed zero psig. A leak test was made and leakage was detected at pressure valve. Engineering is going to a Shraeder-type 300 tank valve which has been used on TIROS.
				ifi	er Assembly, S/N 020
4048 11/5/63	High Voltag Connector, J4 DC4- 504000		Thermal- vacuum	Power Ampilia Workmanship	in DE subsit was lost and the line current dropped to 4.5 amps (normal
					metal, there was also shricke greater to be disassembled by engineering per- in the future the failed parts will not be disassembled by engineering per- sonnel. Secondly, at no time will silicone grease be used on these con- nectors, and care will be exercised to see that no grease is picked up fro the pressure vessel.
				Power Ampli	fier Assembly, S/N 021
2188 5/19/64		Not safety- wired	Post- vibration	Workmansh	Serial No.

	TAB	ULATION	OF MAL	FUNCTIONS	ON FLIGHT EQUIPMENT (Continued)
MR Numbe and Date	r Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
			Pe	ower Amplifier Ass	sembly, S/N 021 (Continued)
2188				1	
5/19/64 (Continued	1)				have not been safety-wired and special quality-control procedure will be followed to ensure they are safety-wired when designated for flight operation.
				Power Amplifie	r Assembly, S/N 039
2910 3/2/63	Mylar gasket capacitor (C3)	Arc-over	Thermal- vacuum	Secondary	It was not possible to stabilize test chamber pressure. Also, line currer fluctuated from 6.5 to 14 amperes. Power amplifier housing lost pressu causing arc-over around mylar gasket.
		T		Power Amplifier	Assembly, S/N 120
3223 5/15/63		Increase in reflected power	Room (bench)	Nonconfirmed	
4047 10/31/63	Resdel Power Amplifier	High reflected power	Ambient (engineering)	Accident	The solder-lug washer on Capacitor C2 was very critical. The solder-lug washer on Capacitor C2 was believed loosened during test. The solder-lug washer was re-epoxyed and the unit was returned to service after a satisfactory electrical check.
	· · · · · · · · · · · · · · · · · · ·			Power Amplifier	Assembly, S/N 121
4037 9/24/63	Resdel Amplifier	Drop in output power	Bench	Nonconfirmed	After 30 seconds of full power, the power output level dropped from 60 to 40 watts. The power amplifier was retuned by turning capacitor C2 approximately 1/8-turn and the output level rose to 60 watts. The setting of capacitor C2 was critical.
				Power Amplifier	Assembly, S/N 122
1676	Resdel Power Amplifier	Low output power	Thermal- vacuum	Workmanship	The power amplifier was returned to vendor for analysis. The results of the analysis indicated that the finger contacts at the bottom of the cavity were not making good contact. This would result in an effective change of the size of the cavity.
				Power Amplifier A	Assembly, S/N 124
365 0/14/64	Transmitter Serial No. 210 (Flight Model III-4)	Low power output	Room (ambient)	Accident	During initial RF operation of the P-Channel, only 18 watts of power was obtained at the Four-Port Hybrid. Inspection of the transmitter revealed that the capacitor C2 on the Resdel IPA (Intermediate Power Amplifier) was adjusted so that only 1.5 watts could be obtained from the IPA. With the capacitor in the normal position, the power output was 8 watts (normal). Inspection of photographs taken when the transmitter was released to integration, showed the capacitor in the normal position. It could not be determined when the capacitor was reset. A Quality Control seal will cover the adjustment hole for capacitor C2 to prevent a resetting of this capacitor.
				Power Amplifier A	ssembly, S/N 125
942 /13/63	of Power	Anode ring coose	Bench	Accident	Investigation of why power decreased from 60 watts to 20 watts disclosed that the anode ring was loose. Vendor analysis showed that undue pressure from the tuning slug exerted pressure on the anode plate that is mechan- ically attached to the tube. Care should be exercised in the adjustment of the tuning slug.
<u>a</u> 3				Power Amplifier As	sembly, S/N 137
93 28/64	Connector F J2	Binding F	Room	Accident	During electrical checkout of Flight Model III-4, a slight fluctuation in out- put power was observed. The cable between the Power Amplifier and the pressure vessel was suspected to be the cause. During the replacement of the cable, it was found that the cable was binding. It is believed that the connector was damaged during either assembly or disassembly by the

	TABUL	ATION	OF MALF	UNCTIONS C	ON FLIGHT EQUIPMENT (Continued)
MR Number and Date	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		t		Power Amplifier A	Assembly, S/N 158
2114 6/30/64	Tube MA7855	High- voltage puncture of mylar wafer capacitor	Ambient	Accident	During bench test, the output of the IPA was being checked. Normally, the high voltage (+1000 volts) and filaments of the Power Amplifier Assembly are off during this check. However, power was applied to the Power Ampli- fier Assembly, and the plate dissipation of the power amplifier went to 125 volts (normally 65 volts) for 2 minutes. It was found that a roughness in the casting caused the puncture of the mylar insulator. The housing was made smooth and was replated. The insulator was replaced. The vendor also repaired a cracked solder joint in the output coupling loop and remove the shim stock found inside the housing near the input matching capacitor.
				Current Tran	sformer Units
3836 5/4/64	Current Transformer Units, Serial Nos. 011 and 012	Exuded potting	Thermal- vacuum	Design	Investigation of the potting compound exuding from the case of the Current Transformer Units during thermal-vacuum testing revealed that the plasticizer was being pulled from the transformer coil by the vacuum. The plasticizer, if not retained by the urethane barrier applied over the coil, will react with the potting compound. Final analysis indicated that both CTU assemblies were potted before the conformal coating on the coils was completely cured. This resulted in the entrapment of toluene within the potting material. The solethane conformal coating and the potting material in contact with the toluene remained in a solvated condition. It is believed that when the units were subjected to thermal-vacuum tests, the solvated resins surrounding the coil exuded through the relatively porous potting material and foamed at the surface.
					The cure procedure has been changed to incorporate a vacuum cycle before the final cure during the final potting.
3852 5/12/64	Current Transformer Unit, Serial No. 015 (Spare)	Open connec- tion	Ambient	Workmanship	During a continuity check following assembly and potting, no continuity, as required by specification, was measured between pins 1 and 4 and 3 and 4. An X-ray photograph of the unit revealed that the leads were open.
	1			Current Sensi	ng Unit S/N 001
5823 3/25/64		Telem- etry voltage Positive	Ambient	Design	Investigation into the wrong polarity of telemetry voltage from the Current Sensing Unit resulted in a design change which corrected the situation. The necessary Engineering Change Notices have been distributed and have effected manufacturing changes and Revision A to Drawing No. 1758384 on March 27, 1964. The PTM assembly has been modified.
1324 9/24/64		Telemetry reading not within specified values	Ambient	Nonconfirmed	During final acceptance testing, Current Sensing Unit, Serial No. 001, was rejected because of an out-of-specification telemetry voltage reading. The unit was checked and found to exhibit a telemetry voltage reading that was 7 millivolts out of specification at 27.0 volts and 1 millivolt out of specifica- tion at 27.5 volts. This condition was the result of a higher-than-normal breakdown voltage in diode 1N746A of the telemetry output circuit. This telemetry variation from its specified value will not affect the operation of the Current Sensing Unit, nor will it affect the overall performance of the telemetry. MRA 100-64-161 has been written to cover this deviation from specification. Based on the MRA, the unit has been accepted by RCA Product Assurance and JPL.
		·		Current Sensi	ng Unit S/N 002
3928 3/31/64		Output not within specified limits	(0°C)	Design	During the calibration test, two of the recorded readings were not within the specified limits. Examination of these limits revealed that they should be revised to a graphical rather than specific limit. The test specification has been revised.
			A	Current Sensi	ng Unit S/N 003
3893 10/24/64		Premature turn-on	Thermal- vacuum	Accident	The calibration test of Current Sensing Unit, Serial No. 003, was initiated before the thermal-vacuum chamber had stabilized to the prescirbed pressure of 1.0×10^{-5} mm Hg. The pressure at the start of test was 1.1×10^{-5} mm Hg. MRA-100-64-193 was initiated to cover this occurrence. Test

and the second

MR Number	Subassembly	Component	Failure	Test	Cause of	Analysis and
and Date	Serial Number	Part	Mode	Environment	Failure	Corrective Action
			с	Current Sensing Uni	t S/N 003 (Conti	nued)
3893 10/24/64 (Continued)						personnel have been cautioned as to the problems of premature turn-on during thermal-vacuum testing, an have been instructed to double-check the accuracy of all test conditions prior to initiation of testing.
3894 10/28/64 3895 10/26/64			Telemetry out of specifica- tion	Thermal- vacuum	Secondary	These malfunctions involved two slightly out-of- specification telemetry readings in the Current Sensin Unit, Serial No. 003, which occurred during thermal- vacuum testing at high temperature. Investigation revealed that this P-Channel Current Sensing Un t is slightly more temperature-sensitive, and the out-of- specification readings will not affect the operation of the unit. The telemetry deviations have been approver by MRA-100-64-194 and MRA-100-64-195.
			С	urrent Sensing Uni	t S/N 004	
4799 4/17/64			Output not within specified limits	Thermal- vacuum (+55°C)	Accident	During the +55 °C thermal-vacuum testing, the reading of the output from the Current Sensing Unit were not within specified limits. It was found that the digital voltmeter used to measure the output had been sitting on top of a power supply and had been overheating. Retesting of the Unit a few hours later provided satisfactory results.
					Current Sensi	ng Unit S/N 005
3791 9/18/64	Current Sensing Unit Serial No. 005 Cable 30W29 (QTM)		Excessive ripple	Ambient	Accident	An out-of-specification ripple voltage was encountered during electrical checkout of current Sensing Unit, Serial No. 005. Investigation revealed that a design change had been made in the direction of current flow through the Current Sensing Transformer. The cable used to connect the Current Sensing Unit, Cable 30W29 was an older type. When the current was revised, the unit performed satisfactorily. Engineering Notice EN 92261-009 has been issued to specify the direction of current flow for testing the
						QTM with the old cable (30W29). All flight units have been checked with new cables with the current direc- tion specified by Test Method TM 1-1758390, Revision C.
3574 10/6/64		Diode CR1 (zener type 1N746)	Telemetry reading not within specified limits	Ambient	Design	Current Sensing Unit, Serial No. 005, was removed from its normal test cycle for evaluation of the telemetry-output problem experienced with CSU, Serial Nos.007 (See MR 1359). Substitution of zener diode CRI (type 1N746) was performed on this unit in order to obtain an optimum output slope of the transfe curve between 14 and 17 amperes of control current. This, therefore, did not constitute an actual failure, but the problem was anticipated, based on experience with CSU, Serial No. 007.
2069 11/5/64			No current drawn from power supply	Ambient	Accident	When the unit was turned on, no current was drawn from the power supply. This was found to be caused by an improperly connected cable in the external test harness. The inside retaining ring became loose and allowed the connector block portion of the Amphenol adapter to turn within its stops. The connector can mate in a correct or incorrect way. In an incorrect mating, a short ciruit occurs across the external power supply. The failure report shows no current wa drawn from the power supply indicating that an in- correct mating did not occur. Thus, no undue stress was applied to the unit under test. The unit functioned properly when the connector pins were oriented properly.

TABULATION OF MALFUNCTIONS ON FLIGHT EQUIPMENT (Continued)							
MR Number and Date	Subassembly Serial Number	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action	
			Curren	nt Sensing Unit S/N	1 005 (Continued)		
1532 11/6/64			Calibra- tion data out of specifica- tion	Ambient	Workmanship	A discrepancy was noted between the pre-thermal- vacuum and postacceleration calibration data. The data in question were obtained during post-acceleration testing. It was decided after a review of the data that the discrepancy was due to operator error. It was als discovered that the post-thermal-humidity test was performed with the test harness between the CSU and the CTU improperly connected. The test was rerun with a properly connected harness. Calibration data then met all specifications.	
			1	Current Sensing U	Unit S/N 006		
3789 and 3790 9/13/64			Telemetry reading not within specified values	Ambient (post- vibration	Accident	During the postvibration electrical test of the Current Sensing Unit, Serial No. 006, telemetry readings were not within specified values. The unit indicated proper values for the low ranges (0 to 500 ma), but was out of specification for the high range (14 to 17 amps). In all subsequent tests, the telemetry readings were within specified values for both the low and high ranges. The postvibration electrical test was repeated and the telemetry readings were normal.	
						It was therefore concluded that the out-of-specificatio condition during the first postvibration test was due to faulty readings.	
				Current Sensing	Unit S/N 007		
3573 10/5/64		Diode CR1 (Zener type 1N746)	Telemetry reading not within specified limits	Ambient	Design	During calibration tests of Current Sensing Unit, Serial No. 007, the minimum slope of the F-Channel transfer function between 14 and 17 amperes of contro current was not within the specified limit, for input voltages of -27.0, -27.5 and -28.0 volts. Investigatio revealed that the slope of the transfer curve is a func- tion of zener diode CR1 in the telemetry output circui and the magnetic coupling in the Current Transforme: Unit. It is difficult to determine which zener diode (all with same characteristics) will provide a correct transfer-slope. A compatibility check must be made by substituting zener diodes into the circuit until opti mum slope of the transfer function is obtained.	
						The particular Current Sensing Unit and 30W29 Harm that are acceptance-tested together will remain as a single unit, in order to maintain similar character- istics of magnetic coupling which could affect the slo of transfer function. A drawing change has been initiated to reflect the necessity of selecting the prop 1N746 zener diode for each Current Sensing Unit.	
1359 10/10/64			Telemetry reading not within specified limits	Ambient	Design	Following the initial malfunction of CSU, Serial No. 007, (see MR 3573) calibration tests were rerun and the slope of the transfer curve was inconsistent over a number of runs. This resulted from the difficulty reading exactly the same current each time. The average slope reading was 81.5 millivolts per ampen between 14 and 17 amperes of control current with a input of -27.0 volts. The specified minimum value 85 millivolts per ampere (100 mv/amp \pm 15%) at -27 volts input to the CSU is too close to the design capa bilities of the CSU. The specification limits have be revised to 100 mv \pm 25% to correct the situation.	

Building and South and South

MR Number and Date	Subassembly Serial Number	Component Part	Failure Mode	Test Environment	Cause of Failure	- Analysis and Corrective Action
				Teamperature	Sensor	
3439 10/9/63	Temperature Sensor Assembly Serial No. 004 (Block III-1)	Diode CR1 (types MZ11.2V25 and MZ18V05)	Shorted	Room (JPL)	Accident(test error)	The Channel-8 telemetry points Nos. 3 and 4 read zero volts following the application of both GSE and battery power during thermal-vacuum testing. The 2 diodes were found to be shorted when the Tempera- ture Sensor Assembly was inspected. In addition, it was noted that all the inked markings on the terminal boards were blistered and smeared. Further investi- gation revealed that the wrong lacquer had been applie and the blistering and smearing had occurred during sterilization. Future units will utilize the proper ink and lacquer although these units will not be subjected to sterilization.
3824 5/12/64	Temperature Sensor, Serial No. 006 (Flight Model III-2)	Mounting Flange	Shorted to structure	Vibration (JPL)	Workmanship	Investigation of why the output of temperature sensor No, 11, the Shroud Temperature, was reading low during vibration testing revealed that the resistance from pin 34 of the Temperature Sensor to the chassis was 10,000 ohms. Opening of the Temperature Sensor revealed that the board mounting flange overlapped a terminal on the board, resulting in the shorting of the terminal to the structure. Revision E of Drawing No. 1706223 caused eight insulating washers to be added to the Temperature Sensors.
4268 1/16/64	Temperature Sensor Assembly, Serial No. 007 (Flight Model III-1)	Diodes CR1 and CR2 (Types MZ11.2 V25 and MZ18V05)	Shorted	Room (ETR)	Random	Investigation into the inability to obtain battery tem- peratures revealed that diodes CR1 and CR2 in the Temperature Sensor Assembly were shorted. Both diodes showed evidence of extreme heat, believed caused by an overvoltage. The exact cause of the failure was not established.
3373 7/23/63	Temperature Sensor S/N 008	Diode CR3 (type MZ18V05)	Short	Room (bench)	Accidental	Unable to obtain any voltage due to zener diode CR3 being shorted. This occurred when the connector cabl was shorted while the unit was undergoing thermal- vacuum testing.
2273 2/2/65	Temperature Sensor, S/N 009 (Flight Model III-4)	Reistor R7	Low telemetry indication	Ambient	Random	In a special Subsystem check, telemetry point 90-86, camera bracket temperature sensor No. 3, indicated 6 instead of 2.7 volts. This reading was traced to resistor R7 in the temperature sensor and the re- sistor was replaced. After extensive testing at JPL, the defective resistor was X-rayed, checked electrically, and found to be open.
<u> </u>		L		Miscellaneo	us	1
2981 4/9/63	Structure (PTM)	Shrouds	Deposition of a light oily film	Thermal- vącuum	Nonassignable	Film was too thin for chemical analysis. Did not repeat in later thermal-vacuum test.
4676 6/11/64	Battery Position- ing Bar (PTM)		Large clearances	Ambient	Nonconfirmed	Following dynamic testing at JPL, the Battery Po- sitioning Bar had large clearances surrounding the shear pins. These clearances were probably the result of initial manufacturing and would have no effec on the Battery during environmental testing (vibration and acceleration). No action is required for Flight Model III-2. The Battery Positioning Bar for Flight Models III-3 and III-4 will be constructed of stainless steel rather than aluminum.
2127 6/22/64	(Flight Model III-2)	Impactograph Battery	Leaky battery	Ambient	Accident	When Flight Model III-2 was removed from its shippin container at AMR some liquid was observed on the lower thermal shield. The liquid was traced to a battery installed in the impactograph that had develope a leak during transit from JPL. Further investigation revealed that no other portion of the TV Subsystem wa exposed to this liquid.

Subassembly Serial Number	Component Part	Failure Mode	Test Environment	Cause of Failure	Analysis and Corrective Action
		•	Miscellaneous (C	ontinued)	
					During transit the air conditioning unit in the van broke down and the temperature in the van rose from the 80° F level, for which the air conditioner was set to 98° F. The batteries for the impactograph were supplied from JPL stock and were considered to be fresh.
(Flight Model III-2)		Dropped shipping container	Ambient	Accident	Upon the receipt of Flight Model III-2 at AMR no attempt was made to remove the Subsystem from the shipping container. The bolts holding down the cove were removed and the cover was raised; the cover, however, did not separate from the shipping contain base and the entire container was raised between 1/ and 1/4 inch from the floor. While in this position th base of the shipping container containing Flight Mod III-2 separated from the cover and dropped to the floor. As the container base separated a rush of ain was evident indicating that the pressure within the container was other than ambient. This failure was attributed to this pressure differential.
					Flight Model III-2 was removed from the shipping container, visually inspected and electrically check The drop was evaluated and the resulting g-loading the Subsystem was determined to be insignificant. RCA specification RSP 1170A is being modified to ensure that the existing pipe plug in the cover of the shipping container will be removed prior to unpack to ensure an equalization of pressure.
Thermal Shroud (Flight Model III-4)	Fin B	Fin B of the -Y shroud had non- uniform alpha	Ambient (ETR)	Workmanship	The alpha of fin B of the -Y shroud varied between 0.37 and 0.49. A computer program analysis indic ted that under the worst possible case, i.e., the complete fin B with an a_s , of 0.37, the lower portic of the TV Subsystem would run 9°F cooler than Ranger VIII and the camera area 3°F cooler than Ranger VIII (including the anticipated cooling of 2°F due to the lower solar constant in March). Because only one-fourth of the fin area was nonuniform, the most probable case is that the Subsystem will run 3 to 4°F cooler than Ranger VIII. The Ranger VIII Spacecraft was 4 to 5°F warmer than nominal, ther fore, no change was needed on Ranger IX since the effect of a varying alpha tends to bring the tempera tures closer to the design nominal.
Lower Thermal Shield (Flight Model III-4)		Improper fit	Ambient (ETR)	Workmanship	The flight lower thermal shield did not fit properly because of interference with the Four-Port RF coas cable clamp. The spare unit did not fit either. An investigation disclosed that the side panel in the battery monitor connector area did not fit becasue i either had been sewn in upside down during initial assembly or too large a seam allowance had been us during final assembly. The side panel seam was opened and the panel repositioned and resewn to fit properly.
	(Flight Model III-2) Thermal Shroud (Flight Model III-4) Lower Thermal Shield (Flight	(Flight Model III-2) Thermal Shroud (Flight Model III-4) Fin B III-4 Lower Thermal	(Flight Model III-2) Dropped Thermal Shroud Fin B Fin B of (Flight Model III-4) Fin B Fin B of Lower Thermal Improper Shield (Flight Improper	(Flight Model III-2) Dropped shipping container Ambient Thermal Shroud (Flight Model Fin B Fin B of the -Y shroud had non-uniform alpha Ambient (ETR) Lower Thermal Shteld (Flight Improper fit Ambient (ETR)	(Flight Model Image: Strong of the strength of the strength of the strength of the strong of the