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CHAPTER 1

INTRCLUCTION

The pnenomenon of natural convection in closed containers has beer
of considercble interest in engineering applications. It has been
utilized for the cocling <f gas turbine blades by hollowing the blade
and connecting it to a reservoir of cooled fluid. The large centrifugal
force caused by the turbine rotary motion and the existence of temperature
gradients alorg The btlade axis cause the cold fluid near the reservoir
end to replace the hot fluid at the blade tip. The transfer of cold
fluia to hot regions and vice-versa, and the resulting cooling of the
blades allow the use of higher temperature gases than can be tolerated
by uncooled blades. As a result, hicher turbine 2fficiencies can be

obtained.
Natural convection in closed vessels with internal heai sources 4as

asswied increased importgnce in nuclear reactor cooling. Considerable

research has been done on this problem.

In application to space fliight, the phenomenon of natural convec-
tion heat and mass transfer within partially filled liquid containers
has become of considerable interest in connection with liquid propellant
tanks thermal stratification and associated processes. A great deal of
research has been directed towards the study of the process of heat and
mass trans{er within such containers during the pressurized discharge
of a liquid propellant in an effort %o optimize the tank design and the

determiration of the pressurant requirements as well as the selection

1
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ci tlie orerating parameters for large rocket vehicles. The pressurant
requirement, the instantaneous mass flow rate, tae burnout mass, which
is thne mass of the propellant remeining at the -2nd of the discharge
process, as well as tne pressuiization level cre among the impcrtant
parameters whos2 determinatior is of primary importance to the designer.
The determineticn of these parameters and the design of the prorellant
tank feed systems reguire the understanding of several related processes,
sach as pressurization, liquid stratification and the transfer of mass
and energy trans’er at gas-liguid and gas-solid interfa;es. A compre-
hensive discussion of these processes has been published (10).

Figure 1 shows a schematic propellant feed system in which these
phenomena taie place (49).* The liquid oxygen (LDX) tank is pressurized
by a side streem of vaporized oxygen (GOX) from the LOX pumps. The
pressurant mass flow rete is controlled by a heat exchanger and pressure
regulating system. Heat is transferred between the high temperature
pressurant (GOX) and the liquid propellant at the liquid-vapor inter-
face. Az a result, mass transfer i.e., evaporaticn or condensation,
takes place there. In the same time, heat exchange occurs tetween the
tank walls and both the liqguid and gas phases. This latter mode of
heat transfer to the tank walls is caused by heat leakage from the am-

bient, heating of the taik walls by solar radiation, by aerodynamic

heating or a combination of them. These processes of heat and mass

*Numbers in parentheses indicate the references which are given at the
end.
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transfer give rise to temperature and concentration gradients within both
the gas and liguid. Natural convection flows are set up in both phases
due to density variations caused by temperature gradiénts. Feated
liguid near the tank wall is carried to the liquid-vapor interface,

causing & hot layer of liquid, known as the stratified layer, to form

" at the liquid-vapor interface. The natural convection within the tank

influences the temperature as well as the concerntration gradients, wiich
in turn control the process dynamics and the total pressurant consump-
tion. The pressure level within the tank is dependent upon the pressure
requirea to suppress pump cavitation at the engine pump inlet. The net
positive suction head, NPSH, required to prevent pump cavitation is
directly related to the temperature of the gtratified layer at the end
of the engine firing. Excessive temperature rise of the ligquid would
require higher pressures, wh;ch may cause structural weight penalties.
For example, in the case of liquid hydrogen a 1°R increase in the liquid-
vapor ihterface produces approximately a 3 psi increase in tank pressure.
As a result of stratification, i he pressure in cryogenic propellant con-
tainers has be;n found to be significantly greater than that correspond-
ing to the vapor pressure at bulk (miied) liquid temperature. The burn-
out mass of pressurant i3 fixed by iis mean temperature and pressure at
the end of the discharge process. It is desired to keep this mass at a
ninimur.

The importance of the propellant feed system to the vehicle weight

has been studied by Nein and Thompson (41). A summary of their findings

e |
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is given in Fig. 2, which shows the relationshin between vehicle
thrust and the mass-pressure ratio of the prescurant at the eud of
engine firing for some rocket systems.rlThe result of tnis study re-
veals that should the tank pressure be increased, the burncut mass
will be proportionately increased. Such an increase in tank nressurce
may be brought about by thermai stratification or by tank-layout con-
siderations. Conparison between the weights of two similar vehicle
designs which incorporate these consid2rations nas been made by Platt
et al., (49), and is given in Fig. 3.

A complete analysis of the mass and heat transfer interacticns

‘between the gas and liquid phases as well as between these phases and

the container walls, which takes into consideration the effect of natural
convection ic presently unavailable.

In this work +the analytical and experimental study of the two-
dimensional, transient, laminar free convection In partially filled
rectangular and cylinderical containers is undertaker.. The geomet:ry
of the container, as well as the end effects iﬂvalidate +the assumption
of boundary layer flows. Therefore the boundary layer equations were
not used. Inétead, the full two-dimensiona. energy and Navier-Stoxcs
equations are considered. These equations are not amenable to mathe-
matical treatment using the classical methods. Furthermore, Ostromov
(48) and Batchelor (8) found that neither the successive approximation

nor the series expansion are suitable for handling such equations for




L P sl ) SR WS o

: *o73Bx sanssaad-ssvw jus.amesaad yue)
cmmbno.nm:ﬂnccmvmshn.._.a._no«ngumo:vmnmﬂﬁuoapﬂom.m.mﬁh

'Sql CLSNYHL 310IH3AA

0! 0! Ol W0l
O4SW-VSYN ‘(2) uosdwoyl pub ulBN wosg v m
1t t i1 \\ 7

ONITIOBHSYd B 4
d30NIONt SIVLI08‘'WNIN3H © 4 Q
WNN3H @ - o
N39AXO ¢ y. 2
- Ol
NOILVZINNSSIa P 7 g
Aq o g
y
A .
\o\ 4
4 m
- - 3
F 0016
-
/
/1
JFQ (7. X7,] > un [ O
g 4 M.m =2 L m Im $ o
L oz = < v
03 a3 43 2§ 3 5
3 MN = " 2 c
B< LS Bo o 2
¥ R® 3 5
4




peag juelredoxd ayy Jo s3yStem o93 Jo uogpaedmo)

€9'011d3S - £9-€-6LD-SW-W
v 'A3Y

00101

- 000'TY
006°¢

40076

*S9T0TUaA JUBTIF OM3 JO smereds
‘¢ B

YILNITY LHOI4 3DV4S TTVHSEVYW

00081 ] .
008'1¢ SIVNQISIY¥ aIAdN
00z'y JAVAQUVA
001'9 S¥Y9 NOILVZIINASSIEd
91004 141 34019041S
\\\\1\ . N .
\\. . I \\ .

HSdN 61
VISd

(QYIHNING QILYHY4IS)
L4V SA QHYMHO4 XO1

139¥1S 15004




arbitrury Prandtl Number, Pr, and Grashof Number, Gr. Accordingly, it
was decided to utilize a numerical prccedure using the finlte-difference
approximation for the solution. The application of the finite-dif-
ference methods to the solution of such systems was not developed at
the start of this work. Therefore :n addition to the study of che
phenomena of natural convection and thermal stratificatior, the study
of the application of finite-difference techniques to such systems was
unde--taken. Considerable effort was given to the investigation of the
stability problem, which is associated with the use of these methods.

The analytical results are compared with those obtained experi-
mentally.

It is believed that the result of this research provides an improved g
understandiag of the process mechanics of natural convection heat and
mass trensfer in clo;ed containers. The results and conclusions reached
concerning the use of the finite-difference method, for the solution of
the governing differential equations will add some useful informations -
to the theory of numerical analysis.. It is hoped that the method of
solution developed here can be employed to study the natural convection
in propellant tanks in both the gaseous and the liquid phases and to v
assist in fhe evaluation of associated processes such as interfacial

mass and heat trausfer.
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CHAPTER 2

REVIEW OF THE LiTERATURE

Considerable previous efforv has been given to the study of natuvrsl
convection heat and mass transfer. Many problems have been <olved for
different conditiors c¢f gecmetry and boundary cnnditions. These studies
have ﬂeen of analytical as well as of expcrimental nature. After the
initiation of this work several analytical and experimental papers were
published dealing with the natural convection in closed containers with
free surfaces subject to side wall heating. The =xperimental results
of Anderson and Kolar (i), showad that the stratification pattern is de-
pendent upon whether the liquid heating is caused by side-wall heating,
bottom heating, - r by- internal absorption cf euergy. The resulte ob-
tained by Neff (39) and those obtained by Vliet and Brogan (73) support
these corclusions. The experimental wark of Baruett, et al., (7), which
is made in a large cylindrical tank of the Saturn configuration, ir-
dicate that the gas pressure has an imporiant effect on the liquid hydrc-
gen stratification. They also presented a semi-empirical correlation
for the axial temperature profile,which agrees with the test data.
Schwind and Viiet (58) and Vliet and Brogan (73) have taken schlieren
and shadowgraph pictures of the free convection with side-wall heating
at various heat flux levels in rectangular containers with and without

anti-slosn baffles. Other experimental work include that ot Van Wylen,
et a.., (72), Fenster, et al., (19), Ordin, et al., (43), Scott, et al.,

9
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(59), Su:m (68) ani Seg.1 (62).
. Basel on the e:perimental observations of the neture of the flow
a few models have been proposed for the analytical study of the stratifi-
cation proc2ss. Most >f these ausliytic:l approaches use the assumption
of boundary layer fiow slong the vall. ‘"he model commoniy used in these
analyses is siown in Fig. 4. The Lesated .iquid flows upward rlsng the
vall in a thin layer of thickness & known as the boundary layer. The
bourdary layer is assumed 0 be zero at x=0, and grows in thickness with
axial distance x. The Lkeated iiquid flows into the bottom of the stra-
tified layer. Th> unmixed bulk liquid is at the initial temperature and
is unifOI;xn. The liguid in tre stratified layer is assumed to be either
mixed ;>r unmixed.

Publicetions which adopt the essential fealures of the model in
Fig. 4 for unmixed stratified liquid, inciude Harper, et al. (%),

Telle) and Harper (7C), Scawind and Viiet (58), Ruder (55), Harper,

é_t al. (24), Tatom, et el. {{(<), and Robbins and Rogers (53). Other

studies traating th: case of mixed (stratified) liquid include the work

of eiley and Fearn (3), Bailey, et al. (4,5), and Arnett and Mill-

. nizer (2).

The influence of liquid slosh and some of the factors governing it

are reported by Coxe and Tatom (13), Eulitz {18) and Iiu (37). An

- appraisal and evaluation of these works and ~thers dealing with pres-

- surization and interfaciel phase changes has been given in Reference (10).
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Therelore the details of such analyses will be omitted. However, it
is impcortant <o review the assumptions introduced in constructing such
medelis. These are listed sf fnliows:

{1) constant and unifcrm wall nect Sluxes

(2) no interfaci:zl heat azi mess -ransfer

(3) constant axial acceleration

(&} constent bulk temperature

(5} A vboundary layer flow along the well, which is given ty

steady state, fiat plate correlations.
(£} The boundary layer thickness is time imdeperndent and is szall

compared to the coutainer radius.

The complexity of tre situation leads o the above simplifying assurp-
ticns. These assumpticns ignore the inflivence of the time-transients -<n
the bounCary layer thickness as well as on the velocity distributicn in
the boundary layer. Furthermore tne choice of the location of the axes,
Fig. %4, is done arbitrary. In addition tc thet, these models ignore
end effects, which may bte ixporwant for vessel di.iensions comparable io
those uced irn flight vehicles i.2., length to radius ra*tios near unity.

The study of natural convecticn firom fiate surfacez and that in

enclosed spaces has been studied by many investigators.

[

The case cf 2 vertical slement iimersed in an infinite fiuid in-

Pele

tially at rest has received the most attention of many investigatcrs.
The time-steady lamirvar 1fiow equations were first solved by Pohlhau en
(50) for air. The experimental resul.s of Schmidt and Beckman (51) are
in good agreement with Pohlhausen's solution. ILater, Ostrach (4l) sslved
the same pioblem using umerical methods with high speei digital cocmputer

Tor differcat values ol Prandtl number ranging from 0.01 to 1000.
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The transient free-convecticn from vertical flat plates with and
without appreciable thermal capecity and variablz fluid properties has
been studied by different investigators for different boundary conditicns

(21,28,5¢,61,65,60).

leitzke (3i4) considered the steady state natural convection between
two parallel inf nite flat plates oriented in the directicn of body
force in Wwhich one plate is neated and the otuer is cooled uniformly.
The measured temperature distribution across the fluid is in good agree-
ment with the theory. A generalization to the same problem was carried
on by Ostrach (44,45) in which the plates are maintained at constant tem-
peratures not necessarily equal and the effect of heat sources and fric-
tional heating was included. As anticipated heat sources and viscous
heating increase the temperstures and the velocities between the plates.
The transient free convection in a duct formed by two infinite parallel
plates with arbitrary time variations in the wall temperature and the

heat generation wes studied by Zeiberg and Mueller (76).

The two dimensional steady-state convection in a long rectangle,
of which the two long sides are wvertical boundaries held at different
temperature and the two hcrizontal boundaries either insulated or have
linear temperature distribution, was considered by Batcﬁelor (8). How-
ever, he did not solve for the velocity or temperature distribution.

But he considered the determination of the rate of heat transfer between
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the two vertical boundaries and {h- type of different flow regimes that
occur for a given value of Rayleigh's number and aspect ravio. For
Rayleigh's numbers less than 105 Batchelor uses a power series expan-
sion in terms of Rayleigh's number Ra for the dimensionless temperature
© and the stream function. On subsiitution of the power series in the
governing differential equations ~rd equating coefficients of the like
powers of Ra, the problem is reduced to the solution of a series of
linear partial differential equations. The Nusselt number defined as
W = (a/A)/K(Ty-T,)
is estimated to be of the order:
NJ = £/d + 1078 #a®

vhere: d is the distance hetween the plates and £ the height of the
duct. For the case of E/d + ~ he argues that for the regions not near
the ends the temperature and th= stream function take their asymptotic
value which is given by the solution of two infinite parallel plates
one heated and the other cooled. For infinite values of Ra, he postulates
that an isothermal core exists having constant vorticity. He found that
the governing equations for the general case could not pe represented
by a polynomial of small degree or could be handled by the Oseen Type
of linearization.

Poots (51) solved the same problem handled by Batchelor. He ob-
tained a numerical solution besed on the use of orthogonal polyromiais

for the solution of the governing differential equations. Following

-
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Batchelor the stream function and the nondimensional temperature were

assumed to be represented by the complete double series of orthogonal

functions
(- -] -]
0 = }E §: Anm sin nnx sin mny
n=1 m=1
and
o oc
Vo)) B Xale) Yy)

n=1 m=1

where the A and B are constants which vere evaluateda numerically. The
eoverning differential equations were rediced to twc coupled algebraic
equations to be solved simultaneously. The functions X,(x) were chosen
to satisfy the fourth or§er Sturm-Liouville system and the orthcgonality
property. The method of soluticn is tedious and the calculations are
practically impossible fcr Rayleigh's numbers greater than 104 end
aspect ratios greater than k.

ILighthill (36) examined naturai convection flows generated by large
centrifugal forces in a tube closed at one end and open at the other
end to an infinite reservoir, where the tube walls are maintuined at a
constant temperature. Such a situation exists in cooling gas turbipe
blades. He predicted that on2 of the following three regimes may exist
depending upon the product of Grashof number and the radits to lensth
ratio of the tube. The assumed flow regimes are:

(1) Similarity flo: For small values of this product, i.e., for

large values of length to radius ratic for a given Grashoi number, the
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boundary layer fills the tube. The velocity and temperature profiles
are fully developed. He predicted that for this type of flow, the
velocicy and temperature distribution are similar at each section of
the tube, only their scale is increasing as the orifice is approached.
Assuming that the velocity and temperature vary linearly along the tube,
he concluded that there exists an aspect ratio for which the temperature
changes frem its value at the orifice tc the value at the bottom. Ex-
tending the tube beyond the length determined by the above ratio, the
additional iength is filled with fluid at rest at the walls temperature.

(2) Boundary iayer type of flow: For high values of the product
of Grashof number and radius tc length ratio, i.e., for short tutes,

the flow is of boundary layer type, the extreme case of it when the

boundary ..yer fills a negligible portion of the tube area, the flow

approximates the free convection flow up a flat plate.

(3) Non-Similarity regime: This is the type of flow predicteq
to exist for values of length to radius ratio which lie between the
values corresponding to the first and the second case. The boundary
layer fills a large portion of the tube section. He used the Squire
teciinique to solve the first and the third case.

Hemmitt (23) consider=sd the case of a closed vertical cylinder with
internal heat generation. He wsed the Lighthill technique modified to
account for the heat sources. The agreement between the calculated

and measured values of Nusselt's number is not good. This is probably
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due to some of the inevitable assumptions, which are made. These
assumptions are: (1) small inertia forces compared to bucyancy and
shear (2) radial extent of the temperature and velucity boundery layers
is the same (3) the boundary layer approximation apply. The first one
is valid for large Prandtl numters, shile the szcond is valid for
Prandtl numbers near unity. The disaavantage of this method of solution
is that it is not capable of detailed examiration of the end conditions.
Smith (63) extended Hammitt's analysis to two-dimensional rectangular
centainers.

Following Lighthill, Ostrach and Thornton (47) considered a
geometrically similar case wiih a linear wall temperature. In Ostrach's
paper as well as in Lighthill's paper, attention was given to the stag-
nation of natural convectinn flows at the closed end. The same problem
consii2red by Lighthill was sclved by Levy (35) using integral method .
He assumes the upward flow consists of a layer -of thickness &, near
the wall, the remaining of the tube being filled with cold fluid flow-
ing down. He assumes three regimes of flow similar to those postulated
by Lighthill. If the tube length is less than or equal to a length J,
the stagnation region does not exist and the upflow convective layer
increases with x. For axial distance x>£,,® reaches a constant value
d and such a flow occurs for £; < x < L. For x>f», a stagnation region
exists at the closed section of the tube.

Romonov (54) using also integral technique , solved the same prob-

lem considered by Lighthill and Levy. dis calculations agree with those
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of Lighthill for infinite Prandtl number, but it differs considerably
for Prandtl numbers near unity. The measured and the calculated tem-
peratures are in a good agreement for different wall temperatures.

A large number of experimental studies of flat plates, immersed
in an infinite fluid at rest, either heated or cooled has been done.

In general, there has been a good agreement between the theory and ex-
periments. A considerable experimental work has been done in the field
cf natural convection in tubes and enclosures. These have been concerned
with specialized applications and particular configurations. Most of
these experimentations were done in connection with cooling gas turbine
blades and nuclear reactors applications.

Probably the most comprehensive experimental studies of natural
convection in thermosyphons are those conducted by Martin (38) in an
attempt to check the theoretical work cf Lighthill. His results agree
qualitatively although the measurad heat transfer coefficients are two
folds larger than fhat predicted by Lighthill. Xrom measurements of
heat transfer rates, the three regimes predicted by Lighthill were
identified. The heat transfer was greatest i - large values of the
product of Grashof number and the radius lergth ratio, being highest
at the bottom of the tube which indicates that boundery layer type of
flow exists. At small values of the product, the heat transfer varied
linearly from the orifice to zero at the hottom of the tube, from which

he concluded that the similarity regime exists. A region of instabiiities
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occurred between the above two steady regimes which is characterized by
nonsinuscidal oszillatory flow.

The explorations of the air flow patterns in the space between
two heaced wide plates closed at the bottom, open at the top, and in-
suls 2d at the sides done by Siegel and Norris (62) shed some light on
the oscillatory flow mentioned by Martin. For spacing of 0.28 the
1 iate height, the flow pattern was symmetric with upward flowing boundary
layers near each plate surface and downflow in between. When the spacing
was reduced to 0.21 the Lieight, the flow pattern became asymmetric with
nalf the cross section occupied by upward flow (near one plate) and the
half near the other plate occupied by downward flow. For smaller spac-
ings, the asymmetric pattern persisted with periodic nonsinusoidal re-
versal in flow direction and temperature fluctuations.

Curren and Zalbak (14) conducted an experimental investigation to
determine the effect of length to diameter ratio of closed end coolant
passages on natural convection water cooling of gas turbines. They re-
ported no significant difference in the heat transfer for the different
length to diameter ratios investigoted ranging from 5:1 to 25.5:1. For
the largest length to diameter ratio 25.5:1 the boundary layer fills
87% of the tube croes section.

The visual studies of Sparrow and Kaufman (67) of free convection
of water in a narrow vertical enclosure, cooled at the top through a
copper surface and open at the bottom to a2 heated reservoir revealed

that the flow pattern is not steady. No region of the enclosure is
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permanently a region of upflow or of downflow. The size of the various

upflow and downr-low regions varied along the length of the enclosure at

a given time. The number and size of upflow and downflow regions alsc
varied with time. However, end effects were observed and a continuous
downflow took place in a 3/4" band adjacent to both walls. Generally,
the dominating character of the flow was instability.

Hartnett, et.al., (26,27,32) studied the free convection heat
transfer for the geometry postulated by Lighthill but with a constant
heat flux at the tube wall using water and mercury as working fluids.
The effect of inciining the tube was leo investigated. -Temperature
oscillations of the same naturs as that reported by Martin and Siegel
and Norris were observed. On the cortrary of the results Teported by
Curren and Zalgsak, the heat traisfer was considerably influenced by
length to radius ratio. A decrease in length to radius ratio from 22.5
to 15 results in epproximately 100 per cant inercase in the Nusselt
numbers.

The natural convection flow pattern in viscous o0il in rectangular
tanks heated at the center by vertical coil heater stuaied by Skipper,
et al., (63) consisted of a nerrow cnimney of hot oil rising verticaliy
around the heater surface and above it and a horizontal layer of hot
611 at the free surface separated from the remaining cold oil below by
a sharp vertical gradient. The hot oil layer had a small vertical

temperature gradienc, with maximum temperature at thc top. The hot oil
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layer at the surface beceme thicker and thicker with continued heating.
The hot o0il was fouud to flow downward st the walls of the tank while
th=ie were suggestions of circulating currents at the side of the rising
chimney. The flow pattern shown sv ,gests that a vortex was formed at
tiie free surface ncar the cenéer line where the hot ris:ng chimney is
bifurcated and spread horizontally along the surface. Similar vortices
were observed by Eichhorn (17). Trese vortices were formed at the frez
surface of water near the walls of a cylindrical tube 2 in. diameter

and 5 in. long uniformly heated at the walls and open at the top.

It has been recognized that as of now the solution of complicated
problems of fluid flow and heat transfer can be obtained by numerical
methods oaly. Among these the finite-difference techniques seemed to
require minimum simplifying assumptions and idealizations as compar:<
to other rumerical methods. Indeed, finite-differences have been used
by many investigators for the solution of the momentum and energy equa-
tions. These problems and consequently the finite-difference procedures
used, varied in complexity.

Th2 finite-diflerence solution of the laminer boundary layer equa-
tions descridbing the natural convection process from isothermal vertical
flet platez 2nd that inside a horizontal cylinder ir given by Hellums
ard Churchill (28). They employed an explicit finite-difference pro-
cedure similar to that adopted here, (Chapter 5). The results obtained

for the flzt plate sre in good mgreement with solution of Ostrach (LkL).
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The discrepancy oetween the experimentsl and the theoretical results for

v
ro 2l

the hurizontal cylinder is within 30 to 50%. -
Stmultaneously with the initial phase of %tnis research (11} tw:
4 other indepenrdent theoreticel studies treating similar problems were
reportad. These arc by From:(2l) and Wilkes (7h). These studies are

. significant since they handle prcblems si.-ilar in nature and complexity

el

_ to ttat considered here.
Fromm (21) investigated the unsteady wake behind a small rectangular
obs-acle placed normai to the flow caused by two r-oving parallel walls.
The time~dependent vorticity equation was solved using a Dufort and
. Frankel type representation for the second order terms Baw,/'axa and
33:/3r2, while the nonlinear terms u{w/dx) and v(J%/dy) were trsated
using central differences at time level n. Accordingly the values of
the vorticity at the time level (n+l) can be explicitely calculated. ‘

Th> eguation relating the vorticity and stream functicn, defined here

hanvevsamd

z as the vorticity-stream function equation, (see Chapter 5), was solved

[e——

using the Gauss-Seidel iterative method. Fromm did not give stability

analysis fcr his finite-difference formulation. However, he considered

T sl

the stability of the vorticity equation with either of the diffusion or

e

the convective terms present. TFurthermcre, he resorted to mathematical
experimentation to determine the size of the time increment which makes
the solution stakle, by observing the manner in which any introduced
error may decay or amplify. 1In addition, a small time increment was

used. Problems having Reynold numbers, based on the obstacle width

\
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rormai tc¢ the Tlow. as high as 1000 were nancdied.

The natural convecticn from a rectangular tws-dimengional caviiy
considered by Poots (51) was soived by Wil

ferences. An implicit alternazing direction

vance the texmperature and vorticity fielis across any time step. Accord-

oo

rg to tze stability analysis made by him using the Von-Ieumann methcod

of stability analysis the method is ancondi<ionally statle. Howsver
actual calculations showed that this formuletion is suitable for iow
Crasrof and Prandtl numbers only.

Both Fromm's and Wilkes' Formulatious have the advantage of using
central differences for approximating the convective serms u{dw/dx),
(Ow/dy), ...ete. As will be explained in Chapter 5, this representa-

ticn is preferable from the stendpoint of the trunca
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ever, as found in this present study there are restrictisns to the use

&

of cenmire Adifferences which may not ve satisfied at large Feyuolis

3

or Grashct rumbers. The nature of these restraints is discussed i

Chapter 6.
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CHAPTER 3

STATEMENT AND PHYSiCS OF TEE PROBLEM

INTRODUCTICH

N
.
pat

A twe-dirensianal, closed container, partially fillel with liquid
in ansteady, laminar fiow is considered. Two different geometrical ccn-
figurati~ns are examined:

{a) A two-dimensional rectangular tank, and
(b) A two-dimensicnal cylindrical tank.

The governing partial differential equations as well as the boundary
conditions “or each configuration will be given in subsequent sections,
each being considered separately. However, the following discussion re-
garding the physics and nailure of the probiem applies to both configura-
tions.

The purpose of this work is the investigation of inermal stratifi-
cation in partially filied, ligquid propellant containers.

This was accomplished by an investigation of twc thecretical models,
each of which is outlined below. The first model is very general and in-
cludes the influence of pressurization aud various types of wali effects.
The secornd model was selected in order to provide physical base to which
the theoretical analysis could be related. This model does not include
taue influence of pressurization, but introduces an interfacial houndary
conditions compatible with an experiment which is simple, yet completely

adequate to check the principal points of the theory. Theoretical
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calculations are made, nowever, for touh mcdels. Neither models con-
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the Zecrmulation and method of suiuwlion, however.

3.2 DESCRIPTION OF THE FIRST MOL™"

The first model was chosen to c¢crrespond to the physical situstion
in the propellant container. The ccontainer is assumed to be partially
Tilled with a iiguid. The inizial conditions in the liguid and the
vapor, are assumed to be known. From these initial conditions, the
wall of the vessel is subjected to a change in temperature, or to bte
exposed to a heat flux, either of which may be an arbitrary furction of
tank height and time. Simultaneously the pressure in the vapor space
is changed to Py The pressure Ps may be equal to or greater than the
initial pressure Py, or may vary with time. The measurements of ref-
erences 12 and 19 indicate that the interface rises very rapidly to the
equilibrium temperature Ty corresponding to the pressure Py in tne
vapor space. These perturbations in the boundary conditions lead to
a series of non-equilibrium phenomena within the container. Natural
convéction currer:s are set up in the liguid and in the vapor space.

At the same time the liquid-vapor system tends to adjust to the new
non-equilibrium condition within the tank by transferring mass and

energy across the interface by either evaporation or condensation.
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The conditions of the ligquid-vapor interface couple the simultaneous
transport rrocesses in the liquid and gas phases. The rate of mass
transfer by evaporation or condensgtion across the liguid-vapor inter-
face depends on the relative rates of heat transfer from each phase at
the interface. Any imbalance of the heat transfer across tae liquid-
vapor interface is counterbalarced by a phese change at the interface.
Should heat transfer from the vapor dominate that to the liiquid,
evaporation will occur; if the opposite is tiue, the vapor will con-
dense; if the respective heet transfer rates are the same, neither
evaporation nor condensation takes place.

Both the interfaciel phase change and the convective action within
both phases influence the growth of the stratified layer of liquid at
the interface, which, in turn, affects hoth the interfacial and convec-
tive phencmens. Such interactions have not been completely formulated
and apparently no solution is yet available which considers these inter-
actions. Tais is a result of the complexity of the processes which
mekes it difficult to obtain a generaiized solution to tu.e problem. In
this enalysis, however, the problem can be formulatad in its general
form taking into considerstion the interaction betweer the liquid and
vapor phases. Iater, in Section 3.5, a simplified model, which is
sufficient for the purpose of this work, will be considerel., However,
it is worthwhile %o mention that the method of solution developed
here and applied to the simplified model, can be utilized to study the

physical nhenomena associated with the more generalized process. Such
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a s2lution will te of value to engineers concernad with tne design and

development of propellant containers and associated systems.

5.3 DESCRIPTION CF THE SECCHD MODEL

It was mentionsd tefore that the tasi: objective of this work is
the analytical predictior of thermal stratification in stcred cryogenic
liquids in partialily filled containers. However, since the strstifica-
tion phenomenon is encountered in sll liquids, the experimental study
of this phenomenon can, therefore, be carried in noncryogenic liguids,
as well. The use of such liquids facilitates the experimental set-up
considerably, and allows the evaluation of the theoretical results in
the light of the experimentally obtainei data. For these reasons, a
s=ries of experiments were carrieda on in a two, geometrically different,
two-dimensicnal containers, one of wnich is rectangular and the other
iz cylindrical.

Both containers were partially filled with nonm-cryogenic ‘iquaid.
The vapor-liquil irterfacial boundary condition differs in this case
from that described i the first model. The heat losses from the liguid
to the vapor is assumed to be negligibl:s. The interface is therefore
considered adiabatic. This condition shovld be regarded as an approxi-
mation for the interfa>ial ccna.tion in an experiment carefully condicted t
to minimize the .ieat losses from the interlace. Tais pariiculer point
will be discussed further in the formulation of the prcblem Section 3.0

a3 well as in discussing both the experimental procadure, Chapter 7, and
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the experimental resuits, Chapter 8.

3.4 GENERALIZED FORMULATION OF THE FIRST MODEL

In this section the problem is formulated iu its geneial form.
The governing partial differential equatisns, as well as the boundary
conditions, av2 given for the rectarguiar container. Although the
same generalized formulation can be easily made for the cylindrical
coordinates, its details will be omitted.

A rectangular two-dimensional container of width 2a and height h
is partially filled with a liquid. The initial height of the liguid
is b, and the depth of the vapor is c¢. The origin of the c.ordinate
system is taken at the middle of the tank botiui with x-positive in the
directicn of the liquid as <hown in Fig. 5. The g level is assumed suf-
ficiently high so that the effect of surta  tensic - can be neglected.
Tne location of the liquid vapor interface at any opn~ - - _s given by
x = X(t). The differential ejuations governing the transient velocity
and temperature distribution in both the liquid and the vapor regions
developed as follows.

The momentum equations .

(1) The x»-mo.sentum equation:

/du ., du _32)_
p\&.+u&.+vay = -pg-gz

X

3 [ Lo 2 (au w)}] 3 [ (o, av]
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(i1) The y-momentum eguation:

v AN a_[ du , dv
at+“T+"5? v w |\ ax]

SEES-E- 2 = |

The continuity eguation

90 , o(pu) . o(pv) _
at+ ax + ay = 0 (3-5)
The energy egquation
o Cp %:f-+u%+v:sg = ¥+u@+"$

2(<Z) - $(D) wuo (5.8)

vhere, ¢ is the dessipation function and is given by:

2
[(Bu) +<v L a—;*%:-z (3.5)

The Initial Conditions

In this generalized formulation, arbitrary initial velocity and
temperature distributicns are considered. This generalization of the
initial conditions does nct impose any restrictions or difficulties, as
far as the solution is concerned, because the method of sclution used
in this vwork permits such a generalization. It is required, of ccurse,
that the initisl conditions be known from past velocity and temperature-
tire history. These initial conditions are given by:

(1) T(x,5y,0) = Tolx,y) (3.6)

(2) Tg(x,y,o) = Tgo(x)y) (3-7) &«
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(3) ulx,y,0) = wix,y) (3.2)
(B} ug(x,y,0) = ug(x,y) (3.9)
(5) v(x,5,0) = voix,y) (5.10)
(6} vg(x,y,0) = vy (x,¥) (3.11)

The Boundary Zonditions

Velocity Boundary Condi.ions

Assamiorg the no slip cordition to prevail at the tank walls, the

following boundary conditions are obtained:

(1) u(0,y,t) = © | (3.12)
(8) u(x,*a,t) = 0 (3.13)
(9) v(o,y,t) = © {(3.14)
(10) v(x,xa,t) = O (3.15)
(1L) ug(x,ia.t) = 0 (3.16)
(12) vg(x,ta,t) = 0 . (3.17)

The boundery conditions in the vapor space at the top of the c¢on-
tainer devend upon whether the tank is closed or vented and upou the
pressurant inlet design. The choice of these boundary conditions,
therefore, can be made only for a specific system. For these reasons
tnese bourdary conditicns will not ke given here.

The interfacial boundary conditions are of primary importarce for
the study of the interactions of the 1liquid and vapor phases. Assuming
zero shear stress at the liquid-vapor interface, the following is ob-~

tained:

P
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(13) & (X,y,8) = 0 {3.18)
. ox .
(14) -g-_ﬁ(x,y,t) =0 (3.19)

According to the assumption that tk 1ligquid surface will remain flat
the velocity of the liguid-vapor interface ic given by:

(15) u (X,y,t) = ug(x’.'f)t) = i‘)-.(- (3.20)

dt

The motion of the liquid-vapor interface may be dve to discharge,

interfacial phase change or both. Wrer container draining is not con-

sidered, dX/dt will represent the interfacial velocity caused by phase
changes.

From the geometric symmetry of the configuration with respect to

the x-axis the y-component of the velocity is zero along the x axis of

the container. Furthermore the x-component of the velocity is symmetric.

Hence,
(16) v(x,0,c) = © (3.21) .
(17) g—;'(x,o,t) =0 (3.22)

(18) vg(x,0,t) = © ' (3.23)
(19) 2E (,0,8) - o (2.24)

v

v

Thermal Boundary Conditicns

The hottom of the container is assumed to be adiabatic. The walls
of the containe: are either subjected to a space and time dependent
heat flux, or they undergo anyarbitrarily specified change iu temperature.

The boundary conditions at the top of the container will be determined,
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as stated before, by the conditions at the vapor inlet. Consequently,
the temperaturc boundary conditions in the vapor space at the container
tor will nct be considered here. From the symmetry of the container,
the temperature will be symmetric. From these considerations the

following boundary condi*lons can be written:

(20) a-k or (x,ta,t) = f£i(x,t) -
oy ,
or -0sxsX (3.25)
b-T(x,%a,t) = £o(x,t) .
(21) a-(x E25L)) o o)
Oy Xsxsh (3.26)
b-Tg(x,ia,t) = fa(x,t)} -
Y M
(223 3 (0,y,8) = © (3.27)
(23) %3 (x,0,8) = ¢ (3.28)
org
(2k) P (x,0,4) = © (3.29)
vhere £;, f5, f3 and f, determine either the specified tanl. wall heat
flux or tank wall temperature as indicated Ly Equations (3.25) and
(3.26). The liquid-vapor interface is assumed to be at the equilibrium
tusperature, Tg, corresponding to the pressure Pg in the vapur space, i.e.,
(5) T(X,y,t) = T(Xy,t) = Tg (3.30)
Conservation of energy at the interface determines ite velocityas a ! ,‘
function of the rate ol heat transfer between the interface and the
i—
liquid and vapor phases. Hence,
-

e
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@x oo on *
Pagg * g = K5 (Gyst) - Kg éx—g (X,y,t) (3.51)

it should b= noted here that when the pressure in the vapor space
is spercified tl.e interfacial temperature will ke given by Eguation
(3.30). Such a situation may exist in vented tanks or in tanks fitted
with pressure regulators to maintain the pressure in the tank at a pre-
determined levei. For cases in which the tank is not vented or if in-
termittent waiting of the tank is provided, it would be necessary to
congsider the interactions between the vapor and liguid phases in order
to dctermine the pressure-time history in the tank, as well as, the

interfacial temperature-time history.
3.5 SIMPLIFIED FORMUIATION OF THE FTRST MODEL

3.5.1 Rectangular Coordinat~s

The description of the physical phenomena for the situations in
which the vressure within the tank is not prescribed is complex. For
this reason a'simplified model is adopted, without impairing the utility

of its solution. In this model only the liquid region is c-nsid~=red.

*This equation does not include the effe>t of discharge. Should it be
desirable to consider the process of liouid discharge Ecuation (3.31)
would be written:

neg(B 0 &) = K o) - g T8 (e
vz (3-31a)

m : diccharge flow rate.
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(3) The amou"t of evapcration or condensatior is small. Threre-
fore the interfacial displacement is neglected and the in-
terface remains always at x=b.

Assumptions (2) ard (3) permit the ccnsideration of the liguid
and varor regions separately, since In this case each phase exchanges
neat with both the interface and the container walls independently from

the cther.
{(3) The fluid propertiess are constant. Density varietions are
aliowed in the vody force term only in the x-momentum
egquation.
“he pressure terms and the dissipation function in the
energy equation are neglected.
The veriations in pressure ard density frcm their
values caused by fluid motion 2nd temperature grad
will be smali. Therefore, density variations are caused
by temperature changes. The densizy p cin “hen be approxi-
mated by:

o~
\n
L

—~
N
A

o = 0,(148(7,-T)) (3.32)
wnere Py ard T, are reference values of the density and
temperature respectively, for wnich, in this analysis,
the initial vaiues sre taken. £ is the ccefficient o7
thermal expansion.

Tr this 2ace the governing 3iffereniial equations (2.1), {3.2),

(3.3) and (3.4%) rcducc o

The x-momentun

oGS ) B @R o
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The y-momentum
i"'.+ .al+ _6_1_( = -§2+ aa"+ae". (3.34)
o] 3t uax vby Sy u N ave) .
Thae continuity eguation
L1 (5.35)
ox Oy
The energy equation
or . ¥, o (52'1' a5 _
— — — = —— e em— . 6)
- +u - +v - o - 2) (3.5
The initial conditions
(26) T(X,Y,O) = To(x,y') (3037)
(27) u(x,y,O) = uo(x,!’) (3-38)
(28) v(x,y,O) = Vo(x»Y) (5-59)

The Boundary Conditions

Velocity Boundary Conditions

(29) wu(b,y,t) = O (3.10)
(30) wu(0,y,t) = 0 (3.41)
(31) u(x,*a,t) = ©O (3.12)
(52) & (x,0,4) = 0 (3.13)
(33) vix,*a,t) = 0 (3.k4)
(34) v(x,0,t) = © (3.45)
(35) v{o,y,t) = ¢ (3.4%6)

(%) -}";(b,y,t) -0 ’ (3.47)




AW

TR -~ SRy T R

ERe—

[Ym——

L )

t
2

' '
[emm———

[ T

i

Fareomtnd

bararear

1

' .
breemand

€ vrreney

i B
[ e

. '
Lmtrnsmennd

i % e —

31

Temperature Boundary Conditions

(37 : T(b,y,t) = Tg(t) (3.18)

(38) - a-K-g%(x,ia,t) = g—(x,t)

or (3.43)
b- T(x,%a,t) = Ty(x,t)
P 44
(39) —— (G,Yat) = 0 50
> (3.50)
OT
(l*o) S; (x,O_.t) = 0 (3-51)

As mentioned earlier the method of solution ailows the use of any
arbitrary initial and bourdery conditions. Therefore the general
boundary and initial conditions written for the general model are re-
tained here. Also it should be mentioneu that the abov.e boundary con-
ditions were chosen to approximete the actual situation as much as
possible. However any combination of these conditions, or others, can
certainly be hanéled using the same metkod of analysis employed in this

work.

3.5.2 Formulation 6f the Simplified Model, Cylindrical Coordinates

In this case a cylindrical container whose radius is a is partially
fi ! with a liquid, Fig. 5.

The physical phenomena and the interactions between the liquid and
vapor phases in the tank, which are described earlier during the formu-
lation of the problem in rectangular coordinates, teke place independent

of the geometry of the container. Accordingly, the generalized formule-
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tion given for the rectangular coordinates can be modified tc suit

'%
1

cylindrical coordinates. In order to asoid unnecessary repitition,
the generalized formulation will not be given for cylindrical coor-
dinaes, and only the simplified model will be cornsidered. The came
assunptions made earlier are retained here and for clarity, they are
lis“.ed again:
(1) incompressible -luid
(2) constant pressure in the ullage space, Pg
(3) negiigible evaporation or condensation
(k) constant fluid properties. OCnly density variations
are allowed in the body force term. 7These variations
are given by Equation (3.32).
(5) The dissipation fuaction and ihe prescure terms in
the energy equation- are neglecied.

‘ The governing partial differential eguatiois are:

The x-momentum

du ., du Bu) ) _32 /3% 13u, 9% .
PE &S ~%g - ST m) (3-52)
The Padial momentum
i (""+u_+v§I— 9% 4y, v v 1w, (3.53)
é or, or ox2 r2 ror or2 :
¥
. ’ The Continuity
£
{ .éﬁ + OV aV + _! - 0 ’3. h'
;  or r (3:54)
E The energy equation
E g.',u.qr..pvé_‘r_ =a[§—2'£ +iﬂ +§-2—T-] (5‘55)
K ot ox or x2 ror or2

1.
[RR" RS 1 T
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The initial conditions

T(x,r,0) = Tolx,x) (3.56)
u(x.r,0) = uy(x,r) (3.57)
v(x,r,0) = vy(x,r) (3.58)

The RBoundary Conditions

Velocity Bouudary Conditions

4

bt s

bre—q

Lowed ool ) el o)

' s

[Pty

u(b,r,t) = 0 (3.59)
u(C,r,t) = 0 (3.50)
u(x,*a,t) = O (3.61)
Su
3¢ (x,0,) = O (3.62)
v(x,*a,t) = 0 (3.63)
v(x,0,t) = O (3.64)
v{0,r,t) = © (3.65)
% (b,r.t) = © (5.66)
Thermal Bourdary Conditions
T(b,r,t) = Tg {3.07)
a - K -gg (x,20,8) = & (%,) 5.68)
b - T(x,%a,t) = T,(x,t) (3.5¢)
X (0,r,t) = 0 (3.70)
ox

_g_r_ (x,0,t) = © ‘ {3-71)
r

.
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3.6 FORMUIATION OF THE SECOND MODEL

O R R L o T LN (- WY

3.6.1 Rectangular Coordinates

i The reason for the choice of this model, as well as, the basic dif-
ference bhetween the two models are clear from the description of the two
models, which is given earlier. The basic difference betweern the two
models lies in the boundary condition at the free liquid surface. Cther-

wise, the rest of the boundary and initial conditions, as well as, the

mechenisms of heat and mass transport are the same in teth cases. rFor

these reasons, the formulation of this problem will be madz as trierly

:
£
H
3
H
L

as possible. Referenc-: to the formulation of the previous model will
be made where it seems feasible.

The same rectangular two-dimensicnal tank, Fig. 1, is filled with
% a liguid. The tank is open at the top to the atmosphere. IDeginning
from some initial conditions, the tank walls exhibit a transient tem-

i perature change. The tank wall temperature is a prescribed function

of time and axial locacion. The wall temperature-time history is ob-

—ch mena

tained by measuring the wall temperature at different locations at
various time levels,as will be described later in Chapter 7. The tem-
perature and velocity-time history within the tank is-sought.

The assumptions made in this problem do not differ btasically from

those made earlier. Fowever, tney will be repeated here for clarity,

PRI IID  meial rve LA SLAE WA S ST I £ veas ¢ = b

and are:

(1) Incompressible fluiad.

L S
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Constant fluid properties. Density variations are allowed
ir. the body force term only ir the x-momentws equation.
The dissipation function as well as the pressure terme in
the energy equation are negligible.

Density variation is only a functios ~¢ temperature,
Equation (3.32).

Ne evaporation at the free suarface.

Negligible heat transfer ot the free surface.

According to the abtove assumptions, the governing differential

equations wili be the same as those obtained earlier for the first

mcdel, Equeiions (3.33) through (3.36). Also, the initial conditions

will be given by Eguations (3.37) through (3.39). The same is true for

the veincity bourdary conditions, Equations (3.40) to (3.47).

Temperature Boundary Conditiouns

The difference between the two models is in the temperature

boundary conditions, which in this case are given by:

(1)

(2)

(3)

(%)

specified wall temperature,
T(x,%a,t) = Ty(x,t) (3.72)

insvlated tottom,

X (0,y,8) = 0 (3.73)
ox

symretry with respect to the x-=xis,
9 (x,0,6) = O (3.74)

Yy

adiabetic fres surface, according to assumptions 5 and 6,

2 (b,y,5) = 0 (3.75)
ox

While evaporation can, by appropriate measures, ve prevenied. as

will be discussed later, some heat losses by convection from the free
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surface will certainly be enccuntered. Therefore condition 4, Equa-
tion (3.75) should be ra2garded as an approximation to the actual situa-
ticn. This approximation will be good for small time and low heating
rates. Perhaps the best r3presentation to the actual heat transfer
process at the free surface would be bty azcounting for the heat trans-
fered between the lignid and the amtients through the use of a convec-
tive heat transfer coefficient. Thi.~ latter alternative is not adopted

here, however,and Equation (3.75) is used.

3.6.2 Formulation of the Second M~del, Cylindrical Coordinates

In this case the same cylindrical container is partially fiiled
with a liquid, Fig. 5. Similar to the caze for rectangular coordinates,
the container walls are subjected to a transient temperatures perturba-
tion. The governing differential equations are gi—v by Equations
(3.52) through {3.55). The initial conditions and une velccity
1')oundary conditions are the same as those given for the first model,
Equations (3.56) through (3.66). The temperature boundary couditions
a;re gimilar to those considered for the rectengular mocdel and they are:

(1) specified wall temperature;

T(x,ta,t) = G(x,t) (3.76)

(2} insulated bottonm,
&£ (0r,t) = 0 (3.77)
ax .

(3) syrmetry with respect to the x-axis;
T (x,0,t) = O (5.78)
or

D8 e
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{4) adiabatic free surrace;

2T (b,r,t)

ox

(3.79)
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CHAPTER 4

TRANSFORMATION OF THE PARTIAL DIFFERENTIAL EQUATIONS

The governing partial differential equations in the form given
are not suiteble for finite-difference approximation for two reasons,

1. The fcur equations considerivng the effects of momentum, con-
tinuity and energy when replaced by finite-differences, will
give rise to four linear algebraic equations in three unknowns
at each nodal point in the grid. Hence these will be LN
equations, where N is the number of the nodal points in the
domain considered. There will be 3N unkaowns, namely, Tj---
TN, wy---uy @nd vi---vy corresponding to the LUN algebraic
equations. It is clear that in order to solve the algebraic
equatvions for the unknown fuuctions; it is necessary to reduce
the number of equations to equal the number of unknowns. This
can be achieved by the use of the stream function and the
introduction of the vorticity, which reduces the system to
one of 3N equations in 3N unknowns.

2. The presence of the pressure terms in the momentum equazions
is undesirable.

Accordingly, the partiel differential equations were transformzd

to an equivalent, but mcre convenient form as follows. .

4.1 RECTANGULAR COOKDINATES
It is assumed that the pressure p can be written as, Reference
(31):
P = rtp' (k.1)
where p, 1s the hydrostatic pressure and p’ is the change in pressure

from the hydrostatic pressure, therefore;

gg = -p,8 +-§§- (&.2)

Lk
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where £, is the density corresponding to py. Upon differentiating the
x-momentgm equation with respe~t L, , and tne y-mcmeantum equation with
respect to x, subtracting the second frce tne first to eliminate the
pressure terms, and using Eouations (3.32), (3.35), (4.2) and (4.3),
the two momentum Equations (3.33) and (3.34) are transformed into the

following equation:
3 gg_.a)_gwa_ WY, B_Q__)
ot \y 9 3 \dy ox/ 3y \&y O«

gaa@w[a__(@_ﬂ < _d’ 1 (b.4)
v % \dy ox

This result can be simplified by the introduction of the vorticity

defined as
ou v

L (4.5)

Then Equation (L.4) can be <ewritien as

al 1 1 — N2+ 2.
RN LA LT Y-

Bt tu g + v S;— = {(4.6)

Equations (4.5) and (4.7) are equivalent to the twc momentum equatious,

«nd the latter iz known as the vorticity squation. The solution ob-

tuined from Eynations (4.5) and (4.€) will satisfy both the x- and y-
momentm equations. In o:der tc satisfy the continuity equation, the
strewn function ¥' is introduced in Eguation (4.5). The stream function

¥' is defined such that the continuity equacvion is satisfied if tre u

i
L,
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and v velocitics are written

Qs
P
PSS

v = - (.2)

Usirg (%.7) ard (5.8) in Byuazions (3.3<), (4.5) and {k.€), tke

folloving eguaticns gre ottained

§+2?"_’.E-3'¥'.§ 1_732“) (:.5)
% % ¥ a o \x=

-

Sy . e, a__i_)
(4.10)

3t or ox ox oy oy a2 ¥y2
.o 9% | a3y .
YT e T yE il

The system of Equations (4.5), (4.10) and (L4.11) are equivalent
to the system of Equation (3.33) through (3.3€). However the trans-
formed equations are more suitable to handle by finite-difference tech-

niques.

k.2 CYLINDRICAL COCRDINATES
Differentiating the x-momentum with respect to r ard the r-
momentum with respect to x, and combining both equations to eliminate

the pressure terms, the following equation is obtained:

3 (3 ), .3 (du.aw). 2 (2.
¥\ &5 55 FE\EG )

u ov) /du ,  dv) _ . +
(ar'ax or “” ’[axa( (4.12)
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Since the velocity comporent v changee sigr in the two-dimensicral
domain considered, the presence of the term vw!/r in the vorticity .
Equation (4.15) is undesiranle. This is tecause it may present a com-
rutatioral stability prcblem, in case the value cf this term is taken
a’ the came time level arn ali nodal peints. This prot_em could be
avoided Ty taking the value of vw'/r to be that at the advanced time
jevel if v is negative and is evaluated at the present time level if
v is positive. The disadavantage of this procedure is that this terr
is not evaluated at the same time level at all nodal points. kecause

of this a different approach is taken to handle this problem, by which

this term is eliminated from Equation (%.15) in the fcllowing way:

(4.16)

2
n
L Ii
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Upcn substitution of Equations (%.16) through {4.i8) in Eg.azions

{3557, (4.35) and (k.13), the latter sy.cem of eguations reduces to:

3¢ 1w ¥ 1 or _ fd% .13 .3\ i e
% rax & rw e “(@*;x*m (£-19)
E l oy " 13y’ w1 oT a2wu B agw,,‘
* TTI TH® T 3D -;EB$+Va}:_a+?S'F’a_rz_J!
Vav 2 (L.20)

. -1_- a 1 -}-a‘;’l+a 1 A

= = oz r or . > (s.21)

Equations (%.19), (4.20) and {4.21) are sufficient to determine the

temperature and velocity distribution ir. the cylinder.

k.3 BOUNDARY CONDITIONS

The transformation of the energy, momentum and conlinuity equa-

tions vwhich have T, u ard v ac variables into an equivaient system of

partial differential equations ia the temperature, vorticity and stream

function requires obtaining the necessary boundary and initial cordizions

for the latter two functions.

These are derived from the velocity

boundary conditicns, and are given below.

4,3.1 Rectangular Coordinates

(1) Stream function boundary conditions

1. v'(0,y,t) = O

v}
2. 'a%'(oyy‘vt) = 0

(4.22)

(4.23)




3. v'(o,y,x) = 0 {4.2i)
L. gj;' (o,y,t) = © (4.25)
s, v'{x,0,2) = O (4.26)
€. ?,:—i'(x,o,t) = ¢ (&.27)
7. §'(x,*a,t) = 0 (u.28)
8. -g;!—l(x,ia,t) - o , (.25

(ii) Vorticity btoundary conditions

The vorticity boundary conditions are derived from these given for
the streem functicn above, as well as, from the momentum equations.

Bquations (4.24) to (4.27) zive the following two boundary conditicus,

(1) wi(o,y,t) 0 (L.30)

(2) w'(x,O,t) c (l"-jl)

Two more boundary conditions on the vorticity are required at the
tank wall and tottom, which are obtained from the x and y momentum egua-

tions respectively and they are:

a")‘ . l ap f 3 ~
(3) v (x,%a,t) = = (og + 55 (x,%a,t)) (x.32)
' . =L 3 \
(h') 3% (O:J’t) = " ‘a—y (O;Y)t. (4-55)

The use of tke last two boundary conditions requires of course,
the determiration of the pressure distribution. The difterential equa-
tion governing the pressure field is cbtained by difrlerentisting the x-

momentum ard the y-momentum equations with respeet 10 x and y respectively

and cormbining the resulting equations to yield,

B e ——

«
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3p.3% . 3, (8 v (¥ i) (k.31)
x2 gy2 ox k2 T oy® cxoy R

Equations {%.9) to {&.11) and (4.22) through (L4.3k) G-termine the

entire temperature, Ticw ard pressure fields. However, the non-linear

%.32) and {%.3
togevher with Equation (4.3k4) does not offer any advgntages from the

standpoint of the amount of computetion required.

=2.3.2 Cyiindrical Cco-dinates

(i} Stream function boundary ccnditions

1. y'{c,r,t) = 0O (4.35)
2. & (ort) = 0 (4.36)
3. y'(b,r,t) = O (b.37)
22y ‘
o 572 (b,r,t) = 0 (4,38)
5. ‘!"(x)o:t) = C ()4'-59)
9 1y’ . e G
6. 3¢ ;aT(X,C,t)) = 0 (4.40)
7. v'(x,*a,t) = O (L. 41)
8. (3y'/or)(x,xa,t) = © (k.42)

(ii) vorticity boundary conditions

The same procedure used in the rectangular container leads to the
following boundary conditions;

1. w"(b,r,t) 0 (4.43)

2. w"(x,0,t)

Y (k. ak)
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= 1 9d(w"r), - l,dp, '

De ;TIIQ Y ( 3 EDI
o" -1 dp

L. S =t) = =¥ (0,r,t)

For completeness the eqguation describing the pressure

given below;

% .13 ,3% _ % (B, ,u ¥ _az)
axe'?a T "gax""rz"‘ar'ax*(a ¥

4. 4 DIMEXSIONLESS FORM CF THE EQUATIONS
The substitutions necessary to non-dimensionalize the

~quations are:

ch
v = 730 » v =
vob
T-T = 9 v o=
¢ peat ’

x = bX > y =
r = aR R w!' =

"o _ E.E ' =
w iy w s =

The resulting dimensionless equations are given below.

L.4.1 Rectangular Coordinates

The energy equation

Or dY X X oY b2 X2 oY2

2, 2
%, 2 u % _ a2d%, 3%

(b.4%5)
(b.k6)
field is

)

(4.47)

differertisl

aby |
(4.48)

(4.49)
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The Vorticity kquations
L M N [ a? 3 aew] (b.50)
Y OX XX C Y e 5t 20/
_ 823y 3y '
v b2 3x2 | or2 (k.51)
_ S
U = Y (4.52)
vV = -9 (4.53)
oX )
Boundary Conditions
(i) sStream function
1. ¥(0,Y,T) = 0 - (4.54)
2. sﬂx(o,y,v) =0 : &55)
3. ¥(L,Y¥,7) = 0 (4.56)
92 ,

b, -ax—g(l,Y,"r)'= 0 (4.57)
5. ¥X,0,7 = O : (4.58)
3%y ;

6. aYQ (X O,T) = 0 \"l"59)
T ¥W(X,tl,9) = 0 (4.60)
8. o (x,%1,q) = O ‘ (4.61)

dy
(ii) vVorticity
1. w(i,Y,t) = O (4.62)
2. w(X,0,7) = 0 (4.63)

Boundary conditions (4.32) and (4.33) will be disregarded here.
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(i1i) Thermal boundary conditions

(1i1.1) First model

1. (1,Y,7) = 5 . Pr. Grg(T) (1.64)
2. a- .g.f_f’(x,l,r) = % . Pp . Gp* (4.65)
or
b - B(X,1,7) = % - Pr .+ Gy (X,7) (4.66)
o0 '
3, — =
3 ax(o,y, T) 0 Q.67)
h. %2 (x,0,1) = 0 (4.68)
oY )
(iii.2) Second model
o o .
1. ax(l,Y,'r) = 0 (4.69)
2. o(X,1,7) = %. Pr . Cp (X,7) (4.70)
5. 2 (01T = 0 (n.72)
. 2 (x,0,1).= 0 (4.72)
BY Vv A

wherx Crs and er are the Grashof numbers based on the surface and the
wall temperatures respectively, P, is the Prandtl Number and Gr* is a

mod?fied Grashof Number, which are given by:

Orgl7) = (Tgrt,) 5 (4.73)
e (1) = (1T 20 (b.78)
a* = gpa*(ala) | (xva)

1,



™

Wl 2 0T e, aea

RS

-Initial Conditions

- Thn same non-dimensionalizing procedure leads tc the following

initial cconditions,

¥(X;Y,0)
w(X,Y,0)

o(x,Y,0)

L.4.2 CrlinGrical Coordinates

The Energy Equation

— et * s T ave emmn 0 e T

1 a2
YT (ba
: 1
J R 3R
< 1 dy
Vo= . L9V

R oX

Boundary Coaditions

(1) S%ream furction boundary conditions

f

1. ¥(0O,R,¥) = O

v

X (0,R,v) = O

2.

5. ‘I’(l,R:T) = 0

(+.83)

(is.8Y)

(4.85)

| B oy YR
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32y -
v 2 (L,R,7) = 0 4.8
e (L,&,7) : € )
5. ¥(X,0,7) = 0 (4.87)
2 1w -
6. 3R ( E-B_R. \X,O,T) = 0 (,-l--88)
7. ¥(X,1,7) = 0 (4.89)
oY
3. - (X%,1, = 0 .9C.
% ( T) ‘h 9C
(ii) Vorticity boundary conaitions
1. w(L,R,7) = 0 (k.91)
= G (,-I--92)

2. w(x,0,T1)

Boundary conditions (4.45) and (4.46) wi_.l also be 3is-2garded.

(11i) Thermal boundary conditions

1. o(x,t1,7) = (a/b) . Py . Cr,, (4.93)
99 4
2. 3% (0,R,7) = O (b.ok)
z éﬂ ( 1yt
C R (1,R,7) = O (4.95)
d9
L, =-(X,0.7) = .
> (X,0.7 0 _(h %)
where er is give~ vy Equation (L4.Th).
Initial Conditions
O(X,R, .t = Gy(X, (4.97)
W(X,R,O) = ‘i’o(X:R.\' (4.98)
w(X,R,C) = w,(XR) (k.99)

]

From the above results, it is established thst the temperature aua

flow fields are determined by the non-dimensional groups, (¢ /b), P rq

b
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and Gr,, or Gp*, whicn are fuanctions oir the fluid properties, tank

gzomeiry and themmal toundary and initial conditlons. It is frequently

reported in the iiterature that the Tluid in large vehic_e ccntainers

is found to behave differertly ther in small test Lanks. Whether the
actual test conditicons in the small tenk corrcsponds %o the aciial con-
ditiens In the large tanks can be exarnined by comparing the above dimen-
sionless groups in botk cases. The :se ol small tarks in laboratory
experiments is a matter of convenieuce and is usually desirable. How-
ever, in order that the experime.tal results obttain2d in the small tank
correspend to those in the large tark, the above di-ensionless groups
chouid be the saxe in both ceses. The initial confitions shculd, of
course 1lso be the same. This would irsure that the dimensionless
texperature and velocity would be the same. Also if the same fluid
used ir both csees, <hen +he dcsignor cun specify the tank geometry

and the heat Tivx level 35 that .ae above cornditions are satisfied.

P
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CHAPTER 5

METHOD OF SOLUTION

5.1 IKTROLCUCTION

Finite-di:’ference a+=chods have been widely used for the study of
linear partial differential equations, paiticularly for the solution
of the heat ccndvcetion equation. However, the application pf these
methods to the solution of heat transfer in fluid flow prc lems, such
as the study of natural convection, was until re-ently, very liwited.
Tris fact is dque partly to the compiicated form of the partial differen-
tial equations involved, and partly due to the difficulty in obtaining
sound critericn for the stabilizy problem, which is associated with
<he solution o7 such equations. The resulte of tke anaiytical studies -
end mathematical experimentation made here and by others to stuuy the
stability probiem will be given in the next chapter. In this chapter,
the finite-difference equations for the energy ard the vortvicity egua-

riong will be developed and an outline for the solution will be made.

5.2 APPROXIMATIOW OF DERIVATIVES BY FINITE-DIFFEREJCES

The use of finite-differences reguires the 2stablishment of a net-
work or a system of grid points in the domain of interest., The choice
of such a network is a matter of convenience and is generally affected
by the coordinate system chosen, and the shape of the domain. In our

cacs, this network is obtained by constructing a series of equally spaced

57
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vertical and horizontal lines parallel to the X and the Y or R ares,
Fig. 6. The subscripts i and j are used to refer to the position of
the grid points in the two-dimensional domain, such that X = (i-1) AX,
¥ = (j-1) AY¥ and R = (j-1) aR. .he origin of the coordinate t;.xes is
located at (1,1). The superscript @n refers to the level of time
such that T = n°AT. |

The basic idea in using the method of finite differences to sclve
partial differential equations, is the use of Taylor's series exypansion
to approximate the dgrivatives at a point in terms of the value of the
function at the same point ard/or at its neighboring points. This
procedure assumes that a sufficient number of derivatives exists, which
depends upcn the order of the differential eq.uation. In cur case it is
sufficient to assume that the function is analytic to the second deriva-

tive {20). Using a Taylor's series expansion, the following relations

can be written; .
' n-1 _np-
fi+1 j = fi 3 + AX of + (Ax)a Bzf Fouee + (Ax) bn T +!Rn
’ ’ A3, 3 2! oax3 (n~1)! Bx!;';é
(5.1)
n-1
fimy,5 = fy,9 oAx of ,(ax)2 3% ., .(ax) 3, gy
’ W amyLy 2 xy g (b-1): &%
(5.2)

where Rn represents the remsinder in Taylor's series expansion.
Fror Equations (5.1) and (5.2), the following different approxima-

tions to Of/dxj j can be written,

WM TR e -
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= N+

_-.Y'R

‘(M-l-l, N+1)
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Finite éifference network.
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N fi41,5-%i,) .
(?) - SRl o, (5.3)
x'i;J >4
(_3_{ - Digttiog,g + 0(x) (5.14)
Ox Ax

’d

'a-f) - hrliord 4 o(a)® (5.5)

Ox i3 2(ax)

These differences are called forward, backward and ceniral respec-
tively. The last term in equations (5.3,5.4,5.5) indicates the order
of the truncation error snsciv @ in replacing the derivatives by finite-
differences. It is obvious tkat the central differences offer better
approximation than the other representations. However, the choice oi
the type of difference approximation is ulso dictated by stability re-

quirements as will be discussed later in Chapter 6.

Similarly, the second order derivative a’-‘f/axai 3 can be approxi-
2

mated by,
aaf f—f+l j~2f s4f
U TS =2 5 W 25 E.5 1Y o(ax)2. (5.6)
% j (ax)2

Likewise, expressions for df/dy, Of/OR, 3%f/dy2 and d2f/dRZ cen be written.

5.5 NOTE ON THE CLASSIFICATION OF PARTIAL DIFFERENTTAL EQUATIONS
Partial differential equations are generally classified a3 elliptie,
parabolic or hyperbolic. A umplete discussion of this classi’ication
is given in Reference 78. The numerical procedure for the solution of
any differential equation depends upon the classification of sich equa;

tion. The eu:-gy and ke vorticity equations, equations (L4.49), (4.50),

U TS
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(4.78) and (4.79), may be classified es parabolic partial differentiasl
equations, while the vorticity-stream function Equations {4.51) and
(4 80) are regarded as elliptic equations. Therefore the procedure for
obtaining the finite-diffcrence solution of the energy and the vorticity
equations will differ from *that used for the vorticity-stream function
equation. Accordingly, th: method of solution of each type will be con-
sidered separately.
5.4 FINITE DIFFERENCE FEPRESENTATION CF THE ENERGY AND VORTICITY EQUATIONS

(Parabolic Type)

The finite-differsnce methods for solving the paraﬁolic partial
differential equations can be classified into two broad categories,
as explicit or implicit. The time level, at which the spatial deri-
vatives are d4ifferenced, generally determines whether the resulting
scheme is explicit or implicit in nature. For example, if the values
of the function &t the present time level, where its values are kaown
at all nodal points, are used in Equations (5.3) through (5.6), the
resulting formulation is said to be explicit. Such a formulation en-
ables the direct computation of the value Sf the function at all nodal
points using a simple, marching-type procedure. The employment of the
explicit methods, however, may require the use of small time incremeants,
and consequently large machine time. To alleviate this problem,  the
implicit methods are usually suggested. Indeed, many of the authors

who have investigated the use of finite-differences for the solution of

o
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equations of the form (4.49). (4.50), (4.78) and (k.79) or similar sys-
tems, suggested that implicit methods, irrespective of their form, are
uncornditiornally stable. By extensive study and experimentation it ha;
been found hence, as outlined in Chapter 6, that this is true only if
the coefficients of the resulting matrix satisfy a certain stability
criterion.

The use of any of Equations (5.3), (5.9) and (5.5) togelher with
Equation (5.6) would lead to different finite-difference approximaticns
for the vorticity and znergy equations. For brevity, only two different
finite-difference representations will be given here. These are chosen
primarily in order to discuss some of the problems associateld with their
use, namcly the problem of stability. The discussions that follow in
the rest of this chapter apply to other forms of finite-difference
equations as well. Indicating by superscript (n+l) the value of the
funétion at the unknown time level and by n that at the present or the
known time level, and substituting U for ow/dY and V foir -0y/dX in the
energy and vorticity equations fof convenience, the finite-difference
approximations are written as follows,

I. Explicit difference representation:

A. BRectangular Coordinates

n+i n n n n n n n AN
O1,9°90,0 y Hud®a,y |, 01,3°08,3-1 | a® 01+1,3-204,5%0i.3,)
AT AX AY b2 (ax)2

n n n
L SL, 4180, 5105 52
(av)2

(5.7)
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ntl n n n n+y n+1
.‘.'{:'.'.’-’;J.:E.i".:’..‘i'. + U :Ei:zl:.iii 4 1 .‘_'.]_"_"2.-_1_1.2.‘_'.:&, - Ppr gi’j-i'l-@i)-.j'*
e X (ay) 2(aY)
! n n n n . n .n
Pr a_e. "‘i"'lnj_‘wi 2dWi-1,d + ~_:_J"‘i ‘+l-dwilj+wiij'1‘|
| b2 (2x)2 (ay)2 J
(5.8)
(i1)
nti n n n n n
81,j7%,d 4y %i41,37%1-1,5 Ly 91,9+1-0i 51
AT 2(8x) 2(aY)
n n n n n n
82 %it1,§-201,3%05-1,5 , 91,3+2-%01,5%95,5-2
b (ax)® (a£)2
n+1 p n n n+l n+1(5'9)
1,37V, 3 Wi+l 5 Vi1, W5 -ui s 0i,3+1791,3-1
Wi,d7W1,5 oy FiL,JTTE-nd g MiLgntMiL gy o py ZRadT Pod7d
Av 2(A%) 2 AY 20Y
0 2‘]‘1 .-Lwn n 2“(’1 .+\.]r.1 . 1
Pr a2  ¥in1,j" 1,57V1i-1,J b Yi,5+1mEY1, T, g2
b2 (ax)2 (a¥)2
(5.10)
B. Cylinderical Coordinates
(i)i’H-l He
n r. n i n n n 4ot .
0i,3-01,) + U £1,3-01-1, 4y 88,37%,31 - 8% 0541,5-201 4760,
Ar AX AR h2 (ax)2
n 1 n n
181,3+701,5-1 , 6f 3+-20 465 5.5
R 2 AR (sR)2 (5.11)
n+r N R on no.on n+1 2+
¥i,j-vi,j . U Yi,J-VWi-1,] +V wi;J-'Jl.'J‘:'; - f_r_ 8i,,+1-6i,3-1 .
A (a7) - AR R 2 AR
v n PR <1 ) n n n . -2wn Wl
pri a2 Mt jo2wi,jWi-a,g 3 Miygtatgen y BRI, 000
Lb (a¥%)2 R 2{AR) (aR)2 ]

(5.12)
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(11)
i n n n n n n 2
TR E + U i#2,3-0:21,) + 3 Si,j+1-6i,j-3 a2 0it1,3-%61,j%0i., 5
ar 2(2X) 2(AR) Y] (2%)2
n n n’ ool .
+ .]_'. . .?.j:.l.ljﬂ‘oi)j"l + Oi,j"'l-ggi,(j"‘olu]’l
R 2(4R) \4R)2 (5.13)
n+1r  a n n n n n+y n+1
Ei;izii;i + 7 wi+1!1-Wi-1!j + V'wi j+1ew1,j_3 - 23 Oi,j+1"oi,j-1 .
AT 2 AX 2 AR R 2AR

n n n n n n n .0
Pr {82 Wit1,J-2%i,3tWi.y, g, 3 Wi, dh-Wi,g-1, Wi,5+1-294, 579,541
b2 (ax)2 R 2AR - (aR)2

(5.14}

In the remainder of this chapter, most of the discussion will be
directed to the rectangular system. The sau= discucsionepplies to the
cylindrical case. In situations wher: the need ariscs to consider th.
cylindrical equations separately, sufficient discussion will be devoted
for this purpose.

Versions {i) and (ii) given above are two different explicit
finite-difference representations of the same partial Giffereutial
equations. The difference between the two is in the approximation of
th= nonlinear terms U 30/dX, V 09/0¥, U ow/dX, ... ete. 1In the first
backward differences were used, while central differences were used in
the other. The use of the central differences i.e., formulation (ii),
is prefer;ed from the point of view »f the truncation errors. However,

from the standpoint ot practical and computational procedures this for-

mulation is useful only for cases where the Grashof or Rayleigh numbers




[ s et

e maal

[Ers—

naw oy

65

are low, i.e., for small velocities. Such cases are usually of less
practical importance. This preference is attributed to stability re-
quirements as will be shown in Chapter 5.

t vill be demonstrated later that wnen U and V are positive, then
formulation (i) is stable provided that the time increment AT is
chosen to satisfy the stalility criteria given by inequalities (6.37)
and (6.38) for the rectangular coordinates and inequalities (6.41),
(6.42) and (6.43) for the cylindrical case, as discussed in Sections
6.3 and 6.4.

Likewise it will be shown that formulatiou (ii) is stable jro-
vided that inequalities (6.61) and (6.62) are satisfied.

The difficulty in using the central differences is clear from
these inequalities. For high Grashof numbers the dimensionless
velocities U and V will be high. Therefore small grid aizes must be
uged in order to satisfy the above mentioned inequalities. For example,
as described later the velocities U and V reach vg}ues as high as
1600 for run No. 7 where a/b = G.183. A few arithmetic operatioas
show that (5.17) and (5.18) requiré that AX £ 6°7x10°S, AY 3 0.002.

The use of such small grid sizes requires storage beycnd the capacity
of any present éigital computing machine. Furthermore tremendous

amount of machine time would be required to handle such cases.




L AR e e

LY.

LR - S

¢

AT B e BN« R B AR

Wb Y ooty AUeaait

-

66

II. Implicit finite-difference representes’ on
The implicit forms corresponding to ver. f and ii are ccded
i1 and iv respectively and are given below.

A. Rectangular Ccordinates

(ii1) .
o+l n n+y n+i n+1 n+1 n+i n+1 oy
©1,3-01,1 4y 94,3°91-1,4 , v 8i,3-01,4-2 _ 82 8iv1 j-201 j*01-. ¢
AT (%) AY b2 (ax)2
n+1 n+l nt1
91,3+1'201}j+011j‘1 (5 15)
(sy)2 '
ntl n n+1 wn-l-;|, . n"'ll: n+1 n+1 n+1
M S i W PR e P RPN P9t O3 ok S U9 hr P L SN
Ly AX bY . 2(aY)
nt+y 2wn+l n+1 n+1 0+l 0+l
pr |82 ¥i+1, 3721, gt 1,5 |, Wi, g+ 1,3-1]
2 2
b2 (aX) (aY) (5.16)
(iv)
n+2 n+1 n+i n+s
n+1 - -
o108y, p Sira,d-0ioa,g , 10001,
AT 2{aX) 2{aY)
n+ n+y1 nFL n+l n+1  n+1
a2 91+1,3-201 g*0i-:,5 91, 34+1-29; 376 <.y
o® (8 (21)® D7)
n+l o n n+1 n+a nty n+z L W
VLMY oy By MighMider p Orn i
Ly 2(aX) 2(a¥) _{8Y)
n+1 N+l n+i n+1 . n+l
+ Pr| 82 Yi+1,§-2wi, g4Wio1, 4 Wi, eV, el 5 |
bZ (23) ay)Z (5.18)
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B. Cylindrical Coordinates

(i11)
‘n+ B ntl n4y n+1 0o+l +1 n+1l, o+l
“i,d Qi,a 0111-91-1!3 .y o1 j'oi,j-l _ a2 01+1,j- 291,3%0i-1,3 .
AT AX AR Y (ax)= '
n+1i n+i n+i n+1 _n+l
1, 98,50101,5-1 | 81,341201, 4313y (5.19)
R 2(AR) (aR)Z h
n+l 0+l 4y n+1 nHL n+1
e PP i U RULE T e £ VT R s ¥ o S £ Pr o, 3181,5-1
AT A% AR 4 5 - 24R
n+2 n+1 il n+1 n+ n+a n+1 n+1
Pr 231w1+iij:?wﬁigfwi-1:3 + 2.“1,3+1-W1,i__ + Wi, 342", 54y g
b2 (ax,2 R 2(AR) (aR)=
(5.2c)
(1v)
L+l n n+1 n+1 n+i n+1 +1 F+1+gn+*
Oi,J-Gi’J + U Qi"'ll.'j-oi"l,i +V gi,.j"'l—oi,bl':l - a gi+l Bk .20, PRl T ! i .
AT 28X 2AR b2 (a.2)2
n+1 Byl n+1 ‘n+l n+
191,040170, 3~ | 81,342-201 5401 42
R 2AR (AR)2
(5.21)
n+:. n+y wn-iv.‘n. n+2 n+l OI 41 0! 1
1 —"y . -l - - KR -
Wi ‘T.wi l .y Wida, J7Ni-1,] +V wi:_J"'l_,j:.__'J._..l - PE2A0TE,0e +
AT 2(ax) 2AR R z(AR)
; n+1 n+y n+1 n+1 oty Okl
pr 85 Wit P W B 3 W heVl | Wi g g l‘|
b2 (8X)2 R 2(sR) {4R)2 J
(5.22)
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Azari Srom stabiliiy reguirenmerts, formuletions {ii) and {iv)
rIguire tre solution of five dimgonal matrix, which is usuarly ok-
tair.xed Sy iterative rmethicds. Tne most suitatle methcdé Ior tre present
eguaticas is the fauss-Seijel iterative meirnod. This methcd requires
that the coefficiente in every eguation seitisfy a certair criterion,

nagel:, that the sum of the absolute values o the coeificients of the

s
‘.

C. 4
A
’-.|
St
2}
1.3
£
—
(XA
-
<

U
'-J
N

variacles at the nodal points (i+1,3), (1-1,3), (
mist nct exceed the absolute vaiuze ¢f the ~oefrficient of the :‘un:iio:
at (i-:j)'

It is not difficuit tc see that for U 2 ¢ and V 2 J, formulation
(iii) satisfies this requirement. This will alsc bte true if oither
or Veor bcoth are negative and implicit forward differerces weve used
in the correspcnding nonlineer terms. In addition, it will be shown
in Section 6.4 that thiz formuiation is unconditionally stabie.

Tre application of the same 2ritéricn to formulation {(iv) ; Equa-

_tions (5.17) and (<.18), shows :hat Gauss-Seidel method car be em-

ployed for the solution of these equations. The conditicns necessary

in order that this method conve—zes can be 2stablisred as follows:

Casei
lojs22 Ll seprell (5.23)
! b2 F% 4 y vy = —Em PN
- 2 . iy! < EPr e o
{v] Y HEAZ 52-‘:;- {5.24)

- T
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T# inequalities (5.2%) and (5.24) are satisf.e¢, the Gauss-Seidel
iterative method converges. In addition the rezulting difference equa-
tions will be unconditionally stable. Ulo restrictions on <he size of
the time increment ere imposed neither by stabiiity nor by the method

chosen for numerical reduction of the equations.

Case 2
[Ui z _Q_BE L ; ful 22 Pra—a- S (5.25)
b2 aX b2 AX
2 . v 2 X )
vl == 3oVl 2 (5.26)

Ia this case the fauss-Seidel method requires that the time increment

shouid satisfy the following inegualities:
1
AT S (5.27)

Il o222 1 vl _2
AX  b2ax® aY  (a¥)?

1 2 -
AT s (JEL-P,.&&_,__.I__+LV_L. 2"”.) (5.28)

T o\ux b2 " (am2 oY  (AY)2
Inequalities (5.27) and (5.28) are imposeé by the method used for
the reduction of the set of algebraic Equations (5.17) and (5.18) under
conditions (5.25) and (5.26), and are not imposed by stability require-

ment.,
As a matter of fact formulation (iv), Equations (5.17) and (5.18)
behaves in a way similar to formulation (ii), i.e., if (5.25) end (5.2€)

ere satisfied, then the finite difference Equations (5.17) and (5.18)

are unstable.
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From tte above discussior. it esppears that the use of central
differences in the terms U 9¢/9X, V 39/9Y,..., ste., is impracticel
irrespective cf whetter impliicit or explicit methods are used. On
the other hand it seems that the one-sided dirferences, i.e., forwaird
or backvard differenves; are the most suitatle form for the approxima-
tion of these terms.

Frcm the anaiysis cited above it is clear that one has nc choice
except to use either formulation (i) which is explicit or formulation

$1i) vhi~h is implicit. It was decided %o use Formulation (i) in
prefersnce to formulation (iii). A fuil account of the background of

this choice is given Ir Section S.8.

5.5 VORTICITY-STREAM FUNCTICN EQUATION
The vorticity-stream function Equations (4%.51) and (%.80) are re-
pleced by:

A. Rectangular Coordinates

¥, PSR N i -3 ‘s
Wi, s = gf. . e, ""1,3 ‘*1’1)_3 + lvi:-j"'l C‘i’j.’-\h:-j‘l {5.29)
S (a%)2 (z¥)°

B. Cyliadrical Ccordinates

w3 = 1 |a® Vie1,5-2¥1,3+¥3-2,5 _ L ¥ gea¥a d-n o Vi geamBViL M e
S LT (8X)2 R 2(aR) (27)2

(5.30)
As mentioned earlier, the method of solving the vorticity-stream

function Equations (5.29) and (5.30) may differ from thet used in solving

PR

e
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the energy end vorticity eguations. While tlhe energy and the vorticity
equations can be solved either using an exglizit marching type proce-
dure or by using the Gauss-Seideliteret’ve method, as it is the case if
implicit methods are croser, the “r‘orticity-stream funetion eguation is
usually solved by iterntive methods. A wider ciass of i‘erative methods
can be empidyed for tris purrose. Amonz these methods are the Gauss-
Seidel method, which was usea by Fromm {31}, the successive overrelaxa-
tion by points, used by Wilkes (74), erd the block successive over-
relaxation methcds. The point successive overrelaxe<ion znét‘nod cot-
verges faster than the Gauss-Seidel method, while the block successive
overrelaxation rethods are supevior to both of them. Among the tlock
iterative methods are +the successive row 1..e;ation, tke simultanecus
row iteration and the successive line overrelaxation. The reader is
refer-ed +o Reference (71) for a comprehensive study of all tnese
methods. Here en account will be giveronl; of the metnod empioyed fcr
solving the voriicity-stream function equations. The method used is
eggsentially a modified form of tre lire successive iteretion, ic which
row iteraticn was foliowed by colurn iteration. It is found that +his
procedure gives faster convergence than in cases when only row or

column successive iteration methods are used. The iteratiwve formutae

for this method applied to Equation (5.29) are:

Successlve row iteration

/ - 1 x/
‘V?:; : ((aA-)j[p sif i“*J_f _(AX) (‘#1+.'.,J+W1t;,‘j (AY)awi,q]

(5.31)
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Successive column iterations

p+1 p+1 p+1, 2 ph’
1,3 2zl+(be ) ¥iaa 2J “‘1-1,3 au ¥i,301Mi, 54
AY

i (5.32)
- 2— 19:4 wi’J] “

a2
where the superscript r refers to ths number of iteraticns. Similar
formulas can be written for ihe cylindrical coordizates, Ecuaticn (5.30).
The use of (5.31) and (5.32) requires the solution of a tridiagonal
matrix which can be done very easily using a aimple algorithm derived
from the Gaussian eliminaticn method. This algorithm wes used first by
Bruce, peaceman, Rachford and Rice {9). The description of this proce-
dure is given in Appendix I.

The number of iterations required by this iterative method in
order that the maximum chang= in the magnitude of the stream function
at any nodal point does not exceed 0.3% using 31x31 grid did not exceed
one iteration in aost cases. This 1s largely due to tus fast convergence
of the method of iteration and also to the small size of the time in-

crement used.

5.6 CAICULATION OF THE VELOCITY COMPONENTS

Any of Equations (5.3), (5.4) or (5.5) can be used to calculate
the velocity components U and V. Actuelly finite-differences similar
to Equation (5.3) were used in Reference (11). However, it was re-
ported later by Wilkes (74), that formulae which have higher order

truncation erros gave better results for the case of natuwal convection

-ty
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between two infinite paralisl jlates. Accordingly, the same formulas
used by Wilkes were cicp-ed nere and are:
A. Rectangular

f2) For ncdal pcints not adjacent to the bouncary

oy = Ei_z.l""swi;é-'._"e"’lyj"'l"l’i y T2

U. = = —~= (5.33)
13 &i,j 12 &
Viep, .+8w._ "“3‘1"-} .+‘¥i+~: - ,
Viy = - oy = 1-2.J7Vi-1,J75Vi4,, 21d (5.34)
’ Ni,j 2 X
(2:1) PFor ncdal points adjacens to the boundary
i =
Ug,1 = e 2 (5.35)
63 =3¥4  ~¥y
1 = >3 s “1l,a 5.%
Usi,2 v (5.36)
U _ 5‘,]. N 6‘{!1,1‘_1+V1,N- 2 (5 z)
i,7 - . D)
! 6LY
n = i‘LL._____-j-ova’: +5.¢2"i (5.33)
2,d EAX pIp
We,s = (B¥Moa, 33y W2, 3) (68X (5.39)
Wtz,3 = (B¢ - oY (5.%0)
e = Sy gw 000 ?

B. Cylinderica:

" (i) TFor nodsl points not adjacent tc the boundary

U, = lﬂ = 2 wi’J'Z-BWi,l‘l".swi1J+l~v1h’+2 (5.41)

Vo, o= 213 1 “'1-2’5*8‘“-1»3‘8“"*+1’3+W1*2'3] (5.k2)
1, R R 12 AX




T4

(ii) At the certer line,

The velocity component Ui,l is calculated according to;

1t >3\
Limit < = =5
o X OR aR2/R o

therefore the following formula for Ui,l was used,

(iii) Points

Ui,a =
Ui, N =
Va,j =
Vy.s =

VM‘!’J. F} J =

i,2

|r6wi ,3-3\'11,2‘\1‘1,4 E

2¥(z,2) (5.43)

(aR)Z

adjacent to the boundary

- | (5.hk)

L (aR) 4

1 |_ 3¥1 ,N-6¥; N MV ,N-2—I;
R L 6 oR d (5-b5)
1| Ve,j-6¥3 3¥3¥2,4 |
ﬁ[ 6 ox (5.16)
1| 6¥-y,3-3%, 5-WM-2 J]
= 2 2 2 5.h47
R[ 6 (ax) (5-47)
1 [BWM:J-WM-lgj] (5.48)
R 6 AX

5.7 THEATMENT OF BOUNDARY CONDITIONS

In this section the treatment of the temperaturs and the vorticity

houndary conditions will be discussed.

No difficulties are encountered

at the boundaries, where the value >f these functions are specifiea.

Cases in which a derivative of the function is specified require some

attention.
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The following approximation for the case of specified wall heat

flux is used,

2 .
@_y—é)i,l“l ) e(gi’N-gi’N+1+AY ) <§) walD/(AY)z + 0(4Y)

(5.19)
and

920 ( 5

— = 2 01,N-01’N+ +AR @ ])/ AR< + O(AR)
(bRe)i,N"'l 1 wal (5. 50)

%

E)l,j = 2(02,5 - 0,,5)/(8%)° (5.51)
. _af.g. - =f )/(A )2 ( )

Whpia,y A e o

The vorticity boundary conditions at the wall and bottom given by
Equations (4.32, 4.33) and (4.45, 4.46) sre difficult to use. There-
fore, an alternative method was used to heudle these boundary conditions.
The step-by-step explicit computation procedure allows progressing
from one vorticity distribution to the next a short time later at all
nodal points except those on the boundary, usthg the values of the vor-
ticities at earlier time. The new values of vorticity are used to de-~
termine the stream function distribution. The atream function iz then
used to compute the values of the vorticity at the solid boundaries.
Using Taylor's series expansion together with boundary conditions
(4.54) through (4.61) and (4.83) through (4.90), the following expres-

sicns can be easily obtained for the vorticity at the solid boundaries;
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A. Rectangular System
vi e = (8 ¥y - ¥y No1)/2(ar)3 (5.53)
3.2 o
vi,5 = pe (B ¥z,5 - ¥a,j5)/2(s%) (5.54)

B. Cylindri.cal Coordinates

i N = (8 ¥ 5 - ¥y noy)/2(8R)% (5.55)
= Q'E i 8 2
wl,j T op2° R2 ( ‘Va,J - \Vs,j)/Q(AX) (5%)

5.8 THE PROCEDURE OF CALCULATIONS

In this chepter the application of finite-difference methods to the
golution of the two-iimensiona®l, laminar, naturzl c.onvection in rectangu-
lar and cylindrical coordinates was discussed. It i« worthwhile now to
summarize the prucedure used to obtain the solution. The step~by-step
numerical technique followed in this work to compute the new values of

the dependent variables across any time step is as follows.

5.8.1 Rectangular System

1. A suitable time increment is ~hosen. The stability
criterion given by inequalities (6.37) and (6.38) is

tested. The time step may be altered as necessary
to meintain stability.

2. The new temperature distribution is computed from
Equation (5.7).

3. The results obtaineé for the tempersture distribution

are used in Equation (5.8) to calculate the vorticity
at all interior nodal points.
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k., Eqguaticn (5.29) is used to find the stream function
at all the interior nodal puints. The method ue-
scribed in Section 5.5, is used for the solution of
this equation.
5. The vorticities at the solid boundaries i.e., at the
wall and the hottom of the conti:iner, are calculated
using Equations (5.53) and (5.54) respectively.
6. The velocity compounents U and V are calculated using
the appropriate one of Equavions -5.33) through (5.4C).
5.8.2 Cylindvrical System
The same procedure mentioned above applies to the cylirdrical
case. The equations pertaining to cylindrical cocrdinates are used,
of course. The only difference lies in calculating the temperature

at the center 1ine. Since both R and BO/BR approach zero as R approaches

zero, the term 1/R 00/dR in the energy equation is replaced at the cen-

‘ter line by its .imit as the radius becomes zero i.e.,

~
ay

A -];é—g- = éa_g.)
Limit == <6R2 ) (5.57)

accordingly the following equation is used to calculate the center-

line temperature, assuming that U 2 O;

n+1 p n  n n no,on noogn
91,304 ,1 . 0121"91m1,1 _ g; Qi+1,1‘291:1+gi-1;1 i 01.2"91’1
AT ’ X, b (ax)2 (8R)2
(5.58)

For regative velocity U, forward differences should be used for

Y 90/X.
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5.9 A NOTE ON THE USE OF UNCONDITIONALLY STABLE METHODS FOR THE

SOL{TION OF THE ENERGY AND VORTICITY EQUATIONS

It was shown in Secion 5.4 that two of the discussed methods,
namely formulations (i) and (iii) arz suitatle for handling the energy
and the vorticity equations. Formulation (i) is explicit sxnd simple
tc use, while formulation (iii) is implicit. The explicit method de-
mands that the time incre:x;ent be small in order to satisfy stapility
requirement, inequalities (6.37) and (6.38). As a result, the amount
of machine time required to obtain the solution may become large par-
ticularly for high Grashof numbers.

To avoid the restrictions on the time increment, implicit methods
are usually suggest2d. Iterative methods aré usually employed for the
solution of the resulting alge‘p_raic equations. Since the velocities
U and V are functions of space and time, it appears that the Gauss-
Seidel itevative method is the most suitable one for this purpose.
This may require a large number- of iterations per time step. Further-
more increasing the size of the time step would increase the nmber of
iterations required to achieve any reasonable degree of numerical
accuracy. The advantages of these methods Jrom the standpoint of
savings in mechine time then are of doubtful value.

The use of unconditicnally stable explicit methods becomes there-

fore very attractive, since it eliminates the difficulties outlined
ahove, i.e., allows the use cf large time increments, and the employ-

mert of the marching type solution without resort to iterative methods.
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Such a method was not available, until the method of Reference (6)
vas developed, in which multi-level formulee were used tc obtain an ex-
plicit unconditionally steble method for solving the heat conduction
equation. The same authors were able through the use of multi-level
finite-difference approximation for the first order derivatives aT/ax,
..eyetc., to extend the same procedure for the soliution ~f equations
having ccuvective terms such as the energy and the vorticity equations.
The unconditionally stablc methods described above can be success-
fully empioyed to handle the energy equation. The use of these methods
for the solution of the vorticity equation may heve limited advantages
over the explicit method used <n this work, formulation (i). This is
due to the lack of explicit, linear boundary conditions for the vor-
ticity at the s. .id boundaries. Such a situation does not exist in
the case of the energy equation. The vorticity nonlinear boundary
conditions (4.32), (4.33), (4.45) and (4.46) were in fact disregarded.
Instead these boundary conditions were treated in the manner deseribed
in Section 5.7 by Equations {5.53) through (5.%). Ian the case of
implicit methods, or any method that require the use of the vortiecity
at the boundary taken at the n+l time level in order to advance the
values of the vorticity at the interior nodal points from the nth to the
(n+l) time level, the value of the wall vorticity at the nth 1< ¢l has
to be used to approximste that at the (n+l) time level; because the
latter is not known. Such a linearization of the boundary conditions

requires She use of swall time increments so that w:ﬁll be a good
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approximation for 7 T . That.such is the case nas been demonstrated
wall

run 1. W-een the vwortizity at ihe wall was treated irn the manner cut-
lined in Section 5.8, accumulator overflow took plece, althougn the meinsd
is urconéiticnaliy stable. The tire and spevial inzersments were C.0L

and C.1l respectivel,. Toc prove ithe point further an artifizial bourdary
cordition on the wvortisity W_,,:=C was assumed. No esccumulator overflow
was encountered ever for larger time increments. wiikes (7k), also re-
ported that instavility ook place for tae sizgple case of natural con-
vection vetweer twc perallel plates, alzhough the meithod whish e ..sed
for thig case is unconditiona’ ly stable. All these facts su:ipport tne
view that the vortizity ronlinear boundary coniitions at tTihe wall are
barriers against the use of large time increments ana consequently do
not aliow the use of unconditiornaily stable metnods To 5olve e vor-
ticity =quatior. I% was found bty experimentetion that the stability
eriterion given by Equaticn (6.38) gives a quali‘ative esiimate of the
size of the time i:crement that should bte used in the vorticity equazion.
It is of course possiltlie o use uaconditinonal?yr srtatie methods %o ~olve
the energy squasion and the =xplicit method, Equation (5.8) to solve

the vorticity equation. A smeliler time step At is used in the vorticisy

eguation, while larger cime step, m 4T, can be used in the energy equa-

tion, where m is an integer. Ther each cycle of the temperature caicula.

tion is accompanied by m cycles of the vorticity calculation.




CEAPTER 6 .

STABILITY ANALYSIS

In Tharter 5 the finite-difference representaticns of the goverring
partial differential equations was presented. In this cherter, the
stability and convargence of these finite-difference equations will te

examined ani criteria defined.

£.1 DEFINITIONS

The stability of the difference equations has been a sutject for
many investigators. Nevertheless, one rarely meets precise éefinition
of the concepts of stahility and convergence of finite-difference equa-
tions. Some of tnese definitions will be quoted here.

C'Brier, Hyman and §aplan (42) defined the statiliity and conver-
gence in the following way. Let E represent the exact soluticn of the
partial differenrial ecuation, D the exact soluticn of the finite~
difference equations, and K the numerical soluiion of the differewce
equations. The value of (E-D) is called the truncatioc error. Tc
#ind the conditions under which D»E is the vproblem of CONVERGENCE.

The quantity (D-N) i- called the numerical error. Iu may be due to
round-off errors or any other kird cf error. To find the conditions
under which (D-N) is small throughcut the 2ntire region of integration

is the problem of STABILITY.

81
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In princirle, the numerical error can be kept unier control even

for scme unstatie cases, (see Reference (22)), LV carrying cut the
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oniy with computing za2conines that carry &n infinite number of Jigits.
Tnerefore, it is naturasl ic look for criteria of stability that invelve
bounds on the numerical error. Forsythe and Wasow {Z0) have adopied
the following definition. If <the error introduced at every step due
to round-oif errsrs is e(x,&,t) such that ‘e}éa, thern a finite-dif-
Ierence procedure is called stable if the numerical error tends to zero
with & an’ does rot grow faster than’ (6;) where As is the mesh size.
Iax and Richtmyer (3Z2) consider tnau, for an initial velue probiem,
the ssiution of *ne difference equation F(x,t} is seid to converge 15
the solution of the differential proclem G{x,t' if
Lin  [#(x,1)-6(x,t)] = O,
as+C
for a general initial functicn £(x).
A finite-difference equation is callied stable by lLax ard Richtmyer
(32) if the sciutiorn F(x,t) corresponding to a general initial function
f(x) satisfies a toundedness relation of the form
iF(x,t)ll s e(e)ll£(x)}t for 0 s ¢ = ¢, {6.1)
where w(q) is indereadent of As. This condition is more restrictive
than that 2dopted by Forsythe and Wasow (20}, since they allow for the

bound to grew like a power of as~l.
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A third concept, which is rsually asscciated with finite-dif-
ferences is the consistency. A finite-difference equation is con-
sidered to be consistent with the given differential equation if thre

tuncation error irvolved in replacing the Jerivatives by {inite-

diffarences wvanishes as the sratial gnd time incremenis appreaches
zero. 1t is sometimes said thai such a difference equation is a formal
representation of the differential equation. Iax (33) preve: that
for linear partial éifferential equaticns if the consistency condicion

is satisfied, tnen stability and convergence are equivalent and

stability implies convergence.

0.2 ‘A NOTE ON THE LINEARIZATION OF THE DIFFERENTIAL EQUATIONS

In the present problem, the governing partial differential equa-
tions are linearized by assuming that the velncity componenis 'J and V -
appearing in the nonlinear tems U (BG/BX.), v (39/¥), U (ow/X),...
etc., are known ané are taken to be equel to their values at the time
level n.AT. The time step Av should, of ccurse, be taken small ercugh
so that '™ ve & gocd avoroximation tc %2 The order <f +ne error in-
voived by carrying cut this lizearization can be ottained bty using
Taylor®’s series expansicn as follows:

If Uo and U are the values of tne velocity compouent U at time

levels Ty and T = T + AT respectively, then

U o= U +AT() (6.2)




LN

i

o wes

AN e ey s -

PRUSUR P

P s TURRNRER

e 25

8k

wnere 0 S B S AT

Then
% _ .0 U\. % .
IS = U o ATQ—T ; S (6.3)

The spproximation involved irn replacing the nonlinear terms
U (30/0X), V (90/9Y),...etc., in Equations {4.49), (4.5C), (%.78) and
(4.79) by their ccunterparts iz the firite-difference Equations (5.7)
through (5.1%) and (5.16) through (5.22), as shown in Equation (6.3)
is of order O(Atr). This linearization error goes tc zero &s the time
increment goes to zero. Indeed, all the errors induced by any of the
vari;us finite~-difference methods giver in Chapter 5, nameliy trunca-
ticn and linearization errors, go to zerc as both the spatial and the
time increments go to zero,and all of the above mentioned finite-
difference methods satisfy the consistency corndition.

The linearization of the partial differen*ial equation in the
manner previously descrited allows the use of lax's equivalence -heorem
mentioned above to prove the convergence of the finite-difference methcd
adopteé here. As a mat*er of fact, the same procedure can be used to

prove the convergence o any stable, formal finite-difference represen-

sation of the governing partia. differential equations.

6.3 METHODS OF STABILI:Y ANALYS 3

*

The sub/ect of stability of finite-difference equations has been

videly discussed in the literature. Various methods were developed for

t 4 T
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testing the stability of vhe difference equatioas. Most of these
methoGs are valid for linear d fferential equations with constant coef-
“icients and few are apyplicabls +0 linecr differential egquations with
variable coefricients. A survey of these methods is beyond the scope
of this work. However, tlree rethods of stability aralysis, which can
be applied to partial Aifferential equations witn veriable coefficients
will be briefly discu.sea. Comrerison between the stability criteria

obtained by these differert methods will be made.

6.3.1 Stability o> Positive Type Dirferznce Equations

We are concerned here wit.: differential eguations of the form

3% df of p

Where 85, a1, 85, 83 and a4 are runctions of x, y axd t, and ag
and a; are non-negative.

Using Taylor's series expansion Equation (6.5) caa be formally
approx_mated by a two-level explicit finite-difference equation, which

cai ve written as

ntl n n o Fp
Py = 2 Fi,5 vesn, g Frea,g v 85, 5 Fioa, g v 8y 50 Fign
I
tay 5.9 Fi 51 (6.5)

vwhere the coefficients ai,J,...etc., are functions of X,¥ and t.
The finite-difference Equation (6.4) is called of positive type if

the coefficients e4,3 a1+1,j,...etc., are non-negative, i.e.

ay,5 2 0, for all 1, (6.6)
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Explicit positive type-difference equations can be obtained for
rartial differential egnatiors of tne form (6.%4) ty using one sided
derivatives i.e., forward or backward derivatives according to the
sign of tke coefficients «, and a,. If a; < 0, tackward differences,
Equation (5.%), should be used fcr approximating tie derivative
Of /3%, otherwise forward Jifferences, Equation (5.3,, should be employed.
Tae same procedure sihould be followed in approximeting of/dy. The re-
sulting finite-difference equations will be of the positive type pro-

vided that the following inequality is satisfied at all (i,j),
12(220 4 21, Jagl | Jeal ).y (6.7)
2 by Ax by

It will be shown below that inequality (6.7) is sufficient to ensure
the stability of the explicit finite-difference scheme {6.5). It is
not Aifficult to verify that the coefficients of Equation (6.5) have

sun equal to unity i.e.,

ai,j + ai-l,,‘] + ai_,.l,a - ai,J'l‘l + ai,j-l = 1 (6.8)

Conditions (6.6) and (€.8) imply that,
n+1‘ n N=3
Max|Fy 3! s Mmt(i,J)IFi’JI s Max(i,j)IFi’JI

5 ... 5 Max(qg)l€5,4] (6.9)

)
vhere fy s 1s the initial condition at (1,j). Inequality (6.9) shows
that stabllity,in the sense of inequality (6.1),is satisfied. If consisten-

ey 1s satlisfied,tken according to Lax's theorem the solution of the finite-
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difference equations cconverges to that of the partial differential
equations as the increments Ax, Ay and At go to zero.

Inequality (6.7) is the stability criterion for this
formulation.

The stability and boundedness of impiicit finite-difference methods
of positive type has been prove@ by Forsythe and Wasow (20). The use
of one sided derivatives in the manner outlined above yields an im-
plicit positive type finite-difference form for the differential Equaj-

tion (6.4), wirich is

n+r -F1 n+J. n+1 n+i
Fi,j = 1,3 B, *biap, g Fiay,g + by g Fio g+ bi, 5t Fi,in
+1
+ bi,j-l F;.lgj-l (6-].0)

The coefficients in Bquation (5.10) are always positive, irrespective

of the magraotudes of At, ax and Ay. These coefficients will be given

by:
by 5 = 1/b
a0 a
bigy,5 = (m + ﬁ At /b , es> 0
= aght/b(ax)? , 82<0
bio1,j ~ eoht/b(ax)Z , @8>>0
= (2o - 2?) A/ , 8s<0 (6.11)
Ax)2 A
a a. .
bi, 41 = (-(-—Ay’s-g + ﬁ)At/b , as>0
= ajAt/b(ay) , 83<o0
y,je1 = a10t/b(ay)? , 83>0
= (2L .8 <
(Ay2 i Jat/o , 83 o_
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_ 20 J__g iasl
b= \(Ax)2 (Ay)e*- >“

Accordingly Equation (6.10) is unconditionally stable.

Thus far the one-sided derivative Las been employed to obtain pozi-
tive type finite-difference representation of Eauation (6.k4) and suf-
ficient conditions for stability have been derived. It is also possible
to employ central differences, Equaticn (5.5), to approximate the first
order derivatives df/ox and 9f/dy of Equation (6.4). The conditions
under which the finite-difference method becomes of positive type can
be established. In this case, Equations (5.5) and (5.6) may be used to
obﬁgin the following.explicit finite-difference equation for the dif-

ferential Equation (6.4),

oL n n e ol n n
AI:i)j N C'-.-)vj Fihj * Ci"';,vj Fi'k'l,J Cj__l’J Fj_..]_"j + Ci,j+1 Fi"j-(l.-g 12)
n n
+ Ci,d-l Fi’J-].-
where:
2 o
Ci,j = Ll-2ao-At/(Ax) -2a;at/(Ay)
Ci+1,d = (ao/(8x)2 + ap/ax)-At
Ci-z,3 = (ao/(ax)? - an/ax) st (6.13) -

Ci,qfl = (a1/(ay)? + ag/Ay) At

Ci,3-1 = (a1/(ay)® - aa/Ay)-at

Therefore the conditions necessary for making (6.12) of positive type

are,

bx 5 lag/eal (6.14)




e IR

o e o ey

s e e

-y

]

89

Ay s |as/aaj (6.15)

1

At S -
[280](Ax)2 + 2a;|(ay)3]

(6.16)

At this point it is necessary to emphasize the faci that subject )
to conditions (6.1L4) through (6.16), certral differences, can be em-
plo,ed to cbtain stable explicit finite-lifference formulations for the
solution of Equation (6.5). Furthermore it is not difficult to see
that any of Equations (5.3) to ks.s) can be used t0 approximate the
first order derivatives and sufficient conditions to ensure stability
of the resulting two level difference equations can be derived. These
conditions may be given by one or more of inequalities (6.7), (6.1k4),
(6.15) or (6.16). This is in contradiction with the argume..ts made by
some -authors that only the use of one-sided derivatives would yield
stable finite~difference forms.

It is also clear that the use of central differences would yield
implicit positive type finite-difference approximations for Equation

(6.4), assuming that conditions (6.14) and (6.15) are satisfied. The

resulting implicit finite-differerce equation can be written as;

nti n _ n+i nti . nkx
Fig = 33,5 Fi,5 ¥ 440,53 Fran,5 + d4a 3 Froa g 4,40 By jun
(6-17)
n+d
+d3 5.1 Fy 3.2
where,

L - gl
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di,,j = l/C
Q34,5 = (8,/(8x)® + ag/ax)at/c
di_y,3 = (20/{8x)? - au/ax)at/c (5.18)
di,j+1 = (a1/Ay® + ag/ay)st/c
di,j-1 = (ai/by? - ag/Ay)at/c
C = 1+ 2lag/(sx)2+ay/(ny)2]at

The conclusion made in the ebove paragraph regarding the possibility
of using forward, backward or central differences to approximate Equa-
tion (6.4) by stable finite-differencz forms of positive type is general
and mathematically sound. It is based on the definitlon and properties
of positive type differcnce equationr. The use of central differences
is the most desirable becuuse it .rfers the least truncation error.
However, conditions (6.14) and (6.15). whicn are impnsed by stability
of such a fomulati:on shoul i be satisfied.

Frcm the practica. point of view, (6.1L: and (6.15) can be satisfied
for values of ,(ao/az)| and |ai/as|, vhich lead to a reasonable number
of grid points. For caser where |aq|<<|ap| and/or |a;|<<|aa|, the use
of central differences +ill be impractical. Indeed, for pro-lems of
practical interest, such as natural convection problems with high
Grasacf numbers and/or smell a/b ratios, a, <<|ay| ard a; <<|ea|. For
such probicma the use of one-sided differences for apprc-aximating the
firsc order derivatives in the nonlinear terms offers the best choice

of two undesirable slternstives.
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Finally, it should be mentioned th=t tne stability criteria imgoced
by the positive type Tinite-differencec are regarded to te conservative.
Nevertneless, the use of this procedure yielded sufficient stability
criteria for the finite-difference fo-u ,'ven by Equation (6.17), while
other methods for stebility analysis failed to predict its behavior.
This point will b discussed further in discussing tie Ven Newsann
method of stability analysis, as will as, in investigating the stability

of formulaticus {1) through (iv) given in Chapter 5.

6.3.2 Electric Circuit Analogy

The concept of circuit theory dealing with electrical instability
was applied to study the stability of finite-difference eqguations by
Karplus (30). Two criteria for the stability of finite-dif<erence equa-
tions, which have the same form as the equilibrium equations of the
electric network were given. This method can be applied to examire
the stabllity of any finilte-difference approximations of Eguation
(6.4) as follows:

Assuming that the difference equations can be writien in the
following form;

n n n n n n n n
Co(Fin,J.-Fi,s)*Cl(Fi-l,J“Fi,J)+°2(F1,J+1'Fi,a)*Cs(Fi,a-z-Fi,a>+( 6.15)
.19

n+z n
Cafy,y - Fiy) = 0
where Co > 0. .

Then the finite difference Equation (6.19) is stable uuder any of

the two fzllowing conditions:
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(1) *f all the coeffizients Co5C1,C5,Cq and C4 are positive

(2) If some of these coefficients are negative, a sufficient
condition for the stability is that the algebraic sum of
the coefficients be negativ-=.

The stability c¢riteria obtained by this method lead in most cases
to finite-difference equations «.f positive typve. However the secoad
ccndition seems to be more promising for the study of cases where the
finite-difference equations are not of positive type. The application
of this xethod to the two-level finite 4ifference versions of the adif-
fe cntiel Equation (6.4) will yield the same ccnelusions reached above
using the concept of "positive type difference-equations.”

Upon examination of the stability of rost of the known finite-
differeace methcds for the solution of the heat conduction equation,
it vas fourd that if condition (2) given by Karplus is modified to
read &s follows: "If some of the coefficients are uegative, a suf-
ficlent conditisn for the stability is that the algebraic sum of the
coefficients should not be greater than zero," then the behavior of
a wider class of explicit finite-diffcrence methods such as those of
Dufort and Frankel (15), ead Barakat and Clark (6), whose stability
cannot be predicted by the ccrditions given originally by Karplus,

can be deiermined by this method.

6.3.3 The von Neumann Metiod of Stability Analysis
This method was first described by O'Brien, Hyman and Kaplan (L2).
It is regarded by most authors to be more general than the previous

ones. According to this method, it is assumed that the solution of the
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finite-difference oquations can be represented by a Fourier expansion

written as a product o8 three inderendent functions each depending za

3
¢]
{;‘
4]
(34
(=2
ct
5
[}
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only one of the inderendent variables. This solution is the
in the finit:-difference egvations and the corditions necessary in order
that the general term in the Fourier expansion rer:ins bounde«ld are es-
tablished. Theoretically this method applies t2 a small class of linear
equations with constant coefficients, while the ccefficients of the
governing eguatione vary in magnitude and sign with time and location.
Acceording tco Von Neumann, this Gifficulty can be circomvented by apély-
ing the method to a sequence of cverlapping small regions, each region
being so small that the coefficients may te considered constant. In
the present case, the criterisn obtained for the stability of the
finite-difference equations will be tested at each nodal point and the
t! .z step is slitered accordingly.

The basic idea of this method of stability analysis can be out-
iined =5 follows;

The general explicit finite-difference equation corresponding to

Equation (9.4) can be written in the form

r=1
n+y

Fi,g = Z (ci+r,jr'?+r,j +ci,j+rF!il,j+r) (6.20)

r=-1

The svlution of the initial value problem is expressed as a Fourier

series,

N i(klx-l-kay) “
F(XJY’t) = L §(K1,k2,t)€ (6'¢1)
ko

1
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where k; and k, are integers.
Substituting the Fourier series (6.21) in the finite-difference

Equation (6.20), the following relationship is obtained

1
A
g{n+a) _ ;. (Ci+r,j Sk rax | Cs, gar eikerAy) g(n)
r=-1 (6.22)

denoting the quantity betweer brackets in (6.22) by 7(n), Equation (6.22)

can be rewritten as

+1
) | ) (), (6.23)
The factor 7 is usuzlly called the amplification factor.
(n+1) )
From (6.23), it is clear that & can be written as a function
of g(o)’
g(n"'l) = 7(0) 7(1) ..'.7(!1"1) 7(n) §(0) (6.21&)
If 7 is time independent, then
n+1) n (0
a( = (7) ~§( ) (6.25)

It is clear that the solution will be bounded as At+0 a~d n+w, if

a+;)
§( * is bounded, which requires that;
Mxx |yl s1. [6.26)
(k:uka)

Richtmeyer (52) relaxes this condition for linear differential
equ:iions with constant coefficients and expresses the stability con-

dition as:

MAX 7] s 1 + o(at) (6.27)
(kltka)
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He points out that in some problems it is possible for the component
of the exact solution to grow exponentiaily with increasing time and
the condition (6.26) will not permit such a growth and cunnoct be satis-
fied without violatirg the consistency condition. It appears that the
use of stability condition (€.27) should be exercised with care since
in zome cases conditior (€.27  will be misleading as discussed in
Section 6.5.

In the case of time-dependent coefficients, a sufficient and neces-
sary condition fcr stability is that the product [7(0)7(1)...7(n-1)7(n)]
be bounded. Accordirgly, the following condition will be sufficient tc
ensure stability;

Max jo(0)] s 1 (6.28)
knkz

The same method can be adopted to study the stability of a system
of linear equations as follows.
— A
Ilet ¥ be a wector of p components, which represents the functions
to be determined. The finite-difference expiession in this case can be

written as

+(nt2) a3 (6.29)

vwhere A is a pxp matrix.
The general term of the Fourier series expansion of F can be written
as,

i(kyx+kay)

(k1 ka,t) e (6.30)

vhere E'is also a p-component vector.
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The substitution of the Fourier series expension (6.30) in the
finite-difference Equation (6.29) give the relation between the walues

of the vectors ?(nﬂ) and ‘E(n)’ such a relationship will have the form,

“glot2) (0 (6.31)

where B is a pxp matrix, called the amplification matrix.
For system of differential equations with constant coefficie_nts ’
Equation (6.31) gives the following relationship,
) gl o) (6.52)
It 1s not difficult to show that in order that &\"*) pe bounded, the
eigenvalugs Niseeeshp of the amplification matrix should satisfy the
following inequality

Max ag] s 1 (6.33)
(ki ,k2)

For problems with time-dependent coefficients, the coefficients
of the amplification matrix changes with time and at each time step a

nev matrix is generated. Accordingly, (6.31) can be rewritten as,

() _ ()0 7]
() _ g(@30) (6.34)
Flot) _ plne:)%(n)

It 18 assumed in this case that the stability of the finite-dif-
ference equations is satisfied if the eigenvalues of the amplification
matrices B(l),...,n(“‘*'*) satisfy inequality (6.33). Although this

latter assumption is considered heuristic, the method has worked for s

¢
e -3

-
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wide class of problems. However, the failure of this method to predict
the behavior i.e., stability or unstability of some of the most de-
sirab.e finite-difference method, nameiy formulation (iv) of section
S.h, will be discussed in the next section, where the procedure for

its numerical arwlication will be giv=n.

6.4 STABILITY OF THE ENERGY AND VOITICITY EQUATIONS
By applying ary of the methods of stability analysis discussed
earlier, sufficient criteria can be obtained for the stability of any

finite-difference method that can be ottained by.using any of the

. formulas (5.3), (5.%), (5.5) and (5.6) to approximate the partial deri-

vatives in Equations (4.49), (%.50), (4.78) and (4.79). In this sec-
tion, the stability of each ¢f formulations (i) through (iv) given in
Chapter 5 will be analyzed. The conditions under which each of these
formulations becomes of the positive-tyre will be obtaineé¢. These con-
ditions, which are sufficient for the stability of the finite-difference
equations, will be compared with those obtained by using the Fourier

series method.

(I) sStability of the Explicit-Difference Equations, Formulation (i)
(a) Rewritting each of Equations (5.7), (5.8), (S5.11) and (5.12)
in the same form es Equation (6.5), the following is obtained;

A. Rectangular (U20,V=0) (6.35)

n+1 _ (Y% Vi3 202 2N el of e 4 a2 o +
ol [l <Ax Y TrEemE awe U] BT \ax T uE(ax)y -9

Wiag-




.. &2 AT Vi;d l . A‘:’ 0
: :b—‘g {Ax‘a Oi+1’j * AT(AY AYz 1 1d-2 A-fz 9i,j+n1 (6.55)
3
§
: i V e 2
[ Loar{—=2d + i:.J L8 Pr Br_ ) "1,., .
: AX AY b2 ‘AX)
a® _Pr = &% Pr n .
(%5 woe) - g - (6.36)
: <Ax b Tax 2) 1) YETE T Mims Y

(Vi3 , Pr n ATPr o Prér | nv1  na
-(—72 + "
\Ar Y )Arwi"j-l (a¥)2 Yit,§  f oy | 1,307 ,30

Tt ie clear that Equations {6.35) and (6.3€) will be of positive

type if the folluwing i:cQualities are sarisfied;

luy 5] [vis]  ze® )
V3,31 1,0 ca 2
+ + - —— o — S ) (6037)
AX B pz )2 ()Y
and
71u 1vy, 3l 2 271
‘ . i i 2a 1: 2 i .
’ A‘r l i’Jl + ,j + — 5 + - = ' s ‘l_ (6-58)
: AX LY b2 (ax) USY)“/

inequality (6.37) is obtained from the energy equation (6.35), while
; (6.38) is required by the vorticity equation (6.36).

n+1
It should be noted that the coefficient of 01’ 3-1 in Equation

ey e e

(6.36) is always negative. However since 04,4 will be bounded, then
the last term in (6.36) will be bounded for any finite-value of ATt and

AY. This term remains bounded as either of AT or AY or both go to

zero. The argument is clear for the case when AT goes to zero and

AY remains Tinite. For ths other case, inequality (6.37) requires that

[ R O PR N,
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At goes faster to zero than (AY), which will ensure the boundedness
of this term as AY approaches zero.

Inequa’ities (6.37) and (6.38) could have been obtaineG directly
by applying inequality (6.7) to the differential Equetions (4.%9) and
(4.50).

The same stability criteria applies for the case in which any of
the velocity coefficients U or V cr both are negative provided that
forward differences, Equation (5.3), are used in the corresponding
nonlinear terms.

It may be of interest to examine the case of negative velocity
components in Eouations (6.35) and {(6.36). In this case the coef-
ficients of the finite-difference Equations (6.35) and (6.36) will be

pesitive if,

a2 1 1 a2 2 2 _|uli,s Ivlg
le, % 53 d s I, = 5 o (38 e + e - 10t - L)
(6.39)
a2 Pr a2 2Pr oP1 luly.s  1Vli,;
Ul, ys=; |V Pr;oar( = + - — s
| li,J b2 AX ’ | li:J =’ b2 (8%)2  (aY)2 AX AY
(6.40)

A method similar to the latter caese was used by Wii{79 for solving
the leminar boundary layer equations. His stability criteria are

similar to those given by Equations {6.39) and (6.40).

In the remainder of this section, the discussion will be limited to

the rectangular coordinates. The same conclusions hold for the cylindri-

cal case. Whenever it seems necessary, the stability criteria for the
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cylindrical coordinates will be given without giving the details of
their derivation.
B. Cylinderical Ccordinates
Following the same procedure used in th. rectangular case. it can
be shown thot the finite-difference Equations (5.11), (5.12) and (5.66)

are of positive type provided the following inequalities are true 3

(L8l IVl a2 2
. (a%) AR b2 (Ax)e (éR) (6.41)

|U|1 Vii,j , 282 pr 2Pr>
m( +_:.1 et iE)s G

(.I_‘lLL,A 282 1 + h2> £1 (6.13)

b2 ax2 "’ (AR)

(b) .The application of Fourier sesics method to formulation (i).
The solution of the difference equations can be written as a

Fourier series, the form of which is as follows (27)

iy = ), e et (6-48)
ki k2

91(.;:; - Zz u(n) 2(kaXk oY) (6.15)
ky ko

vhere k; and ky are intergers, n is a superscript denoting the nth
time perind and € and u are functions of k; and kp. Substituting the
system of Equations (6.4l4t) and (6.45) into Equations (6.35) and (6.36)

the following equations are obtained after some algebraic manipulations:

- ov—
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Z 2 [E(nﬂ)'g(n)("l“ae e~ik10%4q, e'ikawm eikle-'as eikgm_r) +
K1 kp L
e ll(n+.1) ei(k1x+kér)

-] 3 - d z d 3
Z Z p(n+1)-u(”)(c,_+c2 e klA“+ca e j"‘2’5-Y+c4 e*kl‘m:cc5 eﬂ‘zAY)

ki kg

o1 (ka4 ¥) 0

From the above equations it is concluded that the difference equations

are satisfied if

g(n+1) _ g(f-) (Qptcia R T L S 3 FIe > S
> (6.k46)
and
-1k, A% ~ik oAY ik
u(miz) u(n)(61+62e e, e 28 Be eikle_hBS o ;AI)

(6.47)

where:

a® Pr _ Ui,j
Qz = + AT
2 <b2 (8x)2 "~ ax
Pr Vi J)
O + AT
CAY)e AY
a2 Pr
% = D2 (AX)Z T
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3y = 1- (2’%;611?\_2+ 2/(A¥)2+?Ii’j/bx+vi’j/bfi> a7
Bz = .(a2/(be}2+Ui,j/ux)M

Bs = (1/(a¥)%4+Vy 4/aY)AT

By = (a/(bAX))eA'r

Bs = Ar/(s1)?

No definition has been given to ag uince it has no effect on this
analysis.’

The system of Equations (6.46) and (6.47) are of the form:

e TR M L (6.18)

]

!

H(nﬂ) 821 §(n)(k1:k2)"'a22u(n)(k1:ka) {6.19)

In a matrix notation the above equalities can be writter. as

g(nt1) a11 a2 E(n)
. = (6.50)
u(n'“)_l e21 8z u(®)

The gqusntity between the first bré.ckets on the right hand side of
(6.50) is the amplification metrix. The von Neumann condition neces-
gary for stability is that: |,\.may| £ 1 vhere A,y 1s the largest elgen-
value of the amplification matrix. The eigenwvalues are given by:

231~N 812

= 0 (6.51)

az1 ao2—)\
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Substituting the value: of a;;, a5, ... etc., ir the above de-
terminant and solving for \ we get:

AL = Q¥ e-ikle+OL3 e-ik2AY+(14_. eiklAX'ias eikgAY (6. 52)

Az = BB e-ikle"'Ba e—iszI+B4 eikle+Bs eHeatt (6.53)

The coefflcients a;,G5,...,81,B2...etc., are all positive except @y and
81 which may ve positive or negative. The largest absolute values of

M1 and A occur when all the terms in Equations (6.52) and (6.53) are

real, i.e., waoen k AX = k A¥ = 2g then,
Mmpax = O1 +0p+ N3 + 04 +0g (6.54)
MNamex = B1+ Bz +PBa +E4 + Bs (6.55)

Substituting the values of Q3 ,0pyeee3B15000,B5 in l?hm',.‘_.,.
Mmex = Aamax = 1 (6.56)
Therefore, we can conclude that Apgy will not exceed unity and it will
a0t impose any stabllity restricticns. If there may be any restrictions,
it will be to prevent the minimum value of A from becoming less then -1.
The minimum of the eigenvalues orcur when k18X = k-AY = g and are

gliven by

ANipin = 01 - Q2 - 03 - 04 - Q5

Nazmin By - Bz - Bs - By - Bs

or
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2
Modn 1-2a1(2Pr(a,/0AX) “+2Pr/( AI)2+|Ui’ 3 Jax+lvy 5] 7aY)

Memin = 1-287(2(a/bax)%s2/(a¥)?+ Uy, 5i/0%| vy, 31/0Y)

Tlerefore for h.] £ 1 the follcwing inequelities shculd be

satisfied:

~. 2
[=:] . e . . ) -
M(ba(&f)a e + oy, sl /mx + !vi’Jl/ma s1  (6.57)

ar(2rr{a/oax)2+2pr/(81)2+ 1Ug 351 /8% + lVi, jl/’h') s1
(6.58)

Squations (6.57) and {6.58) are the necessary rejuirement for
stability. For values of Prandtl number less than unity, inequality
(6.57) is more restrictive and therefore should be used. For higher
vaiues of Prandtl nmber ineque”‘ty {€.58) must be used.

The same stability criteria will te sbtained if any of the velocity
components U and V or bcin are negetive and forward differences are
used in the ccrrespording nonlinear terms.

It 18 quite clear that for this method -the von Neumann method of
~1bllity analysis requires that the finite-difference equations
3)_5 of positive type. As a matter of fact, all the ccnclusions reached
above for this method nging the concept of positive-type differences

wi ~ be obtained using the von Neumarn method.
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(II) sStability of the Explicit Formulation (ii), Equations (5.9)
and (5.10)

Equations (5.9) and (5.10) are rewritten in the form

gn+1 P B AT = ", aZ Us 5 ,f"
O BN L S; sFAT -
i, na (:,_'_X)= (A,_,)E 1,4 bz(ﬂX)a zAX “i-z,d

7 N
+ Ar ] z 1 - E)i g:,:
b2 (AX)2 2AX

n 3 s 2 n
95 « 4 +ar( —t . - ¥.d e, . (6.50
(s f)z ¢A"’) i,5-1 ((AY)Z AY i,3+1 6.5

n+1 nn 2 . z Uy n
vy - 1 -2 Pr st ZPrAv ve 4 +ar( X P"2+ he TP ¥i.y,j
b2 (ax)2  (aY)3/ ¢ 02 (312 Zax -

A-r(a—z-Pr -Ui,g> o )wn + pof X Vi,j>
b2 (2002  oax/ 11 (Af)a oAy 13- (27)% ~ 2y

n AT Pr , 0+l n+1
Yign Yy (61,342 = 04 3.1) (6.60)

The finite-difference Equation (6.59) is of positive-type i.e.,

stable providea that,

[19)

2a® 1

A —

+ 1 U
v2 (aX)2  (ayv)2 ) ’

Likewise Equation (6.60) will be of positiwe type if;

‘?
M
'—l
> | ny
—
[%2%
[)8
- |
g

[
<
A

o
n

>‘i.

e

Ap 2 "‘
ar(®BZ Br 4 2Pr)gq ys .’-'__..2_) vs& (6.62)
b2 (002 (aV)? b2 AX AY

Accordingly formulation (ii) is stsble under conditions (6.61) and
(6.62).
Applicetion of the Fourier series method to formulatioa (ii) leads

to the same stability criteria given by inequalities (6.61) and (6.62).
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Substitution of the series (6.L4) and (6.45) in Equations (6.59) and
(6.6C), fcllowing the same procedure used ia the previous case, it
will not be difficult < show that the eigenveluves of the amplifica-

tion metrix are given by:

2 g 2 2
)T = [l - .2_2- ,Pr AT(i-cosk 8X)- LT Ar(1-cosk2Y)l +
T \1:\'x (A 2
1 (UAT/0%)sink 0% + (VoT/AY)sink p¥12 (6.63)
2 282 At AT
A = B 1-coskaAX)- - (1l-cosk 2+
hel® = [1- Z2 2 ocomn)- I (coscar]
[ (Usr/AX)sink AKX + {Var/4¥)sink 7] - (6.64)

the conditions under which |N;| and [n2| become less than unity can be
« teblished by differsntiating Equations (6.63) and {6.6L4) with re-
spect to (k:8%X) and (kodY) to obtain the maximum of Ay and Ap. The
work Involved is tedious. The details of the analysis are given in
Appendix II. The results of 4ppendix II sncw that if irequalities

(6.61) and (6.62) are violated, this method will be unstable.

(I11) Stability of the Implicit Difference Equations, Scheme III
The implicit finite-difference Equations (5.15) end (5.16) in
vhich implicit backward differences are used with positive velocity
components U and V, and forward differences are used otherwise are
unconditionaliy stable. This can be established by using any of the
previousiy mentioned methods of stabilicy analysis. Inspection of

*..e coefficients of these difference equations shows that they are
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of positive-type, regardless of the value of the time or the spatial,
increments. The same conclusicn will be reached by using the von
Weumann method. <hne application of the lutter method to this case

is as simplie as itc spplication to form:lation (i), and therefore

it will be omitted.

The ajvantages and shortcomings of such methods, as wzll as the

limitations on their use to solve the energy and vorticity equationms,
are discussed at length in Section 5.9, which should be consuited ve-

fore using any unconditionally stable finite-differences to solve the

vorticity egquation.

(IV) Stability of the Implicit Difference Equetions, Formulation (iv)

The study of the stahility of this method ceserves some special
considerations for reascns that will be clear from the context of the
following discussicns 1t is usvally helieved that implicit differences
are unconditionally stable, as is the case for the heat difusion equa-
tion. However, it will be seen that this is not irue for differern’ial
aquations containing first order derivatives.

The use of tl.ae von Neumarn method shows that it is unconditicnally
stable. This can be demonstrated by substituting Equations (6.li)

and (6.45) in Equations (5.25) and {5.26) to obtain the following

relaticnsbip
P T
n+
£ = Cpy p" +Cop &
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where:

_2a®pT 2AT UAT
c = 1/11 + ——— (1-coskiAX) + ——— (l-cosxAY)+ sink,AX+
11 /[ v2(a%)2 ( 1AX) (AY ( 2AY) ’(X 1

E T
Cor = ZYA 1 sinkA¥/Con

Coo = 1/ |1+ ZzaPrA; (1-cosk-0X) + 2PraT
b5(AX) (ax

-"—AI sinkgAY>]

The amplification matrix B(t) is given by
Ci1 ]

(l-coskaAY)+i<UAT sink,AX+

B(w) =
Cosz Coa2

The eigenvalues of the amplification matrix i and Ap are:
M o= Cna ; A2 = Co22
The maximum of the absolute magnitude of A; and ) occurs when
cosk:AX = coskAY = 1 and

l.‘ Imax i)~2|max =1

I~z
Therefore, according to this method of sthility analysis, this
formulation should be unconditiunally stable.
Actual calculations have shown that the above conciusion is
erroneous. For the conditioms of run 1, accumulasor overflow took

place after few time steps using 11x11l grid. The conditicag required

to make this of the positive-type i.e., stable, are:




)
)
Y]
—
]

v [£-3 . ar <
.'i"j < Bz_ —A—x H \’i,.j £ A—Y_ (From Energy E\,-) (6.65)
and
2aPr . < &Pr . ~ )
Ui,j s ﬁ-x— 3 Vi,j E] A—-Y— \From Vort. Eg.) (6.66)

The calculations carried out for the conditicns of run 1, using

11x11 grid and taking (a/b) = 1 ané g = 0.0322 in order that {6.65) arnl

(6.66) were satisfied, showed no signs of instability. F cthe _ire,
the calculations show that even for the case of constant coefficients
this method becomes unstable if inequalities (€.65) and (6.66) are
violated.
6.5 A MORE GENERAL APPRCACH TO THE STABILITY OF THE ZXPLTCIT FINITE-

DIFFERENCE BEQUATIONS

The stability of the varicus finite-difference formulitions has
been examined asing different methods cf stavility analysis, ramely
the von Neumann method aad {the ccacept of positive-t;pe differences.
The applicetion o the first method to difference equations with
variable coefficients.is considered heuristic. The second rethod,
although methematically sound, has failed to predict the stability of
some useful finite-difference formulations.

In this section a more general approach to the study of the
stability o the expiicit finite-difference equations vwill be pre-

sented. .

Lo e rime e paNTA. o
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The explicit finite-difference Equation (6.5), whose stebility
criterion is required, is written in the following form which is the
same as that of Equation (6.29).

(n+1) _ A(n-i-:.)F('i) (6.67)

&

2y . onh "
where T\"¥2) 15 g p-compcnent column vector lFi,;)] and A' )

is a
five-diagoral p4p matrix. The entries on any row oi this matrix wil

be given by the coefficients ajij, 8141,§2 84-1,§7 B4, )42 and aj,5-2°

From FEquation (6.67), the foilowing rezurren~e formulase can be

Written:
1)>
() | ,(1)=2(0)
22 | (@30) o 42,60
GO RNNCONC RN
where_F"(o) is the initial values of the '.'ector.l?‘. The norm of the vec-

_—E -+
twr F\n"l;) which is denoted by |IF(n 1)“, setisfies the follcwing in-
equz 1ity:

By g gl atng, G ey

s Gy My s e

From Equation (6.69) it is clear that for any initial - c.or
(n+2)

SN
¥, the vector F will te bovnded if the prodcet of the norms

N Aﬂ
of the matrices A(VL 'ZA(nz..,A(l) is bounded. A sufficient condition

=(n+1)
for the boundedness of the vector P can therefore be written as:

N TPE (6.70)
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Upon substitution of Equation (6.70) in inequality (6.68), the follow-
ing inequality is obtained:

iy 5 ey, (6.71)
which indicates that Equation (6.67) is stable assumirg, of course,
that (6.70) is satisfied.
The choice of the norm of the matrices A(n) is a matter of con-

venience. The most appropriate norm for use in connection with

inequality (6.70) is the row norm which is defined by:
b (1), Z
lat iy = mgx lay sl
i
Therefore, inequality (6.70) can be rewritten as:

mzx }: Iai,jl s 1 (6.72?
i

Inequality (6.72) is sufficient for the stability of ithe explicit
finite-difference Equations (6.5).

Sometimes the criteria known to de sufticient are regarded as
conservative. In order to evaluate the stability criteria given by in-
equality (6.72), it will be applied to the explicit finite-difference
formulation of the erergy equation given by Equation (5.7). I% is not
difficult to show that for this formulatisn, inequality (6.72) requires
that

2 EE.__E__ + _E_ + IUi l + l!i&il-l AT S 1
b2 (8X)2 aY? 8X NG
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vwhich is the same criterion obtained previcusly. Furthermore, it is
noticed that the resulting differerce equations are of positive type.
As gnother example of the application of this method, the follow-

ing one-dimensional diffusion eguation, is considered.

o _ 3%
> X (6.73)
n  nn
92-“.-9? _ 01+1"‘291+91-1 ( 6 ll»)
= = N
at (ax)
The stability condition (6.72) requires that:
2
At s (8%) (6.75)

2
Inequality (6.75) is precisely the established necessary stability
criterion of formulation (6.T4). The treatment of boundary conditions
is accomplished by the application of the same criterion i.e., in-
equality (6.71).

The above rcsults indicate that the method of stability analysis
presented in this section seems to be promising, as far as the
stability analyais of explicit finite~difference equations with
variahle coefficients are concerned.

It should be mentioned that the application of this method to all
the explicit firlte-difference formulations mentioned in earlier sec-
tions leads to the same conclusibns concerning their stability.

I£ vas also Sound that the application cf the stability criterion
given by inequality (6.72) to implicit finite~difference equations

leads to the mame conclusions obtained by other methods of stability
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aralysis. However, mathematical investigation of this case similar to

that made for explicit formulations has not been worked yet.

6.6 SUMMARY OF THE RESULTS OF THIS CHAPTER

From the discussions presented in this chapter, the following
conclueions can be drawn:

(1) Any finite-difference representation of the energy and
vorticity equations or any partial differential egiation which has
the form of Equation (6.4) is stable if it is of positive type.

(2) For positive velocity components U and V, the use of back-
ward differences, Equation (5.4) for approximating the first order
derivatives in the nonlinear terms together with Equation (5.6) to
approximate the second order derivatives, permits the construction
of positive type difference equations, for which sufficient and practi-
cal stability criteria can be derived. The same is true should for-
ward differences be used to approximate the nonlinear terws whose
velocity coefficients are negative. At the present time, this method -
seems to be the most practical one to use, since the spatial incre-
ments can be chosen as desired, while the time increment is determined
by stebility considerations.

(3) The use of the central differences in the nonlinear terms,
which is preferable from the point of view of the truncation error,
is possible only for cases in which the resulting difference equations

«re of positive type. This requires that inequalitles similar to
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(6.61). (6.62) or (6.64) and (6.65) shculd be satisfied. For high
velocities, i.e., high Rayleigh numbers, this would mean the use of
very small spatial increments, which may require storage capacity be-
yond that of existing machines, and possibly a prohibitive amount of
machine time. This applies tc implicit, as well as, explicit methrds,
regardless whether the coefficients are constant or varisble.

I;he necessity of satisfying the above mentioned 1ﬁequalities
vas demonstrated by consideriug the followirg simple one-dimensional

equation with constant coefficients.

of
3 = 8 gx—ai; +ay %xff. ; £(0,t)=1, £(1,t)=0, £(x,0)=0

Accordingly the use of central differences to approximate df/dx

requires that Ax be chosen such that:

29 2 la,] (6.76)
Ax

when |31| was taken 5% larger than that required by the equality sign
in Equaetion (6.76) unstable results were obtained.

The above conclusions are in contradiction with some published
literature (52), which holds that for iinear equations with constant
coefficients stablility is unaffected by the first order terms. These
erroneous conclusions are based on t.e use of the stability criterion
(&.20).

(4) The stebility criteris obtained by the method of von Neumann

are also those requirad to make the difference equations of positive-
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type.

(5) The method of von Neumann lesds to incorrect results when
applied to implicit methods cosrespording to differential equations of
the form (6.4), whose differzi.-~ equations are not of the positive-
type. This was demonstrated by apnlying it to formuiation (iv), as
well as to other formilations, which are not reported here.

All the above conclusions were substantiated by mathematical

experimentatior using an IBM TO90 digital computer.
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EXPERTMESTAL WORK

An experime .tz prograz was carried tc study the phencmenor of
themal strzTification In liquid containers. The experiments were
condusied ir & .ylindrical as well as & rectangular container. The
results cbtained from tThese experiments are comrared to those of the

thecretical analysis in Chapter 6.

T.1 DZSCRIPTYON OF THE RECTANGULAR APPARATUS

The apparztus ccnsists of three parallel compartments sepamrated
by two, 1716° thick copper walls. The middle compartment is usei as
a test seciion, while the cuter +two are used to intercept the stean
used for heating, Fig. 7. The two outer containers, which are 3"
wide, 9" nigh and 20" long are formed from 1/16" thick copper metal
sheets. Txese two containers are placed parallel to each other, but
3" apart, over a Tlat plete cf transite i/L" thick, 9" wide and 20"
long. The third compartment is formed between the twc containers by
using two erd pistes, 3" wide and 9" high to complete its sides. Cne
of these end plates is from plexiglass and the other is made from
transite. Rubber gaskets are ised, vwhere any two sides are screwed
together, to prevent leskage. The middle compartment is filled with

the test fluid, i.e. water #o a height 8-1/4". Heating of the walls

of the middle container is a~complished by impinging steam on the
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walls separating the outer containers from the middie c:e. The steam
issues from a nurbcr of fire holes drillec in copper tubes runaing
through bo*h :ontainers. Six of these tilbes are mounted horizontalliy.
parailel to +he walils in each cvutar container. The tubes of each
bank are closed st cne end, wiile steam is fed to the other erd through
w. common header. Thus two steam headers are used. Tne ccadensete
is draired from each outer conteirer through a draining pips /2"
dizmeter. The steam supply systems for both tube banks are arranged
in such a way tc provide as mu:n symmetrs; with tank center line, as
pessible.

Six thermocouples, numoer 13 through i8, are soldereda to one of
the countainer walls at heights 1-5/3, 3-3/8, 5-5/16, 6-3/16, 6-15/16
and 7-1/2" from the bottom respectively. These ttermocouples are lo~-
cated above each other at half the length of the ccntainer. Two
2dditionai thermocoupies numbers 19 and 20 were added lster tc whe
same w.il of the container at height 5-5/i6" andare 5 and 15" from
the container end. Also at the same time two thermocouples mabers
21 and 22 were soldered to the other wall at S-Sfl6" height and at $
and 10" from tre same end. These four thermocouples were added tc the
wall in order to examine the spanwise variation of the wall temperature
and the symmetry, Fig. 135, page 129.

Twelve thermocouples numbers 1 through 12 are used to measure
the liquid temperature. The locations of these thermocouples as well

as the others are shown in Fig. 8.
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Locations of Thermocouples
Chromel vs. Constantan No. 30 duplex
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Fig. 8. Thermocouple locations in the rectangular container.




g RN e

wpyt

R L R ]

- ®

R N

120

A 36-channel Honeywell visicorder model 1012 was used to record
the temperature of ttese themmocovples. Chromel-constartan duplex
gauge 30 wire is use=d for the thermccouples. A4n ice bath is used for
the reference junctions. Each thermccouple circuit, consisting oi the

thermocouple itself, the visicorder channel tc which it is connected

and the necessary wiring, was calibrated individually.

T.2 DESCRIPTICN OF THE ZYLINDRICAL APPARATUS

The cyiindrical apparatus consists of a bronze tube 4" outer
diameter having 1/3" thick walls and 1 foot long. The details of the
constructicn of the cylinder fs shown in Fig. 9. Tne cylihder was
closed at the bottoan by pressing a bronze dlsc i‘nside the cylinder
to adepth of 5/16". Two other discs made of transite and styrofoam are
glued together and insered in the cylinder. They are fastened to
bottcm disc by 4 screws. A thin disc of teflon 1s cemented to the
upper face of the styrofoam. The use of styrcfoam reduces the heat
losaes through the cylinder bottom. Sealing of the bottom is accom-
plished by putting a ihin layer of styrofoam cement over the teflon
disc at the cylinder walls only. The cylinder walls are recegsed
to 1/32" thickness from both ends as shown in Fig. 9 to reduce the
heat losses by corduction through the ends.

The cylinder i3 heated electrically using 1/2" wide and 0.0035"

thick nichrome heating ribbon, which was wound helically around thes

cylinder. fThe pitch of the helix is equal to 5/8". The heating
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ritbon was insulated from the cylinder »:r a layer ol scotch electric
tape No. 69, “hat withstands temperatures as high as 356°F. Two
other layers of the same tape were wrapped over the heater ribben in
order to hold it in contact with the cylinder wall.

Twenty copper-constantan thermocouples number 1 through 20 are
embedded in the cylinder wall. The locations of the thermocouples
are shown in Fig. 9. These locations are chosen to enable the eramina-
tion of the nature of the wall temperature distribution in the azi -
muthal direction. Therefore, enough information can be obtained to
azcess ,the assumption of tvo-dimensional flow. Also, better evalua-
tion of the axial wall temperature distribution can be made.

The liquid temperature is measured at ten locations using 30 gauge
copper-constantan thermocouples. Four of these thermocouples are
arranged in order -;0 observe the symmetry with respect to the cylinder
axis. Twenty galvanometers are available for use in the visicorder.
Ten of tae wall tharmocouples are counected to the same channels
measuring the liquid thermocouples through ten Jouble throw knife
switchec. Of course, either the liquid or wall temperature, which
are ¢ nnected to the same channel, can be recorded at a time.

The electric power was obtained by using a set of 12 volt
batteries, which are arranged to give the desired voltage. This pro-
cedure wag followed to elimirate the A.C. interferance with the gal-
varometer signels. The voltage and current were mcasured using Weston

D.C. voltmeter and ammeter 'rcdels 1 and 201, respectively.




123

7.3 EiPERIMENTAL PROCEDURE
The containers are filled to the desired level with degassified

water. Enough time was allowed before ccaducting the experiménts in
order to insure unifcrm initial temperature. In most of the cases the
water was kept in *ne container overnight before conducting the experi-
ment. This procedure helps to eliminate any initisl natural convec-

ion currents that may exist in the container before beginning the
experiment. During the inivial stages of the experimental program,

it was suspected, and later substantiated by actual measurements, that
evaporation from the liquid surface would cause the free surface to
deviate considerably from the adiabatic condition, which is assumed
in the analytical solution. For this reasor a thin film of oil of
thickness 1/2 mm was put over the surface of the water. It was veri-
fied that the oil film is effective in reducing the evaporation from
the free surface. This was demonstraied by filiing two identical pyrex
glags beckers with water to the same h~ight, one of which had a thin
film ot ¢*l. Both were heated simultanecusly until the water in
both boiled snd then heat was turned cff. The beaker without the oil
film <ocled much faster than that with the oil film. Furthermore, it
was found that the fluid “emperature at the surface was about 12°F
lower than that near the bottor in the bea:er without the oll film.
Suck. a temperature drop, which is due o evaporation, was not found

in the beasker which had the oil film. The same phenomena were observed

in similar tests using the rectangular containsr. Therefore, the cil
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£i1lm was used in all the tests. In sddition to that, the cpen ends of
the containers were covered by styiofoam caps leaving an s’i*space
about 1/4" thick between the liquid surface and the cover.

In the tesgt using the irectangular tamk, the condensate n the
steam lipne, including that in the two banks of tubes in the leating
compartments, was drained before conducting the experiments to prevent
the condensate from impinging against the walls, causing then to vi-
brate and upset the zero velocity initisl conditions as well as
blunting the temperature transient. The zero-time level was taken to
be that at which any of the wall thermocouples showed temperature rise
for the case of the rectangular container. The instant at which the
electriz power wae switched on, i3 considered the zerc-time level for
the cylindrical containers. The photographs given in Figs. 10, 11

snd 12 skow some of the equipment. used. e

7.4 PROCEDURE OF DATA REDUCTION
In the cace of the rectangular container, it was postulated that

due to the high thermal conductivity of the copper, the spanwlse varia-

tion of the wall temperature will be negligible. It was also anticipated

that since the heating arrangcmert is symmetrical with respect to the
container centerline, the departure of the conditions cf the experi~
ment from those of a two-dimensional model will be small. Accordingly
thz readings of thermocouples 13 through 18 was conrsidered to describe

the wall temperature-time history. However, it was later found thai
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the two-dimens.ional ard symmetry conditions assumed are not actually
met in the experiment. in order to check ithis peint <hermocouples

rmmber 16, 20, 21 and 22 were added tco the wall, as discussed in

3

the analyticsl moael. A typical temperature-time history for that of
the wall at locations 15, 19, 22, 21 and 22 is shown in Fig. 13. In

a two-dimersions’ model, which is symmetric with respect to the zon-
tainer axis, all of these temperztures should be the same. The devia-

tion of the model from symmetry cen be acccunted for in the theorevical
analysis for two dimensional cases. FHowever, the departure from the

twvo-dimensional case is considerable and therefore the results ob-

tained from the two-dimensional anaiysis will not sufficiently repre-
sent the actuzl fiow in this case. For the latter reason only few

experiments wers carried cn in the rectangulsr contairer. Th2 re-
suits cbtained fr:.:. the rectangular container served an important pur-
pose. Beside showing the stratification phencmenon end the nature

of the temperature-time transients, it alsc gaw guidance to the choice
of the wairl thermocouple locations in the cylindrizal container, so
that a better represen. cion of the wail tcmperature can be made.

The location .7 the wall thermocougples in the cylindrical container

are shown in Fig. G. The temperatures measured at tuese locations

when plctted versus their axial lccations would indicate the deviation
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Fig. 13. Typical wall temperature response, rectanguler container.
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of the experiment from the conditiosn of symmetry with respect *o lIts
axis. A total of 16 experiments were carried ir the cylindrical con-
tainer using four-differert heat flux levels cf 5CC, 12C0, 20CO and
kooc  3Bta/hr ft2. Thege experimernts invoived sufficlient repeat runs
in order tc check the following:

1. Reproducibility of the results;

2. The zcnformity of tne experiment with the two-dimensional
model assumed in the theoretical calculatiors.

From these exprrime t. it was found that the results are repro-
ducible. In order *c check the second condition; ail the wall tem-
peratures (thermocouples 1 thrcugh 2C) in some of these were messured
during most of the experiment. This procedure was repeated for all
heat flux levels. The results were ther plctted versus axial 3istance
at verious time levels. Figures 1%, 15 and 16 show such ¢ temperature
distribution. The resulns obtained from the cyiindrizal container re-
veal that a true “wc-iimensional model was not comp:eifely achieved.
This may be dae to the manner in which tne heating ribber was woind
a~ound the cylinder. cr may te due tc separation of +the hLeating
ripbon from the cylinier wziis because of thermal expausior. IHowever,
the deviatior from two..dimenusionalitv is not as serious as it is for
the rectiangular container, except for the highest heat fiux ievel, for
which comparison with the aralytical sclution wes disreiarded. Tre

501id lines in Figs. ii#. 15 and 16 are congsidered tc represent the

axial wall temperature distribution, which is used in the compiter
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20 Numbers on figures refer
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crogrem. The maximum deviation occurs near the container ends, as
chown in t.ese figures. The magnitude of *this devisticn is within

#10% Ior runs iumber 3 and 4 and iz higher for rua sumber Z.




CHAFTER 8§

RESULIS

8.1 INTRODUTTION

In this chapter, the results of this study will be discusrsad.
These results fall into three categories.

(a) Analytical results for which ro experimental ccunterpart is
given. These represent the results obtained for the first model,
which is ¢escribed in Chapie. 3. <Calculations have been carried for
the case of a constant wall keat flux and a constant free surface
temperature for both the rectangular and the cylinérical containers.
The boundary and initial conditions for these cases, as well as the
fiuid properties used are given in Tatle I, page 1h2, The results
of the calculations using other boundary ~onditions have been reported
elsew&ere(ll) ard will nct be repeated here.

(v) Analyvical solution for the case of natural convectiion in a
rectanguiar cavity which has been golved by Poots (51). Althcugh the
boundary conditicns are different from those outlined eariier in
Chapters 3 and &, the same numerical procedure descrited in Chapter 5
is used for this case. The walidity of the results ot:ained for other
cases can be judged on *he bhasls of the nature cf the agreement b=s-
tween the finite-difference results and that of Poots. Thece results

are given in Figs. iT and 18.
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Fig. 17. Results for the rectangular cavity problem using j1x31 grid.
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Results “or the rectangular cevity problem using llxll grid.




() Ziralyticel solutions for ths raturel convectior ir rectangular
and 2ylindricel containers for which oxperimen:al Jdata are chisined.
The theoretical model adopted in these calcula®iorns zorrespond ¢
the second model descrited in Crapter 3. As wes menticned in Crhapter 7,

the wall temperatures of boinh coritainers at different axial locaticng

< o .
ime. The -mlue cf the
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Zere reccrded as a contin
terperatiure st these ilocztiorn: gt aifierent time levels, which ere
-eparated by finite-time intervals, are used ir ine ccmputer program
t0 descrite the wall temperature-tire history. These values are
punched on IBM zsrds and reed in by tze machine &s inpuz dars. The
desired vaiues of the wall ‘emperature at z2ny axial location ard ut
any tixe level are cbtained from thcse programmed vsing linear inter-
polati.r i boin space and time Jirections., The leaghin ¢f e %ime
1=terval sevaratirg the ygrogrammed vemperatures deperis -ipor ~he tature

of the well fempersture translenis. frc

¢
)

=}
<
@
il
part

IX, the texpersture

P

1z eimost @ Iinear Function of time. Therefcre the time interwal for
sach cazes vas takers as high as €0 sec, For higher hest flux, ~he
iime incremeni 1is ta~: smaller. Tnis procedwre iz folicwed ir =rier
ic avoid the uncertainties ir calculating the wall near fiua level.
Farthermore, the measurements of the wal. temperature provile a hasis,
upon which the compliarce cf the experiment tc the conditions of the
theoretical model i.e., symmetry end two-dimensionali:y, car te judged.

The walidity of tne thecretical results can be best evaluated by com-

paring the measured fluid temperstures with those analytically predicred,




139

Qu

assuming that the above mentioned conditio..s are fulfil

In soiving the stream function-vorticity equation using the

n

method of successive-line and column relaxation ocutlined in Chapter %,
2t was found that the direction in which the domein was swept during
the calculations influences the number o iteraztions required. If the
ro— relaxation prccess wes done advencing from the row iaZ2, waich is
next to the bottom of the container, in a direction cf increasing i,

to the row i=M, which is next tc the container surface, end if in the
same time the cclumn relaxationr process was done in an ordar of in-
creasing § beginning at j=2 which is next to the centerline, the
number of iteraticns required in this case were mucn highe= than if the
domain was swept in the opvosite direction. In the latter procedure,

~

the row relaxaticn isg ccorducted beginning at the row i=M in a de-
creasing order until th= row i=Z is reacked. Similariy, the column
relaxation is carried in a directiocn or
column j=N. A7cordaingly thnis procedure was Soilenad in 21l the cal-
¢ :lations. The mumber of iterations required tc make the maximun rela-
tive change in the magniiude of the stream function across any one
iteration to -e less trar £.3% was in most cases equa. t¢ cne. Other
terative metnods exhitized +he same prenocmenon tce. This 15 due to
the fact that the rate o change cf the vortisity, and conseguently
the rate sf charge of the stream functicn, across any ons time step i=
higher near the side wails aund the liguia surfece. For this reascn

the change in the value of the stream functicn across any cne iteration




The computations were carried un the 7090 digizal computer
a1t the computing center of The University of Michiga:n. The mscaine
sime required to complete the calculation of §,V,8,w and ¥ is 5.

zec. per time step for the 31x31 grid, ‘The results were printed every
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i0 sec. Up tc 600 time steps were encountered in
thet 57 min c¥ machine time were used in each run. The welgcities
ans V were uptcdated eack two cycles of caiculstiosns of the tanmperstire
and verticity fielis in runs 3 and k. This p;‘ocedure enabled saving
cf more than 30% of the machine time for both rans. The time incre-

xent used ia the calculstions was 30% of thst required by stabiiity.

8.2 DISCUSSION OF THE RESULTS FOR THE RECTANSUIAR CAVITY, POCTS PROBIEM

Tne steady state sireamlines and iscthermals ot<eined *or —te

This agreement indicates the validii1y o7 both scivtionns. In addizicn
to that, tne irvestigation of this case heiped to derermine tne griil
zize that should be used in subsequernt cases, as will te discussed in

Szetier 3.5.
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beicw. The height of the liquid b is 1 ft and tze width of the con-

1

tainer and the .outainer diameter Z2a is 1.2 ft.

|

TABIZ I

PROPERTIES OF LIQUID NITROGEN EVALIATED AT 15C°R

Thernal 3iffusivity o ££2%/sec B3.62x1C°7
rmal corductivity &, Btu ho-2t-°R 0.0775
Kinematic visccsity v, £i%/sec 1.68x107°
Coefficient of thermal expansion 8,°R~% 1.33x1C73

Prandtl Nuuber, Pr 1.91

The results for the reciangular container ars shown in
and 20, while those Ior the cylindrical container are given in Figs. 21,
2z and 23 as a series o5 stream lines and isctherms at different time
ievels. Ezamination of it stream line plots shows that the ficw
pat-ern iz es-entialy the same Tor sotn types of containers. The
heated fluid in the boundary layer rises upwardé owing tc buyarcy ef-
Tfects. Upon approaching the licuid surface, the f{*w changes its direc-
tion from upward to downward motion. The downward szecving .articles
near the rising boundary liyer reverse direction and Join th~ —rwa.d
flow, giving rise to a vortex zear the wall. This vortex is formed
n2ar the 1iquid surface at smsll times an? moves dowrward as the
gtratified layer grows. The ~luid away from the edge of the boundary
layer flows dowaward neariy to the bottonr. of the container, where it
Joins the fluid in the boundary layer.

Anciher interesting pheaomenon is showa by the streamiine pl

After sometime following the introducticn of the transients, the stream
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594 x 1072

402x10° J

“(“b‘)“ §tream ii’ nes

Fig. 19. Isotherms and streamlires, rectangular container.
(a/A)y = 200 Btu/hr £t%, T, o = Ty, time = 30 sec.

erms
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amlines, pectangular container.

Isotherms and stre
gxime = 4O BeC:

Fig. 20. !
{a/A)y = 200 stu/tr ££%, Tgure = Taats
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_3.06x10'

2,585 x 10°

J| o
w QL

'V
AN \ X
a) Isotherms D ) Streamlines

Mg. 22. Isotherms and streamlines for cylindrical container.
(a/A)y = 200 Btu/nr £t%, Ty p = Tgoy, time = 30 sec.
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Fig. 25. Isotherms and streemlines for cylindrical. container.
(a/a), = 200 Btu/br £t2, Tgrp = Tgat, time = 4O sec.

(a) Isotherms
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lines show the presence of fl:w oscillations n2ar the free surface,
Fig. 21. At higher values of time these oscillations give rise to a
vortex near the centerliin:., This vortex oscillates in nagnitude and
in location. First it Jorms near the liquid surface, grows in size
and zimnitaneously shifts below the surface, arter which it breaks
avay and the seme cycle is reneated again. The formation of =uch
vortices was reported by Eichorn (17). He conducted visual studies
of the natural convection laminar flow of water using an electrically
heated cylinder 2" diameter and 5" long. His results are given in
Fig. 24. The magnitvde of the heat flux was not given. From the
discussion it is concluded that the results represent the unsteady
state., Figures 2la and 24b show the flow pattern observed at high
heating rate; Fig. 2Uc shows that obtained at low heating rates. At
low heating rates, the streamlines assume a damped-wave shape;at nigh
hesting rates annular vortices repeatedly form near the free surface,
roll up until & certain size is reached, where upor they move away
from the cylinder and auother vortex begins to form. His observations
agree with the results presented here.

The isotherms show that .he axial temperature gradieﬂt is negligitie
in the region below the stratified layer, while it is appreciable in
the stratified layer. The temperature changes frcm that of the fluid
L'ilk at +he bottom of the stratified layer to the saturation temperature
at the surface. Except in the boundary layer, the radial temperature

gradient 15 generally negligible, as indicated by the isotherms in




1ho
49

water
surface

|

heated wail

AL NN

heated wall —

/]

1

1

pr———

water
surface

/]

heated wall ’Jﬂ

(b)

N N U, . . N

water surtace

L

{c)

Fig. 24. Results of flow visualizations msde by Eichcam.
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¥igs. 13, 20, 22 and Z5. This phenomena can be explained as folilcws:
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for small times the fluid near the containcer wrlils flows upwa

thin iayer. This heateé fluid is dizc!
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econtinuity, the heated fluid which is discharged a® the free surlace
causes the colier fluid o move downwerd thus producing 2 series o7
isctherms. With %ize ihese isotherms penetrete further below the frse

surface. The trans.erse temperature gradient is nigher near the wall

[

and neglig®»le in the remainder of ihe container. Irn the stratifie

fote

region, the transverce temperaiure gradient in the boundery layer is
smaller then neer the boiizm of the container.

Caleiiations also were carried to irvestigate the effect cf the

gravity level on the liguid

03

urface temperature. These were dcne Ior
the same cylindrical geometry using the same heat flux. Two Jifferent
gravity levels were used in these calculstions. Tnese correspeond to

e norral &nd a reduced axial gravity levels of magnitudes 32.2 end
0.0322 ft/sec? respectively. The calculated wall temperature at X=1
and ihai. of “he liquid surface at the centerline are shown in Fig. 25.
The wall an? the liguid *ransients near the surface are higher for
higher gravity levels. On the otherhand the wall temperature at the
bottom is lower for higher gravities. The high rate cf the flow, which
means that more cold fluid is pumped into the boundary layer; increases

the rate of hea® removal from the wall near the bettom to the upper
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Fig. 25. Effect of gravity level on liquid end wall temperature,
cylindrical conmtaimer. {37A)y = 20C Btu kr f£tZ, ediabatic upper
ard lower sivrfeces.
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regions of the container. Accorxdingly more energy will be transferred
from the wall at the lower regions to the upper regions of the con-
tainer per unit time. As a result the fluid temperature near the

bottom in the boundary layer will be lower for the high grevity as
shown in Fig. 25. Therefore, ai reduced graviiy conditions the ilguid
will exhibit a lesser deg'ree of stratification. A limiting case of
cocurse, will be that at zero gravity, which, for adiabatic upper and
lower surfaces, will give zero axial temperature gradient i.e., no
axial stratification, although radial variations in temperature will
exist. These results are in contrast with the conclusions made in
Refereace (75), which were based on the results obtained by an in-
tegral method.

8.4 EXPERIMENTAL AND ANALYTICAL KESULTS, SECOND MODEL

8.k.1 Results of the Rectangular Container

The measured and calculated temperaiure-time history for a typical
run obtained in the rectangular container is shown in Figs. 26 and 27.
The results given in Fig. 26, which shov the formation of a stratified
iayer at the liquid surface, indicate that in general, the heated
fluid near the wall rises to the liquid surface even with nonu: "form,
nonsymmetric heating. Symmetry cZ the model can be examined by com-
pering the measurements from thermocouple number 15 with 22, and
19 vith 21 given in Fig. 13. It can be seen here that symmetry is not

achievzd, Also the readings of 15, 19 and 20 irdicate that three-
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Fig. 26. Measured axisl temperature distribution in the rectan-
gular contajner, run 1.
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Gimensiona: sffects cannot e disregarded for ihe rectangular >ontsiner.
The wall temperature, which is used ia the computer program, is

mee cured at the wiliile of the con*ainer span. fThese are given in

]
b

n Ffig. 13, the temparature at this location as .

143

e

ig. 2. As shown

hy

<

represented by numder i3 is the higiest wall tesgpera*ure. The 32
ference rveitween the theoretical and the experizental resuiic in *he
rectangular geometry is atiributel to these Tactors. The calculated
temperature are nigher than the meacured texperature, as it would be
expected. Good agreement petween the calculated and the measured tem-

~ -~

perature is obtained near the frez surface, thermocourles 11 and 12,

on the surface, is affected mostly by the wall temperature. Furthermore
the cal~ulated and the measured time at which temperature begins to
change are in good agreement.

A series of isccherms_and streamlines, Which are calculated for
this case is given ir Figs. 29 through 34 for different time levels.
m™eze results, of course, correspond to a two-dimensional case, whose
wall tempera*ure is given by thermocouples 13 to 18. These results
show that the heated fluid in the vicinity of the wall rises along
the container walls. Upon approaching the liquid surface the rising
fluid saocthly changes its direction from upward co downward flow.
The downward moving particles near the ri -ing boundary layer reverses
direction and join the upward flow, thus causing the vortex near the

wall. Examination of the flow pati=rn shows that this vortex is formed

-
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Figures on Plots refer to
thermocouple Numbers
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Fig. 29.
run 1.
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sotherms b) Streamlines

Isotberms and streamlines in tke rectangular container,
Time = 25 gec.
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. 0019

(a) Isotherms (h) Streamlines

Fig. 30. Isotherms and streamlines in the rectangular container,
run 1. Time = 40 sec.
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Fig. 31. Isotherms and streamlines in the rectangular container,

run 1. Time = 55 gec.
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(a) -110 sec

[ et

(b) -115 sec

Fig. 32. Isotherms in the rectangular container, run 1. Time = 110 sec.
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Fig. 34. TIsotherms and streamlines in the rectangular container, run 1.
Time = 126 sec.
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liquid layer is formed at the free surface. Some of itris flujd moves
along the fluid surface towards the centerline. The two fiuid streams
flowing towards the centerline from the right and tne lert hand sides
nmeet at the centerline and is deflected downward there. as a result,
the front of the stratiried layer advances tc larger depths in ihe
centeriine vicinity than neasr the walil, as indicated by the shepe of
the isotherms in Figs. 20 and 30. A% higher vaiues of time, the
stratified layer front moves down at a uniform rateas shown by the
shape of the streamlines of Iigs. 31 and 3k. Schlirer photographs
shown in Fig. 35 takea by Vliet snd Brogan (73) for the natural con-
vection in & rectangular contiiner whose dimensions are comparable to
those used in this aralysis indicate that the frout of the stratified
layer mcves i~ the manver described above.

Ansther -~rtev ., .crmed at the centerline near tze frze sur-
face, which rol s until it grows to a ccrtain size, then vanishes and
a new voriex begins to form, Figs. 32, 33 and 34. The formation of

the early discucsed vortices were experimentally observed by Neff (39)

and Eichorn (17).
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o ‘ (a) 20 sec

(b) 27 sec

{c) LO sec

(d) 1 min

(e) 1-1/2 min

Fig. 35. Schlieren pkotographs for stratification
without wall baffles. a;

qy = 1.0 Btu/£t2 sec.
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tre surface terperziure rise is largsr Tor nigher heat Iux=ms. [Figures
thro i3, which a +mwical viscicorder suirut show that the tex
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perature near the liguid surface exhibits an oscillatory transients

at spall times, which lster ar darpedl. The temperature near tre potionm

th

the *anx shows a smaller degree of cscillations, which takxes place

Q

at larger time. The magnitude of these oscillsticns varies with the
heas flux level, the higher the neat fiux level the larger the ampli-
tude of these oscillaticns.

The theoretical results >btained For runs Z, 3 ané & using a 3151
grid are also given in Figs. 36, 37, 38 and 39. 4 series of isctherms
end streamlines, which are obtained theoreticaily are given for eack
cese at differeut values of time levels in Tigs. 44 through 52Z. These
isotherms and streamlines describe the terperature-time nistory, as
well as the development of the flow pattern for each case. The flow
development in these cases is similar to that in the rectangular con-
tainers which is discussed above, Section 3.%4.1. At small values of

tine the stratified layer front near the centerline progresses at e

rate higher *han near the wall. Also a vortex is formed in the wall
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Fig. 36. Iiquid temperature response in the cylindrical container,
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7g. 39. Axlal temperature distribution obtained fer the cylindrical
container.
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Fig. 3. Typical visicorder output wecord. Heat flux = 2000 Btu,-'hr ftz.
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(b} Streamlines

Fig. 4bs. Isotherms and streamlines in the cyiindrical container,
run 2. (gq/A)y = 5CO Btu/hr £t2, £ime = 60 sec.
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Fig. W6, I'sotherms and streamlines in the cylindrical container,
run 2. (g’A)y = 500 Btu’hr £t2, time = 215 sec.
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I T J| '
(a) lIsotherms b)Y Streamlines

Fig. ¥7. Isotherus =nd streamlines in the cylindrical container,
run 3. (q/A), = 1000 Btu/hr £t2, time = 30 sec.
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Fig. 48. Isotherms and streaml; 108 in the cylindrical container,
run 3. (q/A) = 1000 Btu/hr ££2, time = 70 sec.
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"{a) |Isotherms (b) Sts:eamlines

Fig. 5C. Isotherms and streamlines in the cylindrical container,
rn k. (g/A), = 2000 Btu.hr £t%, time = O sec.
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vieinity and sim:ltaneously moves downward as tr= stratified layer
grows. Another vortex is observed at the centeriine near the liquid
surface, which breuks away when a certain size is reached and a new
one begins to form.

The analytical results agree favorably with the measured values,
Figs. 36 to 39. The results for run number 2 are less favorable than
those of runs 3 and 4. The analytical results are 1 to 2°F higher than
the measured temperature for run number 3 and it is 1 to 4°F higher for
run number 4. However, these represent a difference of not more than
10% relative to the measured values at 240 sec. These differences
are attributed to heat losses from the contairner bottom and top,
variation in fluid properties and effects of three-dimensional flow.
It ic believed that the latter factor has more influence than thz
others. Apart from that the analytical solution adequately determines
the time leve] at which transition takes place. Actuilly +he agree-
ment between the calculated and the measured time lag i.e., the time
elepsed between the starting of the heating and the starting of the
transients, is very satisfactory as shown in Figs. 36, 37 and 38.
Also it is evident that the predicted and the measured surface tem-
perature and axial temperature gradients are in good agreement.
Fortunstely, these latter two factors control the rate oi heat and
mass transfer across the interface, and accordingly the oressure

variation in the vapor space.
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The properties or the wvater used in the calculation were evaluated

et the initial temperatures. These are given in Teble II.

TABLE IT

PROPERTIES OF WATER FOR THE CONDITTONS
OF RUNS 2, 3 AND &

Hesat Initial Thermal Kinematic  Compress.

;"ztj Fllux » _  Temp., Diffusivity, Pll\lz l:ldtl Viscosi‘ty , Factor ,f; ,
Btu/hr £t  °F a, ft2/hr v, ft2/sec R°

2 5G0 3 5.636x10™ 6.26  G.8x10"®  1.38x10 %

3 1000 T3 5.60x1073 6.50 1.10x10°5 1.2€:1074

I 2000 80 5.66x1073 5.84  9.2x10"6  1.51x107“

8.5 EFFECT OF GRID SIZE

The use of finite-differences requiresthe determinetin of appro-
priate grid sizes AX, ;Y and AR such that the discretization errcrs be-
come small. A possible resolution of this question can be obtaired by
observing the behavicr of the solution as the grid sizes beccome smaller.
This .procedure was followed in solving the rectangular cavity provlom,
i.c., Poots problem. Calculations were carried out using 1lxll, 21x2i
and 31x31 grids. The results of the 12»1l grid showed large deviatio:n
from those given by Poots, Fig. 18. While those obtained using 21x21
and 31x31 grids showed esgentially the same kind of favorable agreement
with Poots results, Fige. 1T7. Accordingly 1i was concluded that since

21x21 grid ylelded gcod agreement with the analytical solution, a
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5ix31 will be sufficient Tor the present purpose. This pzint was

substantiated further by carrying calculations using a 51x31 grid fa

L]

the case of run nunber 1. These .esults are compared with those sb-
tained utilizing 31x31 grid in Mx%ie IIX, which revaals that the dii-

ference ic not appreciable.

TABLE TIIX

EFFECT OF GRID SIZE ON THE COMPUTED RESULILS
FOR RUN NG. 1, RECTANGUIAR CONTAINER

Time, . Calculated (T-TO) corresponding to location
Grid
sec of thermocouple
11 9 5 L
5 31x51 1.87 L.T5 1.49 .16
51x31 1,54 1.525 .43 267
30 31x31 5.47 5.30 LT 1.23
51351 4,83 LT7 L.33 0.98
35 31x31 12.65 12.23 8,6 0.75
51x31 11.82 11.50 .48 0.52

When the wall heat flux is specifie¢ ifustead of sperifying the
wall temperature, th2 boundery condition is approximated by Eguation
(5.45). 1In such a case, the calcuiated walli temperature will be af-
fected by the grid size AY or AR enployed in the solution, which in
turn will affect the tempersiure and velocity distributiorns. Figure 53
shows the dimensionless wall temperature at location X=0.€ obtained

using 1lx11l, 16x16 and 2ix2l grics plouvtad against dimens®>uless time
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T, correspending Tco .he case of comstant wall heet Ilux <f L7

Btushr ££2 with fluid surface kept at the initia: temperature. The
£lvid proverties employed are those given in Table I. These resuiis
show ti - the deviation is greatest for smali times. The difference
decreases vIth time and is practically negligible for dimensionless
time of 0.003. Tais behavior is due to the fact that al larger time
ievels the magnitude of the truncation error becomes smaller and wiLl
approach zero near the steady state.

There is always the guestion of whether 2 realistic velocity dis-
tribution near the boundary is rredicteé by the finite-difference
sclutions. Such solutions should give a veloecity distribution whick
has the following character: T'Ae velocity compunent parailel to the
wall is smail near the solid boundary. It increases in magnitude
with increasing distance from the wall, reaches a meximum, decreases
again and changes direction as it approaches the centcerline of the con-
tainer. The nature of the finite-differeace sclution deperis upon the
magnitudes of the boundary layer thickness and the grid size used in
the calculations. If the boundary layer thickness is large compared
to the grid size, the solution obtained will exhibit the above de-
scribed character. This will be the case for low Grashof numbers or
large values of time. The latter case is shown in Fig. 54, in which
the calculated velocity changes from its value at the wall in the abox;e

des~ribed menner. On the other hand, if the boundary layer thickness

is small cr..ared to the grid size, the results will show that the




£

az,
ab

Dimensionless Velocity, Us

Fig. Sh.

188

1
r Run¥%2

X=0.6

O Time = 70 sec.
® Time = 60 sec.

Calculated velocity distribution at Ligh walues of time

in the cylindrical containmer, run 2. (g/A), = 500 Btu’hr f£t2.
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veiocity in the boundary layer is raximum at the nodal points sub-
sequent to the boundary. This will <ake placc for high Grashof
nurhers 2-d/or low values of time  The letter situation is shown
in Fig, &S,

Althougn the continuity equation has been satisfied by intro-
ducing the strear functiorn, & mass baiance for the cs.2 of an in-
compressure fluid of the net rate cf the fluid flow across any sec-

i
tion of the liguid container Z.e., /‘ GdY for rectangular containers
J

-1 C

and ,[ ‘UR dR for the cylindrical containers, will provide a means of
UO
checking the calculated velocity distribution and &lso give an in-
dication to the propriety of the grid size used. The value of the
atove mentioned integral should be equal to zero. However, due to
numerical errors this integral assumes finite-value. It was ob-
served that this value approaches zero as the grid size is made
smaller. When the above integration was carried at the section X=G.5
using the tropizoidal rule, the net flow rate across that section was

less than C.8% of the total upward flow rate &t that section for

mn number 2 at time level 215 sec.

8.6 SUMMARY OF THE RESULTS
In the previous chapters « numerical method for solving the non-
linear partial differential equations describing the two-dimensional

transient laminar natural convection in closed rectangular and cylin-

drical containers was presented. The method has been utilized to study
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Fig. 55. Calculated velocity distribution at low valves of time in
the cylindrical comtainer, run 2. (q/A), = 500 Btu'br ft2.
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the thermnl stratificaticn of fluids contained in vessels subjected

to welil heating. Calculations are preseniecd for different boundary

£

ornditions as well a3 fcir @different heat Jlux levelss Also the ef-

)
3

2ct of the gravity level on the stretification process wes examined,
The following princip .1 resuits and counciusions can be made.

1. The formation of a thermally siratified layer at the liquid
surface is caused by either side wall heating or by heat transfer
across the interface or by both. Ike first case is demonstrated by
calculetions and meesurements reported above for two-dimensional rec-
tangular and cylindrical containers with adiabatic fluld surface. In
the absence of wall heating, a stable, motionless, stratified fluid
layer will be formed due to conduction.

The thermal transients within the liguid will ve higher for both
glde wall and interfac:zal heating, because convection currents,
caused by side wall heating, will increase the rate of energy trans-
fer from both the wall and the liquid surface to the stratifiea lsyer.
Also a higher fluid temperastures rise results from higher heat flux.

In +tne absence of any slde or bottom heating, the fluid temperature

at any time will be proportional to the surface temperature. Although
this latter case may not be realized in practice, it may zpproximate
that of a well insulated vessel in & zero gravity fileld at small time
levels after introducing the transient. The calcalations also revealed
thrrtt for a given geometry, fluid and heat 1;11::: , the surface temperature

will riseat a lowe: rate at reduced gravity conditions than at standard
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gravity levels.

2. The flow developuent and the downvard movement of the strati-
fied layer front are of the same nature for both the rectangular and
the cylindrical containers.

3. The experimental measurements are in good agreement with the
theoretical results. Satisfectory agreement with the theoretical re-
sults obtained by Poots for the rectangular cavity is obtained. Such
ar. agreement indicates the wvalidity of the model us2d in the calcula-
tion and the usefulness of the method of solution. Furthermore the
flow pattern obtained agrees with that expérimentally reported by others.

Lk, The method of solution presented here is applicable to any
two-dinensional geometry. Four various finite-difference formulations
ere preseated. The stebility requirements for each of these methods
were determined. Verification of the validity of the results of the
stability analysis was obtained by actual calculations. Calculations
have been carried for a wide range of Grashof numbers, from 107 to
5x109. No signs of instability wer =ncountered during the calculations.

5. The results of the mathematical experimentation show that
the application of the von Neumenn method of stability analysis

to partial differential equations of the form,

df % df

may leed to erroneous conclusions. A different method to examine the

stability conditions of such equations 1s presented. The application
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of this method to finite-difference formulations, for which known

stability criteria exist , leads to the same criteris.,

8.7 RECOMMENDATIONS FOR FUTURE WORK

The method of solution developed here has been utilized to study
the natural convection in partially filled liquid containers with and
without simultaneous pressurization of the container. The investiga-
tion of the heat and mass transfer in both the liquid and the vapor
phases, which takes into account the interfacial energy and mass trans-
port, offers a challenging area for future studies. The calculation
of the pressure~time history in such cases is another possibility.

The study of the mass and heat transfer inter ctions during the
pressurized discharge, taking into consideration the various processes
that take place incide the container is another important problem.

A ~cmputer program has been wriiten to study the velocity-time his-
tory during the discharge process although it is not involwved hére.
This progr-~ is capable of examining the nature of the decay of the
transients after the discharge process is stopped.

Apart from application to naturalconvection in closed containers,
the method of solutiou can be utilized for the study of natural and
forced convection flows for any two-dimensioual geometry.

The extension of the method for solving three-dimensional fluid

flo: problems represents an interesting line of study. If such extension

.
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tecomes possible, it should be anticipated that the machine time
required for handling such problems- will be large. However, this would
represent the only present possibility of solving three-dimensional
laminar flow problems with exactness. Furthermore, the rapid develop-
ments in digital computing machines and methods of solution will meke

it possible to analyze systems, which may seem to be formidible by the

present methods.
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APPENDIX T
METHOD OF SOLUZION OF A SYSTEM OF LINFAR AIGEBRAIC
FQUATIONS HAVING A THREE DIAGONAI. MATRIX

The iterative method employed for solving the stream function-
voaticity equation require the solution of a systerm of algebraic
equations having a tridiagonal matrix. The algorithm given below for
the solution of such systems is derived from the Gaussian elimination
method. This procedure was first used by Bruce, Peaceman and Rach-

ford (9). The method may be summarized as follows. For a system of

equations,
By Po +Cy, F1 = D
(%ol — S _'
AJPJ-:',_+BJPJWJPJ+?“ = DJ 1=jsn-1
Ap Ppos B Py = D
let
Wy = Bo
= - <
WJ B,j A,jbj“l 1ls J=En
Cj
by = = 0fJsn-l
)
and
D
= =2
8o vy

gy = (Dy-Aj8y-1)lwy 1=3s=r
The soiutloun is
P!l = &n

P,j = gJ-bJFJ_M' 0 Jsn-1

195
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3 ATPENDIX IX

) THE STABILITY ARALYSIS CF FORMUIATICON (ii) USING VON NEUMANN METHOD
‘; For simplicity the following one-dirensional eguation will be

b occnsidered

3. -

. ~ N

1 2: + 39 - _é 9 (4.1)
% 3t x x2

; Th= finiie difference aprrcximation oF the sbove eguaticn, secord-
4

3 ing to that of fonmuiation (ii) will be

ﬁ_xg‘ E

v ¥ g a =n T non

[ 5 ¥ =5i + U 9541-%1-3 _ 65+,-281%6; _y {(.2)
ig‘:’ . At chx - (Ax)a \f-c

.
e, W1

The general term of the rcurier series expansion corresponding to

the gbove one-dimensional equation can be written in the form,

p(n) eikx

R N G
Wil N, W

Xy

oA

i i WY ﬂ,‘—“l“ ¥
.

The substitution of this general term in Equation (4.1) gives
)

(n+1 n)
the folilowing relationship between u and u("’ :

: ' Sas , . 3
G u(nﬂ) - ,“(u) 122 osax) + 2 5 oo (al3)
o (ax)3 Ax

S The amplificaticn factor 7(!1) (see Section 6.3) is given by

i .

Y e

2 n -

1 () i- 2At2 (1-coskax) + 1 225 sinkax (A.4)
5 (tx) ax

The absclute magnitude of this factor is obtained from

’ 'e 2 ~ 2
- ly(n)l = [1 - cat_ (l-coskbxﬂa - (—u_:i) sinZkax

(8x)?

Vol

(a.5)
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in order to ohtain the maximum value of the absolute magnitude of
7(n), the right hend side of Equation (A.5) is differentiated with re-

spect to (kax) to obtain,

’4 At ZAt At 2
S|l - A s \l-coskl;x)—l sir XpAx - 2 & sin xAx ccs kAx = O
{Ax) (8x) A bx
. o .. fn) . . e ea
from which itv is ciear that ¥ is maximum or minimum if;
(1) sinxy 8x = 0 i.c., cosk:Ax = =1 {4.€)
or

I
wd
et

oy et |- 2t
@) 2 S| - (Lx‘):z(l-cosx.ix)-] (m) 6 (a

The first of these conditions maxes g}\.1§ does not exceed unity pro-

vided that

2

(ax)®

st S (a.8)

From the second condition (A.7), the follcwing is obtained

1. 28 (1 cos kmc) 2n% \ cos kAx (4.9)
Ax
(a)2 */
and

2
- % I Ry 2at .
ccs kAx = [1 - EAtI(Ax)‘]/' [A -2 ;,:l (A.10)

< {2x)=

Substituting Equation {A.9) in (A.5) we get,

12 - t) / ((”At) _coskAx +(——> sin3cAx
(IZ—:E)E E ¥ {(%E) ] ‘:} s08° kﬁx:’ (A.11)
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From Ecuation (A.1l), the following conclusions can be made:
2
(1) 1rUs L, lyl s 1 and inequality (A.8) is sufficient for

the stability of the differenc: Equation (A.2).

2 uAx,2 2At
ii} I1f {U| > —, the~ let (——) =1+ a and =€
therefore
cos kAx = E
ae
and
2 1l4a 2 a
I = (—a) (ae®+(1-€)") (A.12)

Before proceeding to find the values of ¢ that makes Equation (A.2)

stable, the following observations is made.

AxZ

(1) Fore=1, i.e., 8t = > 7l = (142) > 1.9
These results indicate that if {U|> %f inequality (A.8) is not sufficient
for the stability because in this case |¢[>1.

, 1/2
(2) Fore=o, 1.e., At = 0; |y| = {_]2) > 1.5
- \a

This means that taking At very small does nnt lead to a stable solution.

In order to establish the valuz of € which makes Equation (A.2)
stable, the value of € which makes i7|‘ minimum is obtained. Dif-

ferentiating Equation {A.12) with respect to ¢ the following is ob-

tained

2

2 2 2
%l‘%l—)u 2-L1§ﬁ->o (A.1k)
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Since the seconé derivative of (17]2) with respect to € 1§ positive,
the value of ¢ which makes !1|2 minimum is obtained by equating the

left hand side of Equation (A4.13) to zero. This value of ¢ as well as

the vaiue of the correspending amplification factor are given by

byl = 1
e = 1/(1#a)
From which At will be given by:
wo= Eoi (4.15)

Accordingly there is a unigue value of At, given by Equation
(A.15) which nekes this finite-difference formulation stable. Values
of At which differ from that given by Equation (A.15) lead to in-
stability of the results. For prcblems with constant coefficients,
Equation (A.15) can be satisfied at all notdal points. It also would
be satisfied if U is not a function of lccation. 1If U assumes dif-
ferent values at different nodal points, Equation {(A.1l5) cannot be

satisfied and the method becomes unconditionally uastable if lU|> -i—- .
x
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APPENDIX III

THE COMPUTER PRCGRAM FOR THE CYLINDER

The computer program used for the cylindrical container with
specified time iependent wall temperature is given below. Tie wall
temperature is specified at 7 axial locations X=0, .208, .375, .5u4Z2,
.708, .875 and 1.0. The corresponding temperatues are denoted TO, T1,
T2, T3, T4, TS5 and T6 respectively. The values of the temperature
of each locaticn at consecutive time levels were punched on data cards.
These time levels were taken 60, 30 and 20 sec.apart for runs 2, 3 and
4 respectively. Linear interpolation in both space and time directions
is used to determine the reguired values of the temperature at any
location and time level.

The program is writter in MAD language. The symbols, U, V,. T,

W and K are the same as in the text. The meaning, of the principal

symbols which are not defined in the program are given below:

DX = aX
DR = AR
DT = AT

M = RNumber of divisions in the X-direction
N = ” ” " 7 " R-dil‘ection

Acceleration due tE) gravity, g

(2]
L}

NEW = Kinematic viscosity v

2C0
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ALFHA

BETA

PR =

SF =

ST =

TO =

W =

TIME

TAU =

X3,X5,+++Xg correspond to the location of T1, T2,...T6.

= Thermal diffusivity a
= Coefficient of thermal expansion B
Prandtl number

Stream function

The value of the stream function at the previous iterstion.

Value of T at the previous time step

” ” w ” " " ” "

= Dimensionless time

Time in seconds
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APPENDIX IV

TYPICAL PRINTED CONPUTER OQUTPUT

The computed values of the dimensionless temperature and stream
function for run number 2 at time level 60 sec.are given in the

following pages.
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