

Technical Report No. 2

Transient Natural Convection Flows in Closed Containers

HUSSEIN LAKY BARAKAT
JOHN A. CLARK
GPO PRICE $\$$ \qquad
CFSTI PRICES) 5 \qquad

Hard copy (HC) \qquad
Microfiche $\left\{\mathrm{MF}^{\prime}\right.$
$H 653$ July 65

> Under contract with:

National Aeronautics and Space Adminietrritia.George C. shall Space ${ }^{\text {. }}$ Cons No.NAS-8-825

Huntsville, Alabama

THE 'TNVERSITYOFMICHISAN COLSEGE OF ENGINEERING Department of Mechanical Engineering Heat Transfer Laboratory

Technical Report No. 2

TRANSIENT NATUPAL CONVECTION FLCWS IN CLOSED CONTATNERS

Hussein Zaky Barakat
John A. Clark

ORA Project 04268
ander contract with:

NATIONAL AERONAUTICS AND SPACE ADIINISTRATION GEORGE C. MARSHALL SFACE FLIGHI CENTER

CONTRACT NO. NAS-8-825
HUNTASVILIE, AIABAMA

Administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1965

ACKNOWLEDGMENT

The authors wish to express their appreciation to Professors Vedat S. Arpaci, Robcrt C. F. Bartels and Wen-Jei Yang, for their interest and cooperation in serving as members of the doctoral thesis advisory committee.

This work was completed under the sponsorship of the George C. Marshall Space Flight Center, NASA, Hunisville, Alabama under Contract NAS-8-825. The authors gratefully acknowledge the assistance and support in this work of Messrs. H. G. Paul, G. K. Platt, and C. C. Wood.

TABLE OF CONTENTS

Page
LIST OF ILLUSTRMATIONS vi
NOMENCIATURE 冗
ABSTPACT xiii
Chapter

1. INTRODUCTION 1
2. REVIEW OF THE EITERATURE 9
3. STATEMENT AND PHYSICS OF THE PRCBLEM 24
3.1 Introduction 24
3.2 Description of the Firsit Model 25
3.3 Description of the Second Model 27
3.4 Genersiized Formulation of the First Model 28
3.5 Simplified Formulation of the First Model 34
3.5.1 Rectangular Coordinates 34
3.5.2 Formulation of the Simplified Model, Cylindrical Coordinates 37
3.6 Formulation of the Second Model 40
3.6.1 Rectangular Coordinates 40
3.6.2 Formulation of the Second Model, Cylindrical Coordinates 42
4. TRAITSFORMATION OF IHE PARITIAI DIFFERENTIIAL EQUATIONS 44
4.1 Rectangular Coordinates 44
4.2 Cylindrical Coordinates 46
4.3 Boundary Conditions 48
4.3.1 Rectangular Coordinates 48
4.3.2 Cylindrical Coordinates 50
4.4 Dimensionless Form of the Eguations 51
4.4.1 Rectangular Cooráinates 51
4.4.2 Cylindrical Coordinates 54
5. METHOD OF SOLUTION 57
5.1 Introduction 57
5.2 Approximation of Derivatives by Finite- Difference 57

TABIE OF CONTENTS (Continued)

5.3 Note on the Classification of Partial Differential Equations 60
5.4 Finite Difference Representaticn of the Energy and Vorticity Equations (Parabolic Type) 61
5.5 Vorticity-Stream Function Equation 70
5.6 Calculation of the Velocity Components 72
5.7 Treatment of Boundary Conditions 74
5.8 The Procedure of Calculzitions 76
5.8.1 Rectangular System 76
5.8.2 Cyiindrical System 77
5.9 A Note on the Use of Unconditionally Stable Methods for the Solution of the Energy and Voriicity Equations 78
6. SUABITIITY ANALYSIS 81
6.1 Definitions 81
6.2 A Note on the Lineainzation of the Differential Equat ions 83
6.3 Methods of Stability Analysis 84
6.3.1 Stability of Positive Type Difference Equations 85
6.3.2 Electric Circuit Analogy 91
6.3.3 The Von Neumann Method of
Stability Analysis 92
6.4 Stability of the Energy and Vorticity Equations 97
6.5 A More General Approach to the Stability of the Explicit Finite-Difference Equations 109
6.6 Summary of the Results of this Chapter 113
7. EXPERTMENIPAL WOFK 116
7.1 Description of the Rectangular Apparatus 116
7.2 Description of the Cylindrical Apparatus
7.3 Experimental Procedure 123
7.4 Procedure of Data Reduction 124
8. RESUITS 135
8.1 Introduction 135
8.2 Discussion of the Results for the Rec- tangular Cavity, Poots Problem 140

TABLE OF CONTENTS (Concluded)

Page
8.3 Theoretical Results for the Naturil Con- vection in Pressurized Containers, First Model 141
8.4 Experimental and Analytical Resultia, Second Model 152
8.4.1 Results of the Rectangular Container $i 52$
8.4.2 Results of the Cylindricai Container 165
8.5 Effect of Grid Size 284
8.6 Summary of the Pesults 189
8.7 Recommendations for Future Work 193
APPENDIX I. METHOD OF SOLUTION OF A SYSTEM OF IIINEAR ALGEERAIC EQUATIONS HAVING A THPDE DIAGONAL MATRIX 195
APPENDIX II. THE STABIIITY ANALYSIS OF FORMULATION•(ii) USING VON NEUMANN METHOD 196
APPENDIX III. THE COMPUTEER PROGRAM FOR THE CYIINDER 200
APPENDIX IV. TYPICAL PRINTE COMPUTER OUTPUT 207
REFERENCES 214

IIST OF ILIUSTRATIONS

Table Page
I. Properties of Liquid Nitrcsen at $150^{\circ} \mathrm{R}$ 142
II. Froperties of Water for the Conditions of Runs 2,3 and 4, Cylindrical Container 284
III. Effect of the Grid Size on the Computed Results for Fun No. 1, Rectangular Container 185
Figure

1. Typical propellant feed system for flight vehicle. 3
2. Relationship between vehicle thrust and final oxygen tank pressurant mass-pressure ratic. 6
3. Comparison of the weights of the propellant feed systems of two flight vehicles. 7
4. Typical analytical model for liquid stratification anelysis. 11
5. Container configuration and cocrdinate system. 29
6. Finite difference network. 59
7. Sketch of rectangular container. 117
8. Thernocouple locations in the rectangular container. 119
9. Test vessel assembly. 121
10. View of the experimental apparatus. 125
11. View of the experimental apparatus. 126
12. View of the experimental apparatus. 127
13. Typical wall temperature response, rectangular container. 129

IIST OF ILLUSTRATIONS (Continued)

14. Wall temperature distribution, run 2, cylindrical container. 131
15. Wall temperature distribution, run 3, cylindrical container. 132
16. Wail temperature distribution, run 4, cylindrical container. 133
17. Results for the rectangular cavity problem using 31×31 grid. 136
18. Results for the restangular cavity problem using llxll grid. 137
19. Isotherms and streamlines, rectangular container. 143
20. Isotherms and streamlines, rectangular container. 144
21. Streamlines for the case of cylindrical container. 145
22. Lsotherms and streamlines for cylindrical container. 146
23. Isotherms and streamlines for cylindrical container. 147
24. Results of flow visualizations made by Eichorn. 149
25. Effect of gravity level on liquid and wall temperature, cylindrical container. 151
26. Measured axial temperature distribution in the rec- tangular container, run 1. 153
27. Calculated and mewicured liquid temperature response in the rectangular container, run 1. 154
2\%. Measured wall temperature in the rectangular container. 156
28. Isotherms and streamlines in the rectangular container, run 1. 157
29. Jsotherms and streamlines in the rectangular container, run 1. 158

IIST OF ILIUSTRATIONS (Continued)

Figure Pace
31. Isotherms and streamlines in the rectangilar container, run 1. 159
32. Isotherms in the rectangular container. 160
33. Streamlines in the rectangular cortainer, run 1. 161
34. Isotherms and streamlines in the rectangular container, run 1. 162
35. Schlieren photographs for stratjfication without wall baffiles. 164
36. Liguid temperature response in the cylindrica? container, run 2. 166
37: Liquid temperature response in the cylindrical container, run 3. 167
j8. Liquid temperature response in the cylindrical container, $\operatorname{mun} 4$. 168
39. Axial temmerature distribution obrained for the cylin- drical cortainer. 169
40. mpical Visicorder oxtmut record. 170
41. Typical Visicorder output recera. 2.71
42. Typical Visicorder outpur ecord. 172
43. Typical Visicorder output record. $i 73$
44. Isotherms and streamlines 11 the cylinirical containe.. run 2. 174
45. Isotherms and streamlines in the cflindrical contsiner, mun 2. 175
46. Isotherms and streamlines in the cylindrical container, run 2. 176

LIST OF ILLUSTRATIONS (Concluded)

Figure - age
47. Isotherms and streamlines in the cylindrical container, run 3. 177
48. Isotherms and streamlines in the cylindrical container, run 3. 178
49. Isotherms and streamlines in the cylindrical container, run 3 179
50. Isotherms and streamlines in the sylindrical container, run 4. 180
51. Isotherms and streamlines in the cylindrical container, run 4. 181
52. Isotherms and streamlines in the cylindrical container, run 4. 182
53. Effect of the grid size on the calculated wall temperature. 185
54. Calculated velocity distribution at high ve ues of time in the cylindrical container, run 2. 138
55. Calculated velocity distribution at low values of time in-the cylindrical container, run 2. 190

NOMENCIATURE

2
b
${ }^{5} \mathrm{p}$
Gr

G1**
g
$h_{f g}$
\underline{K}
M
N
p
$=$
R dimensionless radius
$\operatorname{Pr} \quad$ Prandit number $=\nu / \alpha$
Pa Rayleigh number, (GrPr)
$(\mathrm{g} / \mathrm{A})_{\mathrm{w}}$ heat flux at the walls of the tank per unit area, BTJ/hr-ft ${ }^{2}$
T
t
u
v

U dimensionless x-component of the velocity

NOMENCLATUKE (Continued)

V dimensionless y-component of the velocity
x axial distance, ft
X dimensionless x
ju trancverse, or normai distance measured fion centir inice, fit
Y . dimensionless \mathbf{y}
w
α
B coefficient of themal expansion,
$\gamma \quad$ amplification factor, Equation (6.23)
${ }^{\mu}\left(k_{1}, k_{2}\right) \quad \begin{aligned} & \text { function of time governing the growth of the temperature, } \\ & \text { Equation (6.45) }\end{aligned}$
${ }^{\boldsymbol{\xi}}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \quad \begin{aligned} & \text { function of time governing the growth of the vorticity, } \\ & \text { Equatio، }(6.44)\end{aligned}$
$\Delta X \quad$ grid size in the axial direction
ΔY
ΔR
$\Delta t \quad$ time increment
$\rho \quad$ density, $\mathrm{Ibm} / \mathrm{ft}^{3}$
$\mu \quad$ viscosity, $1 \mathrm{bm} / \mathrm{ft}-\mathrm{sec}$
$\nu \quad$ kinematic viscosity, $\mathrm{ft}^{2} / \mathrm{sec}$

4
dissipation function for two dimensional incompressible flow is given by

```
                                    NMSMMCIATYRE (Concluded)
    \varphi=4(\frac{\partialu}{\partialx}\mp@subsup{)}{}{2}+(\frac{\partialv}{\partialx}+\frac{\partialu}{\partialy}\mp@subsup{)}{}{2}
t cimensionless time
0 dimensionless temperature
* stream function
\lambda an eigen value
```


Subscripts

```
\begin{tabular}{ll} 
c. & cold wall \\
g & vapor \\
h & hot wall \\
\(s\) & saturation cr liquic surface \\
\(i, j\) & denotes position in the space grid \\
0 & denotes initial conditions \\
\(w\) & wall
\end{tabular}
```

Superscript
n denotes the time level

CHAPTER 1

INTROLUCTEOH

Abstract

The pinenomeron of natural convection in closed containers hes deer. of considerc.ble interesi in engineering applications. It has been utilized for the cocling of gas turbine blades by hollowing the blade and connecting it to a reservoir of cosled fluid. The large centrifugal force caused by the turbine rotary motion and the existence of temperature gradients alorg the blade axis cause the cold fluid near the reservoir end to replace the hot fluid at the blade tip. The transfer of cold fluiu to hot regions and vice-versa, and the resultine cooling of the blades allow the use of higher temperature gases than can be tolerated by uncoolec blades. As a result, higher turbine afsiciencies can be obtained.

Natural convection in closed vessels with internal heat sources has assumed increased importance in nuclear reactor cooling. Considerable research has been done on this problem.

In application to space flight, the phenomenon of natural convection heat and mass transfer within partially filled liquid containers has become of considerable interest in connection with liquid propellant tanks thermal stratification and associated processes. A great deal of research has been directed towards the study of the process of heat and mass transfer within such containers during the pressurized discharge of a liguid propellant in an effort to optimize the tank design and the determiration of the pressurant requirements as well as the selection
oin the operating parameters for large rocket vehicles. The pressurant reguirement, the instantaneous mass fiow rate, the burnout mass, which is the mass of the propellant remaining at the and of the discharge process, as well as the pressuization level are among the important parameters whose determination is of primary importance to the designer. The determinaticn of these parameters and the design of the propellant tanl: feed systems require the understanding of several related processes, such as pressurization, liguid stratification and the transfer of mass and energy transfer at gas-liguid and gas-solid irterfaces. A comprehensive discussion of these processes has been published (10).

Figure l. shows a schematic propellant feed system in which these phenomena taise place (49).* The liguid oxygen (LOX) tank is pressurized by a side streem of vaporized oxygen (GOX) from the LOX pumps. The pressurant mass flow rate is controlled by a heat exchanger and pressure regulating system. Heat is transferred between the high temperature pressurant (COX) and the liquid piopellant at the liquid-vapor interface. $A=$ a result, mass transfer i.e., evaporaticn or condensation, takes place thewe. In the same time, heat exchange occurs ketwesn the tank walls and both the liguid and gas phases. This latter mode of heat transfer to the tank walls is caused by heat leakage from the ambient, heating of the taik walls by solar radiation, by aerodynamic heating or a combination of them. These processes of heat and mass

[^0]
Fig. 1. Typical propellant fieen aystem for plight vehicle.
transfer give rise to temperature and concentration gradients within both the gas and liquid. Natural convection flows are set up in both phases dut to density variations caused by temperature gradients. Feated liquid near the tank wall is carried to the liquid-vapor interface, eausing a hot layer of liquid, known as the stratified layer, to form at the liquid-vapor interface. The natural convecion within the tank influences the temperature as well as the concertration gradients, winch in turn control the process dynamics and the total pressurant consumption. The pressure level within the tank is dependent upon the pressure reguirea to suppress pump cavitation at the engine pump inlet. The net positive suction head, NPSH, reguired to prevent pump cavitation is directly related to the temperature of the stratified layer at the end of ihe engine firing. Excessive temperature rise of the liquid would require higher pressures, which may cause structural weight penalties. For example, in the case of liguid hydrogen a $1^{\circ} R$ increase in the liguidvapor interface produces approximately a 3 psi increase in tank pressure. As a result of stratification, ihe pressure in cryogenic propeilant containers has been found to be significantly greater than that corresponding to the vapor pressure at bulk (mixed) liguid temperature. The burnout mass of pressurant is fixed by its mean temperature and pressure at the end of the discharge process. It is desired to keep this mass at a ninimur.

The importance of the propellant feed system to the vehicle weight has been studied by Nein and Thompson (41). A summary of their findings
is given in Fic. 2, which shows the relationshin between vehicle thrusi and the mass-pressure ratio of the prescirant at the end of engine firing for some rocket systems. ' The result of this study reveals that should the tank pressure be increased, the burnout mass will be proportionately increased. Such an increase in tank rressurc may be brought about by thermai stratification or by tank-layout considerations. Corparison between the weichts of two similar vehicle designs which incorporate these considerations has been made by Platt et al., (49), and is given in Fig. 3.

A complete analysis of the mass and heat transfer interactions 'between the gas and liquid phases as well as between these phases and the container walls, which takes into consideration the effect of natural convection ic presently unavailable.

In this work the analytical and experimental study of the twodimensional, transient, laminar free convection in partially filled rectangular and cylinderical containers is undertaker. The geometry of the container, as well as the end effects invalidate the assumption of boundary layer flows. Therefore the boundary layer equations were not used. Instead, the full two-dimensiona. energy and Navier-Stoncs equations are considered. These equations are not amenable to mathematical treatment using the classical methods. Furtnermore, Ostromov (48) and Batchelor (8) found that neither the successive approximation nor the series expansion are suitable for handling such equations for

Fig. 2. Relationship between vehicle thrust and final oxygen
tank pressurant mass-pressure ratio.

Fig. 3. Comparison of the weights of the propellant feed sysjems of two flight rehicles.
arbitrury Prandtl Number, Pr, and Grashof Number, Gr. Accordingly, it was decided to utilize a numerical procedure using the finite-difference approximation for the solution. The application of the finite-difference methods to the solution of such systems was not develuped at the start of this work. Therefnre in addition to the study of the phenomena of natural convection and thermal stratification, the study of the application of finite-difference technigues to auch systems was unde:taken. Considerable effort was given to the investigation of the stability problem, which is associatea with the use of these methods. The analytical results are compared with those obtainea experimentally.

It is believed that the result of this research provides an improved understanding of the process mechanics of natural convection heat and mass transfer in closed containers. The results and conclusions reached concerning the use of the finite-difference method, for the solution of the governing differential equations will add some useful informations to the theory of numerical analysis.. It is hoped that the method of solution developed here can be employed to study the natural convection in propellant tanke in both the gaseous and the liquid phases and to assist, in the evaluation of associated processes such as interfacia? mars and heat trainser.

REVIEW OF THE LTERATURE

Abstract

Considerable previous effort has been given to the stuey of nature 1 convection heat and mass transfer. Many problems have been oolved for different conditiors of gemetry and boundary conditions. These studies have been of analytical as well as of experimental nature. After the initiation of this work several analytical and experimental papers were published dealing with the natural convection in closed containers with free surfaces subject to side wail heating. The sxperimental results of Anderson and Kolar (i), showed that the stratification pattern is dependent upon whether the liquid heating is caused by side-wall heating, bottom heating, r by. intertal absorption of e!ergy. The resulta obtained by Neff (39) and those obtained by Vliet and Brogan (73) support these conclusions. The experimental work of Bar.ett, et al., (7), which is made in a large cylindrical tank of the Saturn configuration, in. dicats that the gas pressure has an important effect on the liguid hydrcgen stratification. They also presented a semi-empirical correlation for the axial temperature profile, which ag.:ees with the test data. Schwind and Vliet (58) and Vliet and Brogan (73) have taken schlieren and shadowgraph pictures of the free convection with side-wall heating at various heat flux levels in rectangular containers with and without anti-slosin baffles. Other experimental work include that of Van Wyien, et $a_{i .},(72)$, Fenster, et al., (19), Ordin, et al., (43), Scott, et al.,

(59), Sw.m (68) ani Segr-1 (60).

Basel on the e;perimenta! observitions of the nsiture of the flow a few models have been proposec for th: analytical atudy of the stratification process. Most of these anaiytic:ll approaches use the assumption of boundary laver fiow ellong the vali. 'The modei commoniv used in these analyses is shown in Fig. 4. The bested .iquid flows upward elong the wall in a thin layer of thickness δ known as the boundary layer. The boundary layer is asciumed to be zero at $x=0$, and grows in thickness with axial distance x. The keated ?iquid flows into the boitom of the stratified layer. The unmixed bulk liquid is at the initiai tempereture and is uniform. The liquid in tine stratified iayer is assumed to be either mixed or unaixed.

Publications which adopt the essential fejiures of the model in Fig. 4 for unmixed stratified liquid, inciude Harper, et al. (25), Telle? and Harper (70), Schwind and Viiet (58), Rualer (55), Harper, et a?. (24), Tatom, et al. (Cg), and Robbins and Rogers (53). Other studie:s treating the case of mixed (stratified) liquid include the work of ziley and Fearn (3), Bailey, et al. (4,5), and Arnett and Millniser (2).

The influence of liquid slosh and some of the factors governing it are reported by Come and Tatom (13), Euliť i18) and Iiu (37). An appraisal and evaluation of these works and others dealing with pressurization and interfacie. 1 phase changes has been given in Reference (10).

Fig. 4. Typical amalytical model for liquid stratificetion analysis.

Therefore the detaiis of such anaijses will be omitted. However, it is inportant so revic: the assumptions introiuced su sonstructine such models. These are vister go foivine
(1) sonstant and uniform viii itc $三$ Eluxes
(2) no interfaciil tiegt ari mass -ransfe:
(j) constarit axial acceieration
(i4) eonstent bulk temperature
(5) A boundary layer fiow along tie we.il, vhien is eiven $k j$ steady staie, fiat plate correlaitions.
(G) The bourdary layer thisiness is izme independent and is snail compared to the coutziner radius.

The complexity of tre situation leajs to the above simplîying assump-亡ions. These ascumpticns ignore the insineme of the time-transients in the bouncary layer thickness as well. as on the velocj.ty distribution in the boundary layer, Furthermore the shoice of the location of the axes, Fig. 4, is done arbitrary. In addition to that, these modele ienore end effects, which may te important for vessel djuensions comparable io those used ir flight vehicles i. .., length to radius ratios near unity.

The siudy of natural convection from fiate surfaces and that in enclozad spaces has been studied by many investigators.

Fine case of a ve:tical ejement inersed in an infinite fiuid initially at rest has receivea the most attention of many investigators. The time-steady laminar firsu equations were first solvel by Pohine:. en (50) for air. The experinental resulus of Schmidt and Beckman (51) are in good agreement with Pohlhausen's soiution. Later, Ostrach (44) solved the same froblem usine umerical methods with high speei digital computer for differsat values o: Pmandtl number ranging from 0.01 to 1000.

The transient free-convection from vertical flat plates with and without appreciable thermal capasity and variable fluid properties has been studied by different investigators for different bounciary conditions $(21,25,56,61,65,66)$.

Leitzke (34) considered the steady state naturai esnvection between two parailel infinite flat plates oriented in the direction of body force in which one plate is neated and the ot'ier is cooled uniformly. The measured temperature distribution across the fluid is in good agreement with the theory. A generalization to the same problem was carried on by Ostrach (44,45) in which the pla¿es are maintained at constart terperatures not necessarily equai and the effect of heat sources and frictional heating was included. As anticipated heat sources and viscous heating increase the temperatures and the velocities between the plates. The transient free convection in a duct formed by two infinite parallel plates with arbitrary time variations in the wall temperature and the heat generation wess studiez by Zeiberg and Mueller (76).

The two dimensional steady-state convection in a long rectangle, of which the two long sides are vertical boundaries held at different temperature and the two horizontal boundaries either insulated or have linear temperature distribution, was considered by Batchelor (8). However, he did not solve for the velocity or temperature distribution. But he considered the determination of the rate of heat transfer between
the two vertical boundaries and thr type of different flow regimes that occur for a given value of Rayieigh's number and aspect ratio. For Rayleigh's numbers less than 10^{3} Batchelor uses a power series expansion in terms of Rayleigh's number Ra for the dimensionless temperaさure θ and the stream function. On subst,itution of the power series in the goverring differential equations frd equating coefficients of the like powers of Ra , the problem is reduced to the solution of a series of linear partial differential equations. The Nusselt number defined as

$$
\mathrm{NU}=(\underline{q} / A)_{W} / K\left(T_{h}-T_{c}\right)
$$

is estimated to be of the oider:

$$
N J=\ell / \mathrm{d}+10^{-8} \mathrm{ima}^{2}
$$

where: d is the distance between the plates and ℓ the height of the duct. For the case of $\ell / d \rightarrow \infty$ he argues that for the regions not near the ends the temperature and the stream function take their asymptotic value which is given by the solution of two infinite parallel piates one heated and the other cooled. For infinite values of ra, he postulates that an isothermal core exists having constant vorticity. He found that the governing equations for the general case could not be represented by a polynomial of small degree or could be handled by the Oseen Type of linearization.

Poots (51) solved the same problem handled by Batchelor. He obtained a numerical soluti 2 n besed on the use of orthogonal polynomiais for the solution of the governing differential equations. Following

Batcheior the stream function and the nondimensionsl temperature were assumed $\tau \circ$ be rewresented by the complete double series of orthogonal
functions

$$
\theta=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{n m} \sin n \pi x \sin m \pi y
$$

and

$$
\Psi=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} X_{n}(x) Y_{m}(y)
$$

where the A and B are sonstants which wert? evaluated numerically. The governing differential equations were reduced to two counled algebraic equations to be solved simultaneously. The functions $X_{n}(x)$ were chosen to satisfy the fourth order Sturm-Tiouville system and the orthegorality property. The method of solution is tedious and the calculations are practically impossible for Rayleish's numbers greater than $10^{\mathbb{4}}$ and aspect ratios greater than 4.

Iighthill (36) examined naturai convection flows generated by large centrifugal forces in a tube closed at one end and open at the other end to an infinite reservoir, where the tube walis are maintsined at a constant temperature. Such a situation exists in cooling gas turbine blades. He predicted that one of the following three regimes may exist depending upon the product of Grashof number and the radirs to lensth ratio of the tube. The assumed flow regimes are:
(1) Similarity flor: For small values of this pioduct, i.e., for large values of length to radius ratic for a given Grashof number, the
boundary layer fills the tube. The velocity and tempemature profiles are fully developed. He predicted that for this type of flow, the velocity and temperature distribution are similar at each section of the tube, only their scale is increasing as the orifice is approached. Assuming that the velocity and temperature vary linearly along the tube, he concluded that there exists an aspect ratio for which the temperature changes from its value at the orifice to the value at the bottom. Extending the tube beyond the length determined by the above ratio, the additional length is filled with fluid at rest at the walls temperature.
(2) Boundary layer type of flow: For high velues of the product of Grashof number and radius to length ratio, i.e., for short tubes, the flow is of boundary layer type, the extreme case of it when the boundary -.yer fills a negligible portion of the tube area, the flow approximates the free convection flow up a flat plate.
(3) Non-Similarity regime: This is the type of flow predictea to exist for values of lengtin to radius ratio which lie between the values corresponding to the first and the second case. The boundary layer fills a large portion of the tube section. He used the Squire tecinique to solve the first and the third case.

Hammitt (23) considered the case of a closed vertical cylinder with internal heat generation. He used the Lighthill technique modified to account for the heat sources. The agreement between the calculated and measured values of liusselt's number is not good. This is probably
due to some of the inevitable assumptions, which are made. These assumptions are: (1) small inertia forces compared to busjancy and shear (2) radial extent of the temperature and velucity boundery layers is the same (3) the boundary layer approximation apply. The first one is valid for large Prandtl numbers, while the second is valid for Frandti numbers near unity. The disadvantage of this method of solution is that it is not capable of detailed examination of the end conditions. Smith (63) extended Hammitt's analysis to two-dimensional rectangular containers.

Following Lighthill, Ostrach and Thornton (47) considered a geometrically similar case wivh a linear wall temperature. In Ostrach's paper as well as in Lighthill's paper, attention was given to the stagnation of natural convection flows at the closed end. The same problem considered by Lighthill was sclved by Levy (35) using integral method. He assumes the upward flow consists of a layer of thickness δ, near the wall, the remaining of the tube being filled with cold fluid flowing down. He assumes three regimes of flow similar to those postulated by Lighthill. If the tube length is less than or equal to a length ℓ, the stagnation region does not exist and the upflow convective layer increases with x. For axial distance $x>\ell_{1}, \delta$ reaches a constant value d and such a flow occurs for $\ell_{1}<x<\ell_{2}$. For $x>\ell_{2}$, a stagnation region exists at the closed section of the tube.

Romonov (54) using also integral technigue, solved the same problem considered by Lighthill and Levy. His calculations agree with those
of Lighthill for infinite Prandtl number, but it differs considerably for Prandtl numbers near unity. The measured and the calculated temperatures are in a good agreement for different wall temperatures.

A large number of experimental studies of flat plates, immersed in an infinite fluid at rest, either heated or cooled has been done. In general, there has been a good agreement between the theory and experiments. A considerable experimental work has been done in the field cf natural convection in tubes and enclosures. These have been concerned with specialized applications and particular configurations. Most of these experimentations were done in connection with cooling gas turbine blades and nuclear reactors applications.

Probably the most comprehensive experimental studies of natural convection in thermosyphons are those conducted by Martin (38) in an attempt to check the theoretical work of Lighthill. His results agree qualitatively although the measured heat transfer coefficients are two folds larger than that predicted by Lighthill. Trom measurements of heat transfer rates, the three regimes predicted by lighthill were identified. The heat transfer was greatest : - large values of the product of Grashof number and the radius length ratio, being highest at the bottom of the tube which indicates that boundary layer type of flow exists. At small values of the product, the heat transfer varied linearly from the orifice to zero at the bottom of the tube, from which he concluded that the similarity regime exists. A region of instabiiities
occurred between the above two steady regimes whieh is characterized by nonsinuscidal os:illatory flow.

The explorations of the air flow patterns in the space between two heaced wide plates closed at the bottom, open at the top, and insule ed at the sides done by Siegel and Norris (62) shed some light on the oscillatory flow mentioned by Martin. For spacing of 0.28 the fiate height, the flow pattern was symmetric with upward flowing boundary layers near each plate surface and downflow in between. When the spacing was reduced to 0.21 the height, the flow pattern became asymmetric with half the cross section occupied by upward flow (near one plate) and the half near the other plate occupied by downward flow. For smaller spacings, the asymmetric pattern persisted with periodic nonsinusoidal reversal in flow direction and temperature fluctuations.

Curren and Zalbak (14) conducted an experimental investigation to determine the effect of length to diameter ratio of ciosed end coolant passages on natural convection water cooling of gas turbines. They reported no significant difference in the heat transfer for the different length to diameter ratios investiéced ranging from 5:1 to 25.5:1. For the largest length to diameter ratio 25.5:1 the boundary layer fills 87% of the tube cross section.

The visual studies of sparrow and Kaufman (67) of free convection of water in a narrow vertical enclosure, cooled at the top through a copper surface and open at the bottom to a heated reservoir revealed that the flow pattern is not steady. No reginn of the enclosure is
permanently a region of upflow or of downflow. The size of the various upflow and downslow regions varied along the length of the enclosure at a given time. The number and size of upflow and downflow regions also varied with time. However, end effects were observed and a continuous downflow took place in a $3 / 4^{\prime \prime}$ band adjacent to botn walls. Generally, the dominating character of the flow was instability.

Hartnett, et.al., $(26,27,32)$ studied the free convection heat tiansfer for the geometry postulated by Lighthill but with a constant heat flux at the tube wall using water and mercury as working fluids. The effect of inciining the tube was also investigated. Temererature oscillations of the same nature as that repurted by Martin and Siegel and Norris were observed. On the contrary of the results reported by Curren and Zalabak, the heat traisfer was considerably influenced by length to radius ratio. A decrease in length to radius ratio from 22.5 to 15 results in approximately 100 per cent inercase in the Nusselt numbers.

The natural convection flow pattern in viscous oil in rectangular tanks heated at the center by vertical coil heater stuaied by Skipper, et, al., (63) consisted of a nerrow enimney of hot oil rising verticalij; around the heater surface and above it and a horizontal layer of hot oil at the free surface separated from the remaining cold oil below by a sharp vertical gradient. The hot oil layer had a small vertical temperature gradienc, with maximum temperature at the top. The hot oil
layer at the surface beczne thicker and thicker with continued heat.ing. The hot oil was found to flow downward at the walls of the tank while theie were suggestions of circulating currents at the side of the rising chimney. The flow patterr shcwn su gests that a vortex was formed at tiie free surface naar the center line where the hot rising chimney is bifurcated ard spread horizontally along the surface. Similar vortices were observed by Eichhorn (17). These vortices were formed at the frea sirface of water near the walls of a cylindrical tube 2 in. diameter and 5 in. long uniformly heated at the walls and open at the top.

It has bern recognized that as of now the solution of complicated problems of fluid flow and heat transfer can be obtained by numerical methods only. Among these the finite-difference technigues seemed to requine minimum simplifying assumptions and idealizations as compar:i to other rumerical methods. Indeed, finite-differences have been used by many investigators for the solution of the momentum andenergy equations. These problems and consequently the finite-difference procedures used, variea in complexity.

The finite-difference solution of the laminer boundary layer equations describing the natural convection process from isothermal vertical flet plates and that inside a horizontal cylircer is given by Hellums gra Zhurchill (28). They employed an explicit finite-difference proceduie similar to that adopted here, (Chapter 5). The results obtained fur the fist plate s.se in good agreement with solution of Ostrach (44).

The discrepancy oetieen the experimentsil and the theoretical results for the forizoncal cylinder is within 30 to 50%.

Sinultaneously with the initial phase of tais research (12) twa other indeperiens theoreticel studies treating similar problems were reported. These are by Fromb(21) and Wilkes (74). These studits are significant since they hande problems sis: - lar in rature aná complexity to that considered here.

Fromm (21) Investigatei the unsteady wake behind a smal? rectangular obsjacle placed normai to the flow caused by two r-jring parallel walls. The time-dependent vorticity equation was solved using a Dufort ana Frankel type representation for the second order terms $\partial^{2} w / \partial x^{2}$ and $\partial \mathcal{R}_{w} / \partial r^{2}$, while the nonlinear terms $u(\partial w / \partial x)$ and $v(\partial w / \partial y)$ were tr ansed using central differences at time level n. Accordingly the values of the worticity at the time level ($n-i$) can be explicitely calculated. The equation relating the vorticity and stream function, defined here as the porticity-stream function equation, (see Chapter 5), was solved using the Gauss-Seidel iterative method. From did not give stability analysis fer his finite-difference formulation. However, he considered the stability of the vorticity equation with either of the diffusion or the convective terms present. Furthermore, he resorted to mathematical experimentation to determine the size of the time increment which makes the solution stable, by observing the manner in which any introduced error may decay or amplify. In addition, a small time increment was used. Problems having Reynold numbers, based on the obstacle width
normai to the flow, as high as lo00 were hardied.
The natural convection from a restenguier tw-aimensionai cavita
 ferences. An implicit alternaving direction vesinique wes used to aûvance the temperature and vorticity -ielje across any tine step. kecorc̀irg to the stability analysis made by hin usine the Von-Zeumann wethou of stability anaiysis the method is inconditionaly stacie. However astual calculations shoued that this formuletion is suitable for low Grairof and Prandtl numbers only.

Both Froma's and Wilkes' Formulations have the advantage of using central aifferences for approximating the convective serms u (d / dx), $r(\partial w / \partial y), \ldots$..ete. As will be explained in Chapter j, this representaticn is preferable fron the standpoint of the truncation error. However, as found in this present study there are restrietions to the use of centre differences which may not be satisfied at large Seycoles or Grash. . rumbers. The nature of these restraints is discussed in Chapter 6.

CHAPTER 3

SIATEMENE AND PHYSICS OF TYE PROBLDM

3.1 INTRODUCIICN

A two-dirensional, closed container, partialiy fille= with iiquid ir insteady, Jaminar flow is considered. Two different Eeometrical configurations are examined:
(a) A two-dimensional rectangular tank, and
(b) A two-dimensional cylindrical tank.

The governing partial differential equations as well as the boundary conditions $=$ or each configuration will be given in subsequent sections, each being sonsidered separately. However, the following discussion regarding the physics and naure of the probiem applies to both configurations.

The purpose of this work is the investigation of tnermal stratirication in partiallv filied, liquid propellani containers.

This was accomplished by an investigation of two theoretical models, each of which is outlined below. The first model is very general and includes the iniluence of pressurization and various types of wall effects. The secord model was selected in order to provide physical base to which the theoretical analysis could be related. This model does not include tive influence of pressurization, but introduces an interfacial boundary conditions compatible with an experiment which is simple, yet completely adequate to check the principal points of the theory. Theoretical
calcuiations are made. Sowever, for bour models. Neither modeis corisiders the process of discharge aithough this effect can readily be concluded. Ir addition a singe component system is studieu. Extension 2f tne anslysis to muiti-component systems is within the capability of चne Eomulation and methoc oz̃ s:iüvion, jowerer.

3.2 DESCRIPTION OF THE FTRST MOR

The first model was chosen to correspond to the physical situation in the propellant container. The container is assumed to be partially İilled with a liguid. The inicial conditions in the liguid and the vapor, are assumed to be known. From these initial conditions, the wall of the vessel is subiected to a change in temperature, or to be exposed to a heat flux, either of which may be an aribitrary function of tank height and time. Simultaneously the pressure in the vapor spand is changed to P_{s}. The pressure P_{s} may be equal to or greater than the initial pressiare P_{0}, or may vary with time. The measurements oin refe erences 12 and 19 indicate that the interface rises very rapidly to the equilibri:m temperature T_{s} corresponding to the pressure P_{s} in the vapor space. These perturbations in the boundary conditions lead to a series of non-equilibrium phenomena within the container. Natural convection currerts are set up in the liguid and in the vapor space. At the same time the liquid-vapor system tends to adjust to the new non-equilibrium condition within the tank by transferring mass and energy across the interface by either evaporation or condensation.

The conditions of the liguid-vapor interiace couple the simultaneous transport processes in the liquid and gas phases. The rate of mass transfer by evaporation or condensation across the liquid-vapor interface depends on the relative rates of heat transfer from eacn phase at the interface. Any imbalance of the heat transier across tine liquidvapor interface is counterbalanced by a phase snange at the interface. Should heat transfer from the vapor dominate that to the iiquid, evaporation will occur; if the opposite is tiue, the vapor will condense; if the respective heat transfer rates are the same, neither evaporation nor condensation takes place.

Both the interfacial phase change and the convective action within both phases influence the growth of the stratified layer of liguid at the interiace, which, in turn, affects hoth the interfacial and convective phenomena. Such interactions have not been completely formulated and apparentiy no solution is yet available which considers these interactions. This is a result of the complexity of the processes which makes it difficult to obtain a generailized solution to the problem. In this analysis, however, the problem can be formulated in its general form taking into consideration the interaction between the liquid and vapor phases. Later, in Section 3.5, a simplified mode., which is sufficient for the purpose of this work, will be considerei. However, it is worthwhile $\div 0$ mention that the method of solution developed here and applied to the simplified model, can be utilized to study the physical phenomena associated with the more generalized process. Such
a solution will de of value to engineers concerned with the design and development of propellant containers and associated systems.

3.3 DESCRIPTION OF THE SECOND MODEL

It was mentioned before that the basic? objective of this work is the analytical prediction of thermal stratification in stored cryogenic liquids in partially riled containers. However, since the stratificacion phenomenon is encountered in ell liquids, the experimental study of this phenomenon can, therefore, be carried in noncryogenic liquids, as well. The use of such liquids facilitates the experimental setup considerably, and allows the evaluation of the theoretical results in the light of the experimentally obtained data. For these reasons, a series of experiments were carried on in a two, geometrically different, two-dinensicnal containers, one of which is rectangular and the other is cylindrical?.

Roth containers were partially filled with non-cryocenic 'iquid. The vapor-liquil interfacial boundary condo \ddagger ion differs ir this case from that described isl the first model. The heat losses from the liquid to the vapor is assumed to be negligible. The interface is therefore considered adiabatic. This condition should be regarded as an zpproximation for the interfacial conation in an experiment carefully conducted to minimize the seat losses son the inter: ace. This pariculer point will be discussed further in the formulation of the problem Section 3.6 a 3 well as in discussing both the experimental procedure, Chapter 7, and
the experimental resuits, Chapter δ.

3.4 GENERALIZED FORMULATION OF THE FIRST MODEL

In this section the problem is formulated in its geneial form. The governing partial ditferential equations, as well as the boundary conditions, ate given for the rectarguiar container. Although the same generalized formulation can be easily made for the cylindricai coordinates, its details will be omitted.

A rectangular two-dimensional container of wiath za and height h is partially filled with a liguid. The initial height of the liquid is b, and the depth of the vapor is c. The origin of the aordinate system is taken at the middle of the tank bottini with x-positive in the directicn of the liquid as showr in Fig. 5. The g level is assamed sufficiently high so that the effect of surta tensir can be neglected. Ine location of the liquid vapor interface at any on : - -s given by $x=X(t)$. The differential equations governing the transient velocity and temperature distribution in both the liquid and the vapor regions developed as follows.

The momentum equations
(i) The r-monentum equation:

$$
\begin{gather*}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=-\rho g-\frac{\partial p}{\partial x} \\
+\frac{\partial}{\partial x}\left[\mu\left\{2 \frac{\partial u}{\partial x}-\frac{2}{3}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right\}\right] \div \frac{\partial}{\partial y}\left[\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right] \tag{3.1}
\end{gather*}
$$

Fig. 5. Container configuration and coordinate system.
(ii) The y-momentum equation:

$$
\begin{align*}
& \rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right)=-\frac{\partial p}{\partial y}+\frac{\partial}{\partial x}\left[\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right] \\
&+\frac{\partial}{\partial y}\left[\mu\left\{2 \frac{\partial v}{\partial y}-\frac{2}{3}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right]\right] \tag{3.2}
\end{align*}
$$

The continuity equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}=0 \tag{3.3}
\end{equation*}
$$

The energy equation

$$
\begin{gather*}
\rho \operatorname{Cp}\left(\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}\right)=\frac{\partial \rho}{\partial t}+u \frac{\partial p}{\partial x}+v \frac{\partial p}{\partial y} \\
+\frac{\partial}{\partial x}\left(K \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(K \frac{\partial T}{\partial y}\right)+\mu \varphi \tag{3.4}
\end{gather*}
$$

where, φ is the dessipation function and is given by:

$$
\begin{equation*}
\varphi=a \mu\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right]+\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2} \tag{3.5}
\end{equation*}
$$

The Initial Conditions
In this generalized formulation, arbitrary initial velocity and temperature distributicns are considered. This generalization of the initial conditions does not impose any restrictions or difficulties, as far as the solution is concerned, because the method of solution used in this work permits such a generalization. It is required, of ccurse, that the initial conditions be known from past velocity and temperaturetire history. These initial conditions are given by:
(1) $T(x, y, 0)=T_{0}(x, y)$
(2) $T_{g}(x, y, 0)=T_{g_{0}}(x, y)$
(3) $u(x, y, 0)=u_{0}(x, y)$
(4) $u_{g}(x, y, 0)=u_{g_{0}}(x, y)$
(5) $v(x, y, 0)=v_{0}(x, y)$
(6) $v_{g}(x, y, 0)=v_{g_{0}}(x, y)$

The Boundary '丷onditions
Velocity Boundary Condi.ions
Assumi.g the no slip cordition to prevail at the tank walls, the following boundary conditions are obtained:
(7) $u(0, y, t)=0$
(8) $u(x, \pm a, t)=0$
(9) $v(0, y, t)=0$
(10) $v(x, \pm a, t)=0$
(11) $u_{g}(x, \pm a, t)=0$
(I2) $r_{g}(x, \pm a, t)=0$
The boundary conditions in the vapor space at the top of the coritainer depend upon whether the tank is closed or vented and upon the pressurant inlet design. The choice of these boundary conditions, therefore, cen be made only for a specific system. For these reasons tnese boundary conditions will not ke given here.

The interfacial boundary conditions are of primary importar:e for the study of the interactions of t'ee liquid and vapor phases. Assuming zero shear stress at the liguid-vapor interface, the following is oitained:
(13) $\frac{\partial v}{\partial x}(x, y, t)=0$
(14) $\frac{\partial v_{g}}{\partial z^{\prime}}(x, y, t)=0$

According to the assumption that th liguid surface wiil renain rlat the velocity of the liquid-vapor interface is given by:

$$
\begin{equation*}
\text { (15) } u(x, y, t)=u_{g}(X, y, t)=\frac{d X}{d t} \tag{3.20}
\end{equation*}
$$

The motion of the liquià-vapor interface may be due to discharge, interfacial phase change or both. Wrer container draining is not considered, $d x / d t$ will represent the interfacial velocity caused by phase changes.

From the geometric symmetry of the configuration with respect to the x-axis the y-component of the velocity is zero along the x axis of the container. Furthermore the x-component of the velocity is symmetric. Hence,
(16) $v(x, 0,6)=0$
(17) $\frac{\partial u}{\partial y}(x, 0, t)=0$
(18) $v_{g}(x, 0, t)=0$
(19) $\frac{\partial \dot{g}}{\partial v}(x, 0, t)=0$

Thermal Boundary Conditions
The bottom of the container is assumed to be adiabatic. The walls of the containe: are either subjected to a space and time dependent heat flux, or they undergo anyarbitrarily specified change in temperature. The boundary conditions at the top of the container will be determined,
as stated before, by the conditions at the vapur inlet. Consequentij, the temperature boundary conditions in the vapor space at the container tor will not be considered here. From the symmotry of the container, the temperature will be symmetric. From these considerations the following boundary condi土ions can be written:
(20) a-K $\frac{\partial T}{\partial y}(x, \pm a, t)=f_{1}(x, t)=$

$$
\begin{equation*}
\text { or } \quad-0 \leqq x \leqq X \tag{3.25}
\end{equation*}
$$

$\left.\begin{array}{c}\left.\text { (21) } a-\left(K \frac{\partial T}{\partial y}(x, \pm a, t)\right)_{g}=\right\lrcorner_{3}(x, t) \\ b-T_{g}(x, \pm a, t)=f_{4}(x, t)\end{array}\right] x \leqq x \leqq h$
$\left(2 \varepsilon ; \frac{\partial T}{\partial x}(0, y, t)=0\right.$

$$
b-T(x, \pm a, t)=f_{2}(x, t)
$$

(23) $\frac{\partial T}{\partial y}(x, 0, t)=0$
(24) $\frac{\partial T g}{\partial y}(x, 0, t)=0$
where f_{1}, f_{2}, f_{3} and f_{4} determine either the specified tan: wall heat flux or tank wall temperature as indicated $3 y$ Equations (3.25) and (3.26). The liquid-vapor interface is assumed to be at the equilibrium twriperaturs, T_{s}, corresponding to the pressure P_{S} in the vapur space, i.e.,
(25) $T(X, y, t)=T_{g}(X, y, t)=T_{s}$

Conservation of energy at the interface determines ite velocity as a function of the rate of heat transfer between the interface and the liquid and vapor phases. Hence,

$$
\begin{equation*}
\rho h_{f g} \cdot \frac{d x}{d t}=K \frac{\partial r}{\partial x}(x, y, t)-K_{g} \frac{\partial r_{g}}{\partial x}(x, y, t)^{*} \tag{3.31}
\end{equation*}
$$

It should be noted here that when the pressure in the vapor space is specified the interfacial temperature will ke given by Equation (3.30). Such a situation may exist in vented tanks or in tanks fitted with pressure regulators to maintain the pressure in the tank at a predeternined level. For cases in which the tank is not vented or if iniermittent vesiting of the tank is provided, it would be necessary to consider the interactions between the vapor and liquid pinases in order to dictermine the pressure-time history in the tank, as weli as, the interfacial temperature-rime history.

3.5 STMPLIFIED FORMULATION OF THE FIRST MODEL

3.5.1 Rectangular Coordinatr-3

The description of the physical phenomena for the situations in which the uressure within the tank is not prescribed is complex. For this reason a simplified model is adorted, without impairing the utility of its solution. In this model only the liguid region is considsred.
*This equation does not include the effe $2 t$ of discharge. Should it be desirable to consider the process of liouid discharge Ecuation (3.31) would be written:

$$
\begin{equation*}
\mathrm{ph}_{\mathrm{fg}}\left(\frac{\partial \mathrm{dx}}{d t}+\frac{\dot{m}}{\varepsilon \mathrm{cpg}}\right)=K \frac{\partial T}{\partial x}(x, y, t)-K_{g} \frac{\partial I_{g}}{\partial x}(x, y, t) \tag{3.31a}
\end{equation*}
$$

.ere
\dot{m} : dic:harge flow rate.

(i) Iresmpressibiz Iiguid.
(2) The pressure in the uliage space, P_{S}, is =ither $=$ known function ot time, or is constant. Consecuently, tho interfaciei temperature, T, will je specisied.
(3) The amount of evapration or condensatior is small. Tievefore the interfacial displacement is neglested and the interface remains always at $x=6$.

Ascimptions (?) ard (3) permit the consideration of the liquid and vapor regions separately, since in this ease each phase exchanges neat with botn the interface and the container walls independently frm the other.
(4) The fluid properties are sonstant. Density variations ere aliowed in the cody forse term only in the x-momentum equation.
(5) rine pressure tems and the aissipation finction in the energy equation are negiected.
(6) The variations in pressure and density fron their initial values caused by fluiu motion and temperature guedieuts will be smali. Therefore, denstty variations are causei by temperature changes. The densiry ρ cin then be aporoximated by:

$$
\begin{equation*}
0=o_{C}\left(1+\beta\left(\mathrm{T}_{\mathrm{C}}-T\right)\right) \tag{3.32}
\end{equation*}
$$

where ρ_{0} ard T_{0} are reference values of the density and temperature respectiveiy, for whisn, in this analysis, the initial values sre tanen. β is the coefficient oz: thermal expansior.

Ir +his zase the Goveiring ミift゙ererival equations (z.ì), (3.2),
(3.3) and (3.4) reduce $60:$

The x -momenturi

$$
\begin{equation*}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=-\rho_{g}-\frac{\partial p}{\partial x}+u\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \tag{3.33}
\end{equation*}
$$

The y-momentum

$$
\begin{equation*}
\rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right)=-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right) \tag{3.34}
\end{equation*}
$$

The continuity equation

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{3.35}
\end{equation*}
$$

The energy equation

$$
\begin{equation*}
\frac{\partial T}{\partial t}+u \frac{\partial P}{\partial x}+v \frac{\partial T}{\partial y}=\alpha\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right) \tag{3.36}
\end{equation*}
$$

The initial conditions
(26) $T(x, y, 0)=T_{0}(x, y)$
$(\underline{2}) u(x, y, 0)=u_{0}(x, y)$
(28) $v(x, y, 0)=v_{0}(x, y)$

The Boundary Conditions
Velocity Boundary Conditions
(29) $u(b, y, t)=0$
(30) $u(0, y, t)=0$
(31) $u(x, \pm a, t)=0$
(32) $\frac{\partial u}{\partial y}(x, 0, t)=0$
(33) $v(x,+a, t)=0$
(34) $v(x, 0, t)=0$
(35) $v(0, y, t)=c$
(36) $\frac{7 v}{i \frac{v}{x}}(b, y, t)=0$

Temperature Boundary Conditions
(37): $T(b, y, t)=T_{s}(t)$
(38) : a-K $\frac{\partial T}{\partial y}(x, \pm a, t)=\frac{q^{\prime \prime}}{A}(x, t)$
or

$$
\begin{equation*}
b-\mathbb{T}(x, \pm a, t)=T_{W}(x, t) \tag{3.49}
\end{equation*}
$$

(39) $\frac{\partial r}{\partial x}(0, y, t)=0$
(40) $\frac{\partial I}{\partial y}(x, 0, t)=0$

As mentioned earlier the method of solution allows the use of any arbitrary initial and boudery conditions. Therefore the general boundary and initial conditions written for the general model are retained here. Also it should be mentioneu that the above boundary conditions were chosen to approximate the actual situation as much as possible. However any combination of these conditions, or others, can certainly be hancled using the same metrod of analyais empioyed in this work.
3.5.2 Formulation of the Simplified Model, Cylindrical Coorainates

In this case a cylindrical container whose radius is a is partially fi ? with a iiguid, Fig. 5.

The physical phenomena and the interactions between the liguid and vapor phases in the tank, which are described earlier during the formulation of the problem in rectangular coordinates, take place independent of the geometry of the container. Accordingly, the generalized formula-
tion given for the rectangular coordinates can be modified tc suit cylinarical coordinetes. In order to a roid unnecessary repitition, the generalized formulation will not be given for cylindrical coordina:es, and only the simplified model will be considered. The :ame assunptions made earlier are retained here and for clarity, trey are

lis';ed again:

(1) incompressible :luid
(2) constant pressure in the ullage space, P_{s}
(3) negiigible evaporntion or condensation
(4) constant fluid properties. Only density variations are allowed in the body force term. Finese variations are given by Equation (3.32).
(5) The dissipation function and the prescure terms in the energy equations are neglected.

The governing partial differential equations are:

The x-momentum

$$
\begin{equation*}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial r}\right)=-\rho_{g}-\frac{\partial \rho}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial x{ }^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{\partial^{2} u}{\partial r^{2}}\right) \tag{3.52}
\end{equation*}
$$

The Padial nomentum

$$
\begin{equation*}
\rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial r}\right)=-\frac{\partial p}{\partial r}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}-\frac{v}{r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{\partial^{2} v}{\partial r^{2}}\right) \tag{3.53}
\end{equation*}
$$

The Continuity

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial r}+\frac{v}{r}=0 \tag{3.54}
\end{equation*}
$$

The energy equation

$$
\begin{equation*}
\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial r}=\alpha\left[\frac{\partial^{2} T}{\partial x^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{\partial^{2} T}{\partial r^{2}}\right] \tag{3.55}
\end{equation*}
$$

The initial conditions

$$
\begin{align*}
& T(x, r, 0)=T_{0}\left(x, x^{\prime}\right) \tag{3.56}\\
& u(x, r, 0)=u_{0}(x, r) \tag{3.57}\\
& v(x, r, 0)=v_{0}(x, r) \tag{8}
\end{align*}
$$

The Roundary Conditions
Velocity Boundary Conditions

$$
\begin{align*}
& u(b, r, t)=0 \tag{3.59}\\
& u(c, r, t)=0 \tag{3.50}\\
& u(x, \pm a, t)=0 \tag{3.61}\\
& \frac{\partial u}{\partial r}(x, 0, t)=0 \tag{3.62}\\
& v(x, \pm a, t)=0 \tag{3.63}\\
& v(x, 0, t)=0 \tag{3.64}\\
& v(0, r, t)=0 \tag{3.65}\\
& \frac{\partial v}{\partial x}(b, r . t)=0 \tag{3.66}
\end{align*}
$$

Thermal Bourdary Conditions

$$
\begin{align*}
& T(b, r, t)=T_{5} \tag{3.67}\\
& a-K \frac{\partial T}{\partial r}(x, \pm a, t)=\frac{q^{\prime \prime}}{A}(x, t) \\
& b-T(x, \pm a, t)=T_{k}(x, t) \tag{3.59}\\
& \frac{\partial T}{\partial x}(0, r, t)=0 \tag{3.70}\\
& \frac{\partial T}{\partial r}(x, 0, t)=0 \tag{3.71}
\end{align*}
$$

3.6 FORMULATION OF THE SECOND MODEL

3.6.1 Rectangular Coordinates

The reason for the choice of this model, as well as, the basis difference between the two models are clear from the description of the two models, which is given earlier. The basic aifference betweet the two models lies in the boundary condition at the free liguid surface. Ctherwise, the rest of the boundary and initial conditions, as well as, the mechanisms of heat and mass transport are the same in toth cases. For these reasons, the formulation of this problem will be made as krietly as possible. Referenc. to the formulation of the previous model will be made where it seems feasible.

The same rectangular two-dimensicnal tank, Fig. l, is filleut with a Liquid. The tank is open at the top to the atmosphere. Jeginning from some initial conditions, the tank walls exhibit a transient temperature change. The tank wail temperature is a prescribed function of tine and axial locacion. The wall temperature-time history is obtained by measuring the wail temperature at different locations at various time levels, as will be described later in Chapter 7. The temperature and velocity-time history within the tank is sought.

The assumptions made in this problem do not differ basically from those made earlier. Eowever, they will be repeated here for clarity, and are:
(1) Incompressiole fluid.
(2) Constant fluid properties. Density variations are allowed in the body force term only in the x-momentur equation.
(3) The dissipation function as well as the pressure terms in the energy equation are negligible.
(4) Density variation is only a function r f temperature, Equation (3.32).
(5) No evaporation at the free surface.
(6) Negligible heat transfer ait the free surface.

According to the above assumptions, the governing differential equations will be the same as those oitained earlier for the first mouel, Equei,ions (3.33) through (3.36). Also, the initial conditions will be given by Equations (3.37) through (3.39). The same is true for the vejocity bourdary conditions, Equations (3.40) to (3.47).

Temperature Boundary Conditions

The difference between the two models is in the temperature boundary conditions, which in this case are given by:
(1) specified wall temperature,

$$
\begin{equation*}
T(x, \pm a, t)=T_{W}(x, t) \tag{3.72}
\end{equation*}
$$

(2) insuiated kottom,

$$
\begin{equation*}
\frac{\partial T}{\partial x}(0, y, t)=0 \tag{3.73}
\end{equation*}
$$

(3) symmetry with respect to the x-axis,

$$
\begin{equation*}
\frac{\partial T}{\partial y}(x, 0, t)=0 \tag{3.74}
\end{equation*}
$$

(4) adiabstic free surface, according to assumptions 5 and 6,

$$
\begin{equation*}
\frac{\partial T}{\partial x}(b, y, t)=0 \tag{3.75}
\end{equation*}
$$

While evaporation can, by appropriate measures, be prevented, as v:ill be discussed later, some heat losses by convection from the free
surface will certainly be enccuntered. Therefore condition 4, Equation (3.75) should be regarded as an approximation to the actual situation. This approximation will be good for small time and low heating rates. Perhaps the best representation to the getual heat transfer process at the free surface would be by accounting for the heat transfered between the liguid and the mbients through the use of a convective heat transfer coefficient. This latter alternative is not adopted here, however, and Equation (3.75) is used.

3.6.2 Formulation of the Second M~del, Cyllndrical Coordinates

In this case the same cylindrical container is partially fiiled with a liquid, Fig. 5. Similar io the case for rectangular coordinates, the container walls are subjected to a transient temperature perturbation. The governing differential equations are gimn by Equations (3.52) through (3.55). The initial conditions and une velccity boundary conditions are the same as those given for the first model, Equations (3.56) through (3.66). The temperature boundary conditions are similar to those considered for the rectengular model and they are:
(1) specified wall temperature;

$$
\begin{equation*}
T(x, \pm a, t)=\mathbb{T}_{w}(x, t) \tag{3.76}
\end{equation*}
$$

(2) insulated bottom,

$$
\begin{equation*}
\frac{\partial r}{\partial x}(0, r, t)=0 \tag{3.77}
\end{equation*}
$$

(3) syrmetry with respect to the x-axis;

$$
\begin{equation*}
\frac{\partial T}{\partial r}(x, 0, t)=0 \tag{3.78}
\end{equation*}
$$

(4) adiabatic free surrace;

$$
\begin{equation*}
\frac{\partial r}{\partial x}(b, r, t)=0 \tag{3.79}
\end{equation*}
$$

TRANSFORMATION OF THE PARTIAL DIFFERENTIAL EQGATIONS

The govezning partial differential equations in the form given are not suitable for finite-difference approximation for two reasons,

1. The f'cur equations considering the effects of momentim, continuity and energy when replaced by finite-differences, will give rise to four linear algebraic equations in three unknowns at each nodal point in the grid. Hence these will be $4 N$ equations, where N is the number of the nodal points in the domain considered. There will be 3 N unknowns, namely, $\mathrm{T}_{1}-\mathrm{I}_{-}$ $T_{N}, u_{1}--\infty u_{N}$ and $v_{1}-\cdots V_{N}$ corresponding to the $4 N$ algebraic equations. It, is clear that in order to solve the algebraic equations for the unknown functions; it is necessary to reduce the number of equations to equal the number of unknowns. This can be achieved by the use of the stream function and the introduction of the vorticity, which reduces the system to one of $3 N$ equations in $3 N$ unknowns.
2. The presence of the pressure terms in the momentum equasions is undesirable.

Accordingly, the partiei differential equations were transformed to an equivalent, but micre convenient form as follows.

4.1 RECTANGUIAR COOKDINATES

It is assumed that the pressure p can be wititen as, Reference (31):

$$
\begin{equation*}
p=F_{0}+p^{\prime} \tag{4.1}
\end{equation*}
$$

where p_{0} is the hydrostatic pressure and p ' is the change in pressure from the hydrostatic pressure, therefore;

$$
\begin{equation*}
\frac{\partial p}{\partial x}=-\rho_{0} g+\frac{\partial p^{\prime}}{\partial x} \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial p}{\partial y}=\frac{\partial p^{\prime}}{\partial y} \tag{4.3}
\end{equation*}
$$

where E_{G} is the density sorresponding to p_{0}. Upon differentiating the x-momertum equation with respent is, and the y-momentum equation with respect to x, subtracting the second from the first to eliminate the pressure terms : and using Equations (3.32), (3.35). (4.2) and (4.3), the two momentum Equations (3.33) and (3.34) are transformed into the following equation:

$$
\begin{array}{r}
\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)+u \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)+v \frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)= \\
\quad g \beta \frac{\partial T}{\partial y}+v\left[\frac{\partial}{\partial x^{2}}\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial y^{2}}\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)\right] \tag{4.4}
\end{array}
$$

This result can be simplified by the introduction of the vorticity defined as

$$
\begin{equation*}
w^{\prime} \quad \frac{\partial u}{\partial y}-\frac{\partial v}{\partial x} \tag{4.5}
\end{equation*}
$$

Then Equation (4.4) can be ewritsen as

$$
\begin{equation*}
\frac{\partial w^{2}}{\partial t}+u \frac{\partial w^{2}}{\partial x}+v \frac{\partial w^{\prime}}{\partial y}=g \beta \frac{\partial \mathrm{I}}{\partial y}+\imath\left(\frac{j^{2} w^{\prime}}{\partial{ }^{2}}+\frac{\partial^{2}}{\partial} \frac{w^{\prime}}{\partial}\right) \tag{4.6}
\end{equation*}
$$

Equatioris (4.5) and (4.C) sre equivalent to the two momentum equations, and the latter is known as the vortisity Equation. The solution obteined from Eyuations (4.5) and (4.6) will satisfy b.th the x - and y momentum equations. In o:eder to satisfy the continuity equation, the strem function ψ^{\prime} is introduced in Equation (4.5). The stream function ψ^{\prime} is defined such that the continuity equaion is satisfied if the u
and v yelocicics are written

$$
\begin{align*}
i n & =\frac{\partial \dot{s}}{\partial y} \\
v & =-\frac{\partial \dot{s}^{2}}{\partial x} \tag{B}
\end{align*}
$$

Usire (4.7) and (4.8) in Equations (3.3í), (4.5) and (4.6), tite following equations ere oitained

$$
\begin{align*}
& \frac{\partial T}{\partial t}+\frac{\partial_{y^{3}}}{\partial y} \cdot \frac{\partial T}{\partial x}-\frac{\partial_{y}^{\prime}}{\partial x} \cdot \frac{\partial m}{\partial y}=\alpha\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \tag{y}\\
& \frac{\partial w^{2}}{\partial t}+\frac{\partial \psi^{2}}{\partial y} \cdot \frac{\partial w^{\prime}}{\partial x}-\frac{\partial \psi^{2}}{\partial x} \cdot \frac{\partial w^{2}}{\partial y}=g \beta \frac{\partial T}{\partial y}+v\left(\frac{\partial \tilde{\xi}_{w^{\prime}}}{\partial x^{2}}+\frac{\partial^{2} w^{\prime}}{\partial y^{2}}\right) \tag{4.10}\\
& \hbar^{\prime}=\frac{\partial^{2} \psi^{\prime}}{\partial x^{2}}+\frac{\partial^{2} \psi^{\prime}}{\partial y^{2}} \tag{+.11}
\end{align*}
$$

The system of Equations (4.9), (4.10) and (4.21) are equivalent to the system of Equation (3.33) through (3.36). However the transformed equations are more suitable to handie by finite-difference techniques.

4.2 CYLINDRICAL COCRDINATES

Differentiating the x-momentum with respect to r ard the r momentum with respect to x , and combining both equations to eliminate the pressure terms, the followiag equation is obtained:

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\frac{\partial u}{\partial r}-\frac{\partial v}{\partial x}\right)+u \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial r}-\frac{\partial v}{\partial x}\right)+v \frac{\partial}{\partial r}\left(\frac{\partial u}{\partial r}-\frac{\partial v}{\partial x}\right)+ \\
& \left(\frac{\partial u}{\partial r}-\frac{\partial v}{\partial x}\right)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial r}\right)=g \beta \frac{\partial r}{\partial r}+v\left[\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial u}{\partial r}-\frac{\partial v}{\delta x}\right)+\right. \tag{4.12}
\end{align*}
$$

$$
\begin{equation*}
\left.\frac{i}{r} \frac{\partial}{\partial r}\left(\frac{\partial i}{\partial r}-\frac{\partial v}{\partial x}\right)+\frac{\dot{\dot{r}}^{2}}{\partial r^{2}}\left(\frac{\partial i}{\partial r}-\frac{\partial v}{\partial x}\right)-\frac{i}{r^{\overline{2}}}\left(\frac{\partial u}{\partial r}-\frac{\partial v}{\partial x}\right)\right] \tag{4.2}
\end{equation*}
$$

$$
y^{2}=\frac{\partial x}{\partial x}-\frac{\partial v}{\partial x}
$$

also from the continuity se bave:

$$
\frac{\partial: i}{\partial x} \div \frac{\partial u}{\partial r}=-\frac{i}{r}
$$

ge:

Since tru velocity component v changes sigr in the two-aimensioral gomain considered, the presence of the term $\mathrm{vw}^{\prime} / \mathrm{r}$ in the vonticity. Equation (4.15) is undesiranie. This is cecause it may present a coneutational stability problem, ir case the value of this term is taker a. tire came time level ar, ain nodal points. This proi-em coula be avoided by taking the value of wis to be that at the advanced time level if v is negative and is evaluatea at the present time lerel if v is positive. The disauvantage or this proceduae is that this terr is not evaluated at the same time level at all nodal points. Breause of this a different approach is taken to handle this problem, by which this term is eliminated from Equation (4.15) in the fcllowing way: let:

$$
\begin{equation*}
w^{\prime \prime}=\frac{w^{\prime}}{r} \tag{4.16}
\end{equation*}
$$

$$
\begin{align*}
& h=\frac{1}{r} \frac{\partial \Psi^{?}}{\partial r} \tag{4.17}\\
& v=-\frac{i}{r} \frac{\partial \varphi_{r}^{2}}{\partial x} \tag{4.18}
\end{align*}
$$

Upen eubstitution of Equations (4.16) through (4.i8) in Ey.ations i3.55j, (4.35) and (4.13), the latter sj, sem of egiations reduces to:

$$
\begin{gather*}
\frac{\partial T}{\partial t}+\frac{1}{r} \frac{\partial \psi^{\prime}}{\partial r} \cdot \frac{\partial T}{\partial x}-\frac{1}{r} \frac{\partial \psi^{\prime}}{\partial x} \cdot \frac{\partial r}{\partial r}=x\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{\partial^{2} T}{\partial r^{2}}\right)(4 . i \xi) \tag{4.29}\\
\frac{\partial w^{\prime \prime}}{\partial t}+\frac{1}{r} \frac{\partial \psi^{\prime}}{\partial r} \cdot \frac{\partial N^{\prime \prime}}{\partial x}-\frac{1}{r} \frac{\partial \psi^{\prime}}{\partial x} \cdot \frac{\partial w^{\prime \prime}}{\partial r}=\frac{1}{r} E \beta \frac{\partial T}{\partial r}+v\left[\frac{\partial^{2} w^{\prime \prime}}{\partial x^{2}}+\frac{3}{r} \frac{\partial w^{\prime \prime}}{\partial r} \div \frac{\partial^{2} \cdot i^{\prime \prime}}{\partial r^{2}}\right] \\
(4.20) \tag{4,20}\\
w^{n}=\frac{1}{r^{2}}\left(\frac{\partial^{2} \psi^{\prime}}{\partial x^{2}}-\frac{1}{r} \frac{\partial \psi^{\prime}}{\partial r}+\frac{\partial^{2} \psi^{\prime}}{\partial r^{2}}\right)
\end{gather*}
$$

Equations (4.19), (4.20) ana (4.21) are sufficient to determine the temperature and velocity distribution ir. the cy?incer.

4.3 BOUNDARY CONDITIONS

The transfomation of the energy, monentum and continuitif equations which have T, u ard v as variables into an equivaient system of partial differenial equations in the temperature, vorticity and stream function requires obtaining the necessary boundary and initial condicions for the latter two functions. These are derived from the velocity boundary conditions, and are gev below.

4.3.1 Rectangular Coorainates

(i) Stream function boundary conditions
I. $\psi^{\prime}(0, y, t)=0$
2. $\frac{\partial \psi^{2}}{\partial x}(0, y, t)=0$
3. $\quad(\eta, y, x)=0$
4. $\frac{\partial^{2}, y^{1}}{\partial x^{2}}(b, y, t)=0$
5. $\because(x, 0, i)=0$

Є. $\frac{\partial^{2} \psi^{\prime}}{\partial y^{2}}(x, 0, t)=0$
7. $\dot{\psi}^{2}(x, \pm a, t)=0$
8. $\frac{\partial y^{\prime}}{\partial y}(x, \pm a, t)=0$
(ii) Vorticity boundary conditions

The varticity boundary conditions are derived from these given for the stream function above, as well as, Irom the momentum equations. Equations (4.24) to (4.27) give the following two bounaary conditisia,
(1) $w^{\prime}(b, y, t)=0$
(2) $w^{\prime}(x, 0, \pm)=0$

Two more boundary conditions on the vorticity are required at the tank wall and bottom, which are obtained from the x and y momentum equations respectively and they are:
(3) $\frac{\partial w^{\prime}}{\partial y}(x, \pm a, t)=\frac{1}{\mu}\left(\rho g+\frac{\partial p}{\partial x}(x, \pm a, t)\right)$
(4) $\frac{\partial w^{\prime}}{\partial x}\left(0, j^{-}, t\right)=\frac{-l}{\mu} \cdot \frac{\partial p}{\partial y}(0, y, t)$.

The use of the last two boundary conditions requires of course, the determination of the pressure distribution. The differential equation governing the pressure field is obtained by difierentiating the x momentum and the y-momentum equations with respect to x and y respectively and combining the resulting equations to yield,

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial x^{2}} \div \frac{\partial^{2} p}{\partial y^{2}}=-\varepsilon \frac{\partial \rho}{\partial x} \div 2 p\left(\frac{\partial^{2} \psi^{\prime}}{\partial x^{2}} \cdot \frac{\partial^{2} \psi^{\prime}}{\partial y^{2}}-\left(\frac{\partial^{2} y^{\prime}}{\partial x \partial y}\right)^{2}\right) \tag{1.34}
\end{equation*}
$$

Equations (1.9) to (4.11) and (4.22) through (4.34) c-termire the entire temperature, fici ard pressure fields. However, the non-linear boundary sonditions (4.32) and (1.33) will be avoided, since their use together with Equation (4.34) do s not offer any advantages from the standpoint of the amount of computetion required.

4.3.2 Cyijndrical Coomdinates

(i) Stream function boundary conaitions

1. $\psi^{\prime}(0, r, t)=0$

ع. $\frac{\partial \psi^{\prime}}{\partial x}(0, r, t)=0$
3. $\psi^{\prime}(b, r, t)=0$
4. $\frac{\partial^{2} y^{\prime}}{\partial x^{2}}(b, r, t)=0$
5. $w^{\prime}(x, 0, t)=0$
6. $\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial \psi^{\prime}}{\partial r}(x, 0, t)\right)=0$
7. $\psi^{\prime}(x, \pm a, t)=0$
8. $\left(\partial \psi^{t} / \partial r\right)(x, \pm a, t)=0$
(ii) Vorticity boundary conditions

The same procedure used in the rectangular container leads to the following boundary conditions;

$$
\begin{align*}
& \text { 1. } w^{\prime \prime}(b, r, t)=0 \tag{4.43}\\
& \text { 2. } w^{\prime \prime}(x, 0, t)=0 \tag{4.44}
\end{align*}
$$

$$
\begin{align*}
& \text { 3. } \frac{1}{r} \frac{\partial\left(w^{\prime \prime} r\right)^{\partial r}}{\partial r=a}=\frac{1}{\mu}\left(\frac{\partial p}{\partial x}+\left.g P^{\prime}\right|_{r=u}\right. \tag{4.45}\\
& \text { 4. } \frac{\partial w^{\prime \prime}}{\partial x}(0,-, t)=\frac{-1}{\mu} \cdot \frac{\partial p}{\partial r}(0, r, t) \tag{4.46}
\end{align*}
$$

Fur corpleteness the equation Gescribing the pressure field is given below;

$$
\frac{\partial z_{p}}{\partial x^{2}}+\frac{1}{r} \frac{\partial p}{\partial r}+\frac{\partial^{2} p}{\partial r^{2}}=-g \frac{\partial \rho}{\partial x}-\rho\left[\frac{v^{2}}{r^{2}}+2 \frac{\partial u}{\partial r} \cdot \frac{\partial v}{\partial x}+\left(\frac{\partial u}{\partial x}\right)^{2} \div\left(\frac{\partial v}{\partial r}\right)^{2}\right]
$$

4.4 DIMETSIONLESS FORM OF THE ERUATIONS

The substitutions necessary to non-dimensionalize the differertial aquations are:

$$
\left.\begin{array}{lll}
u=\frac{\alpha b}{a^{2}} U & , & v=\frac{\alpha}{a} v \\
T-T_{0}=\frac{v a b}{\beta E a^{4}} Q & , & t=\frac{a^{2}}{\alpha} T \\
x=b X & y=\varepsilon Y \\
r=a R & w^{\prime}=\frac{\alpha b}{a^{3}} w \\
w^{\prime \prime}=\frac{\alpha b}{a 4} w & \psi^{\prime}=\alpha b \psi
\end{array}\right]
$$

The resuitins dimensionless equations are given below.

4.4.1 Rectangular Coordinates

The energy equation

$$
\begin{equation*}
\frac{\partial \theta}{\partial \tau}+\frac{\partial \psi}{\partial \underline{Y}} \cdot \frac{\partial \theta}{\partial X}-\frac{\partial \psi}{\partial X} \cdot \frac{\partial \theta}{\partial Y}=\frac{a^{2}}{b^{2}} \frac{\partial^{2} \theta}{\partial X^{2}}+\frac{\partial^{2} \theta}{\partial Y^{2}} \tag{4.49}
\end{equation*}
$$

The Vorticity Equations

$$
\begin{align*}
& \frac{\partial w}{\partial \tau}+\frac{\partial \psi}{\partial Y} \cdot \frac{\partial w}{\partial X}-\frac{\partial \psi}{\partial X} \cdot \frac{\partial w}{\partial Y}=P_{r}\left[\frac{\partial \theta}{\partial Y}+\frac{a^{2}}{b} \frac{\partial{ }^{2} w}{\partial F^{2}}+\frac{\partial^{2} w}{\partial Y^{2}}\right] \tag{4.50}\\
& w=\frac{a^{2}}{b^{2}} \frac{\partial^{2} \psi}{\partial X^{2}}+\frac{\partial^{2} \psi}{\partial Y^{2}} \tag{4.51}\\
& U=\frac{\partial \psi}{\partial Y} \tag{4.52}\\
& V=-\frac{\partial \psi}{\partial X} \tag{4.53}
\end{align*}
$$

Boundary Conditions
(i) Stream function

1. $\psi(0, Y, \tau)=0$.
2. $\frac{\partial \psi}{\partial X}(0, Y, \pi)=0$
3. $\psi(1, Y, T)=0$
4. $\frac{\partial^{2} \psi}{\partial x^{2}}(1, Y, \pi)=0$
5. $\Psi(X, 0, T)=0$
6. $\frac{\partial^{2} \psi}{\partial Y^{2}}(X, 0, \tau)=0$
7. $\psi(X, \pm 1, \tau)=0$
8. $\frac{\partial \psi}{\partial y}(x, \pm 1, \tau)=0$
(ii) Vorticity
9. $w(I, Y, T)=0$
10. $w(x, 0, \tau)=0$

Boundary conditions (4.32) and (4.33) will be disregerded here.
(iii) Thermal boundary conditions
(iii.1) First model

1. $G(1, Y, \tau)=\frac{a}{b} \cdot \operatorname{Pr} \cdot \operatorname{Gr}_{s}(\tau)$
2. $a-\frac{\partial \theta}{\partial Y}(X, 1, \tau)=\frac{a}{b} \cdot P_{r} \cdot G_{r}{ }^{*}$
or
$b-B(X, 1, T)=\frac{a}{b} \cdot P_{r} \cdot G_{x_{w}}(X, T)$
3. $\frac{\partial \theta}{\partial \mathrm{x}}(0, \mathrm{Y}, \tau)=0$
4. $\frac{\partial \theta}{\partial Y}(X, 0, T)=0$
(iii.2) Second model
5. $\frac{\partial \theta}{\partial \mathrm{X}}(1, \mathrm{X}, \tau)=0$
6. $\theta(X, 1, \tau)=\frac{a}{b} \cdot P_{r} \cdot C_{r_{w}}(X, \tau)$
7. $\frac{\partial \theta}{\partial \mathrm{X}}(0, \mathrm{Y}, \mathrm{T})=0$
8. $\frac{\partial \theta}{\partial Y}(X, 0, \tau)=0$
where $\forall_{r_{s}}$ and $G_{r_{w}}$ are the Grashof numbers based on the surface and the wall temperatures respectively, P_{r} is the Prandtl Number and G_{r} *is a modified Grashof Number, which are given by:

$$
\begin{align*}
& G_{r_{s}}(\tau)=\left(T_{s}-T_{o}\right) \frac{G \beta_{a}^{3}}{\nu^{2}} \tag{4.73}\\
& G_{r_{w}}(\tau)=\left(T_{W}-T_{0}\right) \frac{g \beta a^{3}}{v^{2}} \tag{4.74}\\
& \mathrm{Gr}_{\mathrm{r}}{ }^{*}=G \beta a^{4}(\mathrm{q} \mid \mathrm{A}) \mid\left(\mathrm{K} \nu^{2}\right)
\end{align*}
$$

Initial Conditions

Thr same non-dimensionalizing procedure leads to the following • initial conditions,

$$
\begin{align*}
& \psi(X ; Y, 0)=\psi_{0}(X, Y) \tag{4.75}\\
& w(X, Y, 0)=w_{0}(X, Y) \tag{4.70}\\
& \theta(X, Y, O)=\theta_{0}(X, V! \tag{4.77}
\end{align*}
$$

4.4.2 Clinưrical Coordinates

The Energy Equation

$$
\begin{equation*}
\frac{\partial \theta}{\partial \tau}+\frac{1}{R} \frac{\partial \psi}{\partial R} \cdot \frac{\partial \theta}{\partial X}-\frac{1}{R} \frac{\partial \psi}{\partial X} \cdot \frac{\partial \theta}{\partial R}=\frac{a^{2}}{b^{2}} \cdot \frac{\partial^{2} G}{\partial X^{2}}+\frac{1}{R} \frac{\partial \theta}{\partial R}+\frac{\partial^{2} \theta}{\partial R^{2}} \tag{4.78}
\end{equation*}
$$

The Vorticity Equations

$$
\begin{equation*}
\frac{\partial w}{\partial T}+\frac{1}{R} \frac{\partial \psi}{\partial R} \cdot \frac{\partial w}{\partial X}-\frac{1}{R} \frac{\partial \psi}{\partial X} \cdot \frac{\partial w}{\partial R}=\operatorname{Pr}\left(\frac{1}{R} \frac{\partial \theta}{\partial P} \div \frac{a^{2}}{b^{2}} \frac{\partial^{2} Z_{w}}{\partial X^{2}}+\frac{3}{R} \frac{\partial w}{\partial R}+\frac{\partial 2^{W}}{\partial R^{2}}\right) \tag{4.79}
\end{equation*}
$$

$$
\begin{align*}
w & =\frac{1}{h^{2}}\left(\frac{a^{2}}{b^{2}} \cdot \frac{\partial 2 \psi}{\partial X^{2}}-\frac{1}{R} \frac{\partial \psi}{\partial R}+\frac{\partial 2^{2}}{\partial R^{2}}\right) \tag{4.80}\\
U & =\frac{1}{R} \frac{\partial \psi}{\partial R} \tag{4.81}\\
V & =-\frac{1}{R} \frac{\partial \psi}{\partial X} \tag{4.82}
\end{align*}
$$

Boundary Conditions
(i) Stream furction boundary conditions

1. $\psi(0, R, \tau)=0$
2. $\frac{\partial \psi}{\partial X}(0, R, r)=0$
3. $\psi(1, R, \tau)=0$

I: $: \frac{\partial^{2} \psi}{\partial x^{2}}(1, R, T)=0$
5. $\psi(X, 0, T)=0$
6. $\frac{\partial}{\partial R}\left(\frac{1}{R} \frac{\partial \psi}{\partial R}(X, 0, \tau)=0\right.$
7. $\psi(x, 1, \tau)=0$
8. $\frac{\partial \psi}{\partial R}(X, 1, \tau)=0$
(ii) Vorticit.y boundary conaitions

1. $W(1, R, T)=0$
2. $w(x, 0, T)=c$

Boundary conditions (4.45) and (4.46) wi. . also be 2:sgarded.
(iii) Thermal boundary conditions

1. $\Theta(x, \pm 1, T)=(a / b) \cdot P_{r} \cdot G_{r_{W}}$
2. $\frac{\partial \theta}{\partial X}(0, R, T)=0$
3. $\frac{\partial Q}{\partial X}(1, R, T)=0$
4. $\frac{\partial \partial}{\partial \lambda}(x, 0, T)=0$
where $G_{r_{W}}$ is given i,y Equation (4.74).
Initial Conditions

$$
\begin{align*}
& \varphi(X, R, \cdot)=\theta_{0}(X, \cdots \tag{4,97}\\
& \psi(X, R, O)=\psi_{0}(X, R) \tag{4.98}\\
& w(X, R, C)=w_{0}(X, R) \tag{4.99}
\end{align*}
$$

From the above resul.ts, it is established that the temperature $a_{i} i$ flow fields are determined by the non-dimensional groups, $(\varepsilon / b), P_{:} \quad r_{s}$
 Eevenry and inema: coundam ani initial conditions. It is frequently
 is founs to benave differentig ther in small test vanks. weoher the actuai iest corditions in the swali tenk corrcsponds to the actial conditicos in the large tants car be ezanined by comparing the above dimersionless groups in both cases. The se 0 : smail tarks in laboratory experiments is a matter of corvenieice ana is ustally wesirable. However, in crder tiat the experimentai results obtained in the smali sank correspond to those in the large tariz, the above diqensionless groups shouid be the same in both ceses. The initial corizitions should, O_{i} courge ziso be the same. This would irsure that the imensionless temperature and relocity would be the same. Also if the same fluid is used ir: hnth sases, then the Aニふignas nur specify the tanik gemetry and tis heat fing ievei su that ne abore conditions are satisfied.

CHAPTER 5

METHOD OF SOLUTION

5.1 INTRODUCTION

Finite-dinference nt: hods have been widely used for the study oi linear partial differential equations, particularly for the solution of the heat conduction equation. However, the application of these methods to the sol:ation of heat transfer in filuid flow pre lems, such as the study of natural concection, was until revently, very limited. Tris fact is due partly to the compiicated form of the partial difierential equations involved, and partly due to the difficulty in obtaining sound critericn for the stabilizy problem, which is associated with Fre solution or: such equations. The results of tre anaiytical studies end mathematical experimentation made here and by others to stuay the stability probiem will be given in the next chapter. In this chapter, the finite-difference equations for the energy ard the vorricity equations vill be developed and an outline for the solution will be made.

5.2 APPROXIMATIOAT OF DEFIVATIVES EY FINITE-DIFFERENCES

The use of finite-differences reguires the astablishnisnt of a network or a system of grid points in the drmain of interest. The choice of such a network is a matter of convenience and is generaily affected by the coordinate system chosen, and the shape of the domain. In our cass, this network is obtained by constructing a series of equally spaced
vertical and horizontal lines parallel to the X and the Y or R ares, Fig. 6. The subscripts i and j are used to refer to the position of the grid points in the two-dimensional domain, such that $X=(i-1) \Delta X$, $Y=(j-1) \Delta Y$ and $R=(j-1) \Delta R$. whe origin of the coordinate axes is located at (1,1). The superscript an refers to the level of time such that $\boldsymbol{T}=\mathrm{n} \cdot \Delta \boldsymbol{T}$.

The basic idea in using the method of finite differences to solve partial differential equations, is the use of Taylor's series expansion to approximate the derivatives at a point in terms of the value of the function at the same point ard/or at its neighboring points. This procedure assumes that a sufficient number of derivatives exists, which depends upen the order of the differential equation. In cur case it is sufficient to assume that the function is analytic to the second derivative (20). Using a Taylor's series expansion, the following relations san be written;

$$
\begin{align*}
& f_{i+1, j}=f_{i, j}+\Delta x \frac{\partial f}{\partial x_{i, j}}+\frac{(\Delta x)^{2}}{2!} \frac{\partial^{2} f}{\partial x_{i, j}^{2}}+\ldots+\frac{(\Delta x)^{n-1}}{(n-1)!} \frac{\partial^{n-1} f}{\partial x_{i, j}^{n-1}} \div: R n \\
& f_{j-1, j}=f_{i, j}-\Delta x \frac{\partial f}{\partial x_{i, j}}+\frac{(\Delta x)^{2}}{2!} \frac{\partial^{2} f}{\partial x^{2} f_{i, j}}+\ldots+\frac{(-\Delta x)^{n-1}}{(n-1)!} \frac{\partial^{n-1} f}{\partial x_{i, j}^{n-1}}+R n
\end{align*}
$$

where Rn represents the remainder in Taylor's series expansion.
Fror Equations (5.1) and (5.2), the following different approximations to $\partial f / \partial x_{i, j}$ can be written,

Fig. 6. Finite difference network.

$$
\begin{align*}
& \left(\frac{\partial f^{\prime}}{\partial x}\right)_{i, j}=\frac{f_{i+1, j}-f_{i, j}}{\Delta x}+o(\Delta x ; \tag{5.3}\\
& \left(\frac{\partial f^{\prime}}{\partial x}\right)_{i, j}=\frac{f_{i, j}-f_{i-1, j}}{\Delta x}+o(\Delta x) \tag{0.4}\\
& \left(\frac{\partial f^{\prime}}{\partial x}\right)_{i, j}=\frac{f_{i+1, j}-f_{i-1, j}}{2(\Delta x)}+o(\Delta x)^{2} \tag{5.5}
\end{align*}
$$

These differences are called forward, backward and central respectively. The last term in equations ($5.3,5.4,5.5$) indicates the order of the truncation error inclv A in replacing the derivatives by finitedifferences. It is obvious that the central differences of Per better approximation than the other representations. However, the choice oi the type of difference approximation is ulso dictated by stability reguirements as will be discussed later in Chapter 6.

Similarly, the second order deriva $\ddagger i v e ~ \delta^{?} f / \partial x^{2}{ }_{i, j}$, can be approximated by,

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{i, j}^{2}}=\frac{f_{i}+{ }_{1, j},-2 f_{i, j}+f_{i-2, j}}{(\Delta x)^{2}}+o(\Delta x)^{2} \tag{5.6}
\end{equation*}
$$

Likewise, expressions for $\partial f / \partial y, \partial f / \partial R, \partial^{2} f / \partial y^{2}$ and $\partial^{2} f / \partial R^{2}$ cen be written.

5.3 NOTE ON THE CLASSIFTCATION OF PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations are generally classified as elliptic, parabolic or hyperbolic. A :umplete discussion of this classi: ?ication is given in Reference 78. The numerical procedure for the solution of any differential equation depends upon the classification of st.ch equation. The eis.agy and the vorticity equations, equations (4.49), (4.50),
(4.78) and (4.79), may be classified es parabolic partial differentiel equations, while the vorticity-stream function Equations (4.51) and (4 80) are regaried as elliptic equations. Therefore the procedure for obtaining the finite-difference solution of the energy and the vorticity equations will differ from that used for the vorticity-stream funetion equation. Accordingly, the method of solution of each type will be considered separately.
5.4 FTINTE DIFFERENCE FEPRESENTATION CF THE ENERGY AND VORTICITY EQUATIONS (Parabolic Type)

The finite-difference methods for solving the parabolic partial differential equations can be classified into two broad categories, as explicit or implicit. The time level, at which the spatial derivatives are differenced, generally deternines whether the resulting scheme is explicit or implicit in nature. For example, if the values of the function ε.t the present time level, where its values are known at all nodal points, are used in Equations (5.3) through (5.6), the resulting formulation is said to be explicit. Such a formulation enables the direct computation of the value of the function at all nodal points using a simple, marching-type procedure. The employment of the explicit methods, however, may require the use of small time increments, and conseguently large machine t,ime. To alleviate this problem, the implicit methods are usually suggested. Indeed, many of the authors who have investigated the use of finite-differences for the solution of
equations of the form (4.49) . (4.50), (4.78) and (4.79) or similar systems, suggested that implicit methods, irrespective of their form, a.e unconditionally stable. By extensive study and experimentation it has been found hence, as outlined in Chapter 6, that this is true only if the coefficients of the resulting matrix satisfy a certain stability criterion.

The use of any of Equations (5.5), (5.9) and (5.5) together with Equation (5.6) would lead to different finite-difference approximations for the vorticity and energy equations. For brevity, only two different finite-difference representations will be given here. These are chosen primarily in order to discuss some of the problems associated with their use, namely the problem of stability. The discussions that follow in the rest of this chapter apply to other forms of finite-difference equations as well. Indicating by superscript $(\mathrm{n}+1)$ the value of the function at the unknown time level and by n that at the present or the known time level, and substituting u for $\lambda t / \partial \underline{x}$ and V fo: $-\partial \psi / \partial X$ in the energy and vorticity equations for convenience, the finitt-difference approximations are written as follows,
I. Explicit difference representation:
A. Rectangular Coordinates

$$
\begin{align*}
\frac{\theta_{i, j}^{n+1}-\theta_{i, j}^{n}}{\Delta T}+U & \frac{\theta_{i, j-\theta_{i-1, j}^{n}}^{n}}{\Delta x}
\end{align*}+\frac{V \frac{\theta_{i, j}^{n}-\theta_{i, j-1}^{n}}{\Delta Y}=\frac{a^{2}}{b^{2}} \frac{\theta_{i+1, j-2 \theta_{i, j}^{n}}^{n} \theta_{i-1, j}^{n}}{(\Delta Y)^{2}}}{}+\frac{\theta_{i, j+1-2 \theta_{1, j+\theta_{i, j-1}^{n}}^{n}}^{(\Delta Y)^{2}}}{}
$$

(ii)

$$
\begin{aligned}
& \frac{\partial_{i, j}^{n+1} \theta_{i, j}^{n}}{\Delta T}+u \frac{\theta_{i+1, j}^{n}-\theta_{i-1, j}^{n}}{2(\Delta X)}+v \frac{\theta_{i, j+1}^{n}-\theta_{i, j-1}^{n}}{2(\Delta Y)}= \\
& \frac{a^{2}}{b^{2}} \frac{\theta_{i+1, j}^{n}-2 e_{i, j}^{n}+\theta_{i-1, j}^{n}}{(\Delta x)^{2}}+\frac{\theta_{i, j+2-2 \theta_{i, j}^{n}+\theta_{i, j-1}^{n}}^{n}}{\left(\Delta_{i}^{n}\right)^{2}}
\end{aligned}
$$

$$
\begin{align*}
& \operatorname{Pr}\left[\frac{a^{2}}{b^{2}} \cdot \frac{w_{i+1, j}^{n}-2 w_{i, j}^{n}+w_{1-i, j}^{n}}{(\Delta y)^{2}}+\frac{w_{i, j+1}^{n}-2 w_{i, j}^{n}+w_{i, j-1}^{n}}{(\Delta Y)^{2}}\right] \tag{5.10}
\end{align*}
$$

B. Cylinderical Coordinates

$$
\begin{align*}
& \text { (i) } \\
& \frac{\varepsilon_{i, j}-\theta_{i, j}^{n}}{j+T}+U \frac{\varepsilon_{i, j}^{r}-\theta_{i-1, j}^{n}}{\Delta X}+V \frac{\theta_{i, j}^{n}-\theta_{i}^{n}, j-1}{\Delta R}=\frac{a^{2}}{h^{2}} \frac{\theta_{i+1, j}^{n}-2 \theta_{i, j}^{n}+\theta_{i-1, j}^{n}}{(\Delta X)^{2}}+ \\
& \frac{1}{R} \frac{\theta_{i, j+1}^{n}-\theta_{i, j-1}^{n}}{2 \Delta R}+\frac{\theta_{i, j+1}^{n}-2 \theta_{1, j+\theta_{i, j-1}^{n}}^{n}}{(\Delta R)^{2}} \\
& \frac{v_{i, j}^{n+1} w_{i, j}^{n}}{\Delta T}+U \frac{w_{i, j-w_{i-1, j}^{n}}^{n}}{\left(\Delta M_{i}^{\prime}\right)}+V \frac{w_{i, j-v_{i}^{n}, j-1}^{n}}{\Delta R}=\frac{\operatorname{Pr}}{R} \frac{\varepsilon_{i, 1}^{n+1}-\theta_{i, j-1}^{n+1}}{2 \Delta R}+ \\
& \operatorname{Pr}\left[\frac{a^{2}}{b^{2}} \frac{w_{i+2, j-2 w_{i}}^{n}, j^{+w_{i-1, j}^{n}}}{(\Delta X)^{2}}+\frac{3}{R} \frac{w_{i, j+1}^{n}-w_{i}^{n}, j-1}{2(\Delta R)}+\frac{w_{i, j+1}^{n}-2 w_{i, j}^{n}+w_{i}^{n}, j-1}{(\Delta R)^{2}}\right] \tag{5.12}
\end{align*}
$$

(ii)

$$
\begin{align*}
& \frac{\theta_{i, j}^{n+1}-\theta_{i, j}^{n}}{\Delta^{\tau}}+U \frac{\partial_{i+1, j-\theta^{\prime}}^{n}-1, j}{2(\Delta X)}+\cdot \frac{\partial_{i, j+1}^{n}-\theta_{i, j-1}^{n}}{2(\Delta R)}=\frac{a^{2}}{b^{2}} \frac{\theta_{i+1, j-}^{n}-\theta_{i, j}^{n}+\theta_{i-1, j}^{n}}{(\Delta X)^{2}} \\
& \quad+\frac{1}{R} \cdot \frac{\theta_{i, j+1}^{n}-\theta_{i, j-1}^{n}}{2(\Delta R)}+\frac{\theta_{i, j+1}^{n}-2 \theta_{i, j}^{n}+\theta_{i, j-1}^{n}}{(\Delta R)^{2}} \tag{5.13}
\end{align*}
$$

$\operatorname{Pr}\left[\frac{a^{2}}{b^{2}} \frac{w_{i+1, j}^{n}-2 w_{i, j}^{n}+w_{i-1, j}^{n}}{(\Delta X)^{2}}+\frac{3}{R} \frac{w_{i, j+1}-w_{i, j-1}^{n}}{2 \Delta R}+\frac{w_{i, j+1-2 w_{i, j}^{n}+w_{i, j-1}^{n}}^{n}}{(\Delta R)^{2}}\right]$

In the remainder of this chapter, most of the discussion will be dirested to the rectangular system. The sain discussionapplies to the cylinirical case. In situations where the need arises to consider the cylindrical equations separately, sufficient discussion will be devoted for this purpose.

Versions (i) and (ii) given above are two different explicit finite-difference representations of the same partial aiffereatial equations. The difference between the two is in the approximation of th: nonlinear terms $U \partial \theta / \partial X, V \partial \theta / \partial x, U \partial w / \partial X, \ldots$ etc. In the first backward differences were used, while central differences were used in the other. The use of the central differences i.e., formulation (ii), is preferred from the point of view .of the truncation errors. However, from the standpoint of practical and computational procedures this formulation is useful only for cases where the Grashof or Rayleigh numbers
are low, i.e., for small velozities. Such cases are usually of less practical importance. This preference is attributed to stability requirements as wili he shown in Chapter 6.

It will be demonstrated later that when U and V are positive, then formulation (i) is stable provided that the time increment ΔT is chosen to satisfy the stalility criteria given by inequalities (6.37) and (6.38) for the rectangular coordinates and inegualities (6.41), (6.42) and (6.43) for the cylindrical case, as discussed ir Sections 6.3 and 6.4.

Likewise it will be shown that formulation (ii) is stable irovided that jnequalities (6.61) and (6.62) are satisfied.

The difficulty in using the central differences is clear from these inequalities. For high Grashof numbers the dimensionless velocities U and V will be high. Therefore small grid aizes must be used in order to satisfy the above mentioned inequalities. For example, as described later the velocities U and V reach values as high as 1000 for run No. 1 where $a / b=c .183$. A few arithmetic operations show that (5.17) and (5.18) reguire that $\Delta X \leqq 6 \cdot 7 \times 10^{-5}, \Delta Y \leqq 0.002$. The use of such small grid sizes requires storage beyond the capacity of any present digital computing machine. Furthermore tremendous amount of machine time would be required to handle such cases.
II. Implicit finite-difference represento: on

The implicit forms corresponding to ver. i and ii are coded ifi and iv respectively and are given below.
A. Rectangular Ccordinates
(iii)
$\frac{\theta_{i, j-\theta_{i, j}}^{n+1}}{\Delta T}+U \frac{\theta_{i}^{n+j} j_{2}-\theta_{i-1, i}^{n+1}}{(\Delta X)}+V \frac{\theta_{i, j-\theta_{i, j-1}^{n+1}}^{n+1}}{\Delta Y}=\frac{a^{2}}{b^{2}} \frac{\theta_{i}^{n+1}}{n+j-2 \theta_{i}^{n+1}+\theta_{i-1}^{n+1}} \frac{(\Delta X)^{2}}{i}+$

$$
\frac{\begin{array}{c}
n+1
\end{array} \begin{array}{c}
n+1 \tag{5.15}\\
\theta_{i, j+1}-2 \theta_{i}, j+\theta_{i, j-1}
\end{array}}{(\Delta Y)^{2}}
$$

$\frac{W_{i, j-w i, j}^{n+1}}{\Delta T}+U \frac{w_{i, j}^{n+1} w_{i-1}^{n+1} j_{i}}{\Delta X}+V \frac{w_{i, j-w i, j-1}^{n+1}{ }^{n+1}}{\Delta Y}=\operatorname{Pr} \frac{\theta_{i, j+1-\theta_{i}, j-1}^{n+1}}{2(\Delta Y)^{n+1}}+$
(iv)

$$
\begin{aligned}
& \frac{\theta_{1}^{n+1}-\theta_{1}^{n}, j}{\Delta \tau}+U \frac{\theta_{1+1, j-\theta_{i-1, j}}^{n+1}}{2(\Delta X)}+V \frac{\theta_{1, j+1}^{n+\theta_{1}, j-1}}{2(\Delta Y)}= \\
& \frac{a^{2}}{b^{2}} \frac{\theta_{i+1, j-2 \theta_{i}^{n+1}+\theta_{i-2}^{i}+1}^{n+1}}{(\Delta X)^{2}}+\frac{\theta_{i, j+1}^{n+2}-2 \theta_{i}^{n+1} j^{+\theta_{i, j-1}^{n+1}}}{(\Delta Y)^{2}}
\end{aligned}
$$

B. Cylindrical Coordinates

(iii)
(iv)

$$
\begin{aligned}
& \frac{\theta_{i, j-\theta_{1, j}}^{n+1}}{\Delta T}+U \frac{\theta_{i+1, j-\theta_{i-1, j}^{n+1}}^{n+1}}{2 \Delta X}+v \frac{\theta_{1, j+1}^{n+1} \theta_{i, j-1}^{n+1}}{2 \Delta R}=\frac{a^{2}}{b^{2}} \frac{\theta_{i+1, j}^{n+1} \cdot 2 \theta_{i}^{n+1} j^{n+\theta_{i-1}}, j}{(\Delta:)^{2}}:
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-{ }_{j}^{n+1}-\theta_{i, j}^{n}}{\Delta T}+u \frac{\theta_{i, j}^{n+1}-\theta_{i-1, j}^{n+1}}{\Delta K}+v \frac{\theta_{i, j}^{n+1}-\theta_{i, j-1}^{n+1}}{\Delta R}=\frac{a^{2}}{b^{2}} \frac{\theta_{i+1, j}^{n+1}-2 \partial_{i}^{n+1} j^{n}+\theta_{i-1}^{n+i}, j}{(\Delta X)^{2}}+ \\
& \frac{1}{R} \cdot \frac{\theta_{1, j+1}^{n+\theta_{i, j}^{n+1}}}{2(\Delta R)}+\frac{\theta_{i, j+1}^{n+2}-2 \theta_{i}^{n+1},}{(\Delta R)^{2}}+\theta_{i, j-1}^{n+1}
\end{aligned}
$$

Aravt from stàỉity recunenerts, formiėions (ii) ana (iv)
 むuinec hy iterative methous. The most suitacle metioci for tre present equajicns is উie Gauss-Seidei Eterative me:iod. This method requires that the coefficients in everj equation setisfo a ecriair eriterion, namelur, that the sim of the absolute values oi the coesfinients of tie variailes at. the nociai points (i+1,j), (i-l,j), (i,j+i) ana (i,i-i) mugt nct excead the absolute vaine cf the socficient of the furation at (i,j).
 (iiij satisfies tnis requirement. This will aisc be inue if sithor ij or V or bctin are negative and irn? inft forward differerces neve used In the correapcnaing nonlinear tems. In adaition, it wili bs shown In Section 6.4 that this formuiation is unconditionaily stabie.

Tne applicaiton oit the same sritèricn to formuiaiio: (iv), Equations (5.17) and (c.18), shows that Gauss-Seiael method car be emplojed for the soiution of these equations. The conditions necessary In orier that this metnod conve"zes can be established as follows:

Case 1

$$
\begin{align*}
& \left|U^{\prime}\right| \leqq 2 \frac{a^{2}}{b^{2}} \frac{1}{\Delta X} ;|U| \leqq 2 \operatorname{Pr} \frac{e^{2}}{t^{2}} \frac{2}{\Delta X} \tag{5.?3}\\
& |V| \leqq \frac{2}{\Delta Z} \quad ;|V| \leqq \frac{2 P r}{\Delta Y} \tag{5,24}
\end{align*}
$$

Ii inequalities (5.23) and (5.24) are satisfiec, the Causs-Seidel iterative method converges. In addition the resulting difference equations will be unconditionally stable. Nio restrictions on the size of the tine increment are imposed neither by stability nor $b ;$ the method chosen for numerical reduction of the equations.

Case $\underline{2}$

$$
\begin{align*}
& |U| \geqq \frac{2 a^{2}}{b^{2}} \cdot \frac{1}{\Delta X} ;|U| \geqq 2 \operatorname{Pr} \frac{a^{2}}{b^{2}} \cdot \frac{1}{\Delta X} \tag{5.25}\\
& |V| \geqq \frac{2}{\Delta Y} \quad ; \quad|V| \geqq \frac{2 P r}{\Delta Y} \tag{5.26}
\end{align*}
$$

I.i this case the rauss-Seidel method requires that the time increment should satisfy the following inequalities:

$$
\begin{gather*}
\Delta T \leqq \frac{}{\frac{|U|}{\Delta X}-\frac{2 a^{2}}{b^{2}} \frac{1}{\Delta X^{2}}+\frac{|V|}{\Delta Y}-\frac{2}{(\Delta Y)^{2}}} \tag{5.27}\\
\Delta T \leqq\left(\frac{|U|}{\Delta X}-\operatorname{Pr} \frac{2 a^{2}}{b^{2}} \cdot \frac{1}{(\Delta X)^{2}}+\frac{|V|}{\Delta Y}-\frac{2 P r}{(\Delta Y)^{2}}\right) \tag{5.28}
\end{gather*}
$$

Inequalities (5. 57) and (5.28) are imposed by the nethod used for the reduction of the set of algebraic Equations (5.17) and (5.18) under conditions (5.25) and (5.26), and are not imposed by stability requirement.

As a matter oi fact formulation (iv), Equations (5.17) and (5.18) behaves in a way similar to formulation (ii), i.e., if (5.25) and (5.26) are satisfied, then the finite difference Equations (5.17) and (5.18) are unstable.

From the above discussior it eppears that the use of centra? differences in the terms $U \partial \theta / \partial X, \forall \partial े / \partial Y, \ldots$, ete., is impractice I irrespective of whetrer impinist or explicit methons are used. on the other hand it seems that the one-sided intierences, i.e., forwiri or backward differences; are the most suitajle form for the approximstion of these tems.

From the anaiysis cited above it is slear that one has re choice except to use either formulation (i) which is explicit or formulatio: (iii) whinh is implicit. It was decided to use Eormulation (i) in preference to fomplation (iii). A frill aecount of the background of this choice is given lim Section 5.3 .

5.5 VORTICITY-STREAM FUNCTICN EQLATION

The vorticity-stream function Equations (4.51) and (4.80) are replaced bj:
A. Rectangular Coordinates

$$
\begin{aligned}
& \text { B. Cylindrical Coorininates }
\end{aligned}
$$

$w_{i, j}=\frac{1}{R^{2}}\left[\frac{a^{2}}{b 2} \frac{\psi_{i+1, j-2 \psi_{i, j+}+\psi_{i-1}, j}}{(\Delta X)^{2}}-\frac{1}{R} \frac{\psi_{1, j+1}-\psi_{j, j}-2}{2(\Delta R)}+\frac{\psi_{i}, j++_{2}-2 \psi_{i}, j+\psi_{i, j-1}}{(\Delta R)^{2}}\right]$

As mentioned earlier, the method of solving the vorticity-stream function Ëquations (5.29) and (5.30) may differ from that used in solving
the energy and vorticity equations. While tie energy ard the vorticity equations can be solved either using an expliait narching type procedure or by lising the Gauss-Seidel iteret:.ve method, as it is the case if implicit methods are croser, the vorticity-stream function equation is usuaily solvea by iterative methods. A uider ciass of iterative methons can be empioyed for tris purcose. Amorg these mithods are the GrussSeidel method, winich was usea by Fzom (al!, the successive orerreiaxation by points, used iy Wilkes ($7 \mathrm{i} \%$), and the block sucsessive overrelaxation methods. the point successive overrelaxation metinod cunverges faster than the Gauss-Seidel method, while the bloci successive cverrelaxation nethods are sucerior to both of them. Among the jiock iterative methods are tine successive row iteration, the simultanecus row iteration and the successive ine overrelaxation. The reader is refer.ed to Reference (71) for a compreherisive ztiony of all these metiods. Here an account will be given on?: oi the metnod empioved ficr solving the vorifeity-stream function equations. The method used is essentially a modiffea form of the line suceessive ireratior, is winh row iteraticn was foliowea by colunn iteration. It is found that tris procedure gives faster convergence than in cases when oniy row or column successire iteration methods are used. The iterative formilae for this method applied to Equation (5.29) are:

Successive ror: iteration

Successive column iterations

$$
\begin{align*}
& \left.-\frac{\dot{i}^{2}}{a^{2}} \Delta x^{2} w_{i, j}\right] \tag{c}
\end{align*}
$$

where the superscript F refers to the number of iterations. Similar formalas car be written for the cylindrical coorainates, Ecuation (5.30). The use of (5.31) and (5.32) requires the solution of a tridiagonal matrix which can be done very easily using a aimple algorithm derived from the Gaussian elimination method. This algorithm was used first by Bruce, peaceman, Rachford and Rice (9). The description of this procedure is given in Appendix I.

The number of iterations required by this iterative method in orier that the maximum change in the magnitude of the stream function at any nodal point does not exceed 0.3% using 31×31 grid did not exceed one iteration in nost cases. This is largely due to tie fast convergence of the method of iteration and also to the small size of the time increment used.

5.6 Cailculation of ihe velocity components

Any of Equations (5.3), (5.4) or (5.5) can be used to calculate the velocity components U and V. Actueily finitedifferences similar to Equation (5.3) were used in Reference (21). However, it was reported later by W1lkes (74), that formulae which have highes order truncation erros gave better results for the case of natu:al convection
between two infinite parelisl fiatos. Accordingly, the same formulas used by wilkes were ajopted nere and are:
A. Rectangula:
(E) For noaj! pcints not adjacent to the bouncary
(:1) For nodal foints adjaces: to the boundary

$$
\begin{align*}
& U_{i, i}=\frac{\Sigma \psi_{i, 2}}{U_{V}^{W}} \tag{5.35}
\end{align*}
$$

$$
\begin{align*}
& u_{i, i}=\frac{3 \dot{i}_{i, N^{-}} \dot{\psi}_{i, \mathrm{M}-1}+\dot{w}_{i, N-i}}{6 A Y} \tag{5.3i}\\
& r_{2, j}=\frac{\psi_{4, j-\sigma} \psi_{3, j}+3 \psi_{2, i}}{6 \Delta X} \tag{5.39}\\
& T M, j=\left(6 \psi_{M-2, j-3}-3 \psi_{M, j}-\psi_{i-2, j}\right) \mid 6 \Delta X \tag{5.39}
\end{align*}
$$

B. Cylinderica:
(i) For nodel points not adjacent te the boundary

$$
\begin{equation*}
u_{i, j}=\frac{1}{R} \frac{\partial \psi}{\partial R}=\frac{\bar{Z}}{R}\left[\frac{\Psi_{i, j-2^{-8} \Psi_{i, j-1}+8 \psi_{i}, j+2}-\psi_{i, j} \div 2}{12 \Delta R}\right] \tag{5.41}
\end{equation*}
$$

$\nabla_{i, j}=-\frac{1}{R} \frac{\partial \psi}{\partial X}=\frac{1}{R}\left[\frac{-\psi_{i-2, j}+8 \psi_{i-1, j}-8 \psi_{i+1, j}+\psi_{i+2, j}}{12 \Delta X}\right]$
(ii) At the certer line,

The velocity component $\mathrm{U}_{\mathrm{i}, 1}$ is calculated according to;

$$
\operatorname{Limit}_{R \rightarrow 0} \frac{1}{\bar{K}} \frac{\partial U}{\partial R}=\left(\frac{\partial^{2} U}{\partial R^{2}}\right)_{R=0}
$$

therefore the following formula for $\mathrm{U}_{\mathrm{i}, \mathrm{I}}$ was used,

$$
\begin{equation*}
U_{i, 1}=\frac{\partial \psi(I, 2)}{(\Delta R)^{2}} \tag{5.43}
\end{equation*}
$$

(iii) Points adjacent to the boundary

$$
\begin{align*}
& v_{i, 2}=\left[\frac{6 \psi_{i, 3}-3 \psi_{i, 2}-\psi_{i, 4}}{(\Delta R)^{2}}\right] \tag{5.44}\\
& U_{i, N}=\frac{1}{R(N)}\left[\frac{3 \psi_{i, N}-6 \psi_{i, N-1}+\psi_{i, N-2}}{6 \Delta R}\right] \tag{5.45}\\
& v_{2, j}=\frac{1}{R}\left[\frac{\psi_{f, j}-6 \psi_{3, j}+3 \psi_{2, j}}{6} \frac{\Delta X}{}\right] \tag{5.46}\\
& v_{M, j}=\frac{1}{R}\left[\frac{6 \psi_{M-1, j}-3 \psi_{M, j}-\psi_{M-2, j}}{6(\Delta X)}\right] \tag{5.47}\\
& V_{M+1, j}=\frac{1}{R}\left[\frac{8 \psi_{M, j}-\psi_{M-1, j}}{6 \Delta X}\right] \tag{5.48}
\end{align*}
$$

5.7 TKEATMENT OF BOUNDARY CONDITIONS

In this section the treatment of the temperature and the vorticity houndary conditions will be discussed. No difficulties are encountered at tie boundaries, where the value of these functions are specifiea. Cases in which a derivative of the function is specified require some attention.

The following approximation for the case of specified wall heat flux is used,

$$
\begin{equation*}
\left(\frac{\partial^{2} \theta}{\partial Y^{2}}\right)_{i, N+1}=2\left(\theta_{i, N^{-\theta}} \theta_{i, N+1}+\Delta Y \cdot\left(\frac{\partial \theta}{\partial Y}\right)_{\text {wall }}\right) /(\Delta Y)^{2}+0(\Delta Y) \tag{5.49}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(\frac{\partial^{2} \theta}{\partial R^{2}}\right)_{i, N+1}=2\left(\theta_{i, N}-\theta_{i, N+1}+\Delta R\left(\frac{\partial \theta}{\partial R}\right)_{w a I l}\right) / \Delta R^{2}+O(\Delta R) \tag{5.50}\\
& \left(\frac{\partial^{2} \theta}{\partial X^{2}}\right)_{1, j}=2\left(\theta_{2, j}-\theta_{1, j}\right) /(\Delta X)^{2} \tag{5.51}\\
& \left(\frac{\partial^{2} \theta}{\partial X^{2}}\right)_{M+1, j}=2\left(\theta_{M, j}-\theta_{M+1, j}\right) /(\Delta X)^{2} . \tag{5.52}
\end{align*}
$$

The vorticity boundary conditions at the wall and bottom given by Equations $(4.32,4.33)$ and $(4.45,4.46)$ sre difficult to use. Therefore, an alternative method was used to he'ade these boundary conditions. The step-by-step explicit, computation procedure allows progressing from one vorticity distribution to the next a short time later at all nodal points except those on the boundary, using the values of the vorticities at earlier time. The new values of vorticity are used to de.. termine the stream function distribution. The stream function is then used to compute the values of the vorticity at the solid boundaries. Using Taylor's series expansion together with boundary conditions (4.54) through (4.61) and (4.83) through (4.90), the following expressicns can be easily obtained for the vorticity at the solid boundaries;
A. Rectangular System

$$
\begin{align*}
& w_{1, N+1}=\left(8 \psi_{i, N}-\psi_{i, N-1}\right) / 2(\Delta Y)^{2} \tag{5.53}\\
& w_{1, j}=\frac{a^{2}}{b^{2}}\left(8 \psi_{2, j}-\psi_{3, j}\right) / 2(\Delta X)^{2} \tag{5.54}
\end{align*}
$$

B. Cylindrical Coordinates

$$
\begin{align*}
& w_{i, N+1}=\left(8 \psi_{i, N}-\psi_{i, N-1}\right) / 2(\Delta R)^{2} \tag{5.55}\\
& w_{1, j}=\frac{a^{2}}{b^{2}} \cdot \frac{1}{R^{2}}\left(8 \psi_{2, j}-\psi_{3, j}\right) / 2(\Delta X)^{2} \tag{5.56}
\end{align*}
$$

5.8 THE PROCEDURE OF CALCULATIONS

In this chapter the application of finite-difference methods to the solution of the two-ilimensiona?, laminar, natural convection in rectangular and cylindrical coordinates was discussed. It is worthwhile now to aummarize the prucedure used to obtain the solution. The step-by-step numerical technique followed in this work to compute the new values of the dependent variables across any time step is as ioljows.

5.8.1 Rectangular System

1. A suitable time increment is shosen. The stability criterion given by inequalities (6.37) and (6.38) is tested. The time step may be altered as necessary to maintain stability.
2. The new tenperature distribution is computed from Equation (5.7).
3. The results obtained for the temperature distribution are used in Equation (5.8) to calculate the vorticity at all interior nodal points.
4. Equaticn (5.29) is used to find the stream function at all the interior nodal points. The method uescribed in Section 5.5, is used for the solution of this equation.
5. The vorticities at the solid boundaries i.e., at the wall and the bottom of the conticiner, are calculated using Equations (5.53) and í5.54) respectively.
6. The velocity components U and V are calculated using the appropriate one of Equations '5.33) through (5.40).

5.8.2 Cylindrical System

The same procedure mentioned above applies to the cylitsarical case. The equations pertaining to cylindrical cocrdinates are used, of course. The only difference lies in calculating the temperature at the center line. Since both R and $\partial \theta / \partial R$ approach zero as R approaches zero, the term $1 / R \partial \theta / \partial R$ in the energy equation is replaced at the center line by $i t, s$ init as the radius becomes zero i.e.,

$$
\begin{equation*}
\operatorname{Limit}_{\therefore \div 0} \frac{1}{R} \frac{\partial \theta}{\partial R}=\left(\frac{\partial^{2} \theta}{\partial R^{2}}\right)_{R=0} \tag{5.57}
\end{equation*}
$$

accordingly the following equation is used to calculate the centerline temperature, assuming that $\mathbb{U} \geqq 0$;

$$
\begin{equation*}
\frac{\theta_{i, i}^{n+1} \theta_{i, 1}^{n}}{\Delta T}+v \frac{\theta_{i, 2}^{n} \cdots \partial_{i-1,1}^{n}}{\Delta x}=\frac{a^{2}}{b^{2}} \frac{\theta_{i+1,1}^{n}-2 \theta_{1,1}^{n}+\theta_{i-1,1}^{n}}{(\Delta x)^{2}}+4 \frac{\theta_{i, 2}^{n} e^{n} \theta_{i, 1}^{n}}{(\Delta R)^{2}} \tag{5.58}
\end{equation*}
$$

For regatire velocity U, forward differences should be used for ! $\partial \Theta / \partial x$.

5.9 A NOIE ON THE USE OF UNCONDITIONALLY STABLE METHODS FOR THE SOLITION OF THE ENERGY AND VORTICITY EQUATIONS

It was shown in Secior 5.4 that two of the diecussei methods, namely formulations (i) an:d (iii) are suitakle for handing the energy and the vorticity equations. Formulaticr. (i) is explicit and simple tc use, while formulation(i11) is implicit. The explicit method demands that the time increment be small in order to satisfy stajility requirement, inequalities (6.37) and (6.38). As a result, the amount of machine time required to obtain the solution may become large particularly for high Grashof numbers.

To avoid the restrictions on the time increment, implicit methods are usually suggested. Iterative methods are usually employed for the solution of the resulting algebraic equations. Since the velocities U and V are functions of space and time, it appears that the GaussSeidel iterative method is the most suitable one for this purpose. This may require a large number of iterations per time step. Furthermore increasing the size of the time step would increase the number of iterations required to achieve any reasonable degree of numerical accuracy. The advantages of these methods From the standpoint of savings in machine time then ars of doubtful value.

The use of unconditicnally stable explicit methods becomes therefore very attractive, since it eliminates the difficulties outlined abore, i.e., allows the use cf large time increments, and the employmert of the marching type solution without resort to iterative methods.

Buch a method was not available, urtil the method of Reference (6) was developed, in which multi-level formulae were used to obtain an explicit unconditionally staje method for solving the heat conduction equation. The same autnors were able through the use of multi-level finite-difference approximation for the first order derivatives $\partial T / \partial x$, ...,etc., to extend the same procedure for the sointion of equations having convective terms such as the energy and the vorticity equations. The unconditionally stable methods described above can be successTully employed to handle the energy equation. The use of these methods for the solution of the vorticity equation may heve limited advantages over the explicit method used in this work, formulation (i). This is due to the lack of explicit, linear boundary conditions for the vorticity at the s. id boundaries. Sush a situation does not exist in the case of the energy equation. The vorticity nonlinear boundary conditions (4.32), (4.33), (4.45) and (4.46) were in fact disregarded. Instead these boundary sonditions were treated in the manner described in Section 5.7 by Equations (5.53) through (5.56). In the case of implicit methods, or any method that require tre use of the vorticity at the boundary taiken at the $n+1$ time level in order to advance the values of the vorticity at the interior nodal points from the nth to the $(n+1)$ time level, the value of the wall vorticity at the nth 16 sel has to be used to approximate that at the ($n \div 1$) time level; because the latter is not known. Such a linearization of the boundary conditions requires the use of suall tine increments so thai $w_{\text {wall }}^{n}$ be a good

シ

Abstract

 oy ring the Gausu-Saidel fierative metrod to solve tine sysiem of Equations (5.7) anc (5.9), for the same initial and boundery coriitions for min i. Wher the rortinicy at the wail nas treatej ir the maciar outlined in Section 5.8, acauniator overiniow took piese, aitiough the metiod and C.I respectiveq. To prove the point further an antizizfai bourjary condifion on the vosiaity $W_{w e l y}=0$ was assumed. No eccumilator overflow wes encounterea eren for iarger time increrents. withes (74), aiso re- vection betweer tuo parailel piates, althougir the method whish se ased for this case is ancondicions ly stabie. All siese facts sopport the vien that the vorivisity nonlinear bounany eoniftions at the wali are barriers against the use oz large time increnents ana consequentiy do not aliow the use of unconationaidy stabie netacis to nonye ine vorticity equation. It was foura by expermentation thet the stā̃ility size of the time in:rement thet shoula be useã in tine vortiaity equavion. It is of course possivie to use : onconditionalír statie methods to rolve the exergy equa:ion and the explicit method, Equation (5.5) to sol.ve the vorticity equation. A smailer time step ΔT is used in the vorticisy equation, while larger cime step, m $L T$, zar be useil in the energy equation, where a is an integer. Ther each cycle of the temperatire caisula. tion is accompanied ky m cycles of the vorticity calculation.

CHAPTEIT 6

STABILITY ANALYSIS

Abstract

In Sharter 5 the finite-difference representaticns of the gorerrine partial differential equations was presented. In this chapter, tiee staicility and convergence of these finite-aifference equations will be examined ani criteria defined:

6.1 DEFINITIONS

The stability of the difference equations has been a suifject for many investigators. Nevertheless, one rarely meets presise ciefinition
 tions. Some of these definitions will be guoted here.

O'Brien, Hynan and Kaplan (42) defined the stakiifty and convergence in the following way. Let E represent the exact solurion of the partial differential ec:ation, D the exact soiution of the finitedifference equations, and in the numerical sol:山ion of the difference equations. The vaiue of ($\mathrm{E}-\mathrm{D}$) is celled the truncation error. To find the conditions under which $D \rightarrow E$ is the problem of CONJERiENTEE. The quantity ($D-N$) i- salled the numerical error. It may be due to round-off ermors or any other kind ci error. To find the conditions under which ($D-N$) is small throughcut the entire region of integration is the problem of STABILITY.

I: princifie, the numerical erwor can be kept unfer control even for scme גnstaile eases, (see feference (in)), ty carring cut the chiculations with sufficient precision. This, of sourse, is atiairable oniy with somputige menines that carry on inainite numer of jisits. Therefore, it is natural tc look for criteria of stabilicy that involve bounds on the numerical error. Forsjtine and Wasow (20) have adopied the Sollowing jefinition. if the emor introduced at every step due to round-oiz errors is $\epsilon(x, y, t)$ sueh that $|\epsilon| \leq \delta$, ther a finite-difference procedure is called stable if the numerical error tenas to zero With s ani does not grow faster than (os $)^{-1}$ where $A s$ is the mesh size.

Iax a:d Pdehtmyer (32) consider that, for an initial wiue probiem, the siidion of the differnce equation $F(x, t)$ is said to converge $c=$ the solution of the differential proilem $G\left(x, t^{`}\right.$ i \hat{A}

$$
\operatorname{Lim}_{i S^{\rightarrow 0}}|F(x, x)-G(x, t)|=0 .
$$

for a general initial Iuncticn $f(x)$.
A finite-difference equation is called stable by Lax and Richtmyer (j2) if the sciutior. $F(x, t)$ corresponding to a general initial function $f(x)$ satisfies a coundedness relation of the form

$$
\begin{equation*}
\|F(x, t)\| \leqq \varphi(t)\left\|_{f}(x)\right\| \text { for } 0 \leqq t \leqq t_{2} \tag{6.1}
\end{equation*}
$$

where $\varphi(\tau)$ is indeqendent of Δs. This condition is more restrictive than that adopted by Forsythe and Wasow ($\mathcal{C O}$), since they allow for the bound to grew like a power oi Δs^{-1}.

A third concept, which is :sually asscciated with firite-differences is the consistency. A finite-difference equation is considered to be consistent with the given differential equation if tre tmuncation error irvolved in replasing the ierivatives by finitedipforences ranishes as the spatial and time inowemente approaches zero. It is sometimes sain that such a difference equation is a Eormai representation of the differenial equetion. Iax (33) preve:i that
 is satisfied, tinen stability and convergence are equivalent and stability implies sonvergense.

6.2 A NOTE ON THE IINEARIZATION OF THE DIEFERENTITAL EQLATIONS

In the present problem, the governing partial differential eqiations are innearized by assuming that the velocity componer:ts \bar{j} and $V \cdot$ appearing in the nonlinear $\tau \in \mathrm{mms} U(\partial \theta / \partial x), V(\lambda \vartheta / \partial Y), U(\partial w / \partial X), \ldots$ etc., are inowr anc are taicen to te equal to their values at the vime level n. ΔT. The time stef Δt should, of course, de taken smail erough so that \underline{i}^{n} ie a goca aporoximation tc \mathbb{t}^{n+1}. The order c_{i} ine error invoived by carrying ciut this livearization can be ortained ty using Taylor:s series expansion as follows:

If U_{0} and U are the values of the velocity component li at time ievels T_{0} and $\tau=\tau_{0}+\Delta T$ respectively, then

$$
\begin{equation*}
U=U_{0}+\Delta T\left(\frac{\partial U}{\partial \tau}\right)_{\beta} \tag{6.2}
\end{equation*}
$$

where $0 \leqq \beta \leqq \Delta T$

Then

$$
\begin{equation*}
J \frac{\partial \Theta}{\partial X}=U_{O} \cdot \frac{\partial \theta}{\partial X}+\Delta T\left(\frac{\partial U}{\partial T}\right)_{\beta} \frac{\partial \varphi}{\partial X} \tag{6.3}
\end{equation*}
$$

The approximation involved in replacing the nonlinear terms $U(\partial \theta / \partial X), V(\partial \theta / \partial v), \ldots$ etc., in Equations (4.49), (4.50), (4.7E) anõ (4.79) by thein counterparts in the finite-difference Equstions (5.7) through (5.14) ana (5.16) thrcugh (5.22), as showr in Equation (6.3) is of order $O(\Delta T)$. This linearization error goes to zero as the time increment goes to zero. Indeed, all the srrors induced by any of the various finite-difference metiods given in Chapter 5, nameìy trancation and linearization errors, go to zero as botil the spatial and the time increments go to zero, and ail of the above mentioned finitedifference methods satisfy the consistency conilion.

The linearization of the partial differer'tial equation in the ranner previously described allows the use of Iax's equivalence theorem mentioned above to prove the convergence of the finite-difference methcd acioptec here. As a matter of fact, the same procedure can be used to prove the convergence $0=$ any stable, formal finite-difference represenjaiton of the governing partiai differential equations.

6.3 MENHODS OF STABELI'Y ANALYS. ה

The subiect of stability of finite-difference equations has been widely discussed in the literature. Various metiods were developed for
testing the stability of :he difference equations. Most of these methois are valid for linear differential equations with constant coefficients and few are apricabls to liner r differential equations with variable coeficients. i survey of these methods is beyond the scope of this work. However, tr.ree rethods of stability aralysis, which cen be applied to partial difeerential equations witn veriable coefficients will be briefiy discu:sea. Cometrison between the stability criteria obtained by these diffecert methods will be made.

6.3.1 Stability 0 : Positive Type Diterence Equations

We are concerned here wit: differential equations of the forn

$$
\begin{equation*}
\frac{\partial f}{\partial t}=e_{0} \frac{\partial^{2} f}{\partial x^{2}}+a_{1} \frac{\partial^{2} I^{2}}{\partial y^{2}} \div a_{2} \frac{\partial f}{\partial x}+a_{3} \frac{\partial f}{\partial y} \tag{6.4}
\end{equation*}
$$

Where $a_{0}, a_{1}, a_{2}, a_{3}$ and a_{4} are iunstions of x, y aiad t, and a_{0} and a_{1} are non-negative.

Using Taylor's series expansion Equation (6.3) caia be formally approx-mated by a two-level explicit finite-difference equation, which cais ive written as

$$
\begin{gather*}
\frac{n+1}{F_{i, j}=a_{i, j} F_{i, j}^{n}+a_{i+1, j}} \stackrel{F}{i+1, j}_{n}+a_{i-1, j} F_{i-1, j}^{n} \cdots a_{i, j+i} F_{i, j+1}^{n} \\
+a_{i, j-1}^{n} F_{i, j-1} \tag{6.5}
\end{gather*}
$$

where the coefficients a_{i}, j, \ldots etc., are functions of x, y and t.
The finite-difference Equation (6.4) is called of positive type if the coefficients $a_{i, j}, a_{i+1, j}, \ldots$ etc., are non-negative, i.e.

$$
\begin{equation*}
a_{i, j} \geqq 0 \text {, for all } i, j \tag{6.6}
\end{equation*}
$$

Explicit fositive type-difference equatione can be obtained for partial differential eğuations of the form (6.4) ky using one sided derivatıves i.e., forward or backward derivatives according to the sign of the coefficients c_{2} and a_{3}. If $a_{2}<0$, backward differences, Equation (5.\%), should be used fcr approximating the derivative $\partial f / \partial \dot{x}$, otherwise forward differences, Equation (5.3°, should be employed. The same procedure sinould be followed in approximating $\partial f / \partial y$. The resulting finite-difference equations will be of the positive type provided that the following inequality is satisfied at all (i,j),

$$
\begin{equation*}
1 \geqq\left(\frac{2 a_{0}}{\Delta x^{2}}+\frac{2 a_{2}}{\Delta y^{2}}+\frac{\left\lfloor a_{2}!\right.}{\Delta x}+\frac{\left\lfloor a_{3} \mid\right.}{\Delta y}\right) \cdot \Delta t \tag{6.7}
\end{equation*}
$$

It will be shown below that ineqiality (6.7) is sufficient to ensure the stability of the explicit finite-difference scheme $\mathbf{i 6 . 5)}$. It is not difficult to verify that the coefficients of Equation (6.5) have sum equal to unity i.e.,

$$
\begin{equation*}
a_{i, j}+a_{i-1, j}+a_{i+1, j} \div \varepsilon_{i, j+1}+a_{i, j-1}=1 \tag{6.8}
\end{equation*}
$$

Conditions (6.6) and ((6.8) imply that,

$$
\begin{align*}
\operatorname{Max}\left|F_{i, j}^{n+1}\right| & \leqq\left.\operatorname{Max}(i, j)\right|_{F_{i, j}^{n}} ^{n}|\leqq \operatorname{Max}(i, j)| F_{i, j}^{n-1} \mid \\
& \leqq \ldots \leqq \operatorname{Max}(i, j)\left|f_{i, j}^{0}\right| \tag{6.9}
\end{align*}
$$

Where $f_{1, t}^{0}$ is the initial condition at (i,j). Inequality (6.9) srows that stability, in the sense of inequality (6.1),is satisfied. If consistency is satisfied, then according to Lax's theorem the solution of the finite-
aifference equations converges to that of the partial differential equations as the increments $\Delta x, \Delta y$ and Δt go to zero.

Inequality (6.7) is the stability criterion for this forminlation.

The stability and boundedness of impilcit finite-difference methods of positive type has been proved by Forsythe and Wasow (20). The ise of one sided derivatives in the manner outlined above yields an implicit positive type finite-difference form for the differential Equation (6.4), wiich is

$$
\begin{align*}
F_{i, j}^{n+1}=i_{i, j} F_{i, j}^{n+1}+b_{i+1, j} & F_{i+1, j}^{n+1}+b_{i-1, j} F_{i-1, j}^{n+1}+b_{i, j+1}{ }_{F_{i, j+1}^{n+1}} \\
& +b_{1, j-1} F_{i, j-1}^{n+1} \tag{6.10}
\end{align*}
$$

The coefficients in Equation (6.10) are always positive, irrespective of the magnstudes of $\Delta t, \Delta x$ and Δy. These coefficients will be given by:

$$
\left.\begin{array}{rlrl}
b_{i, j} & =1 / b & & \\
b_{i+1, j} & =\left(\frac{a_{0}}{\Delta x^{2}}+\frac{a_{2}}{\Delta x}\right) \Delta t / b & , & a_{2}>0 \\
& =a_{0} \Delta t / b(\Delta x)^{2} & , & a_{2}<0 \\
b_{i-2, j} & =a_{0} \Delta t / b(\Delta x)^{2} & & a_{2}>0 \\
& =\left(\frac{a_{0}}{(\Delta x)^{2}}-\frac{a_{2}}{\Delta x}\right) \Delta t / b, & & a_{2}<0 \tag{6.11}\\
t_{i, j+1} & =\left(\frac{a_{1}}{(\Delta y)^{2}}+\frac{a_{3}}{\Delta y}\right) \Delta t / b, & & a_{3}>0 \\
& =a_{1} \Delta t / b(\Delta y)^{2} & & a_{3}<0 \\
t_{i, j-1} & =a_{1} \Delta t / b(\Delta y)^{2} & & a_{3}>0 \\
& =\left(\frac{a_{1}}{\Delta y^{2}}-\frac{a_{3}}{\Delta x}\right)_{\Delta t / b} & & a_{3}<0
\end{array}\right]
$$

$$
b=1+\left(\frac{2 a_{0}}{(\Delta x)^{2}}+\frac{2 a_{1}}{(\Delta y)^{2}}+\frac{\left|a_{2}\right|}{\Delta x}+\frac{\left|a_{3}\right|}{\Delta y}\right) \Delta t
$$

Accordingly Equation (6.10) is unconditionalily stable.
Thus far the one-sided derivative has been employed to obtain positive type finite-difference representation of Equation (6.4) and sufficient conditions for stability have been derived. It is also possible to employ central differences, Equation (5.5), to approximate the first order derivatives $\partial f / \partial x$ and $\partial f / \partial y$ of Equation (6.4). The conditions under which the finite-difference metiod becomes of positive type can be established. In this case, Equations (5.5) and (5.6) nay be used to obtain the following explicit finite-difference equation for the differential Equation (6.4),

$$
\begin{gathered}
F_{i, j}^{n+1}=C_{4, j} F_{i, j}^{n}+C_{i+1, j} F_{i+1, j}^{n}+C_{i-1, j}^{n} F_{1-1, j}^{n}+C_{i, j+1} F_{1, j+i}^{n} \\
+C_{i, j-12)}^{n} F_{i, j-1}^{n}
\end{gathered}
$$

where:

$$
\begin{align*}
c_{i, j} & =1-2 a_{0} \cdot \Delta t /(\Delta x)^{2}-2 a_{1} \Delta t /(\Delta y)^{2} \\
c_{i+1, j} & =\left(a_{0} /(\Delta x)^{2}+a_{2} / \Delta x\right) \cdot \Delta t \tag{6.13}\\
c_{i-1, j} & =\left(a_{0} /(\Delta x)^{2}-a_{2} / \Delta \dot{x}\right) \cdot \Delta t \\
c_{i, j+1} & =\left(a_{1} /(\Delta y)^{2}+a_{3} / \Delta y\right) \cdot \Delta t \\
c_{i, j-1} & =\left(a_{1} /(\Delta y)^{2}-a_{3} / \Delta y\right) \cdot \Delta t
\end{align*}
$$

Therefore the conditions necessary for making (6.12) of positive type are,

$$
\begin{equation*}
\Delta x \leqq\left|a_{0} / a_{2}\right| \tag{6.14}
\end{equation*}
$$

$$
\begin{gather*}
\Delta y \leqq\left|a_{1} / a_{3}\right| \tag{5.15}\\
\Delta t \leqq \frac{1}{\left[2 a_{0}\left|(\Delta x)^{2}+2 a_{1}\right|(\Delta y)^{2}\right]} \tag{6.16}
\end{gather*}
$$

At this point it is necessary to emphasize the fact that subject to conditions (6.14) through (6.16), certral differences, can be emplo;ed to cbtain stable explicit finite-difference formulations for the Eslution of Equation (6.5). Furthermore it is not difficult to see that any of Equations (5.3) to (5.5) can be used to approximate the first order derivat,ives and sufficient conditions to ensure stability of the resulting two levei difference equations can be derived. These conditions may je given by one or more of inequalities (6.7), (6.14), (6.15) or (6.16). This is in contradiction with the argume.ts made by some authors that only the use of one-sided derivatives would yield stable finite-difference forms.

It is also clear that the use of central differences would yield implicit positive type finite-diffsrence approximations for Equation (6.4), assuming that conditions (6.14) and (6.15) are satisfied. The resulting implicit finite-difference equation can be written as;

$$
\begin{gather*}
\frac{F_{i, j}^{n+1}=a_{i, j} F_{i, j}^{n}+d_{i+1, j} F_{i+1, j}^{n+i}+d_{i-1, j} F_{i-1, j}^{n+i}+d_{i, j+1} F_{i, j+i}^{n+i}}{(5 .} \\
+d_{i, j-1}^{n+i} F_{i, j-1}^{n} \tag{5.17}
\end{gather*}
$$

where,

$$
\begin{align*}
d_{i, j} & =1 / c \\
d_{i+1, j} & =\left(a_{0} /(\Delta x)^{2}+a_{2} / \Delta x\right) \Delta t / C \\
d_{i-1, j} & =\left(a_{0} /(\Delta x)^{2}-a_{i 2} / \Delta x\right) \Delta t / c \tag{0.18}\\
d_{i, j+1} & =\left(a_{1} / \Delta y y^{2}+a_{3} / \Delta y\right) \Delta t / c \\
d_{i, j-1} & =\left(a_{1} / \Delta y^{2}-a_{3} / \Delta y\right) \Delta t / c \\
c & =1+2\left[a_{0} /(\Delta x)^{2}+a_{1} /(\Delta y)^{2}\right] \Delta t
\end{align*}
$$

The conclusion made in the above paragraph regarding the possibility of using forward, backward or central differences to approximate Equation (6.4) by stable finite-difference forms of positive type is general and mathematically sound. It is based on the definition and properties of positive type differcnce equations. The use of central differences is the most desirable because it s'fers the least truncation error. However, condition (6.i4) and (6.15) whicn are imposed by stability of such a formulation shoul 1 be satisfied.

Frem the practica, point of view, (6.14; and (6.15) can be satisfied for values of $:\left(a_{0} / a_{2}\right) \mid$ and $\left|a_{1} / a_{3}\right|$, which lead to a reasonable number or grid points. For caser where $\left|a_{0}\right| \ll\left|a_{2}\right|$ and or $\left|a_{1}\right| \ll\left|a_{3}\right|$, the use of central Gifferences will be impractical. Indeed, for proniems of practical interest, such as natural convection problems with high Grashe f numbers and/or smell a / b ratios, $a_{0} \ll\left|a_{2}\right|$ ard $a_{1} \ll\left|a_{3}\right| \cdot$ For such problems the use of one-sided differences for approximating the firsc orser derivatives in the nonlinear terms offers the best choice of two undesirable elternatives.

Finally, it should be mentioned thet the stability criteria imposed by the positive type finite-differences are regarded to ke conservative. Nevertheless, the use of this procedure yielded sufficient stability criteria for the finite-anfference fo:.山 o. ven by Equation (6.17), while other methods for stebility analysjs failed to predict its behavior. This point will b" discussed further in discussing tise Ven Neunann method of stability analysis, as wili as, in investigating the stability of formulaticns (i) through (iv) given in Chapter 5.

6.3.2 Electric Circuit Analogy

The concent of sircuit theory dealing with electrical instability was applied to study the stability of finite-difference equaiions by Karplus (30). Two criteria for the stability of finite-diference equations, which have the same form as the equilibrium equations of the electric network were given. This method can be applied to examins the stability of any finite-difference approximations of Eqiation (6.4) as follows:

Assuming that the difference equations can be writien in the following form;

$$
\begin{align*}
& \underset{C_{0}}{\left.\stackrel{n}{F_{i+1, j}-F_{i, j}}\right)+C_{i}\left(\underline{F}_{i-1, j}^{n}-r_{i, j}^{n}\right)+C_{2}\left(F_{i, j+1}^{n}-F_{i, j}^{n}\right)+C_{3}\left(F_{i, j-1}^{n}-F_{i, j}^{n}\right)+} \tag{6.19}\\
& \mathrm{C}_{4}\left(\mathrm{~F}_{1, j}^{\mathrm{n}+1}-\mathrm{F}_{1, j}^{\mathrm{n}}\right)=0 \\
& \text { where } \mathrm{C}_{0}>0 \text {. }
\end{align*}
$$

Then the finite difference Equation (0.19) is stable uilder any of the two feliowing ejnditions:
(1) If all the coefficients $C_{0}, C_{1}, C_{2}, C_{3}$ and C_{4} are positive
(2) If some of these coefficients are negative, a sufficient condition for the stability is that the algebraic sum of the coefficients be negativ?.

The stability $\cdot r_{i}$ eria obtained by this method lead in most cases to finite-aifference equations if positive type. riuwever the second condition seems to be more pronising for the study of cases where the finite-difference equations are nct of positive type. The application of this arethod to the two-level finite difference versions of the differntial Equation (6.4) will yield the same conelusions reached above using the concept of "positive type difference-equations."

Upon examination of the stability of rost of the known finitediffereace methcis for the solution of the heat conduction equation, it uas found that if condition (2) given by Karplus is modified to read es follows: "II some of the coefficients are negative, a sufficient condition for the stability is that the aigebraic sum of the soefficients should not be greater than zero," then the behavior of a wider class of explicit finite-ditference methods such as those of Dufort and Frankel (15), ead Barakat and Clark (6), whose stability cannot be predicted by the corditions given originally by Karplus, can be deiermined by this method.

6.3.3 The Jon Neumann Metiod of Stability Analysis

This method was first described by O'Brien, Hyman and Kaplan (42). It is regarded by most authors to be more general than the previous ones. According to this method, it is assumed that the solution of the
finite-difference squations can be represented by a Fourier expansion written as a produse oi three inderenoent runctions each dopendine on only one of the inderendent variables. This solution is then substituted in the finit:-difference equations and the corditions necessary in order that the general term in the Fourier expansion remins boundtia art established. Tleoretically this method applies to a small alass of linear equations witi constant coefficients, while the coefficzents of the governing equations vary in maenitude and sign with time and location. According te Von Neumann, this aifficulty can be circomvented by applyint the method to a seguence of cverlapping small regions, each region being so small that the coefficients may ve considered constant. In the present case, the criterion obtained for the stability of the finite-difference equations will be tested at each nodal point and the t: . step is al.tered accordingly.

The basic idea of this method of stability analysis can be outIined s:s follows;

The general explicit finite-difference equation corresponding to Equation (0.4) can be written in the form

$$
\begin{equation*}
F_{i, j}^{n+1}=\sum_{r=-1}^{r=1}\left(c_{i+r, j} F_{i+r, j}^{n}+c_{i, j+r} F_{i, j+r}^{n}\right) \tag{6.20}
\end{equation*}
$$

The sulution of the initial value problem is expressed as a Fourier series,

$$
\begin{equation*}
F(x, y, t)=\sum_{k_{1}} \sum_{k_{2}}^{\left.-\xi_{j}\left(k_{1}, k_{2}, t\right) e^{i\left(k_{1} x+k_{a}\right.}\right)} \tag{6.21}
\end{equation*}
$$

where k_{1} and k_{2} are integers.
Substituting the Fourier series (6.21) in the finite-difference Equation ($6 . \dot{<0}$), the following relationship is obtained

$$
\begin{equation*}
\xi_{\xi}(n+1)=\left[\sum_{\Gamma}^{i}\left(c_{i+r, j} e^{i k_{1} r \Delta x}+c_{i, j+\underline{~}} e^{i k_{2} r \Delta y}\right)\right]{ }_{\xi}(n) \tag{}
\end{equation*}
$$

denoting the quantity betweer brackets in (6.22) by $\gamma^{(n)}$, Equation (6.22) can be rewritten as

$$
\begin{equation*}
\xi^{(n+1)}=7^{(n)} \xi_{\xi}^{(n)} \tag{6.23}
\end{equation*}
$$

The factor γ is usualij called the amplification factor.
From (6.23), it is clear that $\xi^{(n+1)}$ san be written as a funetion of $\xi^{(0)}$,

$$
\begin{equation*}
\xi^{(n+1)}=\gamma^{(0)} \gamma^{(1)} \ldots \gamma^{(n-1)} \gamma_{\xi}^{(n)}(0) \tag{6.24}
\end{equation*}
$$

If y is time independent, then

$$
\begin{equation*}
\dot{s}^{(n+1)}=(\gamma)^{n} \cdot \xi \tag{6.25}
\end{equation*}
$$

It is clear that the solution will be bounded as $\Delta t \rightarrow 0 a r d n+\infty$, if $5^{(n+i)}$ is bounded, which requires that;

$$
\begin{equation*}
\underset{\left(k_{1}, k_{2}\right)}{\operatorname{Minx}_{1}}|\gamma| \leqq 1 \tag{6.26}
\end{equation*}
$$

Richtmeyer (52) relaxes this condition for linear differential equisions with constant coefficients and expresses the stability condition as:

$$
\begin{equation*}
\max _{\left(k_{1}, k_{2}\right)}|\gamma| \leqq 1+O(\Delta t) \tag{6.27}
\end{equation*}
$$

He points out that in some problems it is possiole for the component of the exact solution to grow exporientiaily with increasing time and the condition (6.26) will not permit such a growth and annot de satisfied without violatirg the consistency condition. It appears that the use of stability condition (6.27) should be exercised with care since in some cases conditior ($6 . \mathcal{Z n}_{i}$, will be misleaãing as discussed in Section 5.5.

In the case of time-dependent coefficients, a sufficient and necessary condition fer stability is that the product $\left[\gamma^{(0)} \gamma_{\gamma}(1) \ldots \gamma^{(n-1)}(n)\right]$ be bounded. fccordireily, the following conaition will be sufficient tc ensure stability;

$$
\begin{equation*}
\max _{k_{1}, k_{2}}\left|y^{(n)}\right| \leqq 1 \tag{6.28}
\end{equation*}
$$

The same method can be adopted to study the stability of a sy:tein of linear equations as follows.

Let $\overrightarrow{\mathrm{F}}$ be a vector of p components, which represents the functions to be determined. The finite..difference expession in this case can be written as

$$
\begin{equation*}
\vec{F}(n+1)=A \vec{F}^{(n j} \tag{6.29}
\end{equation*}
$$

where A is a pxp matrix.
The general term of the Fourier series expansion of \vec{F} can be written as,

$$
\begin{equation*}
\vec{\xi}\left(k_{1}, k_{2}, t\right) \cdot e^{i\left(k_{2} x+k_{2} y\right)} \tag{6.30}
\end{equation*}
$$

where $\vec{\xi}$ is also a p-component vector.

The substitution of the Fourier series expansion (6.30) in the finite-difference Equation (6.29) give the relation between the values of the vectors $\vec{\xi}(\mathrm{a}+\mathrm{i})$ and $\vec{\xi}(\mathrm{n})$, such a relationship will have the form,

$$
\begin{equation*}
\vec{\xi}^{(n+1)}=\overrightarrow{B \xi}^{(n)} \tag{6.31}
\end{equation*}
$$

where B is a pxp matrix, called the amplification matrix.
For system of differential equations with constant coefficients, Equation (6.31) gives the following relationship,

$$
\begin{equation*}
\vec{\xi}^{(n+1)}=B^{n+1} \cdot \vec{\xi}^{(0)} \tag{6.32}
\end{equation*}
$$

It is not difficult to show that in order that $\xi^{(n+1)}$ be bounded, the eigenvelues $\lambda_{1}, \ldots, \lambda_{p}$ of the amplification matrix should satisfy the following inequality

$$
\begin{equation*}
\operatorname{Max}_{\left(k_{1}, k_{2}\right)}\left|\lambda_{i}\right| \leqq 1 \tag{6.33}
\end{equation*}
$$

For problems with time-dependent coefficients, the coefficients of the amplification matrix changes with time and at each time step a new matrix is generated. Accordingly, (6.32) can be rewritten as,

$$
\left.\begin{array}{rl}
\vec{\xi}^{(1)} & =B^{(1)} \vec{\xi}^{(0)} \tag{6.34}\\
\vec{\xi}^{(2)} & =B^{(2)} \vec{\xi}^{(1)} \\
\vdots & \vdots \\
\frac{\xi}{\xi}(n+1) & =B^{(n+\cdots) F_{\xi}(n)}
\end{array}\right]
$$

It is essumed in this case that the stability of the finite-difference equations is satisfied if the eigenvalues of the amplificaition matrices $\mathrm{B}^{(1)}, \ldots, 3^{(n+1)}$ satisfy inequailty (6.33). Although this latter assumption is considered heuristic, the method has worked for a
wide class of problems. However, the failure of this method to predict. the behavior i.e., stability or unstability of some of the most desirabse finite-difference method, nameiy formulation (iv) of sect.zun 5.4, will be discussed in the next section, where the procedure for its numerical aprlication will be given.

6.4 STABILITY OF THE ENERGY AND VOZIICETY EQUATIONS

By applying any of the methods of stability analysis discussed earlier, sufficient criteria can be obtained for the stability of any finite-difference method that can be ortained by using any of the formulas (5.3), (5.4), (5.5) and (5.6) to approximate the partial derivatives in Equations (4.49), (4.50), (4.78) and (4.79). In this section, the stability of each ce formulations (i) througin (iv) given in Chapter 5 will be analyzed. The conditions under whici each of these formulations vecomes of the positive-type will be obrained. These conditions, which are sufficient for the stability of the finite-difference equations, will be compared with those obtained by using the Fouries series method.
(I) Stability of the Explicit-Difference Equations, Formulation (i) (a) Rewritting each of Equations (5.7), (5.8), (5.11) and (5.12) in the same form as Equation (6.5), the following is obtained;

$$
\begin{gathered}
\text { A. Rectangular }(U \geqq 0, V \leq 0) \\
\theta_{i, j}^{n+1}=\left[1-\left(\frac{U_{i, j}}{\Delta X}+\frac{V_{1, j}}{\Delta Y}+\frac{2 a^{2}}{b^{2}(\Delta X)^{2}}+\frac{2}{\Delta Y Y^{2}}\right) \dot{ }=\left[\theta_{i, j}^{n}+\Delta T\left(\frac{U_{1, i}}{\Delta X}+\frac{a^{2}}{b^{2}(\Delta X)^{2}}\right) \theta_{i-1, j}^{n}+\right.\right.
\end{gathered}
$$

$$
\begin{align*}
& \frac{\hbar^{2}}{b=} \frac{\Delta T}{(\Delta X)^{2}} \theta_{i+1, j}^{n}+\Delta T\left(\frac{V_{i, j}}{\Delta Y}+\frac{1}{\Delta Y^{2}}\right) \partial_{i, j-1}^{n}+\frac{\Delta T}{\Delta Y^{2}} \theta_{i, j+1}^{n} \tag{6.35}\\
& W_{i, j}^{n+1}=\left[1-\Delta T\left(\frac{U_{i, j}}{\Delta X}+\frac{V_{i, j}}{\Delta Y}+\frac{2 a^{2}}{b^{2}} \frac{P r}{. \Delta X)^{2}}+\frac{2 P r}{\Delta Y^{2}}\right)\right]{ }_{W}^{n}{ }_{i, j}^{n}+ \\
& \Delta T\left(\frac{u_{i, j}}{\Delta X}+\frac{a^{2}}{b^{2}} \frac{\underline{p r}}{(\Delta X)^{2}}\right) w_{i-1, j}^{r}+\frac{\varepsilon^{2}}{b^{2}} \frac{\operatorname{Pr}}{(\Delta X)^{2}} \Delta T w_{i+1, j}^{n}+ \tag{6.36}\\
& \left(\frac{V_{i, j}}{\Delta Y}+\frac{P r}{(\Delta Y)^{2}}\right) \Delta T w_{i, j-1}^{n}+\frac{\Delta r \operatorname{Pr}}{(\Delta Y)^{2}} w_{i+1, j}^{n}+\frac{\operatorname{PrL} \tau}{2 \Delta Y}\left[\theta_{i, j+1}^{n+1}-\theta_{i, j .1}^{n+1}\right]
\end{align*}
$$

It is clear that Equations (6.35) and (6.36) will be of positive type if the folluwing ingualities are sqitisfied;

$$
\begin{equation*}
\Delta \tau\left(\frac{\left|u_{i, j}\right|}{\Delta X}+\frac{\left|v_{i, 2}\right|}{\Delta Y}+\frac{\hat{a}^{2}}{b^{z}} \quad \frac{1}{i)^{2}}+\frac{2}{(1 \underline{y})^{2}}\right) \leqslant 1 \tag{6.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta T\left(\frac{\left|U_{i, j}\right|}{\Delta X}+\frac{\left|V_{i, j}\right|}{\Delta Y}+\frac{2 a^{2}}{b^{2}} \frac{1:}{(\Delta X)^{2}}+\frac{2 i i}{(\Delta Y)^{2}}\right) \leq i \tag{6.38}
\end{equation*}
$$

inequality (6.37) is obtained from the energy equation (6.35), while (6.38) is required by the vorticity equation (0.36).

It should be noted that the coefficient of $\theta_{i, j-1}^{n+1}$ in Equation (6.36) is always negative. However since $\theta_{i, j}$ will be bounded, then the last term in (6.36) will be bounded for any finite-value of ΔT and ΔY. This term remains bounded as either of ΔT or ΔY or both go to zero. The argument is clear for the case when ΔT goes to zero and $\Delta \mathbf{Y}$ remains inite. For the other case, inequality (6.37) requires that
ΔT goes faster to zero than (ΔY), which will ensure the boundedness of this term as ΔY approaches zero.

Inequa'ities (6.37) and (6.38) could have been obtaineã direct 1 y by applying inequality (6.7) to the differential Equations (4.49) and (4.50).

The same stability criteria applies for the case in which any of the velocity coefficients U or V cr both are negative provided that forward differences, Equation (5.3), are used in the corresponding nonlinear terms.

It may be of interesc to examine the case of negative velocity components in Eoiations (6.35) and (6.36). In this case the coefficients of the finite-difference Equations (6.35) and (6.36) will be positive if,

$$
\begin{equation*}
|U|_{i, j} \leqq \frac{a^{2}}{b^{2}} \frac{1}{\Delta X} ;|V|_{i, j} \leqq \frac{1}{\Delta Y} ; \Delta T\left(\frac{a}{b^{2}} \frac{2}{\Delta X^{2}}+\frac{2}{(\Delta Y)^{2}}-\frac{|U|_{i, i}}{\Delta X}-\frac{|V|_{i, j}}{\Delta Y}\right) \leqq 1 \tag{6.39}
\end{equation*}
$$

$|U|_{i, j} \leqq \frac{a^{2}}{b^{2}} \frac{P r}{\Delta X} ;|V|_{i, j} \leqq \frac{P r}{\Delta Y} ; \Delta T\left(\frac{a^{2}}{b^{2}} \frac{2 P r}{(\Delta X)^{2}}+\frac{\partial P r}{(\Delta Y)^{2}}-\frac{|U|_{i, j}}{\Delta X}-\frac{|V|_{i, j}}{\Delta Y}\right) \leqq 1$

A method similar to the latter case was used by wa($\% \cdot 5$ for solving the laminar boundary layer equations. His stability criteria are similar to those given by Equations (6.39) and (6.40).

In the remainder of this section, the discussion will be limited to the rectangular coordinates. The same conclusions hold for the cylindrical case. Whenever it seems nesessary, the stability criteria for the
cylindrical coordinates will be given without giving the details of their derivation.

B. Cylinderical Ccordinates

Following the same procedure used in the rectangular case, it can be shown that the finite-difference Equations (5.11), (5.12) and (5.66) are of positive type provided the following inequalities are true:

$$
\begin{align*}
& \Delta T\left(\frac{|U|_{i, j}}{(\Delta X)}+\frac{|V|_{1, j}}{\Delta R}+\frac{a^{2}}{b^{2}} \frac{2}{(\Delta X)^{2}}+\frac{2}{(\Delta R)^{2}}\right) \leqq 1 \tag{6.41}\\
& \Delta T\left(\frac{|U|_{1, j}}{\Delta X}+\frac{|V|_{i, j}}{\Delta R}+\frac{2 a^{2}}{b^{2}} \frac{P r}{(\Delta X)^{2}}+\frac{2 \operatorname{Pr}}{(\Delta Y)^{2}}\right) \leqq 1 \tag{6.42}\\
& \Delta \tau\left(\frac{|U|_{i, 1}}{\Delta X}+\frac{2 a^{2}}{b^{2}} \frac{1}{\Delta X^{2}}+\frac{4}{(\Delta R)^{2}}\right) \leqq I \tag{6.43}
\end{align*}
$$

(b) The application of Fourier sties method to formulation (i). The solution of the difference equations can be written as a Fourier series, the form of which is as follows (27)

$$
\begin{align*}
& w_{i, j}^{(n)}=\sum_{k_{1}} \sum_{k_{2}} \xi_{\xi}^{(n)} e^{i\left(k_{1} X+k_{2} Y\right)} \tag{6.44}\\
& \theta_{i, j}^{(n)}=\sum_{k_{1} k_{k_{2}}} \sum^{(n)} e^{i\left(k_{1} X+k_{2} Y\right)} \tag{6.45}
\end{align*}
$$

where k_{1} and k_{2} are intergers, n is a superscipipt denoting the $n^{\text {th }}$ time perind and ξ and μ are functions of k_{1} and k_{2}. Substituting the system of Equations (6.44) and (6.45) into Equations (6.35) and (6.36) tine following equations are obtained after some algebraic manipulations:

$$
\begin{aligned}
& \sum_{k_{1}} \sum_{k_{2}}\left\{\xi^{(n+1)_{-5}(n)}\left(x_{1}+\alpha_{2} e^{-i k_{1} \Delta x_{1}}+\alpha_{3} e^{-i k_{2} \Delta Y_{+}}+\alpha_{4} e^{i k_{1} \Delta x_{1}}+\alpha_{5} e^{i k_{2} \Delta Y}\right)+\right. \\
& \left.\alpha_{6} \mu^{(n+l)}\right\} e^{i\left(k_{1} x+k_{2} x\right)}=0 \\
& \sum_{k_{1}} \sum_{k_{2}}\left\{\mu^{(n+1)}-\mu^{(n)}\left(c_{3}+C_{2} e^{-k_{1} \Delta X_{x}}+C_{3} e^{-i k_{2} \Delta Y}+C_{4} e^{i k_{1} \Delta X}+C_{5} e^{i k_{2} \Delta Y}\right)\right\} \\
& x e^{i\left(k_{1} x+k_{2}{ }^{z}\right)}=0
\end{aligned}
$$

From the above equations it is concluded that the difference equations are satisfied if

$$
\begin{equation*}
\xi^{(n+1)}=\xi^{(r .)}\left(\alpha_{1}+\alpha_{2} e^{-i k_{1} \Delta X}+\alpha_{3} e^{-i k_{2} \Delta Y}+\alpha_{4} e^{i k_{1} \Delta X_{+}}+\alpha_{5} e^{i k_{2} \Delta Y}\right)+\alpha_{8} \mu^{n+1} \tag{6.46}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu^{(n+i)}=\mu^{(n)}\left(\beta_{1}+\beta_{2} e^{-i k_{1} \Delta X}+\beta_{3} e^{-i k_{2} \Delta Y}+\beta_{4} e^{i k_{1} \Delta X}+\beta_{5} e^{i k_{2} \Delta Y}\right) \tag{6.47}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \alpha_{1}=1-\left(2 \frac{a^{2}}{b^{2}} \frac{P r}{(\Delta X)^{2}}+\frac{2 \operatorname{Pr}}{(\Delta X)^{2}}+\frac{U_{i}, i}{\Delta X}+\frac{V_{i, j}}{\Delta Y}\right) \Delta T \\
& \alpha_{2}=\left(\frac{a^{2}}{b^{2}} \frac{P r}{(\Delta X)^{2}}+\frac{U_{1}, i}{\Delta X}\right) \Delta T \\
& \alpha_{3}=\left(\frac{\operatorname{Pr}}{(\Delta Y)^{2}}+\frac{V_{1}, i X}{\Delta Y}\right) \Delta T \\
& \alpha_{s}=\frac{a^{2}}{b^{2}} \frac{\operatorname{Pr}}{(\Delta X)^{2}} \Delta T \\
& \alpha_{5}=\operatorname{Pr} \Delta T /(\Delta Y)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{1}=1-\left(2 \frac{a^{2}}{b^{2}} \frac{1}{(\Delta X)^{2}}+2 /(\Delta Y)^{2}+T_{i}, j / \Delta X+V_{i, j} / \Delta Y\right) \Delta T \\
& \beta_{2}=\left(a^{2} /(b \Delta X)^{2}+U_{i, j} / \Delta X\right) \Delta T \\
& \beta_{3}=\left(1 /(\Delta Y)^{2}+V_{i, j} / \Delta Y\right) \Delta T \\
& \beta_{4}=\left(a_{1}^{\prime}(b \Delta X)\right)^{2} \Delta T \\
& \beta_{5}=\Delta T /(\Delta Y)^{2}
\end{aligned}
$$

No definition has been given to α_{8} since it has no effect on this analjsis.

The system of Equations (6.46) and (6.47) are of the form:

$$
\begin{align*}
& \xi^{(n \div 1)}=a_{21} \xi^{(n)}\left(k_{1}, k_{2}\right)+a_{12} \mu^{(n)}\left(k_{1}, k_{2}\right) \tag{6.48}\\
& \mu^{(n+1)}=a_{21} \xi^{(n)}\left(k_{1}, k_{2}\right)+a_{22} \mu^{(n)}\left(k_{1}, k_{2}\right) \tag{6.49}
\end{align*}
$$

In a matrix notation the above equalities can be writter as

$$
\left[\begin{array}{l}
\xi^{(n+1)} \tag{6.50}\\
(n+2)
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
\xi^{(n)} \\
\mu^{(n)}
\end{array}\right]
$$

The quantity between the first brackets on the right hand side of (6.50) is the amplification matrix. The von Neumann condition necessary for stability is that: $\left|\lambda_{\text {max }}\right| \leqq 1$ where $\lambda_{\max }$ is the largest eigenvalue of the amplification matrix. The eigenvalues are given by:

$$
\left|\begin{array}{ll}
a_{11}-\lambda & a_{12} \tag{6.51}\\
a_{21} & a_{22-\lambda}
\end{array}\right|=0
$$

Substituting the values of a_{11}, a_{12}, \ldots etc., in the above de. terminant and solving for λ we get:

$$
\begin{align*}
& \lambda_{1}=\alpha_{1}+\alpha_{2} e^{-i k_{1} \Delta X}+\alpha_{3} e^{-i k_{2} \Delta Y}+\alpha_{4} e^{i k_{1} \Delta X_{+}}+\alpha_{5} e^{i k_{2} \Delta Y} \tag{6,52}\\
& \lambda_{2}=\beta_{2}+\beta_{2} e^{-i k_{1} \Delta X}+\beta_{3} e^{-i k_{2} \Delta Y}+\beta_{4} e^{i k_{1} \Delta X_{+\beta}} e^{i k_{2} \Delta Y} \tag{6.53}
\end{align*}
$$

The coefficients $\alpha_{1}, c_{2}, \ldots, \beta_{1}, \beta_{2} \ldots$..etc., are all positive except α_{1} and β_{1} which may ve positive or negative. The largest absolute values of λ_{1} and λ_{2} occur wien ali the terms in Equations (6.52) and (6.53) are real, i.e., wnen $k_{1} \Delta X=k_{2} \Delta Y=2 \pi$ then,

$$
\begin{align*}
\lambda_{i \max } & =\alpha_{1}+\alpha_{2}+\gamma_{3}+\alpha_{4}+\alpha_{5} \tag{6.54i}\\
\lambda_{\max } & =\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}+\beta_{5} \tag{6.55}
\end{align*}
$$

Substituting tine values of $\alpha_{1}, \alpha_{2}, \ldots, \beta_{1}, \ldots, \beta_{5}$ in iricar:

$$
\begin{equation*}
\lambda_{\text {max }}=\lambda_{\text {2max }}=1 \tag{6.56}
\end{equation*}
$$

Therefore, we can conclude that $\lambda_{\max }$ will not exceed unity and it will not impose any stabjlity restricticns. If there may be any restrictions, it will be to prevent the minimum value of λ from becoming less then -1 . The minimum of the eigenvalues oreur :ihen $k_{1} \Delta X=k_{2} \Delta Y=\pi$ and are given by

$$
\begin{aligned}
& \lambda_{1 \min }=\alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5} \\
& \lambda_{\min }=\beta_{1}-\beta_{2}-\beta_{3}-\beta_{4}-\beta_{5}
\end{aligned}
$$

or
$\lambda_{1=1 i}=1-2 \Delta T\left(2 \operatorname{Pr}(a / b \Delta X)^{2}+2 F r /(\Delta I)^{2}+\left|U_{i, j}\right| / \Delta X+\left|V_{i, j}\right|, \Delta Y\right)$
$\lambda_{\text {amin }}=1-2 \Delta T\left(2(a / b \Delta X)^{2}+2 /(\Delta Y)^{2}+\left|u_{i}, j\right| / \Delta X+\left|V_{i, j}\right| / \Delta Y\right)$
Themefore for $|\lambda| \leqq I$ the following inequalities shculd be satisfied:

$$
\begin{align*}
& \Delta \tau\left(\frac{\hat{c a}^{2}}{b^{2}(\Delta x)^{2}} \div \frac{\hat{c}}{(\Delta Y)^{2}}+\left|\mathrm{U}_{i, j}\right| / \Delta X+\left|V_{i, j}\right| / \Delta Y\right) \leqq 1 \tag{6.57}\\
& \Delta T\left(2 \Psi r(a / b \Delta X)^{2}+2 \operatorname{Pr}_{j} /(\Delta Y)^{2}+\left\{U_{i}, j^{\prime} / \Delta X+\left|V_{i, j}\right| / \Delta Y\right) \leqq I\right. \tag{6.58}
\end{align*}
$$

Equations (6.57) and (6.58) are the necessary requirement for stability. For values of Prandtl number less than unity, inequality (6.57) is more restrictive and therefore should be used. For higher vaiues of Pranatil number ineque ${ }^{7}$:ty (6.58) must be useã.

The same stability criteria will be sotained if any of the velocity components U and V or betin are negative and forward differences are used in the ecresponding nonlinear terms.

It is quite clear that for this method the von Neumann method of serbility sralysie requires that the finite-dififrence equations be of positive type. As a matter of fact, all the cenclusions reached above for this method nsing the concept of positive-type differences wi be obtaired using the von Neumarn method.
(II) Stability of the Explicit Formulation (ii), Equations (5.9) and (5.10)

Equations (5.9) and (5.10) are rewritten in the form

$$
\begin{align*}
& \div \Delta T\left(\frac{a^{2}}{b^{2}} \frac{1}{(n X)^{2}}-\frac{U_{i, j}}{2 \Delta X}\right) \overbrace{i+2, i}^{n} \\
& +\Delta T\left(\frac{1}{(\Delta Y)^{2}}+\frac{V_{i, j}}{\partial \Delta Y}\right) \theta_{i, j-1}^{n}+\Delta T\left(\frac{i}{(\Delta Y)^{2}}-\frac{W_{i, j}}{\Delta Y}\right) \theta_{i, j+1}^{n} \tag{6.59}
\end{align*}
$$

$$
\begin{align*}
& \Delta T\left(\frac{a^{2}}{b^{2}} \frac{\operatorname{Pr}}{(\Delta X)^{2}}-\frac{U_{i, j}}{2 \Delta X}\right) w_{i+1, j+\Delta T}^{n}\left(\frac{F r}{(\Delta Y)^{2}}+\frac{V_{i, j}}{2 \Delta Y}\right) w_{i, j-I}^{n}+\Delta T\left(\frac{\operatorname{Pr}}{(\Delta Y)^{2}}-\frac{V_{i, j}}{2 \Delta Y}\right) \\
& w_{i, j+1}^{n}+\frac{\Delta T \operatorname{Pr}}{2 \Delta Y}\left(\theta_{i, j+1}^{n+1}-\theta_{i, j-1}^{n+1}\right) \tag{6.60}
\end{align*}
$$

The finite-difference Equation (6.59) is of positive-type i.e., stable provided that,

$$
\begin{equation*}
\Delta T\left(\frac{2 a}{b^{2}} \frac{1}{(\Delta X)^{2}}+\frac{z}{(\Delta y)^{2}}\right) \leqq i ; i \leq \frac{a^{2}}{b^{2}} \frac{1}{\Delta X^{2}} ; V \leqq \frac{2}{\Delta Y} \tag{5.61}
\end{equation*}
$$

Likewise Eguation (6.60) will be of positive type if;

$$
\begin{equation*}
\Delta T\left(\frac{\partial^{2}}{b^{2}} \frac{\operatorname{Pr}}{(\Delta X)^{2}}+\frac{2 \mathrm{Pr}}{(\Delta Y)^{2}}\right) \leqq 1, U \leqq \frac{\mathrm{aa}^{2}}{\mathrm{~b}^{2}} \frac{\mathrm{Pr}}{\Delta X^{\prime}} ; V \leqq \frac{2 \mathrm{Pr}}{\Delta Y} \tag{6.52}
\end{equation*}
$$

Accordingly formulation (ii) is stable under conditions (6.62) and (6.62).

Application of the Fourier series method to formulation (ii) leads t.0 the same stability criteria given by inequalities (6.61) and (6.62).

Substitution of the series (6.44) and (6.45) in Equations (6.59) and (6.60), following the same procedure used in the previous case, it will not be difficult is show that the eigenvaiues of the amplification matrix are given by:

$$
\begin{align*}
& \left|\lambda_{1}\right|^{2}=\left[1-\frac{2 a^{2}}{\hat{V}^{2}} \frac{P r}{(\Delta X)^{2}} \Delta T\left(i-\operatorname{cosk}_{1} \Delta X\right)-\frac{2 P r}{(\Delta Y)^{2}} \Delta T\left(1-\operatorname{cosk}_{2} \dot{A Y}\right)\right]^{2}+ \\
& \left.\mathrm{if}(\mathrm{U} \Delta \mathrm{~T} / \Delta \mathrm{X}) \operatorname{sink}_{1} \Delta \mathrm{X}+(\mathrm{VLT} / \Delta Y) \operatorname{sink}{ }_{2} \Delta Y\right\}^{2} \tag{6.63}\\
& \left|\lambda_{2}\right|^{2}=\left[1-\frac{\alpha_{a}^{2}}{i^{2}} \frac{\Delta T}{(\Delta x)^{2}}\left(1-\operatorname{cosk}_{2} \Delta X\right)-\frac{\Delta T}{(\Delta Y)^{2}}\left(1-\operatorname{cosk}_{2} \Delta Y\right)\right] \div \div \\
& {\left[\left(U_{i t} / \Delta X\right) \operatorname{sinik}_{1} \Delta X+\{V \Delta t / \Delta Y) \operatorname{sinik} \Delta \Delta Y\right]^{2}} \tag{6.64}
\end{align*}
$$

the conditions under which $\left|\lambda_{1}\right|$ and $\left|\lambda_{2}\right|$ become less than unity can be - teblished by aifferentiating Equations (6.63) and (6.64) with respect to ($\kappa_{2} \Delta X$) and ($k_{2} \Delta X$) to ootair the maximum of λ_{1} and λ_{2}. The work involved is tedious. The details of the analysis are given in Appendir: II. The resuits of Appendix II sincw that if inequalities (6.61) and (6.52) are violated, this method will be unstable.
(III) Stakility of the Implicit Difference Equations, Scheme III The implicit finiউe-difference Equations (5.15) and (5.16) in which implicit backward differences are useã with positive velocity components U acd V, and Iorward differences are used otherwise are unconditionaliy stable. This can be established by using any of the previousiy mentioned methods of stabiliti.y analysis. Inspection of Sie coefficients of these difference equations shows that they are
of positive-type, regariless of the value of the time or the spatial, increments. The same conclusion will be reached by using the von Neumann method. The application of the latter method to this case ie as simpie as ite application to formulation (i), and therefore it will be omitted.

The advantages and shortcomings of such methois, as well as the limitations on their use to solve the energy and vorticity equations, are discussed at length in Section 5.9 , which should be consuited before using any unconditionally stable finite-differences to solve the vorticity equation.
(IV) Stability of tie Impicit Difference Equecions, Formulation (iv) The study of the stability of this method ceserves some special considerations for reasons that will be clear zrom the context of the foilowing discussions It is usually believed that implicit differences are unconditionaliy stable, as is the case for the hear difusion equation. However, it. will be seen that this is not true for differential equations containing first order derivatives.

The use of the von Neumarn method shows that it is unconditionally stabile. This can be demonstrated by substituting Equations (6.4iu) and (6.45) in Equations (5.25) and (5.26) to obtain the following relationship

$$
\begin{aligned}
& \mu^{n+1}=C_{2 i} \mu^{n} \\
& \xi^{n+2}=C_{21} \mu^{n}+C_{22} \xi^{n}
\end{aligned}
$$

where:
$C_{11}=1 /\left[1+\frac{2 a^{2} \Delta T}{b^{2}(\Delta X)^{2}}\left(1-\operatorname{cosk}_{1} \Delta X\right)+\frac{2 \Delta J}{(\Delta Y)^{2}}(1-\operatorname{cosin} 2 \Delta Y)+i\left(\frac{U \Delta T}{\Delta X} \operatorname{sink}_{1} \Delta X+\right.\right.$ $\left.\left.\frac{V \Delta T}{\Delta Y} \operatorname{sink} e_{2} \Delta I\right)\right]$
$c_{21}=\frac{\operatorname{Pr} \Delta T}{\Delta Y} 1 \operatorname{sink} 2 \Delta Y / C_{22}$
$c_{22}=1 /\left[1+\frac{2 a^{2} \operatorname{Pr} \Delta T}{s^{2}(\Delta X)^{2}}(1-\operatorname{cosk} \cdot \Delta X)+\frac{2 \operatorname{Pr} \Delta T}{(\Delta Y)^{2}}\left(1-\operatorname{cosk}_{2} \Delta Y\right)+i\left(\frac{U \Delta T}{\Delta X} \operatorname{sink}_{1} \Delta X+\right.\right.$ $\left.\left.\frac{V \Delta T}{\Delta I} \operatorname{sink}_{2} \Delta Y\right)\right]$

The amplification matrix $B(t)$ is given by

$$
\mathrm{B}\left(r_{1}\right)=\left[\begin{array}{ll}
\mathrm{C}_{11} & 0 \\
\mathrm{C}_{2 i} & C_{22}
\end{array}\right]
$$

The eigenvalues of the amplification matrix λ_{1} and. λ_{2} are:

$$
\lambda_{1}=c_{11} ; \quad \lambda_{2}=c_{22}
$$

The maximum of the absolute magnitude of λ_{1} and λ_{2} occurs when
$\operatorname{cosk}_{-1} \Delta X=\operatorname{cosk}_{2} \Delta Y=1$ and

$$
\left|\lambda_{1}\right|_{\max }=\left|\lambda_{2}\right|_{\max }=I
$$

Therefore, according to this method of stainility analysis, this formulation should be unconditiunally stable.

Actial calculations have shown that the above conciusion is erroneous. For the conditions of run 1, accumulaior overflow took place after few time stens insing $11 x 11$ grid. The conditicas required to make this of the positive-type i.e., stable, are:

$$
\begin{equation*}
v_{i, j} \leq \frac{\hat{a} \cdot a^{2}}{b^{2}} \frac{1}{\Delta X} ; v_{i, j} \leq \frac{2}{\Delta Y} \text { (From Energr Ey.) } \tag{6.65}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{i, j} \leqq \frac{2 a^{2} P r}{b^{2} \Lambda X} ; V_{i, j} \leqq \frac{2 P r}{\Delta Y} \text { (From Vori. Eq.) } \tag{6.66}
\end{equation*}
$$

The calculations carried out for the conditions of run 1 , using 11 xll grid and taking $(a / b)=1$ anc $g=0.0322$ in order that (6.65) ar. ${ }^{3}$ (6.66) were satisfied, showed no signs of instability. F =the ..ire, the calculations show that even for the case of constant coefficients this method becomes unstable if inequalities (6.65) and (6.66) are violated.
6.5 A MORE GENERAL APPRCACH TO THE STABILITY OF THE EXPLTCIT FTNIIEDIFFEREITCE EQUATIONS

The stability of the varicus finite-difference formulitions hes been examined \quad using different methods of staility analysis, ramely the von Neumann method add the ccncept of positive-t.jpe differences. The applicetion of the first method to difference equations with variable coefficients is considered heuristic. The second retnod, althougin mathematically sound, has failed to precict the stabilitj of some useflii finite-difference formulations.

In this section a more general approach to the study of the stability $0::$ the expileit finite-difference equations will be presented.

The explicit finite-difference Equation (6.5), whose stabllity criterion is required, is written in the following form which is the same as that of Equation (6.29).

$$
\begin{equation*}
\vec{F}^{(n \div 1)}=A^{(n+1)_{F}(n)} \tag{6.67}
\end{equation*}
$$

where $\vec{F}(n \div 1)$ is a p-compenent column vector $\left[F_{i, j}^{n+1}\right]$ and $A^{(n)}$ is a five-aiagonai pop matrix. The entries on any row of this matrix will be given by the coefficients $a_{i, j}, a_{i+1, j}, a_{i-1, j}, a_{i, j+2}$ and $a_{i, j-1}$.

From Equation (6.67), the foilowing resurrense formulae can be aritten:

$$
\begin{aligned}
& \vec{F}^{(1)}=A^{(1)} \vec{F}^{(0)} \\
& \overrightarrow{\underline{V}}^{(2)}=A^{(2) \vec{F}(1)}=A^{(2)_{A}(1) \stackrel{\rightharpoonup}{F}(0)} \\
& \begin{array}{c}
\vdots \\
\left.\vec{F}^{(n+1}\right) \\
\vdots \\
\left.A^{(n+2)}\right)_{A}(n) \ldots A^{(1))_{F^{0}}} .
\end{array}
\end{aligned}
$$

where $\vec{F}(0)$ is the initial values of the rector \vec{F}. The norm of the vectcr $\vec{F}^{(n+1)}$, which is denoted by $\left\|r^{(n+1)}\right\|$, se.tisfies the following in.. equaitity:

$$
\begin{align*}
\left\|F^{(n+1)}\right\| & \leqq \|_{A^{(n+1)}}^{A}\left(n ; \ldots A^{(i)}\|\cdot\| F^{(0)} \|\right. \\
& \leqq\left\|_{A}^{(n+2)}\right\| \cdot \vdots \cdot{ }^{(n)}\|\ldots\|_{A}^{(1)}\|\cdot\| F^{i c} \| \tag{6.69}
\end{align*}
$$

From Equation (6.69) it is clear that for any initial - e.or $\vec{F}(0)$, the vector $\vec{F}(n+2)$ will be bounded if the proanct of the norms of the matrices $A^{(n+i)}{ }_{,}(n) \ldots, A^{(1)}$ is bounded. A sufficient condition for the boundedness of the vector $\overrightarrow{\mathrm{F}}(\mathrm{n}+1)$ can therefore be written as:

$$
\begin{equation*}
\left\|A^{(n)}\right\| \leqq 1 \tag{6.70}
\end{equation*}
$$

Upon substitution of Equation (6.70) in inequality (6.68), the following inequality is obtained:

$$
\begin{equation*}
\left\|F^{(n+1)}\right\| \leqq\left\|F^{(0)}\right\| \tag{6.71}
\end{equation*}
$$

which indicates that Equation (6.67) is stable assumirg, of course, that (6.70) is satisfied.

The choice of the norm of the matrices $A^{(n)}$ is a matter of convenience. The most appropriate norm for use in connection with inequality (6.70) is the row norm which is defined by:

$$
\| A\left(n \|_{I}=\max _{j} \sum_{I}\left|a_{i, j}\right|\right.
$$

Therefore, inequality (6.70) can be rewritten as:

$$
\begin{equation*}
\max _{j} \sum_{i}\left|a_{i, j}\right| \leqq 1 \tag{6.72}
\end{equation*}
$$

Inequality (6.72) is sufficient for the stability of the explicit finite-difference Equations (6.5).

Sometimes the criteria known to be sutticient are regarded as conservative. In order to evaluate the stability criteria given by inequality (6.72), it will be applied to the explicit finite-difference formulation of the erergy equation given by Equation (5.7). It is not difficult to show that for this formulation, inequality (6.72) requires that

$$
\left[2 \frac{a^{2}}{b^{2}} \frac{1}{(\Delta X)^{2}}+\frac{2}{\Delta Y^{2}}+\frac{\left|U_{1}, j\right|}{\Delta X}+\frac{\left|v_{i}, j\right|}{\Delta Y}\right] \Delta \tau \leq 1
$$

which is the same criterion obtained previously. Furthermore, it is noticed that the resulting difference equations are of positive type.

As another example of the application of this method, the following one-dimensional diffusion equation, is considered.

$$
\begin{align*}
& \frac{\partial \theta}{\partial t}=\frac{\partial^{2} \theta}{\partial x^{2}} \tag{6.73}\\
& \frac{\theta_{1}^{n+1}-\theta_{i}^{n}}{\Delta t}=\frac{\theta_{i+1}^{n}+2 \theta_{i}^{n}+\theta_{i-1}^{n}}{(\Delta x)^{2}} \tag{6.74}
\end{align*}
$$

The stability condition (6.72) requires that:

$$
\begin{equation*}
\Delta t \leqq \frac{(\Delta X)^{\dot{2}}}{2} \tag{6.75}
\end{equation*}
$$

Inequality (6.75) is precisely the established necessary stability criterion of formulation (6.74). The treatment of boundary conditions is accomplished by the application of the same criterion i.e., inequality (6.71).

The above rcsults indicate that the method of stability analysis presented in this section seems to be promising, as far as the stability analysis of explicit finite-difference equations with variakle coeificients are concerned.

It should be mentioned that the application of this method to all the explicit finite-difference formulations mentioned in earlitr sections ieads to the same conclusions concerning their stability.

It was also found that the application of the stability criterion given by inequality (6.72) to implicit finite-difference equations leads to the aame conciusions obtained by other methods of stability
analysis. However, mathematical investigation of this case similar to that made for explicit formulations has not been worked yet.

6.6 SUMMARY OF THE RESULTS OF THIS CHAPTER

From the discussions presented in this chapter, the following conclusions can be drawn:
(1) Any finite-difference representation of the energy and vorticity equations or any partial differential ea iation which has the form of Equation (6.4) is stable if it is of positive type.
(2) For positive velocity components U and V, the use of backward differences, Equation (5.4) for approximating the first order derivatives in the nonlinear terms together with Equation (5.6) to approximate the second order derivatives, permits the construction of positive type difference equations, for which sufficient and practical stability criteria can be derived. The same is true should forward differences be used to approximate the nonlinear terus whose velocity coefficients are necative. At the present time, this method seems to be the most practical one to use, since the spatial increments can be shosen as desired, while the time increment is determined by stabiiity considerations.
(3) The use of the central differences in the nonlinear terms, which is preferable from the point of view of the truncation error, is possible only for cases in which the resulting difference eqnations c.re of positive type. This requires that inequalities similar to
(6.61). (6.62) or (6.64) and (6.65) shculd be satisfied. For high velocicies, i.e., high Fayleigh numbers, this would mean the use of very small spatial increments, which may require storage capacity beyond that of existing machines, and possibly a prohibitive amount of machine time. This applies to implicit, as well as, explicit methras, regardless whether the coefficients are constant or variable.

The necessity of satisfying the above mentioned inegualities was demonstrated by considering the iollowirg simple one-dimensional equation with constart coefficients.

$$
\frac{\partial^{f}}{\partial t}=a_{0} \frac{\partial^{2} f}{\partial x^{2}}+a_{1} \frac{\partial f}{\partial x} ; f(0, t)=1, f(1, t)=0, f(x, 0)=0
$$

Accordingly the use of central differences to apprcximate $\partial f / \partial x$ requires that Δx be chosen such that:

$$
\begin{equation*}
\frac{2 a_{0}}{\Delta x} \geqq\left|a_{1}\right| \tag{б.76}
\end{equation*}
$$

when $\left|a_{1}\right|$ was taken 5% larger than that required by the equality sign in Equation (6.76) unstable results were obtained.

The above conclusions are in contradiction with some published Iiteratuire (52), which kolds that for inear equations with constant coefficients stability is unaffected by the first order terms. These erroneous conclusions are based on tice use of the stability criterion (Є. ̃̃)
(4) The stability criteria obtained by the method of von Neumann are also those required to make the difference equations of positive-
type.
(5) The method of von Neumann leads to incorrect results when applied to implicit methods cosresponding to differential equations of the form (6.4), whose differ type. This was demonstrated by spplying it to formuiation (iv), as well as to other formulations; which are not reported here.

All the above conclusions were substantiated by mathematical. experimentation using an IBM 7090 digital computer.

CHAFTER 7

EMYERTMETAL YURK

Aa experime ．ta～prograz was carried tc st：ricy the phemomenor of tinemai ミ゙ャミธification ln liquid containers．The experiments were condiaied ir ε－jlindrical as weli as a rectanguar container．The resiults obtained from these experiments are eompared to those ot the thecretical analysis in Chapter 8 ．

7．i DEsCrifution of the recianguiar apparatus

The apparatus consists of three parallel compritaen＊s separatej by two，ifle fricir ecpper valls．The middle compartment is isei as a test sectior！，while the outer two are ised to intercept the steam used for heating，Fig．7．The two outer soriziners，which are $3^{\prime \prime}$ wide， $9^{\prime \prime}$ righ and $20^{\prime \prime}$ long are formed from $\overline{1} / 6^{\prime \prime}$ thici copper metal sheet．s．Trese two containers are placed parallel to each other，but $3^{\prime \prime}$ apart，ower a rlat pleie of transite i／4＂thicic， $9^{\prime \prime}$ wide and $20^{\prime \prime}$ long．The thind compartment，is formed beiween the two containers by using two end pistes， $3^{\prime \prime}$ wide and $9^{\prime \prime}$ high to complete its sides．One of tinese end piates is from plexigiass and the otner is made from transite．Pubber gasiets are ised，where any two sides are screwed togetiner，to prevent leakage．The middle compartment is filled with the test fluid，i．e．water t．c a height 8－1，／4＂．reating of the walls of the middle contiainer is accomplished by impinging steam on the

Fig. 7. Sketch of rectangular container.
walls separating the outer containers from the middie c.e. The steam issues from a number of fine holes drillec in sopper tubes runcing through both :ontaine:s. Six of these t:bes are mounted norizontaiiy. parailel to the wails in eaciz cuter sortainer. The tubes of each bant: are closed at one end, wille sieam is fed to the otier erd through a common header. Thus two steam headers are ised. The scmiensete is drained from each outer conteiner through a draining pipe lie" diamezer. The steam supply systems for both tube banis are arranged in suich a way to provide as musil synmetrf with tank center line, as pcssible.

Six thermocouples, numos 13 through i8, are soldered to one of the container walls at heights $1-j$ is, $3-3 / 8,5-5 / 15,6-3 / 16,6-15,16$ and 7-1/2" from the buttom respectively. These tremocouples are lacated above each other at half the length of the container. Two edditionai thermecoupies number; 19 and 20 were added later to the same $w_{\text {sill }}$ of the contsiner at height 5-5/i6" and ane 5 and $15^{\prime \prime}$ from the container end. Also at the same time two thermosoxples nimbers 21 and 22 were soldered to the other wall at 5-5/16" height and at 5 and 10 from the same end. These four thermocouples were added to the wall in order to examine the spanwise variation of the wall temperature and the symmetry, Fig. 13, page 129.

Thelve tinermocouples numbers I through 12 are used to measure the liquid temperature. The locations of these thermocouples as well as the others are shown in Fig. 8.

Locations of Thermocouples
Chromel vs. Constantan No. 30 duplex

Fig. 8. Thermocouple locations in the rectangular container.

A 36-channel Honeywell visicorder model 1012 was used to record the temperature of these thermocouples. Chromel-constartan auplex gauge 30 wire is used for the themcocouples, An ice bath is used for the reference functions. Each thermosouple circuit, consisting oir the thermocouple itself, the visicorder channel to which it is connect $=0$ and the necessary wiring, was calibrated individialily.

7.2 DESCRIPTICN OF THE IYLINDRICAL APPARATUUS

The cyindricai apparatus consists of a bronze tube 4 " outer diameter having $1 / 3^{\prime \prime}$ thick walls and 1 foot long. The details of the construction of the cylinder is shown in Fig. 9. The cylinder was closed at the botton by pressing a bronze disc inside the cyinder to a depth of $5 / 16^{\prime \prime}$. Two other discs made of transite and styrofoam are glued togetier and insered in the cylinder. They are fastened to botton dise by 4 screws. A thin dise of teflon is cemented to the upper face of the styrofoam. The use of styrofoam reduces the heat, losses through the cylinder bottom. Sealing of the bottor is acconiplished by putting a inin layer of styrofoam cement over the tefion disc at the cylinder walls only. The cylinder walls are recessed to $1 / 32^{\prime \prime}$ thicikness from both ends as shown in Fig. 9 to reduce the heat losses by corduction through the ends.

The cylinder is heated electrically using $1 / 2^{\prime \prime}$ wide and $0.0035^{\prime \prime}$ thick nichrome heating ribbon, which was wound helically around tha cylinier, The pitch of the helix is equal to $5 / 8^{\prime \prime}$. The heating

Fig. 9. Test Vessel assembly.
riboon was insulated from the cylinder by leyer o: scotch electric tape No. 69, that withstanàs temperatures as high as $356^{\circ} \mathrm{F}$. Two otner layers of the same tape were wrapped over the heater ribbon in order to hold it in contact with the cylinder vall.

Twenty copper-constantan thernwcoupies number 1 through 20 are embedded in the cylinder wall. The locations of the thermocouples are shown in Fig. 9. These locations are chosen to Enable the eyamination of the nature of the wall temperature distribution in the azi. muthal direction. Therefore, enough information can be obtained to ascess the assumption of tro-dimensional flow. Also, better evaluation of the axial wall temperature distribution can be made.

The liquid temperature is measured at ten locations using 30 gauge copper-constantan thermocouples. Four of these thermocouples are arranged in order :o olserve the symmetry with respect to the cyinder axis. Twenty gaivanometers are available for use in the visicorder. Ten of tie wall therrocouples are connected to the same channels measuring the liquid thermocouples through ten Jouble throw knife switches. Of course, either the liquid or wall temperature, which are c nnected to the same channel, can be recorded at a time.

The electric power was obtained by using a set of 12 voli batteries, which are arranged to give the desired voltage. This procedure was followed to elimirate the A.C. interferance with the galvarometer signals. The voltage and current were measured using Weston D.C. voltmeter and ammeter, ndels 1 and $\% \mathrm{Ol}$, respectively.

7.3 EXPERTMENTAL PROCEDJRE

The containers are filled to the desired level with degassified water. Enough time was allowed before conducting the experiments in order to insure urifirm initial temperature. In most of the cases the water was kept in the container overnight before conducting the experiment. This procedure helps to eliminate any initisl natural convection currents that may exist in the container before beyinning the experiment. During the inivial stages of the experimental program, it was suspected, and later substantiated by actual measurements, that evaporation from the liquid surface would cause the free surface to deviate considerably from the adiabatic condition, which is assumed in the anaintical solution. For this reason a thin film of oil of thickness $1 / 2 \mathrm{~mm}$ was put over the surface of the water. It was verified that the oil film is effective in reducing the evaporation from the free surface. This was demonstra'sed by fililng two identical pyrex glass beskers with water to the same hrigit, one of which had a thin film of $i=1$. Both were neated simultaneously until the water in both boiled and then heat was turned cff. The beaker without the oil film coler much faster than that with the oil film. Furthermore, it was found that the fluid emperature at the surface was about $12^{n} F$ lower than that near the bottom in the bea:er without the oil film. Suck a temperature drop, which is due t:o evaporation, was not found in the beaker which had the oil film. The same phenomena were observed in similar tests using the rectangular sontainer. Therefore, the oil
film was used in ail the tests. In addivion to that, the cpen ends of the containers were covered by styrofoam caps leaving an $\theta^{\circ} \mathrm{H}$ space about $1 / 4^{11}$ thick between the liquid surface and the cover.

In the test using the iectangular tank, the condensate in the steam line, including that in the two banks of tubes in the reating compartments, was drained before crnducting the experiments to prevent the sondensate from fmpinging against the walis, causing then to vibrate and upset the zero velocity initial conditions as well as Ulunting the temperature transient. The zero-time level was taken to be that at which any of the wall thermocouples showed temperature rise for the case of the rectangular container. The instant at which the electris power was switched on, is considered the zerctime level for the cylindricai containers, The photographs given in Figs. 10, 11 and 12 sk:ow some of the equipment used.

7.4 PROCEDURE OF DATA REDUCTION

In the case of the rectangular container, it was postidated that due to the hign thermal conductivity of the copper, the spanwlse variation of thr wal. temperature will be negligible. It was aisn anticipated that since the heating arrangemert is symmetrical with respect to the container centerline, the departure of the conditions cf the experinent, from those of a two-dimensional model will be small. Accordingly the readings of thermosouples 13 through 18 was considered to deseribe the wall. temperature-time ristory. However, it was later found that

Fig. 10. View of the experimental apparatus.

Flg. 11. View of the experimental epparatus.

Fig. 12. View of the experimental apparatus.
the "womimer: sional ard symmetry concitions assumed are not actualiy met in the experiment, in orjer to checi tris poirt hermocourles r_{i} ruber $19,20,21$ and 22 were added to the wel?, as discussed in Section T.i. Tine reading of these thermocouples inäzated theit the conditions of the experiment do not correspond to those assumed in the anglyticsl mooet. A tjpical temerature-time history for that of the wall at locationi 15, 10, 20, 21 and 22 is shown in Fig. 13. In a two-dimersiona- model, whish is symmetric with respect to the sontainer axic, all or these tempertures should be the same. The deviation of the model from symmetmy cen be accounted for in the theorerjca? anplysis for two dinensional cases. However, the departure from the tro-dimensional case is considerable and therefore the results obtained from the twodimensional anaiysis will not sufficientir zeprescin the actual fiow in this case. For the latter meason only few experiments were carried on in the rectangulay container. The resuits =btained fri. the rectangular container served an important purpose, Beside showing the suratification phenomenon and the nature of the temperature-time transients, it alsc gav guidance to the shoice of the wail thermosouple locations in the cylindrizal container, s: that a beiter represen ifon of the wail tomperatiure can be nade. The location li the wail thermocourles in the \overbrace{j} inanarical containe:a:e showr in Fig. G. The temperatures measured at tiese locations when plotted versus their axial locations would indicate the deviation

Fig. 13. Typical wall temperature response, rectanguler container.
of the experiment from the condition of symmetry with respect to its axis. A total of 16 experiments were carried ir the cylindrical containe: using four-differeri heat flux levès of 500, 1200, 2000 and Loon 3tughr ft ${ }^{2}$. These experimerits invoived sufficient repeat runs in order to cheov the following:
i. Reprodxcioiliさy of the results:
2. The sonformity of the experiment uith the two-dimensionai model assumed in the theoretical salcuiatior.s.

From :ese exprrime t. it was found tizi, the results are reproducible. In order tes rheck the second condition, ail the wail temperatures (thermocoiples 1 thrcugh ec) in some of these we:e messure: during most of tine experiment. This procedure was repeatej for ail heat flux levels. The results were ther plottei versus axiai Aisignce at verious time levels. Figures $1.4 ; 1.5$ and 16 show sian \leq termergture distribution. The results obtained from the cyindriegi container rereal that a tride two.-dimensional model was not compietely achieved. This may be dae to the manner in which trie hearing ribbc was wo:mu a"ound the cylinder: cr may ce due to separation of the feating ribbon from the cylinjer winis because of thernal exnasioion. Fowever, the deviation from two-aimensionalitv is not as serious as it is for the reciangular container, except for the inghest heat fixx ievel, for which comparison with the analytical solution was ilnretarded. The solid lines in Pigs. 14 : 15 and 16 are considered tce represent the axial wail temperaiure distribution, whish is used in the computer

Fig. 14. Wall temperature distribution, sun 2, cylindrical container. $(\mathrm{g} / \mathrm{A})_{\mathrm{w}}=.50 \mathrm{Btu} / \mathrm{kr} \mathrm{ft}{ }^{2}$.

Fit. 15. Wall temperature distribution, run 3, cylindrical container.
$(\mathrm{q} / \mathrm{A})_{\mathrm{W}}=1000 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}$.

Fig. 16. Wail temperature distribution, run 4, cylindrical container. $(\mathrm{g} / \mathrm{A})_{\mathrm{w}}=2000 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{2}$.
progren. The maximum deviation occurs near the container ends, as shown in t.ese figures. The magnituae ρ^{\prime} this devig*isn is within $\pm 10 \%$ ior runs iumber 3 and 4 and $i s$ hiener for min number 2.

8.1 INTRODUTTION

In this chapter, the results of this stay will be aissussed. These results fall into three categories.
(a) Analytical results for which no experimentai counterpart is given. These represent the results obtained for the first model, which is cescribed in Chaptei 3. Calculations have been carried for the case of a constant wall heat flux and a constant free surface temperature for both the rectangular and the cylindrical containers. The boundary and initial sonditions for these cases, as weil as the fluid properties used are given in Table I, page 142. The results of the celculations using other boundary zonditions have been reported elsewhere ${ }^{(11)}$ and will not be repeated here.
(b) Analytisal solution for the case of natural convection in a rectanguiar carity which has been solved by Poots (51). Aithcugh the boundary conditions are different from those outlined earifer in Chapters 3 and 4 , the same numerical prosedure dessriked in Chapter 5 is used for this case. The mlidity of the results obeaneiz for other cases can be judged on the basis of the nature of the agreement between the finite-difference results and that of Poots. These results are given in Figs. $\mathbf{i} 7$ and 18.

Fig. 17. Results for the rectangular cavity proolem using 3 lx 31 grid.

Fig. 18. Results for the rectangular cavity problem using 11×11 grid.
(6) Aralyticel soiutions for tie natural sonvectior ir rectargilar End zylindrieal containers for whič experimental iata are dotainea. The theoretical modei adouted in these calculatiors serrespond to the sesond model. descric 4 in Crater 3. As wes mentioned in Copaper T, the wall temperatures of both sortainers at different ariai lecations تere recrrded as a continuous finction of time. Ths raine of the もemperajure st these iosetiors ot :lifierert inne lerels, which are -eparatsd bj :̈nite-time intervalz, ara used in tine compiter program to describe the wail temperat:are-tife history. These valiues are punched or IBM zsrds and read in by time machine as input da:s. Pre iesired vaiues of the wail temperature at any axial location ard ut any tine ievel are obtained from thcse programmed ? sing inear iriserpolatice in botin space and time eirections. The lenger of tie jime Irterval separatirog the programed vemperatires ieperis ipor the tarire

 such cases was triken as high $3: 60$ see. For yigher hesi fiux, Fe time inerement is thion: cafaller. Tris proceine is foliowed in :rjer tc avoin the uncertatrities ir calculating ine wall negt fini ieren. Furthermore, the measurements of the waii temperatire provile a hasis, upon which the compliarce of the experiment te the conditions of the theoretical rodel i.e., symmetry end two-dimensionalijy, car be juògeã. The vaidity of tixe thecretical results can be best evaliaied by comparing the measured fluid temperatires with those analitisaily preaicted,
assuming that the above mentioned conditions are fulifilled.

In sciving the stream function-vorticity equation using the method of successive-inn and solum relaration outined in Chapter 5 , $\therefore t$ was found that the direction in zinich the domain nas swept auring the calculations influences the number of iterations required. If the ro" relaxation process wes done advencing from the row $i=2$, winish is next to the bottom of the container, in a direction of increasing i, to the row $i=\mathbb{N}$, which is next to the container surface, end if in the same time the column relayation process was done in an order of increasing \dot{j} beginning at $j=0$ which is next to the centerinne, the number of iterations required in this case were musin higner than if the donain was swept in the opposite direction. In the latter procedure, the row relaxation is ccraucted beginning it the row inin in a decreasing order until the row $i=\bar{c}$ is reacked. Similariy, the column relaxation \pm sarried in a direction or jegreasirg j beginatng at the coinmr $j=N$. Aonoringly this procedure was Eollcto in all the cal\therefore Iations. The numer of iterations required to make the maximun reiative shange in tiee magnitide of tre stream function geross ariy one iteration to se less tran 0.3% was in most cases equai ic one. Otner iterative metricis extirized tise same prenomenon toc. This is due to the fact that the rate 0^{2} change of the vortisity, and conseguently the rate of shange of the strear fiunction, across any one time step is nigher near the side wails asiu the ligaia surfece. For this reascn the change in the valie of the stream function asross any one iteration
 if it is carried on beginning near the secteriine at $i=\hat{c}$ and $\dot{z}=\hat{=}$, where the rate of change of the rusicity is smaこise.

The computations were sarried on the IRy TOYO digivai sompiter

 sec. per time step for the $31 \times 3 \mathrm{~g}$ gita, the results were printicd every in sec. the to 600 time steps were encountered in each rin, which mears thet 5 m min re machine time were used in each man. Fhe reionties $;$ anc \because were uptcdated each two sycies of caicuiations of the temperatire and vorticity fielis in runs 3 ana 4. This procedure enatied savirag of more than 30% of the machine time for both rans. The tilae irarement used in the caiculotions was 30% of that reguired by stability.

The steady state streamines and iscthermais octained on -i.e
 ir Fig. 17. A $31 \times j 1$ grid is usei in this case. The sgreement berwen. the fintedifference solution and that given by Foots is gecd. inese
 This agreement indicates the vainaty of beth sciutions. In adiricn to that, the irvestigation of thiy case heiped to determine tre gria size that should be used in subsequert casss, as will be discussed in Seetic: 3.5.

tion at 50 psia. The sluid properties, which are taken iror zeference
(77), are evaibated at a temperature equai: to the averaga in the
Initial and liquid surface temperatures. These are given in Table I
beiow. The heigint of the liquid b is ift and tise width of the con-

TABIE I

PROPERTIES OF IIGUDD MITROGEN ETALIATED AF 150° R

mhermal diffusivity α, ft^{2} 'sec	3.6 Ex10-7
Tremmal soniuctivity E , Btu'hiolt- ${ }^{\circ} \mathrm{R}$	0.0775
rinematic viscosity v, ft ${ }^{2}$; sec	1.63×10^{-6}
Cuefficient of thermai expension $B,{ }^{\circ} \mathrm{R}^{-1}$	1.33×10^{-3}
Frandtl Number, Pr	1.91

The result,s for the rectangular containe: are stown in Figs. IS añ 20, while thoss for the cylindrical container are given i: Figs. 21, $E=$ and 23 as a series $0 \underset{i}{ }$ sirear lines and iscithems at different time ievels. Examiation of the stream line plots shows that the fic\% pari ern is es"entiginy the same zor ootin types of contsiners. The heated fluid in the boundary lajer rises upuard owing to buyaray effecis. ipon approaching the licuid surface, the $f!$ w changes its direction from upwari to downeari motion. Tie downari aciang zartizles nuar the rising boundary liyer reverse direction and join tir $\because=\sim a . d$ Elow, giving rise to a vortex near the wall. This wortex is formed near tice iqquid surface at smain times anî moves dowrwaria as the stratified layer grows. The Iluid away from the edge of tine boundary layer flows dok ward neariy to the botton of the container, where it joins the flidid in the boundary layer.

Anoi,her interesting phenomenon is show by tine stresmine plots. After sometime following the introduction of the transients, the stream

Fig. 19. Isotherms and streamines, rectangular container. $(\mathrm{g} / \mathrm{A})_{\mathrm{w}}=200 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}, \mathrm{~T}_{\text {surf }}=\mathrm{T}_{\text {sac }}$, time $=30 \mathrm{sec}$.

Tă"lsotherms

Fig. 21. Streamines for the case of cylindrical container.
$(\mathrm{g} / \mathrm{A})_{\mathrm{W}}=200 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}, \mathrm{~T}_{\mathrm{surf}}=\mathrm{T}_{\text {gat }}$, time $=10 \mathrm{sec}$.

Fig. 22. Isotherms and streamlines for cylindrizal container. $(\mathrm{q} / \mathrm{A})_{\mathrm{w}}=200 \mathrm{Btu} / \mathrm{hr} \mathrm{It}^{2}, \mathrm{~T}_{\mathrm{gurf}}=\mathrm{T}_{\mathrm{Bat}}$, time $=30 \mathrm{sec}$.

Fig. 23. Inotherms and streamines for cylindrical. container. $(\mathrm{g} / \mathrm{A})_{\text {W }}=200 \mathrm{Btu} / \mathrm{hr} \mathrm{f}^{2} \mathrm{t}^{2}, \mathrm{~T}_{\text {Burf }}=\mathrm{T}_{\text {Bat }}$, time $=40 \mathrm{sec}$.
lines show the presence of fl: \because oscillations near the free surface, Fig. 21. At higher values of time these oscillstions give rise to a yortex near the center Liṅ. This vortex oscillates in nagnituade and in location. First it iorms near the liguid surface, grows in size and simuitaneously shirts below the surface, aiter which it breaks away and the seme cycle is roneated again. The formation of zuch vortices was report ϵ b Eichorn (17). He conducted visual studies of the natural convection laminar flow of water using an electrically heated cylinder 2 " diameter and $7^{\prime \prime}$ long. His results are given in Fig. 24. The magnitude of the heat flux was not given. From the discussion it is concluded that the results represent the unsteady state. Figures 24 a anc 24 b show the flow pattern observed at high heating rate; Fig. 24 s shows that obtainea at low heating rates. A $\dot{\tau}$ low heating rates, the streamlines assume a damped-wave snape; at tigh heating rates annular vortices repeatedly form near the free sariace, roll up until s sertain size is reached, where upor they nove away from the cylinder and another vortex begins to forme His observations agree with the results presented here.

The isotherms show that se axial temperatiare gradient is negligikie in the region below the stratified layer, while it is appreciable in the stratifled layer. The temperature changes from that of the fluid kilk at the bottom of the stratified layer to the saturation temperature at the surfacs. Except in the boundary layer, the radial temperature gradient is generallj negligible, as indicaied by the isotherms int

Fig. 24. Results of flow Fisualizations made by Eichcin.

Figs. $-3,20$, - and 3 3. This phenomena can be expiained as foilcws: for small times the fluid near the container qeils fiows upara ir a

 continuity, tie heacec fiugia which iz discharged $2 \div$ the free sinaace eauses tife soijer finil to move dommeri tinu producing e series of isctherms. With tine these isotherms zenetrate furtier telov tie suec surface. The trans:erse temperature grajient is ingiter near the aell and neglig:hle in tio remander of tine container. Ir. tine straiffitu region, the transrerse temperaiure gradient in the bouriary layer is smaler than near the botiox 0° the container.

Calciantions aiso were carried to investigate the effent cf tie gravity leve: on the liquid surface temperature. Pinese were dene for tine same cylinarical geometry using the same heat flix. Two aifferent Erarity Ierels were üsed in these calculations. finese corresponi tc
 $0.03 \bar{c}=\mathrm{ft} / \mathrm{sec}^{2}$ respectively. The calculated wail temperatiare at $\mathrm{X}=\mathrm{i}$ and thas of the ifquit surface at the centerline are shown in Fig. 25. The vall and the liquid transients near the surface are higher for higher gravity levels. On the otherhand the wail temperature at the botion is lower for higher gravities. The high rate of the flow, winich means that more cold fluid is pumped into the boundary layer, increases the rate of heat removal from the wall near the bottom to the upper

Fig. 25. Effect of gravity level on ligidd and vall temperature, cylindrical container. $(\exists / \mathrm{A})_{\mathrm{w}}=200 \mathrm{Btu} \mathrm{kr} \mathrm{ft}^{2}$, ediabatic upper and lower sirrfases.
regions $v f$ the containez. Accordingly more energy will be transferred from the wall at the lower regious to the upper regions of the container per unit time. As a result the fluid temperature near the bottom in the boundary layer wiil be lower for the high gravity as shown in Fig. 25. Thererore, at reuuced gravity cunitions the ilquid will exhibit a lesser degree of stratification. A limiting case of course, will be that at zero gravity, whish, for adiabatic upper and lower surfaces, will give zero axial temperature gradient i=e., no axial stratification, although radial variations in temperature will exist. These results are in contrast with the conclusions made in Reference (79), whica were based on the results obtained by an integral method.
8.4 EXPERTMENTAL AND ANALYTICAL HESUITS, SECOND MODEL

8.4.1 Results of the Rectangular Container

The measured and calculated temperaiure-time history for a typical run obtained in the rectangular container is shown in Figs. 26 and 27. The results given in Fig. 26, which show the formation of a stratified layer at the liguid surface, indicate that in general, the heated fluid near the wall rises to the liquid surface even with nonu: form, nonsymmetric heating. Symmetry c i the model can be examined by comparing the measurements from thermocouple number 15 with 22 , and 19 with 21 given in Fig. 23. It car be seen here that symmetry is not Achipyrid. Also the readings of 15,19 and 20 indicate that three-

Fig. 26. Measured axial temperature distribution in the rectan. gular container, run 1.

aimensiona effects cannot be disregarded for tine rectanguiar soritsiner． The wall temperature，which is used in the computer frogram，is nec inred at the winile of the contanc：span．rinese are Eiven in FiE． $2 \hat{0}$ ．As shown in Fig． 13 ，the tempamature at this location as represented b numier ij is the higi．est wall temera＋ure．The シミミー ference detween the theoretical and the experimentai．restint．in the rectaneula：geometry is attrioutel to these Eactors．The calculated temperature are nigher than the measurea temperature，as it would be expected．Good agrement detween the calculated and the measured tem－ perature is ootained near the Eres surface，themocouples 12 and 12 ． because the fiusd near the wail，which rises aloag it and is dischargea on the surface，is affected mostiy by the wall temperature．Furthermore the ca－nulated and the measured time at whin temperature besins to change are in good agreement．
\dot{A} series $\operatorname{oiz}^{\text {isocherms and streamlines，which are calculated for }}$ tnis case is given ir Figs． 29 through 34 for different time levels． These resilts，of course，correspond to a two－dimensional case，whose wall temperatuse is given by thermocouples 13 to 28 ．These result show that the heated fluid in the vicinity of the wall rises along the container walls．Upon approachirg the liquid surface the rising fluid snocthly changes its direction from upward co downward flow． The downward moving particles near the ri ing boundary layer reverses direction and join the upward flow，thus causing the vortex near the wall．Examination of the flow patiorn shows that this vortex is formed

FIg. 28. Measured wall temperature in the rectengular container.

Fig. 29. Isotherms and streamlines in the rectangular container, run l. Time $=25 \mathrm{sec}$.

Fig. 30. Isotherms and streamlines in the rectangular container, run 1. Time $=40 \mathrm{sec}$.

FH. 31. Isotherms and streamlines in the rectangular container, run l. Time $=55 \mathrm{sec}$.

Fig. 32. Isothe:ms in the rectangular container, run 1. Time $: 110 \mathrm{sec}$.

Fig. 33. Streamines in the rectangular cont:iner, run 1. Time $=120$ sea.

FIg. 34. Isotherms and streamlines in the rectangular container, run 1. Time $=126$ sec.

untํ. i4 reaches the container bottom. Tis pruses is shorn in Figs. 29 thmogn 34. It is also cleer from these zigures that at
 into a thin lajcr nuar the fiuid surface. As a rosinit s itmetified liquid layer is formed at the free surace. Some of tnis fiujd mores along the fluid surface towards the centerine. The two finid streans fiowing towarus the centerline from the right and the Le-it hand sices meet at the senterline and is deflected downward there. As a resuit, the front of the stratitied layer advances to larger aepths in tie centerine vicinity than near the wail, as indicated by the shape uf the isotherms in Figs. $\exists 9$ and 30. At higher vaiues of time, the stratified layer front moves down at a iniform rate as shown by the shape of the streamlines of Figs. 31 and 34. Schlirer photographs shown in Fig. 35 takeil by Vliet and Brogan (73) for the natural convection in ε_{t} rectangular container whose dimensions are comparable to those used in this analysis indicate that the front of the stratified layer moves i.: the manrer described above.

An ther mirtev to sormed at the centerline near tie free surface, which rol:s until it grows to a certain size, then vanishes and a new vormex begins to form, Figs. 32,33 and 34. The formation of the early discussed vortices were experimentally observed dy Nef'f (39) and Eichorn (17).

ió4

Fig. 35. Schlieren photographs for stratification without wall baffles. $q_{W}^{\prime \prime} \simeq 1.0 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}$.

The zesults obtainea Experimenteliy for the ziまinerina! eontainev

 40 throuzh iz, which are tiviegi visciconier outuut snow thes the temperature near the licuid surface exhibits an oscillatory transients at snall times, whicn later ar dampez. The temerature near tire bottom of the tani snows a smalier degree of escillations, anich takes place at larger time. The magnitude of these oscillaticns varies with the hea二 flux level, the higher the reat fiux level the iarger the amplitude of these oscillaticns.

The theoreticai results sbtainea for runs \ddot{c}, 3 anc 4 using a 3 irs griã are also given in Figs. 36, 37, 38 anả 33. A series of isctinerms and streamlines, which are obtained theoreticaily are given for each cese at differeut values of time leveis in Figs. 44 through 52. These isntherns and streamlines describe the temperature-time nistory, as well as the development of the flow pattern for each case. The flow development in these cases is sinilar to that in the rectanguiar containers which is discussed above, Section 8.4.1. At small values of tirne the stratified layer front near the centerline progresses at 2 rate higher than near the wail. Also a vortex is formed in the wall

Fig. 36. IAquid temperature response in the cylindrical container, run 2. $(\mathrm{q} / \mathrm{A})_{\mathrm{W}}=500 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}, \mathrm{~T}_{0}=76^{\circ} \mathrm{F}$.

Fig. 37. Liquid temperature remponse in the cylindrical container, run 3. $(\mathrm{q} / \mathrm{A})_{\mathrm{w}}=1000 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}, \mathrm{~T}_{\mathrm{O}}=73^{\circ} \mathrm{F}$.

Fig. 38. Liquid temperature response in the cylindrical container, run 4. $\left(\mathrm{G}^{\mathrm{A}}\right)_{\mathrm{W}}=2000 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{2}, \mathrm{~T}_{\mathrm{O}}=80^{\circ} \mathrm{F}$.

Te mperature Difference ($\mathrm{T}-\mathrm{T}_{\mathrm{o}}$) ${ }^{\circ} \mathrm{F}$

Jig. 39. Axial temperature distribution obtained for the cylindrical sontainer.

Fig. 40. Typical Visicorder output reccra. Heat flux $=500 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}$.

Fig. 41. Typical Visiccrder output record. Heat flux $=1000 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{2}$.

Fig. 42. Typical Visicorder output record. Heat flux $=2000 \mathrm{Bti} / \mathrm{hr} \mathrm{ft}^{2}$

Fig. 44. Isotherms and atreamines in the cyiindrical container, run 2. $(\mathrm{q} / \mathrm{A})_{\mathrm{w}}=500 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}$, time $=60 \mathrm{sec}$.

Fig. 45. Isotherms and streamlines in the c_{j} lindrical container, rin 2. $(\mathrm{g} / \mathrm{A})_{\mathrm{w}}=500 \mathrm{Btu} \mathrm{hr}_{\mathrm{ft}}{ }^{2}$, time $=18 \mathrm{n}_{\mathrm{sec}}$.

(a) Isotherms

Fig. 46. Isothexms and streamlines in the cylindrical container, run 2. $\left(\mathrm{g}^{i} \mathrm{~A}\right)_{\mathrm{w}}=500 \mathrm{Btu} \mathrm{hr} \mathrm{ft}^{2}$, time $=215 \mathrm{sec}$.

Fig. 47. Isotheras s.nd streamlines in the cylindrical container, $\operatorname{mun} 3 .(\mathrm{q} / \mathrm{A})_{\mathrm{w}}=1000 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}$, time $=30 \mathrm{sec}$.

Fig. 48. Isotherms and streamiincs in the cylindrical coutainer, run 3. $(\mathrm{q} / \mathrm{A})_{w}=1000 \mathrm{Rtu} / \mathrm{hr} \mathrm{ft}^{2}$, time $=$ ro sec.

Fig. 49. Isotherms and streamlines in the cylinerieal container,
run 3. $(\mathrm{g} / \mathrm{A})_{\mathrm{w}}=1000 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{2}$, time $=120 \mathrm{sec}$.

Fig. 50. Isotherms and streamines in the cylindrical container, run 4. $(\mathrm{q} / \mathrm{A})_{W}=2000 \mathrm{Btu}$ inr ft^{2}, time $=\mathrm{fo} \mathrm{sec}$.

Fig. 51. Tsotherms and atreanilines in the cylindalcal container, run 4. $(\mathrm{q} / \mathrm{A})_{\mathrm{W}}=2000 \mathrm{Btu} \mathrm{hr} \mathrm{ft}^{2}$, time $=120 \mathrm{sec}$.

Fig. 52. Isotherms and surearilines in the cylindrical container, run 4. $(\mathrm{g} / \mathrm{A})_{\mathrm{w}}=2000$ Btu $\mathrm{hr} \mathrm{f}^{\prime} \mathrm{t}^{2}$, tive $=230 \mathrm{sec}$.
vicinity and sjmiltaneously moves downward as tne stratified sayer grows. Another vortex is observed at the centerinine near the liquid surface, which treaks away when a certain size is reached and a new one begins to form.

The analytical results agree favorably with the measured values, Figs. 36 to 39. The results for run number 2 are less favorable tinan those of runs 3 and 4. The analytical results are 1 to $2^{\circ}{ }^{\mathrm{F}}$ higher than the measured temperature for run number 3 and it is 1 to $4^{\circ} \mathrm{F}$ higher for run number 4. However, these represent a difference of not more than 10% relatj.ve to the measured values at 240 sec . These differences are attributed to heat losses from the container bottom and top, variation in fluid properties and effects of three-dimensional flow. It is believed that the latter factor has more influence than the others. Apart from that the analytical solation adequately determines the time level at which transition taken place. Actuizlly the agreement between the calculated and the measured time lag i.e.., the time elepsed between the starting of the heating and the starting of the transients, is very satisfactory as shown in Figs. 36, 37 and 38. Also it is avident that the predicted and the measured surface temperature and axial temperature gradients are in good agreement. Fortunately, these latter two factors control the rate oi heat end mass transfer across the interlace, and accordingly the pressure variation in the vapor space.

The properties or the wate. used in the calculation were evaluated et the initial temperatures. These are given in Table II.

TABLE II

PROPERTIES OF WATER FOR THE CONDITIONS OF RINS 2, 3 AND 4

Run No.	$\begin{gathered} \text { Heat } \\ \text { Flux, } \\ \text { Btu/hr } \mathrm{ft}^{2} \end{gathered}$	Initial Temp., ${ }^{\circ} \mathrm{F}$	Thermal Diffusivity, $\alpha, \mathrm{ft}^{2} / \mathrm{hr}$	Prandt 1 No.	Yinematic Viscosity, v, $\mathrm{ft}^{2} / \mathrm{se}$	Compress. $\text { Facto: }, \beta \text {, }$ R^{0}
2	500	$? 6$	5.636×10^{-3}	6.26	9.8×10^{-6}	1.38×10^{-4}
3	1000	73	5.60×10^{-3}	6.50	1.10×10^{-5}	1. $28: 10^{-4}$
4	2000	80	5.66×10^{-3}	5.84	9.2×10^{-6}	1.51×10^{-4}

8.5 EFFECT OF GRID SIZE

The use of finite-differences requares the determinati in of appropriate grid sizes $\Delta X, \Delta Y$ and ΔR such that the discretization errors be. come small. A possible resolution of this question can be obtained by observing the behavicr of the solution as the grid sizes become smaller. This procedure was follcwed in solving the rectangular cavity proulam, i.e., Poots problem. Caleulations were carried out usine llxll, 21x2i and 31×31 grids. The results of the $1 ? 311$ grid showed large deviatio: from those given by Poots, Fig. 18. While those obtained usirus $21 x 21$ and 31×31 grids showed essentially the same kind of favorable agreement with Poots results, Fig. 17. Accordingly li was concluded that since 21×21 grid yielded grod agrtement with the analvtical solution, a

3ix3: will be sufficient tor the present purpose. This psin was substantiated furtner bj carrjing caleliations using a 51×31 Erid for the case of run number 1. These sesults are comared with those obtained utilizing 31×31 grid in manic IXI, which reveals that the difference is not appreciable.

TABIE III
EFFETT OF GPID SIRE ON THE COMPUTED RESULIS FOR RUN NO. 1, RECTANGUIAR CONTAINEF.

Time, sec	Grid	$\begin{gathered} \text { Calculated (} T-T_{O} \text {) corresponding to location } \\ \text { of thermocouple } \end{gathered}$			
		11	9	5	4
25	32×31	2.87	1.75	1.49	. 16
	51×31	1.54	1.525	1.43	. 267
30	$31 \times 3 i$	5.47	5.30	4.7	1.23
	51:31	4.83	1.77	4.33	0.98
35	31×31	12.65	12.23	8.6	0.75
	51×31	11.8:	11.50	T. 48	0.52

When the wall heat flux is specifiec instead of sperifying the wall temperature, the boundery condition is approxinated by Equation (5.49). In such a case, the calcuiated wali temperature will be affected by the grid size ΔY or ΔR employed in the solution, which in turn will affect the tempereiure and velocity distributiors. Figure 53 shows the dimensionless wall temperature at location $X=0.6$ obtained usinf llxil, $16 x 16$ and $2 i x a l$ gricis plotred against dimene: y:inss time

Fig. 53. Effect of the gid size on the calculated wall temperature.

T, corresponaing $=0$ he sase of onstant wall hees finx of in
Btuiny ft with fluic surface sept at the initiai temerature. The fluisa properties employec are those gi:en in Tabie I . Fhese restits show th : the deviation is greatest for smali times. whe difference decreases rizin time ena is practically negligible for aimensioniess time of 0.003 . This behavior is aue to the fact thet at iarger tixe ievels the magaitude of the truncation errme becmes smaller anis wiil approach zero near the steady state.

There is siways the question of whether a realistic velocity distribution near the boundary is fredicted by the finite-difference solutions. Sush solutions shoula give a velocity distribution which has the following character: The velocity compunent parailel to the wall is smail near the solid boundary. It increases in magnitude with increasing cistance from the wall, reaches a maximum, decreases again and changes airection as it approaches the centerine of the container. The nature of the finite-difference solution deper.is upon the magnitudes of the boundary layer thicinness and the grid size used in the calculations. If the joundary layer thickness is large compared to the grid size, the solution obtained will exhibit the above described character. This will be the case for low Grashof numbers or large values of time. The latter case is shown in Fig. 54, in which the calcuiated velucity changes from its value at the wall in the above described manner. On the other hand, if the boundary layer thickness is smail. cr: ared to the gria size, the results will show that the

Fig. 54. Calculated velocicy distribution at iLgh values of time in the sylindrical container, run 2. $\left(\mathrm{q}^{/ \mathrm{A}}\right)_{\mathrm{w}}=500 \mathrm{Btu} \mathrm{hr} \mathrm{ft}^{2}$.
veiocity in the boundary layer is maximum at the nodal points subsequent to the boundery. This rill taike placs for high Grashof numbers e-ījor low values of time The letter situntion is shown 3: Eig. 55.

Althougis the continuity equation hes been satisfied by introGucing the strear function, e mass baiance for the $\because=:=0$ an incompressure fluid of the net rate of the fluid flow across any section of the liquid container ̇.e., \int_{0}^{1} UāY for rectangular containers and $\int_{0}^{-1} U R$ dR for the cylindrical containers, will provide a neans of checking the calculated velocity distribution and also give an indication to the propriety of the grid size used. The value of the atove mentioned integral should be equal to zero. However, due to numerical errors this integral assumes finite-value. It was ob.served that this value approaches zero as the grid size is made smaller. When the above integration was carried at the section $X=0.5$ using the tropizoiajal rule, the net flow rate across that section was less than C. 8% of the total upward flow rate at that section for m.n number 2 at time level 215 sec .

8.6 SUMMARY OF THE RESULIS

In the previous chapters a numerical method for solving the nonlinear partial differential equations describing the two-dimensional transient laminar natural convection in closed rectangular and cylindrical containers was presented. The method has been utilized to study

Fig. 55. Calculated velocity distribution at low values of time in the cylindrical container, run $2 .(\mathrm{q} / \mathrm{A})_{\mathrm{w}}=500 \mathrm{Btu} \mathrm{br} \mathrm{ft}^{2}$.
the thermin stratifiaution of fluids contained in ves:sels subjected to wail neating. Calcalations are presencea for different boundary corditions as weli as fci different heat ilux lerelsa Also the effect cf the Eravitur level on the suratification process wes examined. The following princip 1 resuits and conclusions can be nade,

1. The formation of a thermally stratified layer at the liguid surface is caused by either side wail heating or by heat transfer across the interface or by both. Ine first case is demonstrated by salculations and measurements reported above for two-dimensional rectangular and cylindrical containers with adiabatic rluid surface. In the absence of wall heating, a stable, motionless, stratified fluid layer will de formed due to conduction.

The thermal transients within the liquid will be higher for both side wall and interfacial heating, because convection currents, caused by side wall heating, will increase the raie of energy transfer from both the wall and the liquid surface to the stratified layer. Also a nigher fluid temperatures rise results from higher heat flux. In tine absence of any side or bottom heating, the fluid temperature at any time will be proportional to the surface temperature. Although this latter case may not be realized in practice, it may spproximate that of a well insulated vessel in a zero gravity field at small time levels after introducing the transient, The calcdations also revealed thrit for a given geometry, flaid and heat flus, the surface temperature will rise at a lowt rate at reduced grevity conditions than at standard
gravity levels.
2. The flow developaent and the downiard movement of the stratified iayer front are of the same nature for both the rectangular and the cylindrical containers.
3. The experimental measurements are in good agreement with the theoretical results. Satisfactory agreement with the theoretical results obtained by Poots for the rectangular cavity is obtained. Such ar. agreement indicates the validity of the model us:d in the calculation and the usefulness of the method of solution. Furthermore the flow pattern obtained agrees with that experimentally reported by others.
4. The method of solution presented here is applicable to any two-dinensional geomet,ry. Four various finite-difference formulations are preseated. The stability requirements for each of these methods were determined. Verification of the validity of the results of the stability analysis was obtained by actual calculations. Calculations have been carried for a wide range of Grashof numbers, from 10^{7} to 5×10^{9}. No signs of instability wer sncountered during the calculations.
5. The results of the mathematical experimentation show that the application of the von Neumann method of stability analysis to partial differential equations of the form,

$$
\frac{\partial f}{\partial t}=a_{0} \frac{\partial^{2} f}{\partial x^{2}}+a_{1} \frac{\partial f}{\partial x}
$$

may lead to erroneous conclusions. A different method to examine the stability conditions of such equations is presented. The application
of this method to finite-difference formulations, for which known stability criteria exis+ , leads to the same criterie.

8.7 RECOMMENDATIONS FOR FUTURE WORK

The method of solution developed here has been utilized to study the natural convection in partially filled liquid containers with and without simultaneous pressurization of the container. The incestigation of the heat and mass transfer in both the liquid and the vapor phases, which takes into account the interfacial energy and mass transport, offers a challenging area for future studies. The calculation of the pressure-time history in suck cases is another possibility. The stidy of the mass and heat transfer inter ctions during the pressurized discharge, taking into consideration the various processes that take place inside the container is another important prohlem. A scmputer program has been written to study the velocity-time history during the discharge process althougk it is not involved here. This progron is capable of examining the nature of the decay of the transients after the discharge process is stopped.

Apart from application to natural convection in closed containers, the method of solution can be utilized for the study of natural and forced convection flows for any two-dimensioual geometry.

The extension of the method for solving three-dimensional fluid flo'; problems represents an interesting line of study. If such extension
becomes possible, it should be anticipated that the machine time required for handling such problems. will be large. However, this would represent the only present possibility of solving three-dimensional laminar flow problems with exactness. Furthermore, the rapid developments in digital computing machines and methods of solution will make it possible to analyze systems, which may seem to be formidible by the present methods.

APPENDIX I

METHOD OF SOLE: O ON OF A SYSTEM OF LINEAR ALGEBRAIC EQUATIONS HAVING A THREE DIAGONAL MATRIX

The iterative method ems loved for solving the stream functionvisticity equation require the solution of a system of algebraic equations having a tridiagonal matrix. Tine algoritinm given below for the solution of such systems is derived from the Gaussian elimination method. This procedure was first, used by Bruce, Peaceman and Reachford (9). The method may be summarized as follows. For a system of equations,

$$
\begin{aligned}
& B_{0} P_{0}+C_{0} P_{I}=D_{0} \\
& A_{j} P_{j-i}+B_{j} P_{j}+C_{j} P_{j+1}=D_{j} \quad 1 \leqq j \leqq n-1 \\
& A_{n} P_{n-1}+B_{n_{1}} P_{n_{2}}=D_{n}
\end{aligned}
$$

Let

$$
\begin{array}{ll}
w_{0}=B_{0} & \\
w_{j}=B_{j}-A_{j} b_{j \cdot 1} & 1 \leqq j \leqq n \\
b_{j}=\frac{C_{j}}{w_{j}} & 0 \leqq j \leqq n-1
\end{array}
$$

and

$$
\begin{aligned}
& g_{0}=\frac{D_{c}}{w_{0}} \\
& g_{j}=\left(D_{j}-A_{j} g_{j-1}\right) \mid w_{j} \quad I \leqq j \leqq n
\end{aligned}
$$

The solution is

$$
\begin{aligned}
& P_{n}=g_{n} \\
& P_{j}=g_{j}-b_{j} F_{j+1} \quad 0 \leqq j \leqq n-1
\end{aligned}
$$

THE STABIIIPY ANALYSIS OF FOEQULATICM（i̇）USTMG VON NEUMAMN METHOD

For simplieity the following one－iisensionai equation will be ลロッシianve

$$
\begin{equation*}
\frac{\partial \epsilon}{\partial t}+j \frac{\partial \theta}{\partial x}=\frac{\partial \bar{F}_{\theta}}{\partial x^{2}} \tag{A.1}
\end{equation*}
$$

The finite difference approxination fit the above equation，ascori－ ing to that of fonnuiation（ii）wili be

$$
\begin{equation*}
\frac{\partial_{i}^{n+2}-\theta_{i}^{u}}{\Delta t}+v^{\frac{\theta_{i+1}-\theta_{i-i}^{i n}}{2 \Delta x}}=\frac{\sigma_{i+1}^{n}-2 \theta_{i}^{n}+\theta_{i-1}^{n}}{(\Delta x)^{2}} \tag{A}
\end{equation*}
$$

The genergi term of the Fourier series expansion corresponding to the above one－dimensional equation can be written in the form，

$$
\mu^{(n)} e^{i k \pi}
$$

The substitution of this general term in Equation（i．L；Eives the following relationsinip between $i^{(n+1)}$ and $\mu^{(n)}$ ；

$$
\begin{equation*}
\left.\mu_{\mu}^{(n+1)}={ }_{j}(n)\left[1-\frac{2 \Delta s}{(\Delta x)^{2}} i^{-} \operatorname{cosk\Delta x}\right)+=\frac{u \Delta t}{\Delta x} \operatorname{sink} \Delta x\right] \tag{A.3}
\end{equation*}
$$

The auplificaticn factor $\gamma^{(n)}$（see Section 6．3）is given by

$$
\begin{equation*}
\gamma^{(n)}=i-\frac{2 \Delta t}{(t x)^{2}}(1-\cos k \Delta x)+i \frac{u \Delta t}{\Delta x} \operatorname{sink} \Delta x \tag{A.4}
\end{equation*}
$$

The abscliate magnitide of this factor is obtained from

$$
\begin{equation*}
\left.|\gamma(n)|^{2}=\left[1-\frac{2 \Delta t}{(\Delta x)^{2}}(1-\cos x \Delta x)\right]\right]^{2} \div\left(\frac{u \Delta t}{\Delta x}\right)^{2} \sin ^{2} k \Delta x \tag{A.5}
\end{equation*}
$$

In orier to ontain the maximum vaiue of the absolute magnitude of $\gamma^{(n)}$, the right hand side of Equation (A.5) is dirferentia+ed with respect to (k Δx) to obtain,

$$
\frac{4 \Delta t}{(\Delta x)^{2}}\left[1-\frac{2 \Delta t}{(\Delta x)^{2}}(1-\operatorname{cosk} \Delta x)\right] \sin : \Delta \Delta x-2\left(\frac{u \Delta t}{\Delta x}\right)^{2} \sin \operatorname{si\Delta x} \cos h \Delta x=0
$$

from which it is ciear that $\gamma^{(\mathrm{n})}$ is maximum or minimun if;
(1) $\sin _{\mathrm{k}_{1} \Delta x=0 \text { i.e., } \cos k-\Delta x= \pm 1}$
or
(2) $\frac{2 \Delta t}{(\Delta x)^{2}}\left[1-\frac{\Delta \Delta t}{(\Delta x)^{2}}(1-\cos i \Delta x)\right]-\left(\frac{u \Delta t}{\Delta x}\right)^{2} \cos i \Delta x=0 \quad$ (A.?)

The first of these conditions maices $\left|\lambda_{1}\right|$ does not exceed unity provided that

$$
\begin{equation*}
\Delta t \leqq \frac{2}{(\Delta x)^{2}} \tag{A.8}
\end{equation*}
$$

From the second conditior (A.7), the following is obtained -

$$
\begin{equation*}
1-\frac{2 \Delta t}{(\Delta x)^{2}}(1-\cos k \Delta x)=\left[\left(\frac{u \Delta t}{\Delta x}\right)^{2} \left\lvert\,\left(\frac{2 \Delta t}{(\Delta x)^{2}}\right)\right.\right] \cos k \Delta x \tag{A.9}
\end{equation*}
$$

and

$$
\begin{equation*}
c c ; k \Delta x=\left[1-2 \Delta t \mid(\Delta x)^{2}\right] /\left[\frac{\frac{u}{2}^{2} \Delta \tau}{2}-\frac{2 \Delta t}{(\Delta x)^{2}}\right] \tag{A.10}
\end{equation*}
$$

Substituting Equation (A.9) in (A.5) we get,

$$
\begin{align*}
|y|^{2} & =\left(\frac{u \Delta t}{\Delta x}\right)^{4} /\left(\frac{\partial \Delta t}{(\Delta x)^{2}}\right)^{2} \cdot \cos ^{2} k \Delta x+\left(\frac{u \Delta t}{\Delta x}\right)^{2} \sin ^{2} k \Delta x \\
& =\left(\frac{u \Delta t}{\Delta x}\right)^{2}\left[1+\left\{\left(\frac{u \Delta x}{2}\right)^{2}-1\right] \operatorname{sos}^{2} k \Delta x\right] \tag{A.11}
\end{align*}
$$

From Ecuation (A.il), the following conclusions can be made:
(i) If $U \leqq \frac{2}{\Delta x},|y| \leqq 1$ and inequality (A.8) is sufficient for the stability of the differenc: Equation (A.2).

$$
\text { (ii) If }|U|>\frac{2}{\Delta x}, \text { them let }\left(\frac{u \Delta x}{2}\right)^{2}=1+a \text { and } \frac{2 \Delta t}{(\Delta x)^{2}}=\epsilon
$$

therefore

$$
\cos k \Delta x=\frac{1-\epsilon}{a \epsilon}
$$

and

$$
\begin{equation*}
|\gamma|^{2}=\left(\frac{1+a}{a}\right)\left(a \epsilon^{2}+(1-\epsilon)^{2}\right) \tag{f...2}
\end{equation*}
$$

Before proceeding to find the values of \in that wakes Equation (A.2) stable, the following observations is made.
(1) For $\epsilon=1$, i.e., $\Delta t=\frac{\Delta x^{2}}{2} ;|\gamma|=(1+a)>1.0$

These results indicate that if $|u|>\frac{2}{\Delta X}$ inequality (A. 8) is not sufficient for the stability because in this case $|x|>1$.
(2) For $\epsilon=0 ; 1 . e ., \Delta t=0 ;|\gamma|=\left(\frac{1+a}{a}\right)^{1 / 2}>1.0$

This means that taking Δt very small does rent lead to a stable solution.
In order to establish the value of ϵ which makes Equation (A. \hat{c}) stable, the value of ϵ which makes $|\gamma|^{2}$ minimum is obtained. Differentiating Equation (A.12) with respect to ϵ the following is obtained

$$
\begin{align*}
& \frac{d\left(|\gamma|^{2}\right)}{d \epsilon}=2\left(\frac{1+a}{a}\right)[(1+a) \varepsilon-1] \tag{A.13}\\
& \frac{d^{2}\left(|\gamma|^{2}\right)}{d \epsilon^{2}}=2 \frac{(1+a)^{2}}{a}>0 \tag{A.14}
\end{align*}
$$

Since the second derivative of $\left(|\gamma|^{2}\right)$ with respect to ϵ is positive, the value of \in which makes $|\gamma|^{2}$ minimum is obtained by equating the left hand siae or Equation (A.13) to zero. This value of ϵ as well as the vaiue of the corresponding amplification factor are given by

$$
\begin{aligned}
|\gamma| & =1 \\
\epsilon & =1 /(1+2)
\end{aligned}
$$

Fron which Δt wi?i be given by:

$$
\begin{equation*}
\Delta t=\frac{2}{U^{2}}<\frac{\Delta x^{2}}{2} \tag{A.15}
\end{equation*}
$$

Accordingly there is a unigue value of Δt, given by Equation (A.15) which nakes this finite-difference formulation stable. Vaiues of Δt which differ from that given by Equation (A.15) lead to instability of the results. For problems with constant coefficients, Equation (A.15) can be satistied at all notial points. It also woulc be satisfied if U is not a function of location. If U assumes diff ferent values at different nodal points, Equation (A.15) cannot be satisfied and the method becomes unconditionally unstable if $|U|>\frac{2}{\Delta x}$.

APPENDIX III

THE CONDUTER PRGGRAN FOR THE CYLINDER

The computer program used for the cylindrical container with specified time lependent wall temperature is given below. fise wall temperature is specified at 7 axial locations $X=0, .208, .375, .542$, .708, . 875 and 1.0. The corresponding temperatues are denoted TO, TI, $T 2, T 3, T 4, T 5$ and $T 6$ respectively. The values of the temperature of each location at consecutive time levels were punched on data cards. These time levels were taken 60,30 and ≈ 0 sec.apart for runs 2,3 and 4 respectively. Linear interpolation in both space and time direciiors is used to determine the required values of the temperature at any location and time level.

The program is written in MAD language. The symbols, $\mathrm{U}, \mathrm{V}, \mathrm{T}$, W and K are the same as in the text. The meaning. of the principal symbols which are not defined in the program are given below:
$D X=\Delta X$
$D R=\Delta R$
$D T=\Delta T$
$M=$ Number of divisions in the X-direction
$N=0 \quad " \quad " \quad$ " R-direction

G = Acceleration due to gravity, $\mathbf{8}$
NEW $=$ Kinematic viscosity v

```
ALFHA = Thermal diffusivity \alpha
BETA = Coefficient of thermal expansion \beta
PR = Prandtl number
SF = Stream function
ST' = The value of the stream function at the previous iteretion.
TO = Value of T at the previous time step
WO = " " W " " " " "
TTME = Dimensionless time
TAU = Time in seconds
\mp@subsup{X}{1}{},\mp@subsup{X}{2}{\prime},\ldots..}\mp@subsup{\textrm{X}}{6}{}\mathrm{ correspond to the location of T1, T2,...T6.
```

cempile mad, execute,cuma,print haject, punch cejeci itct tump

皆
あ
©
各
dッ～
：
：
3
$=$
3
3

UL，

$C=(W C(I, J)-W C(I+1, J))=C I(t, J)$
GTHERMISE

STII，HIISF（I，HI
WENEVER I．L．M，TRANSFER TS II
W．

APPENDIX IV

TYPICAL PRINTED CO:PUIER OUTPUT

The computed values of the dimensionless temperature and stream
function for run number 2 at time level 60 sec are given in the following pages.

［14，11．．．1131，311							
4．986519E－05		1．4837CSE－00	1．060992t－06	2．054089E－06	2．035129E－06	2．227993E－06	2.437606 E ．
2.807396 E	3．179240E－06	8．679843E－66	3．070606E－0\％	2．2463008－06	1．329615E－03	7．503628E－03	－4．154590－06
2．115450E－01	2．02792de 00	4．100h31E 20	2.0202278 Cl	0．191097E 01	3．0902s76 02	1．009354E 03	3.575376803
$1.090 .306 E 04$	3．084119E 04	8．084106e ci4	1．9C3176E OS	4．416936E 05	9.142365605	1.7263 26E 06	
3．0737096－0゙，	5．3762！7E－04	5．936R548－04	$6.4747796-04$	6．423155E－04＇	7． $3143088 \mathrm{EO4}$	7．707014E－04	0． $2898705-04$
$8.6999196-0$.	9．372056E－04	1．620082E－03	$1.1214498=03$	1．244655E－03	1．396459E－03	1．603136E－03	1．9909908－－03
$3.154955 E-C 3$	$7.731005 ¢ \mathrm{e}-03$	2．665002E－42	$1.023398 \mathrm{E}-01$	3．八84749E－0！	1.409942 E 00	4.841501200	1．567742E OL
5．186491E j1	1．755916E 02	1.150565 E 43	48111E 04	1．436］32E 15	6.242463 E 05	1.693150 E On	
2．？192958－02	2．317021E－02	2．4776AUE－02	2．509u528－02	2．065549 E－02	$2.694893 E-02$	2．714259E－02	2．7429095608
1921 2 EE－C2	$2.467847 \mathrm{E}-02$	2， $972634 \mathrm{E}-02$	3．1070036．02	3 －2693n5E－02	$3.455150 E-02$	3．634932E－02	3．8542，22E－02
4． $141999 \mathrm{E}-02$	4．455022E－02	$4.746294 E-02$	6．335asse．02	1． $108663 \mathrm{E}-01$	3．5424806－0l	$1.107792 E 00$	00
1．937376E S1	1．157911e u2	$1.2313315 \mathrm{C3}$	1．23205AE On	1.138308609	5．02380LE OS	1．659vi7e 06	
3．3417612－21	3．4348085 -01	$4.0976286=01$	4．159375t－01	4．1111302－0t	$4.0003345=01$	3．8751425－01	1
3．6alitive－ul	3．642a34EE01	3．631720E－01	$3.04999005-01$	$3.6910332=01$			
3． $322851 \mathrm{E}-01$	3．754494E－01	3．692467E－01	$3.9733501-01$	3． $76341116-01$ $1.147249 E$	$1.260336 E 00$ $5.104031 E ~ O 5$	？：537240E 00	01
$4.706382 E 81$	2.6591 S9E 02	．9234：88 63	1．537437t Of	1.147249 ES	S．404031E OS	1．626796E 06	
90	U36i8aE 0	1071556 00	4．048404E OO	3．473720800	3．64404SE 00	3．411524E 00	3．204943E 00
3.034758850	2.901 198E US	2．7999U1E 80	$2.734681 E 00$	2．604395f 00	2.642398800	$2.575963 E 00$	2.514800800
$2.421323 E \mathrm{UK}$	2．a79421E 00	2．093376E 00	1．042583E 00	2．122841E 00	3.498456800	8.9102216 U0	－5383924E＿0．
9.2469716 \％1	4.447325802	2．782OlSE 0？	1．0945ITE O4	1．224343E OS	5．1177104E OS	1．593559E O6	
2．r日2ncyi ol	2．920205．： 01	2.910890601	2．79：173E 3	2．399429E U1	2．373706E 01	2．157115E 01	1.900090 E 02
1.812180 E C1	$1.6940 \% 3 E$ OI	1.541712601	1．498a0日E OL	$1.429916 E$ 01	1．169526E 01	1.31510601	1.240554 E 01
1．1719S9E O1	1.072910 E O1	9.4764 HSL 00	8.113177 E 50	7.290602800	6．434214E 00	$1.747042 E^{01}$	．742934E OL
1.580972 C 02	6．93L323E ${ }^{\text {¢ }}$ ？	$3.75269 .3 F 03$	2．273i．69E O4	1．321015E OS	5.4718818 US	1．5603406 ．06	
1．591673E 02	1.600102 E 02	2．566s7ut 02	$1.470834{ }^{1} 02$	$1.33357860: 8$	1．186813E 02	1.051457602	9．359733E OX
$8.411500 t 01$	7.6441916 .91	7．0224 3 3\％ 01	6.513235 El	6.6353748 Ol	9．711138E OL	5.362550 E O1	5．008930E O1
4．615597E U：	4.1467 U1E 21	3．974220E O1	$2.437185 E^{\text {OL }}$	2.357493881	2.205425 E of	3.326196 E O！	7．967660E OL
2.460666 E J	$9.699611 e^{62}$	4．821：26E 03	$2.659977 E$ O4	207006E US	6．U39106E 05		
6．0925182 02	0.883233632	6.638028862	$6.108451 E 12$	5.420241602	4.120292602	4.095807802	3．574921E 02
3.153013 Cl	2．825814E 32	2.543657502	2．321222E 112	2．135191E 02	1.974153 E 02	1．827503E 02	1． 68.346802
1．：32747E 52	1．360635E 02	1.253485 E O2	9.303888801	7．039538E O1	S．5265b5E 01	$6.237986 E 01$	$1.252746 E 02$
3．575d83E 02	1．3063A3E 03	$5.964570 E$ C3	201E 04	l．bl7136E US	$6.138644{ }^{\text {2 }} 05$	l．51570le 06	
2．542173E O3	2．355781E 03	2.2530846	$2.039077{ }^{0} 03$	1．77091昂 O3	1.521033 E 03	1.299339603	1.118317603
9．740807E ${ }^{\text {2 }}$	8． 9963566 U2	7.680854 E 02	6．930945E U2	6.918818602	$5.788965 E^{02}$	5.314012602	$4.860813 E^{02}$
$4.393483 \mathrm{EC2}$	3．876593E 02	3.280337602	2．005858E U2	1．414752E 02	1．356406E 02	1.192325402	2．906863E 02
4.94895 3E C2	1．6B932．8E 03	7.1750748^{03}	3.428310 EO	1．609604E W？	6．215869E OS	1．511107E 06	
$0.6362 \times 3 \mathrm{~L}=3$	$6.561933 E^{03}$	6.6 .90151003	S．525357E C3	4.747567803	4.014504803	3.996311603	2．908331E 03
2．932！ 1846 is	$2.2161 / 2 \mathrm{CE}$ U3	1.762717803	1.769891 E U3	1.0032015 U3	1.464722803	1.341740603	1.325611603
U6484E 33	9.760803 jo 32	8.249359 E 62	$0.527810 \mathrm{E}^{\text {c2 }}$	4.7295456 o？	3.169747 E 02	$2.323304 E 02$	2．888476E O＜
．634728E 32	2．12168JE O3	a．454840： 03	3.8112646	$1.698755 t$ us	$6.191898 E$ OS	． 506312 E	

\＄F11，11．．．s5 31311							
－JOOJatas J．）	－OuDisut ju	－nocisior sa	－OJOLONE Ju	－NOOUUOE 30	－JuOVU0E 00	－ 600000 O 00	－ 200000 O
－DOCNuJE ：C	－JJojuije 00	－W000jot voi	－Nounúal us	－NoOndos do	－VUOC00E 00	－LOOODJOE 00	000000E 00
－JOOJUNE US	－Jugidede co	－ 2 Ounjote 0.0	－Nocsude uj	－VCOOOOE CO	－ 2 OOCOOE 00	． 000000 e 00	OUUNOOE DO
－C00000e us	－juorrint ue	－wJ00こ的	－ocoscuie it	－Vououje ou	－LUUVNOOE DO	． 000000100	
－vuluvoe u？	－1．236dstif－）2	－4．471H79E－L7	－1．123401t－01	－2．LUG6BPE－01	－3．153024E－01	－4．570405E－01	－6．268888E－01
－8．260459t－21	－1．356186t 90	－1．31．140046 00	－1．616745E CU	－1．45？	－2．3280935 00	－2．748542E OO	－3．＜1：982E 00
－3．741s91E LO	－4．3257：7E 20	－4．9771．6E 00	－5．7967316 OC	－6． 222 CHIEN	－7．437847E OU	－8．464342E 00	－9．612913E 00
－1．j88434E U 1	－1．2．44473E U1	－1．3551．1E C1	－1．431：307E 31	－1．313335E il	－7．041013E OC	－\cup OOCOOE	
－903：295 9\％	－3．334＇jsse－92	－1．223635t－ci	－2．3ヶOくらdE－O1	－4．0182ら4と－Ji	－7．71115CE－01	－1．115017500	－2．5c509VE 00
－2．vU3217t 10	－2．j31032E 3．	－3．172921E 心	－3．A7CuLiE OO	－4．646374E Un	－5．105544E00	－6．451737E00	－7．489043E OO
－8．5217e6t 20	－9．133905t ． 3	－1．110tnuE 61	－1．262791E U1	－I．616406E U1	－1．380838E O1	－1．752719\％0d	－1．9i4248E 01
－2．1J3451E U1	－2．260355E 21	－2，3654vat wl	－2．3394USE U1	－2．viddtat J1	－1．693620E O1	－COODU0E DO	
－ENOijol．vo	－4．75546．5E－J2	－1．4U4145E－Cl	－4．240．3161－91	－7．6414USE－！	－1．196765E CO	－1．728226E OS	－2．360142E 00
－3．244432E 35	－3．733334	－4．ri74338 0：4	－5．9344416 00	－7．103268E COO	－R．347045E CU	－9．749102E OC	－1．131143E O1
－1．c－35ilt il	－1．4714シsc	－1．1360．JCDE G1	－1．858637t Cl	－2．067205E 01	－2．c81823E OL	－2．498224E 01	－2．708550E O1
－2．8941J2E 31			－2．9477STE C：I	－2．4043994 is	－1．c33154E OL	－1000000E 00	
－	－6．259517E－J2	－2．305su7t－01	－5．642974t－01	－1．064488E LT	－1．1．720006 66	－2．20823日E 00	－3．044381E 00
－4．1522h4E WU	－i．143732E 2 l	－6．3704431： 4	－7．735795E ن0	－9． $440484 E 20$	－1．i．48666F 01	－1．267534E O1	－1．460628E O1
－1．667713E C1	－1．dydicec jl	－2．121：398 ${ }^{\text {at }}$	－2．364357E O1	－2．015ub6E ${ }^{\text {cil }}$	－R．H0日32tE Cl	－3．1165t3E 01	－3．3477．37E 01
－3．542386E 61	－3．065466E 51	－3．6554iot ub	－3．3444161 U1	－2．077565t 91	－1．111141E Cl	－0000cee 00	
－Ju＇jujoe	－7．350d：7F－12	－3．03 $36.79 t-\mathrm{Cl}$	－6．830237t－211	－1． 153008 No	－ $1 . y 01$ unaz os	－2．7411441：00	－3．736976F Cu
－4．00978E 2.5	－0．2゙j11，欵	－ 1.6725345 US	－9．304818E00	－1．1101816 C！	－1．306140 01	－1．318309E 01	－1．74669くE O1
$-1,340417 \mathrm{E} \mathrm{P1}$	－2．く厶大巾19E 3！	－2．5137サ16 11		－3．uヵ7003t 01	－h．Pfisase Wi	－3．645247E O1	－3．890837E il
	－4．1H1462ri ${ }^{\text {a }}$	－4．1121／4L 61	－3．747564E 61	－2．052748E 91	－1． 162.182 Cl	．O00000E DO	
－SOSJuJE ．J	－4．747：03：3E－22	－$)$－4， 4.74 15E－ 1	－7．A7口3U1E－G1	－1．400461L vo	－2．140sate 00	－3．151203E 00	－4．3C1948E 00
－5．3＜59196 0	－7．1303545－6	－ 4.0103018 c or	－1．0日bilt	－1．く737435 U1	－－¢9071465 112	－1．73877日E O1	－1．978046E U1
－2． 2741636.1	－2．3640：34i \％ 1	－2．01024\％6 31	－J． 1 （1）3リガ $\because 1$	－3．301493t -1	－3．113736E U1	－4．107077E O1	－4．364230E O1
－4．」っか21」38E	－4．6？4？2．8t ${ }^{\text {a }}$	－4．43H6 jRE 61	－4．1is4Vull il	－3．045459t UI	－1．400175E O1	．000000E U0	
000urat	－9．7719．4E－Jく	－－，シugisct－（1）	－\％．791．71t－¢！	－1．36362 HE M，	－2．044428E OU	－3．52lbaze 00	－4．747513E 00
－6．2721 J6E jJ	－7．460643F Ju	－ $1.832 \% 10$ co	－1．1a4y336 4．	－L．417812t 61	－1．065756E CL	－1．433478E O1	－2．220391E O1
－2．525423E U1	－2．046TC2E－1	－3．1A147Jt C． 1	－3．5249HCL 1	－3．8702A2L	－4． 206902 El	－4．515313E 01	－4．784436F 01
－4．307377E 71	－5．2．137LVE J	－4．discou7t ul	－4034203st id	－．S． 184740 Cl	－1．433949E O1	－VOOSOOE 00	
－ 0005 ul vij	－1．2622．7L－j1	－4．240＇7661．－01）	－9．559u1．11－il	－f．0＇sylatt 10	－2．0．56552E 00	－3．H28728E UU	－5．710791E 00
－6．021ES4E JT	－3．54447LE	－1．06 H0，7nt ci	－1．294，02L 01	－1．542A35E U1	－1．11242NE O1	－2．103B17E O1	－c．415647E 01
－2．146359E 91	－3．tits．5F ग	－3．45742YE © 6	－3．d2facze－ 1	－4．1．191）70t j	－4．059232E O1	－¢．088627E O1	－5，161778E 01
－5．3394．90t U1	－5．3623sef ？ 1	－5．1shallja ： 1	－4．51504U6 1.1	－3．3075＜6t 3	－1．46ちu74E C1	－600000t 00	
－5000：ne 60	－1．1187 15t－11	－4．47311tt－」1	－1．0072965 90	－1．743340t if	－2．．67847E OO	－4．053069\％ 00	－5．bSC446E OC
－7．2430785 CD	－7．170， 78 36	－1．1：74y5t 6．1	－1．3790．13F 1.1	－1．065375t 11	－1．434663E O1	－2．247003E 91	－2．5016L1E O1
$-2.437562 E$ it	－3．3113R12E ： 1	－ 3.6994330 ct	－4．46317\％ 1	－4．4＋24042t il	－4．0．73879t of	－5．220170E O1	－5．501750E O1
－5．075334E：1	－\％．0752！stil	－5．405\％\＃1رE ： 1	－4．7141178 HL	－3．416713E 31	－1．493034E O1	－V00000E 00	
．CuOujoe 10	－1．12820．7E－31	－4．ग194．02E－\％	－1．c204ste UN		－2．n664165 U心	－4．15486at 90	－5．64\％403E 00
－7．481948E	－7．3253：，3E ． 0	－1．1623978 21	－1．437d21t $41 /$	－1．1138C9E 31	－2．02616．05 01	－2．1564685 01	－2．711856k 01
－3．289818F 11	－3．687i14E O1		－4．384＜3sE L1	－4．145590t 41	－5．149943E U1	－5．51444ut 01	－5．90618TE OL
－5．917aldt 01	－5．959．747E il	－5．04＊2）76 61	－4．394333E \％1	－3．314652E U1	－1．517756E Cl	－UOCJOOE 00	

$\begin{array}{r} . \text { NOOJUUE US } \\ -7.48565 B E \text { CO } \\ -3.196959 E \text { OL } \\ .6 .247331 E \text { UL } \end{array}$	$\begin{aligned} & -1.073639 t-21 \\ & -7.5088763 E \text { co } \\ & -3.617811 t \text { o1 } \\ & -6.214696 E \text { D1 } \end{aligned}$	－4． $322173 E-01$ －1．196774E U1 -4.056469601 －5．868445E 21	$\begin{aligned} & -9.819464 E-01 \\ & -1.462318 E \text { U1 } \\ & -4.505577 E \text { OL } \\ & -5.055530 E \text { OL } \end{aligned}$	－ .01631514 NU $-1.135315 \mathrm{E} .01$ －4．y53673E OI －3．601561E O1	$\begin{aligned} & -2.803028 E \text { OO } \\ & -2.076211 E \text { O1 } \\ & -5.383311 E \text { OL } \\ & -1.539112 E \text { OL } \end{aligned}$	$\begin{array}{r} -4.096577 E \text { OO } \\ -2.423995 E \text { O1 } \\ -5.768936 E \text { ot } \\ .000000 E \text { OD } \end{array}$	$-5.655886 E 00$ $-2.798045 E .01$ $-6.074124 E 01$
.000300420 －7．232088E UO －3．250027E OI	$\begin{aligned} & -9.30421 .2 E-02 \\ & -4.353760 E \text { OO } \\ & -3.692394 \mathrm{~F} 31 \\ & -6.439434 E \text { S1 } \end{aligned}$	$\begin{aligned} & -3.064332 E-G 1 \\ & -1.177241 E \text { ol } \\ & -4.153544 E \text { 01 } \\ & -6.0634445 \text { U1 } \end{aligned}$	－8．844793E－01 －1．448972E 01 －4．631494E ：$: 1$ $-5.190438 \mathrm{OL}$	$\begin{aligned} & -1.622205 E \text { 00 } \\ & -1.7506146 \text { OL } \\ & -5.1099099 E \text { ol } \\ & -3.6773055 \text { OL } \end{aligned}$	$\begin{aligned} & -2.609129 E \text { OO } \\ & -2.682666 E \text { O1 } \\ & -5.567681 E \text { O1 } \\ & -1.556343 E \text { O1 } \end{aligned}$	$\begin{array}{r} -3.865936 E \text { DO } \\ -2.443007 E \text { Of } \\ -5.979003 E \text { O1 } \\ .000000 E \text { OO } \end{array}$	$\begin{aligned} & -5.404406800 \\ & -2.8327616 \text { 01 } \\ & -6.342577 E 01 \end{aligned}$
－UODOUDE OS -6.7451 U8E UU் －3．243d－3E G1 －6．680283E G1	$\begin{aligned} & -7.703011 E-02 \\ & -8.841454 E \text { OO } \\ & -3.704712 E \text { U1 } \\ & -6.634051 E \text { O1 } \end{aligned}$	$-3.1894 \circ 9 \mathrm{E}-\mathrm{Cl}$ －1．125509E 01 －4．19U337E OL －6．23341JE CL	－7．409431F－01 －1．398037E UL －4．694916E 51 －5．322879E O1	$\begin{aligned} & -1.599635 E \text { OO } \\ & -5.704234 E \text { Oi } \\ & -5.209800 E \text { O1 } \\ & -3.741812 E \text { OI } \end{aligned}$	$\begin{aligned} & -2.303244 \mathrm{E} \text { OO } \\ & -2.041695 \mathrm{E} 01 \\ & -3.695948 \mathrm{E} \\ & 01 \\ & -1.369494 \mathrm{E} \end{aligned}$	$\begin{array}{r} -3.484923 E 00 \\ -2.411089 E 01 \\ -6.138973 E \text { O1 } \\ .000000 E \text { OO } \end{array}$	$\begin{aligned} & -4.961877 E \text { OO } \\ & -2.812080 E \text { O1 } \\ & -6.487516 E 01 \end{aligned}$
$\begin{array}{r} .0000 \cup 0 E \text { GO } \\ -6.083247 E \text { OO } \\ -3.176620 E \text { C1 } \\ -6.838485 E \text { O1 } \end{array}$	$\begin{aligned} & -5.550521 E-02 \\ & -8.113313 E 00 \\ & -3.651173 E \text { D1 } \\ & -6.795753 E n 01 \end{aligned}$	$\begin{aligned} & -2.379576 E-01 \\ & -1.047653 E \text { U1 } \\ & -4.157302 E \text { O1 } \\ & -6.377711 E \text { U1 } \end{aligned}$	－5．799086E－01 －1．317555E 01 －4．688457E OL －3．428549E U1	$\begin{aligned} & -1.126590 E \text { U0 } \\ & -1.621182 E \text { O1 } \\ & -5.231158 \mathrm{E} \\ & -3.795059 \mathrm{OL} \end{aligned}$	$\begin{aligned} & -1.421703600 \\ & -1.9586646 \text { ol } \\ & -5.7617786 \text { ol } \\ & -1.578749 E \text { ol } \end{aligned}$	$\begin{array}{r} -2.999001 \mathrm{E} \text { 00 } \\ -2.330212 E \text { O1 } \\ -6.243429 E \text { OL } \\ .000000 E \text { OO } \end{array}$	$\begin{aligned} & -4.381312 E \text { OO } \\ & -2.736130 E \text { Oi } \\ & -6.624877 E \text { OL } \end{aligned}$
$\begin{array}{r} .000000 \mathrm{E} \text { OO } \\ 5.316445 \mathrm{E} \\ 3.849578 \mathrm{OL} \\ 3.9545299 E \text { Oi } \end{array}$	$\begin{aligned} & -3.2791296-02 \\ & -7.245782 \mathrm{E} \\ & -3.5309949 \mathrm{E} \\ & -61 \\ & -6.72345 \mathrm{E} E \\ & 21 \end{aligned}$	$\begin{aligned} & -1.519430 F-01 \\ & -9.516941 E 00 \\ & -4.052445504 \\ & -6.4454479 E 01 \end{aligned}$	－3．99114日E－61 －1．21295UE OL －4．608496E OS －S．S15023E OL	$\begin{aligned} & -8.317111 E-0 i \\ & -1.508735 E \text { O1 } \\ & -5.146798 E 61 \\ & -3.836834 E ~ 31 \end{aligned}$	$\begin{aligned} & -1.504545 E \text { OO } \\ & -1.849254 E \text { OI } \\ & -5.740346 E \text { O1 } \\ & -1.584021 E \text { O1 } \end{aligned}$	$\begin{array}{rl} -2.459517 E & 00 \\ -2.205232 E & \text { E1 } \\ -6.287992 E & 01 \\ .000005 E & 00 \end{array}$	$\begin{aligned} & -3.724597 E 00 \\ & -2.608005 E \text { OL } \\ & -6.711167 E 02 \end{aligned}$
－0000nde UO －4．510399E UC －2．866274E 01 －T．U25934E E！		$\begin{aligned} & -6.816265 E-02 \\ & -8.450797 E \text { UO } \\ & -2.876448 E \text { O1 } \\ & -6.585462 E \text { U1 } \end{aligned}$	$\begin{aligned} & -2.215614 E-01 \\ & -1 .(92983 E \text { O1 } \\ & -4.454842 E \text { O1 } \\ & -5.581241 E \text { OL } \end{aligned}$	$\begin{aligned} & -5.393303 E-01 \\ & -1.37478 / E \text { Ji } \\ & -5 . v 68015 E \text { ol } \\ & -3.466088 E \text { ol } \end{aligned}$	$\begin{aligned} & -1.086347 E 00 \\ & -1.690943 E \text { O1 } \\ & -5.688344 E \text { OL } \\ & -1.384254 E \text { OL } \end{aligned}$	$\begin{array}{r} -1.911589 E \text { OO } \\ -2.042849 E \text { O1 } \\ -6.268978 E \text { Of } \\ .00 c 000 E \text { no } \end{array}$	$\begin{aligned} & -3.046072 E \text { 00 } \\ & -2.433256 E \text { oi } \\ & -6.143089 E \text { oi } \end{aligned}$
$\begin{array}{r} .0000000 \mathrm{E} \text { U. } \\ -3.715353 \mathrm{E} \text { UO } \\ -2.035197 \mathrm{OL} \\ -7.049890 \mathrm{E} \text { Ot } \end{array}$	$\begin{array}{r} 8.056537 E-03 \\ -5.3678 \times 1 E \text { U } \\ -3.104440 E \text { y1 } \\ -7.069343 E 01 \end{array}$	$\begin{array}{r} 7.424124 E-03 \\ -7.347426 E \text { OU } \\ -3.635356 E \text { U1 } \\ -6.645543 E \text { Ol } \end{array}$	$\begin{aligned} & -5.8502776-02 \\ & -9.64 .7926 \mathrm{~L} \text { 00 } \\ & -4.224 .344 \mathrm{OL} \\ & -5.624889 \mathrm{E} \end{aligned}$	$\begin{aligned} & -2.677949 E-31 \\ & -1.227276 E \text { ol } \\ & -4.875276 E \text { O1 } \\ & -3.880096 E \text { OL } \end{aligned}$	$\begin{aligned} & -6.933708 E-01 \\ & -1.522141 E \text { O1 } \\ & -5.544202 E \text { Ol } \\ & -1.376978 E \text { Oi } \end{aligned}$	$\begin{array}{r} -1.389866 E \text { OO } \\ -1.851717 E \text { O1 } \\ -6.183640 E \text { O1 } \\ .000000 E 00 \end{array}$	$\begin{aligned} & -2.391350 E 00 \\ & -2.220431 E \text { O1 } \\ & -6.717504 E \quad 01 \end{aligned}$
	$\begin{array}{r} 2.517114 E-v 2 \\ -4.463468 E \text { OO } \\ -2.416462 E \text { o1 } \\ -7.07753 S E \text { O1 } \end{array}$	$\begin{array}{r} 7.223191 E-02 \\ -6.262418 E \text { OR } \\ -3.337914 E \text { O1 } \\ -6.661284 E \text { ol } \end{array}$	$\begin{array}{r} 8.177031 E-62 \\ -8.358287 E \text { OO } \\ -3.939139 E \text { O1 } \\ -5.6343411 E \text {.nk } \end{array}$	$\begin{aligned} & -3.13100695-j 2 \\ & -1.474419 E \text { O1 } \\ & -4.612538 E \text { OL } \\ & -3.465122 E \text { J1 } \end{aligned}$	$\begin{aligned} & -3.444229 E-01 \\ & -1.542532 E \text { O1 } \\ & -5.3265539 E \text { il } \\ & -1.555415 E \text { O1 } \end{aligned}$	$\begin{array}{r} -9.191398 E-01 \\ -1.642893 E \text { O1 } \\ -6.029730 E \text { O1 } \\ .0000000 E \text { OO } \end{array}$	$\begin{aligned} & -1.789316 E 00 \\ & -1.781567 E \text { O1 } \\ & -6.630090 E \text { O1 } \end{aligned}$
－UDOUNUE JS $-2.304612 E 00$ －2．082244E O1 -6.927519 E ． 1	$\begin{array}{r} 3.7 .34575 r-92 \\ -3.636657 E \text {. } .0 \\ -2.448170 \mathrm{OL} \\ -7.029413 \mathrm{E} \text { U1 } \end{array}$		$\begin{array}{r} 1.921548 \mathrm{E}-\mathrm{Ul} \\ -7.122649 \mathrm{EO} \\ -3.594756 \mathrm{E} \text { O1 } \\ -5.593741 \mathrm{E} \text { O. } \end{array}$	$\begin{array}{r} 1.021975 E-01 \\ -9.250257 E 00 \\ -4.245422 E 01 \\ -3.411568 E 01 \end{array}$	$\begin{aligned} & -5.387284 E-02 \\ & -1.163232 E \text { O1 } \\ & -5 . j 41988 E \text { O1 } \\ & -1.517037 E \text { O1 } \end{aligned}$	$\begin{array}{r} -5.177177 E-01 \\ -1.429776 E \text { O1 } \\ -5.803115 E \text { O1 } \\ .000000 E \text { OD } \end{array}$	$-1.263919 E 00$ $-1.731896 E 01$ －6．47278SE OL
$\begin{array}{r} .10000 J E \text { US } \\ -1.151619 E \text { UJ } \\ -1.795135 E \text { U1 } \\ -6.752383 E \text { OL } \end{array}$		$\begin{array}{r} 1.4707 .9 \mathrm{E}-01 \\ -4.318045 \mathrm{E} \text { OC } \\ -2.631146 \mathrm{E} \text { J1 } \\ -6.531194 E \text { O1 } \end{array}$	$\begin{array}{r} 2.606702 E-01 \\ -6.016357000 \\ -3.207530 E \text { ol } \\ -5.492049 E \text { C.1 } \end{array}$	$\begin{array}{r} 2.936162 E-01 \\ -7.487040 E \text { ON } \\ -3.499321 E \text { O1 } \\ -3.714777 E \text { Oi } \end{array}$	$\begin{array}{r} 1.584685 \mathrm{E}-01 \\ -9.465120 \mathrm{E} \text { OO } \\ -4.682967 \mathrm{E} \\ -1.461904 \mathrm{E} \end{array}$	$\begin{array}{r} -2.004919 E-01 \\ -1.227406 E \text { O1 } \\ -5.495331 E \text { O1 } \\ .0000000 \mathrm{E} \text { OO } \end{array}$	$\begin{aligned} & -8.4 i 9624 E-01 \\ & -1.488802 E \text { O1 } \\ & -6.231447 E \text { OL } \end{aligned}$
．OUOJCOE CO － 1.384741 E G －1．526318E il －6．470006E U1	$\begin{array}{r} 3.4762\left(.4 E-C_{2}\right. \\ -2.4197161 . \\ -8.845231 E \quad 1 \\ -6.676354 E \quad 31 \end{array}$	1．EAU3ITE－U1 － $3.67: 14 \mathrm{COE}$ OC $-2.256 .344 \mathrm{Cl}$ －6．336631E 01	$\begin{array}{r} 2.425312 t-01 \\ -5.134131600 \\ -2.7 A 9996 E 1 \\ -5.3160988001 \end{array}$				$\begin{aligned} & -5.953124 E-0 i \\ & -1.270250 E 01 \\ & -5.885346 E \quad 01 \end{aligned}$

REFERENCES

1. Anderson, B. H. and M. J. Kolar, "Experimental Investigation of the Behavior cf a Confined Fluid Subjected to Nonuniform Source and Wall Heating," NASA IN D-2C79, November 1963.
č. Arnett, R. W. and Miilhiser, D. R. "Theoretical Model for Predicting Thermal Stratification and Self Pressurization of a Fluid Container," Proc. Conf. on Pron. tank Press. and Strat., MSFC, Huntsiville, AIA., Jan. 1965.
2. Bailey, T. E. and R. F. Fearn, "Analytical and Experimental Determination of Liquid Hydrogen Temperature Stratification," Advances in Cryogenic Engineerins, Vol. 9, 1964, p. 254.
3. Bailey, T. E., R. V.nderkoppel, G. Skartvedt and T. Jefferson, "Cryogenic Propellant, Stratification Analysis and Test Data Correlation," AIAA Journal, Vol. 1, No. 7, July 1963, p. 1657.
4. Bailey, T. E. and others, "Analytical and Experimental Determination of Liquid Hydrogen Temperature Stratification," Final Report, Con'iract NAS 8-5046, Martin Company, Denver, Colorado, April 1963, Contractor to Marshall Space Flight Center.
5. K. Z. Parakat and John A. Ciark "On the Solution of the Diffusion by Numerical Methods," ASME paper, 64-H-131.
6. Barnett, D. O., T. W. Wimstead and L. S. MeReynolds, "An Investigation of LH_{2} Stratification in a Large Cylindrical Tank of Saturn Configuration," Paper U-12, 1964 Cryogenic Engineering Conference, Philadelphia, August 1964.
7. Batchelor, Quart. Applied Math. 12-1954, pp. 209-203.
8. Bruce, Peaceman, Rachfora and Fice "Calculations of Unsteadystate Gas Flow through Porous Media." Petroleum Transactions, ATME, Vol. 198, 1953.
9. Clark, J. A. "A Review of Pressurization, Stratification and Interfecial Phenomena," Vul. 10, International Advances in Cryogenic Engineering, Paper S-1, p. 259-284, Plenum Press, 1965.

REEERENCES (Continued)

11. Clark, J. A. and H. Z. Barakat, "Transient, Laminar, Free-Convection Heat and Mass Transfer in Closed, Partically Filled, Liquid Containers," Technical Report No. 1, Heat Transfer Laboratory, university oî ifichigan, Ann Arbor, Contract NAS 8-825, Marshall Space Flight Center, January 1964. (Report completed in July 1963 and advanced copies submitted to NASA for approval).
12. J. A. Clark, G. J. Van Wylen and S. K. Fenster "Transient Phenomena associated with the Pressurized Discharge of a Cryogenic Liquid from a Closed Container," Advances in Cryogenic Engineering, Vol. 5, pp. 467-480.
13. Coxe, E. F. and J. W. Taton, "Analysis of the Pressurizing Gas Requirements for an Evaporated Propellant Pressurization System," Advances in Cryogenic Engineering, Vol. 7, 1962. p. 234.
14. A. N. Curren and C. F. Zalabak "Effect of Closed End Coolant Passages on Natural Convection Water Cooling of Gas Turbine Blades," NACA EM E55J 18-a.
15. Dufort, E. C. and Frankl, S. P., "Stability Conditions in the Numerical Treatment of Parabolic Differential Equations," Math. Tables Aids Comput., 7, pp. 135-152, 1953.
16. Dusinberre, "A Note on the 'Implicit' Method for Finite-Difference Heat Transfer Calculations," ASME Trans., J. Heat Tranffer, Series C. Feb. 1961, pp. 94..95.
17. R. Eichhorn, "Flow Visualization and Velocity Measurement in Natural Convection with Telluriun Die Method," ASNE Trans., J. Heat Transfer, Vol. 83. Series C. pp. 379-381.
18. Eulitz, W. R., "Practical Consequences of Liquid Propellants Slosh Characteristics Derived by Nomographic Methods," Marshall Space Flight Center Memo MIP-P and VE-P-63-7, October 22, 1963.
19. S. K. Fenster, G. J. Van Wylen and J. A. Clark, "Tranaient Phenomena Associated with the Pressurization of Liguid Nitr ren Boiling at Constant Heat Flux," Advances in Cryogenic Engineering, Voi. 5, pp. 226-234.
20. G. Forsythe and W. Wasow, "Finite-Difference Methods for PartialDifferential Equations." John Wiley and Sons, 1964.

REFERENCES (Continued)
21. Fromm, J. "A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows," Los Alamas Sci. Lab., Sept. 1963.
22. B. Gebhart, "Natural ionvection Transients," ASME Transactions, J. Heat Transfer, Series C, 85, pp. 184-185. See also J. Heat Transfer, 85, pp. 1C and 83, p. 61.
23. F. G. Hammitt, "Heat and Mass Transfer in Closed, Vertical, Cylindrical Vessels with Internal Heat Sources for Homogeneous Reactors," Ph.D. Thesis, University of Michigan, Dec. 1957.
24. Harper, E. Y., S. E. Hurd and J. O. Dorzldson, "A Study of Liquid Stratification in a Cylindrical Container," Lockheed Missiles and Space Co., Report 803973, March 1964.
25. Harper, E. Y., J. H. Chin, S. E. Hurd, A. N. Levy and H. M. Satterlee, "Analytical and Experinental Study of Liquid Orientation and Stratification in Standard andReduced Gravity Fields," Preliminary Report, Lockheed Missiles and Space Co., June 1964. Contract NAS 8-11525, Marshall Space Flight Center, "Theoretical and Experimental St.udies of Zero-g Heat Transfer Modes."
26. J. P. Hartnett, W. E. Welch and F. W. Iarson, "Free Convection Heat Transfer to Water and Mercury in an Enclosed Cylindrical Tube," Nuclear Ingineering and Science Conference, Preprint 27, Session XX, Chicago, March 17-21, 1953.
27. J. P. Hartnett and W. E. Welch, "Experimental Studies of Free Convection Heat Transfer .n a Vertical Tube with Uniform Hest Frlux," Trans. ASME Vol. 79, 1957, p. 1551.
28. J. D. Hellums, "Finite-Difference Computation of Natural Convection Flow," Ph.D. Thesis, University of Michigan, Sept. 1960.
29. F. Herzberg, "Effective Density of Boiling Liquid Oxygen," Advances in Cryogenic Engineering, Vol. 5.
30. Karplus, W. J., "An Electric Circuit Theory Approach to FiniteDifference Stability," Trans. AIEE, 77, 1, 1758.
31. Landau and Lifshitz, "Fluid Mechanics," Adison-Wesly, 1959.

REFERENCES (Continued)

32. F. W. Larsen and J. P. Hartnett, "Effect of Aspect Ratio and Tube Orientation on Free Convection Heat Transfer to Water and Mercury in Enclosed Circular Tubes," ASME Irrans., J. Heat Transfer, Vol. 83, Series C, pp. 87-93.
33. Lax, P. D. and Richtmeyer, R. D., "Survey of the Stabilyty of Linear Finite-Difference Equations," Comm. Pure Appl. Math., 9, 1956, pp. 267-293.
34. A. F. Leitzke, "Theoretical and Experimental Investigation of Heat Transfer by Natural Convection Between Parallel Plates," NACA Report 1223, 1955.
35. S. Levy, "Integral Methods in Natural Convection Flow," ASNE Paper No. 55-APM-22.
36. M. J. Lighthill, "Theoretical Consideration on Free Convection in Tubes," Quart. J. Mech. and App. Math., Vol. 6, J.953, pp. 398-439.
37. Liu, C. K., "Sloshing and Pressure-Decay in Pressurized Cryogenic Tanks of Launch Vehicles," Marshall Space Flight Center Memo, ifTP-F and VE-P-61-23, December 18, 1961.
38. B. W. Martin, "Free Convection in an Open Thermosyphen with Special Reference to Turbulent Flow," Proc. Roy. Soc., Series A, Vol. 230, 1955, pp. 502-530.
39. Neff, B. D. "Investigation of Stratification Reduction Techniques." Proceedings of the Conference on Propellant Tank Pressurization and Stratification, MSFC, Huriisvilie, Ala., Jan. 1965.
40. Nein, M. E. and R. R. He:. d, "Experiences with Pressurized Discharge of Liquid Oxygen from Large Flight Veinicle Propellant Tanks," Advances in Cryogenic Engineering, Vol. 7, 1962, p. 244.
41. Nein, M. E. and J. Fo Thompson, "Experimental and Analytical Studies of Pressurization Systemis for Cryogenic Propellants," Propulsion Division, NASA, Marshall Space Flight Center, Huntaville, Ala., July 1964.
42. O'Brien, G. G., $\sqrt{\operatorname{mman}} \mathrm{M}_{0}$, and Kaplan S., "A Study of the Numerical Solution of Partial-Differential Equations," J. Math. Phys., 29, 1951, pp. 223-251.

REFTRREMCES (Continued)

43. Ordin, P. M., S. Weiss and H. Christenson, "Pressure-Temperature Histories of Liquid Hydrogen under Pressurization and Venting Conditions," Advances in Cryogenic Engineering, Vol. 5, 1960, p. 481.
44. S. Ostrach, "An Analysis of Laminar Free Conveciion Flow and Heat Transfer about a Flat Plate Parallel to the Direction of the Generating Body Force," wACA Report 11-1953.
45. S. Ostrach, "Laminar Matural Convection Flow and Heat Transfer to Fluids with and without Heat Sources with Constant Wail Temperature," NACA Tn-2863, Dec. 1552.
46. S. Ostrach, "Combined Natural and Forced Convection Leminar Flow and Heat Transfer to Fluids with and without Heat Sources in Channels with Linearly Varying Wall Temperature: " NACA Tn 3141 April 1954.
47. S. Ostrach and P. R. Thronton, "On the Stagnation of Natural Convection Flows in Closed EnC Tubes," ASME Paper No. 57-SA-2.
48. G. A. Ostromov, "Free Convection under the Conaitions of the Internal Problem," NACA Tn 1.407.
49. Platt, G. K., M. E. Nein, J. L. Vaniman and C. C. Wood, "Feed System Problems Associated with Crycgenic Propellant Engines," Paper 687A, SAE-ASKE, National Aerorautical Meeting and Production Engineering Forum, April 1963.
50. E. Yohlhausen, Zamml, 115 (1921).
51. G. Poots, "Heat Transfer by Laminar Free Convection in Enclosed Flane Gas Iayers," Quart. J. Mech. and Appl. Math., Vol. XX, Pt. 3, 1958, pp. 257-273.
52. R. D. Richtmyer, "Difference Methods for Initial Value Problem," Interscience Publication, 1957.
53. Robbins, J. H. andi A. C. Rugers, "An Analysis on Predicting Thermal Stratification in Iiquid Hydrogen, " Manuscript submitted to AIAA, April 1964.

REFERENCES (Continued)

54. A. G. Romnov, "Suudy of Heat Exchange in a Dead End C.annel under Free Convection Conditions," Izvestiya Akaãemii Nau, USSR. Otdeleni Tekhnisheskixh, No. 6, 1956, pp. 63-76.
55. Ruder, J. M., "Stratification in a Pressurized Container with Sidewall Heating," AIAA Journa1, Vol. 2, No. 1, January 1964, p. 135.
56. R. S. Schechter, "Natural Convection Heat Trassicr in regions of Maximum Fluid Density," AIChe Paper No. 57-HT-25.
57. E. Schmidt and W. Bachme in, Forsch Ing-Wes. 1, 391. (1930).
58. Schwind, R. G. and G. C. Vliet, "Observations and Interpretationof Natural Convection and Stratification in Vessels," Proceeding, 1964 Heat Transfer and Fluid Mechanics Institute, Stanford University Press.
59. Scott, L. E., R. F. Robins, j. B. Mann and B. W. Birmingham, "Temperature Stratification in a Nonventing Helium Dewar," Journal of Research, NBS, Vol. 64 C , Mo. 1, 1960 , p. 19.
60. Segel, M., "Experimental Stueies of Straufication Phenomena and Pressurization for Liquid Hydrogen," Paper U-11, 1.: 4, Cryogenic Engineering Conference, Philadelphia, August 1964.
61. K. Seigel, "Iransient Free Convection from a Vertical Flat Plate," ASME Paper No. 57-SA-8.
62. R. Seigel and R. H. Norris, "Test of Free Convection in a Partially Enc..osed Spaces between Two Heatcd Vertical Plates," ASNE Paper No. 56-SA-5.
63. R. G. S. Skipper, I. S. C. Holt and O. A. Saunders, "Natural Convection in Iiscous 0il," International Development in Heat Transfer, Part 5, pp. 1003-1009.
64. Smith, W. "Natural Convection in a Rectangular Cavity," Ph.I. Thesis, University of Michigan, 1964.
65. E. M. Sparrow and J. L. Gregg, "The Variable Fluid Property," ASME Paper No. 57-A-46.
66. E. Y. Sparrca, J. S. Grege, "Similar Solutions for Free Convecticn frcia a Monisothemel Vertical Flate," AS: Paper Mo. 5ī-SA-j.
 tion in a Harron Verizal Enciosure," NACA FW E5c i in-a, Feì. 1956.
67. Swim, R. T., "Temperature Distritution in iiquid and Vapor pheses of Helium in Cylindrical Dewars," Advances in Cryozenic Engineering, Yol. 5, こ0. $\mathrm{OC}, \mathrm{p} .4$ ç8.
68. Tatom, J. h., W. i. Brown, 亡. H. Knigint and E. F. Coxe, "Analysis oi Thermal Stratification of Liquid Hydrogen in Rocket Propellant Tanks," Ad:ances in Czyogenic Engineering, iol. 9, 1964, p. $26 ́ 5$.
69. Tuller: ㄱ. M. ena s. Y. Harrn:r, "Approximate Anaiysis of Propellant Stratificstion," Altis Jourmal, Vol. I, No. S, Aug. 1963.
70. J. Todd, "Survey of Iumerical fnalysis," McGrav-Hill, 1962, Chapter 11.
71. G. J. Van Wrien, S. K. Fenster, H. Merte, Jr. a:d W. A. Wärren, "Pressurized Discharge of Liguid Nitrogen I'rem an Uninsulated Tank," Proceedings on the 1958 Cryogenic Engineering Conference, 1959.
72. Viet, G. ©. and Brogan, J. J., "Investigation on the Effects of Baffles on Natural Convection Flow and on Stratificaion," Procoedings of the Conference on Fropeliant Tank Pressurization and Stratification, $: 15 F C, H u n t s v i l l e, ~ A l a ., ~ J a i . ~ 1965 . ~$
73. Wilkes, J. O., "The Finite-Difference Computation of Natural Convection in an Enclosed PGctangular Cavity," Ph.j. Thesis, Universitÿ of Michigan, August 1963*.
74. Wu, J. C., "On the Finite -Difference Solution of Laminar Boundary Layer Problems," Procetdings c^{n} the 1961 Heat Transfer and Fluid Mecharics Institute, stanford Unir.; Press, R. Binder Editor, p. 55.
75. S. L. Zeiberg and W. K. Mueller, "Transient Laminar Combined Free and Forced Convection in a Duct," ASME Trans., J. Heat Transfer Vol. 84 , Series C, pp. 141-148.
76. "A Compendium cf the Froperties of Materials at Low Temperature Phase I and II," R. B. Stewart and V. J. Johncon, Editors.
77. Petrovsky, I. G., "Lectures on Partial Differertial Equations," Interscience Publication, N. Y. 1954.
78. J. H. Chin, et al., "Aralytical and Experimental Study of Iiquid Orientation and Stratification in Standard and Reducea Graviity Fielas," Report No. 2-05-64-1, July 1964, Lockhead Missile and Space Company, NASA Contract NAS 8-11525.

[^0]: *Numbers in parentheses indicate the references which are given at the end.

