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Dispe;gﬂllrstrengthening Models

I1_3\
In recent years a number of theoretical models '~ '

have been proposed to explain the observed strengthening
behavior of crystalline solids containing a uniform dispersion
of fine particles. A cursory examination of the structure-
property relationships derived from these models shows them
apparently to be quite dissimilar. A more detailed examination,
however, reveals a basic similarity of approach utilized in
each model. It is therefore appropriate to consider why

these basically similar models predict such differing structure-
strength relationships.

The dislocation model in each case ascribes yielding to
occur when the applied stress on the bulk alloy permits
dislocations to freely move through the lattice by cutting
through the distributed second phase. In calculating the yield
strength Ansell (1) aséumed that the stress required to cut
the distributed phase arose from the magnification of the
applied stress due to a piled~up array of curved dislocations.

(2) (3)

Kelly and Nicholson and Marcinkowski and Wriedt on
the other hand, related the work done during deformation,

due to the applied stress, to the energy required to fracture
the particles. The magnification of the applied stress due
to pile-up was originally derived on the basis of such a work

consideration (4). Therefore all three models use essentially




the same dislocation-partiéle interaction model and similar
criteria for yielding. Vhere these models widely differ,
however, lies in the authors' treatments of the description
of these interactions in relation to the distribution of the
particles within the solid.

Each of the models considers the interaction of dislocations
with the particles contained within a slip plane. Kelly and
Nicholson and Marcinkowski and Viriedt assume a particular
distribution function for the arrangement of the particles in
the slip plane and then extrapolate this distribution function
to the distribution of particles contained within the solid.

Ansell (1)

, however, first considers the nature of the distribu-.
tion in three dimensions and from this determines the second
phase distribution within a slip palne. On the surfaces these
two approaches would appear to be the same; however, the authors'
use of these approaches (i.e., planar and volumetric
distribution) are not compatible and lead to their divergent
results.

The planar approach invokes the assumption that the
dispersed particles may be imagined to be arranged on a
square-mesh in the slip plane. In reality there are a
multiplicity of such slip planes, especially in cubic

structures. Thus, according to this approach the particles

would not be uniformly distributed within the matrix lattice.
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Instead, one must imagine a rather peculiar spatial
distribution such that many random planes intersect the
particles in such a manner that on these planes the particles
are arranged on a square-mesh. In addition, one must consider
an average effective diameter of the particles in such

planes. Indeed, there can be no such three dimensional
distribution of spheres in a solid which would yield these
results,

The volumetric approach starts with the assumption that
the particles are uniformly distributed in space; and that
this distribution may be represented by a cubic arrangement
of the particles. Thus any random plane within the valume
of the alloy possesses an equally probable planar distribution
of particles,

It is then possible to derive two equations for each
of the proposed models; that is, one representing a planar
discription and the other representing a volumetric description
of the dispersion. To do this we must make note of some
basic equations appropriate for each approach. In the
Planar method the center to center spacing between particles

(2)

is given by

1.
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(r/e) a/fF (1)



where d is the true diameter of the spherical particles and
. F is the volume fraction of dispersed particles. The
effective intercept diameter (di) of the particles on the
planes is given by
5
ai = (2/3) “ a (2)
or

-5
di = (#das2) 6 (3)

(1)

In the volumetric method L is given by

1/3

L=(Z-2—) d/F1/3

(4)
and the true diameter of the particles is considered.
The first model proposed was that of Ansell (1). Using

the volumetric approach he derives

2 - e 22 r 2 ‘ (5)
m ac (237

where 7 is the yield stress of the alloy, ¢ is the strength

m

of the matrix, Ax* is the shear modulus of the dispersed

phase, and C is a constant equal to about 30. With the
use of eqns. (1) and (2) we obtain from this model, for \

|
the planar case |
]
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The model of Kelly and Nicholson in which the planar B

approach was used gave




r = = (7)
&
where ? is the energy of the additional matrix-particle
interface produced by the shear and the energy of the dis-
locations produced at the interface and b is the Burgers
vector of the dislocation cutting the particle. With the
use of egn, (4) we obtain from their model, for the

volumetric case

- = (=) —_—
4 7 b _ (8)
Marcinkowski and Wriedt also used the planar approach

and found

[ os - 5 o

"= g to2 (Bp-T ) PR/ (i) (9)
where pr is the strength of the particle. Using eqn. (4)

we obtain from their model, for the volumetric case

~ /3 .
=T o+ 6/ (b - T B

(5)

(10)
The model of Dew-Hughes may also be similarly treated:;
and this would yield equations similar to egns. (5) and (6).
This model involves the cutting of dislocation loops by other
dislocations; and did not use either the planar or volumetric

type of description, but left the final equation in terms

of general parameters,
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We now can conclude that if we use a similar method of
describing the geometrical distribution of the dispersion,
then all three models yield the same basic relationship:;
that is, if the planar description is used, then the yield
strength is a function of F%, and if the volumetric
description is used, then the yield strength is a function
of F1/3.

The crucial question to now consider is whether the
planar or volumetric type of description is more realistic.
Ve have already noted that it is impossible to extrapolate a
three dimensional distribution which is compatible with
the planar description employed. We conclude that the
volumetric type of description represents more faithfully
the actual physical distribution of dispersed phase particles,
Thus, regardless of the model one believes correctly treats
the dislocation~particle interaction, we believe that the
yield strength is a function of Fl/B. Mathematically one
finds that equally good agreement may be obtained if one
plots T vs. P73 or ¥ vs. F%; thus, the data in the
literature found to agree with the F% dependence may be

found to be in equally good agreement with Fl/3.
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