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ABSTRACT

,. y94
The conventional continuous proportional plus integral

control algorithm is converted to its sampled, incremental

form, then approximated by a set of three differences which

are computed digitally and applied to the process actuator

at different times and rates. Computation of the three

terms at different rates serves to reduce the amount of

equipment needed to provide a wide range of integral gain

while retaining the stabilizing effect provided by frequent

sampling of the proportional term.

Tests demonstrate that the controller performs well for

all types of industrial processes except flow loops with

slow actuators. For this exception the controller can

easily be modified to provide good response. The con-

troller is designed to control a single loop either indepen-

dently or in conjunction with a higher level control computer.
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CHAPTER I

INTRODUCTION

Continuous analog controllers have come into widespread

use for the automatic regulation of industrial processes.

Their function is to compare the desired value of a pro-

cess output with the measured output and to adjust the

process input in accordance with the error. In a three

mode controller the process input calculated by the con-

troller is a combination of the present error, its rate of

change and its time integral. Such a controller, containing

proportional, integral and derivative modes, is commonly

called a PID controller. All such controllers have, until

recently, been analog devices.

Since World War II, the advances made in digital computers

have steadily broadened the areas in which digital techniques

can be profitably employed. The insensitivity of digital

data to noise, both in transmission and manipulation, re-

sulted in the use of digital control systems for aircraft

and missiles. _achine tools were subjected to digital

control in order to produce complicated parts economically

and accurately. (1) In process control, starting in the

1950's, digital computers were used for data collection

and reduction at large chemical and petroleum installations



in an effort to improve plant identification and operation. (Z)

In some cases the computer ordered new controller set

points, but the direct controller function of valve control

was not taken over by the digital computer. The public

utilities also started using digital computers, but at first

only to compute set points or load assignments. (3)

A number of people began about 1958 to investigate the

possibility of direct digital control of many individual

loops using a shared digital computer. (2) There were two

major objectives. The first objective was, for the same

quality of control, to reduce capital investment below

that required for the analog controllers that would be

displaced. The second objective was to improve control

and to provide basic equipment compatible with higher

level computer control functions such as interaction

compensation, ratio, cascade, and optimization. The

author took part in a feasibility study of a "first level"

direct digital control computer at the Systems Research

Center of Case under the direction of the late Professor

D.P. Eckn_n in early 196Z. (4) The study, sponsored by

the Coming Glass Works and the Conoflow Corporation,

included simulation of various algorithms and quantization

techniques and included system planning for a computer

capable of PI control of 96 loops, plus some additional



features. The study failed to show that the computer would

be less expensive than 96 analog controllers, although the

additional capabilities of the computer tended to justify

any difference. No attempt was made to estimate reliability.

In _lne 196Z Williams of Monsanto reported on the success-

ful use of an RW 300 computer for direct digital control of

10 control loops, using a PI algorithm. (5) In November

196Z Fetter and Sanders of duPont reported on their studies

of direct digital control. (6) They concluded that the digital

time-shared system would show capital savings over

electronic analog controllers for installations with at least

75-100 loops. They devoted considerable attention to the

difficult problem of coupling the central high speed com_

puting facility to the individual slow speed valve actuators.

At the same time a report was published that Imperial

Chemical Industries, Ltd. in England had been operating

an ammonia plant for over a year using a Ferranti digital

computer providing PID control. (7) In this case pneumatic

actuators were used, requiring an auxiliary control loop for

each manipulated variable just to maintain valve position.

Also about 196Z some single loop digital controllers

appeared on the scene. Minnesota Mining and lv[fg.

announced a digital controller with only the I mode, and

the French Lignes T_l_graphiques et TS18phoniques



4

announced a PID controller that was part digital and part

analog, designed to drive a truly digital actuator, a valve

containing seven flow-weighted on=off valves. Development

of digital process controllers in Russia resulted in several

reports in 1962. (8, 9, 10, ll)They" included consideration

of single loop and multiloop controllers, both operating in

the PI mode, and included also discussion of the extent to

which sampling improves or degrades performance for the

various controller structures proposed. Analog to digital

conversion at the input of these controllers was apparently

done after an analog error had been generated, thus

avoiding one digital subtraction but at the same time losing

the opportunity to use digital set point data. The point was

made, however, that in the absence of digital sensors this

procedure causes no loss of accuracy. Mergler, Peatman

and Walker of the Case Digital Systems Engineering Group

have developed single loop digital controllers, both PI

and PID, in which a digital set point is used. (12, 13)

The controller designed by the author makes use of the

accumulator flip flops designed for Merglerts controller,

but is distinguished from all of them by the means of

adjustment of integral effect and by the simplifications made

in the control algorithm.



The present trend, at least outside of the Soviet Union, is

toward the use of a single time-shared computing unit for

the control of many loops. Several such computers have

been sold in the last two years. The main reason usually

given for following the shared computer approach is that

the only real justification for shifting to digital control

is to get an improvement in control over analog controllers.

The feeling seems to be that if any savings in equipment

results from the switch it will be very small, so we must

look for profit from higher level computer control

functions. Since such functions can only be performed on

a central computer with access to all loops, why not use that

same computer for basic Hfirst level" direct digital con-

trol? This is a compelling question, and one that no pro-

ponent of single loop controllers has tried to answer. My

answerp however, is that there are two good reasons why

first level control should not be performed by a shared

computer.

The first reason for using single loop controllers instead

of a shared computer is to obtain better reliability. Loss

of control of a single loop can generally be corrected soon

enough to avoid plant upset, especially since manual con-

trol can be used in the interim. The spectre that haunts

potential digital control buyers is the prospect of simul-

taneous failure of a11 loops. Using the shared computer



of Figure 1.1, this could occur if either the AiD converter

or the computer failed. When using separate controllers,

as in Figure 1. Z, only the failure of the AiD converter or

of the power supply could cause catastrophic failure of all

loops. Loops that had their own digital encoders on their

transducers would have no common failure mode at all,

if a stand-by power supply were provided. Preventive

maintenance of individual controllers could be performed

by replacing a controller with a spare and submitting it

to whatever off-line checks might be useful. With a shared

computer this would be possible only by having two entire

duplicate computers. This has, in fact, been proposed by

some to ensure reliability. Other measures for increasing

computer reliability can be taken, but each costs money.

It would seem less expensive to use the single loop controll-

ers, provide a few spares, and ensure reliability at the

critical shared part of the system by providing a duplicate

input multiplexer and AiD converter. Whether such a

procedure would in fact be less expensive depends on the

cost of the single loop controller. The design used in this

thesis uses 100 transistors for the PI modes, and might

require 60 more for extension to PID control.

The second reason for using single loop controllers is to

simplify the job of valve actuation. Referring to Figure 1.1
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it is evident that multiplexing is necessary for both the

input and output of the shared computer. The input

transfer is relatively simple, since the digital feedback

variable for each loop can be transferred in parallel in a

matter of a few microseconds, and this needs to be done

not more often than 10 times per second per loop. Transfer

of the output orders to the actuators is a different sort of

problem. If the output order is given only once, when the

order is computed, then the actuator that receives the

order must contain some sort of memory. The reason is

that the actuators must move some specified distance in

response to the order, and the time required for that

motion is in many cases much longer than the time that

the output multiplexer can afford to dwell on any one

particular loop. The solutions to this problem can be

broken into two classes; those in which the computer gives

absolute actuator position orders and those in which it

gives incremental actuator position orders. (6) One of the

solutions proposed in the incremental category is to

maintain one countdown register in the computer for each

actuator. The position increment computed each sampling

instant is put in this register and counted down to zero.

The actuator is moved at a fixed rate in one direction or

the other as long as the countdown is going on. This

technique, explained more fully in Chapter HI, can also
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be used with single loop controllers. The advantage in

doing so is that no output multiplexing is required, rather

a given countdown register is simply wired to a given

actuator. This is the technique chosen for the design pro-

posed here, and is the one shown in Figure 1.2.

If the single loop controller approach does relieve the

problems of reliability and actuator control, we still must

show compatibility with higher level control computers.

The plan is. to require that a separate, shared computer

perform all functions except the basic PI or PID control

algorithm. It would have access to the shared A/D con-

verter for its inputs, and would send its incremental output

orders directly to the various single loop controllers, as

shown in Figure 1. Z. The controllers would apply these

increments to their actuators, then return to their normal

control duties until the next higher level control order

comes along. Thus the higher level control computer is

simplified by the fact that its output orders can be

administered by the single loop controllers. Furthermore,

its reliability requirements could be relaxed, since its

failure would not effect first level control. If higher

level control is not needed, the computer can be omitted

and the user need pay only" for what he uses. The detailed

means of communications between the first level con-
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trollers and the higher level computer will be covered in

later chapters and in Appendix C. Chapters I and II are

intended to provide background and motivation for the

sections that follow on the actual design of the single

loop digital controller.



CHAPTER II

NATURE OF THE PROCESS CONTROL PROBLEM

Process, Transducer and Actuator

The block diagram of Figure Z. 1 identifies the elements

of an industrial process control loop. The controller is

provided in order to maintain the feedback variable b, an

indication of the controlled variable c, equal to the refer_

ence variable or set point, r. There are two characteristics

that typify industrial process control loops and distinguish

them from servomechanism control loops. The first is

that for industrial processes, especially continuous ones,

the reference variable r is maintained at a constant value

for long periods of time, so that the controllerls principal

job is to maintain the controlled variable at a constant

value in the face of load changes or disturbances, u. This

is in strong contrast to the duty cycle of a servomechanism,

which is asked to produce a motion corresponding to an

often varying reference signal r. The second characteris-

tic of industrial processes is that the dynamic lag of the

actuator is usually negligible in comparison to the lag in-

herent in the transducer or in the process being controlled.

In flow loops, which may account for 40 percent of process

loops, (6) the process time constant is usually negligible

compared to that of the transducer, but where it is import-

ant one can generally select a valve actuator with quick

lZ
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enough response to justify neglecting its dynamics in the

control loop. Chapter III demonstrates how these two

traits can permit a considerable simplification to be real-

ized in the design of a digital process controller and later

chapters establish guidelines showing the range of control

loop characteristics for which this simplified control

algorithm is effective.

Analo$ Controller and Typical Process

Figure Z.Z shows a process consisting of two tanks in

cascade. The level of the lower tank is to be controlled

by manipulation of input flow to the upper tank in the face

of any arbitrary disturbance. Although such a system is

not a common industrial process, its dynamic response is

04)
similar to that of thermal processes. This liquid level

process is the one actually used in this research. It per-

mitted great flexibility in testing, for two reasons. First,

it was possible, when desired, to bypass tank 1, directing

flow w 1 directly into tank Z, leaving only a single capacity

system, with an attendant increase in response speed.

Second, the valve actuator used was an electric stepping

motor, which could be run at any speed up to 145 pulses

per second, giving a time for full stroke of the valve of

any value down to 3Z seconds. It is shown in Chapter V

that the ratio of time for full valve stroke to the dominant

time constant of the system is an important parameter in
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predicting the effectiveness of the control technique des-

cribed in this paper.

When a process like that shown in Figure 2.Z is controlled

by an analog controller, the loop can be described in block

diagram form by Figure Z. 3 , which gives the form of the

transfer functions of the various elements of this analog

control loop.

Analog controllers are most commonly available with

either two or three "modes" of control. The LaPlace

transformed output of a three mode analog controller is

given by the equation

re(s)= Kp[T- _ + 1 + TdS] e(s ) (Z-1)

The three modes are called respectively integral, pro-

portional and derivative. InteEral action provides a

corrective ramp output from the controller for a steady

error input and is included to reduce steady state error

to zero. Proportional action provides a ramp output from

the controller in a direction to stop the motion of an input

error ramp. Derivative action provides an impulse output

signal for a step input error signal, and, because of its

stabilizing effect, is useful for permitting higher propor-

tional and integral gains to be used.
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Figure 2.4 illustrates how each of the three control modes

contributes to produce controller output m! l_J'" The upper

plot shows an arbitrary ramp error signal starting from

zero at time 1. At time zero m has an arbitrary initial

value of M = 1. For such a test the controller is under-
o

stood to be running open loop, that is without the feedback

connection shown completed in Figure Z. 1. The propor-

tional action, the lower dotted line, is simply K e added
P

to M . In this case K is one. Therefore, the proportional
o p

part of m follows e exactly, in a direction that would tend

to reduce error in a closed loop. Derivative actions

shown in the figure with a value of Z, adds an increment

of m equal to T d multiplied by the slope of the error

curve. This provides a lead action, yielding a given value

of m a time T d earlier than proportional action alone

would have produced it. The integral mode adds a further

increment of m. In the Figure T. = 10, so that at any time1

the integral effect is equal to one tenth of the area under

the error curve proceeding that time. The inverse of T.1

is called "reset rate" and is defined as the number of

times per minute that the proportional action is duplicated

by the integral action.
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CHAPTER III

DIGITAL CONTROL ALGORITHM

The aim of this research was to design a simple digital

controller that would have roughly the same proportional

and integral actions as the usual two mode, proportional

plus integral analog controller, yet retain the inherent

accuracy, resolution and flexibility of digital computation.

In order to be usable on a wide variety of processes it was

necessary to furnish the same wide range of gain and

integral time that is provided on analog controllers. These

requirements could not be considered, however, until it

was decided what sort of digital input data the controller

would have to work with, what sort of valve actuator the

controller would drive, and how the controller's output

would control the actuator. Once these decisions are

made it is possible to develop a control algorithm for a

digital controller using sampled data.

Preliminary System Assumptions

Controller Input Data:

The reference variable or set point, r, is provided in

parallel binary form from a set of 10 on-off switches.

The feedback variable, b, is available in 10 bit parallel

form, either continuously from a digital encoder or upon

command with negligible delay from an analog-to-digital

conve rte r. Z0
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Control parameters K
P

chapter.

and T. are discussed later in this
1

Valve Actuator:

Analog controllers usually produce an output, m, which is

a valve position order. The valve actuator is designed to

open to a position proportional to m. Since the analog

controller works on a continuous basis it is a simple matter

for it to provide the continuous signal m for valve position-

ing. The output of a digital controller, however, must be

converted to analog form before it can be used for actuator

control. If the controller output is m, there are three

choices open for actuator control:

1

o

Between controller sampling times the digital value

m could be held in a memory register which would

continuously be the input for a digital-to-analog

converter whose output would then drive an analog
actuator. This scheme is uneconomical because of

the large expense for a DA converter for each mani-

pulated variable.

After a new sample is taken and a new value of m is

calculated, m could be converted to an analog signal

which would then be stored by an analog memory
device, a zero-order hold, until a new value of m is

calculated. The stored analog value of m would drive

the analog actuator. This technique has the advantage

of requiring only a single DA converter for a number

of control loops, but would still be complicated by

the necessity for multiplexing the input and output
of the converter between the various controller out-

puts and analog memory inputs. Furthermore, in-

expensive analog memory units are subject to drift.
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. A combination of the first two methods could be

used by converting m to an analog signal by a multi-

plexed DA converter and holding the converter on
this value of m until the actuator had reached its

new ordered position. Then the actuator could be

mechanically or electrically locked in this position

until the next sample time and the DA converter would

be free for use on another controller output and

actuator. If one chose an actuator designed so that

the load could never drive the actuator, then no

locking of the actuator would be necessary. This

technique has the disadvantage of still requiring a

DA converter, and it would not be possible to use

it for many loops, because the converter must dwell

on a given loop as long as the actuator of that loop

is moving.

None of the above three schemes is well suited for actuator

control, especially if separate digital controllers are used

for each loop. It is considerably simpler, both from the

point of view of actuator control and simplification of

controller logic, to use an incremental scheme. In all

three methods above the end effect of the DA conversion,

actuation and holding was to move the actuator some in-

crement Am k where

Amk = mk - mk-I (3-1)

and where m k is defined as the value of m resulting from

the computation following the k th sample. If we use an

actuator capable of maintaining its last position, as dis-

cussed in method three above, then it is not necessary to

compute m k after each sample, but only Am k. This
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technique is what is meant by using an incremental scheme.

The controller is designed to compute an increment of

valve motion, Amk, and to apply this correction to a valve

capable of maintaining its last position when the actuation

signal is removed, Such an actuator can be called an in-

cremental actuator, whether it be a stepping motor or

perhaps a synchronous motor capable of moving a distance

proportional to the time it is turned on, even if for only a

small fraction of a second. The final preliminary design

assumption is then, that the digital controller is to operate

an incremental valve actuator.

Derivation of the Three Mode Incremental Control Algorithm

Let At = time interval between samples

For At small and quantum size small:

Am k __ dm

At dt

From equation ( 2._ 1 ):

d-T- ; K e + + T d ( 3-3 )
p dt z J

Converting the error terms of ( B-B ) to their sampled

equivalents, and combining ( 3-g ) and ( 3-3 ):

ek-ek. 1

ekolOek.21

Amk 1 ek-ek- 1 At _'t

At = K ek + + T d
p _ At At

C3-4)
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where the substitution of e k for e comes from using the

rectangular approximation for e.

Solving ( 3-4 ) for Amk:

- K AP_-=--e
Am k

PLTi k + (ek

T d

- ek.1) +"_-'_ ( e k - Zek_ 1 + ek.Z) _

(S-S)

Figure 3.1 illustrates how this approximation to the con-

tinuous algorithm looks for finite At. At the first three

sample instants the error e is zero and manipulated

variable m remains at a constant value, arbitrarily

chosen as one. A step change in e occurs between samples

Z and 3, but there can be no response at the output of the

controller until sample 3 occurs. The controller output

shown in the figure will be exactly the same whether the

step change in e occurs at Z. Ol time units or at Z. 99.

This is one reason for making the sampling interval as

small as possible, to avoid adding unnecessary lag to the

control loop. The response shown was computed using

the following parameters:

= 1 T.=41 Td=Z (3-6)At = 1 Kp

The proportional effect is virtually the same as what would

be produced by an analog controller, differing only by the

sampling delay. The integral effect is a staircase instead

of a ramp, and the derivative action is an impulse of the
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Amk- Kp[ T_---_-t(e)+(ek--ek_l )+ _----_-_(ek--2ek_l + Ok.-2 )]
"i k .

At -I Kp-I T i -4 Td -2

X 0 I I I I I I -t
0 I 2 3 4 5 6

SAMPLING INSTANTS AT INTEGRAL UNITS OF TIME

FIGURE 3"1 OUTPUT m OF SAMPLED THREE

MODE DIGITAL CONTROLLER IN RESPONSE

TO A STEP ERROR INPUT
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proper area that has been broadened in duration and

shortened in amplitude. This is not a great disadvantage,

because it reduces the amount of non-linearity in response

resulting from valve saturation, if At is properly chosen.

Functions of the Two Mode Control Algorithm

Because two mode, proportional plus integral, analog

controllers are so widely used and so many users and

vendors question the value of the derivative mode itwas

decided to limit this project to the design of a two mode

controller. Therefore this paper will henceforth be con-

cerned only with the two modes of control, allowing T d of

preceeding sections to go to zero. The only exception is

in Chapter VIII, in which it is suggested that the technique

developed later in this chapter could easily be extended to

provide the third mode.

The two mode digital control algorithm is taken directly

from (3=5), setting T d = 0 :

Am k K r At ek+ (e k ek. )I
= PLTi " 1

(3-7)

By our nomenclature from Figure 2.3 ,

e=r-b (3-8)
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Hence, in sampled form:

e k = r k - b k

Substituting ( 3-9 ) into ( 3-7 ) :

=K %%) +%%)-
I

Rea r ranging:

Amk = Kp bk.l-b k) - (rk_l-rk)- _ (bk-r k

(3-9)

(3-10 I

( 3-11 )

The first two terms in ( 3-11 ) make up the proportional

part, and the third represents the integral. The second

term, (rk. 1 - rk) will be non-zero only when there is a

change in reference variable, r. There is no need for

computing that term at any other time. We can rewrite

( 3- 11 ) with a subscript Ar on the second term to indicate

that that computation should only be performed when there

is a change in r.

EAm k = I_ (bk.l-bk) - (rk.l-rk)Ar --_--.(bk-r k ( 3-1Z )
P

The term (rk. 1 - rk)Ar is now understood to mean the

difference between the new value of r subtracted from the

old value of r.

The first term of ( 3-1Z ) represents change in the con-

trolled variable between sampling instants k-1 and k. As



28

long as the reference variable r remains constant this

first term is all that is required to give the incremental

proportional effect.

To review the meaning of ( 3-1Z ) recall that ( 3,7 ) was

derived from the analog control equation ( 2-1 ). Based on

the rectangular approximation for e and with very small

At, ( 3-7 ) is the exact incremental equivalent of ( 2-1 ),

minus the omitted derivative mode. Further, in going from

( 3-7 ) no approximations were made, since only differ-

ences equal to zero were left out. A digital controller that

implements ( 3-1Z ) will then provide precise proportional

plus integral control, so called PI control, if sampling

interval At is very small relative to the dominant time

constant of the loop, and if quanta size is small enough to

approximate analog resolution. The first condition, high

sampling rate, can be fulfilled if desired, but it should be

kept as low as possible while still retaining good control

in order to reduce demands on the analog to digital con-

verter to a minimum. The second condition, small quanta

size, must be met in order to match the resolution capa-

bilities of the analog transducer chosen.

Controller Gain Adjustment by Frequency Manipulation

An important part of the controller design problem is

finding a good way of providing a wide choice of values for
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the gain parameters K and At/T. in ( 3-1Z ). In order
p 1

for the controller to be applicable to a variety of processes

these parameters should be variable over a range of at

least 100 to 1. Analog controllers typically provide K
P

from . 5 to 50 and T. from . 1 minutes to 50 minutes, with
1

other ranges available by field change.

Proportional Gain K
P

K , although called only proportional gain, also acts as a
P

gain coefficient on the integral term. It is therefore

possible in implementing the controller to perform the

multiplication just as indicated in ( 3-IZ ), that is to wait

until the sum inside the brackets is formed and then apply

Kp to that sum. The easiest way to accomplish this multi-

plication is at the interface between controller and actuator.

The technique chosen for digital to analog conversion is to

convert Am k to a period of time _k during which the

actuator moves at full speed in one direction or the other

depending upon the sign S of Am k. In the experimental loop

used, shown in Figures Z.Z and 3. Z_ the actuator is a

stepping motor_ driven at a speed of f steps per second.
s

At this speed the actuator requires Tfs seconds to move

full stroke. The number actually calculated in the sub-

tracter is Amk/K . This number, called A k in Figure 3. Z,P

is then converted to a time period by counting it down to

zero at a frequency of f pulses per second. If full strokea

of the valve is covered by m ranging from zero to one, then
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Am k is finally represented in terms of loop parameters by

Ak
( s-is )

Amk = fa Tfs = Kpfa Tfs

Then for this method of DA conversion:

K = 1 ( 3-14 )
P fa Tfs

and there are now two ways to vary K for a given valve,
P

process and encoder. Varying Tfs is the first way, but it

would never be used because the tendency is to use the

fastest valve actuator that is economically available. All

that is required by the other method is to provide a variable

frequency pulse generator for f . In the controller tested
a

the pulse generator used is a free-running multivibrator

with a frequency range of 5 to 100 cps. Higher frequencies

and hence lower values of gain K are available simply by
P

changing a pair of capacitors.

Integral Time T.
1

Implementation of equation ( 3-1Z ) requires forming the

difference between the binary numbers b k and r k and

multiplying that difference by a number equal to At/T.,
1

the sampling interval divided by a suitable value of the so-

called integral time that was used on the analog controller.

There are numerous ways to perform multiplication in a
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digital device, but all of them require a considerable

amount of hardware. Because the other two terms in

( 3-1Z ) require no multiplication and because the multi-

plication by K of the expression in brackets can be per-
P

formed in the DA conversion, a method was sought to

avoid the necessity for multiplying the integral term by

the coefficient At/T.. The simplest way to do this is to
1

let that coefficient be always equal to one. Thus far the

only restriction on At has been that it should be small re-

lative to the dominant system time constant. Letting

At/T° go to one would then dictate what At would have to
1

be for a To suitable for the system. The criterion would
1

be:

At = T.
1

Using this sampling interval, however, the condition that

At be small relative to the dominant time constant would

no longer be satisfied, because the value of T. used in pro-
1

cess control is often equal to or greater than the dominant

time constant of the system._ The only basis for this con-

dition of small At is_ however, the desire to keep the

digital controller response as similar as possible to analog

controller response. This paper will show that in fact

satisfactory control is possible even when the simplification

(3-15)

* Selection of K and T. for a given process is discussed
1

in Appendix A _nd reference s
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of ( 3-15 ) is made, provided that the proportional term

of the control algorithm is sampled and computed at a rate

which is different from and sufficiently higher than the

integral rate. The reason it is necessary to sample the

proportional part often while the integral part can be

sampled only every T. is concerned with system stability.
1

The only function of the integral mode is to eliminate

steady state error, whereas the proportional mode is a

stabilizing action, acting to counteract change in the con-

trolled variable. It is important that no extra lag be in-

troduced in the determination of this rate of change, since

in well tuned control loops the proportional mode generally

causes the major share of manipulated variable motion.

A sampling lag on the order of T° introduced in the pro-
1

portional effect would act like an effective dead time and

would decrease phase margin, requiring a much reduced

proportional gain and hence a reduced speed of response

for a given degree of stability. If this large sampling lag

is introduced only into the integral effect, a certain re-

duction is required in integral gain, but the proportional

gain and effect can remain nearly unchanged. Chapter VII

discusses the extent to which this reasoning was borne out

in experimental tests, and Chapter VIII proposes a method

for providing a smoother integral effect without abandoning

the desired feature of gain adjustment by frequency mani-

pulation. The effect upon stability of various sampling
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schemes is discussed further in Chapter VI. Appendix B

evaluates the effect of noise in feedback signal b on the

different control modes as a function of the sampling rate

used in the different parts of the control algorithm.

Priority Allocation and Computation Frequency of

Algorithm Terms

Applying ( 3-15 ) to ( 3-1Z ) :

Amk= KpE(bk. 1 -bk)fp- (rk.1 - rk)Ar- (bk" rk)fi _

1
where f. = --

1 T.
1

(3-16)

puted at different times it is no longer meaningful to keep

them together in one equation, since the contributions to

Am do not all occur together at a given instant k. There-

fore a new notation is introduced to describe the actual

separate operations performed in the controller. In a

previous section the binary output of the controller was

defined as Ak, with A k = Amk/K p. Then

A k = (bk_l-bk) f " (rk_l-rk)Ar - (bk-rk)f.
p I

(3-17)

and (bk-rk)f. means that this "integral" term is computed

at a rate of _i" The first term is computed at a higher

rate fp, while the second term is computed only when a

change occurs in set point r. Since these terms are corn-
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Because the three components of A k are generated at

different times, a separate expression is defined for each

term:

Proportional terms :

Akp = (bk-1 " bk) p

Akr - "(rk-1 " rk)Ar

Integral te rm:

Aki =-(b k - rk)fi
(3-zo)

In normal operation set point r is a constant and Akr does

not need to be computed. Akp and Aki are then sufficient

to generate the corrections required for two mode PI

control. When a change in set point r is ordered, Akr

of ( B-19 ) must of course be computed and applied as a

correction to the valve. While this is being done, however,

there is no reason why Akp and Aki must continue to be

computed since the process is most likely very near steady

state, making Akp and Aki very small compared to Akr.

After a change in r is initiated by application of the

increment Akr to the actuator the other two terms of the

control algorithm can again be computed in their usual

sequence. When the algorithm is broken up in this way

the controller has two distinct modes of operation. In the

"Operate" mode the controller computes Akp and Aki, re-

presenting both proportional and integral effects for con-
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stant r. Whenever r is changed, but at no other time,

the controller is shifted to the "Read" mode to enable it

to compute and apply Akr. The expression 'tRead" in-

dicates that a new r is to be read in. The controller

returns to the Operate mode as soon as this computation

is performed. It is evident that the Read mode has the

higher priority, since whenever we wish to make a change

in set point it is important to get the process started in

that direction. Once it is started by the Akr term there

is time enough to return to the Operate mode for proper

transient re sponse.

The motivation for dividing up the duties of the controller

is to permit a small amount of logic to perform several

functions. We have seen that the Read and Operate modes

are mutually exclusive. It is therefore possible to design

the controller so that the logic that performs ( 3-18 ) and

( 3-20 ) in the Operate mode also performs ( 3-19 ) in the

Read mode. This is especially easy since all three

equations are simple subtractions. In the Operate mode

equations ( 3-18 ) and (3-Z0) must be performed, but at

different rates. It has been shown that for stability the

sampling rate f° for the integral term ( 3-Z0 ) must be a

small fraction of the rate f for the proportional term.
p

It is therefore possible to perform the integral compu--

tation during the interval between successive proportional
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computations without causing any significant variation in

the effective value of f.. Thus, the two terms used while
1

the controller is in the Operate mode can be computed and

applied to the actuator successively, making it possible to

perform both subtraction operations in the same register

without an intermediate storage register. The sequence of

events chosen for implementation of the controller is this:

During Operate mode proceed with computation of the

proportional term ( 3-18 ) at frequency f . When an
P

integral order occurs, calling for execution of ( 3-20 ),

wait until the next proportional computation ( 3-18 ) is

completed, then immediately perform the subtraction

( 3-20 ). When ( 3-g0 ) is complete, return to the pro-

portional computation ( 3-18 ).

The following table summarizes the priority of the three

computations, and the conditions that must be satisfied

before they are carried out:

Term

Akr

Akp

Aki

Conditions that must be met to enable

computation of respective term

Computation
Ordered

X

X

X

Ope rate
Mode

X

X

Countdown not

in progress

X

X

Table 3-1

Countdown just

completed

X
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Figure 3.3 shows the valve position m as a function of

time resulting from an arbitrary feedback signal b. It

happens that the two integral corrections shown have signs

opposite to the signs of the proportional corrections just

preceeding them. The figure demonstrates how the

addition of the proportional and integral effects is per-

formed by the actuator itself, rather than by the controller.

This same general principal was used in the controllers

designed by Walker _'_) and Peatman tl_'_, but in both those

cases the adjustment of T. was accomplished by providing
1

variable gain within the controller rather than variable

integral sampling rate.

Inte rme diate Sto ra_e Requirement s

Before starting the detailed logic design of the controller

it is necessary to determine what intermediate storage

capability is required.

In the Read mode the solution of ( 3-19 ) requires storage

of the old value of r, rk_ 1. It is sufficient to enter rk_ 1

into the subtraction register as soon as the controller is

put into the Read mode. Then the switches representing

r can be changed and the new value of r subtracted from

the old. Thus no auxiliar 7 storage is required, outside of

the r switches and the subtraction register. The factor
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that makes this savings possible is the restriction that no

set point changes be made without first putting the con-

troller into the Read mode.

In the Operate mode the solution of the integral term

( 3-Z0 ) requires the subtraction of present r from present

b. No intermediate storage is required, but b must be

entered into the subtraction register just before the sub-

traction is performed. This is done immediately after

applying the proportional term, ( 3-18 ), to the actuator.

( 3-18 ) is the difference bk_ 1 - b k, which obviously does

require intermediate storage. According to the equation,

the value of b k that is used as the subtrahend in the

calculation of Akp would be retained and would then be

used as the minuend in the computation of A(k+i_p" . To

retain b k would require an extra memory register. This

extra register can be avoided, however, by making a

further approximation. In Chapter II it was pointed out

that in process control the actuator time constant is usually

small compared to that of the process. This statement is

further developed in Chapter V to show that when using a

constant speed incremental actuator the absolute average

speed the actuator requires to maintain good control is

small compared to its full speed capability. This is

another way of saying that the average time required for
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actuation during a sampling interval is small compared

to the length of that sampling interval. This is evident in

Figure 3.3 , which is similar to test results obtained with

the process of Figure 2.2 . If we now define 6 as the

fraction of the sampling interval required for computation

and actuation we can, under certain conditions, make the

approximation

bk = bk + 6 (3-Zl)

in ( 3-18 ) means that atUsing bk.l + 6 instead of bk.l

a sampling instant k the computation ( 3-18 ) can be

made without retaining the value of b k. At time k + 6,

immediately after Akp has been applled to the actuator,

b is resampled and stored in the subtraction register where

it is ready for the next computation. If an integral sample

has been ordered (3-20) is performed as soon as b k+ 6

is entered, since b k + 6 is then the present value of b

and can serve as the minuend. At time k + 26, after Aki

has been applied to the actuator, b is again entered into

the register where it serves as the minuend b k for the

next proportional term ( 3-18 ). 6 is understood to de-

pend upon the magnitude of the difference term A k and

the countdown rate f .
a
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The conditions under which ( 3-21 ) is valid are dis-

cussed in Chapter V and include consideration of the

amount of noise on signal b, and the average value of 6.

Summa ry

Data input and output requirements for a sampled digital

controller were stated, including the decision to use 10 bit

parallel binary input variables and an incremental output

order in the form of a pulse width for the control of a

constant speed actuator such as a synchronous motor or

stepping motor. The continuous three mode control

algorithm was converted to incremental, sampled form,

then for the two most commonly used modes, proportional

plus integral, the incremental equation was divided into

three component parts well suited for serial computation

in shared logic. The two salient characteristics of process

control loops listed in Chapter H were the basis of a

heuristic justification of the serial computation scheme,

the method of gain adjustment by varying sampling rate

and the approximation made in a first difference term to

eliminate the need for an auxiliary storage register.
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DETAILED DESIGN OF THE CONTROLLER

The preceeding chapter has provided the sampled control

algorithm roughly corresponding to continuous proportional

plus integral control and has described how this algorithm

can be implemented in a digital device without recourse to

any electronic storage register beyond the basic subtraction

register. In this chapter the steps necessary to perform the

algorithm are tabulated and the digital logic built to imple-

ment those steps is described.

Sequence of Controller Operations

The controller must compute the three differences of

equations ( 3-18 ), ( 3-19 ) and ( 3-Z0 ), each at a different

time. ( 3-18 ) and ( 3-Z0 ) are computed while the controller

is in its Operate mode, whereas ( 3-19 ) is computed only

once each time the set point r is changed, when the

controller is momentarily put into the Read mode.

Grouping these three terms by controller modes :

Computed during Operate mode :

Akp = (bk-I + 6 - bk)fp

Aki =-{b k - rk)fi

43
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Computed during Read mode :

Akr = "(rk-I rk)Ar ( 4-3 )

In accordance with the assumption made in Chapter III

bk.l+ 5 is used in (4-1) instead Ofbk_ 1 . The serial

computation scheme proposed permits ( 4-2 ) to be per-

formed immediately following any ( 4-1 ) computation.

It was shown in Chapter III that it would be possible to per-

form the necessary computations with a controller of the

structure shown in figure 4. 1 . The only electronic

memory register of the controller is the accumulator A,

which consists of a sign flip flop S and 10 data flip flops,

all of which are trigger elements with sufficient input

gating to permit a minuend to be entered into the register.

Further gating is provided to permit a second number, the

subtrahend, to enter the register and propagate the borrows

necessary to form a difference. (i5) Set point r is available

as the level outputs of a set of 10 electromechanical

switches. Feedback b is always available as level out-

puts from a binary encoder. The controller could also

operate by requesting and waiting for a value of b from a

shared A/D converter.

Using the structure shown in Figure 4. 1 , Table 4-1

lists the series of steps necessary to perform equation

(4-1).
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READ/OPERATE CONTROL

CONTROLLER

TIMING

AND ENTER r
SIGN

CONTROL

A CU U A, 
SUBTRACTION REGISTER!--r-i , ,,,,,,,

eNTEeb ( )

.-- TO ACTUATOR_

NOTE I"

INFORMATION TRANSFERRED INCLUDES :

I-S

2- COMPLEMENT

3- BORROW ENABLE
4-COUNTDOWN ENABLE

5 -SUBTRACT ONE

FIGURE 4"1 SCHEMATIC OF CONTROLLER AND
ENCODER
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Table 4-2 shows how the cycle of Table 4-1 must be

varied to compute equation ( 4-2 ) between proportional

samples.

Table 4-3 includes a change of set point to show a sequence

in which all three algorithm equations are computed.

The first entry in Table 4-1 shows the contents of register

A just before the kth proportional sampling instant. When

the sample order comes at time k the solution of ( 4-1 )

requires that b k be subtracted from A. The subtraction

takes place in 250 microseconds, after which the differ-

ence Akp is counted clown to zero at a frequency of fa"

As long as counting is in progress the actuator is driven at

full speed in the direction corresponding to S, the sign of

A. If S is positive the output is decreasing and the

actuator is therefore driven to open the valve. When A

becomes zero the countdown is stopped and the present

value of b, bk+ 6, is transferred to A. bk+ 6 is then

the minuend for the subtraction occurring at sample in-

stant k + 1.



47

_0

_o
0

4-I

®o_

0

0

0

tJ

4-I

•-4 ,-4 _I

_o_ _o_ __

_o o
<<o

o_ _ _. _o_

_,. _. ;,.

0 0 0

& & &
0 0 0

_, m m

0 0 0 0

, , ,, ,,, , , , ,

I
+

+ + ,-.i + _I

0

0

t)

o_
4a

0



48

The same procedure is followed in Table 4-Z until after

time k + 6, when Akp has been completely applied to the

actuator. The pulse trains f and f. for proportional and
p 1

integral sampling orders need not be synchronized, making

it possible for an integral order to arrive at the controller

at any time in the proportional sample cycle. An integral

order is shown occurring between proportional samples k

and k + 1, at a time called "k+ 6 +" inthe table. To

minimize degradation of proportional performance no

action is taken on the integral order until the next pro-

portional sample is completed. At time k + 1 + 6 the

transfer of present b to A is completed and immediately

thereafter the integral computation ( 4-Z ) is performed.

The sign S of the difference is changed to provide the

minus sign in front of the difference, then the countdown

to the actuator proceeds exactly as for a proportional term.

After countdown, b is transferred to A, ready for the

next proportional order.
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Table 4-3 follows the same pattern as Table 4-2 until after

time k+l+Z6. At some time between then and the next

sampling instant, called "k+1+26 +" in the table, the

manual mode control switch is turned to the Read position

in preparation for a change of set point. A rotary Read

switch can be used to permit register A to be manually re-

set by momentarily opening the ground line to the zero side

of the flip flops just before the old value of r is trans-

ferred into A by means of the trigger inputs. With the old

value of r recorded in A the set point can be changed at

the operatorls leisure. As long as the controller is in the

Read mode no further computations can take place and the

actuator stays where it is. As soon as the new value of r

has been entered, shown in the table as time k + 3 +, the

operator turns the switch from the Read position around

to the Operate position. The transition causes the new r

to be subtracted from A. The sign of A is changed and

countdown to the actuator proceeds. After countdown, b is

transferred to A and the controller is ready for further

Ope rate mode computations.
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Conversion of Sequence Rules to Boolean Statements

The next step necessary in the design of the controller is to

convert the preceeding tables and explanations into explicit

logical statements that lend themselves to implementation

in digital logic. Boolean algebra terminology will be used

not only for the combinational logic involved but also to

state under what conditions one event or transition follows

another. The latter function, vital in the synthesis of

asynchronous logic, is discussed by Mergler_16__" " It per-

mits one to write, for instance, an expression T = A
c B,

meaning "Trigger flip flop C when B makes an a transition

ira is one at that time." _ is defined as the 0 to 1 tran-
B

sition of binary variable B, and _B as the 1 to 0 transition

of B. The flip flops and delay devices used in the controller

are all activated by _ transitions.

In a sequential circuit it is often desirable to have one

operation follow another after a finite delay. In one trans_

fer operation, for instance, it is necessary to trigger all

flip flops of register A to make them all zero, then trigger

certain of them to enter a number. Depending upon how it

is done, it may take anything from one to five microseconds

for the first triggering operation to be completed. In such

a case it is useful to be able to take the pulse that orders

the first part of the operation, delay it about 10 micro-
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seconds, and use the delayed pulse to order the second

part of the operation. This technique is used extensively

in the design of the controller. To provide a symbol to

cover this case we follow the lead of Arnstein _'1) and re-

present an event B delayed by n microseconds as B

with superscript p_. Thus if A is to take place Z0 micro-
_0

seconds after pulse B_ we would write A = B .

We are now prepared to make generalized rules from the

sequences of tables 4-1 through 4-3 and convert them into

Boolean statements as a preliminary step to implementation

of the controller in digital logic.

Transfer of a Number to a Register

For register A the decision was made to use a flip-flop

with six separate gated trigger inputs and a manual reset

capability. The controller logic diagram, Figure 4. Z ,

shows that not quite all of these inputs are used, although

they would be used in a suggested modification to the

controller. Figure 4. Z also shows that two of the trigger

inputs are delayed a time _ . This time delay is about

4 _sec. Since there is no automatic set or reset input on

the flip-flops chosen, transfer of a number to A is performed

by taking advantage of the fact that every transfer order is

immediately preceeded by a countdown order. As will be

shown, the accumulator register A is all ones upon
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completion of a countdown order. To enter a number b, then,

itwould be possible to simply trigger those flip flops of A

for which the corresponding bits of b are zero. The

number b would then be in A. To keep the transfer

ope ration compatible with the subtraction operation, how-

ever, itwas decided to first complement A after countdown,

making A all zeroes, then trigger the flip flops of A

corresponding to the bit positions of the incoming number

whose values are one.

Subt raction

The method of direct subtraction (15)is used, whereby each

bit of the minuend in A is decreased by the value of the

corresponding bit of the subtrahend, and if a bit in A

thereby becomes less than zero, itmust become one and

the next higher order bit must be reduced by one; that is,

a one must be borrowed from the next higher order. When

all borrows have been propagated the difference appears in

register A. if, however, the difference is negative, a

borrow is generated by an a transition in A9, making the

sign bit S one, representing minus. The difference then

appears in A in twols complement form and must be con=

verted to onets complement form by subtracting one from

A o, the so-called "end-around-carry". A is then comple-

rnented to convert the onets complement form to natural

binary form. Because borrows may propagate through all



56

ten stages of A, in the worst cases and further borrows

may occur after the end-around-carry, it is necessary

to delay the complement order until well after the sub-

traction begins. Another requirement is that no borrows

can be permitted to propagate during the complement pro-

cess, as is true also during the transfer process.

Countdown of a Number

The countdown operation produces a time period pro-

portional to the difference generated in A. The number in

A is repeatedly decreased by one until A makes the

transition all zeroes to all ones. This transition is easier

to recognize than the desired transition 00... 01 to all

zeroes. If the difference number to be counted down is n,

however, then n + 1 pulses are required to produce re-

gister underflow. Therefore, to produce a period of time

proportional to n, the period is begun by the first count-

down pulse and ended by the underflow resulting from the

( n + 1 )th pulse. To keep the controller as versatile as

possible the countdown clock is not required to be

synchronized with any other operation in the controller.

It was therefore necessary to use two control flip flops_

lvi_ and _4Z_ to provide the desired countdown character-

istics. 1_I2 is set whenever a difference has been generated

in A and is ready for countdown. _v£1 is set when the first

countdown pulse occurs after 1_ z has been set. M 1 and
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M2 are both reset when A underflow (aA9) occurs.

actuator is then on as long as M 1 remains set.

Using the standard logical connectives:

The

Set M Z = Subtraction Complete ( 4°4 )

Set M 1 = (Countdown Pulse} • (M Z) (4-5 _)

Reset M Z = aA9 (4-6)

Keset M 1 = aA9 ( 4-7 )

Actuator Enable = M 1 ( 4-8 )

Actuator Direction = S ( 4-9 )

Operate Mode Cycle

Referring to Table 4_2 we can write:

Subtract b = (M'2} • (Operate}" (Prop. Order) _10
( 4-10)

The 10 microsecond delay is provided to allow the bo_rrow

gates time enough to be activated before they are needed.

The borrow enable line must be on for any subtraction,

then go off to permit a possible complement. 250 micro-

seconds were allowed in this design, which is more than

adequate for worst case borrow propagation. The borrow

line must also be enabled for countdown.

The re fore :

Borrow Enable = (Subtract + Z50 _ s) + M 2 ( 4-11 )
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The "Subtract ÷ 250 _s" indicates a pulse initiated by any

subtract order and stretched to a width of 250 _s.

The "end-around-carry" requirement is met by:

Subtract one = (as) • (Subtract + 250 _s) ( 4-12 )

Further, providing for complement before transfers:

Complement = (S) • (Subtract) r_260 + (_E__2)_10 ( 4-13 )

Countdown Enable = M 2 ( 4- 14 )

The reason for complementing A before transferring b into

it is to make that entry operation the same as for subtracting

b. That is, b is entered into A in the same way, whether

it is minuend or subtrahend. The only difference is in

whether the borrow gates are enabled. Therefore

_0

Enter b = (Subtract b)+ (_M2) ( 4-15 )

To permit incoming integral orders to be deferred until

after the next proportional order a storage flip flop M 4

provided•

Keset M 4 = Integral Order

(Subtract r)i = (_P--2) • (Operate). (M4)

Set M 4 = (Subtract r)i

is

(4-18)

To allow for the minus sign in front of (4-2) and (4-3), and
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yet not change sign until after any possible complement

Change Sign = (Subtract r)_260 ( 4.19 )

Read Mode Cycle

In accordance with the Read entry in Table 4-3 the A register

must first be reset upon entering the Read mode. Since

mode selection is already a manual operation a rotary

switch is used to momentarily break the ground connection

to the emitters of the zero side of the A flip flops. Further

rotation of the switch brings it to the Read position. This

arrival transfers the old value of r to A. Flip flop M 3

serves only to square up the Read signal transitions enough

for them to be able to drive other logic elements. In this

one case it is useful to use a flip flop with a DC set and

reset.

Transfer r = _M 3 ( 4-20 )

After r has been changed the switch is turned further,

back to the Operate position.

(Subtract r)A r = (aM3)_IO (4-21)

The delay again allows the borrow gates to be enabled.

Combining ( 4-17 ) and ( 4-Z1 )

r=(_M3)_IO+(_)•Subtract (M 4) • (Operate). (_ M2) _40

( 4-ZZ )



6O

This is the expression that was anticipated in ( 4-19 ).

For all cases in which r is applied to A, whether as

minuend or subtrahend:

Enter r = (Subtract r) + (Transfer r) ( 4-23 )

For control of the subtraction process we define an

expression needed for initiation of the subtraction routine,

whether for the one equation for which b is the subtrahend

or for the two equations for which r is the subtrahend;

Subtract = (Subtract b) + (Subtract r) ( 4-24 )

Implementation of Boolean Statements by Logical Elements

Figure 4. 3 is a logic diagram of the controller that imple-

ments the preceeding algorithm. In tracing the steps in

its operating cycle it is helpful to refer to Table 4-3 and

to the controller timing diagram, Figure 4.3 . The timing

diagram shows the states of various important parts of ,_he

circuit as a function of time for the cycle of events shown

in Table 4-3 from time (k+ 1) totime (k+ 4). The lower

of the two possible levels that a variable can take represents

its "one" or "asserted" value.
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Each flip flop in Figure 4. Z has a diagonal arrow indicating

which side is made true by pushing the initialize button.

This button opens a normally closed switch, opening the

ground line to the emitter of one side of each flip flop.

When this occurs the A register goes to all zeroes and M 1

through M 4 are set. This is the condition that prevails at

the end of an Akp countdown; one more countdown pulse

drives A to all ones, M 1 and M Z are reset and the present

value of b is transferred into A. The controller is then

ready for normal automatic operation.

According to ( 4-4 ) M Z is to be set when the subtraction is

complete. The complement operation of ( 4-13 ) is the last

step in subtraction, so ( 4-4 ) is satisfied by setting M Z

10 _s after the complement order or 20 _s after the

Subtract one-shot ends its Z50 _s pulse. A pulse generator

with.a Z0 _s delay is therefore chosen to set M Z. This

delay is necessary to prevent borrows from being propa-

gated by the complement operation. A steering gate is

used to implement ( 4-5 ), since it simply calls for the

ANDing of a pulse and a level. Reset of M 1 and M Z occurs

for underflow of A, as stated in ( 4-6 ) and ( 4-7 ).

A proportional computation for Akp is made if the con-

ditions of ( 4-10 ) are met; that is, if the controller is in

the Operate mode and a countdown is not in progress. The

equation is satisfied by a three input gated pulse generator
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whose output pulse is 10 _s wide. The gates following this

element are so arranged that the trailing edge of the pulse

applies b to the A triggers, providing the desired delay.

The expression for Borrow Enable is given by ( 4-11 ).

Gated pulse generators and steering gates, however, require

a zero or '*false" level to enable an output pulse to be

generated. Therefore, we provide

(Borrow Suppress) = (Borrow Enable) ( 4-25 )

A two input NOR gate is sufficient to produce the combination

of ( 4-25 ) and ( 4-II ).

Equation ( 4-12 ) calls for ANDing a pulse and a level. The

Sub t tact One line is shown produced by a gated pulse

generator. This function can also be provided by one of

the steering gates included on the A card.
O

The Complement order of ( 4-13 ) is to occur for either of

two conditions. Each of these conditions requires the pre-

sence of a certain instantaneous order or transition. A

Complement order ( a _ transition) is required whenever

either of two other transition occurs. The two input

transitions never occur closer than 250 _s apart, so it is

possible to implement the equation by converting the two

input pulses into 10 ps wide pulses, using gated pulse

generators, and OR/ng them. The effective Complement

order, then, is the trailing edge, or _ transition, of the
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output pulse. This technique works because whenever

an input pulse occurs from one of the gated pulse generators

the other input is zero. The OR gates shown in Figure 4. Z

were actuall 7 synthesized b 7 connecting two NOR gates in

series, thus preserving the polarity of the original pulses.

The Subtract order, on the other hand, is produced by a

NOR gate, which inverts incoming pulses. The _ transition,

which triggers flip flops and activates one-shots and gated

pulse generators, is then the leading edge of the pulse at

the NOR gate output when it is the trailing edge at the in-

put. This effect can be observed in Figure 4.3, where the

transitiorsof Enter b pulses are the trailing edges, but

the "Subtract + Z50 _s " line is activated by the leading

edges _ "Subtract" pulses. The Enter r expression

( 4-Z3 ) uses an OR gate. providing a 1O _s dela 7 between

initiation Of the pulse and actual entry. The Enter r pulse

resulting from an integral order is already delayed 30 _s

from the end _rJr countdown. This delay allows time for

completion of Complement and Enter b orders.

Controller Modification for Smoothe d Inte ral Effect

In order to try out a different sampling scheme it was

decided to provide the capability of taking integral samples

more often than once per Ti, using a reduced gain for that
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term. That is, instead of ( 3-20 ) we can write

1

Aki = _(b k - rk)fi
( 4-26 )

where fi = 4/Ti" This has the effect of smoothing the inte-

gral effect. The method used to accomplish this is to use

a countdown rate of 4f for the integral term countdown.a

This can be implemented with the logic of Figure 4.4.

Flip flop M 5 is added to indicate how long 4f a should be

used for countdown. 1_ 5 is set as soon as M 4 is set,

to signal the beginning of an integral computation. It stays

set until M 1 is reset, signifying the end of that countdown.

The gated pulse generators permit 4f a to pass through the

NOR gate only during this integral countdown. At all other

times fa paises. The output of the NOR gate of Figure 4.4

then replays the "fa" line coming from the fa FRMV in

Figure 4. Z. The fa FRMV of Figure 4.2 is the one used

in Figure 4, 4 and called "Countdown FRMV'. To add the

smooth_ capabilltyw thenw requires nine extra transistors;

two for each flip flop and one for each gated pulse generator

and NOR gate. Each additional stage of smoothing requires

another flip flop and, o£ course, a doubling of the fre-

quency o_ the countdown FRLgY.
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System Photographs

Figure 4.5 is a front view of the controller.

Figure 4.6 is a photograph of the controller with the

system used in the experiments.

Summary

A single subtraction register with associated control logic

was designed to perform the three computations called for

in Chapter IH. The resulting controller, shown in Figure

4. Z, required five transistors for each bit of the sub-

traction register and fifty for timing and control logic,

making a total of one hundred transistors per controller

for ten bit resolution of set point and feedback variable.

Provision was made for smoothed integral effect, using

nine additional transistors. The design provides a greater

range of control parameters than would be needed for

control Of any industrial process.
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CHAPTER V

EFFECT OF ALGORITHM APPROXIMATIONS UPON

C 0 NT RO LLE R PE RFORMANCE

The continuous PI control law was converted to the sampled,

incremental form of ( 3-12 ). It was assumed that quanti-

zation was fine enough relative to transducer resolution to

cause no significant effect on performance. ( 3-1Z ) was

converted to ( 4-1 ), ( 4-Z ) and ( 4-3 ) by making certain

stipulations about sampling and computation rates for the

different terms. The use of two different sampling rates

for the two Operate mode terms ( 4-1 ) and ( 4-Z ) can

cause process performance to vary considerabl:y from

normal PI control. This effect will be treated in Chapter VI

by means of stability analysis. The proportional term

( 4-1 ) is an approximation to a first difference. The effect

of this approximation is analyzed in this chapter. The other

approximation to be treated in this chapter is the failure

to compute the Operate mode terms ( 4-1 ) and ( 4-Z ) when

the controller is in the Read mode. The effects of these

approximations will be related to the dynamic characteristics

of the actuator and process being controlled.

70
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Fir st Diffe rence Approximation
i

The difference between last process output bk_ 1 and

present output b k was approximated in ( 4-1 ) by

Akp = {bk-I + 6 - bk )f
P

where 6 is the portion of the sampling interval required

for computation of A{k-.l)p and for its application to the

actuator. The correct first difference would be

(5-1)

(Akp) c = (bk-I - bk)fp { 5-2 )

Therefore, if b has a constant rate of change from time

(k-I) to time (k),

Akp= (I - 6 ) (Akp)c (5-3)

Thus, the approximation has the effect of lowering pro-

portional gain by a factor of ( 1-6 ). Average effective

proportional gain is further reduced by the fact that last

output is not held in memory during the time that the

integral term is being computed and counted out. Both

sources of lost gain can be lumped together by noting that

the proportional effect computation ( 5-2 ) does not include

the change of b that occurs during computation and count-

down periods. Computation time of 260 microseconds or
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less is negligible in comparison to the minimum sampling

interval of one tenth of a second.

We would like to evaluate the 6 in ( 5-3 ) for a worst case

to determine whether our approximation will have a serious

effect upon stability. We can define a 6 as the average
avg.

value of 6 that would result from a given pattern of b,

choosing the pattern of b so as to require a large amount

of valve motion.

The Ziegler-Nichols method of controller tuning set forth

in Reference 18 preceeded the Cohen and Coon equations

given in Reference 14 and worked out in Appendix A. While

the former is not as precise as the latter, it is considerably

simpler, and accurate enough to permit elimination of some

of the variables in our evaluation of 6.

The maximum amount of valve travel occurs for the transient

resulting from a large change in set point. With the con-

troller properly tuned for moderate overshoot, process

output has the form of Figure 7.1. According to Ziegler-

Nichols_ the period of oscillation of b in the closed loop

is 5.7 Ls where I_ is the apparent dead time in the loopp

shown in Figure A. 1. b can be roughly approximated, for

the first part of the transientp by a straight line connecting
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its starting point to the point of first crossing of new

set point. If the period of oscillation is 5.7 L, then the

time to first crossing is about Z L. If we use a change in

set point of two tenths of full range, we can express valve

travel V between time zero and time 2 L as

[:.z,. ]pLT-7--+ .z (s-4)

( 5-4 ) was obtained from ( 2-1 ) by solving for m at time

2L, letting T d = 0, m o = 0, and Kf = 1.

From Reference 18, for proper tuning,

L
Ti =0-:T ( 5-5 )

Substituting ( 5-5 ) into ( 5-4 )

v --.z6z (5-6)
P

To find 6 we divide ( 5-6 ) by the maximum amount of
avg.

motion the actuator is capable of making in the same period:

•26 Kp = KpTfs

6avg" = 2L/Tf s .13 ....L (5-7)

Industrial processes are usually conservatively tuned, so

that a moderate change in loop gain or load conditions will

not cause instability. It should, for example, cause no
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problem if controller gain is changed +Z0 percent. We

can arbitrarily set this value as an upper limit for 5 to find

a zone of acceptability of our first difference approximation.

Using ( 5-7 ), we can write

KT

o 13 p f s < o.z (s-8)

or

Tfs (S 9)

( 5-9 ) sets an upper limit on time required for full stroke

of the control valve given apparent dead time L and con-

troller gain K • If ( 5-9 ) is satisfied, effective proportional
P

gain will never be as much as 20 percent less than K for
P

the transient case stated above. For small changes of set

point and small disturbances effective gain will be pro-

portionately closer to K • Based upon ( 5-9 ), Figure 5.1
P

shows lines of equal valve speed for given conditions of L

and K • As shown in Appendix A, K is a function of L
P P

and the other loop response characteristics. If the in-

equality ( 5-9 ) cannot be satisfied for a certain loop, there

is a danger of instability for large disturbances or large

changes Of set point.

As an example, the system of Figure 2.2 does satisfy

( 5-9 ). Appendix A gives K = 3/I03q. To convert this
P
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value to the normalized K used in deriving ( 5-9 ) we
P

must multiply K by the number of quanta that represent
P

full range of b. Therefore

K 3 Z lOq .= x =3 1 (5-10)
P 103q

Also from Appendix A

L = I. 4 minutes = 84 seconds ( 5-11 )

Substituting ( 5-10 ) and ( 5-11 ) into ( 5-9 ) :

Tfs <_ 41 seconds (5-12)

The valve used had a Tfs of 33 seconds.

It is possible to eliminate controller gain K from ( 5-9 ),
P

if desired, by using the Cohen and Coon equation ( A-I ).

The resulting equation is

•1.5 LK1

Tfs -< "" '"r
• 082+.

( 5-13 )

where _ is process gain, or loop gain divided by Kp, and

T is the characteristic Ziegler-Nichols time constant de-

fined in Appendix A.
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It is interesting to note that by our very definition of pro-

cess control in Chapter II the first difference approximation

is reasonably valid. If the process is so fast in response

that the actuator must run at nearly full speed to control

the process, then the control problem should really be

classified as a servomechanism problem, and the PI con-

troller described here should not be used. In this case, or

if feedback data is noisy, an extra memory register can be

added to the controller to restore performance to normal.

This technique is mentioned further in Appendix B. If

such a step is not taken, and process dynamics are negli-

gible, the controller is effective only in the integral mode.

Separation of Operate and Read Modes
L ; _ ,L

The separation of controller duties into the Operate and

Read modes has the effect of opening the control loop while

the new set point is being entered. This can have no adverse

effect upon control action as long as the time the controller

is in the Read mode is small compared to the dominant time

constant of the process. The controller should not be left

in the Read mode longer than necessary, lest the effect of

uncorrected disturbances throw process output too far off.
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A second complication results from separation of the two

modes. It is closely related to the first difference

approximation. When a new set point is entered and

the mode selector switch is turned from Read to Operate

the computation of Akr takes place immediately and count-

down of the resulting difference to the actuator begins.

Even though the controller is in the Operate mode no

further control action can take place until countdown of

Akr is complete. By (4-I0) and (4-17) proportional

integral samples are inhibited until M Z is reset at the

end of countdown. The fact that no integral samples can

be taken during this period does no harm; integral action

is intended only for correction of steady state errors, so

that overshoot can be reduced if the first integral sample

is takenwell after the set point is changed. For this

reason the integral order flip flop M 4 is set whenever a

new set point is entered. The inability of the controller

to detect change of process output and to compute Akp

during Akr countdown could be detrimental to control. It

is necessary to define the circumstances under which this

degradation of control performance is small enough to

permit this controller to be used.
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Figure A. 1 is an open loop response of a process to a

step change in input. The response of any process can be

characterized by the parameters shown on the figure. This

process reaction curve is useful in analysis of the problem

at hand because just before a change in set point is made

the system can be assumed to be at steady state, so that

process output immediately following a change in set

point will resemble the shape of the beginning of the open

loop process reaction curve. The resemblance would be

exact if the actuator moved the valve in zero time. The

fact that valve motion is a ramp instead of a step means

that initial process response will be less rapid than that

shown in the process reaction curve. To determine the

exact amount of process output change that takes place

while the actuator is moving would require a rather in-

volved computation for each different process, much as in

Appendix B. We can, however, obtain a good estimate of

process output change by using the Ziegler-Nichols process

model.

The time required for valve actuation is

Ar

7kr = "_a ( 5-14 )

( S-15 )
kr = faTfs
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Using the Ziegler-Nichols process model,

cess output during 7kr is zero if

change of pro-

Ar

7--_< L (5-IS)
a

• For an upper value of Ar

full range, so that using ( 3_14 ), ( 5-i6 )

we can again take 20 percent of

becomes

Tfs < 5_-- (5-17)
P

This minimum of time for full stroke of the valve happens to

have the same form as ( 5-9 ), the minimum established to

avoid problems arising from the first difference approxima-

tion. Comparison of ( 5-9 ) and ( 5-17 ) shows that ( 5-9 )

demands the higher performance, so that ( 5-17 ) does not

constitute an additional restriction.

It is useful to consider further the meaning of the limitation

imposed by ( 5-9 ), The fastest process control loops are

fluid flow control loops. The process output, flow rate,

follows valve position with no lag. Transducer lag as small

as 0.2 seconds may be the only lag in the loop, although if

a pneumatic actuator were used it would have a lag of about

one second. If we now use an incremental actuator with

a time for full stroke of 10 seconds, we introduce a non-

linearity into the analysis because valve actuation time,

which varies with size of output order, is now comparable

to the other lags in the loop.
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This effect is very evident in the shape of a Ziegler-Nichols

reaction curve for such a process. The shape of the curve

depends very strongly on the amplitude of valve increment

imposed. Figure 5.Z shows this variation. To arrive at

a value of L for evaluation of ( 5-9 ) a small valve incre-

ment should be made. The Ziegler_Nichols model is then

reasonably valid and a proper value of K can be calculated
P

and substituted into ( 5-9 ). This will provide a minimum

value of Tfs because if a larger amplitude reaction curve

had been used, a smaller value of K would have been re-
P

quired to compensate for the longer apparent lag. If a

smaller value of K is chosen for a wide range of closed
P

loop stability it would be possible to use a proportionately

larger value of minimum Tfs. In control of fast processes

with no dead time, however, the entire problem may be

academic, since adequate control is possible using only

integral action. (I!_)A much simplified version of the con-

troller proposed could provide integral action without en-

countering the limitations discussed in this chapter.
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Summary

It was shown that two modifications that were made in the

controller algorithm in order to reduce memory requirements

put an upper limit on time for full stroke of the valve. For

process loops with very fast response_ such as flow loops,

it may not be practical to provide an actuator fast enough

to meet this limit. In this case a simplified digital controller

providing only integral control can be used, as is often done

with analog controllers.



CHAPTER VI

THEORETICAL CLOSED LOOP RESPONSE AND STABILITY

The two modes of control represented by ( 4-1 ) and ( 4-Z )

call for samples and computations at two different rates,

f and f.. The reason for doing this is to reduce the amount
p 1

of equipment needed to provide a wide range of integral

time T. while retaining the stabilizing effect provided by1

frequent proportional sampling. While multirate sampling

simplifies implementation of the controller, it also com-

plicates the mathematical description of the system. No

attempt will be made to derive an exact mathematical

model of the control loop using the two sampling rates.

Rather, the well known z transform method for a single

sampling rate will be used to put outer bounds on stability

limits for the more complicated system, using the process

of Figure Z. Z as an example.

Using the nomenclature of Figure 6.1

control algorithm ( 3-7 ) :

K Ez(l+,/Ti)- 11

Gl(z) -- P - - I

and the two mode

84
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The product KvRK f

Z. I x 10 3 quanta
full stroke

of Figure 3. Z was found to be

Hence :

-s,r 10 3l-e 2.1x
X

Gz(s) G3(s) = s TZ(s +_)Z

For the process used, T = 5 minutes.

Gz(s)G3(s) = Z.1 x 103(l'e'S'r)z

Z5s (s+. z)

Therefore

(6-z)

(6-3)

From Reference (19) :

Gz3(z ) = 2.1 x 10 3 -z 1
Z

-2,r -.2,7" 1
• 2Te z

(z.e-Z_')zz-e

(6-4)

• ZT)Z_(z-e- •Z'r)(..i)..Z.re-'_11

(_- I)(--e "'z_")Z

The characteristic equation F(z) = 1 + G(z) = 0 is :
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3
F (z) - z { l }

+ z Z {-1-Ze -'Z'r+zl00KP[ (1+_. i)(-e" •z_'+l., z,_e" Z_')]}

-.Z'T+ z {e-'4"r+ze"Z'r+Zl00Kp [(1+ )(e"4"r-e +

-.z_- -'z_'(l+.Z,,-)- 1 ]}.Z,re ) + e

-.2,r -.2,r
+ {-e"4"r-z100Kp" [e"4'r-e + .Z're ] } = 0

(6-6)

( 6-6 ) is the characteristic equation for the sampled system

with both modes sampled at the same rate l/T, with proportion-

al gain K and integral time T.. We shall now develop
p 1

stability criteria for the system and evaluate them for several

sets of the three parameters involved.

The controlled system is stable only if all roots of the

characteristic equation lie within the unit circle of the

complex plane. We can follow the method given by Olden-

bourg andSartorius _ZOJ"" to transform the z-plane into the

w-plane in such a way that we map the interior of the unit

circle of the z-plane into the left half of the w-plane. This

will permit us to use the Hurwitz stability criteria. The

simplest suitable transformation is
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z+l
w=--__ 1 (6-7)

Substituting ( 6-7 ) into a cubic characteristic equation of

form

3 Z
a3z +a2z +alZ +a 0 = 0 (6-8)

and forming the Hurwitz stability criteria, we find that the

stability conditions are expressed by the following relations

between the coefficients of the original cubic:

3 (a3-a 0)+ ag-a 1 > 0

3 (a3+a 0 )- a2-a 1 > 0

a3-a 2 + al-a 0 > 0

g 2

a 3 - a 0 + a2a 0 - a3a I > 0

(6-9)

Various values of K , T. and _ are substituted into ( 6-6 )
p 1

and ( 6-9 ) to establish stability boundaries. The results

are shown in Table 6.1, together with results obtained for

the case of continuous control. Open loop gain G O is also

shown in the table, whe re

q

GO --%KvRKf --Zl00Kp 
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7, minute s

0

0

0

0.31

0.5

1.0

K
P_

.0155

.OOZl

.00055

unstable

.0137
• 0066

T i, minutes

Z.39
2..00

1.30

5.0

8.0

8.0

G o

32.5

4.5

1.15

Z8.8

13.9

r

Table 6.1 Conditions for Marginal Stability

When 7 = 0.31 and T i = 5 minutes, no positive value of K
P

satisfies ( 6-9 ). Using continuous control with T. = 5
1

minutes stable performance is possible even with very

high values of K • This demonstrates the effect a slow
P

sampling rate can have on stability, even though the ratio

of dominant time constant of the loop to sampling interval

is over 10 : 1. Using a T. of 8 minutes the analysis shows1

that quite high values of K are possible even with
P

sampling intervals as high as one minute•

The model used for the stability analysis above does not

correspond to the design of Chapter IV. The proportional

sampling interval used in control of the two capacity system

was from one to ten seconds. The integral sampling interval
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was much longer, usually about 7 minutes. The correlation

between the multirate sampling system used and the single

rate sampling system analyzed theoretically will be dis-

cussed in Chapter VII. The theoretical results for the

single rate system can apply directly only when the

controller is modified as explained in Chapter IV to pro-

vide a smoothed integral effect, and when the smoothing

is sufficient to make fp the same as fi"



CHAPTER VII

EXPERIMENTAL RESULTS

The controller described in Chapter IV was built and used

to control the process of Figure Z.Z. For tests that re-

quired fast process reaction rate the first tank was bypassed.

Presentation of experimental results is divided into two

parts; the first concerns the observed effects of the two

approximations discussed in Chapter V, and the second is

on the effect of multirate sampling.

Observed Effects of Algorithm Approximations

The first difference approximation and the separation of

Operate and Read modes had no observable adverse effect

upon control of the two capacity process with a 33 second

actuator. Figure 7.1 is typical of change of set point re-

sponse curves taken with the two capacity system. The

lower curve represents valve position m, and the upper

curve is the corresponding process output, b.

The 10 percent change of set point order took place at time

zero, with the system in steady state. With the controller
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gain set as shown on the figure, the initial motion of the

actuator required 15 seconds. In that time virtually no

change in process output could be observed. Thus, for

such a system, the separation of Read and Operate modes

is fully justified. The time intervals required for sub-

sequent proportional corrections to m were so short

that no change in the binary value of b could be observed

during countdowns. During integral countdowns b did

not change more than one quantum. This low loss of feed-

back information had been anticipated because the para-

meters of the control loop used satisfied the requirement

for actuator speed imposed by ( 5-9 ).

The test process was modified by bypassing the first tank

and slowing the actuator speed down to give a Tfs of

47 seconds. The resulting process reaction rate curve was

much like that of Figure 5.Z for v < T. The allowable

gain and reset rate (1/Ti) for such a process were very

high, and apparent dead time for small Am was nearly

zero. As a result, ( 5-9 ) was not satisfied. Test behavior

was as expected, in that system stability was much reduced _

for large values of error and rate of change of error. When

the initial large amplitude oscillations did finally become

smaller_ the effective damping increased, showing very

stable and satisfactory performance for small disturbances

near the set point. This performance can be completely
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explained as effects of the two approximations discussed

in Chapter V. As shown in Figure 7. Z, the initial change

of set point order saturated the valve. Because of the high

gain used, the countdown for that order did not end until

well after saturation occurred, and no stabilizing pro-

portional order could be executed during that interval. It

is also evident that the first difference approximation was

scarcely approximate during the first part of the transient,

since such a large amount of time was devoted to moving

the actuator, during which all change in b went unnoticed

by the controller.

Figure 7.2 could also represent a flow control loop, where

m is flow rate proportional to valve position and b is the

measured value of m from a slow transducer. It is

evident that this controller should not be used on a flow

loop because the use of the actuator as a summer produces

unnecessary fluctuations in flow rate. This effect is,

however, much reduced when integral effect is smoothed

using an expression like ( 4-Z6 ), as was done in Figure 7. Z,

and is completely eliminated if the controller is modified

to provide only integral control, as recommended in

Chapter V.

The instability evident in Figure 7.2 can be much reduced,

without eliminating the proportional effect, if changes in
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set point are performed without using the Read mode;

that is, without performing the proportional computation

( 4-3 ) for Akr. Figure 7.3 demonstrates this technique.

The new set point is attained in much less time than in

Figure 7. Z, and with no overshoot.

Observed Effects of Multirate Sampling

Figure 7.1 is an example of a successful run using the

multirate sampling scheme originally proposed. Pro-

portional gain used is about the same as that recommended

in Appendix A, but it was found necessary to increase

integral time T. to about double the Ziegler-Nichols value
1

in order to ensure good stability. The reason this re-

duction in integral effect was necessary becomes evident

from inspection of Figure 7.4, for which integral time was

only 30 percent greater than the Ziegler-Nichols value.

The controller settings used here were such as to create a

period of oscillation T approximately double the integraln

time. It was therefore possible for the integral samples

to be taken on successive maximum and minimum points

of the oscillation, providing sufficient over-correction to

the process to sustain the oscillation. This problem was

avoided in Figure 7.1 by increasing T.. The instability

problem can also be avoided by reducing Ti, if K isP

sufficiently reduced at the same time. The main point is to

avoid having T i = 1/Z T n.
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The rules for controller tuning again prove useful here.

Reference 08) states that a control loop with a properly

tuned PI controller has a natural period of oscillation of

about 5.7L, where L is the apparent dead time of the loop.

Substituting this fact into (A-Z) gives:

T (30+3R)
n

T.= (7-1)i 5.7(9+Z0R)

where R is not valve resistance, as before, but the ratio

L/T of Appendix A. For 1%large, T i << T n and there is

no danger of the instability found with T i = 1/Z T n. For

the two capacity process R = . 144 and T. = 1/Z T n and we
1

have poor stability. For R = 0, T i is still close enough to

1/Z T n to be of concern.

While the solution of increasing T i above that dictated by

tuning equations was successful, it also caused weaker

control action than that available with analog controllers.

A better solution was to use the integral smoothing tech-

nique described at the end of Chapter IV. According to

( 7-1 ) the largest possible ratio of T i to T n would be

0.58. To make this ratio always less than 1/Z would re-

quire only one stage of smoothing, that is a gain reduction

on each integral sample of 1/Z. But it is best to use three

stages of smoothing to ensure that integral samples are not

even in loops where K and T i are bothtaken every I/Z T n P
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set above optimum. Figure 7.5 shows response of the

two capacity system to a change in set point using three

stages of integral smoothing. Performance is considerably

better than Figure 7.4, though still lightly damped. It was

noted that when four stages of smoothing were used the

integral correction order 7ki for a one quantum error

called for less than one step of the actuator, and hence

produced no correction at all.

As long as integral sampling intervals did not occur just

twice per natural period, the stability of the control loop

seemed uneffected by slow integral sampling. This is

demonstrated by Figure 7.6 for which T. was I. 3 minutes,
i

unsmoothed, and K was . 00049. Its response is just
P

barely stable. Table 6.1 shows that the stability

boundary for the continuous system lies at T. = 1.3 minutes
1

and K = . 00055. Thus the multirate controller, with
P

proportional sampling interval of 5 seconds and integral

sampling interval of 1.3 minutes, yielded about the same

performance as what was predicted for a continuous PI

controller with the same gains.

Load change tests were also made, but are not presented

here because they demonstrated nothing more than was

shown by set point change runs.
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Summary

The simplifying approximations made in the original design

of the controller led to instability in certain cases. To

restore a guarantee of stable performance it was necessary

to smooth the integral effect by sampling that term eight

times per T i instead of just once. To avoid instability for

large errors for certain fast responding processes it was

found necessary to either add another memory register to

the controller, omit use of the Read mode, or leave off the

proportional effect for those cases. The latter step is a

common procedure with analog flow controllers, and has

little adverse effect on control performance.



CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

FOR FURTI-IER WORK

Conclusions

The features of the controller described in this paper that

constitute new contributions to the field are the decompo-

sition of the control algorithm into parts that can be compu-

ted and applied serially, and the variation of the sampling

rate for the integral term, independent of the proportional

term sampling rate, to effect adjustment of integral time.

The effectiveness of this approach has been demonstrated,

subject to certain limitations that are a function of the

reaction rate of the process being controlled and of the

speed of the actuator used. The rules for application of the

controller can be stated as follows:

The original Pl controller of Figure 4. Z can only be used

with gains set somewhat below the Ziegler-Nichols optimum

settings. For best performance the integral smoothing

circuitry of Figure 4.4 should be added, requiring no more

than 11 extra transistors for three stages of smoothing.

104
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With this addition and with a suitable incremental actuator

the controller can be tuned to provide virtually the same

performance as an ideal continuous PI controller. To

maintain stable performance for large set point changes,

however, it is necessary to check that actuator speed is

fast compared to process reaction rate, specifically that

Tfs_< 1.5 L/Kp, where Tfs = time for full stroke of the

valve, L is apparent loop dead time, and K is controller
P

gain normalized for unity feedback. If the actuator pro-

vided is not capable of this speed, one of two steps must

be taken: either the proportional mode must be left off

the controller entirely or else the part of the proportional

mode used to initiate the set point change must be omitted,

permitting the change to be made by the more gradual

integral action. If noise on the feedback signal is a

serious problem it is necessary to add an extra 10 bit

memory register to the controller.

Recommendations for Further Work

It should prove possible to add the derivative mode to the

controller, using the same frequency technique for gain

adjustment as was used for the integral term. Consider

the PID incremental algorithm ( 3.-5 ) :

Am_k=EpiT iF_-'_tek+(ek°ek- I)+_ - (ek-Zek- i +ek-2 ( 8- I )
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Using ( 3-9 ) for ek:

K F-
Amk= pL - i(rk-bk)+(rk-rk_l)+(bk_l-bk)

T d T d

+-_-" (rk_Z rk_ i+ rk_ 2)- "_'(bk'Zbk_ 1+bk_z) _ (8-Z)

If we can do without the derivative effect for initiation of

changes of set point, with the knowledge that such events

seldom occur, we can drop the first of the two derivative

terms of ( 8-Z ). Using ( 3-14 ) and the decision to use

three stages of integral smoothing:

Amk=faTf s (rk-bk)f. + (rk-rk. 1)Ar+(bk_l-bk)f
1 p

-N (bk-Zbk_ l+bk_Z)fd ] ( 8,-3 )

8 N

where fi =T--_-1 and fd = T--_ The subscript Ar again

identifies the term that is computed only when r is changed.

N is an integer, f is the rate at which the proportional
P

term (bk_l-bk) is computed. For the PI controller the

setting of f has no great importance, since it has no effect
P

on gain. It need only be kept above a certain minimum rate

in order to avoid excessive sampling phase lag. A value

of f = 50/T was found to be adequate, where T is the
p n n

period of oscillation of the closed control loop. Values down
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to 20/T n might serve as well, but were not tried. As long

as this flexibility in f is available it would seem possible
P

to use this sampling rate also for the derivative rate fd

to permit certain economies in the logical implementation

of ( 8u3 ). N could be selected to make fd always well over

20/T n, then fd could be adjusted for fine adjustment of T d.

From Reference ( 21 ), the optimum ratio of T.1 to T d

should lie between 6 and 1/2. Then fd must lie between

6 and 1/2 times N/T.. From Reference (18), T. = .4T n.1 1

Therefore, fd must lie between 6 and 1/2 times 2.5M/T .n

Then to ensure an adequate proportional sampling rate

20
f =fd >_ -- (8-4)p -- T

n

Hence

2.5N 20
2_ _¥--- andN _ 16 (S-5)

n n

For N = 16, fd will range from 20IT to 2401T n. (8-B)
n

can be rewritten as:

, ,-,%Am k : fa_f s (rk-bk)fi + (rk-rk. 1) + (bk_Ar

- 16 (bk. 2-bk. l'bk- l+bk)fd I
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It appears that two extra memory registers beyond the

one in the PI controller would be required to implement

( 8-6 ). A total of 60 transistors in addition to the 109

used in the modified PI controller should be sufficient

to provide the PID algorithm of ( 8-6 ).

Oldenbourg and Sartorius "zO'(_ stated that stability of loops

containing true transportation lags, or dead times, could

be improved by sampling and computing corrections at

a maximum rate of once per dead time. Having now built

a controller whose different modes are sampled at

different rates, it is interesting to speculate on whether

it would be possible to achieve improved control over loops

with dead time by observing the Oldenbourg and Sartorius

rule only for the integral effect, while sampling the pro-

portional and derivative terms more often. It might be

that only the derivative mode could be sampled more often

than once per dead time to provide the best response. In

any case, further research might reveal that the multirate

sampling scheme has definite advantages in the control of

such special kinds of processes.



APPENDIX A

CONTROLLER TUNING BY REACTION RATE

Reference (14) presents the Ziegler-Nichols method for

tuning controllers. It is based upon the characterisation

of any process by a dead time L and a first order lag T.

A step change in valve position is made and the resulting

open loop response is plotted. This was done on the two

capacity system of Figure Z. Z, resulting in the response

shown in Figure A. 1. The controller countdown rate was

14.3 q/sec. The time for valve full stroke was 33 sec.

The refore by ( 3-14 )

sec. Z. IZ percent full stroke
K = = -- = .ZlZ

p 14.3 q x 33 sec. 103q quantum

The step input to the controller was Z5 q. The valve

motion was therefore

Z. IZ
M= --xZ5 q = .053

103q

Five percent of full stroke was considered small enough

to preserve linearity.

From Figure A.1 :

L = i.4 rain.

T = 9-7 min.

109
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K = III q

N = K iii q-- = =1146 q
T 9.7 rnin. rnln.

L I.4 rnin.
R=- = = .144

T 9.7 rnir_

For one-quarter ratio of amplitudes and a compromise

between minimum area and period, by this method :

M 9 R .053 min. 9 .144.
Kp=_T0 + -i_) = 11.46qxl. 4 rnin (I'0"_)

= .003 "(full stroke)

(quantum)
(A-l)

T. : L( 30+3R _ ,30.43,
1 9+ZOR' = I.4 min _-_-_) = 3.57 rnin. (A-2)

( A_I ) and ( A-2 ) should then give "best" response. To try

these values we adjust countdown rate to comply with ( A-I ).

By ( 3-14 ):

f = 1 = 103q = 7.1 q/sec. ( A-3 )

a KpTfs 3.0x47 see.

Figure 7.5 is a response curve using the K of ( A-3 ) and
P

a T i of 5 minutes. The 3.57 minutes of (A-2)was found to

be too oscillatory.

Three stage integral smoothing was used for this run.



APPENDIX B

EFFECT OF NOISE ON PROCESS OUTPUT

The float that measured water level in the process of

Figure Z.Z was geared to 10 bit binary encoder with

U-brush scan to provide a quantum size of . 0Z inch. Wave

motion, gear backlash and static friction were at a low

enough level that noise in the binary feedback number b

was not a problem. A steady increase in water level would

produce a monotonic increase in b. Hysteresis of the

float-encoder combination amounted to somewhat less than

one quantum. Such an accurate and noise-free measure-

ment can not, however, always be provided in an industrial

environment, especially if the transducer produces an analog

voltage that must be sent to a shared analog-to-digital

converter. We should, then, investigate what effect a

noisy signal at the input to the controller will have on the

output of the process.

The integral term of ( 3-5 ) is (rk-bk). r is a fixed binary

number not subject to noise. If b k is d quanta higher than

its true value, the controller will make a false correction

which, if the loop were then opened, would lead to a dG 0

steady state error. In closed loop operation this sort of

llZ
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error can only be corrected after its effect is seen at the

process output. This could be a seriously disturbing

factor with the controller proposed in Chapter II, but the

problem can be greatly reduced by using the integral

smoothing technique described later in the paper. Using

three stage smoothing integral samples are taken eight

times per T. instead of once_ and the gain of the term is1

one-eighth of its former value. From the Ziegler-Nichols

tuning equations we can predict that these integral

corrections will occur about five times per L_ where L is

the apparent loop dead time of Figure A. 1. Therefore

no single noisy integral sample will have time to effect

process output significantly before the next integral sample

is taken. The randomness of the noise will then determine

the extent to which one noisy sample will correct the

effect of previous samples.

Both components of the proportional term (bk_ l-bk) are

subject to error arising from noise. Sample number two

in Figure B. 1 is assumed to be incorrect, m takes the

excursion AZp shown at time 2, but returns to its original

level at time 3 because the incorrect value b 2 was retained

in storage and used in the calculation of ABp. The maximum

resulting transient effect of this pulse can be calculated

graphically by the method of _Taft (16), using the reaction

rate curve of Figure A. 1. The maximum excursion of c,
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O-SAMPLED VALUES OF b

8
b Of- INCORRECT VALUE
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I i I I I "-t
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o
I I

EXCURSION OF m RESUL;rlN(3
FROM PROPORTIONAL TERM

-.l(b k - bk_I)

-.6

m

.4

EXCURSION OF m RESULTING
FROM DERIVATIVE TERM

--.2( bk-2bk, t + bk_ 2)

FIGURE B-I EFFECT OF NOISE ON MANIPULATED
VARIABLE
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dG 0

if uncorrected by feedback, would be T_' where d is the

amount of error on the sampled signal, p G O is open loop

gain, T is Ziegler-Nichols time constant and f is pro-
P

portional sampling rate. The true effect would be less

because of feedback. The greatest difficulty arises from

the fact that in the controller described in this paper the

value of b k used in computation of Akp is not retained for

use in computation of ACk+l)p... Rather, b is resampled at

time k + 5, where 5 is some small fraction of a sampling

interval, and bk+ 6 is retained in place of b k. If the noise

level d changes in time 5, which should be expected, m

of Figure B. 1 will not return to its proper value at sample

3, and we are once again faced with a permanent error of

the type arising from the integral term. If noise does

occur in b, this error will be worse the more often the

proportional term is sampled. The way to avoid the problem

is either to provide temporary storage for b k in the A/D

converter, or add another memory register to the controller.

The effect of a noisy signal at time Z upon the derivative

effect is also shown in Figure B. 1. Not only does m return

eventually to its proper value, but a negative compensatory

square pulse even brings the time integral of m to the value

it would have had without the error. The fact that the gain

of the derivative term is usually high might mean that this

doublet could still cause some deviation in m. Taftls
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graphical convolution method will again put an outer

bound on error in m, but it cannot be expressed in terms

of Ziegler_Nichols parameters as was done for the pro-

portional error. Once again the problem is considerably

complicated if the value of b k used in the calculation for

Ak d is not retained in its exact form for the calculation

of A(k+l)d and A(k+Z)d . If noise is present in b it is
% J

virtually essential that they be retained. If they are re-

tained, some of the fears about the folly of taking a second

difference should be dispelled.



APPENDIX C

USE OF CONTROLLER

WITH A HIGHER LEVEL COMPUTER

Any control function beyond the basic Pl algorithm must

be handled by a separate higher level computer. The

plan outlined in Chapter I calls for the use of a single

computer to perform the higher level control functions

for a large number of single loop digital controllers. From

a reliability standpoint it is desirable to be able either to

set control parameters into the controller manually, or to

put the controller under the automatic supervision of the

higher level computer. It is the purpose of this section

to determine just what communications between controllers

and computer are necessary to achieve this goal.

Set Point :

For independent use each controller has 10 switches for

manual setting of the binary set point, r. The controller

should also have the capability of accepting a set point from

the central computer. This could be provided by 10 levels

from a register in the computer. One additional switch is

required, either at the computer or the controller, to

select which of the two possible set points should be effective.

117
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Controller Gain K and Integral Time T i :P

Adjustment of K is performed by varying the countdown
P

frequency fa" A free running multivibrator within the

controller provides the necessary pulse train, whose

frequency can be continuously varied over a wide range

by manual adjustment of a pair of potentiometers. The

central computer could also have the capability of con-

trolling f by gating one of a variety of clock outputs to
a

the controller. Only a single line is required for this job,

in addition to the line for the selector switch mentioned

above. The same provisions would be made for integral

time, T i, since it is also adjusted by the frequency of a

pulse train.

Proportional Sarnpling Rate f :
P

This pulse train can also be generated either in the con-

troller or the central computer, but there is less reason

to vary it, since for the PI controller its value has no

effect on gain. When several controllers receive their

digital input data b from a shared A/D converter it would

be best to generate f from a common source for all the
P

controllers. All loops with similar dynamics could be

sampled at the same rate, the sampling instant for one

controller being offset from that of the next by the use of a

ring counter which would also control the multiplexer of

the A / D c onve rte r.
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Information Required by Central Computer :

When the controllers are using their own set points the

central computer needs to receive either the values of

error from each controller, produced eight times per T.,

or else the value of r and of b, available each time an A/D

conversion is made for each loop. It could be expected

that if the central computer is in operation at all, it would

be providing set points to the controllers. In that case it

would need only values of b for each loop. They could be

provided either directly from the A/D converter or else

from the A register of each controller, which contains the

last value of b at any time a computation or countdown is

not in process.

Actuation Orders from Computer to Controllers :

The higher level control functions assigned to the central

computer must be programmed in such a way as to produce

incremental output orders for the various actuators. When

one of these orders is generated within the computer it can

be immediately transferred to the A register of the proper

controller_ and immediately be counted down to the actuator.

To do so, however, might mean destroying the value of b

in that register just before a proportional sample was about

to be made. To avoid undue degradation of the proportional

effect, the best course would be to hold the output orders

in computer memory until a signal from the controller
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notifies the computer that it has just finished a countdown

and is ready to accept any other order. Such a signal

could be generated by

Transfer Order = ( [3Mz
) (M4)(Order Ready) (C-l)

In sucha case the Enter b order of Figure 4-Z would have to

be inhibited, and to start countdown the flip flop M Z would

have to be set as soon as transfer was accomplished. At the

end of countdown b would be resampled and normal PI opera-

tion would continue until the next order was ready in the

compute r.
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