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PREFACE

This Memorandum was prepared as part of RAND's continuing study
of Satellite Meteorology for the National Aeronautics and Space
Administration under contract number NASr-21(07). The problem of
diffuse reflection of light from a spherical shell is of central
importance in meteorology and astrophysics. This Memorandum presents
a method for assessing quantitatively the effects of sphericity on
diffuse reflection patterns. This study is a necessary prerequisite
for further work devoted to inverse problems for spherical shell atmos-
phere. This should aid in the planning and interpretation of meteor-

ological satellite experiments.
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This Memorandum presents a method for integrating numerically
the invariant imbedding relation for the diffuse reflection coeffic-
ient of a spherical shell. The reflection coefficient of a shell is
related to that of a slab via a perturbation technique.

The results of some test calculations are presented; they com-

(1

pare well with results obtained in an earlier Memorandum using a
different method. Interestingly enough, the perturbation technique

proves useful for quite large values of the perturbation parameter.
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I. INTRODUCTION

The equation for the scattering function of a spherical shell is
a nonlinear partial differential integral equation. Little computa-
tional experience is available in the numerical solution of such com-

(1)

plex functional equations. In an earlier paper, we described an
approach based upon the numerical estimation of partial derivatives.

The results obtained seemed satisfactory from both the physical and

computational viewpoints. Nevertheless, the importance of the equation

and the newness of the calculation made it seem advisable to approach
the problem from a second and independent point of view. We elected
to use a perturbation technique based upon an expansion in inverse
powers of the inner radius of the shell.

Results of this numerical experiment confirmed our earlier cal-
culation to several significant figures. Remarkably enough, this was
achieved using only the first and second terms in the perturbation
expansion.

Let conical flux of net intensity T per unit area be uniformly
incident upon a hollow shell of inner radius a and outer radius z.
The intensity of diffusely reflected radiation in the direction

arc cos v, due to incident flux with direction arc cos u, is

r(x,v,u) = AL (0

where the S function satisfies the rather formidable functional

equation
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for z 2 a, with the initial condition S(a,v,u) = 0.(2’3) Here )\ is

the albedo for single scattering. We suppose that the core is a
perfect absorber. The function S is symmetric in v and u, a fact
which can be used either to test the accuracy of the numerical so-
lution, or to reduce the size of the problem.

(D

In a previous paper, we obtained a numerical solution of this
equation by means of an estimation of Su as a linear combination of
the values of S at suitably chosen points. This will be called
Method I. 1In this note, we use a perturbation expansion in powers of

% and compare the results of the two calculations. The agreement is

excellent.




II., PERTURBATION TECHNIQUE

Let us introduce the thickness of the shell, x = z-a, assume that

X« 1, and substitute the formal expansion
a

1 2
S=8 + el -3 + ... (3)
a
in Eq. (2), with the quantities So’ Sl’ SZ’ ., independent of a.

S0 turns out to be the S-function for a plane parallel slab, a func-

(1,3)

tion which can be easily and accurately calculated. Equating

coefficients of powers of %, we obtain the following equations

1 1
1,1 _ 1 . dv' 1 du'
(So)x + (u + v) S0 = k[l + ZJ‘ So(x,v , u) —v,] [1 + 3 r so(x,v,u') —
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Let us write S0 (x) So(x,vi,vj), S1 (x) Sl(x,vi,vj), U - (x) (So)u,
VlJ(x) = (So)v, where the v, are the roots of the shifted Legendre
polynomials. Using quadrature techniques as described in Refs. 4 and

5, we reduce Eq. (4) to a system of ordinary differential equations



involving the functions introduced above. To solve these, we require
the functions Uij and Vij. These partial derivatives are produced in
two different ways. First of all, we can use the numerical estimation
formula of Ref, 1, We shall refer to this as Method IIa. Secondly,
we can turn to the equation for So and obtain, by means of partial
differentiation, corresponding equations for (So)u and (So)v' These
are adjoined to Eq. (4) to provide a complete set of equations for the
four functions So’ (So)u’ (So)v, Sl‘ Quadrature techniques applied to
these produce the desired ordinary differential equations. This pro-
cess’involves the numerical solution of N(3N+l) simultaneous equatioms.

We shall refer to this as Method IIb.




III, COMPUTATIONAL RESULTS

Calculation of the reflection function r(x,v,u) was carried out
with the two variations of the perturbation technique. Some checks
consist of varying the order of the quadrature formula, varying the
step length of integration, and increasing the inmmer radius a so as
to approach the limiting value a = ». Other checks consist of com-
parisons among the three computational schemes (Methods I, IIa, and
IIb). We found the results to be satisfactory.

In Fig. 1, we present three sets of curves for the reflection
function r, for the case in which the albedo )\ = 1, the inner radius
a = 50, and the thickness x = 3. Each set corresponds to a different
angle of incidence, arc cosine u = 17.6 degrees, 60.0 degrees, and
87.3 degrees. The abscissa is arc cosine v, the angle of reflectionm.
Four curves are plotted for each incident direction, although these
curves lie on top of one another in certain instances. These curves
are labelled '"Slab," "I ," "IIa," and "IIb." The curves labelled
"Slab" correspond to the r function in the limit as a + », Curves
"I" are produced by a direct application of the estimation of deriva-
tive formula, the method described in Ref. 1. Curves "IIa" are pro-
duced by the perturbation method with the use of the derivative esti-
mation formula, and curves "IIb" are produced by the perturbation
method alone. The calculations are performed on an IBM 7044 machine
with programs written in the FORTRAN IV source language. We used
N = 5, an integration step size of 0.005, and an Adams-Moulton inte-

gration formula. Running times are comparable for Methods IIa and 1Ib,
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Fig.1 —Some reflected intensity patterns for a shell
with albedo A=1, inner radius a =50, and thickness
x =3, for various angles of incidence




No difficulties are encountered with the use of the perturbation
technique. The comparison of results with the direct calculation of
Ref. 1 is quite satisfactory. The present technique has the advantage
of producing reflection functions for a variety of shell inner radii
in a single calculation. Moreover, it appears to be stable, even
when f is fairly large. This ratio is 3:}0- = 0.06 in the case discussed
above. The technique is suitable for many other types of partial dif-

ferential integral equations, and further results will be presented

subsequently.
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