@ https://ntrs.nasa.gov/search.jsp?R=19650023586 2020-03-17T00:52:35+00:00Z

A CRITICAL ANALYSIS OF
LUNAR TEMPERATURE MEASUREMENTS
IN THE INFRARED
by

Hector C. Ingrao, Andrew T. Young, & Jeffrey L. Linsky

Harvard College Observatory

Cambridge, Massachusetts (USA)

Scientific Report No. 6
NASA RESEARCH GRANT No. NsG 64-60

¥ ¥ % ¥ ¥

April 15, 1965

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION



T T W |

T T . [ 1 ) [ ] [ | T T R 9 O TSl 2 2.

The authors are particularly indebted to
Professor Donald H. Menzel for his continuous interest
in this phase of the project as well as for many fruit-

ful discussions.




ABSTRACT

The Harvard College Observatory radiation pyrometer
for lunar measurements and the associated data reduction
techniques are described. Under good observing conditions,
this system can measure the brightness temperature of a
square area of 12 x 12 kilometers at the sub-earth point
of the lunar surface, located with an accuracy of t 2 km;
relative temperatures near the subsolar point can be
measured with a precision of * 1°K and an absolute accuracy
or ¥ 8.5°K, and lower temperatures can be measured accurately
down to about 180°K with a post-detection integration time
of 0.2 seconds. Below this temperature, the integration
time has to be increased since the instrumental noise starts
contributing significantly to the uncertainty of temperature
measurements. Some data obtained at the total lunar ecliple
on June 24-25 and December 18-19, 1964 are presented.

Propagation of error analysis shows that it would
be very difficult to determine the subsolar point tempera-
ture with an absolute accuracy better than * 5°K, or a few
degrees during eclipse. Numerical integration of the heat-
flow equation for several lunar surface models shows that

the accuracy of infrared brightness temperature measurements

,during an eclipse is too low to permit realistically more

than the most general conclusions about the lunar surface.
In the two-layer model thicknesses greater than about 4 mm

cannot be measured by infrared technique.



1) The eclipse observations cannot be reconciled
with a model having homogeneous surface material with
temperature-independent thermal properties.

2) Eclipse observations of the crater Tycho. and
its environs are consistent with models having two-layer
temperature-independent thermal properties.

3) Very different models can have similar surface
temperatures during an eclipse, but which differ by 10°K
or more at depths of several millimeters. The combination
of millimeter-wave data with infrared data may possibly
distinguish one model from another.

Homogeneous models with linearly temperature-
dependent thermal properties and models including a radi-
ative transfer term give a better fit with the lunation
data of Murray and Wildey.

Since the eclipse and lunation data may both be
described by several different models of the thermal proper-
ties of the lunar surface, at present the possibility of our
learning about these properties from infrared data alone
seems very doubtful.

A general computer program coded in the FORTRAN
language has been written which solves the heat conductiv-
ity equation for a multilayer lunar surface and for arbi-
trarily temperature-dependent thermal properties (Scientific

Report #7, in preparation).
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I. Introduction to the Observational Problem

This report will discuss problems of measuring lunar
temperatures in the infrared part of the spectrum, particu-
larly in regard to data gathering, data reduction, precision
of the megsurements, and the significance of the different
models used to interpret the data.

The type of measurements made and the methods used
will be determined solely by the information that we want
to obtain from the data: the choice of high or low spatial
resolution, high or low temperature resolution, and relative
or absolute measurements can be made only on the basis of
the answers we are seeking from our program.

The specific instrumentation obviously will be
determined by the program fo be carried out. For example,
to correlate rdadio with infrared measurements, instruments
with resolution elements of several minutes have been used.
With these instruments it is not a problem to locate the
area under measurement within a fraction of the resolution
element. However, if the program calls for high spatial
resolution and one ~xpects to correlate the thermal features
with the lunar features, the observational and instrumental
problem is completely different. For example, if the reso-
lution element is 9" x 9" in size, its accurate location is
very difficult and, in fact, requires us to solve an astro-
metric problem.

At high spatial resolution the stability requirements



of the telescope also are more demanding. If the Moon is
being scanned, we must be able to determine the position
of the resolution element on the lunar surface as a func-
tion of time, and within a fraction of the resolution ele-
ment size.

The problem of temperature resolution can be a
serious one, depending upon the dynamic range that our
equipment has to handle and the time allowed for a complete
measurement. A scan during full Moon and through the sub-
solar point must handle a signal ratio power of the order
of 270, if we assume two extreme temperatures, 150°K and
LOO®K. 1If the noise level of the pyrometer is of the order
of 5 x 107! watts and if we want the measurements to be
limited only by this noise level, we have to resolve
3 parts in 1000 at L4LOO°K. To handle this amount of infor-
mation, rather complex equipment is needed.

The probable error in the absolute temperature
measurements will depend mainly on the accuracy of the
measurements of the instrumental parameters and of the
atmospheric attenuation.

For measurements of relative temperatures, knowledge
of the instrumental parameters is not so important and less
accuracy is required in measurements of the atmospheric
attenuation.

In our program of lunar temperature measurements,

we have designed and built at Harvard College Observatory
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a radiation pyrometer.l This instrument was designed to
provide high spatial resolution, high accuracy in locating
the resolution element on the lunar surface, and the highest
temperature resolution that can be achieved with thermal
detectors. This instrument has three channels: infrared,
visual, and photographic. The three channels use the same
telescope optics; an optical switching mechanism allows one
to observe the Moon 50% of the time in the infrared and 50%
of the time in the visual range and photographically, at an
adjustable rate from 10 cps to TO0 cps. The pyrometer has
the following data outputs: 1) a 35 mm film having a field
of view T7.5' x 5.0', with a crosshair centered on the frame,

¥ of the infrared detec-

which coincides with the barycenter
tor; 2) a paper chart on which are recorded the infrared
signal, marks indicating the time, marks indicating when a
picture has been secured, and a mark indicating an event

that needs to be recorded; and 3) a magnetic tape recording
on which the observer describes the area under measurement

or any event important to the data analysis, and the operator
of the electronic equipment records relevant dats; the tape

also records WWV time signals and a tone indicating that an

event needs to be recorded.

¥*We define the barycenter as the point in the detector
with the highest responsivity.



IT. Identification of the Resolution Element on the Lunar
Surface

The main difficulty in high spatial resclution pyrometry
is the problem of identifying the resoclution element on the
lunar disk. Observations of high spatial and temperature
resolution must be obtained, in general, with reflectors of
fairly big aperture, 48 inches (122 cm) and larger. The use
of two independent optical systems, one to identify the resolu-
tion element and the other for pyrometry, introduces the dif-
ficult problem of keeping both optical axes collimated at dif-
ferent attitudes of the telescope:; errors can be of the order
of minutes of arc.

However, schemes can be devised to solve this problem
and, without discussing the advantages and disadvantages of
the several methods used, we will describe the one used in
our pyrometer. The basic principle is indicated in Figure 1.
The equipment is designed to operate with optical systems
with f-numbers between 3.5 and 6. The telescope beam is
chopped at a rate which can be adjusted from 10 cps to 70 cps.
The chopper is made of glass and has evaporated aluminum on
the front face and evaporated gold on the back.

When the chopper blocks the optical path to the
detector in position D, the focal plane d-4d' is transferred
to the position k'-k. We can call the point R the homologue
of the point D that defines the geometrical center of the
detector. Coplanar with the image plane k'-k is a reticle
with 1/2 millimeter divisions, illuminated at the edge. A

flat mirror E folds back the beam and the photographic
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Basic principle of the mechanism for identifying
the resolution element on the lunar disk in the
radiation pyrometer developed et Harvard College
Observatory.
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objective L images the plane k' -k onto the photographic film.
A reflex system with mirror M and a pentaprism allows for
visual observation of the same field of view.

After the chopper has been made perpendicular to the
axis of rotation by means of an autocollimator, the whole
optical train is adjusted. For this adjustment we have an
auxiliary optical system that is attached to the pyrometer
head flange and gives a point image on D which, by means of
the chopper, can be transferred to R.

For the sake of simplicity we will consider the
reticle alignment s two-dimensional problem; it is, in fact,
a three-dimensional one.

If we assume that the plane of the mirror chopper
has been fixed and that the position D of the detector is
determined, the homologous point R is defined. Since y = B
for any o, the glignment will depend only upon the relative
positions of D, the chopper and R.

This method, because «f the design of the pyrometer
head, ¢ ould produce a systematic error in the positioning
of D. There is always an error in the positioning of the
detector flake with respect to the deteétor holder, which

makes the position of D indeterminate. Since we agssume that

the position of D is known for the alignment in the laboratory,

a systematic error is introduced in the positioning of the
reticle. Moreover, since the pyrometer head is designed for
use with different detectors, we should expect a different

systematic error for each detector.
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To determine the systematic error at the telescope,
we scan the detector several times with a star image in a
direction parallel to the diagonals (square detector) until
we get the maximum response. If we correlate photographically
the position of the star image on the reticle with maximum
signal output from the detector, we can measure the systematic
error very accurately.

Figure 2 shows an actual picture taken with the
photographic channel of the pyrometer. The picture was
secured at 01:21:50 UT, December 19, 196L, a few minutes
before total eclipse, using Edgerton, Germeshausen & Grier
XR film plus Wratten #15 filter and 1/15 second exposure
time. With pictures of this type, the task is to determine
the orthographic coordinates of the reticle, which, in turn,
are the coordinates of the barycenter of the detector. We
obtain this information by projecting each frame on the
proper plate of the "Orthographic Atlas of the Moon."¥* 3
special projecting system (shown in Figure 3) has been con-
structed in our laboratory for this purpose.

The foreground of Figure 3 shows the Leitz film pro-
jector which is mounted on a structure having 3 degrees of
freedom. The projector head can be rotated 360 degrees. As
seen in the background of Figure 3, the image is projected

onto a screen mounted on a gimbal to simulate to first order

¥"Orthographic Atlas of the Moon," The University of Arizona
Press, 1961.
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FIG.

Picture obtained with the photographic channel of the
radiation pyrometer, using Edgerton, Germeshausen &
Grier XR film, Wratten #15 filter, and an exposure
time of 1/15 second. The center of the reticle is on
the south tip of Mare Crisium (Lunar Eclipse, Decem-
ber 18-19, 1964).

Film analyst making initial identification of a lunar
region in one picture frame using a high contrast
photograph of the Moon. In the background the pro-
jection screen mounted on a gimbal; in the foreground
the film projector mounted on a structure with three
degrees of freedom. The rotation of the projector
head gives the fourth degree of freedom.
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the librations of the Moon. After studying the projected
frame, the film analyst must locate the exact area on a
photograph of the Moon so that the appropriate plate from
the Photographic Lunar Atlas¥* can be chosen. The projected
image is then superimposed on the correct Lunar Atlas plate.
In order to ascertain whether the superimposed image is
identical to that on the plate, a sheet of white opaque
paper is held over the screen and moved around while the
outstanding features are lined up with photographic plate.
The point where the reticle crosses is marked on the plate,
and 1s then transferred to the corresponding orthographic
plate. The & and n coordinates are determined and recorded
in tabular form along with the number of the picture frame.
These coordinates will be used later in a computer program to
determine the coordinates of the barycenter of the detector
as a function of time. Because we have less varied illumina-
tions of the Moon on Orthographic Atlas plates than on
Photographic Atlas plates, we must ordinarily use the
Photographic Atlas plates for the initial plotting of coor-
dinates.

The accuracy in determining the orthographic coor-
dinates of the barycenter of the detector depends upon the
quality of the raw data. For pictures obtained under good

conditions (seeing disk 2" or smaller), having good contrast

Prnotosrraruic cunar Alias’ . Uhe Tniversity oy Unleago Press,

1960.
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and a reasonable number of identifiable lunar features, the
standard deviation in the determination of the orthographic
coordinates is *3". For pictures obtained under poor seeing
conditions (5" or larger), having poor contrast and few
identifiable features, the standard deviation will be between
6" and 8".

Usually we take about four pictures per scan; thus,
in the best case we know the position of the line of scan

within 1.5", and in the worst within 4.0".

The previous discussion regarding the location of
the resolution element apply only to the illuminated part
of the Moon. On the basis of these measurements, we can
also determine the position of the line of scan on the
shadowed areas, as shown in Section IV. The problem of
location on the eclipsed Moon is more complicated, especi-
ally during dark eclipses. Still in some cases it is pos-
sible to take the identifying pictures with high-speed film
or an image converter, or to take the pictures at the limbd
of the Moon against the star background. In the last case,
the position of the line of scan on the Moon will be found
from the position of the reticle with respect to a given

set of background stars.
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ITI. Spatial Resolution

In our radiation pyrometer the size of the resolution
element will be limited by the telescope optics, the detector
size, and the atmospheric seeing. If our measurements are in
the range of 8 - 14 microns and we can assume 10 microns as
the effective wavelength, and are using a 60-inch telescope,
the diameter of the Airy disk is 3.3", that of the second
dark ring of the diffraction pattern is 6.0", and that of the
third is 8.7". About 9L percent of the total flux falls within
the third diffraction ring of an unobstructed circular aperture.
On this basis we established as a requirement that the detector
should cover at least the third ring of the diffraction pattern;
this means that for a telescope with a scale of s = 25" /mm,
the detector should be of the order of 0.35 mm 1n size. The
thermistor bolometer used in our pyrometer, 0.1 mm x 0.1 mm in
size and immersed in a Germagnium lens, gives an effective size
of 0.35 mm x 0.35 mm. To obtain the instrumental profile
experimentally we scanned the field of view of our radiation
pyrometer with the image of a star, Alpha Scorpii, and the
pyrometer mounted at the Newtonian focus of the Th-inch tele-
scope in Pretoria (Republic of South Africa). Figure 4a shows
the photographic record; each small division of the reticle
is equivalent to 11". Frames 1 to 4 show Alpha Scorpii cross-
ing the field along the horizontal line of the reticle. The
time when the picture was secured i1s indicated in the upper
part of each frame. The film used was E,G&G XR, the chopping

frequency 14 cps and the shutter speed 1.0 sec?nd. Figure Ub
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shows the output of the radiometer when Alpha Scorpii scanned
the detector. The marks 1, 2, 3, and 4 indicate the times at
which the identifying pictures were secured. The measurements
were taken nearly along the diagonal of the square detector.
A series of similar scans was obtained parallel to
the horizontal line of the reticle and spaced only a few
seconds of arc apart. Using these measurements we determine
the size of the resolution element, the responsivity diagram
of the pyrometer-telescope combination, as well as any
systematic error in the location of the barycenter of the
detector with respect to the center of the reticle. On the
basis of the record shown in Figure Ub, we measured a reso-

lution element 8" x 8" between 50% power points.
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IV. Astrometric Analysis of the Observational Data

Two modes of scanning can be chosen in the family of
sequential read-in simultaneous read-out¥*: fix the telescope
relative to the Zarth and let the Moon drift in the field of
view of the detector; or track the Moon with the telescope
and have built in the pyrometer a scanning device to provide
a television-type raster. In the first method, the spatial-
time relationships can be easily determined if no perturba-
tions are intr -duced in the mode of scanning. Under actual
observing conditions, this is not always true; if we use a
telescope with a plate scale of 25"/mm (310 inches focal length)
and a resolution element of 10" x 10", a displacement of 400
microns at the end of the telescope will be equivalent to the
displacement of one resolution element. With a telescope of
60 inches or larger, a displacement of 40O microns can be
produced by the wind, and by perturbations introduced by the
observer, displacement of the telescope mirror objective, etc.
The second method of scanning involves all the problems of the
first method; an additional difficulty is the fact that to find
the location of the detector within one resolution element on
the lunar disk, the scanning mechanism should have the relation-
ship between position and time known within +.§% of the lunar
radius.

Of the two basic modes of scanning, we chose the first

one. For this method, we analyzed the astrometric problem nnd

worked out a computer program to give the orthographic coordinates

¥W. K. Weihe, '"Classification and Analysis of Image-Forming
Systems," Proc. Inst. Radio Engrs. 47, 1593 (1959).
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of the resolution element as a function of time. It is clear
from the physical situation that if the detector moves at a
constant rate in each coordinate, the entire course of the
scan relative to the Moon, as a function of time, can be
found from two timed photographs. If the telescope is held
fixed relative to the Earth, the rates are known exactly and
only one photograph is needed.

The computer program logically consists of three
blocks. The first block reads in the observer's coordinates,
the Lunar Ephemeris, and other fixed data needed to solve the
problem. The second block computes the hour angle and declina-
tion of the detector at the time of every photograph. The
third block uses the photographic data to interpolate the hour
angle and declination, and hence the lunar coordinates of the
detector, at any arbitrary time -- for example, a time at which
a temperature datum is measured.

In agddition to the Lunar Ephemeris, the basic data
consist of the observer's astronomical latitude, longitude,
and height above sea level, and the effective wavelengths of
the photographic and infrared detectors. The wavelengths are
needed to compute the differential refraction due to atmospheric
dispersion.

Ordinarily, the observer's coordinates are read first.

The meridional rectangular coordinates are evaluated by means of
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p sin ¢' = (l-e?)sin ¢/H (1)
and

p cos ¢' = cos ¢/H , (2)
where ¢ = geodetic latitude, ¢' = geocentric latitude, e = the

eccentricity of the meridian, and

H = v1-e2 :in?¢ /(1l+h/a) , (3)
where a is the equatorial radius of the Earth. Equations (1)
and (2) are exact if h = O; the approximation made in Eq. (3)

is correct to order (1/f)(h/a) or about 5 x 1077 per kilometer
above sea level, an accuracy probalbly greater than the adopted
values of e = 0.00672267 and 1/a = 1.56779L x 1077,

These exact forms are faster and simpler for the
computer than the usual expansions in Fourier series in ¢,
since only three elementary functions (sin ¢, cos ¢, and a
square root) need to be evaluated.

The second set of fixed data consists of the effective

wavelengths A_ of the photographic and AD of the infrared

P
detection systems; these are used to compute the differential
refraction due to atmospheric dispersion between the two wave-
lengths. Since the correction is very small, less than

L e~o Lur wor: even at a zenith distance of T75°, a rough

approximation is good enough. We adopt the simple relation

r = (n-1) tan Z, where r is the re’raction in radians, Z is
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the zenith distance, and n the refractive index of air at

the telescope. The differential refraction is then
Ar = [(n—l)P—(n—l)D:Itan 7 . (L)

The square bracket is evaluated for standard conditions from

the Edlén formula :

A(n-l)J = 2.94981 x 102 [1/(1!46-\)%)-1/(1&6-\)%)1 +

2.554 x 10‘”[1/(ul-v2P)-1/(h1-v2 )] . (5)
where

2 2 2 2

vi = 17K, va o= 103 (6)

for X in microns. The accuracy needed for Ar is about 10%,
or roughly 1/20 of the detector diameter at Z = 75°. To

this order it is immaterial whether the observed (refracted)
or calculated (unrefracted) zenith distance is used, as their
difference is about 105 radian at Z = 75°. According to
Penndorf2 the Edlén formula may be slightly in error in the
infrared, but the indicated error in A(n-1) is less than 10%
for our work. As the absolute temperature at the telescope
never differs by more than 10% from the standard value, its
effect can also be neglected. Similarly, variatisus in
barometric pressure at any one site can be neglected as they
are usually within 3 or 4 percent of the average value. How-

ever, the variation of pressure and refractive index with
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altitude is appreciable, so we have adopted the relation

A(n-1) = A(n_l)oe'h/sooo i (7)

assuming a refractive scale height of 8 km. Finally, an
uncertainty of 250 Kngstroms in the photographic wavelength
corresponds to an uncertainty of about 10% in A(n-1).

Since the uncertainty in location of a typical scan
is about 2", +the systematic error in the refraction correc-
tion is obviously small compared to the random errors in the
geometric data. In a typical case, the refraction error may
amount to about 0.2".

The remaining fixed data consist of tables from the
Astronomical Ephemeris. Three tables are required: the
radial ephemeris (semidiameter and horizontal parallax,
tabulated for every 0.5 day of E.T.); the geocentric angular
ephemeris (apparent right ascension and declination, tabulated
for every hour of E.T.); and the physical ephemeris (Earth's
selenographic longitude and latitude, Sun's selenographic
colongitude and latitude, and the position angle of the lunar
exis, tabulated for O U.T.).

Values required from the tables are interpolated to
second differences by a subroutine which has special provisions
for interpolating correctly across the discontinuity of
2m radians occurring in tabular values of angles that pass
through zero without changing sign.

All data are checked for considtency and plausibility.

No minutes or seconds greater than 60, no negative right
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ascension, no declinations greater than 90° are acceptable.
The tables must also agree as to month and year. As a final
check, all fixed input data are printed out again so that a
visual check can be made against the Ephemeris. However,
since the input cards are punched in exactly the same format
as the printed tables in the Ephemeris, errors are extremely
unlikely.

At this point, the first block of the program is
completed. ﬁe now take up the second block, which computes
the hour angle (h) and declination (8) of the detector for
each photograph.

The input data for each photograph are the Universal
Time and the orthographic lunar coordinates § and n of the
intersection of the crosshairs, which is the optical conju-
gate of the detector. The Ephemeris Time, which 1s the
argument of several tables, is computed from the Universal
Time by adding the correction AT (currently 35 seconds).

The first step in finding the topocentric h and §
of the point photographed is to find the topocentric coor-
dinates of the Moon's center---the topocentric librations.

To do this, we first need the geocentric hour angle and
declination of the center of the Moon, referred to the local
meridian. |

The geocentric right ascension and declination of
the Moon's center, g and GG are interpolated from the tables,
uéing the E.T. as argument. The geocéntric hour angle 1is

computed as
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h = STO + 1.00273791t - A - « (8)

G

where STO is the Greenwich Sidereal Time at Oh Uu.T

1.00273791 . is the sidereal time interval elapsed since

Oh U.T., converted from the U.T. day fraction in radians,

t: and X is the observer's longitude, measured positive West
from Greenwich and converted to radians from the value in
time units given in the Ephemeris. All conversion factors
involving m are specified to 8 decimal digits.

At this point, the cosine of the geocentric zenith

distance is computed:

cos 4 = sin 5C R AR SRS con ¢ cos b (9)

If this value is negative, the Moon is below the horizon
at the specified time:; the program gives an error message

and terminates. From cos ZG we compute

sin 7. = (1 - cos2 zG)I/2 , (10)
which provides adequate accuracy since this value is used
only to compute the differential corrections from geocentric
to topocentric librations.

The topocentric librations are computed by Atkinson's
mcthod.3

We first compute the "topocentric parallax"” Moo
the angle subtended at the center of the Moon between the

observer and the center of the Earth; this angle represents

the difference between the geocentric and the topocentric
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lines of sight to the Moon's center. For this calculation
we can neglect the flattening of the Earth; since the Moon

is about 60 Earth radii away, the error in = is less than

T
1/297 x 1/60 ¥ 1/18000 radian. For our application, this
error in the libration is reduced on the sky by an additional
factor of about 240, since as seen from the Earth the Moon's
radius is about 1/240 of a radian. Thus the error resulting
from this approximation is about 2 x 10”7 radian, or 0.05",
which can be neglected. All other approximations made by

Atkinson in the formula for T produce smaller errors. The

resulting formula for T is

T, = n, sin Z (1 + 0.0168 cos 7 )

T G G G ? (11)

where ﬂG is the geocentric horizontal lunar parallax inter-
polated from the tables. Egquation (11) is preferable to the

form involving sin 27 given in the Explanatory Supplement ¥

G’
(p. 324), because it uses a quantity already calculated and
does not require the computation of another sine function

value, which is relatively time consuming for the computer.

The sine and cosine of the parallactic angle Q are

next found from Atkinson's formulae:

sin Q = sin h_, cos ¢/sin 2

G G

cos Q = (sin ¢ - cos Z, sin GG)/(cos GG sin ZG) . (13)

The angle Q is then found by an arctangent subroutine that

accepts the sine and cosine as arguments, divides them to

¥*"Explanatory Supplement...", HMSO (1961).
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get the tangent, and places the result in the proper quad-
rant. The geocentric position angle of the Moon's axis (CG)
1s Interpolated from the tables and the difference angle
(Q - CG) in Atkinson's formulae is computed.

The geocentric libration in latitude (the seleno-
graphic latitude of the Earth) bG is interpolated from the
tables, so that it can be used in finding the topocentric

libration in longitude (the selenographic longitude of the

observer), Rt

AR= - i -
T sin(Q CG)/cos bG s (1k)
Bp= 2.+ AL, (15)
dividing by cos bG rather than multiplying by sec bG as
in the Explanatory Supplement, p. 324, is more efficient
programming. Similarly, we have
" bp=b, + T, cos(Q = CG) . (16)

Atkinson's formulae are intended to give an
accuracy of 0.01 degree on the Moon, which is about 0.15"
on the sky as seen from the Earth. This is also the
accuracy of the tables in the Ephemeris. Finally, the

torocentric position angle of the lunar axis CT is computed:

Cp = C, * sin by A% - 7 sin @ sin GG/cos 8o > (17)

where the ratio sin 6G/cos GG is used in place of tan §,
(e 4

beczuse these values have already been computed. Atkinson
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points out that the chief error here is in using tan 6G

instead of tan(é§, + ST/E). The resulting error in C_ is

T

less than 2 x 10<h, or again about 0.15" on the sky. Even

G

if we have photographs from one limb only; the error at the
opposite limb cannot exceed 0.3", which is clearly acceptable
for our work.

The topocentric hour angle (hT) and declinaticn
(6T) of the lunar center are then calculated, by use of the

suxiliary quantities given on p. 60 of the Explanatory

Supplement and two other auxiliary quantities.

A = cos GG . sin hG

B = cos 5G . cos hG - pcos ¢' . sin =

C = sin GG - p sin ¢' . sin 7
D = A2 + B

F=(D+02)1/2

s =p P (18)

from which we obtain

=y
1]

arctan(A/B) (19)

and

O
L}

arctan(C/s) . (20)

The next problem is to find the topocentric coor-
dinates hP and GP of the photographed point with ortho-

graphic coordinates (£,n). We first assume the Moon is

spherical, so that
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c=(l—€2—n2)1/£. (21)

As the first step we convert (g, n, r) to axes (x, y, 2)
such that z lies along the line from the lunar center to

the observer and the Y,z-plane contains the lunar pole

We first define the auxiliary quantity

c = & sin & + ¢ cos & . (22)
Then

X = & cos £ - ¢ sin ¢

Y = ncos b - ¢ sin b .

Z = n sin b + ¢ cos b . (23)

We next translate the origin to the observer, reverse the
direction of z and rotate the x-and Y-axes so that the new
Yy-axis is in the topocentric hour circle rassing through

the lunar center and the new x-axis points East:

x' = -x cos CT + y sin CT ’
v .
y' = x sin CT + y cos CT .
z' = R -2z (24)
where
R = 3.670 F/sin s (25)

is the topocentric distance to the center of the Moon, in
units of the lunar radius (3.670 is the length of the Earth's
equatorial radius in lunar units). |

We next rotate the z'-axis down to the celestial

€quator, using the relations
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o
L[}

sin cC/F

cos GT S/F (26)

and

Y = z' sin §_ + y' cos GT

3
I}
N

cos &, - y' sin §p - (27)

From these we readily find that

(GP - aT) = arctan(X/Z) (28)
and
85 = arctan[Y/(X + 2 )/2] | (29)
whence
HP = h, -(aP - aT) . | (30)
fhis information suffices to determine the line
of Scan.across the Moon. However, we need some additional

geonetric information for the interpretation of the data,
and the refraction correction is not yet included. We first

compute the air mass m by the relations

cos ZT = sin §p sin ¢ + cos §p COs ¢ cos hy (31)
sec Zj = l/CO§ Zop o o ‘ (32)
and
m = sec ZT[l - 0.0012(sec2 ZT - 1] ., (33)
which is aécurate to 0.002 at 2., = 75°.

T
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The differential refraction corrections are obtained

by using the standard relations

=
[

a3
n

r sec § sin Q .

o
!
2
I

-r cos Q@ , (34)

where the primes denote the refracted coordinates and r is
the refraction correction. 1In our case, we are correcting
only for differential refraction, so that r is given by
Egs. (4) - (7). Combining these with Egs. (12) and (13),
and using topocentric instead of geocentric coordinates,

we obtain

h'P = hP - r' sin hP cos ¢ .
§'p = §p + r'(sin ¢ - cos Zpn sin 6P) R (35)
where
r' = A(n-1)sec Z/cos § . (36)

Equation (35) gives the topocentric hour angle and declination of

the resolution element at the time of the photograph, corrected
for differential refraction. We do not correct for the whole

refraction because only the non-linear part of the change in

refraction during a scan affects our results. On the assump-
tion that the tangent trm alone is a satisfactory represen-
tation, the second derivative of the refraction correction

as a function of Z is 2(n - 1) sec 22 tan 7Z. The error

contributed by neglecting this term is 2(n - 1) sec 22 tan Z(AZ )2 ;

it amounts to about a second of arc for a scan one degree

b
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long at Z = T75°, and decreases rapidly toward the zenith.
In practice, the telescope moves only a fraction of a degree,
or is stationary, during a scan, so that the curvature of
the total refraction is not important. Ignoring the total
refraction also simplifies the program by making accurate
refraction corrections in both the second and third parts
of the program unnecessary; only an approximate correction
is needed for the second part, as explained above, and from
this point on the refraction can be forgotten.

The only remaining task of the second part of the
Program is to compute the geometrical relations between
the observer, the Sun, and the point observed. The angles

required are the phase angle (the angle at the point observed

between the line of sight and the direction of illumination),
the elevations of the Sun and Earth (observer) above the
lunar horizon at the point observed, and the difference in
azimuth between Sun and observer.

These quantities are readily calculated in terms of
vector dot products. Three vectors are involved: the lunar
zenith, with orthographic components (E,n,C); the direction
of the Sun, specified by its selenographic latitude and
colongitude, and the direction of the observer. The vector
(£,n,2) is already a unit vector, by Eg. (21). We construct

unit vectors to the Sun and observer as follows:

The orthographic coordinates of the subsolar point are
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Lo = sin Lo cos be s
Ne = sin be .
Go = cos Lo cos be (z7)

waere Ve 1s obtained by subtracting the interpolated solar

4

colongitude from n/2. These are also the components of the
wnit vecetor rrom the lunar center to the Sun, and hence
vignoring the solar parallax) the unit vector from the point
viiotographed to the Sun.

0 compute the vector from the point to the observer,

N~

we first obtain this vector in the(x,y,z) system:

X = -x'
y =y
z = 2! . (38)

We o then convert to the lunar coordinate system, using the

tcrogrepnic librations and the auxiliary quantity c':

c' = z cos bT - ¥y sin bT
iE = (x cos QT + ¢' sin 2T)/R'
np = (y cos bT + 2z sin bT)/R'
z.. = (-x sin bp + ¢! cos RT)/R' (39)
wonere
R' = (x2 + 2 + 22)2, (40)

Tre cosine of the phase angle is then the dot product

cos 6 = £ . £, +* Neo - ng t te - Cp - (41)
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“he altitudes of Sun and observer are similarly given by

the expressions

cos(m/2 - a,) = & - £, + n - Nng + & + &g (Lz)
and
~ ¢ > = 'y . - . . ~
cos(m/2 a“) g Ey * M n, o+ oC to - (Lz)
Yo find the sepuration in azimuth between Sun and
observer, consider the spherical triangle whose vertices
«re the lunar zenith, A(f,n,¢); the direction to the Sun,
P18y Ngs $e)3 and the direction to the observer,
Ciiv,y Na, ;E). Applying the law of cosines for side a,we
have
¢Cos a = cos b cos ¢ + sin b sin ¢ cos A . (Lk)
Now, A is the azimuth angle required; cos a, cos b,
and cos ¢ are given by Egs. (41) - (L3), respectively; and

s5in b and sin ¢ are readily calculated from the identity

/- 2 1/2

sin x = (1 - cos x ) since the cosines are known. Solvin

oy
o

Zg. (&%) for cos A, we have
cos A = (cos a - cos b cos ¢)/(sin b sin c), (Ls5)

Trom which A is obtained by use of an arccosine subroutine.

This completes the calculations for the second

block of the program. The results are converted to practical
units (degrees instead of radians) and printed out. The
progran remembers the values of h'P and 6'P, and looks for

another record of photographic data.
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When all the photographs referring to a single gccan
have been analyzed in this manncer, the program goes on to
the third blocek.

I'he first problem is to determine the course of

h'P and S'P with time. In some cases, we know that the
telescope has been held fixed, so that h’P and 5'P must be
constunt. In other cases, we know that the telescope was
noved and that time-depcendent terms must be included. Occa-
sionally we are not certain whether the telescope was moving

or not, and we must ask the program to decide on the basis

or the available data. In general, we cannot assume tonat

")
ct
=
O
[
¢t
[
’-\
9

s place in only one coordinate, even if only one
aXxis o the telescope is moving; for the effects of differ-
ential refraction and polar-axis error®*will in general pro-

duce & displacement in both coordinates.

We Tirst compute the means of all the times, the
R'P's and the S'P 's. For convenience, this means, together
with The corresponding subsolar point and topocentric disk

center {computed as described above), are printed out (Fig.5a.).

ifferential variables

(]
(o)

- ! - h
. Ah = h P h
a6 = 8'y - 5, (L6)
At =t - T R

areé Then computed for each photograph. If the telescope

waS Xnown to be fixed, a control card sets a switch in the

program and h and § are adopted for all times. The values

*We refer to the error in the alignment of the polar axis
of the telescope.
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o

or Ah and A§ are then reparded as residuals. On the other
Yo, y i O N N a N BEN n g
hand, 1r the telescope was c¢ither known or suspected to be

moving, cquations of the form

dh
Ah = —
h tht ,

asd
AS = "d—'E'At . (LT)
are Titted by least squares. Since all variables are

measured from their means, no constant term is required

and the least squares solution reduces to

dh _ IAtAn
at I(atp

as TATAS
dt (At

]

ne residuels

Ah'!

=Ah—d—tAt 5
AS' = AS - %%At R (L9)

z»e Lhen computed.
In a lerge-volume automatic data-reduction program
1T is extremely important to reject faulty data, since

iduals frequently result from errors in trans-

o
o3
(@)
81

§
O
o
(2]

re

v

e

i3

ancé kKeypunching, dropped minus signs, digit trans-

-
%

1%
'3
[N

3

O

‘ry

itions, and the like. Therefore the residuals are scanned

4]
t

to see wnether any point falls more than 10" from its calcu-
lated position. If no point falls outside this tolerance

limit, normal processing continues. If one or more points
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rall outside the rejection limit, the point with the larsest

residual in position r? = [(ah cos 6§)2 + 462 ] is rejected,

t

——

1¢ residuals in both coordinates are printed with an error
message, new means are taken of the remaining data, and the
whole reduction process is repeated from that point on.
When a satisfactory set of residuals is obtained,
the root-mean~square residual in position (both coordinates
combined) is calculated and printed out, together with a
graph Of the residuals as a function of time (see Fig. 5b).
I the progsram has been asked to decide whether or
Lot tne telescope was moving, it uses the following precepts:
1) The calculavion is originally carried out on
the assumption of telescope motion.
2) If, after bad data are rejected, only one or
two points remain, the telescope is assumed %o
have been stationary, on the grounds that no
test of the significance of %% and g% is possible.
The entire calculation from Egs. (L&) to (L9) is
repeated on this basis.
3) If tharee or more points remain after bad data are

rejected, the significance criterion

¢ = \dt)2 * (3;%)2 " (n - lv)z:(At)2 $20)

is eveluated, where
v = I . (51)

The sum of the first two terms in Eq. 50 is the square
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O the rate of telescope motion; the last term is the square
Oor 1ts standard deviation. If q < 0, the raute of motion is
certainly not significant: the progrum concludes that the
telescope was stationary, and the entire rcduction beginning
with Bq. (40) is repeated on this basis. If q > 0, the

derived motion is accepted.

The last part of the procram uses the equations

At =t - T
= dh
h = h + 24
1 354t
= T + 46
8 ) E?At 5 (52)

to obtain the hour angle h, and declination §, for each

coservation at time t. If the telescope was held fixed,
in _ 48 _ o . . .

< - Gt S 0. In principle, we require only an inversion
e “

cf Zgs. (23) - (30), but there is a complication in deter-

mining where the line of sight intersects the (spherical)
Yoon.

Yo begin with, the topocentric librations and
coordinates of the lunar center are computed by Egs. (8) -
{20) for the time t, exactly as previously described.
Eguation (25) gives the distance from the observer to the
¥oon's center, but not to the point where the line of sight

intersects the Moon. We now compute the wvalue

end the direction cosines
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X = sin Aq cos §

Y = sin § ,

[
n

cos Aa cos § (5L4)

These coordinates are referred to the topocentric
meridian through the center of the Moon and the celestial

equator. We rotate the Z-axis to the center of the Moon by

x' =X

. _ .
Yy Y cos GT Z sin GT

zl

Y sin 6T + 7 cos GT (55)

using Eqs. (26). We next convert these direction cosines

to rectangular coordinates by setting z' = R:

/
: /R
x" = x!' ! ;'—> .

0

z!

n
(3]
TN
gl
N
|
o
~~
wi
o\
S

We now translate the origin to the center of the
Moon and rotate about z to make the y, z -plane contain the

lunar polar axis:

x = -x" cos Cq + y" sin Co
- " " "
y = x" sin CT +y c,s.CT .
Z = R - 2" =0 . ) (57)

At this poiht, we have the rectangular coordin-
ates of the point at which the line of sight intersects
the plane passing through the center of the Moon and
perpendicular to the line Joining the observer.to the

center of the Moon. We wish to have the point at which the
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line of sight intersects the unit sphere in this coordinate
system, rather than the x,y-planec.

clearly, the adoptled arbitrary z-distance R is
Sreater than the true distance from the observer to the
roint at which the line of sight in%ersects the lunar surface.

IT we express the true z-distance by

D = R(1 - ) (58)
then the correct values of x and y are
x = x(1 - a)
o]
and
z = RA . (60)
o

The requirement that the Moon be spherical is

1= x02 +yo2 + zo2 = (1 - a)%2(x® + y%) + A2R2 . (61)
I we write
r = xR + y2 R (62)
we nhave
A2 (r2 + R) - 2ar + (¥ -1) =0 (63)
whose solution is
2 /et (2 s R)(A - 1) (64)
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The solution required is the one with the positive
sign in this equation, since we want the largest value of

) (the near side of the Moon). If we write

ry = r? /R s ‘ (65)

A =rl"’.(rl'l-l_l["z)/ﬂ2 . (66)

1l + r,

~ s . -5 .
Since roos 2 x 10 and A 1s of the same order, and we need

‘ -4
£t most an accuracy of 10 in A, we can drop terms of order
rf and take the value
p=r o+ Ne v 1o 2R (67

We cannot drop the r, inside the radical, because near the

limb 1 - r» = 0 and the value of the radical, like r

10 is
of order 1/R .
The radicand
T =(rl+l—12)/R2 | (68)
elso provides a critical test, for if the line of sight does
not intersect the Moon, r2 < 0. Therefore the criterion %

is calculated first and, if x, > 0, the value of

is used to obtain X > ¥ and z_ from Egs. (59) and (60).
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If 5 < 0 the calculation is stopped, and a message is
printed to indicate that the detector was located off the
lunar disk.

The remaining transformation to orthographic lunar

coordinates uses the auxiliary quantity

¢ =2, cos by -y, sin by . (70)

We then have for the coordinates of the detector at the

time t, the values

£ = X, cos QT + ¢ sin QT ,
n =y, cos bT + 2 sin bT .
L = ¢ cos lT - x_ sin ZT . (71)

The auxiliary geometrical gquantities referring to
the relative positions of Earth and Sun are calculated from
Egs. (37) - (L45) just as they were for each photographed
point. The results are printed and also punched on cards
for further analysis. Figures 5a, b, ¢ show the printed
computer output for a typical scan during the eclipse of
December 18-19, 196L4. Radiometric data from this scan are

discussed lagter.
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EPHENERIS FOR SCAN 37,
1964 DEC UeTe
X1

D L " S

19 1 21 37.51 0.989
19 1 21 37.72 0.986
19 1 21 37.92 0.984
19 1 21 38.13 0.981
19 1 21 38.3 0.978
19 1 21 38.54 0.981
19 1 21 38.74 0.978
19 1 21 38.90 0.975
19 1 21 139.10 0.972
19 1 21 39.3 0.969

0 N S
19 1 24 3.33 -0.913
19 1 24 3.59 -0.917
19 1 24 3.79 -0.919
19 1 24 3.95 =0.921
19 1 24 4.15 ~0.924
19 1 26 4.36 -0.926
19 1 24 4.56 -0.929
19 1 24 4.77 -0.932
19 1 24 4.97 -0.935
19 1 24 5.13 -0.937
19 1 24 5.33 -0.939
l’ 1 2‘ 5.54 =0.942
19 1 24 S.74 =0.944
19 1 24 5.95 =0.947
19 1 24 6.15 -0.950
19 1 26 6,41 =0.95)
19  § 24 6.56 =0.93%%
19 1 24 6.7T7 -0.958
19 1 24 6.97 -0.961
19 1 26 T.18 -0.963
19 1 24 7.38 -0.966
19 1 24 T7.59 -0.969
19 1 26 T.79 -0.971
19 1 26 8.00 -0.974
19 1 24 8.41 -0.979
19 1 24 8.62 -0.982
19 1 26 8.77 -0.984
19 1 24 8.97 -0.987
19 1 24 9.18 =-0.989
19 1 24 9.38 -0.992
19 1 24 9.59 =-0.995
19 1 26 9.79 -0.998
19 1 24 10.00 -1.000
19 1 24 10.21 ~1.003
19 1 24 10.41 -1.006
19 1 24 10.62 -1.008
19 1 24 10.82 -1.011
FIG. 5c.
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Sample of the astrometric reduction of data
All the computations
pertain to the observational data shown in

Figure Ta, b.

points near each limb.
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V. Temperature Measurements

The equations that we will use to reduce our radiant
power measurements into actual temperatures are obtained for
the radiation pyrometer developed at Harvard College Observa-
tory, but our general conclusions will apply to the technique
more than to the specific instrument. To obtain the heat
transfer equations we refer to Figure 6 which shows a sche-
matic of the radiation pyrometer. The calibration blackbody
is introduced only during the calibration periods.

When the chopper closes the entrance stop of the
reference blackbody, the detector will exchange radiation
with the reference blackbody by reflection on the gold-coated
side of the chopper. Under this condition the irradiance on

the detector flake is

= _.._ 5 [ E <+ _—
5p = (1 pg)S(T5) + p e s(Ty) (1 eg)s(T)]l , (72)
where
s(1) = | N, (T)r (M) e (M)ar (73)
e
and
NA(T) = spectral irradiance of a blackbody at
temperature T,
TF(A) = spectral transmittance of the filters,
TD(A) = spectral transmittance of the detector's
window,
eD(A) = spectral emittance of the detector (thermal
detector),
©. = radiant reflectance of the gold mirror,
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FIG. 6. Heat transfer equations are obtained
from this simplified schematic diagram
of the radiation pyrometer.,
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TG = temperature of the chopper,

TR = temperature of the reference blackbody,

TF = temperature of the filter slide,

ER = radiant emissivity of the reference blackbody.

The first term in Eq. (72) represents the emission
from the gold mirror:; the second, the emission from the
reference blackbody; and the third, the emission from the
filter slide reflected by the walls of the reference black-
body.

When the chopper opens, the detector will exchange
radiation with the calibration blackbody. The irradiance

on the detector is then

where

™
]

radiant emissivity of the calibration blackbody,

H
1

temperature of the calibration blackbody,

H
1

temperature of the instrument enclosure.

The first term represents the emission from the calibration
blackbody, and the second represents the environmental
radiation reflected by it.

The net calibration signal is the difference
S =8_-8 . (75)

If all parts of the instrument are at the same

temperature, TG = TR = TF = Te. Replacing all these symbols
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by Tp, we find that Eq. (7T2) reduces to
8p = 8(Tp) (76)
and Eq. (T7Y4) becomes
8, = €,8(7 ) + (1 - ¢ )s(Tp) (17)

Substituting these values into Eq. (75) we obtain

5, = g ls(T ) - s(T)] . (78)
In general, TG’ TR’ TF’ and Te will all be slightly
different. If the differences are small, we may expand S(T)
in a Taylor series about TR and retain only the first-order
term:
d
s(r) = s(r) + £ (1 - 1)) . (79)
R R
dTR

Substituting (79) into Egs. (72) and (TL4), and apply-

ing Eq. (75), we find that

s, = g ls(r) - s(r)] + ds 1y _ CRICIE 3
aT
R
- (1 - BG)(TG - TR) - BG(l - ER)(TF - TR)]. (80)

The term in 4dS/dT_ represents the error incurred by using

R
Eq. (78) and neglecting the temperature differences between
different parts of the instrument. The relative error of

this approximation is obtained by dividing Eq. (80) by

Eq. (78):



el " L L& T R O T .

- ds . (81)

S e [s(T ) - S(TR)] dTR

To get an idea of the size of ASc/gzitis sufficient to extend

the approximation (79) to T.: we then have

AS
c

1
— = — (1 - &)
S €

) -
e RV oy _ 5 )6 "R
) G
c c c R c R

(82)

We can estimate the maximum possible error by placing absolute

value signs around each term. Typical values may be
T - T T, - ~ °© ~ °K.
o R‘ . TR TF TR‘ 1°K, and (Tc TR) 10°K
For our instrument, Ec = 0.96, BG = 0.99, ER = 0.98, so that
AS <
< Z0.7% . (83)
Se
In fact, if T, = T_, then|ASJSC| £ 0.3%. This source of

error in calibration is so small that we shall neglect it
and adopt the relation (78) for the rest of the discussion.

The radiance received from the Moon is given by

- -7FC ?
Sy ~ Sues ~ Sg T AT

(m,T J)s(T,) , (8L)
eff ™ M

A

where
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EM = radiant emissivity of the Moon,
BA = reflectance of the aluminum telescope mirrors,
(Fc/Feff)Z = ratio of the solid angles of Moon and calibration

blackbody seen by the detector; i.e., the F's are
the effective f-numbers for the calibration black-
body and the Moon,

~
1}

atmospheric radiant transmittance for radiation
at temperature TM through m air masses (see
Chapter VI).

If we record the power signals and designate the

amplitudes dS’ dM+S’ and dc as sky, Moon plus sky, and cali-

bration, and combine Eqs. (78) and (84), we obtain:

_ _eff M¥s” 8’"c
5(T,) = — . )[S(TC) - s(TRﬁj . (85)

Equation (85) is the basic relationship by which to
reduce the power measurements into actual values of lunar

temperature.

a) Error Aralysis in Absolute Measurements

Let us examine the accuracy with which some of the
instrumental parameters can be measured, and the maximum
error we should expect in the absolute measurement of the
temperature.

Equation (85) expresses the radiance on the detector

due to the Moon's signal and can be written as:

where A and B are constants for a small range in TM.
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From Eq. (86) we obtain

as(mt,,) T
B = Mo (87)
aT, S(TM)
and
T
AT, i S(TMl ar,, AS( M) (88)
Ty Ty dS(TM) S(TM)
From Eq. (85) we obtain the expression for AS(TM)/S(TM)
which, introduced into Eq. (88), gives the following
expression for the maximum error:
AT S(T. ) aT AF AF
MI_ M M 5 eff| , , c
Ty T dS(TM) i Ferr Fe
(a a.) Ad Ap Ae
+ M+S 57| , |—<| 4 o| Al , |M
(dy,g - dg) dq 7\ M
AT (m,T, ) Ae | as(T ) AT
+ A il + |—=] + =
TA(m,TM) €. aT S(TC) -S(TR)
as(T.) AT 1
+ R B | (89)
aT s(T ) - s(T )|J
c c R

To compute the coefficients of propagation of

assume T = LOO°K and the observing conditions to be T_ = 260°K

M
and Tc = 270°K.

Introducing the proper values into Eq.

errors we will

R

(89) we obtain
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AT AF AF | A(a - 4.)
—M = lo.s6|—=Ff] 4 0.56|—C] + 0.28 M+S 5
T _
M Forg Fcl Y+s dg
Ad | AD AE AT (m,T.)
+ 0.28]—5%| + 0.56|—2| + 0.28]—M| 4+ o.08| A i
d, pAI Y rA(m,TM)
AEC
+ 0.28|— + 0.029'ATc‘ + 0.026|ATR} (90)
€ N

To bracket the error we refer to Table I, which gives the
estimated maximum errors in the measurements of the instru-
mental parameters, the observing conditions, and the data
reduction process. The second row in Table I gives the
probable errors in the measurements of the same gquantities
under good observational conditions.

Introducing the proper values into Eq. (90), we obtain

. Y 13%
TM
or (91)
=t °
T, 53°K

which is the maXximum error to be expected near the subsolar
point under good instrumental and observational conditions.
This analysis applies only for signals with very high signal-
to-noise ratio.

By taking the square root of the sum of the squares
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of the terms in Eq. (90), we can estimate the size of the
systematic error to be expected under these conditions. We
now take from the Table I the estimated probable errors, and
find that our determination of the subsolar point temperatu?e
is as likely as not to be systematically in error by ¥ 2.1%,
or ¥ 8.5°K.

For TM = 175°K, typical of temperatures on the

eclipsed Moon, the factor §£EM1 dTy is reduced from
Ty \as(Ty)

0.28 to 0.13. On the other hand, the atmospheric transmit*ance

is somewhat more uncertain for such low-temperature radiation,
and instrumental noise introduces an additional uncertainty

in the measured signal(dM+S -~ dS). Allowing for these two

effects, we estimate that the maximum error of one measure-

ment at 175°K, including a 20% instrumental noise contribu-

tion, is ¥ 15°K, while the probable systematic error of the

mean of 10 data points is % 2.1°K.
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b) Error Analysis in Relative Measurements

Let us assume that we want to measure the ratio of
the temperatures of two areas of the Moon:; temperature ratios
are usually used in studying the heating and cooling of the
surface during a lunation and during eclipse.

If we write

R = =& (92)
To
then
log R = log T, - log T, (93)
and
AR AT AT
2
—_—-t_ = . (9k)
R T, T,

The ratio AT/T has been evaluated in Eq. (89). 1Irf

we write

s(T) daT
D(T) = —1 > (95)
T as
then Eq. (88) becomes
AT AS(T)
— = p(T) {——] . (96)
T s(T)

We now substitute Eq. (96) into Eq. (9L4), and writing
out AS(T)/S(T) explicitly and rearranging terms, we have the

general expression:
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bl
AR AF AF Ap Ae
—] = ‘D(Tl) - D(TE) 2 eff) 4 oo —C| 4 2| A 4+ | ==
. - Z
Ferr Fo Pa €
A(a a,) Ad A€
+ D(Tl) M+S S 1 + Cg + _ le
(dypg - dg), 1 fM,1
AT (m. 3T ) as(r ) AT
- A 71’ "M,1 + c,l c,1
TA(ml;TM,1) aT, S(Tc;l) - S(TR,l)
as(T ) AT A(d -a.)
+ R,1 R,1 + D(Te) M+S s’'2
dTR,l S(Tc,l) S(TR,l) (dM+S— dS)2
Ad P T : T
P T I VY B N ST
de 2 M, 2 TplmgsTy o)
as(T AT
. ( c’2) c.2 . ds(TR’Q ATy 5
dTC’E S(Tc,g) - S(TR,Q) dTR’g S(TCQ)-SC%%g)
(97)
For a typical eclipse cooling curve with Tl = 175°K
and T, = 4L00°K anad Tp = 260°K and T, = 2T70°K, we obtain the

coefficients of propagation of errors for Eq. (97):
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AR AF | a7 | AD Ae
— = 0.30]—8LL| 4+ ¢ 30‘ ¢l + 0.30|—2| 4+ 0.15|—C
R eff Fc pA Ec
|a(a a.) Ad A
+ 0.28 M+S S Ll 4 0,08 —S1| 4 .08 M.l
(dyyg = dg)y do 1 M, 1
AT (m, ;T )
+ 0.8 2 L M1 |, 0.029|ATC o+ o O26|ATR 1'
. bl b
TA(ml’TM,l)
la(a - d.) Ad AT
+ 0.13 M+ S 521 4 0.13|—C22| 4 g.13|2
(Dyag = dg)s de 2 M, 2
AT, (m. 3T )
+ 0.13 A_2” M,2 + 0.01L|AT + 0.012]|AT
: (mo.T ) e,? R,2| . (98)
A2ty 2
The maximum error in AR/R is % 16%, and the probable

error is ¥ 2.2% if we assume the values in Table I. These
figures are slightly too pessimistic because the systematic
errors 1in atmospheric radiant transmittance and in calibra-
tion are likely to be in the same direction during one night,
and should probably be put into the first term of Eq. (97)
rather than be separated into the second and third terms.

In the case of observations made in a single scan to
determine the brightness profile of the Moon, the same cali-
bration will apply to all parts of the scan, and the atmos-

pheric transmittance errors are likely to be in the same
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direction at all temperatures.

]D(Tl) - D(T2)| term, we have

Putting these terms into the

AR AF AF AD Ae
— = [p(7.) - ()] 2| —2LL + 2| —C| + 2| 24| « c
R 1 2 F F ? €

eff c’ OA c
+ IAdc + ATA(m’TM,l) qS(Tc) ATc
I dc TA(m;TM’l) ch S(TC) - s(T
as(T_) AT
N R R
dTR S(TC) - S(TR)
a(d - da,.) A€
+ lD(T ) + D(T )' M+ 3 =2 M
. 2 (a da.) T
M+S =~ S M
Taking T, = 250°K and T, = LOO®K we have
AR AF | AF AD A€
— 1= 0.19 eff} +0.19(—=| + 0.29|—2| + 0.094|—
R Feff Fc pA €c
|Ad AT (m,T) |
c A
+ 0.094{—=| + 0.09%4 + 0.010|AT |
f d T (m,T) ¢
c AT
|a(a - d.) A
+0.009]aT | + o.u6’ M+S S| + o.u6| 2
Yuss ~ 9 M

(99)

(100)
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Adopting the usual values for high temperatures,
we find that the maximum relative error is * 6.7%, and
the probable error is + 1.6%. Finally, for observations
made over both a short time-interval and a very small

temperature-range (say 10°K), we can neglect |D(T

and we have

AR A(a - 4d.) A€
|——|= () |o| —E S | 4 o M
R dyes ~ 9g M
Setting TM = 400°K, we find
AR A(d - a.) A€
—|= 0.56 M+5S 5 + 0.56 _M
R dyes ~ 95 M

'

(101)

which gives maximum and probable relative errors of p 3.4%

and £ 1.8%, assuming the values in Table I.

most of the uncertainty comes from possible variations in

lunar emissivity.

We note that

Often we wish to deal with temperature differences

in such cases. We can write
Tl
Tl - T, =T, ;— - 1] = T2(R - 1)
2
The error in (Tl - T2) is then

(103)
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a(r, - T,) = |[T,AR| + [(R - 1) AT, |
ala - 4a_.) A€
+
= 7,D(1,) |2 M+S 2w 2|+ [(rR- 1oy
Ayes ~ dg M
(10h)
at T2 = ULOO°K, this becomes
A(dM+S - ds) AEM
A(Tl - T,) = 222 + 222 + 53|R - 1 . (105)
dwes - 9 M
Fer (Tl T2) = 10°K, we have maximum and nrobahle

errors of ¥ 14L.6°K and ¥ 7.1°K, respectively.
If we assume that the lunar emissivity is constant
and that the precision of measurement is limited only by

the noise/signal ratio r of the pyrometer, we have for R=1:

A(T, - T

, - T, =2T,n(T,)r . (106)

Equation (106) gives the minimum detectable temperature dif-
ference: for our equipment, operating with 4 seconds post-

detection integration time and for T, = LOG°K, this value

is 0.67°K.
Finally, we may remark that the Eqs. (101), (102),

(10k4), and (105) may be written with 2a(4d - ds) and

M+8S

2AEM replaced by the equivalent expressions A(

and Af

dM,1+s ‘dM,2+s)
EM,l’ EM,E)’ respectively. This change makes explicit

the dependence of the temperature differences on the differen-

ces in signals and emissivities.
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¢) Error Analysis for Relative Temperature Measurements
during the Umbral Phase

Since the differences between lunar surface models
are more evident in the cooling curve during the umbral
phase of an eclipse, we will apply the previous analysis
to bracket the maximum errors and to determine whether we
will be able to distinguish between models solely on the
basis of the cooling curve in the umbral phase.

For this analysis we will use Eq. (97) but since
the lunar area is invariant, the emissivities can be grouped
together. Taking T, = 255°K, T, = 225°K, which will apply
for Tycho during total eclipse conditions, and the errors
given in Table I, we see that the errors of measurement
are effectively somewhat smaller than the value given for
175°K in Table I. The reasons are that in fact we are
averaging together several successive data samples in deter-
mining a mean temperature, and that the signal-to-noise
ratio is higher at the crater temperature than at 175°K.

We find that the maximum error in the measurements of

T

fi is ¥0.061 and the probable error *0.018, corresponding
2

T

to maximum and probable errors in T of £0.037 and *0.011
Max

respectively. The main contribution to the error in this

case comes from the uncertainties in the measurements of

d,, and TA(m,TM).

We conclude that a model of the lunar surface must

predict the observed decline in the normalized temperature
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=3

during total eclipse within a very few percent, if
Max

we are to accept the model as satisfactory.

d) Instrumental Conclusion

One instrumental conclusion from the previous error
analysis 1s to have the calibration blackbody in front of
the telescope entrance stop. This arrangement will elimin-
ate the contribution in the uncertainty of the measurement
by the errors in the value of F F_, and EA' When this

eff?

instrumental modification is taken into account the terms

4T AT 43
Feff , FC and pA will drop out of Eq. (89). In this
eff c A AT .
case the value given in (91) is reduced to = %. If
M

we apply the above considerations to the relative measure-
ments, the maximum relative error for temperatgre ratios,
for the coefficients of propagation of errors given in
Eq. (100) and for T, = L00°K, will be * L4.6%. We can carry
out the same analysis for other observing conditions with
this instrumental modification to see what reduction in the
maximum error can be achieved with this technique.

To f111 the entrance stop of a telescope of 60 inches
or bigger with a blackbody is not a simple problem, but it
is not an insoluble one. We suggest to have a Fresnel black-
bocdy slightly bigger than the telescope aperture. This black-

body should be, for example, hanging from the upper part of

the telescope dome so that by pointing the telescope to the
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zenith, a calibration signal will be introduced into the
telescope. The major problem of such a blackbody is to
keep the temperature gradients across the opening to a
value of the order of ¥ 0.1°K or less. We are working on

a design of such a blackbody.

e) Observational Data

The radiation pyrometer and observational technique
are fully described by Ingrao and Menzel.l

In order to validate the data presented in this
rcpert we will describe the onbhservatinonal conditions and
parameters of the equipment for the scans shown in Figures T
and 8.

The scan shown in Figure Ta-b was obtained at the
Newtonian focus of the 6l-inch telescope at Agassiz Station
during the lunar eclipse, December 18-19, 196k4. The tele-
scope was stopped down to f£f/5.58 by an entrance stop in the
pyrometer to ensure that the detector did not "see" anything
but the mirror objective. The amount of precipitable water,
measured from sounding balloons, was 1.4 mm for one air mass,
an exceptionally low value for this observing site.

The post-detection time constant of the pyrometer
was 0.2 seconds, and the size of the resolution element was
9" x 9" between half-power points. As the scan shows, the
temperature anomalies in Copernicus, Milichius, Galilaei,

and an unnamed crater, first become evident as a plus AT.
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The incremental temperatures AT shown in the scan are not
corrected for the instrumental profile of the pyrometer.
This correction will be important for Milichius, the
unnamed crater and Galilaei. The power calibration

(1.2 x 1078 watts) of the record was obtained with a
blackbody calibration.

Figure 8 shows a scan from Mare Crisium through
Manilius, which was obtained a few hours before the lunar
eclipse of June 2L4L-25, 1964, at the Newtonian focus of
the Th-inch telescope at the Radcliffe Observatory (Pre-
toria, Rep. of South Africal). The amount of precipitable
water for one air mass, measured from sounding balloons,
was 2.5 millimeters.

The post-detection time constant of the pyrometer
was 0.2 seconds and the size of the resolution element was
8" x 8" between half-power points.

To verify that the structure of the scan shown in

Figure 8 has astrophysical meaning, we reverse the sense

of scanning at the point indicated by the arrow. The second

part of the scan clearly is almost a perfect mirror image
of the first part; the small differences are due to the
change in declination of the Moon (0.114" per second of
time), which over a minute of time amounts to almost 80%
of the size of the resolution element. The record shows
very clearly the negative increment AT for the temperature

anomglies 1n Proclus, Plinius and Manilius.
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Each one of the event marks indicated at the bottom
of the scan shown in Figure 8 represents the time at which
a picture was secured. The first mark from the left gives
the values & = + .879 and n = + .276 as the orthographic
coordinates of the center of the resolution element on the
Moon; at the second mark, £ = + .700, n = + .2703; at the
third mark, & = + .285, n = + .253; at the fourth mark

£ =+ 065, n

1]

+ .251.

The root-mean square residual in position for this
particular scan is 3.68".

Figure 9 shows the relative radiant emittance of
the lunar surface as a function of the zenith distance of
the Sun. The observational data were obtained from three
scans made a few hours before the lunar eclipse of Decem-
ber 18-19, 196L4. The observing conditions for these scans
are similar to the conditions for the scan shown in Figure T3
the times indicated in Figure 9 are for mid-scan.

If a smooth lunar surface is assumed, the radiant
emittance W of the surface at full Moon will follow the
law W = Wo cos o, where WO is the radiant emittance at the
point where the Sun is at the local zenith and o is the zenith
distance of the Sun. This curve has been plotted in Figure 9

to show the departure from the assumed cos a dependence.
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The data indicated with crosses in Figure 9 were
obtained from a scan that passed at 7° 36' from the sub-
solar point, the one indicated with trianglies 5° L2' and
the one given with dots only 18'. We did not try to fit
a curve to these data points since the scans went through
areas of completely different physical nature. In a future
report, we will analyze our temperature data as a function

of the zenith distance of the Sun for specific areas.
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VI. Atmospheric Transmittance

Although the opacity of various molecular bands in
the infrared has been investigated under idealized and
experimental conditions, the cumulative effect of these
bands in determining the transmittance of the terrestrial
atmosphere in the 8-1L4 micron "window" has not been
adequately treated. The complexity of the many absorption
processes and the variability of their importance from day
to day preclude a definitive discussion of the problem;
however, the incomplete data now available do allow a
quantitative investiga®ion of the way in which atmospheric
transmittance depends upon water vapor and air mass in the
line of sight, and upon the temperature of the extra-
terrestrial object observed. From the form of these
dependencies we can consider the validity of simple
analytical approximations and the limitations they place
upon the accuracy of infrared measurements of lunar and
planetary temperatures.

Let us first consider qualitatively the manner in
which the atmospheric radiant transmittance ?A is depen-
dent upon the incident radiation field. Radiation is
absorbed and re-emitted in each narrow wavelength region
of the "window" containing a small part of one or more
overlapping bands, each consisting of lines of well-defined
shape at each level in the atmosphere. It is usually assumed

that the incident radiation field is so weak that re-emission
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and scattering into the line of sight may be ignored; and
that, in computing the transmittance in this narrow region,
one therefore need consider only the pressure and tempera-
ture dependence of line profiles and the effects of over-
lapping lines at each height in the atmosphere, and
integrate along the line of sight. For narrow regions

6,7

of the spectrum Gates and Harrop5 Sinton and Strong s

and others have shown that the observed radiant transmittance
TA may be accurately represented in many cases by a depen-
dence of the form 1n TA(A, m) = km or kvVm where k is an
empirical parameter and m is the air mass. The first case

is usually designated a weak line or band, and the second

a strong line or band. Such a dependence is analogous to
that produced by a line at constant temperature and pressure,
and implies that for each such region of the spectrum one

can define an effective temperature and pressure.

When one considers a broad region of the spectrum
such as that between 8 and 14 microns, the situation becomes
more complicated. One can take the idealized example of an
incident radiation field independent of wavelength, and can
assume that each such narrow region of the spectrum obeys
the relationship 1n T, T k/m but has a different parameter
even so, the mean transmitbtance through the whole spectral
interval will not obey a /m law. In actual fact, the large

portion of this interval at wavelengths longer than 12.9 mic-

rons lies within the v2 bands of COQ, in which the overlap
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of individual lines produces large deviations from a vm
dependence. Thus one would expect that the square root
law should not, in general, be obeyed. Furthermore,
departures from it should depend upon the temperature of
the extra-terrestrial object observed, since for objects
hotter than LOO°K the short-wavelength region of the
spectral interval is more highly weighted by the Planckian
distribution, while for temperatures less than 300°K the
long-wavelength portion is more important. Finally, the
atmospheric radiant transmittance must depend upon the
filter used, since it determines the relative contribution
of each region of the spectrum.

In general, the radiance from a blackt iy of
temperature T observed through the terrestrial atmosphere

will be given by the expression

(m, »)ax (107)

where TO(A) is th: instrumental spectral transmittance,

TA(m,A ) the atmospheric spectral transmittance, N, (T) the

A
spectral radiance of the emitting surface, and m the air
mass along the line of sight. From measured values of
TO(A) one can evaluate this integral directly as Murray and
Wildey8 and Sinton and Strong have done to obtain a table
relating S(m) to T. In order to investigate the effects of

atmospheric transmittance more directly one can rewrite

Eq. (107) as follows:



S{m, T) = %A(m, T) NX(T)E)(A)dA . (108)
0
: N (T)t (A)1,(m, 2 )a
where ?A(m,T)=—o A "o al
ONA(T)TO(A)dX ) (109)

By writing the transmitted radiance in this manner,
one separates the rapidly varying integral in Eq. (108),
which needs be evaluated for a large number of temperatures
only once, from ?A(m,T‘), which depends weakly on T for most
temperatures and must be evaluated for different sets of
observing conditions. If the object observed is not a
blackbody, the atmospheric radiant transmittance will not
be affected unless the spectral emissivity of this object
deviates appreciably from grayness. In either case the
temperature obtained from power measurements will be g
brightness temperature, analogous to that obtained at radio
wavelengths, which must be corrected to obtain the true
surface temperature.

If one were to observe with no filter to isolate

' other than one

portions of the 8 to lb-microns "window,'
to block radiation at shorter and longer wavelengths, then

the radiant transmittance would be given by the equation



fluu
N (T)t (m, A)dax
T,(m, T.) = —&k ' ! . (110)
AT T o
NA(T)dk
Jo

In neither case would the atmospheric radiant transmittance
be the unweighted mean transmittance over the spectral interval.
We may proceed further in either of two directions.
First, one can obtain high dispersion spectra of the Sun or a
small portion of the Moon over a range of air masses each
night to obtain values of TA(m,A ) necessary for the evalu-
ation of the integral in Eq. (107). This is a difficult
procedure, but the more accurate of the two. Alternatively,
one can use high quality empirical or computed values of
TA(h“ X') for a range of m and w, the amount of precipitable
water at the zenith, or an analytical expression describing

the dependence of 1,(m, A') upon m.and w. We have chosen the

A
latter approach because it is convenient and it is useful
for evaluating both the dependence of ?A(ﬁ,Tﬁ) upon observ-
ing conditions and the validity of analytical expressions
for this quantity. 1In making this choice, we lose informa-
tion about highly variable opacity sources such as aerosol

continuous absorption, and the dependence of 1,(m, ) on the

A .

vertical distribution of water vapor, deviations of pressure
and temperature with height in the atmosphere from their
mean values, etec.

As a first step in the evaluation of atmospheric

radiant transmittance, we must consider what approximate
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expressions characterize the zenith angle and water vapor

dependence of absorption due to molecular bands in this

9,10

region of the spectrum. Goody has shown that the

transmittance through a randomly arranged group of lines

of arbitrary shape takes the form

{__ —
H

T = exp - La R (111)

a s
2n<s(1 + —1)
3 Tra

|
[

where a is the quantity of absorbing materigl along the
line of sight, £ 1s the average line intensity per spectral
interval, a is the mean Lorentz half-width of the lines,
and § is their mean spacing. Although originally derived
for water vapor lines with a = w-m, this model should be
applicable to any molecular band or superimposed bands,
provided the condition of disorderliness 1s obeyed. In
particular, the work of Gates and Harrop5 shows this to
be a good approximation for most of the spectrum between
8.0 and 12.54 microns, where randomly arranged H,0 lines
are superposed upon the more regularly arranged lines of
03, 002, NO2 and CHh'

Equation (111) reduces to

ln t = -c Ya (112)

in the 1limit of strong lines or large optical depth, and to

ln T = -c_a (113)
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in the limit of weaXk lines or the wings of stronger lines
where the optical depth is small.

When the overlap of neighboring lines in a band
becomes sufficiently large that an appreciable fraction
of the wing of one line falls in the core of its neighbors,

as for example in the v, band of CO, beyond 12.9 microns,

2
the transmittance must decrease less rapidly than a square
root dependence. Elsasserll has shown that for such a

band of regularly distributed lines the transmittance can

be written in the form

12
a sin(QTroc/(S) dv (llh)
T = exp|- —
a , § cosh{(2mna/8) -cos v /§ 8
-1 2
which in the 1limit of strong lines, v = 5%% >> 1 5
reduces to the form
T, =1 - erf(c,/a) . (115)

In addition to the selective band absorption there

is also a continuous component to the infrared opacity.
12
Elsasser™ originally suggested that the far wings of very

strong pure-rotation water-vapor lines at wavelengths

centered at 50 microns should contribute to the opacity

' 13,1k

near 10 microns. Measurements by Saiedy and Bignell,

Saiedy, and Sheppard15 corroborate this effect and suggest

a dependence of the form (113), with ¢, increasing from

2
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0.00545 per mm of water vapor at 8.66 microns to 0.011hL at
12.0 microns, according to Saiedy, and slightly lower values
according to Bignell et al. They also consider the minor
effect of aerosol scattering but this will be ignored for
the present discussion.

To construct an atmospheric transmittance model
with which calculations of the transmittance for a variety
of observing conditions may be made, it is important to use
a homogeneous set of data obtained at many narrow wavelength

" for a wide range of m and

intervals throughout the '"window,
w, clearly delineating what analytical form can best describe
rA(m,A ). To our knowledge no such data exist.

Gates and Harrop5 have observed the solar spectrum
at 80 wavelengths between 8.037 and 12.542 microns over path
lengths ranging between 2 and 20 air masses. From these
data, the most comprehensive yet obtained, they have sub-
tracted a constant continuous opacity term obtained by
extrapolating measurements at 11.032 microns* to zero air

mass. They then computed for each wavelength the coeffi-

cients ¢ c

1» , and c, in expressions (112), (113), and the

3

small argument approximation to (115). In almost all cases

~
c

the strong line random model (112) is the best approximation.
Since their data were obtained on one day only, and are
expressed in terms of a dependence upon water vapor in the line

of sight and not upon air mass, the values of c, and c. obtained

1 2

*
At 11.032 microns, atmospheric molecular absorption is
nearly absent.
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|

for spectral intervals in which water vapor is not a major
constituent must be corrected. To eliminate the water wvapor
dependence, we have multiplied these cocefficients by
/§TU'mmVé of HQO, and 3.0 mm of H20, respectively, the mean
value of w on their day of measurements, and replaced w by m.
Gates and Harrop obtain a value of 0.0i?5 per mm of H,0 for
the continuum absorption coefficient at 11.082 microns, in
reasonable agreement with the previously cited measurements,
but they consider a continuum coefficient of 0.06195 per air
mass, the slope of -1n TA(m,X ) vs. air mass, to be a more
accurate fit to their data.

Beyond 13 microns, absorption by CO2 so dominates
the spectrum that other selective opacity sources may be
neglected with respect to it. Drayson16 has recently calcu-

lated the transmittances through these CO, bands by consider-

2
ing the pressure and temperature dependence of mixed Lorentz-
Doppler profiles of the individual lines, and integrating
through the atmosphere along a line of sight. For these

calculations he has assumed the atmospheric temperature and

pressure structure as given by the US Standard Atmosphere,k7(1962l

For the present calculations his zenith transmittance change
been used to compute coefficients ¢y in the error function
approximation Eq. (115). Although this approximation leads
to errors of less than four percent with respect to the
exact model expressed by Eq. (11k4), subsequent versions of

the program will incorporate Drayson's direct calculations

at a variety of zenith angles.
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The evaluations of atmospheric radiant transmittances
were carried out by a computer program written in FORTRAN II
for the IBM-7094 computer of the Harvard Computation Center.
This program is so flexible that it can accept any new
atmospheric transmittance data as they become available,
and compute the integrals of Eq. (109) for any filter and
any region of the infrared spectrum. Evaluating these
integrals to a high degree of accuracy involves special prob-
lems because of the often discontinuous and rapidly varying
nature of the TA(m, A ) data. Quite satisfactory results have
been obtained by using the subroutine ICE 3 written by
N. Moroff of Westinghouse Air Arm, involving an integration
procedure which automatically adjusts the increment of the
independent variable to keep extrapolation errors within
specified limits. Computations of the integrals in Eq. (109)
have been performed for the wide-band and narrow-band filters
with spectral transmittances shown in Figure 10 and for a
rectangular bandpass filter for the spectral range 8-14 mic-
rons. The wide—-band filter, which includes the whole spec-
tral interval 8-14 microns, was used for eclipse observations
on the night of December 18-19, 1964, at Agassiz Station.
The narrow-band filter eliminates the CO2 bands and much of
the 03. We have used the parameters of Gates and Harrop
which best fit their measurements, and the data of Drayson

as previously described. Since a gap remains between

12.54 microns and the 002 bands in which no homogeneous
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quantitative data exists, we have extrapolated the mean
TA(m, A) between 12 and 12.54 microns to the vavelength at
which the CO2 absorption becomes comparable. The Jungfrau
high dispersion spectra in this region taken by Migeotte,
Neven, and Swensson18 suggest that this is not an unreason-
able procedure. Both continuous opacity models have been
tried, but no attempt has been made to incorporate surface
pressure and temperature dependencies for the present. We
will discuss the limitations imposed by these latter assump-
tions presently.

Typical results of the form of ?A(m, T) are shown in
Figure 11 for the case of the wide~band filter and a continu-
ous absorption coefficient 0.01075 per mm of H2O. For these and
all the other observing conditions considered, only a very
small change occurs in the radiant transmittance between
LOO®K and 200°K; but for incident radiation colder than this,
the Wien tail of the Planckian distribution strongly weights
the long-wavelength portion of the window, where the opacity
is greateét, thereby decreasing ;A(m, T). With no filter,
the effect is more pronounced.

As a first attempt to find & general two-or three-

parameter expression relating ;A(m,T ) to m, T, and w, we

might try the form
?A(m, T) = exp[}k(w, T)mn(w’T)] R (116)

where n{(w, T) is the effective power law for the given filter,
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ATMOSPHERIC TRANSMITTANCE

1.4 MM OF H20 b
----- 10.0MM OF H20 -

400°K

1 [ I 1 l 1 1 1

4.0

20 AIRMASS (m) 30

Atmospheric transmittance versus air mass; the
parameters are the temperature of the surface
observed and the amount of precipitable water
at one air mass. These transmittances are
applicable only to the wide-bandpass filter
shown in Figure 10. )
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amount of water vapor at the zenith, and temperature radi-
ation. We may solve for n(w, T) directly by taking loga-

rithms, and obtain

loglo(m)

n(w, T) = -

Three of the cases shown in Figure 12 show that indeed the
slope n(w, T) is often nearly independent of the air mass

and is thus a good parameter to characterize the problem.
The computer program fits a parabola to such points by the
method of least squares for each computed model, obtaining

the parameters A and B and k(w, T) for

n{w, T) = A 1og10m + B . (118)

Thus, k(w, T) is the absorption coefficient, B the slope
at the zenith, and A is a measure of the variations of the
slope with air mass.

We have assembled computed parameters under a wide
variety of conditions with the wide-bandpass filter, in
Table II:; with the rectangular-bandpass filter for the
spectral interval 8 microns toc 14 microns, in Table IITI;
and for the narrow-bandpass filter in Table IV. As a check
on the errors involved in the procedure of assuming n to be
0.5 and extrapolating observations to zero air mass to
obtain the extra-terrestrial irradiance, the computed values
of ?A(m, T) between 1 and 2 air masses have been extrapolated

in this manner. The values obtained on the assumption of

unit irradiance are also presented in these tables.



B0 waa e L e ey weay—— U

ATMOSPHERIC TRANSMISSION POWER LAW
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FIG. 12. The power n(w,T) in the equation characterizing

the atmospheric transmittance

?A(T,m) = exp[—K(w,T)mn(W’T)]

is given by the slopes of these plots for two
amounts of precipitable water at one air mass

and two lunar surface temperatures. An approxi-
mation of n(w,T) independent of air mass is valid
except for the upper plot where significant
deviations at large air masses are apparent.
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Several observations may be drawn immediately from
these calculations. First, the rapid decrease in the atmos-
pheric radiant transmittance at low temperatures cannot be
avoided unless one completely filters out radiation in the
002 bands. Second, under certain circumstances a square-
root power law is a very good approximation: for example,
when observing the Sun or the lunar subsolar point with a
wide-band filter under very dry conditions, assuming the
water -dependent continuous absorption model, or when observ-
ing any object through a filter excluding the CO2 and O3

bands, under the same conditions. In this connection, we

19

note that Strong's observations of the Sun corroborate

the square root law. However, under many circumstances such

an approximation leads to significant errors in the extra-
polated extra-terrestrial radiance even at high temperatures.
Since the 8-14 micron "window" lies almost entirely in the
Rayleigh-Jeans domain of the Planck distribution at L4L0O°K,

but in the Wien approximation at 100°K, the sensitivity of

the inferred temperature to errors in radiance depends in

an important manner upon the temperature itself. 1In Figure 13
we show the increment in lunar brightness temperature per 1%
change in observed irradiance versus lunar brightness tempera-
tures. The three curves are for three different filters. Thus,
to measure the subsolar point temperature to within * 1°K, the
atmospheric transmittance needs to be determined to better than
1%; during an eclipse, for temperatures close to 160°K, 5%

accuracy is sufficient for ¥ 1°K temperature measurements.
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We note further that for models in which the continu-
ous absorption component is small, the curvature parameter A
is small, and an approximation of n independent of air mass
is good. When the continuous absorption component is not
small, it acts throughout the spectrum as an opacity source
with a power of one and becomes more important relative to
the band absorption as the alr mass increases, increasing
the value of n.

To judge the applicability of these calculations to
other filters, one should note that the wide-band filter
modifies the atmospheric radiant transmittance in two ways.
First, 1t reduces the importance of the CO2 absorption bands
between 13 and 14 microns. Since these act as opacity sources
with a power law less than one-half, the resultant n will in
general be larger and less dependent upon the air mass than
if no filter is used. Secondly, the filter transmits some
radiation between 14 and 15.2 microns. Thus, the values of
n at the lowest temperatures are less than if tne rectangular
bandpass filter (8-1L4 microns) is present.

As a final consideration, we can use this computer
program to predict how errors in the measurement of w will
affect ?A(T, m). These changes in transmittance A?A/Aw
given in Tables II, III, and IV were computed by comparing
the transmittances for the previously computed cases with
those for atmospheres with 1 mm more water vapor at the

zenith. The changes vary from a high of 1.6% for dry
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atmospheres with continuous opacity due to water wvapor to
essentially zero in some cases. Again these errors affect
temperature determinations mainly when one observes surfaces
at high temperatures.

Since the present program is based on inadequate data, it
has limited applicability for the routine determinations
of accurate transmittances. To adequately distinguish
dependencies upon w from those on air mass, one must have
empirical high-resolution atmospheric-absorption parameters
similar to those of Gates and Harrop, but for the whole
window or at least up to 13 microns, and obtained over many

days of observing. Drayson's CO, band data appear to be

2

useful since they involve determinations of transmittances

at a variety of zenith angles and pressures. However, they were

computed assuming the US Standard Atmosphere temperature

and pressure distribution, which has a sea level temperature
of 15°C. The computations of Sasamorizo, for the transmit-
tance of a homogeneous slab of CO2 in which the Lorentz
half-width is assumed independent of T, imply a variation

of the transmittance of 0.8 percent per °K between 13 and

14 microns. Surely this will be a realistic upper limit to
variations, since temperature changes will be mainly near
the surface. Drayson's data imply a variation of Y1 to

2% in the CO2 band transmittance over typical variations in
surface pressure, for example, between 1013.25 mbars and

1000 mbars. Finally, Saiedy has obtained an approximate
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variation of 1% in the water-vapor dependent continuum
absorption coefficient per °K surface temperature change.
Until such problems are solved and surface tempera-
ture and atmospheric pressure effects have been adequately
investigated and considered, the procedure described here
should be taken as a first attempt to investigate the wvalid-
ity of various approximations in describing the atmospheric

absorption.
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VII. Lunar Surface Models Based on Infrared Measurements

Careful consideration of cooling curves of the craters
Tycho and Copernicus, which we obtained during the lunar
eclipse of December 18-19, 1964, and of infrared lunation
data obtained by Murray and Wildey,8 strongly suggests that
the idealized one- and two-layer models of the lunar surface
are not gdequate for the unique interpretation of infrared
eclipse and lunation measurements. These data suggest that
the one- and two-layer models which assume temperature-
independent thermal properties have not been properly applied
to correspond with the actual conditions on the lunar surface,
and that the effects of temperature-dependent properties
should be more thoroughly investigated.

The sensitive infrared detectors used by Murray and
Wildey to measure lunar nighttime temperatures provide a new
tool for investigating the thermal properties of the lunar
material a few millimeters beneath the surface. Because of
these observations, and because the predicted structure of
the lunar surface depends on the assumptions embodied in the
models, we believe it important to rediscuss the thermal con-
duction problem and to emphasize the physics of energy trans-
port as postulated in the several models. By varying each
assumed property of a given model, one at a time, we can dis-
cover how a partiéular factor affects both the eclipse and
the lunation cooling curves obtained and can ascertain which
are the simplest models, and what are the range of values of

their parameters that are consistent with the observed data.
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The thermal properties of various types of lunar-
surface models that we will discuss may be characterized
in terms of four criteria:

(1) depth dependence,

(2) temperature dependence,

(3) horizontal surface variations,

(k) extent of the lunar surface over which averages

are made.
Since infrared measurements usually resolve a region

4+ 1.
%)

oG thc lunar csurface over which the local solar zenith angle
at a given time is nearly conétant, several investigators
(e.g., Wesselink,21 Jaeger,g2 Jaeger and Harper23) have cal-
culated surface temperatures which, strictly speaking, per-
tain only to one point, usually the subsolar point. Levin2
has noted that measurements of thermal radio emission obtained
with very low spatial resolution on the lunar disk can be
misinterpreted when compared with predictions of models which
apply only to a point. In particular, he suggests that when
the emission from a large region of the lunar surface, which
has a significant variation in solar zenith angle and thermal
history, is averaged by an antenna with a large beam-width,
the characteristic properties of multilayer models will be
lost. Piddington and Minnett,25 using an antenna which at
1.25 cm has a half-width to half-power points of 23', obtained

a condition, based upon their phase lag measurements, which

relates the temperature-independent thermal properties of the
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upper and lower layers of two-layer models to the depth of
the upper layer. Until this or some other condition is
verified by radio observations of high spatial resolution,
we cannot use it as a basis for discussion.

As a first step we shall generalize the horizontally
homogeneous models with temperature-independent properties,
that is, those in which the thermal properties are a function
of depth only. Then we will consider in the light of our
data the possible importance of horizontal inhomogeneities
such as a fraction of the surface consisting of "exposed rock.
In Section ¢ we will discuss what happens to the surface
temperature when we also consider radiative transport of
energy inside the surface and a linear temperature dependence

of the thermal properties.

a) Basic Equations and Computing Methods

Under the assumption of a plane-parallel lunar surface
in which the thermal properties are only a function of depth x,
measured positively inwards, the flux conducted outward in a

solid material would be

F o=k 2%
c 0

(119)

93X

where Ko is the bulk thermal conductivity of the material.

Between two planes each with radiant emissivity e separated

M,
by a distance s', the radiated flux is given by the equation

- T
F_ = Le'ogT3s! oL , (120)

ax
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where the effective emissivity €', corrected for multiple

reflection, is

e' = e2[1 + (1 - €)% + (1 - & )4 +

M M M (121)

In Eq. (120) 5 is the Stefan-Boltzmann constant and T the
mean temperature between the two planes. The very upper-
most material on the lunar surface may be porous or composed
of finely-divided material. In this case the total hesat

flux in this material would consist in part of thermal con-
duction, where the material is solid, and in part of radi-
ative transfer across the empty spaces. If we consider a
porous structure which contains holes of characteristic

size a, and if we further assume that the ratio R of radiated
flux to conducted flux is not so large that significant depar-
tures of the temperature occur at any point from the mean
temperature at that depth, the total upward flux will be

given by the equation

Po=[(1-p)K_ + be'oT3paldl (122)

X

vhere p is the fraction of the structure occupied by the
spaces. BSince we have no prior knowledge of p and there is

no direct way of measuring this quantity from earth-based
cbservations, it is useful to rewrite this expression in

terms of the effective conductivity K and effective spacing s,

where

*A further discussion of radiative conductivity relevant to
this problem may be found in Wesselink?! ang Whipple.26
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F= (K + be oT3s)= | (123)
9X
s = pa—e_ ’ (12L)
M
K = (1 - p)KO. (125)

One could, of course, consider any of a number of small-sceale
geometrical configurations, for example, spheres in contact,
but in all such cases the flux could be written in the form
given above, except that K and s would have different meanings.
The following arguments in no way depend upon this assumed
porous structure, since only the thermal properties can be
ascertained by infrared measurement, and a fuller discussion
of such structures would be pointless.

Before proceeding, let us consider whether radiative
transfer could indeed play an important role. For a typical
value of K, such as 5 x 10_6 cal cm_loK—l considered below,
and a temperature of 350°K, the conductive flux and radiative
flux become equal for a separation s = 200 microns. This
distance scale is not inconsistent with that measured by
Wechsler and Glaser27 for powdered rocks deposited under high
vacuum, and may be appropriate for large regions of the lunar
surface.

The heat conduction equation now assumes the form

- T
pedl = Bl(k + 1T omis)2E (126)
ot 9X ax
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with p the density, ¢ the specific heat, and t the time. At
a point with orthographic coordinates (&, n) and bolometric
albedo Ab’ the flux into the surface is given by the differ-

ence between the absorbed insolation (1 - A ) I(&, n, t) and

b
the energy radiated into space. Neglecting physical libra-
tion and the inclinagtion of the Moon's equator to the eclip-

tic, we find that the surface boundary condition becomes

(K + L%,0T3s) 3T = 500 % -(1 - AT, n, t) ,  (127)
IX[x=0C ©

where during the lunar day

I(g, n,t) = f(t)Oqu[‘ & sin §j§) + /1-—n2-£2cos(2nt)} . (128)
P P

P is the synodic period of revolution, EM the radiant emis-

sivity in the observed wavelength region, TO the surface

temperature, and TS the theoretical subsolar point tempera-

-2 -
ture. With the value of 1.99 ¥ 0.02 cal em > min % for the

¥

2
solar constant as given by Allen, 8 T, is 395 1°K.

S

Wesselink has noted that the subsolar surface temperature

for reasonable values of surface conductivity never reaches
this theoretical limit, since a small fraction of the inci-
dent flux is conducted inwards. For example, for a homogene-
ous model with temperature-independent thermal properties and
surface thermal parameter of y = (Kpc)‘l/2 = 1000 in cal cgs
units, which closely fits our data for the environs of Tycho,
the calculated subsolar temperature is 393.2°K for EM = 0.93

and varies only by * 0.1°K for * 0.05 changes in EM'
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We shall assume that the radiant emissivity at
visual wavelengths (1 - A_), commonly given as 0.932

(Astrophysical Quantities), is equal to the radiant emis-

sivity in the infrared. We have assumed a value of 0.93
for the subsequent calculations, and will discuss below

how a change in this quantity affects the theoretical cool-
ing curves during an eclipse and a lunation.

During the penumbral eclipse, the insolation is
reduced by a factor f(t) determined by the portion of the
solar disk occulted by the Earth and by solar limb darkening.
For this latter quantity the values at 6000 & given in

Astrophysical Quantities have been used.

In the light of Jaeger and Harper's success with two-
layer models, we consider a multilayered model, which will
better approximate to a more realistic situation in which
thermal parameters continuously vary with depth, if the data
should warrant adding this complication. At the boundary of

two layers, L and L + 1, the temperature is continuous,
Ty = Trex (129)

and the heat conduction equation may be written as

- 3
((KL+1 * beyoT Os ) (8T/8x)

Ay * pL+1CL+1)FTL

= 1im
2 ,bt ! AX~>0 (Ax)L

!
'
i
{
i
Lad

(KL + uEMoTL3sL)(aT/ax)L
- (130)

(AX)L




-78-

At the present time we are interested in a method
of solving Eqs. (126) and (130), both for an eclipse and
for a lunation, which will readily allow computation with
an arbitrary form of temperature dependencies of the thermal
properties. Fourier techniques, despite their elegance, are
clearly unsuited for such nonperiodic phenomena as an eclipse.
Solutions utilizing Laplace transform techniques have been
attempted, but for methematical simplicity one must often
oversimplify or even ignore the relevant temperature depen-
dencies of each parameter. For these reasons and for its
ready adaptability to machine computation, we have adopted
the difference-equation approach throughout.

Using first and second forward and central differences,
and writing the temperature at a time n(At) and depth m(Ax)

as Tmn, we write Eqs. (126), (127), and (128) in the forms:

- - - 3 _ - -
r B oo B 1 + A JkKL + be os (T; l) ][Tn o o 1 + " 1}

m m L 1‘ M "L

. n-1y2 [ n-12 n-1,n-1 n-1y2 1\ (131)
* 3eyos (T 77) [(Tm+l) -er 1T 1+ (T ) ], >

At . .
hoE (132)
J 2
prep,(8%)
%oy yp B3 B R o4 op P\3fp R _ "
2 o) . 1 e} 1 0
Kl + haMosl
2(Ax N 2 (Ax)l
- n, . -
- - t 133
eyo (T ) e l(€, n, t) (133)
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n-1 n-1\ 3 Tn--l _ n-1

and

|
|
B = M}.t : (136)
Copep, + pryppey) L8%)p # (AX)L+1]

In the absence of radiative conductivity, the well-
known stability criterion of AL<—0.5, as described, for
example, by Hildebrand29 or Richtmyer?o limits the time
interval At between successive temperature distributions.

We have found that when at a given temperature the radiative
flux is greater than the conductive flux, the stability
criterion can be 0.25 or even less.

In each of our calculations, an initial temperature
distribution has been assumed for a given position on the
lunar surface. The deepest point in the Moon is chosen so
far in that it does not affect the surface temperature at
any time, and is held at a constant value, usually 230°K
when not far from the subsolar point. After the integration
of a complete lunation is performed, which usually takes
about one minute on the IBM 7094 at the Harvard Computing




T Y T R Y v v—

-80-

Center, the temperature distribution is accurate, as cal-
culations for several lunations show, to within 1°K to
depths in excess of that to which the thermal wave can
propagate during an eclipse. Using this initial tempera-
ture distribution and computed values of f(t), we compute
the temperature distributions during the penumbral and
umbral stages of eclipse.

Unless otherwise stated, our cooling curves are
computed for the crater Tycho (& = - 0.685, n = -~ 0.140),
and on the assumption that EM = 0.93. In computing each
model we have specified the diffusivity o = K/pc, rather
than the more familiar thermal parameter y = (Kpc)_l/%
since a 1s the relevant parameter in the heat conduction
Eq. (126), if one wishes to specify the distance scale of
layers in dimensional terms.* For comparison with previous
work the values of a were chosen to give convenient values
of y when c is assumed to be 0.20 cal gm_BOK_l and P to be
1 gm cm_3, typical values from Wechsler and Glaser. Table V

presents the values of the diffusivities, conductivities,

and thermal parameters used for the various cooling curves.

¥In a discussion of homogeneous models, where the depth vari-
able is arbitrary, it is advantageous to rewrite the above
equation in terms of a new depth wvariable y = x/lT, where

Loy = VﬂﬂKn/pc is the wavelength of the first harmonic in a
Fourier expansion of the thermal wave in the lunar surface.
Wesselink has shown that when this transformation is made,

the relationships among the relevant parameters are homologous.
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TABLE V

THERMAL PROPERTIES FOR COMPUTED COOLING CURVES

Diffusivity, Assumed conductivity, K Thermal parameter
cm2 . cal cm_1°K—l sec™ L cal_l cm2°K sec_l/2
-3 -4
1.11 x 10 2.22 x 10 150
-4 -5
4.00 x 10 8.00 x 10 250
ot -5
2.05 x 10 4.10 x 10 350
-4 -5
1.00 x 10 2.00 x 10 500
= -
L.uh x 1077 8.92 x 10°" 750
-5 -6
3.91 x 10 7.81 x 10 800
-5 -6
3.09 x 10 6.17 x 10 900
2.50 x 107° 5.00 x 10‘6 1000
-5 -6
1.90 x 10 3.79 x 10 1150
-5 -6
1.60 x 10 3.21 x 10 1250
-5 -6
1.11 x 10 2.22 x 10 1500

For direct comparison with observed temperatures,
all of the calculated surface temperatures have been reduced
to brightness temperatures by considering the decrease in
apparent blackbody temperature that results from a change in

irradiance by a factor of €, through our wide-bandpass filter

M
(Figure 10). We have plotted these cooling curves as a ratio
of temperatures to initial temperatures, TM/TM,max’ as a

function of t/to, with to the duration of the penumbral phase
(56 minutes for the crater Tycho in the December 18-19, 196k

eclipse).
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b) Discussion of Two-Layer Temperature-Independent
Models

The simplest model of the lunar surface, that which
assumes thermal properties independent of depth and temper-
ature, as well as horizontal homogeneity and high spatial
resolution, was originally investigated by Wesselink and
Jaeger. Although this completely homogeneous model is an
obvious over-simplification, it does provide a convenient
reference with which to compare observations and suggest
fhe manner in which the model should be improved. We have
computed such a family of cooling curves (presented in
Figure 14,) using time intervals At between 120 and 360
seconds, and 30 points inside the surface ranging from a
maximum depth of 25 cm for Y = 1500 to 70 cm for Y = 250.
Figure 14 includes the computed pre-eclipse brightness

temperatures T as an indication of the manner in

M,max
which they depend upon the models. Enough significant
figures are given to show the dependence of these temp-
eratures on the model, but the differences are much
smaller than the uncertainties in their absolute values
because of uncertainties in lunar emissivity, solar
constant, etc.

The observed temperatures inside Tycho are also

presented in Figure 14, along with an average of the

observed temperatures 30" east and west of the crater
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LUNAR ECLIPSE DEC. I18-19, 1964

HOMOGENEOUS MODELS

(-]
f TM,mox( K) -
250| 353.9
350| 354.6 _
500 355.3 £M=-93
1000| 356.0 i
1250| 356.2 & =-.140 -
98% 1250
®{2% 250 354.0 ﬁ =-.685
80% 500
56.0
® 20% 250| °°°

FIG.

1.0

14,

1.5 2 25 3 3.5
t/t,

Observed brightness temperatures inside the
crater Tycho (+), and the average of tempera-
tures 30" east and west of Tycho (+) are com-
pared with a family of cooling curves for
homogeneous models with temperature-independent
thermal properties. The curves are computed
for the orthographic coordinates of the center
of Tycho (g = -.140, n = -.685) and for the
indicated radiant emissivity. The resulting
theoretical pre-eclipse temperatures Ty max
given in the Table are given to much higher
accuracy than is warranted by the measured
values of absorbed insolation, in order to show
the dependence of TM,max upon the particular
model. Estimated time errors are less than

1.5 minutes,.
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(hereafter called "the environs of Tycho™ ). The path of
each scan through Tycho is shown in Figure 15. OQur deduced

relative temperatures are systematically 3.5 to 4% higher
than those obtained by SintonBl. In part this may result
from the use of different methods of determining the at-
mospheric transmittance, but more probably it results from
his larger resolution element of 27.9" and the concomitant
smearing of significant detail.

As previous investigations have shown, the comple-
tely homogeneous model produces cooling curves which de -
crease more rapidly during the umbral phase oI ecllipsc
for aammalous craters than is observed. OQur data for
Tycho and its environs tend to corroborate this generali-
Zzation although a completely homogeneous model for the
environs of Tycho is not ruled out. This suggests that we
must reconsider one or more of these simpliciations if
we are to obtain a more realistic model for the lunar
surface.

As a simple refinement upon these completely
homogeneous models, we relax the condition of horizontal
homogeneity. Such models as, for example, that shown in
Figure 1% show that when we consider a fraction of the
lunar surface composed of "bare rock'" of higher diffusivity,
the slope of the cooling curve throughout totality is
changed only very slightly. Therefore simple models that
are homogeneous in depth but postulate a variety of surface

materials will not fit our data for Tycho or its environs.
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Jaeger and Harper have computed a family of cooling
curves using two-layer models, with each layer cﬁaracterized
by different thermal properties, assuming the relationship
between the top layer depth d and the temperature-independent
thermal properties of the top and bottom layers (primed quan-

tities) derived by Piddington and Minnet:

d = 610 K(K'p'c')™ /2 . (137)
One of Jaeger and Harper's curves comes close to fitting

32

ained by Pettit for an upland area on the

Lie dava okt
edge of Mare Vaporum (£ = 0.0, n = 0.17).

The addition of a substrate of higher diffusivity
affects the eclipsed surface temperature in two ways.
First, its higher thermal inertia and consequently greater
thermal phase lag with respect to insolation increases the
phase lag at the base of the top layer. For regions of the
lunar surface in which the interface is heating up, that is,
primarily West¥ of the subsoclar meridian, the interface will
be colder than at a similar depth for a homogeneous model
consisting of upper-layer material. Since the radiating

boundary demands a specified outward flux which, with the

heat capacities, determines the thermal gradient in both

¥According to the astronomical convention, West is defined
as the direction perpendicular to the lunar axis of rota-
tion from the lunar sub-earth point towards Mare Crisium.
Thus the sun rises in the West on the Moon.
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layers, the surface temperature must be colder for two-
layer models in which the source of heat is the internal
energy of the upper layer. This effect is readily apparent
in Figure 16 for those models with thick uppe: lavers,

and especially in Figure 17 where the temperature distribu-

tion beneath the surface is plotted for three models at three

times: at the beginning and at the end of penumbral eclipse,

and near the end of umbral eclipse.

On the other hand, when the advancing thermal wave
reaches tThne 1nterIace, lLedL 1o witlhdiawid T3Cm & rogicn of
high thermal conductivity and the surface temperature falls
more slowly. For thin upper layers this manifests itself
in an abrupt levelling out of the cooling curves at the end
of penumbral eclipse, while for a very thick upper layer
(a centimeter or more deep) such an effect cannot manifest
itself during an eclipse but is observable during a luna-
tion.

If one ignores the condition expressed by equation
(137), the existence of three independent variables (the
diffusivities Gy and aLof the upper and lower layers, and
the thickness of the upper layer) introduces the pos-
sibility that a great many models can exhibit very similar
eclipse cooling curves. It is also possible that the
curves may be insensitive to values of one or more of the
parameters. For the case of a moderately thick -ipper

layer, that is, one for which the cooling curve deviates
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from the homogeneous case mainly during the umbral phase

of eclipse, allowed values of oy are bounded by the two
conditions that the cooling curve for a homogeneous surface
of the same thermal properties must be the same as or
slightly above the observed temperature at the beginning

of umbral eclipse, but significantly below it at the end

of total eclipse. The data we have obtained for the en-
virons of Tycho may be described in terms of such a model
with the thermal parameter of the upper layer between

1000 and 1250. Figure 10 shows curves for two-layer models,
which assume thermal parameters of 1000 and 250 for the
upper and lower layers respectively, but assume variation
in the thickness d of the upper layer. The data for Tycho
itself may be described in terms of a model of the same
materials but with a much thinner upper layer.

To investigate how the theoretical surface temp-
eratures depend upon modifications of the model, we may
take as standards the two models which agree well with the
observational temperatures of Tycho and its environs, and
systematically study the effect of changing each of the
relevant parameters one at a time.

OQur attention will be focused primarily upon models
involving a moderately thick up;er layer, which present
and previous data indicate may characterize the anomalous

craters and their environs.
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Variations of &y manifest themselves in a signifi-
cant manner for models of moderate thickness and for com-

pletely homogeneous models, since it is only a, which pre-

U
vents a rapid decrease to very low temperature at the end
of the penumbral phase of eclipse. The cooling curves for
such models, shown in Figure 18, are parallel but are
significantly displaced during totality with respect to

one another, as a result of different thermal gradients in
the upper layers required to support roughly the same con-
ducted outward flux. Very thin layers exhibit this effect,
but it is decreased in magnitude almost proportionally to

the depth of the layer.

Models with the same o but different o

U [ are very

interesting, in that the qualitative behavior shown in
Figure 19 depends upon the upper layer thickness, 4. If

the layer is so thick that the thermal wave does not advance
much farther into the surface than the interface, the effect
of the lower-layer thermal inertia upon the material im-

mediately above is important. Consequently, the curves for

N

larger values of a 1lie below those for lower values. When

the upper layer is so thin that the major scurce for radiance
during total eclipse is the lower layer material, the curves

for greater o_ lie above. In addition, for models with small

L

d, @ manifests itself directly in the slopes of the umbral

cooling curves; the slope decreases as a_. increases, and

L

the lower layer approaches the condition of a constant-
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temperature heat source. Thus for such anomalous regions
as Tycho, with sufficiently accurate data one may be

able to determine the diffusivity of the lower layer
directly from relative measurements alone.

From these consideratiohs, we conclude that the
surface structure both in and around Tycho may be ade-
quately, but not of necessity uniquely, described in terms
of two different two-layer models, both of which consist
of the same two materials (thermal parameters of 1000 and
250). and which differ anly in the thinrkness ~f the unnar
layer. As is apparent from Figure 16, the data for the
environs of Tycho are consistent with upper-layer depths
between 5 and 10 mm, but it is interesting to note that
these parameters and an upper-layer depth of 7 mm satisfy
the conditions of Piddington and Minnett. Further cal-
culations show that only a limited range of aU and depth
can fit our data for the environs of Tycho, for example
the values Yy = 1150 and 4 = b4 mm also give a reasonable
fit.

In order to apply these models to other features
on the lunar surface, we must consider how changes in the
initial temperature distribution and surface temperatures
before eclipse affect the surface temperatures during

eclipse. Since the loss of energy at the surface by radi-

ation decreases rapidly with temperature, the relative umbral

phase temperatures increase to the east and west of the
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subsolar point. Thus we would expect that the crater
Aristarchus, at 48°E selenographic longitude (& = -.685),
would exhibit relatively higher umbral brightness tem-
peratures than a crater of similar structure near the
subsolar point. As we have already seen, significant
changes in the cooling curve of two-layer models can
result from changes in the interface temperature. The
cooling curves for similar models east and west of the
subsolar point should not be precisely the same. These
effects, demonstrated in Figure 20, apparently have not
been considered in previous studies, a fact that may in
part explain the inability of Sagri and Shorthill33 to
interpret eclipse temperatures inside Aristarchus.

A similar relative increase in umbral-phase surface
temperatures occurs toward high latitudes (see Figure 21).
This results from an initial temperature distribution which
approaches a constant value independent of depth, and from
the less efficient radiating boundary. Thus, for comparison
of infrared eclipse data with theoretical predictions,
one must compute cooling curves for the particular lunar
region investigated. The very slight differences in many
cases between umbral--phase temperatures of radically dif-
ferent models do not permit the use of one set of models
computed for the subsolar point for comparison with data

obtained elsewhere.
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We have computed cooling curves for another region
of the lunar surface, the crater Copernicus. These curves,
together with the measured temperature of Copernicus and
its environs, are presented in Figure 22, and the path of
each scan is shown in Figure 23. Unfortunately, no measure-
ments were made far into totality, where a more precise
distinction between different models is possible.

In investigating the degree to which absolute as
opposed to relative temperature measurements are neces-
sary for obtaining the thermal properties of the lunar
surface, we must distinguish among three effects. A
positive error in the assumed temperature of the subsolar
point, resulting from insasccurate values of the absorbed
solar flux, is analogous to the effect of displacing the
observed lunar feature in n toward the equator. A neg-
ative error has the reverse effect. As we have seen, a
decrease in the absolute wvalue of n displaces the relative
umbral temperature downwards.

Secondly, systematic errors in the measured ir-

ved

o

radiance do not appear in a one-to-one manner in the der
temperatures, but are more significant at 350°K than
at ZOOOK,as shown previously in Figure 13. Thus, system-
atically low flux measurements will increase the relative
umbral temperatures, but the increase will not be as great
as that produced if we assume an absorbed solar flux that

is correspondingly low. For example, a relatively large
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error in the subsolar point temperature, reducing it from
395°K to 380°K, which is a 13.3% error in assumed incident
solar flux, increases the relative temperature from 0.L463
to 0.477 at t = 3.22 t_ for our standard two-layer model.
A similar systematic error in measured lunar irradiance,
with the same model, increases this relative temperature
from 0.463 to 0.469, about half as much. The discrepancy
is about 3OK or 15% in lunar irradiance during the umbral
phase.

While the incident solar flux may be accurate to
about 1%, the bolometric albedo for typical and anomalous
regions of the lunar surface is not known with this accur-
acy. A further complication is that the change in radiant
emissivity with observation angle, as investigated by
Geoffrion, Korner, and Sintonsu for the subsolar point,
leads to an 11% increase in radiant emittance for this
region at full moon relative to the mean radiant emit-
tance. Thus, an error in theoretical temperature for the
subsolar point of 10 or 15OK is not inconceivable, and
the resulting inaccuracies in lunar thermal properties
should be taken into account.

The third effect is that for the same surface
temperature but different mean emissivity of the surface
material in the infrared, the rate of thermal emission

varies. A 0.05 change in this emissivity causes a change

of 0.0083 in relative temperatures at the end of umbral
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eclipse for the standard model. The change is negative for

EM = 0.98, corresponding to temperature differences of * 3°K

or, again, a * 15% change in observed umbral irradiance.

c) Temperature-Dependent Properties

Since one-and two-layer temperature-independent
models have apparently been successful in accounting for
eclipse and radio observations, and since a multitude of
plausible mechanisms have been postulated to account for
the formation of an upper "dust" layer of variable thick-
ness across the lunar surface, there has been little mo-
tivation for introducing the mathematical complications
of temperature-dependent thermal properties.

Murray and Wildey have recorded brightness tem-
perature down to their instrumental noise level of lOSOK,
in the course of many scans up to 8 days into lunar dark-
ness. They are unable to fit the observed rate of decrease
of temperature with time, the quantity most nearly inde-
pendent of systematic errors, to any completely homo-
geneous models they have calculated. They speculate
instead that horizontal variations in the conductivity
such as "bare outcrop of boulders on the surface" might
give a better fit. As is apparent in their Figure 8 and
from our calculations in Figure 24, such completely homo-
geneous models have cooling curve slopes which are slightly less

steep than is consistent with the data. If a few percent




Tu(°K)

| | | T | | ] |
170 p— TEMPERATURE INDEPENDENT MODELS DURING LUNATION _
4 €u| (mm)
© 899,40 93 | 20
® 600 93 -
160 p— —
®@ so00 .80 - N =+.20
° @ 800 93 - £ * SCAN
® 1000 93 —_
96% 800| oy _ _
150 4%2501 -
© MURRAY - WILDEY DATA ( 7) =.20)
% MURRAY- WILDEY DATA TYCHO (LOWER LIMIT)
)
140 —
o
130 o=
120 =
HO o
®
100 ==
®
] ] 1 | ] ] ] | J'L
o 20 40 60 80 100 120 140 160
TIME IN DARKNESS ( HOURS)
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models with temperature-independent thermal
properties are compared with the data of
Murray and Wildey. These temperatures are
computed for a point at the mean orthographic
coordinate of their scans, n = +.20, in
terms of the number of hours after the pas-
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because of uncertainties in position deter-
minagtion on the lunar surface.
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of the surface material is of higher diffusivity (see
Figure 2L4), the slope of the nighttime cooling curve
decreases further. In addition, two-layer models in
which the depth of the upper layer is shallow enough to
be apparent during a lunation, that is, less than 6 cm,
also have slopes which are less steep than single-layer
models, and thus are inconsistent with the data.

Before we proceed we should consider alternative
explanations for the observed steepness of lunation
cooling curves. With Murray and Wildey's spatial reso-
lution of 26" and a probable positioning error of two or
three times this resolution limit, their data for regions
within 12 hours of the sunset line should not be given
much weight. Wildey3ssuggests that their determination of
the terminator is probably in error by 5 hours in the
sense of reducing the observed brightness temperature at
the terminator. When such a time correction is applied
to their data, it approximates better the predictions of
homogeneous models.

Their final temperatures were measured very close
to the 1limb and should be revised upward if limb darkening
is important. An upper limit to this revision can be
estimated from the observed 30% reduction (Geoffrion,
Korner, and Sinton) in the measured radiant emittance
from the subsolar point when it is at the limb as compared

to its mean value. At lOSOK and for our wide-bandpass filter,
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this corresponds to about a 3OK surface temperature
increase at the end of their scans. The data would then

be brought into agreement with two-layer temperature-
independent models that have upper and lower thermal
parameters y of roughly 800 and 250 and a depth of b
centimeters. However, the effect of limb darkening is
probably much less than 3OK near the limb. The effect

of small-scale surface roughnesses upon the insolation is
probably the major cause of limb darkening at the subsolar
point, and a rough unilluminated surface should approximate
a blackbody. It should also be noted that Murray and
Wildey's scans covered both upland and mare regions, but
they find no large-scale selenographic variations to
suggest that their data should be interpreted other than

in terms of the "time variation of temperatures at a single
point."

Assuming that none of these postulated mechanisms
is able to explain away the rapid decrease of temperature
that occurs between 12 and 160 hours into lunar night, we
are forced to construct models with temperature-dependent
thermal properties. Radiative conductivity is one mechanism
that would account for a decrease in conductivity at low
temperatures, which in turn would produce the more rapid
decrease in temperature during lunar night. At the same
time, however, such a model would have high conductivity

during the lunar day, and thus temperatures between 2 and
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10 c¢cm below the surface that are significantly higher
than if this heat transfer mechanism were unimportant.
This is shown in Figures 17 and 25. ‘lhis excess internal
heat is almost entirely lost just before sunset and so
plays no role in explaining nighttime observations, but it
produces high surface temperatures near the sunset termin-
ator, which should be observable.

In Figure 25 we have plotted the surface tem-
pPeratures, again reduced for an assumed emissivity EM =
N Q2 for several models with different K, and R, tne ratio
of radiative flux to conducted flux at 3500K. Each model
exhibits the requisite slope: thus if radiative conduction
is important for lunar surface materials, it is difficult
to separate the effects of the conductivity from those of
the effective spacing, s. An increase in s mimics a de-
Crease in K. As in the temperature-independent models,
the introduction of a lower layer of higher diffusivity
decreases the rate of surface cooling when heat begins
to be withdrawn from the lower layer itself. Thus we can
say that if such a lower layer exists, it is probably more
than 6 cm down. Considering v to be defined in terms of
the thermal conductivity excluding its radiative component,
we find that values of Y between 900 with s between 300
and 600 microns, and 1000 with s about 1000 microns, could
be considered consistent with the Murray and Wildey data.

Measurements of the thermal conductivity of crushed
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basalt powder, cited by Buettner36, support the assumption
of a T3 term in the conductivity with a distance scale

s = 1000 microns. With our assumed values of p and c, his
results suggest values of y near T750.

Eclipse cooling curves, shown in Figure 27, com-
puted using homogeneous radiative models fit the data for
Tycho and its environs about as well as do homogeneous
temperature-indcpendent models. The internal temperature
distributions, shown in Figure 25, for these two models are
significantly different, however. In order to match
precisely the observed cooling curve slopes again,two-
layer models are necessary.

To our knowledge the only attempt in the literature
to investigate the effects of temperature-dependent thermal
properties other than radiative conductivity is the work
of Muncey37’38. He has assumed that both the specific heat
and the conductivity are directly proportional to the ab-
solute temperature. His assumption is suggested by the
tendencies of the specific heats of silicates to increase

39 of the

with temperature and by the measurements by Scott
thermal conductivity of 80-mesh powdered perlite under

vacuum conditions.¥* The measurements of the thermal

*These measurements are clearly inadequate for our case

since they consist of two sets of observations, the mean
conductivity between 20 K and 76 K (below lunar temperatures)
and the mean conductivity between 76 K and 30& K (a range

cf temperatures large enough to render the resulting number
meaningless for our purposes).
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conductivity of crushed olivine basalt by Bernett et al.
showed a decrease with temperature under high vacuum con-
ditions, but Bernett et al. explsined them in terms of radi-
ative transport in the holes of the material, and made no
measurements below 203°K. Measurements of the thermal
conductivity of possible lunar materials under high vacuum
and over the lunar range of temperatures are urgently needed.
In order to investigate the qualitative effects of
temperature-dependent properties we have assumed, as has
Munecey the specific heat and the conductivity to be of the

forms

c=c¢c T |, K=k T |, (138)

which lead to the heat conduction equation

pc T = 3T _ 2 (1«:011ﬂ : (139)

ot X 9x

Using difference methods as before, one may write the heat
conduction equation in the material (140) and at a boundary (143);
the interlayer boundary condition (142), and the surface

boundary condition (1L45), as follows:

n n-1 n-1 n-1 n-1
= T _ +
Tm m * AL (Tm+l 2Tm Tm—l)
1 n-1,2 Amhi=1 n-1 n-1 Zf\
th—l ( m+l) - 2Tm+l Im_.] + (Tm—l) | ,(1k40)

where



ko At
AL = —_— (1L1)
pc | (ax)?
Ty = Traq ; (1k2)
n-1 n-1 n-1 n-1
T B o Tn—l + _li_ K Tm+l T Tm+l Tm
“m L
Tz_l . Tn:i Tn—l _ Tn-i
_ ko L m m m-— (lh3)
’ 2 (ax),
1 r] - —_ a4
where
h hY
B = (at) (141 )
(ppep *+ pL+lCL+l)[(Ax)L + (Ax)L+1]
and
On + Tln 37 - thn + T2n .
-k S = 01" - F (e, t)
2 2(AX)1

(1k5)

As before, we cannot predict explicitly what effects
the temperature dependence of the thermal properties will
have upon the shape of eclipse and lunation cooling curves.
For a given outward flux when the surface is cooling, one
expects that a larger temperature gradient would be required
near the surface than farther in where the temperature is
higher. This is apparent if we compare the temperéture dis-
tribution immediately below the surface during an eclipse for

a temperature-dependent model with that for a temperature-
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independent model (Figure 25). The exact effect this
variable temperature gradient has upon the surface tempera-
ture at any time, however, can be found only by obtaining
the solution of Eq. (1L4O0), subject to the appropriate boun-
dary conditions.

The results of such computations (see Figure 28)
show that homogeneous models characterized by the parameter
Y35(’OK = (kpc) /2 gt 350°K, exhibit the same rate of cool-
ing as do the lunation data. We have assumed that p=1 gnm mf3
and ¢ = 0.20 cal gm'3°K‘l at 350°K. A model with vy =

350 °K

450 appears to be about the best fit. Clearly, two-layer
models with depths less than about 6 cm are ruled out, as
are horizontally inhomogeneous models.

Homogeneous temperature-dependent models come close
to fitting the eclipse data for Tycho and its environs as
shown in Figure 29. A typical two-layer model (see Figure 30),
such as that having an upper layer of material Tmm thick with
Y350°K = 800 over a substrate with Yo%k " 250 is consistent
with the data for the environs of Tycho. A model with the
same lower layer material but an upper layer characterized
by Y350°K = L0O0 and = depth of roughly 6 mm would be approp-—
riate for the crater itself. However, any of a number of
such models could fit the data.

From the above discussion it should be apparent that

radicelly different models of the lunar surface can exhibit

similar, and in some cases indistinguishable, cooling curves
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for two-layer models assuming linearly
temperature-dependent thermal properties.
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during an eclipse and a lunation, and at the same time can
have significantly different internal temperature distri-
butions at millimeter and centimeter depths. Comparison

of mm-wave ragdio observations of small regions of the lunar
surface with predictions based upon each of these models,

may be able to distinguish among them.

d) Conclusions

At a time when the problem of the lunar surface
material has ceased to be a question of theoretical astro-
physics and has become one of practical engineering, it is
important to consider critically the alternative explana-
tions not fully developed previously, of the thermal behav-
ior of the lunar surface. Clearly, the anomalous crater
Tycho can be readily explained in terms of simple two-layer
temperature-independent models, but several other models
agree equally as well with the data. In particular, the
environs of Tycho can be explained by many different kinds
of models; the large region scanned by Murray and Wildey
can be accounted for by temperature-~dependent or by radiative-
conductivity models. In the light of our preéent inability
to decide uniquely which of several plausible models applies
even to any of the regions of the lunar surface we have
studied, any detailed description of small-scale lunar sur-
face structure, uncritically based upon any one kind of

model yet devised, may be physically meaningless.
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