# CALIFORNIA INSTITUTE OF TECHNOLOGY JET PROPULSION LABORATORY PASADENA, CALIFORNIA 



MARINER " C"
DSIF EQUIVALENT
GROUND SUPPORT EQUIPMENT
(Contract No. 950879)

VOLUME 1

Prepared by:
Q.2. N100torz
D.E. Morton

Project Engineer

Approved:
H.C. More
W.C. Moore

Section Head CW Transponder Section

Prepared by:

H.W. Nelson

Project Engineer
Approved:
K.W. Porter, Jr.

Chief Engineer


Telecommunications Laboratory
Revisions

| Date | Ltr | Remarks |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |

## VOLUME 1

## TABLE OF CONTENTS

Section Page

1. INTRODUCTION ..... 1-1
1.1 Scope of Report ..... 1-1
2. DESCRIPTION OF EQUIPMENT ..... 2-1
2.1 General ..... 2-1
2.1.1 Physical Description ..... 2-1
2.2 GSE Rack ..... 2-1
2.2.1 Circuit Breaker Panel lAl ..... 2-4
2.2.2 Telemetry Narrow Band Subsystem 1A2 ..... 2-4
2.2.3 Telemetry Wide Band Subsystem lA3 ..... 2-7
2.2.4 Test Receiver ..... 2-10
2.2.5 Frequency Converter 1A8 ..... 2-15
2.2.6 Test Transmitter 1A9 ..... 2-17
2.2.7 Ranging Conversion Unit lalo ..... 2-21
2.2.8 Power Meter 1 Al0 ..... 2-21
2.2.9 $\pm 15$ Volt Power Supply lAll ..... 2-22
2.2.10 $\pm 28$ Volt Power Supply lal2 ..... 2-23
3. THEORY OF OPERATION ..... 3-1
3.1 General ..... 3-1
3.2 Summary of Operation ..... 3-1
3.3 Telemetry Narrow Band Subsystem 1A2 ..... 3-3
3.3.1 Telemetry Bandpass Filter lA2A1 ..... 3-3
3.3.2 Narrow Band 10 MC IF Amplifier 1A2A2 ..... 3-4
3.3.3 10 MC Phase Detector 1A2A3 ..... 3-4
3.3.4 Video Amplifier lA2A4 ..... 3-5
3.3.5 10 MC Phase Shifter 1A2A5 ..... 3-5
3.4 Telemetry Wide Band Subsystem la3 ..... 3-5
3.4.1 Telemetry Bandpass Filter la3Al ..... 3-6
3.4.2 Wide Band 10 MC IF Amplifier 1A3A2 ..... 3-6
3.4.3 10.02 MC Mixer-Oscillator 1A3A3 ..... 3-6
3.4.4 10-30 MC Converter lA3A4 ..... 3-7
3.5 Test Receiver ..... 3-7
3.5.1 Automatic Phase Control (APC) Loop ..... 3-8
3.5.2 Automatic Gain Control (AGC) Loop ..... 3-11
3.5.3 Calibrated Variable Attenuator la7ATl ..... 3-12
3.5.4 Cavity Preselector, 1A7Z1 ..... 3-12
3.5.5 Local Oscillator Filter Cavities $1 A 7 Z 2$ and Z3 ..... 3-13
3.5.6 Mixer, S-Band lA7Al ..... 3-13
3.5.7 50 MC IF Amplifier and Mixer 1A7A2 ..... 3-13
3.5.8 10 MC Distribution Amplifier 1A7A3 ..... 3-14
3.5.9 10 MC IF Amplifier 1A7A4 ..... 3-14
3.5.10 Loop 10 MC Phase Detector (AGC) 1A5A4 ..... 3-15

VOLUME 1

TABLE OF CONTENTS (Cont)
Section Page
3.5.11 Loop 10 MC Phase Detector (APC) 1A5A2 ..... 3-15
3.5.12 10 MC Phase Sinifter iAjá3 ..... 3-16
3.5.13 X $\frac{1}{2}$ Frequency Multiplier lA4A2 ..... 3-16
3.5.14 20 MC Oscillator and X3 Multiplier 1A4A1 ..... 3-17
3.5.15 Loop Filter (APC) 1A6A2 ..... 3-17
3.5.16 5-Channel VCO Assembly 1A6Al ..... 3-18
3.5.17 X3 Frequency Multiplier Assembly 1A4A5 ..... 3-19
3.5.18 X32 Frequency Multiplier lA4A4 ..... 3-19
3.5.19 AGC Amplifier and Filter Assembly lA5Al ..... 3-20
3.6 Frequency Converter las ..... 3-21
3.6.1 5-Channel Oscillator 1A8Al ..... 3-21
3.6.2 Mixer-Filter 1A8A2 ..... 3-21
3.7 Test Transmitter 1A9 ..... 3-22
3.7.1 5-Channel Voltage-Controlled Oscillator (VCO) 1A9A1 ..... 3-22
3.7.2 X3 Multiplier and Phase Modulator 1A9A2 ..... 3-22
3.7.3 X32 Frequency Multiplier 1A9A3 ..... 3-23
3.7.4 VCO Bias Assembly ..... 3-24
3.7.5 Calibration and Monitoring ..... 3-24
3.7.6 Calibration Curves ..... 3-25
3.7.7 Rear Panel RF Output ..... 3-25
3.7.8 Power Monitor Output ..... 3-26
3.7.9 Filtering and Shielding ..... 3-26
3.8 Ranging Conversion Unit lalo ..... 3-27
3.8.1 10 MC Phase Shifter lAl0A1 ..... 3-27
3.8.2 10 MC Phase Switch lAlOA2 ..... 3-27
3.8.3 10 MC Balanced Detector lAl0A3 ..... 3-27
4. DRAWER AND ASSEMBLY ALIGNMENT AND CHECKOUT PROCEDURES ..... 4-1
4.1 General ..... 4-1
4.2 Telementry Narrow Band Subsystem 1A2, Alignment ..... 4-1
4.2.1 Test Equipment Required ..... 4-1
4.2.2 Alignment ..... 4-1
4.2.3 Test Requirements ..... 4-2
4.3 Telemetry Bandpass Filter la2Al, Alignment ..... 4-2
4.4 Narrow Band 10 MC IF Amplifier 1A2A2, Alignment ..... 4-2
4.510 MC Phase Detector 1A2A3, Alignment ..... 4-3
4.6 Video Amplifier la2A4, Alignment ..... 4-3
4.7 10 MC Phase Shifter lA2A5, Alignment ..... 4-3
4.8 Telemetry Wide Band Subsystem 1A3, Alignment ..... 4-3
4.8.1 Test Equipment Required ..... 4-3
4.8.2 Alignment ..... 4-3
4.8.3 Test Requirements ..... 4-3
Section Page
4.9 Telemetry Bandpass Filter lA3A1, Alignment ..... 4-5
4.10 10.02 MC Mixer-Oscillator 1A3A2, Alignment ..... 4-5
4.11 Wide Band 10 MC IF Amplifier 1A3A3, Alignment ..... 4-5
4.12 Test Receiver Drawers lA4 Through 1A7, Alignment ..... 4-5
4.12.1 Test Equipment Required ..... 4-5
4.12.2 Initial Alignment ..... 4-6
4.12.3 Test Requirements ..... 4-6
4.1320 MC Oscillator and X3 Multiplier lA4A1, Alignment ..... 4-10
$4.14 \times \frac{1}{2}$ Frequency Multiplier lA4A2, Alignment ..... 4-10
4.1510 MC Isolation and Distribution Amplifier la4A3, Alignment ..... 4-10
4.16 X32 Frequency Multiplier 1A4A4, Alignment ..... 4-10
4.17 X3 Frequency Multiplier lA4A5, A1ignment ..... 4-10
4.18 AGC Amplifier and Filter lA5Al, Alignment ..... 4-10
4.1910 MC Phase Detector 1A5A2, Alignment ..... 4-10
4.2010 MC Phase Shifter 1A5A3, Alignment ..... 4-11
4.2110 MC Phase Detector lA5A4, Alignment ..... 4-11
4.22 5-Channel Receiver VCO 1A6Al, A1ignment ..... 4-11
4.23 Loop Filter lA6A2, Alignment ..... 4-11
4.24 Balanced Mixer-Preamplifier lA7Al, Alignment ..... 4-11
4.2550 MC IF Amplifier and Second Mixer lA7A2, Alignment ..... 4-11
4.2610 MC IF Distribution Amplifier lA7A3, Alignment ..... 4-11
4.27 10 MC IF Amplifier 1A7A4, Alignment ..... 4-11
4.28 Frequency Converter lA8, Alignment ..... 4-12
4.28.1 Test Equipment Required ..... 4-12
4.28.2 Alignment ..... 4-12
4.28.3 Test Requirements ..... 4-13
4.29 5-Channel Oscillator 1A8Al, Alignment ..... 4-14
4.30 Mixer-Filter 1A8A2, Alignment ..... 4-14
4.31 Test Transmitter lA9, Alignment ..... 4-14
4.31.1 Test Equipment Required ..... 4-14
4.31.2 Initial Alignment of Power Supplies ..... 4-15
4.31.3 Test Requirements ..... 4-15
4.32 5-Channel Transmitter VCO lA9Al, Alignment ..... 4-19
4.33 X3 Multiplier and Phase Modulator la9A2, Alignment ..... 4-19
4.34 X32 Frequency Multiplier lA9A3, Alignment ..... 4-19
4.35 Ranging Conversion Unit lalo, Alignment ..... 4-19
4.36 10 MC Phase Shifter lAlOAl, Alignment ..... 4-19
4.3710 MC Phase Switch lA10A2, Alignment ..... 4-19
4.3810 MC Balanced Detector lA10A3, Alignment ..... 4-20

## TABLE OF CONTENTS (Cont)

Section Page
5. DEVELOPMENTAL TECHNICAL IMPROVEMENTS, PROBLEMS, AND RECOMMENDA- TIONS ..... 5-1
5.1 General ..... 5-1
5.2 Telemetry Narrow Band Subsystem la2 ..... 5-1
5.3 Test Receiver, lA4, lA5, lA6, and lA7 ..... 5-1
5.3.1 In-Lock Indicator ..... 5-1
5.3.2 Loop Filter Time Constants ..... 5-1
5.3.3 Loop Filter Switching Transients ..... 5-1
5.4 Test Transmitter, 1A9 ..... 5-2
6. DIAGRAMS ..... 6-1
6.1 General ..... 6-1
6.2 Index of Drawings ..... 6-1

## LIST OF ILLUSTRATIONS

Figure Page
2-1 Mariner C DSIF Equivalent Ground Support Equipment, Front View ..... 2-2
2-2 Mariner C DSIF Equivalent Ground Support Equipment, Rear View ..... 2-3
2-3 Circuit Breaker Panel lA1, Top View ..... 2-5
2-4 Telemetry Narrow Band Subsystem 1A2, Top View ..... 2-6
2-5 Telemetry Wide Band Subsystem lA3, Top View ..... 2-8
2-6 Test Receiver, Part One (1A4), Top View ..... 2-12
2-7 Test Receiver, Part Two (1A5), Top View ..... 2-12
2-8 Test Receiver, Part Three (1A6), Top View ..... 2-13
2-9 Test Receiver, Part Four (1A7), Top View ..... 2-13
2-10 Frequency Converter 1A8, Top View ..... 2-16
2-11 Test Transmitter 1A9, Top View ..... 2-18
2-12 Test Transmitter 1A9, Bottom View ..... 2-18
2-13 Ranging Conversion Unit lalo, Top View ..... 2-22
3-1 Mariner "C" Equivalent GSE, Simplified Block Diagram ..... 3-2
4-1 Typical VCO Linearity Curve for Test Receiver ..... 4-8
4- $\overline{2} \quad$ Typical VCO Linearity Curve for Test Transmitter ..... 4-17
4-3 Test Transmitter, Test Setup ..... 4-18
6-1 GSE, Over-all Block Diagram ..... 6-5
6-2 GSE, Power Interconnection Diagram ..... 6-7
6-3 GSE, Signal Interconnection Diagram ..... 6-9
6-4 Circuit Breaker Panel (lAl), Schematic Diagram ..... 6-11
6-5 Telemetry Narrow Band Subsystem (1A2), Schematic Diagram ..... 6-13
6-6 Telemetry Bandpass Filter (lA2Al and 1A3Al), Schematic Diagram ..... 6-15
6-7 Narrow Band 10 MC IF Amplifier (1A2A2), Schematic Diagram ..... 6-17
6-8 $\quad 10 \mathrm{MC}$ Phase Detector (1A2A3), Schematic Diagram ..... 6-19
6-9 Video Amplifier (1A2A4), Schematic Diagram ..... 6-21
6-10 10 MC Phase Shifter (IA2A5, 1A5A3, and IAlOA1), Schematic Diagram ..... 6-23
6-11 Telemetry Wide Band Subsystem (1A3), Schematic Diagram ..... 6-25
6-12 Wide Band 10 MC IF Amplifier (1A3A2), Schematic Diagram ..... 6-27
6-13 10.02 MC Mixer-Oscillator (1A3A3), Schematic Diagram ..... 6-29
6-14 Test Receiver, Interconnection Diagram ..... 6-31
6-15 Test Receiver, Part One (1A4), Schematic Diagram ..... 6-33
6-16 20 MC Oscillator and X3 Multiplier (1A4Al), Schematic Diagram ..... 6-35
6-17 $\quad X^{\frac{1}{2}}$ Frequency Multiplier (1A4A2), Schematic Diagram ..... 6-37
6-18 10 MC Isolation and Distribution Amplifier (1A4A3), Schematic Diagram ..... 6-39
6-19 X32 Frequency Multiplier (1A4A4 and lA9A4), Schematic Diagram ..... 6-41
6-20 X3 Frequency Multiplier (1A4A5), Schematic Diagram ..... 6-43
6-21 Test Receiver, Part Two (1A5), Schematic Diagram ..... 6-45
6-22 AGC Amplifier and Filter (1A5A1), Schematic Diagram ..... 6-47

| Figure |  | Page |
| :---: | :---: | :---: |
| 6-23 | 10 MC Phase Detector (1A5A2 and 1A5A4), Schematic Diagram | 6-49 |
| 6-24 | Test Receiver, Part Three (IA6), Schematic Diagram | 6-51 |
| 6-25 | 5-Channel VCO (1A6Al and 1A9Al), Schematic Diagram | 6-53 |
| 6-26 | Loop Filter (1A6A2), Schematic Diagram | 6-55 |
| 6-27 | Test Receiver, Part Four (1A7), Schematic Diagram | 6-57 |
| 6-28 | Balanced Mixer-Preamplifier (1A7A1), Schematic Diagram | 6-59 |
| 6-29 | 50 MC IF Amplifier and Second Mixer (1A7A2), Schematic Diagram | 6-61 |
| 6-30 | 10 MC Distribution Amplifier (la7A3), Schematic Diagram | 6-63 |
| 6-31 | $10 \mathrm{MC} \mathrm{IF} \mathrm{Amplifier} \mathrm{(1A7A4)}$, | 6-65 |
| 6-32 | Frequency Converter (1A8), Schematic Diagram | 6-67 |
| 6-33 | 5-Channel Oscillator (1A8Al), Schematic Diagram | 6-69 |
| 6-34 | Mixer-Filter (1A8A2), Schematic Diagram | 6-71 |
| 6-35 | Test Transmitter (1A9), Schematic Diagram | 6-73 |
| 6-36 | X3 Multiplier and Phase Modulator (la9A2), Schematic Diagram | 6-75 |
| 6-37 | Ranging Conversion Unit (1A10), Schematic Diagram | 6-77 |
| 6-38 | 10 MC Phase Switch (1A10A2), Schematic Diagram | 6-79 |
| 6-39 | 10 MC Balanced Detector (1A10A3), Schematic Diagram | 6-81 |

## VOLUME 1

LIST OF TABLES
Number Page
II-1 GSE Rack (Serial No. 1 and Serial No. 2) Assemblies ..... 2-1
II-2 Telemetry Narrow Band Subsystem Assemblies ..... 2-6
II-3 Telemetry Wide Band Subsystem Assemblies ..... 2-9
II-4 Test Receiver Frequencies ..... 2-10
II-5 Test Receiver Assemblies ..... 2-11
II-6 Frequency Converter Assemblies ..... 2-16
II-7 Frequency Converter Frequencies ..... 2-16
II-8 Test Transmitter Assemblies ..... 2-19
II-9 Test Transmitter Frequencies ..... 2-19
II-10 Ranging Conversion Unit Assemblies ..... 2-21
III-1 Attenuator Dial Spacing in Degrees Per DB ..... 3-25
IV-1 GSE List of Diagrams ..... 6-1

## SECTION I

## INTRODUCTION

### 1.1 SCOPE OF REPORT

This document is a final report on the Mariner "C" DSIF Equivalent Ground Support Equipment, Part Numbers 01-25243E (Serial No. 1) and 01-25286E (Serial No. 2), designed and manufactured by Motorola Inc. for the Jet Propulsion Laboratory under Contract No. 950879. The report is composed of (1) a detailed description of the system and subassemblies, (2) theory of operation, (3) test setups and procedures including detailed alignment procedures with tolerances, (4) the results of developmental investigations, and (5) schematics, block diagrams, and other pertinent data. Standard assembly test procedures outlined in Section IV of this volume are referenced to the proper test procedures bound in Volume 2 and Volume 3.

Under the authority of Contract NAS7-100 and JPL Contract 950879, and in response to JPL Specification No. MGC-50252-DSN-A, Motorola has provided the design, fabrication, assembly, and test of the Ground Support Equipment (hereinafter referred to as the GSE) consisting of a narrow-bañ, automatic phase-tracking receiver, a stable variable phase-modulated transmitter, a frequency converter, a ranging conversion unit to be used with a ranging subsystem, two telemetry subsystems, and modified commercial equipment. This test set is based on utilization of DSIF RF Subsystem modules as used in the DSIF ground equipment. The GSE is used for the checkout of the S-Band Communications Subsystem of the Mariner C Spacecraft. Two GSE test sets (Serial No. 1 and Serial No. 2) were delivered to the Jet Propulsion Laboratory under this program. The contract was authorized by JPL on March 25 , 1964 and equipment was delivered in the months of July and August 1964. One additional Test Transmitter drawer and two power supplies were delivered to JPL in the month of August 1964.

## VOLUME 1

## SECTION II

## DESCRIPTION OF EQUIPMENT

### 2.1 GENERAL

The GSE, shown in figure 2-1, is designed to utilize DSIF RF Subsystem modules as used in the DSIF ground equipment and is capable of performing the following four functions on the $S$-Band Communication Subsystem of the Mariner "C" Spacecraft.

1. Provides a stable transmitter signal for checking the spacecraft receiver performance.
2. Provides a phase-locked loop receiver for checking the spacecraft receiver and transmitter characteristics.
3. Provides a means of coherently detecting and utilizing the pseudo-random ranging modulation on the spacecraft transmitter output signal.
4. Provides a means to detect and amplify telemetry signals present on the spacecraft transmitter output signal.

### 2.1.1 Physical Description

The GSE (see figure 2-1) consists of two standard rack enclosures, GSE, Serial No. 1 and GSE, Serial No, 2. GSE, Serial No. 1 contains the same equipment as GSE, Serial No. 2, except for drawer 1Al0. Drawer lalo is a Ranging Conversion Unit in Serial No. 1 and a Power Meter in Serial No. 2. The rack enclosures are $71 \frac{1}{2}$ inches high. The rack enclosures are designed to mount standard 19-inch wide panel drawers. Each drawer, except the Power Meter lalo, may be removed from the slide-rails for servicing. Each drawer is secured to the rack enclosure in the closed position by screws through the front panels. Handles are provided on the front panel for opening and closing the drawers when the screws have been removed. Cooling for the rack enclosures is provided by a fan that is mounted in the rear door. The combination of the fan and fins (located on the top panel of the cabinet) provides an internal positive pressure cooling system. Both rack enclosures operate from $115 \mathrm{vac}, 60 \mathrm{cps}$, power. Each rack enclosure assembly is described in paragraph 2.2. Figure $2-2$ is a rear view of the GSE.

### 2.2 GSE RACK

The two separate racks contain the equipment listed in table II-1.
TABLE II-1. GSE RACK (SERIAL NO. 1 AND SERIAL NO. 2) ASSEMBLIES

| Unit No. | Title | Part No. | Manufacturer |
| :--- | :--- | :--- | :--- |
| 1 | GSE Rack, Serial No. 1 | $01-25243 \mathrm{E}$ | Motorola |
| l | GSE Rack, Serial No. 2 | $01-25286 \mathrm{E}$ | Motorola |
| lA1 | Circuit Breaker Panel | $01-25244 \mathrm{E}$ | Motorola |
| lA2 | Telemetry Narrow Band | $01-25245 \mathrm{E}$ | Motorola |
| lA3 | Subsystem |  |  |
|  | Telemetry Wide Band | $01-25246 \mathrm{E}$ | Motorola |
|  |  |  |  |

Figure 2-1. Mariner C DSIF Equivalent Ground Support Equipment,


VOLUME 1

TABLE II-1. GSE RACK ( SERIAL NO. 1 AND SERIAL NO. 2) ASSEMBLIES (cont)

| Unit No. | Title | Part No. | Manufacturer |
| :---: | :---: | :---: | :---: |
| 1 A 4 | Test Receiver, Part One | 01-25247E | Motorola |
| 1 A 5 | Test Receiver, Part Two | 01-25248E | Motorola |
| 1A6 | Test Receiver, Part Three | 01-25249E | Motorola |
| 1 A 7 | Test Receiver, Part Four | 01-25250E | Motorola |
| 1 A 8 | Frequency Converter | 01-25251E | Motorola |
| 1A9 | Test Transmitter | 01-25252E | Motorola |
| *1A10 | Ranging Conversion Unit | 01-25253E | Motorola |
| **1A10 | Power Meter | $\begin{aligned} & 01-25256 E \\ & (\mathrm{HP}-431 \mathrm{~B}) \end{aligned}$ | Hewlett-Packard |
| 1 All | $\pm 15$ Volt Power Supply | $\begin{aligned} & 01-25254 E \\ & (802 B) \end{aligned}$ | Harrison |
| 1 A12 | $\pm 28$ Volt Power Supply | $\begin{aligned} & 01-25255 \mathrm{E} \\ & (802 \mathrm{~B}) \end{aligned}$ | Harrison |

* GSE Serial No. 1 only
** GSE Serial No. 2 only


### 2.2.1 Circuit Breaker Panel 1A1

Circuit Breaker Panel lal (figure 2-3) is a standard $5 \frac{1}{4}$ inch high panel that contains a master power circuit breaker, running time meter, and two 115 vac convenience outlets. Also contained within this drawer are provisions for the future mounting of the Single Sideband unit, 22 mc isolation amplifier units, and the necessary coax connectors and cables.

### 2.2.1.1 Controls and Indicators

The function of the controls and indicators on Circuit Breaker Panel lal are as follows:

## Control or Indicator

## Circuit Breaker

Running Time Meter

## Function

Provides on-off switching and overload protection to all equipment in the GSE Rack and any equipment utilizing the front panel 115 vac outlets on the Circuit Breaker Panel.

Provides a visual indication of the accumulated total operating time for the GSE Rack.

### 2.2.2 Telemetry Narrow Band Subsystem 1A2

### 2.2.2.1 Functional Description

Telemetry Narrow Band Subsystem la2 is used in conjunction with the Test Receiver to produce the following three characteristics:

## VOLUME 1



Figure 2-3. Circuit Breaker Panel lAl, Top View.

1. Provides demodulated telemetry signal outputs.
2. Provides selectable predetection bandwidths.
3. Provides 10 MC IF output signal for analysis of modulated telemetry information in the narrowband channel.

### 2.2.2.2 Physical Description

Telemetry Narrow Band Subsystem lA2 (figure 2-4) is physically located in a slide-mounted drawer in the GSE Rack. The assembly components are housed in a standard $5 \frac{1}{4}$ inch drawer. The drawer contains five major plug-in assemblies and two variable attenuators which may be removed for alignment, test, or repair. Table II-2 lists the assemblies and attenuators used in the telemetry subsystem.

Two variable attenuators, located on the front panel, allow the proper input attenuation to the Bandpass Filter assembly. Also, a BANDWIDTH switch, located on the front panel, ailows the selection of one of four different bandwidths.


Figure 2-4. $\begin{aligned} & \text { Telemetry Narrow Band Subsystem 1A2, } \\ & \text { Top View }\end{aligned}$

TABLE II-2. TELEMETRY NARROW BAND SUBSYSTEM ASSEMBLIES

| Unit No. | Title | Part No. | Manufacturer |
| :--- | :--- | :--- | :--- |
| 1A2A1 | Telemetry Bandpass <br> Filter | $01-23800 \mathrm{D} 01$ | Motorola |
| 1A2AT1 | Variable Attenuator | HP- CO5-355C | Hewlett-Packard |
| 1A2A2 | Variable Attenuator | HP-CO5-355D | Hewlett-Packard |
|  | Narrow band 10 MC IF | $01-24272 D 01$ | Motorola |
| 1A2A3 | Amplifier | lo MC Phase Detector | $01-24273 D 01$ |
| 1A2A4 | Video Amplifier | $01-23853 D 01$ | Motorola |
| 1A2A5 | 10 MC Phase Shifter | $01-23793 D 01$ | Motorola |

### 2.2.2.3 Technical Characteristics

The technical characteristics for the Telemetry Narrow Band Subsystem 1A2 are as follows:


### 2.2.3 Telemetry Wide Band Subsystem 1A3

### 2.2.3.1 Functional Description

Telemetry Wide Band Subsystem la3 is used in conjunction with the Test Receiver to produce the following four characteristics:

1. Provides modulated telemetry signal outputs for monitoring purposes.
2. Provides selectable predetection bandwidths.
3. Provides 10 mc IF output signals for telemetering and spectral analysis.
4. Provides a 30 mc output signal to be used for spectrum analysis.

### 2.2.3.2 Physical Description

Telemetry Wide Band Subsystem la3 (figure 2-5) is physically located in a slide-mounted drawer in the GSE. The assembly components are housed in a standard $5 \frac{1}{4}$ inch drawer. The drawer contains four major plug-in assemblies and two variable attenuators which may be removed for alignment, test, or repair. Table II-3 lists the assemblies and attenuators used in the drawer.

Two variable attenuators, located on the front panel, allow the proper input signal level to be applied to the wide band telemetry IF amplifier. Also, a BANDWIDTH switch, located on the front panel, allows the selection of one of four different bandwidths.

Two types of front panel outputs are provided. One at Jl and J 2 , is the output of the 10 mc wide band telemetry IF amplifier and the other at J3 is a 20 kc nominal output, heterodyned down from the 10 mc wide band telemetry IF amplifier, for use on an external wave analyzer.

Additionally the 20 kc output, available at the rear panel, is a 30 mc signal heterodyned up from the 10 mc IF output for use on a fixed tuned external spectrum analyzer.


Figure 2-5. Telemetry Wide Band Subsystem 1A3, Top View

TABLE II-3. TELEMETRY WIDE BAND SUBSYSTEM ASSEMBLIES

| Unit No. | Title | Part No. | Manufacturer |
| :---: | :---: | :---: | :---: |
| 1A3A1 | Telemetry Bandpass Filter | 01-23800D01 | Motorola |
| 1A3AT1 | Variable Attenuator | HP CO5-355C | Hewlett-Packard |
| 1A3AT2 | Variable Attenuator | HP CO5-355D | Hewlett-Packard |
| 1A3A2 | Wide Band 10 MC IF Amplifier | 01-23795DO1 | Motorola |
| 1А3A3 | 10.02 MC Mixer-Oscillator | 01-23844D01 | Motorola |
| 1A3A4 | 10-30 MC Converter | 874-MRL | General Radio |

### 2.2.3.3 Technical Characteristics

The technical characteristics for the Telemetry Wide Band Subsystem 1A3 are as follows:

| Bandpass Frequencies | $4.5 \mathrm{kc}, 20 \mathrm{kc}, 420 \mathrm{kc}$, or 3.3 mc <br> (selectable) |
| :--- | :--- |
| Wide Band IF Input Signal | 10 mc at -65 dbm |
| HP CO5-355C Variable Attenuator |  |
| Attenuation | 12 db to 1 db steps |
| Frequency Range | Dc to 1000 mc |
| Impedance | 50 ohms |
| Power Dissipation | 0.5 watt average, 350 volts peak |
| HP CO j-355D Variable Attenuator |  |
| Attenuation | 120 db in 10 db steps |
| Frequency Range | Dc to 1000 mc |
| Impedance | 50 ohms |
| Power Dissipation | 0.5 watt average, 350 volts peak |

### 2.2.3.4 Controls

The function of the controls for the Telemetry Wide Band Subsystem la3 is as follows:

Control
ATTENUATION DB Switches
0-12 DB Switch
(12-position rotary)

0-120 DB Switch
(12-position rotary)

## Function

Selects 0 db to 12 db attenuation in 1 db increments to permit application (with the 120 db attenuator) of the proper signal level to the wide band telemetry $I F$ amplifier.

Selects 0 to 120 db attenuation in 10 db increments to permit application (with the 0 to 10 db attenuator) of the proper signal level to the wide band telemetry IF amplifier.

## Control

BANDWIDTH Switch
(4-position rotary)
4.5 KC Position

20 KC Position
420 KC Position
3.3 MC Position

## Function

Selects one of the four available bandwidths as follows:
Selects a 4.5 kc bandwidth.
Selects a 20 kc bandwidth.
Selects a 420 kc bandwidth.
Selects a 3.3 mc bandwidth.

### 2.2.4 Test Receiver

### 2.2.4.1 Functional Description

The Test Receiver is a dual conversion phase-locked loop utilizing coherent automatic phase control and an automatic gain control system. The nominal input frequency to the Test Receiver is 2295 mc with the ability to track or be manually fine tuned $\pm 200 \mathrm{kc}$ and coarse tuned +3.7 mc by the selection of oscillator crystals within a multi-crystal oscillator or by automatic frequency tuning by the interconnection of cables between the Test Transmitter VCO output and the single sideband modulator input. See figures 6-15, 6-21, 6-24 and 6-27 for schematic diagrams of the Test Receiver. The Test Receiver is designed to provide the following information concerning the Spacecraft receiver and transmitter performance:
a. Low-frequency readout of the transmitter frequency
b. Calibrated measurement of transmitter power output (SIGNAL STRENGTH)
c. Transmitter modulation characteristics (TELEMETRY OUTPUT)
d. Incidental phase noise (DYNAMIC PHASE ERROR)
e. Transmitter modulation spectrum
f. In addition, the Test Receiver permits acquisition of a transmitter signal whose frequency differs from the nominal center frequency over the range of $\pm 86 \mathrm{kc}$. All nominal center frequencies are listed in table II-4.

TABLE II-4. TEST RECEIVER INPUT FREQUENCY

| Coarse Tune <br> Switch Position | Test Receiver <br> Input Frequency (MC) | VCO Crystal <br> Frequency (MC) | VCO Frequency <br> Control Range (CPS) |
| :---: | :--- | :--- | :---: |
| 1 | 2295.000000 | $23.38542 \pm 1 \mathrm{pt}$ in $10^{6}$ | $\pm 900$ |
| 2 | 2297.592593 | $23.41242 \pm 1 \mathrm{pt}$ in $10^{6}$ | $\pm 900$ |
| 3 | 2297.962963 | $23.41628 \pm 1$ pt in $10^{6}$ | $\pm 900$ |
| 4 | 2298.333333 | $23.42014 \pm 1$ pt in $10^{6}$ | $\pm 900$ |
| 5 | 2298.703704 | $23.42400 \pm 1 \mathrm{pt} \mathrm{in} 10^{6}$ | $\pm 900$ |

### 2.2.4.2 Physical Description

The Test Receiver is physically located in four separate rack-mounted drawers (1A4 through lA7) as shown in figure 2-1. Also, Circuit Breaker Panel lAl (figure 2-3) contains provisions for the future mounting of the Single Sideband unit and 22 MC Isolation amplifier assembly for the Test Receiver. Each Test Receiver drawer in the GSE is a standard $5 \frac{1}{4}$-inch drawer. Each drawer (see figures 2-6 through 2-9) is contained in a slide-mounted enclosure installed in the GSE Rack. The drawer can be pulled forward on the slide-rails to provide convenient access to all assemblies for servicing.

Shielded assemblies, which are listed in table II-5, compose the major portion of the Test Receiver. The use of shielded module construction aids in testing and maintenance procedures, and reduces spurious signal problems.

Five different crystal controlled input frequencies can be selected by means of a front panel control. These VCO frequencies are listed in table II-4. The Test Receiver automatically tracks or can be manually tuned by a front panel control to input signals which may vary $\pm 86 \mathrm{kc}$ within the coarse frequency range selected by the COARSE TUNE switch. A continuously variable ATTEN control is provided on the front panel for attenuating the nominal input signal. The attenuator is variable over a 100 db range with the dial calibrated in increments of 0.5 db . An AGC BW CPS switch allows the selection of three different AGC bandwidths. A LOOP BW CPS switch allows the selection of four different loop bandwidths or an open loop.

The Test Receiver operates from $\pm 15$ vdc power from Power Supply 1 All and $\pm 28$ vdc from Power Supply lAl2.

TABLE II-5. TEST RECEIVER ASSEMBLIES

| Unit No. | Title | Part No. | Manufacturer |
| :---: | :---: | :---: | :---: |
| IAlAl | Single Sideband Unit | (Not supplied by Motorola) <br> (Not supplied by Motorola) |  |
| 1A1A2 | 22 MC Isolation Amplifier |  |  |
| 1A4A1 | 20 MC Oscillator and X3 Multiplier | 01-23781D01 | Motorola |
| 1A4A2 | X1/2 Frequency Multiplier | 01-21456C01 | Motorola |
| 1A4A3 | 10 MC Isolation and Distribution Amplifier | 01-23778D01 | Motorola |
| 1A4A4 | X32 Frequency Multiplier | 01-23786D01 | Motorola |
| 1A4A5 | X3 Frequency Multiplier | 01-23772D01 | Motorola |
| 1A5Al | AGC Amplifier and Filter | 01-23610D01 | Motorola |
| 1A5A2 | AGC 10 MC Phase Detector | 01-21432C01 | Motorola |
| 1A5A3 | 10 MC Phase Shifter | 01-23793D01 | Motorola |
| 1A5A4 | Loop 10 MC Phase Detector | 01-21432C01 | Motorola |
| 1A6Al | 5-Channel Receiver VCO | 01-25260E01 | * Motorola |
| 1A6A2 | Loop Filter | 01-23784D01 | Motorola |



Figure 2-6. Test Receiver, Part One (1A4), Top View


Figure 2-7. Test Receiver, Part Two (1A5), Top View


Figure 2-8. Test Receiver, Part Three (1A6), Top View


Figure 2-9. Test Receiver, Part Four (1A7), Top View

TABLE II-5. TEST RECEIVER ASSEMBLIES (cont)

| Unit No. | Title | Part No. | Manufacturer |
| :---: | :---: | :---: | :---: |
| 1A7AT1 | Variable Attenuator | 198S | * PRD |
| -- | Cavity | FS-214-4 | * Rantek |
| 1A7A1 | Balanced Mixer-Preamplifier | 01-23773D01 | Motorola |
| 1A7A2 | 50 MC IF Amplifier and Second Mixer | 01-23774D01 | Motorola |
| 1A7A3 | 10 MC IF Distribution Amplifier | 01-23775D01 | Motorola |
| 1A7A4 | 10 MC IF Amplifier | 01-23776D01 | Motorola |
| -- | Cavity (two) | FS-214-6 | * Rantec |

All above modules except those marked with * are DSIF RF Subsystem designs.

### 2.2.4.3 Technical Characteristics

The technical characteristics for the Test Receiver are listed as follows:

Operating Frequency
Bandwidth:
Automatic Phase Control (APC) Loop $5,12,48,152 \mathrm{cps}$, or open loop (selectable)
Automatic Gain Control (AGC) Loop .118, 1.18, or 4.5 cps (selectable)
Input signal levels (threshold at 1A7J1)

5 cycle APC Loop Bandwidth $\quad-136.5 \mathrm{dbm}$ 12 cycle APC Loop Bandwidth $\quad-132.7 \mathrm{dbm}$
48 cycle APC Loop Bandwidth $\quad-126.7 \mathrm{dbm}$
152 cycle APC Loop Bandwidth -121.7 dbm
NOTE: The above are typical numbers based on the following:
Threshold dbm $=-174 \mathrm{dbm}+\mathrm{N} . \mathrm{F} .+10 \log \mathrm{~B}+\mathrm{I} . \mathrm{L}$.
where NF = Receiver Noise Figure
$B=A P C$ Loop Bandwidth
IL = Insertion loss of components and cables between 1A7J1 and mixer input with variable attenuator at minimum
Typical numbers are N.F. $=11.5 \mathrm{db}, \mathrm{I} . \mathrm{L} .=19 \mathrm{db}$.
Input Signal Level (max.) At least 100 db above threshold by use of variable attenuator.
Input Impedance
Residual Phase Modulation
Outputs

50 ohms
5 degrees peak for a 20 cps bandwidth
10 mc IF signal to Telemetry Wide Band Subsystem 1 A3
10 mc IF signal to Telemetry Narrow Band Subsystem IA2
10 mc IF signal to Ranging Conversion Unit lalo
10 mc IF reference signal to Ranging Conversion Unit lalo

### 2.2.4.4 Controls and Indicators -

The functions of the controls and indicators for the Test Receiver are as follows.

| Control or Indicator | Drawer | Function |
| :---: | :---: | :---: |
| SIGNAL STRENGTH Meter | 1 A5 | Reads directly the AGC or MGC voltage of the test receiver. |
| MGC/AGC Switch <br> (2-position toggle) |  |  |
| AGC Position | 1 A5 | Allows the system to be gain controlled automatically. |
| MGC Position | 1 A5 | Allows the system to be manually gain controlled with the manual gain control. |
| MGC ADJ Control | 1 A5 | Adjusts the gain of the system manually when the MGC/AGC switch is in the MGC position. |
| AGC BW CPS Switch (3-position rotary) | 1 A5 | Allows selection of an AGC bandwidth of 4.5 , 1.18 , or .118 cps . |
| SPE Meter | 1 A5 | Reads directly the static phase error. |
| LOOP BW CPS Switch (4-position rotary) | 1 A5 | Allows selection of a loop bandwidth of 5 , 12,48 , or 152 cps . In the OPEN position, the filter is removed and the loop is opened. |
| COARSE TUNE Switch (5-position rotary) | 1 A6 | Selects the desired VCO frequency for the 22 MC VCo unit (see table II-4 for the VCO frequencies of each switch position). |
| FINE TUNE Control | 1 A6 | Allows the VCO bias voltage to be varied from -6 to +6 vdc. |
| ATTEN Control | 1 A7 | Provides variable attenuation for attenuating the nominal input signal (continuously variable over a 100 db range). |

### 2.2.5 Frequency Converter 1A8

### 2.2.5.1 Functional Description

Frequency Converter lA8 converts one of five different frequencies from the Test Transmitter to an output frequency in the frequency range of the Test Receiver. Also, the Frequency Converter supplies a 45 mc output to be used with a frequency counter.

### 2.2.5.2 Physical Description

Frequency Converter la8 (figure 2-10) is physically located in a slidemounted drawer in the GSE Rack. The assembly components are housed in a standard $5 \frac{1}{4}$ inch drawer. The drawer contains two major plug-in assemblies which may be removed for alignment, test, or repair. Table II-6 lists the assemblies used in the Frequency Converter.

A front panel FREQUENCY SELECTOR switch allows the operator to select any one of five oscillator frequencies listed in table II-7 to mix with the frequency obtained from the Test Transmitter.

## VOLUME 1



Figure 2-10. Frequency Converter 1A8, Top View

TABLE II-6. FREQUENCY CONVERTER ASSEMBLIES

| Unit No. | Title | Part No. | Manufacturer |
| :--- | :--- | :--- | :--- |
| 1A8A1 | 5-Channel Oscillator | $01-25277$ E01 | *Motorola |
| 1A8A2 | Mixer-Filter | $01-20247$ E01 | *Motorola |

* Not DSIF designs.

TABLE II-7. FREQUENCY CONVERTER FREQUENCIES

| Crystal Oscillator <br> Center Frequency | Converter Input <br> Frequency | Converter Output <br> Frequency | X4 Frequency <br> Multiplier Output <br> (L.O. Frequency) |
| :--- | :---: | :---: | :---: |
| 45.49518 mc | 2116.722994 mc | 2298.703704 mc | 181.980708 mc |
| 45.48785 mc | 2116.381944 mc | 2298.333333 mc | 181.851388 mc |
| 45.48052 mc | 2116.040895 mc | 2297.962963 mc | 181.922071 mc |
| 45.47319 mc | 2115.699846 mc | 2297.592593 mc | 181.892748 mc |
| 45.42187 mc | 2113.312500 mc | 2295.000000 mc | 181.687480 mc |

### 2.2.5.3 Technical Characteristics

The technical characteristics for the Frequency Converter are listed as follows:

| Input Frequencies | (Refer to table II-7 for the five input |
| :--- | :--- |
|  | frequencies.) |
| Output Frequencies | (Refer to table II-7 for the five output |
|  | frequencies.) |
|  | 45 mc to counter |

### 2.2.5.4 Controls

The function of the control on the Frequency Converter is as follows

Control
FREQUENCY SELECTOR Switch
(5-position rotary)

## Function

Selects one of the crystal oscillator center frequencies listed in table II-7 for conversion of the Test Transmitter output frequency to the Test Receiver input frequency.

### 2.2.6 Test Transmitter 1A9

2.2.6.1 Functional Description

Test Transmitter LA9 provides a stable RF output aignal at the proper signal level to the Spacecraft for checking the Spacecraft receiver performance. A signal to RWV RECEIVER jack, located on the lower rear of the drawer, provides an RF output signal at the proper signal level to use with the Read-Write-Verify (RWV) equipment (not a part of the GSE Rack).

### 2.2.6.2 Physical Description

The Test Transmitter (figures 2-11 and 2-12) is housed in a single, $10 \frac{1}{2}$ inch slide-mounted RF tight panel assembly in the GSE Rack. The drawer contains four major plug-in assemblies and various variable and step attenuators which may be removed for alignment, test, or repair. All other filtering and signal processing functions are a fixed part of the Test Transmitter chassis. Table II-8 lists the assemblies and main components used in the Test Transmitter.

Five different crystal controlled output frequencies can be selected by means of a front panel VCO SELECTOR switch. The VCO frequencies that the VCO SELECTOR switch can select and the resultant Test Transmitter output frequency are listed in table II-9. A front panel FREQUENCY CONTROL permits manual adjustment of any of the output frequencies over the range of $\pm 76.8 \mathrm{kc}$ minimum. In addition, a front panel RF LEVEL ADJ switch (step attenuator) and a variable attenuator permit manual adjustment of test transmitter output signal level over the range of -40 dbm to -190 dbm . The Test Transmitter operates from the $\pm 15$ and -28 vdc power supplies.


Figure 2-11. Test Transmitter la9, Top View, Cover Removed


Figure 2-12. Test Transmitter 1A9, Bottom View, Cover Removed

TABLE II-8. TEST TRANSMITTER ASSEMBLIES

| Unit No. | Title | Part No. | Manufacturer |
| :---: | :---: | :---: | :---: |
| 1A9Al | 5-Channel Transmitter VCO | 01-25260E01 | * Motorola |
| 1 A9A2 | X3 Multiplier and Phase Modulator | 01-23760D01 | Motorola |
| 1A9A3 | X32 Frequency Multiplier | 01-23786D01 | Motorola |
| 1A9A4 | Thermistor Mount | HP-478A | * Hewlett-Packard |
| 1A9AT6 | Variable Attenuator | 198S | * PRD |
| $1 \mathrm{A9AT1}$ | Termination | TA 5 MT | * Microlab |
| 1A9AT2 | 30 DB Attenuator | 9513-30 | * Stoddart |
| $1 \mathrm{A9DC1}$ | 20 DB Directional Coupler | 3003-20 | * Narda |
| 1A9DC2 | 20 DB Directional Coupler | 3003-20 | * Narda |
| 1A9DC3 | 20 DB Directional Coupler | 3003-20 | * Narda |

TABLE II-9. TEST TRANSMITTER FREQUENCIES

| VCO SELECTOR <br> Switch Position | Transmitter Output <br> Frequency (MC) | VCO Frequency | VCO Frequency <br> (MC) |
| :---: | :---: | :---: | :---: |
| 1 | 2113.312500 | $22.013670 \pm 1 \mathrm{pt}$ in $10^{6}$ | $\pm 800$ |
| 2 | 2115.699846 | $22.038540 \pm 1 \mathrm{pt}$ in $10^{6}$ | $\pm 800$ |
| 3 | 2116.040895 | $22.042092 \pm 1 \mathrm{pt}$ in $10^{6}$ | $\pm 800$ |
| 4 | 2116.381944 | $22.045645 \pm 1$ pt in $10^{6}$ | $\pm 800$ |
| 5 | 2116.722994 | $22.049198 \pm 1$ pt in $10^{6}$ | $\pm 800$ |

### 2.2.6.3 Technical Characteristics

The technical characteristics for the Test Transmitter are as follows:
Switch Position Center Frequency (MC) Minimum Range (KC)

1
2
3
4
5
2113.312500
2115.699846
2116.040895
2116.381994
2116.722994
$\pm 76.8$
$\pm 76.8$
$\pm 76.8$
$\pm 76.8$
$\pm 76.8$

## NOTE

Any of the five center frequencies above are selectable by means of a front panel control. In each position, the output frequency can be varied by means of the front panel control over the minimum range specified.

[^0]VOLUME 1

| Power Output | -40 dbm to -190 dbm . Continuously variable by means of a step attenuator covering a 50 db range in 10 db steps and a variable attenuator covering a 100 db range. |
| :---: | :---: |
| Reference Output Level | The transmitter RF power reference level is provided to allow continuous monitoring of the transmitter output power by means of an internally contained thermistor mount and an external power bridge. |
| Power Output Accuracy | The power output to a matched load is indicated by the reference output and the attenuator calibration to an accuracy within $\pm 5 \mathrm{db}$ over the entire output range. |
| Spurious Signals | Output terminal: All spurious signals and sidebands are at least 30 db below the desired output signal level. <br> Radiated: Radiation from the unit is less than -150 dbm as detected on a tuned dipole located 1 meter away from the Test Transmitter in any direction. |
| Output Impedance | 50 ohms |
| Output to RWV Receiver | A rear panel connector furnishes a -45 dbm $\pm 5 \mathrm{db}$ output to enable monitoring of the signal by the Read-Write-Verify (RWV) Receiver in the system test complex. |

### 2.2.6.4 Controls and Indicators

The functions of the indicators and controls for the Test Transmitter are as follows.

VCO SELECTOR Switch
(5-position rotary)

FREQUENCY CONTROL Dial

VCO BIAS Meter

RF LEVEL ADJUST Switch

Permits selection of each of the five crystalcontrolled oscillators used to control the Test Transmitter output frequency.

A ten-turn potentiometer which permits adjustment of each of the Test Transmitter output frequencies over a $\pm 76.8 \mathrm{kc}$ range.

Permits monitoring of the bias voltage applied to the 22 MC Voltage-Controlled Oscillator assembly.

A six-position step attenuator calibrated in 10 db steps from 0 to 50 db and a continuously variable attenuator which permits adjustment of the Test


### 2.2.7 Ranging Conversion Unit 1 Al0

### 2.2.7.1 Functional Description

The Ranging Conversion Unit lalo (located in GSE Rack, Serial No. 1) detects the 498 kc pseudo-random ranging modulation from a 10 mc IF signal (supplied from the 10 mc Distribution Amplifier in the Test Receiver) and supplies it to an external Ranging Receiver. A 10 mc reference required is obtained from the 10 mc Reference Distribution Amplifier in the Test Receiver. The Ranging Receiver function description is covered in the final report for the Mariner "C" S-Band Communication Subsystem Operational Support Equipment (Document No. 68-20399E).

### 2.2.7.2 Physical Description

The Ranging Conversion Unit lAl0 (figure 2-13) is mounted in a single, slidemounted drawer in the GSE Rack (Serial No. 1). The drawer is a standard $12 \frac{1}{4}$ inch drawer that contains three major plug-in assemblies which may be removed for alignment, test, or repair. Table II-10 lists the assemblies used in the Ranging Conversion Unit lalo.

TABLE II-10. RANGING CONVERSION UNIT ASSEMBLIES

| Unit No. | Title | Part No. | Manufacturer |
| :--- | :---: | :---: | :--- |
| 1A10A1 | 10 MC Phase Shifter | $01-23793 D 01$ | Motorola |
| 1A10A2 | 10 MC Phase Switch | $01-23840 D 01$ | Motorola |
| 1Al0A3 | 10 MC Balanced Detector | $01-23845 D 01$ | Motorola |

### 2.2.7.3 Technical Characteristics

The technical characteristics for the Ranging Conversion Unit are as follows:

Reference Input Signal
Wide Band IF Input Signal
Output Frequency

10 mc at +10 dbm
10 mc at -65 dbm
498 kc at -70 dbm

### 2.2.8 Power Meter 1 AlO

Power Meter 1 AlO (located in GSE Rack, Serial No. 2) is a Hewlett-Packard model 431B power meter used to monitor the relative RF power output of the Test Transmitter. The Test Transmitter is connected to the power meter through a modified Hewlett-Packard cable. Operating and maintenance instructions for the RF power meter are contained in a separate technical manual.


Figure 2-13. Ranging Conversion Unit 1Al0, Top View

### 2.2.8.1 Technical Characteristics

The technical characteristics for the power meter are as follows:
Power Ranges 7 ranges with full scale readings of 10,30 , and $100 \mu \mathrm{w} ; 1,3$, and 10 mw . Also calibrated in dbm from -30 to +10 dbm .

Accuracy

$$
\pm 3 \% \text { of full scale on all ranges from }
$$ $20^{\circ}$ to $35^{\circ} \mathrm{C} ; \pm 5 \%$ from $0^{\circ}$ to $55^{\circ} \mathrm{C}$

## $2.2 .9 \pm 15$ Volt Power Supply 1All

The $\pm 15$ Volt Power Supply 1 All provides +15 and -15 vdc to the Circuit Breaker Panel, Telemetry Narrow Band and Wide Band Subsystems, Test Receiver, Frequency Converter, Test Transmitter, and Ranging Subsystem. The unit is an unmodified Harrison Model 802 B power supply. Operating and maintenance instructions for the power supply are contained in a separate technical manual.

## VOLUME 1

### 2.2.9.1 Technical Characteristics

The technical characteristics for the power supply are as follows:
Voltage Range $\quad 0$ to 32 vdc
Current Range 0 to 1 ampere
Regulation (load) Better than $0.15 \%$ or 20 mw (whichever is greater) for load variations from 0 to full load
Regulation (line) Better than $0.15 \%$ of 20 mw (whichever is greater) for input variations from 105 to 125 vac
Internal Impedance Less than 0.05 ohms
Ripple and Noise
AC Input
Less than 1 mw rms
105 to $125 \mathrm{vac}, 50-400 \mathrm{cps}, 115$ watts
2.2.10 $\pm 28$ Volt Power Supply 1 A12

The $\pm 28$ Volt Power Supply 1 Al2 provides regulated +28 and -28 vdc to the Circuit Breaker Panel, Telemetry Narrow Band and Wide Band Subsystems, Test Receiver, and Test Transmitter. The unit is an unmodified Harrison Model so2B power supply that is identical to the $\pm 15$ Volt Power Supply lall. Operating and maintenance instructions are contained in a separate technical manual.

### 2.2.10.1 Technical Characteristics

The technical characteristics for the power supply are the same as the technical characteristics described in paragraph 2.2.9.1.

SECTION III
THEORY OF OPERATION

### 3.1 GENERAL

This section contains general design theory for the GSE. Detailed theory discussions are included for each of the major units designed specifically for the GSE. Theory discussions for commercial equipment contained in the GSE are included in the individual technical manuals supplied with the GSE.

### 3.2 SUMMARY OF OPERATION

The following subparagraphs contain a brief summary of the function of each of the units contained in the GSE arranged in the order of the unit designations in the rack enclosures. Refer to figure 3-1 for a simplified block diagram showing the relationship of the major assemblies. An over-all block diagram of the test set is presented in figure 6-1.
(1) Circuit Breaker Panel, 1AI - Contains a circuit breaker for the rack assembly and provides for inclusion of two assemblies which are not supplied with the rack assembly. These two assemblies are a Single-Sideband unit and a 22 mc Isolation Amplifier assembly.
(2) Telemetry Narrow Band Subsystem, la2 - Provides a demodulation capability when used in conjunction with the Test Receiver. Attenuation and bandwidth selection are provided in the drawer to accommodate a wide range of input signal conditions (see paragraph 3.3).
(3) Telemetry Wide Band Subsystem, lA3 - Is similar to la2, but has no demodulation capability. It provides selectable bandwidths and 10 mc intermediate frequency outputs for telemetering and spectral analysis (see paragraph 3.4).
(4) Test Receiver Parts 1, 2, 3, and 4; Panels 1A4, 1A5, 1A6, and lA7-are described in paragraph 3.5.
(5) Frequency Converter, lA8 - Is a heterodyne frequency converter with a front panel selectable local oscillator frequency (see paragraph 3.6).
(6) Test Transmitter, 1A9 - Is described in paragraph 3.7.
(7) Ranging Conversion Unit, lal0 - Is a conversion unit only, which transforms the Test Receiver intermediate frequency to a form which is compatible with other external ranging equipment.
(8) Power Supply, lAll - Supplies regulated $\pm 15$ vdc to various drawers in the test set.
(9) Power Supply, 1 Al2 - Supplies regulated $\pm 28$ vdc to the transmitter and receiver and energizing power for relays throughout the system.

VOLUME 1

Figure 3-1. Mariner "C" Equivalent GSE, Simplified Block Diagram

### 3.3 TELEMETRY NARROW BAND SUBSYSTEM IA2

The schematic diagram for the Telemetry Narrow Band Subsystem is shown in figure 6-5. This drawer is designed to demodulate the phase modulated 10 mc IF signal from the Test Receiver. The drawer consists of a selectable bandwidth amplifier, two step attenuators, an IF amplifier, a phase detector, a 10 mc phase shifter and an output video amplifier.

### 3.3.1 Telemetry Bandpass Filter 1A2A1

The schematic diagram for the Telemetry Bandpass Filter assembly is shown in figure 6-6. A two stage direct-coupled amplifier is used as a driver for the bandpass filter. Bandpass filters are selected by relays which are controlled by applying 28 volts to relay pairs, which transfer the filter inputs and outputs. The relay contacts used for indicator functions are not used in this system. The output signal from the bandpass filters is transformer coupled into a three transistor isolation-output amplifier, which provides for the two output amplitude levels required. The technical specifications for the Telemetry Bandpass Filter assembly are as follows:

| Mutuiola No. | $01-23800 \mathrm{DO}$ |
| :--- | :--- |
| Frequency | 10 mc |
| Noise Figure | $<10 \mathrm{db}$ within 3 db bandwidth |
| Output Impedance | $50( \pm 20)+\mathrm{j} 0( \pm 20)$ ohms |
| Gain | $10( \pm 0.5)$ and $0( \pm 1.0) \mathrm{db}$ |
| Linearity | Within $\pm 0.5 \mathrm{db} @-55 \mathrm{dbm}$ to +5 dbm |
|  | output level |
| Isolation | 20 db minimum |

The four selectable bandwidth positions shall provide bandpass characteristics as follows:

### 4.5 Kc Bandpass Position

a. $4.5 \mathrm{KC}(-1 \mathrm{db})$ minimum bandwidth
b. $7 \mathrm{KC}(-3 \mathrm{db})$ maximum bandwidth
c. $3 / 30 \mathrm{db}$ shape factor 1 to 5 maximum
d. Ripple within -1 db bandwidth, $\pm 0.5 \mathrm{db}$ maximum
e. All spurious responses at least 30 db down.
f. Phase linearity within $\pm 10 \%$ across -1 db bandpass
g. Phase symmetry $\pm 10$ degrees maximum across -1 db bandpass

20 KC Bandpass Position
a. $20 \mathrm{KC}(-1 \mathrm{db})$ minimum bandwidth
b. $30 \mathrm{KC}(-3 \mathrm{db})$ maximum bandwidth
c. $3 / 30 \mathrm{db}$ shape factor 1 to 5 maximum
d. Ripple, within -1 db bandwidth, $\pm 0.5 \mathrm{db}$ maximum
e. All spurious responses at least 30 db down.
f. Phase linearity within $\pm 10 \%$ across -1 db bandpass
g. Phase symmetry $\pm 10$ degrees maximum across -1 db bandpass

## 420 KC Bandpass Position

a. $420 \mathrm{KC}(-1 \mathrm{db})$ minimum bandwidth
b. $600 \mathrm{KC}(-3 \mathrm{db})$ maximum bandwidth
c. $3 / 30 \mathrm{db}$ shape factor 1 to 7 maximum
d. Ripple, within -1 db bandwidth, $\pm 0.5 \mathrm{db}$ maximum
e. All spurious responses at least 30 db down.
f. Phase linearity within $\pm 10 \%$ across the -1 db bandpass
g. Phase symmetry within $\pm 10$ degrees across the -1 db bandpass

### 3.3 MC Bandpass Position

a. $\mathbf{5 8 . 0} \mathrm{MC}(-3 \mathrm{db}) \mathrm{minimum}$
b. $\pm 9.0 \mathrm{MC}(-3 \mathrm{db})$ maximum
c. Ripple, within the -1 db bandwidth, $\pm 0.5 \mathrm{db}$ maximum
d. All spurious responses at least 20 db down.
e. Phase linearity $\pm 10 \%$ across the -1 db bandpass
f. Phase symmetry within $\pm 10$ degrees across the -1 db bandpass

### 3.3.2 Narrow Band 10 MC IF Amplifier 1A2A2

The schematic diagram for the Narrow Band 10 MC IF Amplifier assembly is shown in figure 6-7. The circuit consists of two synchronously tuned cascode amplifiers. The output signal from the second cascode amplifier is divided to drive a linear output amplifier $Q 5$ and a limiting stage, consisting of $Q 6$ and CRI and CR2. The output from the linear amplifier is provided at the rear panel (J2) for possible future use. Transistors Q7 and Q8 provide isolation and impedance matching for the limited output. Technical specifications for the Narrow Band 10 MC IF Amplifier assembly are as follows:

```
Motorola No.
01-24272D01
Frequency }10\textrm{mc
Gain 40(\pm1) db
Bandwidth
Input Impedance
Output Impedance
Output Level(limited)
Linearity
Phase Symmetry
Spurious Outputs
Noise Figure
1.8 mc minimum, 2.2 mc maximum
50 ohms, VSWR <1.2:1
50(\pm20) + j0 (\pm20) ohms
+4 dbm
\pm2 db @ -22 to +8 dbm output
\pm20}\mp@subsup{}{}{\circ}\mathrm{ maximum within 3 db bandwidth
<40 db below the desired signal
13 db maximum
```


### 3.3.3 10 MC Phase Detector 1A2A3

The 10 MC Phase Detector schematic diagram is shown in figure 6-8. The circuit is basically the same as the phase detector used in the Test Receiver (1A5A2 or lA5A4) with added circuitry to increase the bandwidth characteristics. A reference signal for the detector is provided by Q1, a common base limiter amplifier. Transistor Q2 if a linear amplifier used to supply the phase modulated

VOLUME 1
signal to the detector. Coils L5 through L8 and capacitors C15, C20, C27, and C28 form a bandpass shaping network to provide the necessary bandwidth. Technical specifications for the 10 MC Phase Detector assembly are as follows:

| Motorola No. | $01-24373 D 01$ |
| :--- | :--- |
| Frequency | 10 mc nominal input |
| Input Impedance | 50 ohms, VSWR $<1.2: 1$ at center |
|  | frequency, VSWR <1.5:1 within 3 db |
| Gain | 0.013 volts per degree @ +4 dbm input |
|  | and lK load |
| Limiter | Full value at +7 dbm reference input |
| Linearity | $< \pm 10 \% @-6$ to +6 dbm input |
| Output Impedance | 500 ohms $\pm 20 \%$ |
| Frequency Response | Dc to $700 \mathrm{kc} @-1 \mathrm{db}$ |
| Balance | $\pm 3 \mathrm{mv} @ 500 \mathrm{kc}$ out or noise input |
| Load Impedance | 1000 ohms |

### 3.3.4 Video Amplifier 1A2A4

The schematic diagräil for the Videc Amplifier assembly is shown in figure 6-9. The video signal is amplified by a two stage direct-coupled amplifier consisting of Q1 and Q2. The signal is then used to drive two identical output amplifiers. The output of $Q 6$ is used to provide two parallel outputs. The technical specifications for the Video Amplifier assembly are as follows:

| Motorola No. | $01-23853 D 01$ |
| :--- | :--- |
| Frequency | 50 cps to 3 mc minimum @ -3 db |
| Gain | $20( \pm 1) \mathrm{db}$ |
| Input Level | -30 to -10 dbm |
| Output Level | Linear to +10 dbm, all outputs within |
|  | $1 \mathrm{db} @-10$ to +10 dbm output |
| Output Noise Power | Less than -55 dbm in 50 ohm load |
| Input Impedance | 50 ohms, VSWR <1.2:1 center VSWR |
|  | $1.5: 1 @-1 \mathrm{db}$ frequencies |
| Output Impedance | $50( \pm 10)+$ j0 $\pm 10)$ ohms |
| Spurious Outputs | 40 db down from the desired output |

### 3.3.5 10 MC Phase Shifter 1A2A5

The 10 MC Phase Shifter assembly is identical to the 10 MC Phase Shifter 1A5A3 (paragraph 3.512) and the circuit discussion and specifications are included in the Test Receiver section.

### 3.4 TELEMETRY WIDE BAND SUBSYSTEM IA3

The schematic diagram for the Telemetry Wide Band Subsystem is shown in figure 6-1l. The drawer provides four selectable predetection bandwidths. There is no demodulation capability in the drawer, the outputs being 10 mc IF signals, except the 30 mc spectrum analyzer output, for telemetering and spectral analysis with external equipment.

## VOLUME 1

### 3.4.1 Telemetry Bandpass Filter 1A3Al

The schematic diagram for the Telemetry Bandpass Filter assembly is shown in figure 6-6. This assembly is identical to lA2Al (paragraph 3.3.1) and provides the same bandwidth selection characteristics.

### 3.4.2 Wide Band 10 MC IF Amplifier 1A3A2

The schematic diagram for the Wide Band 10 MC IF Amplifier assembly is shown in figure 6-12. The circuit consists of two similar two-transistor directcoupled amplifiers. The amplifiers incorporate feedback, which aids the band shaping characteristics. The output of the second amplifier pair, Q3 and Q4, is paralleled to drive four identical output amplifiers. The output amplifiers are two-transistor direct-coupled amplifiers with sufficient power handling capability to satisfy the linearity requirement. The technical specifications for the Wide Band 10 MC IF Amplifier assembly are as follows:

Motorola No.
Frequency
Noise Figure
Bandwidth
Gain
Impedance, Input
Impedance, Output
Linearity
Relative Outputa
Phase Characteriatics

Output Isolation

01-23795D01
.10 mc center
$<10 \mathrm{db}$
$\pm 5.5 \mathrm{mc}$ minimum $\pm 8 \mathrm{mc}$ maximum
58 ( $\pm 1$ ) db
$50( \pm 5)+j 0( \pm 5)$ ohms
$50( \pm 10)+j 0( \pm 10)$ ohms
$\pm 0.5 \mathrm{db}$, @ -20 to +10 dbm output
All within 1 db
$\pm 10$ degrees (42 mc
$\pm 10$ degrees relative to input
$>30 \mathrm{db}$

### 3.4.3 10.02 MC Mixer-Oscillator 1A3A3

The schematic diagram for the 10.02 MC Mixer-Oscillator assembly is shown in figure 6-13. This assembly provides for converting the 10 mc IF spectrum to a frequency range compatible with analyzer equipment. The input signal is amplified by two synchronously tuned amplifier stages, Q5 and Q2. The local oscillator signal is produced in an internal crystal oscillator operating at 10.020 mc , thus producing a nominal 20 kc output when mixed with the 10 mc IF input signal. Mixing is accomplished in diodes CRl and CR2 in a balanced mixer circuit. TPl allows monitoring of the 10 mc signal at the mixer input. The output signal of the mixer is fed to a direct coupled two stage amplifier. The output signal leaves the assembly through pin 4 of Pl. The technical specifications for the 10.02 MC Mixer-Oscillator assembly are as follows:

## VOLUME 1

| Motorola No. | $01-23844 \mathrm{DOl}$ |
| :--- | :--- |
| Frequency | 10 mc nominal input |
| Input Signal Level | -22 dbm maximum |
| Input Impedance | 50 ohms, VSWR <l. $2: 1$ |
|  | $<1.5: 1 @-3 \mathrm{db}$ frequencies |
| Bandwidth | $\pm 2 \mathrm{mc} @-3 \mathrm{db}$ (at J3) |
| Isolation | LO Signal $>40 \mathrm{db}$ down at the input |
| Stability | $1 \times 10^{-6}$ minimum for 3 hr period at |
|  | ambient temperature $15^{\circ}$ to $45^{\circ} \mathrm{C}$ |
| Output Frequency | 20 kc nominal |
| Bandwidth | 20 cps to 60 kc @ -3 db |
| Output Impedance | 1000 ohms maximum |
| Signal Level | $3( \pm 0.3)$ VRMS across a load of 100 K ohms |
|  | in parallel with 1000 pf @ -22 dbm input |
| Linearity | $< \pm 5 \% @ 0.1$ to 3 VRMS output |
| Spurious Signals | $>40$ db below the desired output |

### 3.4.4 10-30 MC Converter 1A3A4

The 10-30 MC Converter assembly (figure 6-11) is a commerciai mixer manufactured by General Radio Company. It is used to convert the 10 mc to 30 mc for compatability with external spectrum analysis equipment. The technical specifications for the $10-30 \mathrm{MC}$ Converter are as follows:

| Frequency Range | 40 mc to $5 \mathrm{gc} ;$ at lower and higher fre- |
| :--- | :--- |
|  | quencies with decreased sensitivity |
| Crystal | 1N21B |
| Crystal Current | 5 ma maximum, 0.2 ma minimum |
| LO Input | 2 volts maximum |
| Output Filter | 40 mc cutoff frequency |
| Output Impedance | Approximately 400 ohms |

### 3.5 TEST RECEIVER

The Test Receiver is contained in four drawers, la4, 1A5, 1A6, and 1A7. An interconnection diagram of the drawers is shown in figure 6-14. The schematic diagrams for the Test Receiver drawers are shown in figures 6-15, 6-21, 6-24, and 6-27. The Test Receiver is a dual conversion type which uses phase-lock techniques for automatic tracking of the input signal and a phase-coherent automatic gain control. A strip-line hybrid-ring diode mixer converts the S-Band signal to a 50 mc first intermediate frequency in the S -Band Mixer (lA7Al), where it is mixed with the S-Band local oscillator signal from the X32 Multiplier la4A4. The second conversion is accomplished in the 50 MC IF Amplifier and Second Mixer assembly (la7A2) by mixing the first intermediate frequency and a 60 mc signal, from the 20 MC Oscillator and X3 Multiplier assembly (1A4Al), to produce the second intermediate frequency of 10 mc .

A 10 MC Isolation and Distribution Amplifier assembly (1A7A3) provides output signals for the telemetry and ranging drawers. The last IF amplifier output drives the phase detector and the coherent amplitude detector. The IF signals are detected by these detectors to provide the tracking control voltage and the automatic gain control voitage. The output of the phase detector drives the RF loop voltage-controlled oscillator. The oscillator, in turn, drives the local oscillator multiplier, which provides the phase coherent injection to the first mixer.

### 3.5.1 Automatic Phase Control (APC) Loop

The receiver automatic phase control loop includes the 10 MC IF Amplifier, 50 MC IF Amplifier and Second Mixer, 10 MC IF Distribution Amplifier, RF Loop-phase Dectector, Loop Filter, Receiver Voltage-controlled Oscillator, X3 Multiplier, X32, Multiplier and Mixer Preamplifier. The transfer function and the mechanization of the transfer function are described in the following paragraphs.

### 3.5.1.1 Transfer Function (APC)

The normalized transfer function of the APC loop is defined by:

$$
H(S)=\frac{1+\frac{3}{4 \beta_{L}}(S)}{1+\frac{3}{4 \beta_{L}}(S)+\frac{9}{32 \beta_{L} 2} \quad\left(S^{2}\right)}
$$

where $\beta_{L}=$ low pass noise bandwidth

$$
=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|H(j w)|^{2} d f
$$

When the APC loop is operating under varying signal-to-noise ratios as a result of a small signal input, the noise bandwidth of the APC loop is affected in the following manner:

$$
\beta_{L}=\beta_{L_{o}}\left(\frac{1}{3}+\frac{2 \alpha}{3 \alpha_{0}}\right)
$$

Where $\beta_{L_{0}}=\frac{1}{2}$ effective noige bandwidth at design point,

$$
\begin{aligned}
& a=\frac{1}{\sqrt{1+\frac{4}{\pi}\left(\frac{N}{B}\right)}} \\
& \alpha_{0}=\text { unity at strong signal } \\
& N=\text { noise power in IF passband } \\
& S=\text { signal power in IF passband } \\
& { }^{B_{L_{0}}}=\left(\frac{9 G_{o}}{32 T_{1}}\right)
\end{aligned}
$$

$$
S=\text { signal power in IF passband }
$$

and $T_{1}=\left(R_{1}+R_{2}\right) C$ tracking filter lagging time constant
$G_{0}=$ Open loop gain at design point
$=K_{D} K_{V} K_{M} \alpha_{o}$ (360)
where $K_{D}=$ phase detector constant in volts/degree,
$K_{V}=$ VCO constant in cycles/volt, and
$K_{M}=$ frequency multiplication.
The loop filter is composed of two time constants:

$$
\begin{aligned}
& T_{1}=\left(R_{1}+R_{2}\right) C=\text { tracking filter lagging time constant } \\
& T_{2}=R_{2} C=\text { tracking filter leading time constant }
\end{aligned}
$$

These time constants are related to one-half the effective noise bandwidth $\left(B_{L_{0}}\right)$ at the design point by:

$$
\begin{aligned}
& T_{1}=\frac{9 G_{o}}{32 \beta_{L_{o}} 2} \\
& T_{2}=\frac{3}{4 \beta_{L_{0}}}
\end{aligned}
$$

The static phase error (SPE) for an input signal offset frequency in cps of $\Delta F$ from the design point is:

$$
\text { SPE }=\frac{\Delta F}{K_{D} K_{V} K_{M}} \quad \text { degrees }
$$

### 3.5.1.2 Mechanization of Transfer Function

The design point for the APC Loop is for a signal carrier level at threshold. The phase gain constants of the Test Receiver are:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{D}}=0.350 \text { volts/degree }(20-\text { volt peak ' } \mathrm{S} \text { ' curve) } \\
& \mathrm{K}_{\mathrm{V}}=150 \mathrm{cps} / \text { volt } \\
& \mathrm{K}_{\mathrm{M}}=96 \\
& \mathrm{G}_{\mathrm{o}}=\mathrm{K}_{\mathrm{d}} \mathrm{~K}_{\mathrm{v}} \mathrm{~K}_{\mathrm{m}} 360 \alpha_{\mathrm{o}}
\end{aligned}
$$

The threshold signal suppression factor, $\alpha_{0}$ is calculated from the following expression:

$$
\begin{aligned}
\alpha_{0} & =\frac{1}{\sqrt{1+\frac{4}{\pi}\left({ }^{N} / S\right)}} \text {, since } \frac{N}{S}=\frac{B_{n}}{2 B_{L}} \\
& =\frac{1}{\sqrt{1+\frac{4}{\pi}\left(\frac{B_{n}}{B_{L}}\right)}} \quad \text { where } B_{n}=2000 \mathrm{cps}=\text { the predetection } \\
\text { for } \quad{ }^{2 B_{L}} & =5 \mathrm{cps}
\end{aligned}
$$

VOLUME 1

$$
\alpha_{0}=\frac{1}{\sqrt{1+\frac{4}{\pi}(400)}}=0.0442
$$

for $2 \beta_{L}=12 \mathrm{cps}$

$$
a_{0}=\frac{1}{\sqrt{1+\frac{4}{\pi}(167)}}=0.0688
$$

for $2 \beta_{L}=48 \mathrm{cps}$

$$
\alpha_{0}=\frac{1}{\sqrt{1+\frac{4}{\pi}(83.3)}}=0.136
$$

for ${ }^{2 \beta}{ }_{L}=152 \mathrm{cps}$

$$
\alpha_{0}=\frac{1}{\sqrt{1+\frac{4}{\pi}(13.2)}}=0.237
$$

Now $G_{o}$ may be calculated for the various bandwidths as follows:
${ }^{2} \beta_{L_{o}}=5 \mathrm{cps}$
$G_{o}=K_{D} K_{V} K_{M}(360)\left(\alpha_{o}\right)$
$=(0.350)(150)(96)(360)(0.0442)$
$=80,196$
${ }^{2 \beta} \mathrm{~L}_{\mathrm{O}}=12 \mathrm{cps}$
$\mathrm{G}_{\mathrm{o}}=(0.350)(150)(96)(360)(0.0685)$
$=124,286$
${ }^{2 \beta} \beta_{L_{0}}=48 \mathrm{cps}$
$\mathrm{G}_{\mathrm{o}}=(0.350)(150)(96)(360)(0.136)$
$=246,758$
${ }^{2 \beta} \mathrm{~L}_{0}=152 \mathrm{cps}$
$G_{o}=(0.350)(150)(96)(360)(0.237)$
$=430,013$
The loop filter time constants for a ${ }^{8}$ Lo of $2.5,6,24$, and 76 are:

$$
\begin{aligned}
& T_{1(2.5)}=\frac{9 G_{0}}{32 \beta_{L_{O}} 2}=\frac{(9)(80,196)}{(32)(6.25)}=3593 \text { seconds } \\
& T_{1(6)}=\frac{(9)(124,286)}{(32)(36)}=967 \text { seconds } \\
& T_{1(24)}=\frac{(9)(246,758)}{(32)(576)}=120 \text { seconds } \\
& T_{1(76)}=\frac{(9)(430,013)}{(32)(5776)}=20.8 \text { seconds }
\end{aligned}
$$

## VOLUME 1

$$
\begin{aligned}
& \mathrm{T}_{2(2.5)}=\frac{3}{(4)(2.5)}=0.3 \text { second } \\
& \mathrm{T}_{2(6)}=\frac{3}{(4)(6)}=0.125 \text { second } \\
& \mathrm{T}_{2(24)}=\frac{3}{(4)(24)}=0.031 \text { second } \\
& \mathrm{T}_{2(76)}=\frac{3}{(4)(76)}=0.0098 \text { second }
\end{aligned}
$$

The loop filter uses extremely low leakage ( $380 \mu \mathrm{f}$ and $20 \mu \mathrm{f}$ ) capacitors. The nominal resistance values for this filter are:

$$
\begin{aligned}
& T_{1(2.5)}=\left(R_{4}+R_{6}+R_{11}+R_{12}\right)\left(380 \times 10^{-6}\right)=3593 \text { seconds } \\
& R_{4}+R_{6}+R_{11}+R_{12}=9.45 \text { megohms } \\
& T_{1(6)}=\left(R_{6}+R_{12}\right)\left(380 \times 10^{-6}\right)=967 \text { seconds } \\
& R_{6}+R_{12}=2.54 \text { megohms } \\
& T_{1(24)}=\left(R_{5}+R_{7}+R_{8}+R_{9}\right)\left(20 \times 10^{-6}\right)=120 \text { seconds } \\
& R_{5}+R_{7}+R_{8}+R_{9}=6.0 \text { megohms } \\
& T_{1(76)}=\left(R_{7}+R_{9}\right)\left(20 \times 10^{-6}\right)=20.8 \text { seconds } \\
& R_{7}+R_{9}=1.04 \text { megohms } \\
& T_{2(2.5)}=\left(R_{11}+R_{12}\right)\left(380 \times 10^{-6}\right)=0.3 \text { second } \\
& R_{11}+R_{12}=789 \text { ohms } \\
& T_{2(6)}=R_{12}\left(380 \times 10^{-6}\right)=0.125 \text { second } \\
& R_{12}=329 \text { ohms } \\
& T_{2(24)}=\left(R_{8}+R_{9}\right)\left(20 \times 10^{-6}\right)=0.031 \text { second } \\
& R_{8}+R_{9}=1550 \text { ohms } \\
& T_{2(76)}=R_{9}\left(20 \times 10^{-6}\right)=0.0098 \text { second } \\
& R_{9}=490 \text { ohms }
\end{aligned}
$$

### 3.5.2 Automatic Gain Control (AGC) Loop

The receiver automatic gain control loop includes the IF and distribution amplifiers, the AGC detector and the AGC filter. The transfer function and its mechanization are described in the following paragraphs.

### 3.5.2.1 Transfer Function (AGC)

The transfer function of the coherent AGC loop is defined by:

$$
H(S)=\frac{1}{1+\frac{I}{G}+\frac{T}{G} S}
$$

where $T=R C$ time constant of the AGC loop filters.

$$
\begin{aligned}
G & =\text { loop gain } \\
& =K_{d} K_{a} K_{o} \\
& =21 \text { average value }
\end{aligned}
$$

where $K_{d}=$ amplitude detector gain constant
$=0.06 \mathrm{v} / \mathrm{db}$ nominal
$K_{a}=I F$ amplifier AGC gain constant
$=3.4 \mathrm{db} /$ volt nominal
$K_{o}=$ operational amplifier gain.
$=100$

The noise bandwidth of the AGC loop is at the design point as defined by:

$$
{ }^{2 \beta_{L}}=\frac{G}{2 T}
$$

where ${ }^{2 \beta} \beta_{L}=$ noise bandwidth
The bandwidth is selectable by a front panel switch. The bandwidths are $0.118,1.18$ and 4.5 cps.

### 3.5.3 Calibrated Variable Attenuator 1A7ATl

The calibrated variable attenuator (see Test Receiver Part 4, schematic diagram, figure 6-27) permits adjustment of the 2298 mc input signal level as desired for the test to be performed. The calibrated variable attenuator was manufactured by PRD Electronics Co., Inc. Typical insertion loss is 16 to 18 db . The calibration curve of attenuation vs degrees of shaft rotation at the operating frequency for each unit was used to determine the graduation increments applied to the attenuator dial mounted on the receiver front panel. Each dial is engraved with the serial number of the attenuator which it matches. In addition, a " $T$ " or " $R$ " following the serial number indicates that the attenuator was calibrated for either the transmitter frequency of 2116 mc or the receiver frequency of 2298 mc .

### 3.5.4 Cavity Preselector 1A7Z1

The 2298 mc input signal is fed to the S-Band Mixer assembly through the Cavity Preselector lA7Z1, which is an S-Band filter manufactured by the Rantec Corporation. The electrical specifications for the filter are as follows:

Model No.
Center Frequency
Insertion Loss
VSWR ( $\mathbf{f}_{0}$ )

FS-214-4
2295 mc
0.9 db maximum
1.2:1 maximum

### 3.5.5 Local Oscillator Filter Cavities, 1A7Z2 and Z3

The local oscillator signal for the $S$-Band Mixer assembly is supplied from the X96 multiplier chain (X32 Frequency Multiplier and X3 Frequency Multiplier Assemblies) by way of two tandem connected Rantec Filter cavities (figure 6-27), which remove any spurious signals from the local oscillator signal. The electrical specifications for the filters are as follows:

| Model No. | FS-214-6 |
| :--- | :--- |
| Center Frequency ( $\left.f_{o}\right)$ | 2245 mc |
| Insertion Loss | 0.9 db maximum |
| VSWR (fo | $1.2: 1$ maximum |
| S-Band IA7Al |  |

### 3.5.6 Mixer, S-Band IA7Al

The 2295 mc input signal and the 2245 mc local oscillator signal are mixed in the S-Band Mixer lA7Al (figure 6-28). The 50 mc IF signal produced is amplified by three synchronously tuned cascode stages to give an over-all conversion gain of 50 db . Crystal current in the mixer may be measured at TP 1-A and $B$ and PT2-A and B for each of the two mixer crystals. Technical Specifications are as follows:

| Motorola No. | $01-23773 \mathrm{DO1}$ |
| :--- | :--- |
| Frequency | 2298 mc |
| L.O. Power | 1.0 mw nominal |
| VSWR | $1.8: 1$ maximum |
| Noise Figure | 10 db maximum |
| Power Gain | $49 \pm 1 \mathrm{db}$ |
| Intermediate Frequency | 50 mc |
| IF db Bandpass | $\pm 4 \mathrm{mc}$ minimum, $\pm 5 \mathrm{mc}$ maximum |
| Output Impedance | $50( \pm 20)+j 0( \pm 20)$ ohms |

### 3.5.7 50 MC IF Amplifier and Mixer 1A7A2

The second conversion, from 50 mc to 10 mc , takes place in the 50 mc IF Amplifier and Second Mixer assembly (figure 6-29). This assembly is essentially a continuation of the 50 mc IF amplifier portion of the preceding one. It consists of four additional cascode stages, synchronously tuned, which drive a balanced diode mixer to produce a 10 mc output. The 60 mc local oscillator signal is supplied by the 20 MC Oscillator and X3 Multiplier (figure 6-16). The first three amplifier stages are designed to provide a variable gain control. Gain is controlled by base current variations on Q1, Q3, and Q5. Regulated reference current is provided by CR1, CR2, R42, R15, and R43. Components R18, CR4, CR5, R19, CR3, and R20 provide slope adjustment for gain versus AGC voltage. Diodes CR4 and CR5 aid in temperature stabilization. Technical specifications for the 50 MC IF Amplifier and Second Mixer assembly are as follows:

| Motorola No. | $01-23774 \mathrm{DO1}$ |
| :--- | :--- |
| Center Frequency | 50 mc |
| Gain (conversion) | $53 \pm 1 \mathrm{db}$ at 0 volts AGC |

## VOLUME 1

| Dynamic Range | -72 to +52 db (See the typical graph on figure 9 of assembly 1A7A2, located in Volume 3.) |
| :---: | :---: |
| Gain Linearity | $\pm 0.5 \mathrm{db}$ from -60 dbm to -10 dbm at 0 volts AGC |
| Impedance | Output - 50 ( $\pm 10$ ) + j0 ( $\pm 10$ ) ohms |
|  | Input - 50 ohms, VSWR < 1.2:1 |
| Leakage | All RF signals 10 uv maximum on power leads |
| Bandwidth | $\pm 4 \mathrm{mc}$ minimum, $\pm 5 \mathrm{mc}$ maximum |
| Mixer Balance | 15 db minimum |
| Noise Figure | 15 db maximum at gain 30 db |
| Phase Shift | (See the typical graph on figure 8 of assemb1y 1A7A2, located in Volume 3.) |
| Input Signal Level | -16 dbm to -120 dbm |

### 3.5.8 10 MC Distribution Amplifier 1A7A3

The 10 mc output signal from the 50 MC IF Amplifier and Second Mixer assembly drives the 10 MC Distribution Amplifier assembly. This assembly (figure 6-30) consists of two amplifier sections. One is an RC-coupled two-stage common emitter amplifier whose outputs drive the telemetry and ranging converter drawers. The other section is a cascode stage which is used to drive the following 10 MC IF Amplifier assembly (lA7A4). Technical specifications for the 10 MC Distribution Amplifier are as follows:

| Motorola No. | $01-23775 \mathrm{DO1}$ |
| :--- | :--- |
| Frequency | 10 mc nominal |
| Input Signal Level | -80 dbm nominal |
| Noise Power | -10 dbm maximum |
| Input Impedance | $50 \mathrm{ohms}, \mathrm{VSWR}<1.2: 1$ |
| Noise Figure | 7 db maximum |
| Linearity | $\pm 0.5 \mathrm{db}$ from -75 dbm to +5 dbm |
| Gain | $15 \pm 0.5 \mathrm{db}$ |
| Output Impedance | $50( \pm 20)+j 0( \pm 20)$ ohms |
| Bandwidth | $(\mathrm{J} 2, \mathrm{~J} 3, \mathrm{and} \mathrm{J} 4) \pm 5.5 \mathrm{mc} \mathrm{minimum}, \pm 8 \mathrm{mc}$ |
|  | maximum $(\mathrm{J} 5) \pm 1 \mathrm{mc} \mathrm{minimum} \pm 2 \mathrm{mc}$ maximum |
| Gain Stability | $\pm 1 \mathrm{db}$ at $15^{\circ}$ to $45^{\circ} \mathrm{C}$ |

### 3.5.9 10 MC IF Amplifier IA7A4

The final assembly (figure 6-31) in the 10 MC IF Amplifier chain is used to drive the phase and amplitude detectors. The input aignal is fed to a crystal filter which limits the IF bandwidth to approximately 2 kc . The signal is then amplified by two cascode amplifier stages. The signal at this point is divided to drive a linear amplifier, Q5, which provides a linear output signal for the AGC detector. The other signal path goes to $Q 6$ and then to $Q 7$, which are tuned RF amplifiers used to provide a limiting level signal to Q8, which provides a constant power output at J3 for the loop phase detector. Technical specifications for the 10 MC IF Amplifier assembly are as follows:

| Motorola No. | $01-23776 \mathrm{DOl}$ |
| :--- | :--- |
| Center Frequency | 10 mc |
| Gain | $54 \pm 1 \mathrm{db}$ (linear) |
| Bandwidth | $2.0 \mathrm{kc} \pm 180 \mathrm{cps}$ |
| Output Impedance | $50 \pm 10$ ohms |
| Output Level | Linear $\pm 2 \mathrm{db}$ from -22 dbm to +8 dbm |
|  | at linear output. Limited output +4 dbm. |
| Input Impedance | 50 ohms VSWR <l.2:1 |

### 3.5.10 Loop 10 MC Phase Detector (AGC) 1A5A4

The linear 10 mc signal from the 10 MC IF Amplifier assembly is used to drive Q2 in the 10 MC Phase Detector assembly (figure 6-23), which is operated as a linear amplifier. The signal is tuned in a double-tuned link-coupled network and then fed to the phase detector network through Cl4 and C13. A reference signal for the detector is supplied from the $X_{\frac{1}{2}}$ Multiplier (1A4A2) to the reference input, J2. This signal drives Q1, a limiting amplifier, which provides a reference signal of constant amplitude. The detector produces a dc output voltage, which is approximateiy equai io twice the peak signal voltage in the detector. The tuned circuits are peaked for maximum dc voltage at the test point. Technical specifications are shown in 3.5.11 as both detectors are identical.

### 3.5.11 Loop 10 MC Phase Detector (APC) 1A5A2

The APC Loop 10 MC Phase Detector assembly is identical to the AGC Loop 10 MC Phase Detector assembly. The difference is in application only. The reference signal portions are operated under identical conditions. The signal amplifier, Q2, is driven with a level of +4 dbm from the 10 MC IF amplifier assembly at a constant level so that the amplitude of the reference input and signal input are constant, and the dc output voltage becomes a function of the phase difference between the reference input and the signal input. This dc voltage, after filtering, is used to control the VCO frequency to maintain the loop in a phase-locked condition. Technical specifications for the 10 MC Loop Detector assembly are as follows:

| Motorola No. | $01-21432 \mathrm{COI}$ |
| :--- | :--- |
| Frequency | 10 mc nominal |
| Output Impedance | 40 K maximum |
| Input Impedance | 50 ohms, VSWR $<1.2: 1$ |
| Gain | $1.0( \pm 5 \%) \mathrm{V}$ out at -22 dbm signal input |
| Limiter | Output within 1 db with a reference |
|  | variation of +4 dbm to +7 dbm |
| Linearity | $\pm 10 \%$ at -22 to +7 dbm, and $<3 \mathrm{db}$ down |
|  | at +10 dbm |
| Bandwidth | $\pm 5 \mathrm{kc}$ at 3 db |

VOLUME 1

## Balance

Phase Characteristics
Phase Stability
Transfer Function

Symmetry
> $\pm 10 \mathrm{mv}$ maximum at $\mathbf{- 2 2} \mathrm{dbm}$ non-coherent signal, or noise at +10 dbm $\pm 10$ degrees over temperature 2 degrees peak in 20 cps BW 350 ( $\pm 10$ ) mv/degree at +4 dbm signal input level
> Maximum and minimum output voltage within 500 mv

### 3.5.12 10 MC Phase Shifter 1A5A3

The phase and amplitude detectors require a $90^{\circ}$ phase shift between detector reference signals to produce a maximum output signal out of the amplitude detector since the phase detector must operate near zero output. This phase shift is accomplished in the 10 MC Phase Shifter assembly (figure 6-10). The phase shift is accomplished in Z1, a Variogon type (V53), which is followed by an untuned isolation amplifier, Q1. This amplifier is followed by three synchronously tuned amplifiers which accomplish the gain, limiting and output impedance matching. Technical specifications for the 10 MC Phase Shifter assembly are as follows:

| Motorola No. | $01-23793 \mathrm{DOl}$ |
| :--- | :--- |
| Frequency | $10 \mathrm{mc}( \pm 0.0025 \%)$ |
| Input Impedance | $50 \mathrm{ohms}, \mathrm{VSWR} \mathrm{1.2:1}$ |
| Output Impedance | $50( \pm 20)+j 0( \pm 20)$ ohms |
| Input Voltage | 0.5 to 1.0 V RMS ( $\pm 10 \mathrm{dbm}$ nominal) |
| Gain | $0( \pm 2 \mathrm{db}) \mathrm{dbm}$ |
| Distortion | Less than 40 db |
| Overall Phase Shift | $\pm 10^{\circ}\left( \pm 0.5^{\circ} \mathrm{RMS} \mathrm{jitter)} \mathrm{over} \mathrm{any} 10^{\circ}\right.$ |
|  | increment, 15 to $45^{\circ} \mathrm{C}$. |
| Adjustable Phase Shift | 0 to $360^{\circ}$ |
| Accuracy | $\pm 7^{\circ}$, repeatable $\pm 3.0^{\circ}$ over short time |
|  | periods |

### 3.5.13 $\mathrm{X}_{\frac{1}{2}}$ Frequency Multiplier 1A4A2

The reference signal for the loop detectors is generated by the reference oscillator at 20 mc . This frequency is reduced by a factor of two by the Xl/2 Frequency Multiplier assembly (figure 6-17). The input stage of the Xl/2 Frequency Multiplier assembly is a double-tuned input, tuned output amplifier which drives the varactor divider, which includes a 10 mc tuned circuit consisting of silicon capacitors, Cl5 and Cl6, and the primary of the transformer, T4. The 20 mc signal drives this tuned circuit, which generates a signal at half the frequency of the input signal. This 10 mc gignal drives Q2, which is fixed-tuned to 10 mc by L 3 and Cl , which in turn drives three output amplifier stages. The output tank circuits provide, with selected components, a $50-\mathrm{ohm}$ output impedance. Technical specifications for the X1/2 Frequency Multiplier assembly are as follows:

VOLUME 1

Motorola No.
Frequency

Input Impedance
Output Impedance
Isolation

Spurious Signals
Phase Characteristics Level

01-21456C01
20 mc input
10 mc output
$50( \pm 5)+j 0( \pm 5)$ ohms
50 ( $\pm 10) ~+~ j 0 ~( \pm 10) ~ o h m s$
10 mc signal at input -70 dbm maximum $>95 \mathrm{db}$ output to input at 50 mc
$>20 \mathrm{db}$ below fundamental frequency
$<5^{\circ}$, w/temperature between the 3 outputs
$+10 \mathrm{dbm} \pm 3 \mathrm{db}$ input
$+10 \mathrm{dbm} \pm 2 \mathrm{db}$ output
$\pm 0.5 \mathrm{mc}, 3 \mathrm{db}$ at output frequency

### 3.5.1420 MC Oscillator and X3 Multiplier 1A4A1

The source for the reference signal and the second mixer local oscillator frequency is the 20 MC Oscillator and X3 Multiplier assembly (figure 6-16). This assembly consists of a crystal controlled oscillator Q1, which is a common emitter configuration followed by two isolation stages, Q2 and Q3. Transistor Q3 drives two output stages; one a straight through amplifier, Q4, with a double-tuned output tank circuit driving two 50 -ohm outputs, and the ether is a frequency tripler with double-tuned input and output tank circuits. Both output stages are common base configurations. Technical specifications for the 20 MC Oscillator and X3 Multiplier assembly are as follows:

| Motorola No. | 01-23781D01 |
| :---: | :---: |
| Frequency | ```20 mc, }\pm0.002%, -10 to +70 % C, J2 and J3 6 mc, Jl``` |
| Output Level | $\begin{aligned} & +10 \mathrm{dbm}( \pm 3 \mathrm{db}), \mathrm{J} 1 \text { and } \mathrm{J} 2 \\ & +1.5 \mathrm{dbm}( \pm 1.5 \mathrm{db}), \mathrm{J} 3 \end{aligned}$ |
| Spurious Signals | First and second crystal harmonics $>40 \mathrm{db}$ down, others $>30 \mathrm{db}$ down Non-harmonic signals $>60 \mathrm{db}$ down |
| Long-term Stability | Better than $1 \times 10^{-6}$ |
| Output Impedances | 50 ( $\pm 10$ ) + j0 ( $\pm 10$ ) ohms |
| Signal Isolation | $>50 \mathrm{db}$ at 10 mc between the X 3 output and the 10 mc outputs |
| Frequency Resetability | Adjustable $\pm 200 \mathrm{cps}$ about the nominal frequency |

### 3.5.15 Loop Filter (APC) 1A6A2

The Loop Filter assembly (figure 6-26) is an R-C phase lag network which provides the four bandwidths required by means of relay switches. The relays switch resistances and capacitances that make up the particular time constant required. The schematic shows all relays in the de-energized state which provides the proper resistances and capacitors for the 12 cps bandwidth position. Technical specifications for the Loop Filter assembly are as follows:

| Motorola No. <br> Transfer Function: | 01-23784D01 <br> (all $\pm 10 \%$ tolerance time constants) |
| :---: | :---: |
| $\text { a. } \begin{aligned} T_{1} & =3560 \text { seconds } \\ T_{2} & =0.300 \text { seconds } \end{aligned}$ | ${ }^{28} \mathrm{Lo}=5 \mathrm{cps}$ |
| $\text { b. } \begin{aligned} \mathrm{T}_{1} & =950 \text { seconds } \\ \mathrm{T}_{2} & =0.023 \text { seconds } \end{aligned}$ | ${ }^{28} \mathrm{Lo}^{\prime}=12 \mathrm{cps}$ |
| $\begin{aligned} \text { c. } \mathrm{T}_{1} & =119.5 \text { seconds } \\ \mathrm{T}_{2} & =0.0313 \text { seconds } \end{aligned}$ | ${ }^{2 \beta} \mathrm{Lo}^{\prime}=48 \mathrm{cps}$ |
| $\begin{aligned} \mathrm{d} . \mathrm{T}_{1} & =20.9 \text { seconds } \\ \mathrm{T}_{2} & =9.87 \times 10^{-3} \text { seconds } \end{aligned}$ | ${ }^{2 \beta} \mathrm{Lo}=152 \mathrm{cps}$ |
| Input Voltage Range | +30 vdc to $\mathbf{- 3 0} \mathrm{vdc}$ |
| Source Impedance | Approximately 40 K ohms |
| Load Impedance | 150 megohms ( $\pm 50 \%$ ) |
| Filter Constant Selection | Output voltage must be greater than $85 \%$ of the input with load |
| Capacitor Discharge | Must contain provisions to remotely discharge the filter capacitor |
| Signal Terminals | ```Ungrounded (floating) input and output terminals``` |

### 3.5.16 5 Channel VCO Assembly 1A6A1

The output of the Loop Filter assembly is a dc phase error analog voltage, which is used to control the 5 -Channel VCO assembly (figure 6-25). VCO's 1 through 5 are identical common base oscillators except for the crystal frequencies. Frequency deviation from each crystal frequency is accomplished by varying the dc voltage applied to the PC-ll6 varactor diodes in the feedback loop of the oscillators. The operating oscillator is selected by applying the 10 vdc collector voltage to that particular oscillator by means of an external switch. The oscillator outputs are tied in parallel and applied to $Q 6$, a common emitter, tuned buffer amplifier, which drives a common base tuned output amplifier, Q7. The output atages are two emitter follower isolation amplifiers, whose inputs are tied together and are driven by Q7. Specifications for the 5-Channel VCO assembly are:

| Deviation | $150 \mathrm{cps} / \mathrm{V} \pm 10 \%$ for $\pm 2 \mathrm{vdc}, \pm 900 \mathrm{cps} / \mathrm{v}$ ( $\pm 10 \%$ ) for $\pm 6.0 \mathrm{vdc}$ |
| :---: | :---: |
| Power Output | 10 mw minimum at J3 and J5 |
|  | 1 mw nominal at J 4 and J6 |
| VCO Center Frequency |  |
| VCO \#1 | 23.385420 ( $\pm 146 \mathrm{cps}$ ) mc |
| \#2 | 23.412420 ( $\pm 146 \mathrm{cps}$ ) mc |
| \#3 | 23.416280 ( $\pm 146 \mathrm{cps}$ ) mc |

VOLUME 1
$\# 4$
$\# 5$
Linearity
$23.420140( \pm 146 \mathrm{cps}) \mathrm{mc}$
23.424000 ( $\pm 146 \mathrm{cps}$ ) mc
$150 \mathrm{cps} / \mathrm{V} \pm 10 \%$ for $\pm 2.0 \mathrm{vdc}$ in, and
$\pm 900 \mathrm{cps} / \mathrm{V} \pm 10 \%$ for $\pm 6.0 \mathrm{vdc}$

### 3.5.17 X3 Frequency Multiplier Assembly lA4A5

The VCO output signal is used to drive a multiplier chain, which supplies the $S$-Band local oscillator signal to the first mixer. The X3 multiplication in the X3 Frequency Multiplier assembly (figure 6-20) is accomplished in Q1, a grounded base tripler stage. Coil Ll and capacitor C6 form a series trap to reduce the 46 mc component in the output of the tripler stage. The three remaining amplifier stages are tuned common base amplifiers with sufficient gain to provide the 70 mc output requirements. The network between $Q 2$ and Q3 is the remnant of a phase modulation circuit used only in the X3 Multiplier and Phase Modulator assembly (1A9A2) in a preceding version of this assembly, and it serves no useful function in this assembly. Specifications for the X3 Multiplier assembly are:
Motorola No.
Frequenciy
Bandwidth
Output Level
Impedance, Input
Impedance, Output
Input Power Level
Spurious Outputs
Saturation

```
01-23772D01
23.4 mc nominal input
> 4 mc about nominal output
+19.5 (\pm1.5 db) dbm
50 ohm, VSWR, <l.2: 1
50(\pm10) + j0 ( }\pm10) ohm
+10 dbm \pm2 db
>30 db below desired output
\pm0.5 db change in output for }\pm3\textrm{db}\mathrm{ change
in input
```

3.5.18 X32 Frequency Multiplier 1A4A4

The output of the X3 Frequency Multiplier assembly is used to drive the X32 Frequency Multiplier assembly (figure 6-19), giving a total multiplication factor of X96. Transistor Q1 is a X2 frequency multiplier with a pi network matching in the input and a double tuned coupling to Q2. Transistor Q2 is a buffer-limiter common-emitter amplifier, which drives the driver stage Q3. A pi network is used to couple Q3 and the power amplifier stage Q4. The power amplifier is a common base tuned amplifier, which is capable of producing approximately 3 watts output at 140 mc . This output signal drives a X 4 multi plier using varactor diode CRI. The output of the power amplifier is tuned and the impedance matched by coils L10 and Lll and capacitors C17 through C22. Coil L12 and capacitor C23 are a series resonant idler circuit tuned to twice the X4 input frequency. Coils Ll3, L14 and capacitors C46, C24 through C26 provide tuning and impedance matching out of the $X 4$ multiplier. An isolation pad, consisting of RI4, R16 and Rl7, is included between the X4 multiplier and the cavity multiplier to provide a more stable load for the X 4 multiplier and a source for the cavity multiplier. The cavity multiplier multiplies by a

VOLUME 1
factor of four, and is driven through the matching network of Ll5 and Cl8. Tuned cavity Zl is the cavity assembly, which is actually a double cavity consisting of an output quarter-wave filter at the output frequency and an idler cavity to increase the multiplication efficiency of the multiplier. Specifications for the X32 Frequency Multiplier assembly are:

| Motorola No. | 01-23787D01 |
| :---: | :---: |
| Frequency | 70 mc (approximate) |
| Multiplication Ratio | 32 |
| Power Input | $+15 \mathrm{dbm}, \pm 2 \mathrm{db}$ |
| Power Output | +21.5 dbm minimum |
| Saturation | $\pm 0.5 \mathrm{db}$ change in output with $\mathrm{a} \pm 3 \mathrm{db}$ change in input level. |
| Output Impedance | Minimum power output into a $50( \pm 5)$ $+j 0$ ohms load only. |
| Bandwidth, Modulation | 200 kc to 3.5 mc @ 3 db down on first sideband for 0.2 radian modulation index |
| Bandwidth, RF | 25 mc minimum @ 3 db |
| Input Impedance | 50 ohms, VSWR <1.2:1 center VSWR <1.5:1 within 3 db bandwidth |
| Spurious Signals | $>40 \mathrm{db}$ below desired output |

### 3.5.19 AGC Amplifier and Filter Assembly 1A5Al

The dc signal derived from the AGC 10 MC Loop Phase Detector assembly is used to supply the gain correction voltage for the 50 MC IF Amplifier and Second Mixer assembly. This correction voltage is first conditioned by the AGC Amplifier and Filter assembly (figure 6-22). The filter is an active type using a Philbrick P2 operational amplifier and a P5 booster amplifier with appropriate R-C feedback to provide the bandwidths required. Bandwidth selection is performed with relays which are controlled by the front panel switch. Much of the auxiliary circuitry of the AGC Amplifier and Filter assembly is not used in this application. Manual gain control is provided for by connecting an external variable resistor from J3 to J4. This variable resistor applies a portion, determined by the variable resistance, of the voltage across VR2 to the input to the amplifier input. Resistors Rl and R5 are zero and balance controls. The output of the filter is monitored by measuring the booster amplifier voltage output. This measuring device is a front panel meter entitled SIGNAL STRENGTH and indicates the voltage feedback to the 50 MC IF Amplifier and Second Mixer assembly. Specifications for the AGC Loop Filter assembly are:

| Motorola No. | $01-23610 \mathrm{DO1}$ |
| :--- | :--- |
| Gain | $100 \pm 1 \%$ |
| Time Constants | $\tau_{1}=3.8( \pm 10 \%)$ seconds |
|  | $\tau_{2}=0.38( \pm 10 \%)$ second |
|  | $\tau_{3}=0.1( \pm 10 \%)$ second |
| Input Impedance | $>500 \mathrm{~K}$ |
| Source Impedance | 40 K maximum |


| Input Voltage Range | -0.8 to +1.5 vdc, and $35 \mathrm{Vp}-\mathrm{p}$ noise |
| :---: | :---: |
| Bias Adjustment | +0.25 to 1.5 vdc at the signal input |
| Output Impedance | <300 ohms @ dc |
| Output Voltage Range | 0 to -10 vdc (linear $\pm 10 \%$ ) with 6 K load |
| Output Voltage Limiting | +1.25 to -11 vdc |
| DC Drift and Noise Error | $<1 \mathrm{mv}$ referred to the input @ +1 vdc in and bias adjusted for -2 vdc output |
| Amplifier Bandpass | dc to 1 kc minimum, roll off $12 \mathrm{db} /$ octave @ -0.5 to -10 vdc |

### 3.6 FREQUENCY CONVERTER IA8

The Frequency Converter (figure 6-32) contains a plug-in 5-Channel Oscillator assembly (lA8Al), which provides a minimum of 5 mw output at 181.9 mc . This output is applied through a resistor network to the Mixer-Filter assembly (1A8A2) and provides a nominal 1 mw of conversion oscillator power. The 2116.7 mc input signal is applied to the RF mixer. The RF mixer output is tuned to the sum frequency of $2 \underline{2} 98 \mathrm{mc}$; which is the desired output. A 6 db attenuator at the input ensures a satisfactory input voltage standing wave ratio.

### 3.6.1 5-Channel Oscillator 1A8Al

The 5-Channel Oscillator assembly (Motorola $\mathrm{P} / \mathrm{N} 01-20246 \mathrm{E} 01$ ) schematic is shown in figure 6-33. All the crystal frequencies for each assembly are listed on the schematic diagram. A front panel FREQUENCY SELECTOR switch is used to select Oscillator No. 1 through 5. The oscillator output is fed to a buffer stage followed by two stages of X 2 multiplication to obtain an output frequency which is four times the selected oscillator frequency.

Summary of specifications:

| Frequencies | (See table II-7.) |
| :--- | :--- |
| Output Level | 5 mw (minimum) |
| Output Impedance | 50 ohms $\pm 10 \%$ |

### 3.6.2 Mixer-Filter 1A8A2

The schematic diagram of the Mixer-Filter assembly is shown in figure 6-34. The mixer accepts the 2116 mc frequency of the 2116 MC Test Transmitter lA9 and one of the output frequencies from the 5-Channel Oscillator assembly (lA8Al). The conversion is accomplished by a diode mixer and a cavity tuned to the sum of the two input frequencies ( 2297 mc ).

Summary of specifications:

| Input Frequencies | (See table II-7.) |
| :---: | :--- |
| Input Power Level | 1 mw |
| Output Frequency | (See table II-7.) |
| Output Power Level | -60 dbm |

$$
\begin{array}{ll}
\text { Bandwidth, } 3 \mathrm{db} & 12 \mathrm{mc} \text { (minimum) } \\
\text { Conversion Loss } & 18 \mathrm{db} \text { (maximum) }
\end{array}
$$

### 3.7 TEST TRANSMITTER 1A9

The Test Transmitter (figure 6-35) contains five Voltage Controlled Oscillators (1A9A1), a X3 Multiplier and Phase Modulator (1A9A2), a X32 Frequency Multiplier (1A9A3), a Voltage-Controlled Oscillator bias assembly and RF couplers. Operating controls are mounted on the front panel. Only one of the Voltage-Controlled Oscillators (1A9Al) is used at a time; the desired output frequency determining the active oscillator.

### 3.7.1 5-Channel Voltage-Controlled Oscillator (VCO) 1A9Al

Figure 6-25 is a schematic diagram of the 5-Channel Voltage Controlled Oscillator assembly. This oscillator is a plug-in assembly containing five 22 mc crystal controlled oscillators, an isolation amplifier, a driver amplifier, and two emitter follower output amplifiers. The VCO frequency is controlled by the VCO Bias control. The VCO SELECTOR switch is located on the front panel. The VCO SELECTOR switch applies a regulated +10 volts to the desired VCO. A disabling circuit prevents the operation of the amplifier, Q6, while allowing the oscillator to continue to operate. The disabling ability allows zero adjustment of an external power meter. Technical characteristics for the 5-Channel Voltage-Controlled Oscillator assembly are the same as for the Test Receiver 5-Channel VCO (1A6A1). Refer to paragraph 3.5.16 for the technical characteristics of the assembly.

### 3.7.2 X3 Multiplier and Phase Modulator 1A9A2

Figure 6-36 shows a schematic diagram of the X3 Multiplier and Phase Modulator assembly. This assembly consists of a conventional grounded base X3 multiplier, a tuned isolation amplifier, a voltage sensitive variable reactance phase modulator, another isolation driver, and an output stage. Coil Ll and capacitor C 6 are provided to trap the unwanted second harmonic in the multiplier output. The phase modulator reactance varies with the voltage, applied to J2 or J3, due to the capacitance variation of the PCll3 varactors. Technical specifications for the X3 Multiplier and Phase Modulator assembly are as follows:

Motorola No.
Frequency
COMMAND MODULATION
Sensitivity

Linearity
Maximum Deviation
Capability
Frequency Response

01-23760D01
22 mc input, 66 mc output nominal
$0.031( \pm 0.0015)$ radians/volt
(1) 10 kc
+0.5 db from dc to 50 kc
0.1 radian peak maximum @ 10 kc

Dc to 100 kc @ 3 db

VOLUME 1

| Modulation Input Impedance Symmetry | $>2000$ ohms @ dc to 100 kc <br> Peak positive and peak negative phase deviation within 5\% @ 10 kc |
| :---: | :---: |
| RANGE MODULATION |  |
| Sensitivity | $0.165( \pm 0.008)$ radians/volt <br> @ 500 kc |
| Linearity | $\pm 1 \mathrm{db} \pm \mathrm{dc}$ to 1 mc |
| Modulation Input Voltage | $-0.55( \pm 0.1)$ to $1.35( \pm 0.1)$ volts with a rectangular waveform |
| Modulation Input Impedance | 50 ohms, VSWR <1.3@ dc to 3 mc |
| Output Power Level | $19.5( \pm 1.5) \mathrm{dbm}$ |
| Output Bandwidth | $> \pm 4 \mathrm{mc}$ @ 3 db |
| RF Input Impedance | 50 ohms, VSWR <1.2:1 |
| Output Impedance | $50( \pm 10)+\mathrm{j} 0( \pm 10)$ ohms |
| Input Power Level | $+10 \mathrm{dbm}( \pm 2 \mathrm{db})$ |
| Incidental Amplitude Modulation | $< \pm 1 \mathrm{db}$ about carrier from dc to 2 mc measured at maximum phase deviation |
| Spurious Outputs | $\mathbf{> 3 0} \mathrm{db}$ below desired output |
| Power Gain Variation | $< \pm 1 \mathrm{db}$ |

### 3.7.3 X32 Frequency Multiplier 1A9A3

Figure 6-19 is a schematic diagram for the transmitter X32 Frequency Multiplier assembly. Transistor Q1 is a X2 frequency multiplier with a pi network matching in the input and a double tuned coupling to Q2. Transistor Q2 is a buffer-limiter amplifier, which drives $Q 3$ at a constant power level. A pi network is used to couple Q3 and the power amplifier Q4. The power amplifier is a common base tuned amplifier, which is capable of producing approximately three watts output at 132 mc . This signal drives a X 4 multiplier using varactor diode CRI. The output of the power amplifier is tuned and the impedances matched by LlO and L11 and C17 through C22. Coil L12 and capacitor C23 are a series resonant idler circuit tuned to twice the X 4 input frequency. Coils Ll3 and L14 and capacitors C46 and C24 through C26 provide tuning and impedance matching out of the X 4 multiplier. An isolation pad, consisting of Rl4, R16, and R17, is included between the $X 4$ and the cavity multiplier to provide a more stable load for the X 4 and a source for the cavity multiplier. The cavity multiplier (by a factor of four) is driven through the matching network of L 15 and Cl8. Tuned cavity Zl is the cavity assembly, which is actually a double cavity consisting of an output quarter-wave filter at the output frequency, and an idler cavity to increase the multiplication efficiency of the multiplier. Technical specifications for the X32 Frequency Multiplier assembly are:

| Motorola No. | $01-23786 \mathrm{DOl}$ |
| :--- | :--- |
| Frequency | 66 mc approximate |
| Multiplication Ratio | 32 |

VOLUME 1

| Power Input | $+15 \mathrm{dbm}, \pm 2 \mathrm{db}$ |
| :---: | :---: |
| Power Output | +21.5 dbm minimum |
| Saturation | $\pm 0.5 \mathrm{db}$ change in output with $\mathrm{a} \pm 3 \mathrm{db}$ change in input level |
| Output Impedance | Minimum power output with a $50( \pm 5)+$ j0 $\pm$ (5) ohms load only |
| Bandwidth, Modulation | 200 kc to 3.5 mc @ 3 db down on first sideband for 0.2 radian modulation index |
| Bandwidth, RF | 25 mc minimum @ 3 db |
| Input Impedance | 50 ohms, VSWR <l.2:1 center frequency VSWR <1.5:1 within 3 db bandwidth |
| Spurious Signals | $>40 \mathrm{db}$ below desired output |

The output of the $X 32$ Frequency Multiplier assembly is isolated from the output couplers and attenuators by an isolator, AT-1. The isolator is a standard model manufactured by Rantec Corporation. The technical characteristics of the isolator are as follows:

| Model No. | CST-11-3 |
| :--- | :--- |
| Frequency | 2116 mc nominal |
|  | $(1900-2700 \mathrm{mc})$ |
| Isolation | 20 db minimum |
| Insertion Loss | 0.4 db maximum |
| VSWR | $1.25: 1$ maximum |
| Power Handling | 50 watts maximum |

### 3.7.4 VCO Bias Assembly

The VCO Bias Assembly is built on a terminal board in the drawer. The oscillator selection and variable frequency voltage for the 22 mc VCO is provided for in the VCO Bias Assembly. The VCO voltage is monitored by a front panel VCO BIAS meter. The TRANSMITTER DISABLE switch is located in the bias assembly compartment. Figure 6-35 shows the VCO Bias Assembly (part of Test Transmitter drawer). Extensive filtering is used in the bias assembly compartment to comply with the radiated interference specification for the transmitter. The variable frequency control is accomplished by R3, a ten-turn potentiometer, which varies the varactor bias voltage in the 22 mc VCO. The TRANSMITTER DISABLE switch removes the power supply, +15 vdc, to the 22 mc VCO isolation amplifier.

### 3.7.5 Calibration and Monitoring

In addition to the front and rear panel 22 mc outputs, the Test Transmitter also provides three other outputs. These outputs are the front and rear panel outputs at 2116 mc , and the power monitor output, as shown in figure 6-35. The front panel RF signal is attenuated by approximately 60 db by the two 20 db couplers, 18 to 20 db insertion loss in the PRD attenuator and the remainder in

## VOLUME 1

the cable and connector losses. This results in an approximately -40 dbm output signal level with the step attenuator and the calibrated attenuator set to zero. Accurate measurement of the minimum insertion loss of the variable attenuators, directional couplers and cabling inserted between the power monitoring point and the transmitter output, permits percise output power level settings.

### 3.7.6 Calibration Curves

The calibration curves for the PRD-198 attenuator are plotted in attenuation in db above insertion loss as a function of dial setting in degrees. These calibration curves as supplied by the manufacturer for the specific frequency differ to such an extent that a single specification for applying the graduations to the General Radio dial cannot be developed. Each transmitter (and each receiver) attenuator has a different calibration on the dial and, therefore, the units are not interchangeable. The graduations applied to the dials of both receiver and transmitter are shown in Table III-1.

TABLE III-1. ATTENUATOR DIAL SPACING IN DEGREES PER DB

| Serial No. | $0-10 \mathrm{nB}$ | $10-20 \mathrm{DB}$ | $20-30 \mathrm{DB}$ | $30-100 \mathrm{DB}$ |
| :--- | :---: | :---: | :---: | :---: |
| SN131T <br> $(2116 \mathrm{mc})$ | $0^{\circ} 52^{\prime} 30^{\prime \prime}$ | $1^{\circ} 15^{\prime} 00^{\prime \prime}$ | $1^{\circ} 20^{\prime} 40^{\prime \prime}$ | $1^{\circ} 21^{\prime} 30^{\prime \prime}$ |
| SN130R <br> $(2298 \mathrm{mc})$ | $0^{\circ} 50^{\prime} 15^{\prime \prime}$ | $1^{\circ} 17^{\prime} 00^{\prime \prime}$ | $1^{\circ} 20^{\prime} 10^{\prime \prime}$ | $1^{o^{\prime}} 21^{\prime} 50^{\prime \prime}$ |
| SN132T <br> $(2116 \mathrm{mc})$ | $0^{\circ} 50^{\prime} 40^{\prime \prime}$ | $1^{\circ} 14^{\prime} 10^{\prime \prime}$ | $1^{\circ} 20^{\prime} 10^{\prime \prime}$ | $1^{o^{\prime}} 21^{\prime} 40^{\prime \prime}$ |
| SN133T <br> $(2116 \mathrm{mc})$ | $0^{\circ} 47^{\prime} 50^{\prime \prime}$ | $1^{\circ} 15^{\prime} 50^{\prime \prime}$ | $1^{\circ} 21^{\prime} 00^{\prime \prime}$ | $1^{\circ} 21^{\prime} 30^{\prime \prime}$ |
| SN129R <br> $(2298 \mathrm{mc})$ | $0^{\circ} 47^{\prime} 45^{\prime \prime}$ | $1^{\circ} 13^{\prime} 20^{\prime \prime}$ | $1^{\circ} 21^{\prime} 0^{\prime \prime}$ | $1^{\circ} 22^{\prime} 15^{\prime \prime}$ |

Graduated dial marking lengths indicate $\frac{1}{2}, 1,5$ and 10 db calibrations. The maximum error occurs in the nonlinear portion of the attenuation curve between 0 and 10 db . At 6 db , the error is approximately 0.5 db . Over the linear portion of the curve, the maximum error is less than 0.1 db . The serial number of the attenuator for which the dial is calibrated is engraved on the dial. A "T" or " $R$ " following this serial number indicates attenuator calibration for either the transmitter or receiver frequency.

### 3.7.7 Rear Panel RF Output

The rear panel RF output is attenuated 70 db in two 20 db directional couplers and a 30 db fixed attenuator. This results in a nominal signal level of -50 dbm available at the rear panel to enable monitoring by a Read-Write-Verify (RWV) Receiver.

### 3.7.8 Power Monitor Output

The power monitor output enables connection of an external power meter to the Hewlett-Packard 478A thermistor mount in the Test Transmitter. The selfcontained thermistor output passes through a single section, high frequency, low-pass iiiter which is part of the transmitter chassis. This filter attenuates the 2116 mc RF signal by an additional 60 db , but has a negligible insertion loss to the power meter signal. The reference power level measured at the power monitor is a minimum of 1 mw .

### 3.7.9 Filtering and Shielding

Figure 6-35 is an interconnection diagram for the transmitter and shows the power and signal filtering. The individual assemblies contain filtering which attenuates all RF signals generated in the assemblies to a level less than 10 micro-volts ( -87 dbm ). This -87 dbm signal level is isolated from the low level output at the front panel by compartmentalization. An estimate of indicated signal levels contained in these compartments is as follows:

Transmitter assembly compartment less than $\mathbf{- 8 0} \mathrm{dbm}$
Transmitter attenuator section less than -120 dbm
RF output and power monitor section less than -150 dbm
The attenuator control shafts enter the front panel through waveguide beyond cutoff tubing. The calculated value of attenuation for the three-inch tube is 192 db . Since the tube enters an area which is estimated at -120 dbm , an adequate safety factor is assured.

### 3.8 RANGING CONVERSION UNIT $1 A 10$

The Ranging Conversion Unit (figure 6-37) consists of three assemblies, a 10 MC Phase Shifter (1A10Al), a 10 MC Phase Switch (1Al0A2) and a 10 MC Balanced Detector (1AlOA3).

### 3.8.1 10 MC Phase Shifter 1AloAl

The 10 MC Phase Shifter assembly is included in the Ranging Conversion Unit to allow the 498 kc output phase to be adjusted for proper phase relationship with the external ranging equipment. The technical specifications and circuit description for the identical unit in the Test Receiver (assembly lasA3) are given in paragraph 3.5.12.

### 3.8.2 10 MC Phase Switch 1A10A2

The schematic for the 10 MC Phase Switch assembly is shown in figure 6-38. The circuit is essentially a push-push amplifier with the inputs driven $180^{\circ}$ apart in phase and the outputs are in parallel. The two amplifiers are switched on or off, by Q1 and Q4, alternately by the $\mathrm{PN}-\overline{\mathrm{PN}}$ square wave input modulation signals. When one RF amplifier is on the other is off, thus producing the $180^{\circ}$ modulated output signal. The modulation frequency is a 498 kc square wave. Technical specifications for the 10 MC Phase Switch assembly are as follows.

VOLUME I

| Motorola No. | $01-23840 \mathrm{DOl}$ |
| :--- | :--- |
| Frequency | 10 mc |
| Input Impedance | $50( \pm 5)+j 0( \pm 5)$ ohms |
| Input Impedance | 50 ohms, VSWR $<1.2: 1$ maximum |
|  | $1.5: 1$ within 3 db bandwidth |
| Input Level (RF) | $10( \pm 3) \mathrm{dbm}$ |
| Output Level (RF) | $5( \pm 1) \mathrm{dbm} @+7 \mathrm{dbm}$ input |
| Modulation Signal: | 0.8 V p-p |
| Amplitude | $-0.6( \pm 0.1$ to $-1.35( \pm 0.1)$ assertion |
| Polarity | $-1.35( \pm 0.1$ to $-0.6( \pm 0.1)$ negation |
|  | 498 kc |
| Frequency | 0.03 microseconds |
| Pulse \& Decay Time | Reference signals $>30$ db below the |
| Balance | first order sideband. |
| Spurious Signals | All signals $>35$ db below the desired |
|  | output signal. |

### 3.8.3 10 MC Balanced netector $1 \mathrm{AlnA3}$

The schematic diagram for the 10 MC Balanced Detector assembly is shown in figure 6-39. The phase modulated signal from the 10 MC Phase Switch (1Al0A2) at Jl is amplified by two cascode amplifier stages, Q1 through Q4. Transistor Q5 is an emitter follower stage, which provides the signal injection to the balanced diode detector. The output is monitored by TP1 and TP2, which are on opposite sides of a 10 mc rejection filter. The 498 kc signal from the detector is filtered and amplified by $Q 6$ and $Q 7$ and the associated circuitry. Transistor $Q 7$ is an emitter follower amplifier, which provides the output level and impedance matching required. Technical specifications for the 10 MC Balanced Detector assembly are as follows:

| Motorola No. | $01-23845 \mathrm{DO1}$ |
| :--- | :--- |
| Frequency | 10 mc |
| Input Signal Level | -60 dbm maximum |
| Output Amplifier Response | $\pm 10 \mathrm{kc}$ minimum @ $3 \mathrm{db}, 498.047 \mathrm{kc}$ |
|  | center frequency |
| Conversion Gain | $19( \pm 3) \mathrm{db}$ |
| Noise Figure | 13 db maximum |
| Bandwidth | $> \pm 2 \mathrm{mc},<2.5 \mathrm{mc} @ 10 \mathrm{mc}$ center |
|  | frequency |
| Output Impedance | $50( \pm 10)+j 0( \pm 10)$ ohms |
| Input Impedance | 50 ohms, VSWR $1.2: 1$ maximum |

VOLUME 1
SECTION IV
DRAWER AND ASSEMBLY ALIGNMENT AND CHECKOUT PROCEDURES

### 4.1 GENERAL

This section describes the alignment and checkout procedures for each drawer and assembly in the GSE. All schematic diagrams used with the procedures throughout this section are located in section VI. All assembly alignment procedures outlined in this section are referenced to the proper assembly alignment procedure that is bound in Volume 2 or Volume 3.

NOTE
Locate the desired assembly alignment procedure by referring to the table of contents and indexed tabs in each separately bound volume of test and alignment procedures.

To ensure maximum performance of each drawer, each assembly should be realigned after repairs ū parts replaccment have heen accomplished on the assembly.

### 4.2 TELEMETRY NARROW BAND SUBSYSTEM IA2, ALIGNMENT

This alignment and test procedure covers the tests required for the Telemetry Narrow Band Subsystem, Motorola Part No. 01-25245E. Refer to figure 6-5 for a schematic diagram of the drawer. This alignment and checkout procedure assumes the assembly checkout procedures outlined in paragraphs 4.3 through 4.7 were completed prior to the alignment of the drawer in the following procedure.

### 4.2.1 Test Equipment Required

The following test equipment, or equivalent, is required to align and test the Telemetry Narrow Band Subsystem.

Signal Generator, HP-608C
Test Receiver, 1A6
Frequency Counter, HP-524C
AC VTVM, HP-400D
Spectrum Analyzer, Panoramic SPA-4a
Power Supply, $\pm 15$ vdc

### 4.2.2 Alignment

a. Interconnect the system and lock the Test Receiver on the incoming signal from the signal generator.
b. Connect a VTVM to the output of the 10 MC Phase Detector assembly at 1A2A3-J3 (disconnect cable W7).
c. Adjust the dial on the 10 MC Phase Shifter assembly (1A2A5) to obtain 0 vdc on the VTVM.
d. Disconnect the VTVM and reconnect cable W7 on the assembly.

### 4.2.3 Test Requirements

### 4.2.3.1 Bandwidth Selector

a. Connect a HP-606A signal generator to jack 1A2J4 (rear panel).
b. Set signal generator output signal to 10.000 mc and -65 dbm .
c. Set variable attenuator to 0 db .
d. Connect a spectrum analyzer to jack lA2J6.
e. Set the BANDWIDTH switch to the 4.5 KC position.
f. Measure the 1 db bandwidth at jack lA2J6 (limit: 4.5 kc minimum).
g. Set the BANDWIDTH switch to the 20 KC position.
h. Measure the 1 db bandwidth at jack lA2J6 (limit: 20 kc minimum).
i. Set the BANDWIDTH switch to the 420 KC position.
j. Measure the 1 db bandwidth at jack lA2J6 (limit: 420 kc minimum).
k. Set the BANDWIDTH switch to the 3.3 MC position.

1. Measure the 3 db bandwidth at jack la2J6 (limit: $\pm 8 \mathrm{mc}$ minimum $\pm 9 \mathrm{mc}$ maximum).

### 4.2.3.2 Narrow Band Telemetry Channel Outputs

a. Connect the test equipment as described in paragraph 4.2.3.1.
b. Connect the 10 mc reference signal from the Test Receiver to the 10 mc reference input of jack lA2J5.
c. Connect an oscilloscope to the TLM DPE output at 1 A 2 J 1.
d. Observe the oscilloscope and vary the input frequency at the 10 mc reference input at lA2J5 for an output beat note of approximately 1000 cps .
e. Connect an AC VTVM and a 50 ohm load to jack 1A2J2.
f. Measure the output amplitude (limit: 0 dbm nominal).
g. Verify that the amplitude of the output signal at 1A2J1 and 1A2J3 are identical outputs to the output of 1A2J2.

### 4.3 TELEMETRY BANDPASS FILTER 1A2A1, ALIGNMENT

This alignment and test procedure covers the tests required for the Telemetry Bandpass Filter, Motorola Part No. 01-23800D01. Refer to figure 6-6 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 2 on the assembly.

### 4.4 NARROW BAND 10 MC IF AMPLIFIER IA2A2, ALIGNMENT

This alignment and test procedure covers the tests required for the Narrow Band 10 MC IF Amplifier, Part No. 0l-24272D01. Refer to figure 6-7 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 2 on the assembly.

### 4.510 MC PHASE DETECTOR 1A2A3, ALIGNMENT

This alignment and test procedure covers the tests required for the 10 MC Phase Detector, Motorola Part No. 01-24273D01. Refer to figure 6-8 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 2 on the assembly.
4.6 VIDEO AMPLIFIER 1A2A4, ALIGNMENT

This alignment and test procedure covers the tests required for the Video Amplifier, Motorola Part No. 0l-23853D01. Refer to figure 6-9 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 2 on the assembly.

### 4.710 MC PHASE SHIFTER 1A2A5, ALIGNMENT

This alignment and test procedure covers the tests required for the 10 MC Phase Shifter, Motorola Part No. 01-23793D01. Refer to figure 6-10 for a schematic diagram of the assembly. . Perform the alignment procedure outlined in Volume 2 on the assembly.

### 4.8 TELEMETRY WĪDE BAND SUBGYGTEM 1A3, AITGNMENT

This alignment and test procedure covers the tests required for the Telemetry Wide Band Subsystem, Motorola Part No. 01-25246E. Refer to figure 6-11 for a schematic diagram of the drawer. This alignment and checkout procedure assumes the assembly checkout procedures outlined in paragraphs 4.9 through 4.11 were completed prior to the alignment of the drawer in the following procedure.

### 4.8.1 Test Equipment Required

The following test equipment, or equivalent, is required to align and test the Telemetry Wide Band Subsystem.

Signal Generator, HP-606A
Spectrum Analyzer, Panoramic SPA-4a
Test Receiver, Drawer 1A6
AC VTVM, HP-400D
Frequency Counter, HP-524C

### 4.8.2 Alignment

No alignment is required for the drawer.

### 4.8.3 Test Requirements

### 4.8.3.1 Bandwidth Selector

a. Connect a HP-606A signal generator to jack lA3J4 (rear panel).
b. Set signal generator output signal to 10.000 mc and -65 dbm .
c. Connect a frequency counter to jack lA3J1 (front panel).
d. Connect a spectrum analyzer to jack 1A3J2.
e. Set the BANDWIDTH switch to the 4.5 KC position.
f. Set the ATTENUATION DB switches to the 0 DB positions.
g. Vary the signal generator output frequency while observing the spectrum analyzer and frequency counter for both the upper and lower 1 DB frequencies.
h. Determine the bandwidth by subtracting the two frequencies. The bandwidth should be as follows. Also, determine the bandwidth of the $20 \mathrm{KC}, 420 \mathrm{KC}$, and 3.3 MC positions of the BANDWIDTH switch.

| BANDWIDTH Switch Position | 1 DB Bandwidth Tol |
| :---: | :---: |
| 4.5 KC | 4.5 kc minimum |
| 20 KC | 20 kc minimum |
| 420 KC | 420 kc minimum |
| 3.3 MC | 3.3 mc minimum |

4.8.3.2 Wide Band Telemetry Channel Outputs (NON-GSDS and TLM)
a. Connect the test equipment as described in paragraph 4.8.3.1.
b. Set signal generator output signal to 10.000 mc and -65 dbm .
c. Measure the amplitude of the output signal at la3J2 on the spectrum analyzer (limit: $-7 \mathrm{dbm} \pm 1.5 \mathrm{db}$ ).
d. Repeat the above procedure with the spectrum analyzer connected to 1A3Jl.
4.8.3.3 Wave Analyzer Input (1A8J3 and J7)
a. Connect the wide band telemetry output signal from the Test Receiver to jack la3J4 (WB IN).
b. Lock the Test Receiver to the output signal from the Test Transmitter. The locked condition may be observed with an oscilloscope connected at the DPE jack on 1A5J2.
c. Connect the spectrum analyzer to the NON-GSDS output (lA3Jl).
d. Set the variable attenuators for a -7 dbm signal output at la3Jl.
e. Connect a frequency counter to the wave analyzer input (1A3J3).
f. Verify that the output frequency at lA3J3 is 20 kc (nominal).
g. Verify that the output frequencies at lA3J6 and lA3J3 are identical frequencies.

### 4.8.3.4 Wave Analyzer Input Level

a. Connect the test equipment as described in paragraph 4.8.3.1.
b. Connect an AC VTVM to the wave analyzer input (1A3J3).
c. Measure the output voltage at lA3J3 (limit: 3 volts $\pm 0.3 \mathrm{~V}_{\mathrm{RMS}}$ ).
d. Verify that the output voltage at 1 A3J6 is identical to the voltage at 1A3J3.

### 4.8.3.5 Spectrum Analyzer Input

a. Connect the test equipment as described in paragraph 4.8.3.1.
b. Lock the Test Receiver to the output signal from the Test Transmitter.
c. Connect the spectrum analyzer to the 10 MC WB OUT input (1A3Jl).
d. Adjust the variable attenuators for -7 dbm at la3Jl.
e. Connect the 20 MC input from 1A3J7 to lA4Jl7.
f. Set the output signal of the signal generator to 20 mc and 0 dbm .
g. Connect the spectrum analyzer to the input at la3J5.
h. Measure the output signal level at la3J7 (limit: $\mathbf{- 4 2}$ dbm nominal).

### 4.9 TELEMETRY BANDPASS FILTER IABAI, ALIGNMENT

Alignment of this assembly is performed in the same manner as the alignment of Telemetry Bandpass Filter lazAl (located in Volume 2). Refer to figure 6-6 for a schematic diagram of the assembly.
4.10 10.02 MC MIXER-OSCILLATOR 1A3A2, ALIGNMENT

This alignment and test procedure covers the tests required for the 10.02 MC Mixer-Oscillator, Motorola Part No. 01-23844D. Refer to figure 6-13 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 2 on the assembly.
4.11 WIDE BAND 10 MC IF AMPLIFIER 1A3A3, ALIGNMENT

This alignment and test procedure covers the test required for the wide Band 10 MC IF Amplifier, Motorola Part No. 01-23795D01. Refer to figure 6-12 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 2 on the assembly.
4.12 TEST RECEIVER DRAWERS IA4 THROUGH IA7, ALIGNMENT

The Test Receiver alignment procedure is performed with the four Test Receiver drawers (1A4 through 1A7) mounted and interconnected in the GSE Rack. The procedure in the following paragraphs covers the complete drawers listed as follows.


This alignment and checkout procedure assumes the assembly checkout procedures outlined in paragraphs 4.13 through 4.27 were completed prior to the alignment of the four drawers in the following procedure.

### 4.12.1 Test Equipment Required

The following test equipment, or equivalent, is required to align and test the Test Receiver.
Power Meter, HP-430C
Thermistor Mount, HP-477B
Frequency Counter, HP-524C
Oscilloscope, Tektronix Type 543A
Signal Generator, $\mathrm{HP}-616 \mathrm{~B}$
Function Generator, HP-202A
Spectrum Analyzer, Panoramic SPA-4a
VTVM, HP-410B
VTVM, HP-412A
Test Transmitter, ..... 1A9
Frequency Converter, 1A8
4.12.2 Initial Alignment
4.12.2.1 Power Supplies
Adjust the power supplies as follows.
a. Adjust the +15 vdc as indicated by panel meter.
b. Adjust the -15 vdc as indicated by panel meter.
c. Adjust the +28 vdc as indicated by panel meter.
d. Adjust the -28 vdc as indicated by panel meter.
4.12.2.2 Local Oscillator Power Measurement
With a power meter connected at the Mixer-Preamplifier assembly (J2, 1A7A1),
measure the amplitude of the local oscillator (limit: $0 \mathrm{dbm} \pm 3 \mathrm{db}$ ).
4.12.2.3 Input Attenuation and Preselector Insertion Loss
a. Connect the $\mathrm{HP}-616 \mathrm{~B}$ signal generator to the 2298 MC input (1A7JI).
b. Set the signal generator to 2298 mc and -40 dbm .
c. Connect the spectrum analyzer to the signal input of the Mixer-Preamplifier assembly (1A7Al, Jl).
d. Set the variable attenuator to zero.
e. Measure the insertion loss (limit: 23 db maximum).
4.12.2.4 Crystal Current
With no signal input, measure the crystal current at TP1 and TP2
(limit: 0.7 to 0.8 ma ).
4.12.3 Test Requirements
4.12.3.1 10 MC Isolation and Distribution Amplifier Outputs (Reference)
a. Connect a power meter to jack lA4J8.b. Terminate jacks lA4J1, 1A4J3, 1A4J4, and lA4J5 with a 50 ohm termi-nation.
c. Measure the power output at jack 1 A 4 J 8 (1imit: $10 \mathrm{dbm} \pm 2 \mathrm{db}$ ).
d. Repeat the above procedure to determine the power output at 1 A 4 J, ,1A4J3, 1A4J4, and 1A4J5.
e. Connect a frequency counter to jack lA4J8.
f. Measure the output frequency at jack 1A4J8 (limit: $10 \mathrm{mc} \pm 100 \mathrm{cps}$ ).
g. Verify the output frequency at $1 \mathrm{~A} 4 \mathrm{~J} 1,1 \mathrm{~A} 4 \mathrm{~J} 3,1 \mathrm{~A} 4 \mathrm{~J} 4$, and 1 A 4 J 5 are the same frequency as the output frequency at lA4J8.

### 4.12.3.2 VCO Tuning Range

### 4.12.3.2.1 Power Output and Center Frequency

a. Set the LOOP BW CPS switch to the OPEN position.
b. Set the FINE TUNE control to 5.00.
c. Connect a VTVM to the center arm of the FINE TUNE control, and adjust the trimpot for 10 vdc at the center arm.
d. Connect a power meter to the VCO output at 1A6J2.
e. Measure the power output (limit: 10 mw minimum).
f. Repeat the procedure in steps (d) and (e) for VCO SELECTOR switch positions 1 through 5.
g. Connect the power meter to the VCO output at 1A6J5.
h. Measure the power output for VCO SELECTOR switch positions 1 through 5. (limit: 10 mw minimum).
i. Connect a frequency counter to the VCO frequency output at la6Jl (front panel).
j. Verify that the frequencies are within the limits specified as follows.

VCO SELECTOR
Switch Position

| 1 | $23.385420 \pm 146 \mathrm{cps}$ |
| :--- | :--- |
| 2 | $23.412420 \pm 146 \mathrm{cps}$ |
| 3 | $23.416280 \pm 146 \mathrm{cps}$ |
| 4 | $23.420140 \pm 146 \mathrm{cps}$ |
| 5 | $23.424000 \pm 146 \mathrm{cps}$ |

VCO Output Frequency (MC)

$$
\begin{aligned}
& 23.385420 \pm 146 \mathrm{cps} \\
& 23.412420 \pm 146 \mathrm{cps} \\
& 23.416280 \pm 146 \mathrm{cps} \\
& 23.420140 \pm 146 \mathrm{cps} \\
& 23.424000 \pm 146 \mathrm{cps}
\end{aligned}
$$

### 4.12.3.2.2 VCO Linearity

a. With the VCO SELECTOR switch placed in the No. l position, jacks J5 and J9 terminated with 50 ohm terminations, and a frequency counter connected to Jl, vary the FINE TUNE control from 1.0 to -10 and measure the output frequencies at $0.0,1.0,2.0,3.0,4.0,5.0,6.0$, $7.0,8.0,9.0$, and 10.0 .
b. Plot the results of step (a) on a graph. Figure 4-1 is a typical graph (limit: VCO frequency shall not deviate more than $\pm 900 \mathrm{cps}$ from the center frequency).
c. Repeat the procedure outlined in steps (a) and (b) for VCO SELECTOR switch positions 2 through 5.

VOLUME 1


Figure 4-1. Typical VCO Linearity Curve for Test

### 4.12.3.3 Predetection Bandwidth

a. Connect the Test Transmitter and Frequency Converter to the Test Receiver as the signal source.
b. Set all variable attenuators to zero.
c. Obtain a linear output signal from the 10 MC IF Amplifier assembly (1A7A4) at J2 by switching the MGC/AGC switch to the MGC position, and adjusting the MGC control until a signal is obtained on the spectrum analyzer in the linear area of the 10 MC IF Amplifier assembly.
d. While monitoring the Test Transmitter VCO frequency, vary the FINE TUNE control until an upper and lower 3 db frequency is obtained on the spectrum analyzer.
e. Multiply the difference of the two frequencies by 96 (limit: 2 kc $\pm 180 \mathrm{cps}$ ) .
4.12.3.4 Tracking Loop Bandwidth
a. Lock the Test Receiver to the output signal from the Test Transmitter under siroüg signal conditions.
b. Connect an AC VTVM to the DPE output at J2 on the Test Receiver.
c. Connect a function generator to the ranging input at J 4 on the Test Transmitter.
d. Set the function generator signal level at the beginning of each test to obtain approximately 3 VRMS modulation level at the high frequency reference for each response curve.
4.12.3.5 Signal Strength Calibration and Output Variation with Signal Level
a. Connect the Test Transmitter and Frequency Converter to the Test Receiver as the signal source.
b. Apply a nominal -40 dbm signal to the Test Receiver.
c. Measure the exact amplitude of the input signal to the Test Receiver.
d. Observe the SIGNAL STRENGTH meter readings for $5,12,48$, and 152 CPS BANDWIDTH switch positions, and the -65 dbm ranging output amplitude (1A7J5) vs attenuator dial settings.
e. Verify that the signals at lA7J3 and lA7J4 have identical outputs as 1A7A5.
4.12.3.6 Residual Phase Modulation
a. Connect the Test Transmitter and Frequency Converter to the Test Receiver as the signal source.
b. Observe the Test Receiver direct phase error (DPE) output on an oscilloscope, and calibrate the oscilloscope in degrees with the peak $S$-curve.
c. Lock the loop and measure noise in degrees peak on the oscilloscope with the LOOP BW switch placed in the 5 CPS position ( 8 degrees peak maximum).
d. Repeat the procedure in steps (b) and (c) for all five VCO switch positions.
4.1320 MC OSCILLATOR AND X3 MULTIPLIER 1A4A1, ALIGNMENT

This alignment and test procedure covers the tests required for the 20 MC Oscillator and X3 Multiplier, Motorola Part No. 01-23781d01. Refer to figure 6-16 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 2 on the assembly.

### 4.14 X1/2 FREQUENCY MULTIPLIER 1A4A2, ALIGNMENT

This alignment and test procedure covers the tests required for the $\mathrm{Xl} / 2$ Frequency Multiplier, Motorola Part No. 01-21456C01. Refer to figure 6-17 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 2 on the assembly.
4.1510 MC ISOLATION AND DISTRIBUTION AMPLIFIER 1A4A3, ALIGNMENT

This alignment and test procedure covers the tests required for the 10 MC Isolation and Distribution Amplifier, Motorola Part No. 01-23778D01. Refer to figure 6-18 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 2 on the assembly.
4.16 X32 FREQUENCY MULTIPLIER IA4A4, ALIGNMENT

This alignment and test procedure covers the tests required for the X 32 Frequency Multiplier, Motorola Part No. 01-23786D01. Refer to figure 6-19 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 2 on the assembly.

### 4.17 X3 FREQUENCY MULTIPLIER 1A4A5, ALIGNMENT

This alignment and test procedure is a part of the alignment procedure for the X3 Multiplier and Phase Modulator 1A9A2 (located in Volume 3). Refer to figure 6-20 for a schematic diagram of the assembly.

### 4.18 AGC AMPLIFIER AND FILTER IA5A1, ALIGNMENT

This alignment and test procedure covers the tests required for the AGC Amplifier and Filter, Motorola Part No. 01-23610D01. Refer to figure 6-22 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 3 on the assembly.
4.1910 MC PHASE DETECTOR 1A5A2, ALIGNMENT

This alignment and test procedure covers the tests required for the 10 MC Phase Detector, Motorola Part No. 01-21432C01. Refer to figure 6-23 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 3 on the assembly.

### 4.2010 MC PHASE SHIFTER 1A5A3, ALIGNMENT

Alignment of this assembly is performed in the same manner as the alignment of 10 MC Phase Shifter 1A2A5 (located in Volume 2). Refer to figure 6-10 for a schematic diagram of the assembly.
4.2110 MC PHASE DETECTOR 1A5A4, ALIGNMENT

Alignment of this assembly is performed in the same manner as the alignment of 10 MC Phase Detector 1A5A2 (located in Volume 2). Refer to figure 6-23 for a schematic diagram of the assembly.
4.22 5-CHANNEL RECEIVER VCO 1A6AI, ALIGNMENT

This alignment and test procedure covers the tests required for the 5-Channel Receiver VCO, Motorola Part No. 01-25260E01. Refer to figure 6-25 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 3 on the assembly.
4.23 LOOP FILTER IA6A2, ALIGNMENT

This alignment and test procedure covers the tests required for the Loop Filter, Motorola Dart No. Ol-23784D. Refer to figure 6-26 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 3 on the assembly.

### 4.24 BALANCED MIXER-PREAMPLIFIER IA7AI, ALIGNMENT

This alignment and test procedure covers the tests required for the Balanced Mixer-Preamplifier, Motorola Part No. 01-23773D01. Refer to figure 6-28 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 3 on the assembly.

### 4.2550 MC IF AMPLIFIER AND SECOND MIXER IA7A2, ALIGNMENT

This alignment and test procedure covers the tests required for the 50 MC IF Amplifier and Second Mixer, Motorola Part No. 01-23774D01. Refer to figure 6-29 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 3 on the assembly.

### 4.2610 MC IF DISTRIBUTION AMPLIFIER IA7A3, ALIGNMENT

This alignment and test procedure covers the tests required for the 10 MC IF Distribution Amplifier, Motorola Part No. 01-23775D01. Refer to figure 6-30 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 3 on the assembly.

### 4.27 10 MC IF AMPLIFIER IA7A4, ALIGNMENT

This alignment and test procedure covers the tests required for the 10 MC IF Amplifier, Motorola Part No. 01-23776D01. Refer to figure 6-31 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 3 on the assembly.

VOLUME 1

### 4.28 FREQUENCY CONVERTER 1A8, ALIGNMENT

This procedure covers the required alignment and test for the Frequency Converter, Motorola Part No. 01-25251E. Refer to figure 6-32 for a schematic diagram of the drawer. This alignment and checkout procedure assumes the assembly checkout procedures outlined in paragraphs 4.29 and 4.30 were completed prior to the alignment of the drawer in the following procedure.

### 4.28.1 Test Equipment Required

The following test equipment, or equivalent, is required to align and test the Frequency Converter.

Frequency Counter, HP-524C
Counter Converter Head, HP-525B
VTVM, HP-412A
Spectrum Analyzer, Panoramic SPA-4a
Signal Generator, HP-616A
Test Transmitter, 1A9
4.28.2 Alignment
4.28.2.1 5-Channel Oscillator
a. Apply power to the drawer.
b. Connect a frequency counter to TP1 on the 5-Channel Oscillator assembly (1A8A1).
c. Set the FREQUENCY SELECTOR switch in each of the five VCO positions, and check the oscillator frequency on the frequency counter for the proper frequencies tabulated as follows. (A slight readjustment of coils Ll through L5 may be necessary to obtain the proper frequency.) Multiply the frequency obtained on the frequency counter times 4 for the following readings.

| Switch Position | Oscillator | Frequency (MC) | Output Frequency (MC) |
| :---: | :---: | :---: | :---: |
| 1 | 45.421870 | $\pm 45 \mathrm{cps}$ | $181.687480 \pm 180 \mathrm{cps}$ |
| 2 | 45.473190 | $\pm 45 \mathrm{cps}$ | $181.892748 \pm 180 \mathrm{cps}$ |
| 3 | 45.480520 | $\pm 45 \mathrm{cps}$ | $181.922071 \pm 180 \mathrm{cps}$ |
| 4 | 45.487850 | $\pm 45 \mathrm{cps}$ | $181.951388 \pm 180 \mathrm{cps}$ |
| 5 | 45.495180 | $\pm 45 \mathrm{cps}$ | $181.980708 \pm 180 \mathrm{cps}$ |

### 4.28.2.2 Crystal Current

a. Connect a DC VTVM at TPl on the Mixer-Filter assembly (1A8A2).
b. Switch the FREQUENCY SELECTOR switch to the No. 1 position.
c. Observe the voltage reading on the VTVM. The voltage should be 0.05 vdc or greater.
d. Determine the crystal current by dividing the voltage obtained in step (c) by 100 ohms (limit: 0.5 ma minimum).
e. Repeat the above procedure for FREQUENCY SELECTOR switch positions 2 through 5.

### 4.28.2.3 RF Mixer

a. Connect the output signal from the Test Transmitter (1A9Jl) to the input of the Frequency Converter (1A8J1).
b. Set both variable attenuators on the Test Transmitter to zero.
c. Set Test Transmitter VCO SELECTOR switch to position No. 1.
d. Set Test Transmitter FREQUENCY CONTROL to 5.00.
e. Set Frequency Converter FREQUENCY SELECTOR switch to position No. 1.
f. Connect a spectrum analyzer to the output of the Frequency Converter (1A8J2).
g. Observe the desired output signal on the spectrum analyzer, and turn the tuning screws on cavities $Z 1$ and $Z 3$ of the Mixer-Filter assembly (1A8A2) for a maximum signal.

### 4.28.3 Test Requirements

4.28.3.1 Mixer Conversion
a. Set up the test equipment as described in paragraph 4.28.2.3.
b. Measure the amplitude of the Frequency Converter output signal.
$r$. Connect the Test Transmitter output signal to the spectrum analyzer and measure the amplitude of the signal.
d. Subtract the two readings obtained in steps (b) and (c), and then subtract 6 db to allow for the 6 db attenuator in the Frequency Converter drawer (limit: -18 db maximum).
4.28.3.2 Spurious Signals
a. Set up the test equipment as described in paragraph 4.28.2.3.
b. Vary the spectrum analyzer over a frequency range of 850 mc to 4000 mc and verify that spurious signals are $\mathbf{- 5 0} \mathrm{dbm}$ or less below the desired output signal.

### 4.28.3.3 RF Bandwidth

a. Connect a HP-616A signal generator to the input of the Frequency Converter (1A8J1).
b. Set the output signal from the signal generator to approximately 2116 mc and -40 dbm .
c. Connect the spectrum analyzer to the output of the Frequency Converter (1A8J2).
d. Set the spectrum analyzer amplitude control to linear operation, and tune the spectrum analyzer to display the output signal from the Frequency Converter at the center graticule of the cathode ray tube.
e. Vary the signal generator output signal to determine the 3 db passband of the Frequency Converter (limit: 12 mc minimum).

VOLUME 1

NOTE
To determine the Frequency Converter bandwidth, the spectrum analyzer should be adjusted so that the display is always presented on the center of the vertical graticule. When the maximum output occurs (center frequency of passband), adjust spectrum analyzer amplitude controls to display the output to full scale. The upper and lower frequencies are determined when the output amplitude drops to 0.7 of the center frequency output. Subtract the two frequencies to determine the passband.

### 4.29 5-CHANNEL OSCILLATOR 1A8AI, ALIGNMENT

This alignment and test procedure covers the tests required for the 5Channel Oscillator, Motorola Part No. 01-25277E0l. Refer to figure 6-33 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 3 on the assembly.

### 4.30 MIXER-FILTER 1A8A2, ALIGNMENT

This alignment and test procedure covers the tests required for the MixerFilter, Motorola Part No. 01-20247E01. Refer to figure 6-34 for a schematic diagram of the assembly. The Mixer-Filter assembly requires no alignment.

### 4.31 TEST TRANSMITTER 1A9, ALIGNMENT

This procedure covers the required alignment and test for the Test-Transmitter, Motorola Part No. 01-25252E. Refer to figure 6-35 for a schematic diagram of the drawer. This alignment and checkout procedure assumes the assembly checkout procedures outlined in paragraphs 4.32 through 4.34 were completed prior to the alignment of the drawer in the following procedure.

### 4.31.1 Test Equipment Required

The following test equipment, or equivalent, is required to align and test the Test Transmitter.

Power Meter, HP-430C
Thermistor Mount, HP-477B
Frequency Counter, HP-524C
Counter Converter Head, HP-525C
Spectrum Analyzer, Panoramic SPA-4a
Signal Generator, HP-608C
Signal Generator, HP-614B

Signal Generator, HP-606A
Signal Generator, HP-616A
VTVM, HP-410B
Audio Oscillator, HP-200CD
Power Meter, HP-431B

### 4.31.2 Initial Alignment of Power Supplies

a. Adjust the +15 vdc power supply to $+15 \pm 0.5 \mathrm{vdc}$.
b. Adjust the -15 vdc power supply to $-15 \pm 0.5$ vdc.
c. Adjust the -28 vdc power supply to $-28 \pm 0.5$ vdc.

### 4.31.3 Test Requirements

4.31.3.1 VCO Power Outputs
a. Set the FREQUENCY CONTROL dial to 5.0.
b. Terminate jacks J2 and J6 ( 22 MC outputs) with 50 ohm terminations.
c. Connect a power meter to jack J5 ( 22 MC output).
d. Measure the power output of the Test Transmitter (limit: 10 mw minimum).
e. Terminate jacks $J 5$ and $J 6$ with 50 ohm terminations.
f. Connect a power meter to jack J2.
g. Measure the power output (limit: 1 mw nominal).
h. Terminate jacks J2 and J5 with 50 ohm terminations.
i. Connect a power meter to J6.
j. Measure the power output (limit: 1 mw nominal).
4.31.3.2 VCO Center Frequencies
a. Set FREQUENCY CONTROL dial to 5.0.
b. Terminate jacks J5 and J6 with 50 ohm terminations.
c. Connect a frequency counter to jack J2.
d. Set the VCO SELECTOR switch to the following five positions and measure the output frequencies at jack J2.

VCO SELECTOR Switch Position Frequency (MC)
$1 \quad 22.013670 \pm 144 \mathrm{cps}$
$2 \quad 22.038540 \pm 144 \mathrm{cps}$
$3 \quad 22.042092 \pm 144 \mathrm{cps}$
$4 \quad 22.045645 \pm 144 \mathrm{cps}$
$5 \quad 22.049198 \pm 144 \mathrm{cps}$
e. Verify that the frequencies at jacks J2, J5, and J6 are identical frequencies.

### 4.31.3.3 VCO Devistion

a. With the VCO sELECTOR switch placed in No. 1 position, jacks J5 and J6 terminated with 50 ohm terminations, and a frequency counter connected to jack J2, vary the FREQUENCY CONTROL dial from 1.0 to -10 and measure the output frequencies at $0.0,1.0,2.0,3.0,4.0,5.0,6.0$, 7.0, 8.0, 9.0, and 10.0.
b. Plot the results of step (a) on a graph. Figure 4-2 1s a typical graph (limit: VCO frequency ahall deviate $\pm 800$ cps from 5.0 frequency dial reading).
c. With the VCO SELECTOR switch placed in the No. 2 position, vary the FREQUENCY CONTROL dial from 1.0 to -10 and plot the results on a graph as described in steps (a) and (b). Figure 4-2 is a typical graph.
d. With the VCO SELECTOR awitch placed in the No. 3 position, vary the FREQUENCY CONTROL dial from 1.0 to -10 and plot the results on a graph as described in steps (a) and (b) . Figure 4-2 is a typical graph.
e. With the VCO SELECTOR switch placed in the No. 4 position, vary the FREQUENCY CONTROL dial from 1.0 to -10 and plot the results on a graph as described in steps (a) and (b). Figure 4-2 is a typical graph.
f. With the VCO EELECTOR awitch placed in the No. 5 position, vary the FREQUENCY CONTROL dial from 1.0 to -10 and plot the results on a graph as described in steps (a) and (b). Figure 4-2 is a typical graph.
4.31.3.4 Transmitter Power Outputs
4.31.3.4.1 RF Power Monitor Output (J8)
a. Connect a power meter to the RF power monitor at jack J8.
b. Set VCO SELECTOR switch to No. 1 position.
c. Vary the FREQUENCY CONTROL dial from 10.0 to 0.0 and back to 10.0 and measure the maximum and minimum power output (limit: 0 to 10 dbm ).
d. Repeat the procedure outlined in steps (b) and (c) for VCO SELECTOR switch positions 2 through 5.
4.31.3.4.2 RF Output (JI)
a. Connect a spectrum analyzer in series with a $50-\mathrm{ohm}, 6 \mathrm{db}$ pad at the Test Transmitter RF output (J1).
b. Set step attenuator and variable attenuator to 0 db .
c. Use the comparison method with a HP-616B signal generator and measure the power output (limit: $\mathbf{- 4 0} \mathrm{dbm}$ minimum).
4.31.3.4.3 RWV Output
a. Connect a 6 db pad in series with the spectrum analyzer to the RWV output Jack (J9).
b. Use the comparison method and measure the power output (limit: -50 dbm $\pm 5 \mathrm{db}$ ).

VOLUME 1


Figure 4-2. Typical VCO Linearity Curve for Test Transmitter

### 4.31.3.5 Phase Modulation

4.31.3.5.1 Phase Modulation Sensitivity (Command Modulation Input, J3)
a. Set up the test equipment as shown in figure 4-3.
b. Set signal generator output frequency to 50 kc and a minimum output.
c. Adjust the spectrum analyzer until a carrier signal is observed on the spectrum analyzer. (Increase the output signal level until the carrier null is obtained.)
d. Measure the signal generator output signal level on the AC VTVM (limits: $1.7 \pm 0.8 \mathrm{~V}$ RS) .

### 4.31.3.5.2 Phase Modulation Sensitivity (Range Modulation Input, J4)

a. Connect the HP-606A signal generator and AC VTVM to the range modulation input (J4).
b. Terminate the command modulation input (J3) with a 2.2 K resistive load.
c. Set signal generator output frequency to 500 kc .
d. Repeat the procedure outlined in steps (c) and (d) of paragraph 4.31.3.5.1 (limit: $0.426 \pm 0.02 \mathrm{~V}$ RMS) .
e. Repeat the procedure in step (d) for signal generator settings of 50 kc , $100 \mathrm{kc}, 500 \mathrm{kc}$, and 1 mc (sensitivity shall remain constant within $\pm 1 \mathrm{db}$ over all the above frequencies).


Figure 4-3. Test Transmitter, Test Setup

## VOLUME 1

### 4.31.3.6 Transmitter Disable

a. Connect the spectrum analyzer to the Test Transmitter RF output (J1).
b. Depress the TRANSMITTER DISABLE switch and verify that the signal output drops to zero.

### 4.31.3.7 Spurious Signals

a. With the equipment set up as described in paragraph 4.31.3.5.2, search for spurious signals between 850 mc and 4000 mc .
b. Verify that spurious signals and sidebands are a minimum of 30 db below the desired output signal.
4.32 5-CHANNEL TRANSMITTER VCO 1A9A1, ALIGNMENT

This alignment and test procedure covers the tests required for the 5 -Channel Transmitter VCO, Motorola Part No. 01-25260E01. Refer to figure 6-25 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 3 on the assembly.
4.33 X3 MULTIPLIER AND PHASE MODULATOR 1A9A2, ALIGNMENT

This alignment and test procedure covers the tests required for the X3 Multiplier and Phase Modulator, Motorola Part No. 01-23760D. Refer to figure 6-36 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 2 on the assembly.
4.34 X32 FREQUENCY MULTIPLIER 1A9A3, ALIGNMENT

Alignment of this assembly is performed in the same manner as the alignment of X32 Frequency Multiplier 1A4A4 except for the frequency (located in Volume 2). Refer to figure 6-19 for a schematic diagram of the assembly.
4.35 RANGING CONVERSION UNIT IAIO, ALIGNMENT

No alignment procedure is necessary for the Ranging Conversion Unit, Motorola Part No. 01-25253E. Refer to paragraphs 4.36 through 4.38 for alignment of the assemblies. Refer to figure 6-7 for a schematic diagram of the Ranging Conversion Unit.
4.36 10 MC PHASE SHIFTER 1A10A1, ALIGNMENT

Alignment of this assembly is performed in the same manner as the alignment of 10 MC Phase Shifter lA2A5 (located in Volume 2). Refer to figure 6-10 for a schematic diagram of the assembly.
4.37 10 MC PHASE SWITCH 1A1OA2, ALIGNMENT

This alignment and test procedure covers the tests required for the 10 MC Phase Switch, Motorola Part No. 01-23840D. Refer to figure 6-38 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 3 on the assembly.
4.3810 MC BALANCED DETECTOR IAIOA3, ALIGNMENT

This alignment and test procedure covers the tests required for the 10 MC Balanced Detector, Motorola Part No. 01-23845D. Refer to figure 6-39 for a schematic diagram of the assembly. Perform the alignment procedure outlined in Volume 3 on the assembly.

## VOLUME 1

## SECTION V

## DEVELOPMENT TECHNICAL PROBLEMS AND RECOMMENDATIONS

### 5.1 GENERAL

This section contains information pertaining to problems encountered and recommendations for their possible solution.

### 5.2 TELEMETRY NARROW BAND SUBSYSTEM 1A2

During checkout of this section of the test set it was noted that readjustment of the 10 MC Phase Shifter (1A2A5) was required, as different bandwidths were selected by the front panel switch, to keep the Phase Detector (la2A3) operating at the correct point.

Two solutions to this problem appear possible. The most obvious solution is to change the drawer layout so the adjustment is made accessible from the front panel. The other solution is to incorporate some form of phase correction network in connection with the bandwidth change so that no readjustment is required.

5:3 TEST RECEIVER, 1A4, 1A5, 1A6, and lA7

### 5.3.1 In-Lock Indicator

During test set checkout it became obvious that a self-contained positive indication of lock was desirable. The only indication at present is the SIGNAL STRENGTH meter, which provides such an indication when the unit is using AGC operation. (On MGC operation, even this indication is lost.) On AGC operation, near threshold, it is difficult to determine by the meter when "lock" is lost, and it is possible to have an AGC meter indication of lock-up on a beat note, which may not be detected unless observed on an oscilloscope at the time.

It appears that provisions to drive some type of amplifier-indicator from the AGC Amplifier and Filter Assembly (1A5Al) are designed in and may be satisfactory if proper indicating devices were utilized. Also, if this approach is not desired in the test set, an audio indication may be used by monitoring the DPE output with something as simple as a pair of headphones.

### 5.3.2 Loop Filter Time Constants

The time constants used in the Loop Filter Assembly (1A6A2) do not center on the bandwidth stated on the front panel. The actual bandwidth provided is below the value indicated by the front panel switch. This was a design objective of the assembly to provide a bandwidth that would never be greater than that indicated on the front panel.

### 5.3.3 Loop Filter Switching Transients

When changing Loop Filter bandwidths between 12 cps and 48 cps positions, different capacitors are switched in or out of the circuit. Due to a difference in the charge on the switched-in capacitor and the one switched out, the receiver may be knocked out of lock. No immediately apparent cure for this problem was found without modification of the assemblies.

## VOLUME 1

### 5.4 TEST TRANSMITTER, lA9

The performance of the Test Transmitter appears to be very good. The primary area where improvement could be made on future models is to incorporate a bandpass filter following the X32 Multiplier. (This incorporation of a bandpass filter is done in the DSIF system before going to power amplifiers.) Several spurious outputs are present at a sufficient level to possibly be of difficulty to some systems. They are far enough removed from the main signal that filter bandwidth could be fairly wide and still reduce them considerably. Thus, one filter would suffice for transmitters over a fairly wide frequency range.

VOLUME 1

SECTION VI

## DIAGRAMS

### 6.1 GENERAL

This section contains all the interconnection, block, and schematic diagrams for the GSE, with the one exception that all diagrams for the commerical equipment are located in each commercial manual.

### 6.2 INDEX OF DRAWINGS

Table VI-l lists the first page number for each diagram pertaining to the GSE. The drawings are identified in table VI-l according to the reference designation for each drawer or assembly.

TABLE VI-1. GSE LIST OF DIAGRAMS

| Drawing No. | Figure No. | Page No. | Reference Designation | Title |
| :---: | :---: | :---: | :---: | :---: |
| 69-25440E | 6-1 | 6-5 | -- | GSE, Over-all Block Diagram. |
| 69-25442E | 6-2 | 6-7 | - | GSE, Power Interconnection Diagram. |
| 63-25441E | 6-3 | 6-9 | -- | GSE, Signal Interconnection Diagram. |
| 63-25444E | 6-4 | 6-11 | 1A1 | Circuit Breaker Panel, Schematic Diagram. |
| 63-25445E | 6-5 | 6-13 | 1A2 | Telemetry Narrow Band Subsystem, Schematic Diagram. |
| 63-23881D | 6-6 | 6-15 | 1A2A1, 1A3A1 | Telemetry Bandpass Filter, Schematic Diagram. |
| 63-24038D | 6-7 | 6-17 | 1A2A 2 | Narrow Band 10 MC IF Amplifier, Schematic Diagram. |
| 63-25032E | 6-8 | 6-19 | 1A2A3 | 10 MC Phase Detector, Schematic Diagram. |
| 63-23883D | 6-9 | 6-21 | 1A2A4 | Video Amplifier, Schematic Diagram. |
| 63-23860D | 6-10 | 6-23 | 1A2A5, 1A5A3, 1A10A1 | 10 MC Phase Shifter, Schematic Diagram. |
| 63-25446E | 6-11 | 6-25 | 1A3 | Telemetry Wide Band Subsystem, Schematic Diagram. |
| 63-23882D | 6-12 | 6-27 | 1A3A2 | Wide Band 10 MC IF Amplifier, Schematic Diagram. |

VOLUME 1
TABLE VI-1. GSE LIST OF DIAGRAMS (cont)

| Drawing No. | Figure No. | Page No. | Reference Designation | Title |
| :---: | :---: | :---: | :---: | :---: |
| 63-23893D | 6-13 | 6-29 | 1A3A3 | 10.02 MC Mixer-Osciliator, Schematic Diagram. |
| 69-25443E | 6-14 | 6-31 | 1 A 4 thru 1A7 | Test Receiver, Interconnection Diagram. |
| 63-25447E | 6-15 | 6-33 | 1 A 4 | Test Receiver, Part One, Schematic Diagram. |
| 63-21453C | 6-16 | 6-35 | 1A4A1 | 20 MC Oscillator and X3 Multiplier, Schematic Diagram. |
| 63-21454C | 6-17 | 6-37 | 1A4A2 | X $\frac{1}{2}$ Frequency Multiplier, Schematic Diagram. |
| 63-23868D | 6-18 | 6-39 | 1A4A3 | 10 MC Isolation and Distribution Amplifier, Schematic Diagram. |
| 63-23875D | 6-19 | 6-41 | 1A4A4, 1A9A3 | X32 Frequency Multiplier,Schematic Diagram. |
| 63-23625D | 6-20 | 6-43 | 1A4A5 | X3 Frequency Multiplier, Schematic Diagram. |
| 63-25448E | 6-21 | 6-45 | 1A5 | Test Receiver, Part Two, Schematic Diagram. |
| 63-25023E | 6-22 | 6-47 | 1A5Al | AGC Amplifier and Filter, Schematic Diagram. |
| 63-21447C | 6-23 | 6-49 | 1A5A2,A4 | 10 MC Phase Detector, Schematic Diagram. |
| 63-25449E | 6-24 | 6-51 | 1A6 | Test Receiver, Part Three, Schematic Diagram. |
| 63-25280E | 6-25 | 6-53 | 1A6A1, 1A9A1 | 5-Channel VCO, Schematic Diagram |
| 63-23863D | 6-26 | 6-55 | 1A6A2 | Loop Filter, Schematic Diagram. |
| 63-25450E | 6-27 | 6-57 | 1 A 7 | Test Receiver, Part Four, Schematic Diagram. |
| 63-23879D | 6-28 | 6-59 | 1A7Al | Balanced Mixer-Preamplifier, Schematic Diagram. |
| 63-21450C | 6-29 | 6-61 | 1A7A2 | 50 MC IF Amplifier and Second Mixer, Schematic Diagram. |
| 63-23886D | 6-30 | 6-63 | 1A7A3 | 10 MC Distribution Amplifier, Schematic Diagram. |

VOLUME 1
TABLE VI-1. GSE LIST OF DIAGRAMS (cont)

| Drawing No. | Figure No. | Page No. | Reference Designation | Title |
| :---: | :---: | :---: | :---: | :---: |
| 63-21449C | 6-31 | 6-65 | 1A7A4 | 10 MC IF Amplifier, Schematic Diagram. |
| 63-25451E | 6-32 | 6-67 | $1 \mathrm{A8}$ | Frequency Converter, Schematic Diagram. |
| 63-25281E | 6-33 | 6-69 | 1A8A 1 | 5-Channel Oscillator, Schematic Diagram. |
| 63-20348E | 6-34 | 6-71 | 1A8A2 | Mixer-Filter, Schematic Diagram. |
| 63-25452E | 6-35 | 6-73 | 1A9 | Test Transmitter, Schematic Diagram. |
| 63-23862D | 6-36 | 6-75 | 1A9A2 | X3 Multiplier and Phase Modulator, Schematic Diagram. |
| 63-25453E | 6-37 | 6-77 | 1 AlO | Ranging Conversion Unit, Schemâtic Diagram. |
| 63-23895D | 6-38 | 6-79 | 1A10A2 | 10 MC Phase Switch, Schematic Diagram. |
| 63-23897D | 6-39 | 6-81 | 1A10A3 | 10 MC Balanced Detector, Schematic Diagram. |

RF IN




## VOLUME 1


-1. GSE, Over-all Block Diagram (69-25440E)

$$
\begin{gathered}
4 \\
68-25299 \mathrm{E}
\end{gathered}
$$



2

VOLUME 1


Figure 6-2. GSE, Power Interconnection Diagram
(69-25442E)


| RCVR PART 2 IA5 | WIO(TO IATJ6) |
| :---: | :---: |
| IOMC REF IN 140 | W5 (TO \|A4 J6) |
| - JI DPE OUT AGC MON 150 | WII (TO \|A13J2) |
| O J2 AgC MOn AGC OUT 160 | WI2 (TO\|ATJ2) |
| 10 MC SIG (LIM)IN 170 | W13(TO\|A7J7) |
| IOMC REF IN JB | W6 (TO1A4J7) |
| LOOP DET OUT j9 | W14 (TO IA6J3) |
| LOOP DET OUT JIO | WIS (TO IA6J4) |


| $\begin{aligned} & \text { RCVR PART } 3 \\ & \text { IA6 } \end{aligned}$ |  |  |
| :---: | :---: | :---: |
| O JI VEO OUT | LOOP FIL IN 330 | W14 (TO \|A5J9) |
|  | LOOP FIL IN 14 O | WIS (TO IASJIO) |
|  | 23 MC OUT 450 | WI6 (TO IA,SJI) |
|  | SSB IN J9 | W29 (TO \|A|JS) |


| RCVR PART 4$1 A 7$ |  |  |  |
| :---: | :---: | :---: | :---: |
| O JIRFIN |  | WB TLMOUT J3 O- | WIT (TO \|A3J4) |
|  |  | NB TLMOUT J4 O- | WIB (TO IARJ4) |
|  |  | RANGEOUT J50 | WI9 (TO /AIOJ2) |
|  |  | LIN IOMC OUT 16 O- | WIO (TO\|ASJ3) |
|  |  | LIM IOMC OUT 170 | W13 (TO 1A5J7) |
|  |  | 60 MC IN 180 | WI (TO IA4J2) |
|  |  | 2245 MC LO IN 190 | W9 (TO IA4JIO) |



Figure


Figure 6-4. Circuit Breaker Panel (1A1), Schematic Diagram (63-25444E)

## NOTES

1. REFERENCE DESIGNATIONS ARE ABBREVIATED. PREFIX DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION IAI.

IOMC J4 FROM IA4J8
2. UNLESS OTHERWISE SPECIFIED:

ALL INDUCTORS ARE IN UH.
3.
 INDICATES FRONT PANEL MARKING .


## VOLUME 1



## 6-3. GSE, Signal Interconnection Diagram (63-25441E)

1. REFERENCE DESIGNATIONS ARE ABBREVI-

ATED. PREFIX DESIGNATIONS WITH UNIT
NUMBER AND ASSEMBLY DESIGNATION IA2.
2. UNLESS OTHERWISE SPECIFIED: ALL INDUCTORS ARE IN UH.
3.
 MARKING.


10 MC
PHASE

$\begin{array}{cc:c}\text { SHIFTER } \\ \text { AS } & \text { J2: }\end{array}$
PI


2


Figure 6-5. Telemetr
3



2

VOLUME 1


Figure 6-6. Telemetry Bandpass Filter (1A2A1, 1A3Al), Schematic Diagram (63-23881D)
notes
4. Value to be selected m test .
REFERENCE WO.

3. ALL CAPACITORS ARE MO UUF
2. REFEREMCE DESicmations are abbrevaited. prefox the

1. FOR ASSEMELY SEE DRAWIMG D9330888 ( MOTOMOLA 01-242720).





Figure 6-7. Narrow Band 10 MC IF Amplifier (1A2A2), Schematic Diagram (63-24038D)
5. Value to be selected in test

| REFERENCE NO. | APPROXIMATE VALUE |
| :---: | :---: |
| R1 | 120 |
| R13 | 22 |
| R19 | 150 |
| C4 | 56 |
| C12 | 5 |
| C21 | 39 |
| C34 | 15 |
| C35 | 100 |

4. CRI AND CR2 ARE A MATCHED PAR .
5. ALL RESISTORS ARE IN OHMS, $\pm 5$ PCT, $1 / 4$ WATT. ALL CAPACITORS ARE IN UUF. ALL INDUCTORS ARE IN UH.
6. REFERENCE DESIGNATIONS ARE ABBREVIATED, PREFIX THE designations with unit number and assembly designation
7. FOR ASSEMBLY SEE DRAWING 09331050 (MOTOROLA NO. 01-24273D).

## notes: umless otwemmat erecifien





Figure 6-8. 10 MC Phase Detector (1A2A3), Schematic Diagram (63-25032E)

2. REFERENCE DESIGNATIONS ARE IGNATIONS WITH UNIT NUMBER

1. FOR ASSEMBLY SEE DRAWING D 01-23853D)

2. Values to be selected in test.

Abbreviated. prefix the densND ASSEMBLY DE SIGNATION

7330547 (MOTOROLA NO.
reference designation approximate value

| R12, R22 | $1 K$ |
| :--- | ---: |
| R13, R23 | 10 K |
| R21, R31 | 33 |

3. ALL RESISTORS ARE IN OHMS $\pm 5$ PCT, 1/4 WATT.

ALL CAPACITORS ARE IN UP.
ALL INDUCTORS ARE IN UH.

VOLUME 1

re 6-9. Video Amplifier (lA2A4), Schematic Diagram (63-23883D)
4. Value to be selected in test. REFERENCE NO. APPROXIMATE VALUE R23 56
3. ALL RESISTORS ARE IN OHMS, (5 PCT, 1/4 WATT.) ALL CAPACITORS ARE IN UUF. ALL INDUCTORS ARE IN UH.
2. REFERENCE DESIGNATIONS ARE ABBREVIATED, PREFIX THE DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION.

1. FOR ASSEMBLY SEE DRAWING J9330524 (MOTOROLA NO. 01-23793D).

## NOTES: UNLESS OTHERWISE SPECIFIED



$2$


Figure 6-10. 10 MC Phase Shifter (1A2A5, 1A5A3, and 1A10A1), Schematic Diagram (63-23860D)

## NOTES

1. REFERENCE DESIGNATIONS ARE ABBREVIATED. PREFIX DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION IA3.
2. UNLESS OTHERWISE SPECIFIED:

ALL INDUCTORS ARE IN UH.
3.


MARKING.




Figure 6-11. Telemetry Wide Bar

3. ALL RESISTORS ARE IN OHMS $\pm 5$ pCT, $1 / 4$ WATT. all capacious are in up. All inductors are in uh. reference designations are abbreviated. prefix the pes-
agnations with unit number and assembly designation. for assembly see drawing d9330526 (motorola no.
noted units otwemwse metric



Figure 6-13. 10.02 MC Mixer-Oscillator (1A3A3), Schematic Diagram (63-23893D)
4. Value to be selected in test REFERENCE NO. APPROXIMATE VALUE

$$
\begin{array}{ll}
\mathrm{R} 29 & 15
\end{array}
$$

3. ALL RESISTORS ARE IN OHMS, $\pm 5$ PCT, $1 / 4$ WATT.

ALL CAPACITORS ARE IN UUF.
ALL INDUCTORS ARE IN UH.
2. REFERENCE DESIGNATIONS ARE ABBREVIATED. PREFIX THE DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION.

1. FOR ASSEMBLY SEE DRAWINGD9330538(MOTOROLA NO. 01-23844D)

MOTES: UNLESS OTHERWISE SPECIFIED




Figure 6-

VOLUME 1

4. Test Receiver, Interconnection Diagram (69-25443E)


Figure

2

## volume 1



6-15 . Test Receiver, Part One (1A4), Schematic Diagram (63-25447E)
4. value robe selected in test

| REFERENCE NO. APPROXIMATE VAL |  |
| :---: | :---: |
| C24 | 24 |
| C27 | 100 |
| C39 | 1 |
| C41 | 10 |
| C42 | 5.1 |
| R27 | 82 |
| R28 | 100 |
| R29 | 18 |
| R30 | 330 |
| R31 | 150 |

3 CAL SELECTED IN TEST OR OMITTED AS REQURED APPROXIMATE VALUE 5 .
all resistors are in ohms, $\pm 5$ pct. 1/4 WATT
all capacitors are in dup
ALL INDUCTORS ARE IN UH

- Reference de signations are abbeVIATEG. PREFIX THE DESIGNATIONS WITH UNIT NUMBER ANE ASSEMBLY DESIGNATION



Figure

VOLUME 1

4. Value to be selected in test.

| REFERENCE NO. | APPROXIMATE VAL |
| :---: | :---: |
| R18 | 100 |
| R23 | 100 |
| R30 | 100 |
| R32 | 27 |
| R33 | 27 |
| R34 | 27 |

3. ALL RESIS TORS ARE LN OHMS, ( 5 PCT, 1/4 WATT). ALL CAPACITORS ARE IN UUF

REFE REMCE DESIGNATIONS ARE ABBREVIA TED PREFIX THE DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGMATION.
FOR ASSEMBLY SEE DRAWING D933050 (MOTOROLA NO. O1-21456).





Figure 6-17. $X_{\frac{1}{2}}$ Frequency Multiplier (1A4A2), Schematic Diagram (63-21454C)
4. FOR ASSEMBLY SEE DRAWING D9330507 (MOTOROLA PART NO. 01-23778D).
3. SELECTED IN TEST APPROXIMATE VALUE 120.
2. ALL RESISTORS ARE IN OHMS, $\pm 5$ PCT, $1 / 4$ WATT.

ALL CAPACITORS ARE IN UUF.

ALL INDUCTORS ARE IN UH.

1. REFERENCE DESIGNATIONS ARE ABBREVIATED. PREFIX THE DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION.


VOLUME 1


Figure 6-18. 10 MC Isolation and Distribution Amplifier (lA4A3), Schematic Diagram (63-23868D)
5. THE TWO MOUNTING SCREWS FOR L15 ARE SELECTED AT TEST, SEE DRAWING J9331139, (MOTOROLA 01-236130, NOTE 29).
4. VALUE TO BE SELECTED IN TEST

| REFERENCE NO. | APPROXIMATE VALUE |
| :---: | :---: |
| C14 | 47 |
| C22 | 5 |

3. ALL RESISTORS ARE IN OHMS, 5 PCT, $1 / 4$ WATT. ALL CAPACITORS ARE IN UUF. ALL INDUCTORS ARE IN UH.
4. REFERENCE DESIGNATIONS ARE ABBREVIATED, PREFIX THE DE aGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION.
5. FOR ASSEMBLY SEE DRAWING J9330517, (MOTOROLA NO. 01-23786D)

NOTES: UNLESS OTHERWISE SPECIFIED



Figure

VOLUME 1


6-19. X32 Frequency Multiplier (1A4A4, 1A9A3), Schematic Diagram (63-23875D)
4. Value to be selected in test

| REFERENCE NO. | APPROXIMATE VALUE |
| :---: | :---: |
| CII | 22 |
| C21 | 22 |
| C22 | 22 |
| C23 | 120 |
| R29 | 220 |
| R30 | 120 |

3. ALL RESISTORS ARE IN OHMS $\div 5$ PCT, $1 / 4$ WATT. all capacitors are in uuf. ALL INDUCTORS ARE IN UH
4. REFERENCE DE SIGNATIONS ARE ABBREVIATED, PREFIX THE DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION.
5. FOR ASSEMBLY SEE DRAWING D9330516, D9331065 (MOTOROLA NO. OI-237720, O1-24102D).
notes: unifss otherwise specifieo



## VOLUME 1



6-20. X3 Frequency Multiplier (1A4A5), Schematic Diagram (63-23625D)

REFERENCE DESIGMATIONS ARE ABBREVI ATED. PREFIX DESIGMATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION IA5
2. UNLESS OTHERWISE SPECIFIED: A. ALL RESISTORS ARE IN OHMS,
$\pm 1$ PCT, $1 / 4$ WATT
B. ALL INDUCTORS ARE IN UH.
3. MARKING.
4. PUSH S 4 TO ZERO OPERATIONAL AMPLIFIERS.

$10 \mathrm{MC}(\mathrm{LIN})$
FROM
IA5J6
$J 3$
 MEG

SPE
FROM
AGJ

DPE
FROM
$1 A G J 7$


Figure 6-21. Test Receiver,


## VOLUME 1


3. ALL RESISTORS ARE IN OHMS $\approx 5$ PCT, $1 / 4$ WATt. all capacitors are in ur. ALL INDUCTORS ARE IN UH.
2. REfERENCE designations are abbreviated. prefix the de GHATS WIT U NT FOR ASSEMBLY SEE DRAWING $\mathbf{C 9 3 3 1 1 0 0}$ (MOTOROLA NO.
$01-23610 \mathrm{D}$ ).



VOLUME 1


Figure 6-22. AGC Amplifier and Filter (1A5Al), Schematic Diagram (63-25023E)

5 VALUE TO BE SELECTED IN TEST

| REFERENCE NO | APPROXIMATE VALUE | REFERENCE NO. | APPRROXIMATE VALUE |
| :---: | :---: | :---: | :---: |
| R1 | 120 | C27 | 2.2 2.2 |
| R13 | 22 | cio | 130 |
| R19 | 180 | CII | 130 |
| C4 | 10 | C28 | 1.5 |
| C34 | 15 | C29 | 1.5 |
| C35 | 100 |  |  |
| c21 | 68 |  |  |

## 4 CRI AND CR2 ARE A MA TCHED PAIR

3 ALL RESISTORS ARE IN OHMS, (5 PCT, 1/4 WATT.) ALL CAPACITORS ARE IN UUF ALL INDUC TORS ARE IN UH

2 REFERENCE DESIGNATIONS ARE ABBREVIATED REFERENCE DE SIGNA TIONS ARE ABBREVIATED,
PREFIX THE DESIGNA TIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION

1 FOR ASSEMBLY SEE DRAWING 09330514 (MOTOROLA NO O1-21432C).

7 C 12 MAY BE CONNECTED TO COMMON POINT OF CI4 AND CR2 OR C13 AND CR1 AS REQUIRED IN TEST

6 C9 MAV BE CONNECTED TO COMMON POINT CRI ANO CIO OR CR2 ANO C1I AS REQUIRED IN TEST



ŗure 6-23. 10 MC Phase Detector (1A5A2 and 1A5A4), Schematic Diagram (63-21447C)

## NOTES

1. REFERENCE DESIGNATIONS ARE ABBREVIATED. PREFIX DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION IA 6.
2. UNLESS OTHERWISE SPECIFIED:
A. ALL RESISTORS ARE IN OHMS, $\pm 5$ PCT, $1 / 4$ WATT.
B. ALL INDUCTORS ARE IN UH.
3. 

INDICATES FRONT PANEL MARKING.






## $\cdot 10 \mathrm{VDC}(\mathrm{E})$

$c(F)$
(G)

Figure 6-25. 5-


3. ALL RESISTORS ARE IN OHMS $\pm 5$ PCT, $1 / 4$ ALL CAPACITORS ARE IN UUF ALL INDUCTORS ARE IN UH
2. REFERENCE DESIGNATIONS ARE ABBREVIAT aGNATIONS WITH UNIT NUMBER AND ASSEME

1 FOR ASSEMBLY SEE DRAWING D9330513 (M)

Figure 6-26.



NOTES

1. REFERENCE DESIGNATIONS ARE ABBREVIATED. PREFIX DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION IA T.
2. UNLESS OTHERWISE SPECIFIED: ALL INDUCTORS ARE IN UH.

INIDCATES FRONT PANEL MARKING.



4. value selected intest.

| REFERENCE NO. APPROXIMATE VALUE |  |
| :---: | :---: |
| R10 | 390 |
| R26 | 10 K |
| R25 | 27 K |

3. ALL RESISTORS ARE IN OHMS $\pm 5 \mathrm{PCT}, 1 / 4$ WATT. ALL CAPACITORS ARE IN UUF ALL INDUCTORS ARE IN UH .
4. REFERENCE DESIGNA TIONS ARE ABBREVIATED. PREFIX THE DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION.
5. FOR ASSEMBLY SEE DRAWING D9330502 (MOTOROLA NO 01-23773D).

## MOTES. UNLES OTMEmense sPLCIPED





Figure 6-28. Balanced Mixer-Preamplifier (1A7Al), Schematic Diagram (63-23879D)



ALL RESIS TORS ARE IN OHMS, CSPCT, 1/4 WATT ALL CAPACITORS ARE IN UU
ALL INDUCTORS ARE IN UH.
2. REFERENCE DESIGNA TIONS ARE ABBREVIA TED. PREFIX THE
DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNA TION FOR ASSEMBLY SEE ORAWING D9330503 (MOTOROLA NO O1-23774D) motts: unless otnermise specifico



Figure

VOLUME I


6-29. 50 MC IF Amplifier and Second Mixer (1A7A2), Schematic Diagram (63-21450C)
3. ALL RESISTORS ARE IN OHMS $\pm 5$ PCT, $1 / 4$ WATt.

ALL CAPACITORS ARE IN UF.
all inductors are in Uh.
2. REFERENCE DESIGNATIONS ARE ABBREVIATED. PREFIX THE DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION.

1. FOR ASSEMBLY SEE DRAWING D9330504 (MOTOROLA NO. 01-23775D).
2. Value to be selected in test. REFERENCE NO. APPROXIMATE VALUE
RI 680

R6
R2
15
1500
C12 47
c 18



Figure 6-30. $\quad \underset{\text { Diagram }}{\text { ( } 63-23886 \mathrm{D})} \mathrm{Mmplifier} \mathrm{(1A7A3)}$,
5. Value to be selecteo in test

| REFERENCE NO. | APPROXIMATE VALUE |
| :---: | :---: |
| R34 | 100 |
| R32 | 100 |
| R18 | 62 |
| R9 | 1000 |
| R16 | 110 |

4. SELECTED IN TEST AS REQUIRED FOR TEMPERATURE COMPENSATION.

REFERENCE NO. TEMPERATURE VALUE

| C27 | N5600 | 10 |
| :--- | :--- | :--- |
| $C 37$ | N5600 | 10 |
| C38 | N5600 | 10 |

3. ALL RESISTORS ARE IN OHMS $: 5$ PCT, 1/4 WATT.

ALL CAPACITORS ARE IN UUF ALL INDUCTORS ARE IN UH
2. REFERENCE DESIGNATIONS ARE ABBREVIATED. PREFIX THE desicnations with unit number and assembly de ignation

1. FOR ASSEMBLY SEE DRAWING D9330505 (MOTOROLA NO 01-23776D.

NOTES: UMESS OTHERMEE SPECIFIED




Figure 6-31. 10 MC IF Amplifier

## LUME 1



A7A4), Schematic Diagram (63-21449C)

NOTES

1. REFERENCE DESIGNATIONS ARE ABBREVIATED. PREFIX DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION IA8.
2. UNLESS OTHERWISE SPECIFIED:
A. ALL INDUCTORS ARE IN UH.
3. INDICATES FRONT PANEL

MARKING.



Figure 6-32. Frequency Converter (1A8), Schematic Diagram (63-25451E)

UNLESS OTHERWISE NOTED
UNLESS OTHERWISE NOTED;
ALL RESISTORS ARE IN OHMS, $\pm 5$ PCT
ALL CAPACITORS ARE IN UUF.
all inductors are in uh.

2. | REFERENCE <br> OESIGMATHO | MODULE | CRYSTAL <br> PART NO. | CRYSTAL <br> FREQUENCY MC |
| :--- | :---: | :---: | :---: |
| PART NO. |  |  |  |




nel Oscillator (1A8A1), Schematic Diagram (63-25281E)


Mixer-Filter (1A8A2), Schematic Diagram (63-20348E)

NOTES






Figure 6-35. Test Transmitter (1A9), Schematic Diagram (63-25452E)
4. Value to be selected in test. REFERENCE NO. R6 $R 13$
$R 29$ R29 R30 C 21
C 22 ALL RESISTO all resistors are in Ohms a 5 PCT, $1 / 4$ WATt ALL CAPACITORS ARE IN UUF. ALL INDUCTORS ARE IN UH.
2. Reference designations are abbreviated. prefix the des IGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION.

1. FOR ASSEMBLY SEE DRAWING D9330515 (MOTOROLA NO 01-23760D).

## motes: unless otherwise specified




Figure 6-

2

1. REFERENCE DESIGNATIONS ARE ABBREVIATED. PREFIX DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATION IA IO.
2. UNLESS OTHERWISE SPECIFIED
A. ALL INDUCTORS ARE IN UH.





Figure 6-37. Ranging Conversion Unit (1Al0), Schematic Diagram (63-25453E)

## VOLUME 1


6. X3 Multiplier and Phase Modulator (1A9A2), Schematic Diagram (63-23862D)
. ALL RESISTORS ARE IN OHMS +5 PCT, $1 / 4$ WATI ALL CAPACITORS ARE IN UU

REFERENCE DE SIGNATIONS ARE ABEREVIATED. PREFIX THE
DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATIO DESIGNATIONS WITH UNIT NUMBER AND ASSEMBLY DESIGNATIO
FOR ASSEMBLY SEE DRAWING 09330539 (MOTOROLA NO.
notes: unless otherwise specified




Figure 6-39. 10 MC Balanced Detector (1A10A3), Schematic Diagram (63-23897D)


Figure 6-38. 10

VOLUME 1

, true value to be selected
5 PCT, $1 / 4$ WATT.


[^0]:    *Not DSIF Design.

