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Preface 

This report  is in continuation of the ear l ie r  one entitled 

The first repor t  is "Notes on Magnetohydrodynamics - Part I". 

frequently re fer red  to  in the present part .  

In the discussion of the chapter on the covariant formu- 

lation of magnetohydrodynamics we a r e  compelled to make a 

slight change in notation. 

this discrepancy will be eliminated, 

In the revised version of these notes 
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Chapter VI 

Simple Waves 

1. One Dimensional Wave Propagation 

In classical  g a s  dynamics simple waves play a fundamental 

It is the result  of role in building up solutions in  wave propagation. 

the fact that only these waves can bound a region of constant flow if  

there  a r e  no shock waves. 

the generation of simple waves is by the withdrawal of a piston in a 

tube filled with gas a t  res t .  

speed until a constant final velocity is attained. 

magnetohydrodynamics have essentially the same  properties a s  those 

in gas dynamics. 

One of the most important examples of 

This piston is withdrawn with increasing 

Simple waves in 

To analyze them we take all field and flow quan- 

tities to be function of 

let  - H = (H1, H2, Hs) 

wherein we impose no 

time t and one space variable x. Furthermore 

restriction on the presence o r  absence of the 

quantities (v, w) and (Hy9 HZ). 

equation (4.1) implies that 

Under these circumstances the 

Hx = a constant, (1) 

While the equation (4. 2) to (4.5) reduce to 

aU av = 0, ax Y + H y  ax - H x K  
a H  a H  

aw = 0. Z au a H  

+Uax + HZ K - Hx ax a H Z  

t (3) 
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where in equation ( 3 ) ,  we have used the relation ( 4 . 2 1 ) .  

equations can be represented by a single vector equation 

These seven 

a l l  A -  au = O ,  
at + = a x  

where 

u =  - 

( 9 )  
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is a (7  x 7)  matrix:  

In c lassical  g a s  dynamics corresponding equations a r e  discussed 

and simplified by the introduction of two invariants, the s o  called Riemann 

invariants e 

system of the equation of motion. 

stant on one system of characterist ic curves while tk other on the 

second system of the characterist ic curves .  

ant  J ,  the analysis leads to  a relation 

These a r e  obtained by the integration of the characterist ic 

One of these invariants remains con- 

In te rms  of such an invari-  

where X is the slope of the corresponding character is t ic  curve.  

Riemann invariant J exists for the general  n system of equations ( 6 . 9 ) ,  

we should expect a relation of the fo rm ( 6 . 1 2 ) .  

If a 

Moreover, as in gas 
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t 

dynamics, it should be accomplished by premultiplying the equation 

(6 .9 )  by a row vector - D with components d l ,  d2, d3, . . . d n . This 

operation leads to the relation 

a U  
n a u. n 

j = o ,  1 

+ ai j  di  
j=1 

di 
i= 1 

where a 

wri te  the equation (12) in t e rms  of the variables u i’ we have 

a r e  the elements of the matr ix& - in  equation (1  1) .  If we i j  

By comparing (13) and (14) we obtain 

i = 1, 2,  . . .  n , a J  d. = 
1 a’ 

1 

. 

t 

and 
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a J  
KT 

J 
e di aij = X 
i= 1 
L .. 

When we substitute for di f rom (15) into (16), there results the equation 

d . a  = X d  . f 1 i j  j 
i= 1 

Therefore, we have two equations (15) and (17) for  determining the 

vector di. F r o m  (15) we obtain 

n This equation comprises a set of - (n-1) conditions which must  be 2 

satisfied by the variables di. 

tions which survive after the omission of the indentities and the 

This is the independent number of re la -  
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f 

symmetr ies  inherent in the above equation. 

( 1 7 )  give (n-1) independent equations. 

conditions fo r  determination of the n multiplier di. 

we have the definitive system of equations; and that is precisely the case 

The n homogeneous equations 

1 W e ,  therefore,  have z ( n - l ) ( n t  2)  

But only for  n = 2 ,  do 

of c lass ical  gas dynamics. As such we cannot introduce Riemann invari-  

ants for  the present  problem. 

Under somewhat weaker conditions than implied by the relation (12), 

Riemann invariants can be shown to exist .  

a simple wave region the quantities u. a r e  a l l  functions of one of the variables 

u. s ay  u 

variable in equation (9)  to obtain the expression 

Indeed if we assume that in 

1 

then we can per form the differentiation with respect  to this 
1 1’ 

a u  a U 1  a u  - a u ,  - 
T T  - a ~ ,  TX a u1 

- + , A -  

Along a curve u,(x,t)  = a constant, we have 

Combining (19) and (20) we obtain 

[A - 1  - 13 dU - = 0 .  

Again since the disturbance dU - # 0,  implies the relation 
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This equation gives us eigen values X ( l )  . . . X (n), leading to n simple 

wave solutions. Furthermore since al l  the dependent variables a r e  

functions of u it follows that along a curve u1 = constant, the quantities 1' 

u. and the elements the matrix A = A (IJ) a r e  a l l  constant. Therefore - -  1 - -  
the corresponding eigen values as determined by (12) above a r e  a lso 

constant, proving thereby that the line u 1 

and hence lead to a simple wave solution. 

= constant is a straight line 

In fact ,  to each eigen value 

there corresponds a right eigen 

(22), i . e .  

vector - r of the mat r ix  in the equation 

i = 1, . . .  n . 

If we denote r 1 9 r 2  , * e *  r (i) as the elements of the i th vector - r 

then f r o m  (21) and (23 )  we have 

(i) (i) 
n 

n ,  there  is a Thus fo r  each X (i), i = 1,  2 . . . where k is a constant. 

sys tem of first o rde r  differential equations of the fo rm (24). Integration 

of this system leads to the required Riemann invariants.  

2.  Character is t ics  

F r o m  the column vector (10) we observe that u = u,  is 3 

x-component of the flow field; it is in the direction normal to the plane 

wave front .  To derive the corresponding character is t ic  speeds we make 

the usual substitutions of Chapter IV in the sys tem of equations (2-8) ,  

i. e .  ; 
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? 

a F  + d F ,  (25) ax 'Fd - X d F  , at 
and therefore 

- dF --j - UdF , u =  X - u .  ( 2 6 )  d t  

When we take into account both the wave propagation in both positive 

as well a s  negative direction of the x-axis,  the system of par t ia l  

differential equations (2  -8) yields : 

2 

P Y P z P 
C dH T U d u t -  dp = O .  P H  PHZ Y d H  t -  

- PHx 
dH F U d v  = 0 .  

P Y 

T U d S = O .  ( 3 3 )  

F o r  a nontrivial solution of this system of homogeneous equations, 

we should have 
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( p U )  ( p U 2  -pH t p(Hx2 4- H 2 t HZ 
X Y 

We could have obtained this determinant directly f rom the relation ( 2 2 ) .  

The equation (25)  gives us the various wave speeds; the fast  speed U 

the slow speed U 

with U = 0, a s  in Chapter IV.  

the factor  

f a  

and the intermediate speed a ,  and the entropy wave 
S 

The fas t  and slow speeds a r e  given by 

Fur thermore ,  as before,  

112 

where a =( $) , is the Alfven speed. F r o m  the relation (26)  

we observe that the values of X fo r  various character is t ics ,  a r e  

given a s  

U s ,  a and 0 ,  we name the appropriate f '  Corresponding to the values U 

simple waves a s  fas t ,  Slow, t ransverse and entropy waves respectively. 

The se t  of equations (38)  a r e  the equations determining the charac te r i s -  

t ics in the x - t plane. 

3 .  Derivation of Riemann invariants: t h e  fas t  and slow waves 

To derive the Riemann invariants we need the equations ( 2 4 ) .  
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The value of the eigen vector - r is determined f rom the equation (23), 

while the equation (23) is obtained f r o m  the given system of equations 

(21) by the change of dU to - r. The system of equations corresponding 

to (21) for our analysis is that given by the relations (27) to (33). 

Therefore the eigen vector - r for  fast waves (and s imilar ly  for  other 

waves) is determined by the following set of algebraic equations: 

- U f r l  t H r3 - Hxr4 = 0 ,  
Y 

- U f r 2  t Her3 - Hxr5 0 , 

. 2  
C r 2 - U r  t -  r 6 = 0  , r1 t - PHZ 

f 3  P P 
HY 
P 

- PHx 
r l  - U f r 4  = 0 , 

P 

-PHx 
r2 - U f r 5  = 0 , 

P 

p r 3  - U f r 6  = 0 , 

- U r  = O .  f 7  

(39) 

(43) 

(44) 

(45) 

These equations readily provide us with the solution for  - r: 

= o  
7 

(46) 

(47) 
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- VHx 
r4 - - PUf 1 r - 

U H  
r =  f Y  r 3 .  1 

(49) 

W e  chose the constant of proportionality in such a way that in the relation 

(47) we l e t  r6 = p s  and then r becomes equal to U 3 f '  Thus 

r =  --f 

P 

0 
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F r o m  the relations (24) and (52) we get the required differential 

equations : 

(Ufz - a2)  dHy (Uf2  - a') dH Z 
-2 

ufL HZ 

du - 
uf 

2 
- p  (U,' - a 2 ) dv - p  (U,' - a ) dw 

These equations, in turn, yield Riemann invariants: 

S = constant, 

- '3 dw = constant; 
Z 

H + = constant; 
Z 

The relation (58), i . e .  H = mH m = a Constant, implies 
Z Y' 

that the magnetic field vector can be writ ten as H ; H i + H (i + mk), 
Y . x- 
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where i, j ,  k, a r e  the unit orthogonal vectors along the coordinate axes .  

We can therefore choose a new coordinate sys tem such that HZ = 0 .  

Fur thermore  the equations (30) and ( 3 1 )  give the relation 

- - -  

Z 
H 

- dw = - = m y  dv H 
Y 

which means that the flow and magnetic fields do not rotate ac ross  a 

simple wave. 

and H 

of coordinates the equations ( 2 7 )  to (32)  become 

Hence we can refer to a coordinate system such that w 

a r e  z e r o  throughout the simple wave region. In such a sys tem 
Z 

T U  dH t H du - Hxdv  = 0 , 
Y Y 

2 
C 

P H  
dH T U d u t  - dp = 0,  

P Y P 

-P Hx - dH ~ U d d v = O  , 
P Y 

p d u  T U d p =  0 

S = constant , 

while equation ( 3 5 )  reduces to  
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Let  U stand for  Uf o r  U s .  Define the quantities cy and p such 

that 

U2 
T '  a =  
C 

2 P = -  P C  

PHX 

The quantity a "2 is the ratio of the wave speed to the sound speed, 

while p ' / 2  is the ratio of sound speed to that of Alfven speed. 

over the relationfora implies,  when we put c - - - 2 , that 

More- 

2 2 U d p =  cuc d p =  cudp . 

2 Y P  Y 
If we take c = - , i . e .  take the equation of state a s  p = A(S)p , 

the relation for p becomes 
P 

p & .Np -2 = POP , 
VHX 

and since H 

quantity p - 0 -  

is a constant, we find that p is proportional to p .  The 
X 

Y 
2 -  

VHX 

Le t  us now t r y  to seek the solution to our problem in t e r m s  of 

a and p. F i r s t  of a l l  we observe that equation (66) takes the fo rm 

1 2 H = (a-1) ( p  - ;) Hx - 
Y 

Since H is a constant, H is determined in t e r m s  of cy and p. 
X Y 

F rom the relations (62)and (64) we readily obtain the equation 

2 2 (cz - U ) dp t 5 d (HY ) = 0 .  
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Moreover since p = A(S) p y  , the quantity p can be given in t e rms  of p 

with the help of the relation (69):  

P = P O P  l / Y  

where p is related to po as 0 

Thus the value of d p as  required in the equation (71) can be given in 

t e r m s  of P: 

The other quantity in  equation (71) which needs to be determined in 

terms of p is d(H 2 
) . F o r  this we appeal to the equation (70) and get  

Y 

(75) 
1 YP d ( a p - l - P - - ) ,  2 2 1 

X CY 3 CY d(Hy ) = H d ( a p  -1 - P -  - )  = 

2 
where  we have used the relation (69)  and put H 

Now observing the definition of a a s  given by the equation {67)9 and 

substituting f r o m  (74) and (75) into (71), the following equation results:  

a s  a function of p. 
X 

1 
1 P o  - - 1  2 c (1 -a) - p y  d p  t d ( a p  -1 -p  - - )  = 0 .  Y 2P Q 

But c2 = E and hence (76) takes the simple fo rm 
P 
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where 

/I Y 
Y = 2 - y ‘  

The equation ( 7 7 )  enables us to determine Q in  terms of p. 

enables us to determine U in te rms  of p.  

the definitions for p and p give 

This in turn,  

Indeed the relation (67)’ and 

0 0’ 

1 1 - -  
Y u2 = c o  2 ap ( 7 9 )  

2 
where co = ypo/po .  Fur thermore  H ( and hence a l so  H in view of Y z 

the relation ( 6 0 ) ) i S  a l so  determined a s  a function of p as  is obvious f r o m  

the equation ( 7 0 ) .  

of p and p in te rms  of p .  

f o r  whose determination we appeal to the equations ( 3 0 ) ,  ( 3 1 ) ,  and ( 3 2 )  

Similarly the equations (69)  and (72) give the values 

This leaves only the velocity vector (u,  v ,  w) 

and get 

1 / 2  -1 
du = f C Q  P dP ’ 

and 

IJ- H dHZ . 1 / 2  X 
dw = 7 

C Q  P 

Since the right hand sides of ( 8 0 ) ’  (81), and (82)  a r e  known in t e r m s  of 

p,  we can integrate these relations to evaluate U, V, and w .  Thus, the 

evaluation of all  the flow and field quantities depends on the relation 
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(77). Therefore we devote the next section to the discussion of this 

equation 

4. The solutions of the equation (77) 

The integral curves  of the equation (77) can be  easily sketched 

graphically. The physically admissible portion of these curves can be 

completely separated into two branches.  These branches will be de-  

noted by CY and CY corresponding to the fast and slow waves respectively. f S 

As such CY and CY have to satisfy the inequalities: f S 

paf - :.1 p > I  “f - 

< 1  - 

where P > 0 and CY > 0 .  These inequalities follow f r o m  the relations 

( 3 6 ) ,  (37), (67 ) ,  and (70). From the above two relations i t  follows that 

in  the (a, - p) plane the lines ~$3 = 1 and cy = 1, bound the f a s t  wave region 

(f-region) f rom above and the slow wave region (s-region) f rom below. 

The point (1 ,  1) is a singular point (node). 

point we se t  

f -  

In the neighborhood of this 

A A 
CY = a-1, P = P-1, 

and the equation (77) takes the f o r m  

A d$ A A  A I \  CYdT= y p t 2 y C Y .  

This equation is easily integrated; 



-18- 

C = a constant 

At the singular point ( 1 , l )  a l l  the integral  curves have a common tangent 

with a negative slope for  y > 1: 

2 Since the derivative dp/& vanishes on the curve cy p = 1 , each integral  

curve has i ts  tangent horizontal a t  the point of intersection with this curve.  

Fur thermore  from (77)  and the inequalities (83) and (84) it follows that 

except a t  (1, l ) ,  the value of dplda is always positive 

- d p  > o .  
da, 

The integral  curves a r e  sketched in figure 1 .  

curves which a re  physically inadmissable a r e  indicated by dashed l ines .  

In fact  f rom the relation (70)  i t  follows that in  these portions H 

imaginary. 

The positions of the 

becomes 
Y 

Riemann invariants can now be obtained directly f rom the inte- 

g ra l  of the equation (77). If we make the substitution (85) in  the equation 

(77), i t  yields the solutions 

A 

and 
A 

ji2 

j - 2  S 
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J 

c9 
W c 

a a 
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The values of Riemann invariants Rm and R: a r e  determined by those in 

the constant state. Incidentally since the velocity vector does not enter  

these equations they a r e  called magnetic Riemann invariants.  

f 

L e t  us now study the variation of the velocity field ac ross  the 

simple wave. 

f rom the relation (74)  in the equation for  du, viz. 

In this connection we should substitute the value of d p 

( 8 0 ) :  

dp  J (92)  
1 / 2  p- l  d u = * c a  

where we have used the relation between p and po a s  given by the equa- 

tion (72 ) .  

tion (69) and (72): 

We can write c in  t e rms  of c and (3 with the help of the rela-' 0 

1 1-- 
c2  = co  2 p Y 

Substituting (93) into (92) ,  we get 

(93) 

Therefore the behaviour of the jump in velocity in the x-direction in  

compression and rarefaction waves i s  the same  as in  c lass ica l  gas 

dynamics . 
F r o m  ( 5 3 )  it follows that the behaviour of dv and dw is the same.  

W e  need, therefore, to calculate dv only. To evaluate dv f r o m  (81) we 

should f i r s t  calculate H . This follows f r o m  (70) .  
Y 
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where H ( f  0)  i s  the value of H in the constant s ta te .  Furthermore 

H 

i ts  sign ac ross  the slow and the fas t  waves. 

Y l  Y 
does not vanish anywhere except (rp = 1, and hence it does not change 

Y 
Therefore 

H 
sgn ( 2 )  = Yl 

HX 

W e  now proceed to evaluate dv 

du and get 

in precisely the same manner a s  for  
Y 

o r  

where the =F signs a r e  for  the fas t  wave and slow waves respectively. 

The equations (94) and (98) can be integrated to give the velocity 

Riemann invariants : 
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By substituting af and as for  a we derive the corresponding Riemann 

invariants f o r  the fast and slow waves. 

. The above analysis suffices to determine the behaviour of the 

Let us recollect that p is proportional to fast and slow simple waves. 

both p and p .  If p increases  both p and p increase.  Thus p increasing 

means that the wave is a compression wave propagating in the direction 

of P increasing. 

decreasing p. 

fo rm the relation (89), and hence, since U = c , U a lso  increases .  

Let us consider a fast  wave propagating in the positive direction along 

the x-axis into the region specified by p l ,  p, Hx > 0 and H >. 0,  and 

v = w = 0; i . e .  specified by ( a , p,) in the (u, p) plane. 

considering the fast wave, the point ( a , ,  p,) must  be in the f-region of the 

figure 1. 

ment of the parameter  P o  

observe that because of the initial condition on H 

H also increases with p .  

Similarly a rarefaction propagates in the direction of 

Furthermore when p increases  a increases  as is c lear  

2 2 

Y l  
Since we a r e  1 

The behaviour of the wave i s  described in t e rms  of a develop- 

In addition to a and U increasing with p, we 

and the relation (70), 
Y 

Y 
F r o m  the relation (94), it fur ther  follows that u a lso increases  

with p. Thus the character is t ic  slope u t U increases  with increasing 

p, i . e . ,  f a s t  wave has a tendency to become a shock. That is precisely 

what happens f o r  the c lassical  compression wave. However, the t r ans -  

verse  velocity component v decreases  with increasing p as can be read 

off f r o m  the relation (98). 

direction in the case of the fas t  compression wave. 

the magnetic field increases  in the positive y - direction. 

Thus the particle moves in the negative y- 

o n  the other hand 

Similarly 



-23 - 
U,  H and u decrease with decreasing p, and the character is t ic  slope 

u + U also decreases .  If p continues to decrease so  that the point on 

the integral  curve approaches the cr i t ical  curve  CY = 1, then H 
Y 

approaches zero,  leading to the so  called complete rarefaction. Since 

density remains finite in this case because p does, the cavitation does 

not occur in the f a s t  rarefaction wave. 

Y 

In the case of a s low wave propagating in the positive direction 

of the x-axis we assume the same initial conditions. 

initial point ( a l ,  p,) now lies in the s-region of figure 1. 

the compression wave CY 

seen f rom the inequality ( 

ze ro  a s  the point (cy, (3) approaches the line cup = 1 and there the com - 
pression i s  complete. 

ter is t ic  slope can tend to  a slow shock. 

increases .  

cy a l so  decreases .  

P = o o  Since p is  proportional to (3, p can also vanish, the cavitation 

can s e t  in. The magnetic field H increases  in this case .  The value 

of u decreases .  

slope becomes smoother.  

rarefaction wave. 

However the 

Again, for  

and U increase,  but H 
S Y 

decreases  a s  can be 

only) (84) and the relation (70) ;  H approaches 
Y 

Since both u and U increase with p, the charac-  

The t ransverse  velocity v a l so  

Finally in the s low rarefaction wave for  which p decreases ,  

In this case the integral  curve can reach the line 
S 

Y 
With U increasing and u decreasing, the character is t ic  

The value of v a l so  decreases  ac ross  a slow 

5.  Intermediate simple waves and mater ia l  layers  

In the equation (34), the factor  (pU - pHX ) leads to the value 2 2 

of u: 2 
2 pHx 2 U = - = a Alfven speed. 

P 

giving us the t ransverse  simple wave. 

(43) and (44), i t  follows that 

F r o m  Chapter IV equations ( 3 3 ) ,  
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dp = d u =  dS = 0 , 

H dH + H  dH = O  , (1 04) Y Y  z z  

where the 7 signs correspond to the character is t ic  lines dx/dt  = u f a,  

respectively. Thus p, u and S a r e  constants. So is, of course,  H . 
The jump in the magnitude of the magnetic field ac ross  this wave is 

zero. The tangential magnetic f ie ld  however, rotates:  

X 

H = H I T  s i n $  , (105) Y 

Z = H I T  c o s +  , 

where L/J is a parameter and HIT'isa constant. 

velocity field becomes 

Similarly the tangential 

where A is a constant vector. Since the jumps take place only in the 

tangential components of the flow and field quantities, the t ransverse  

simple wave may be considered to be a shear  flow. All par t ic les  on 

the same  (y, z )  - plane move in the s a m e  s t ra ight  line. 

--- 

There remains the factor U = 0 of the equation ( 3 4 ) .  This 

corresponds to the mater ia l  layer  (the contact layer ) .  

Chapter I V ,  if  Hx # 0,  over a contact layer  then only the density and 

entropy change; all other flow and f ie ld  quantities a r e  constant. This 

excludes the existence of the shear  material layer .  

As explained in  
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If Hx = 0,  all other quantities may vary  except the total p re s su re  

p::, which remains constant. 
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Chapter VI1 

Covariant Formula tion 

Her'etofore we have adopted 'only the quasi-equilibrium appro- 

ximation to the electrodynamic equations by neglecting the displacement 

currents  and charge accumulations. This approximation has  mere ly  

allowed us the possibility that the velocities of fluid elements a r e  

comparable with the velocities of sound. In this chapter we plan to 

avoid that limitation by giving a covariant formulation to the equations 

of magnetohydrodynamics. Relativistic hydrodynamics has  been formulated 

and put on f i r m  foundations recently, while the equations of electrodynamics 

lend themselves readily to covariant description. 

two disciplines. 

We plan to couple these 

Specifically we shall  consider a perfect  and infinitely 

conducting fluid. 

After formulating the appropriate equations we discuss  the pro-  

pagation of weak disturbances in the same  manner  a s  analyzed in 

Chapter IV.  

sur face  in an Einstein-Riemann space: 

surace  ac ross  which all the magnetohydrodynamic quantities a r e  continuous 

but the first derivatives of a t  l eas t  one of these quantities i s  discontinuous, 

we obtain various speeds of propagation of these sur faces .  

In fact  we represent  the wave front  by a time-like hyper- 

By using the concept of singular 

Then we take 

a suitable metric and give a space-time representation of the analysis .  

This enables us to compare the present  discussion with the known resul ts  

of non-relativistic magnetohydrodynamics a s  given in  Chapter I V .  

Qualitatively the results a r e  the same .  

waves--slow, intermediate and f a s t .  

Indeed, there  a r e  three kinds of 

The possibility of any of these waves 

exceeding the speed of light is excluded since we have. taken the wave 
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normals to be space-like. 

The chapter ends with the discussion of the bicharacterist ics 

and the surfaces of wave normals.  

A 1. Le t  x be a general  curvilinear coordinate sys tem in the 

Einstein-Riemann 4-space ( re fer red  to hereaf ter  a s  E - R  space) .  The 

capital Roman indicies have the range 0, 1 , 2 , 3 ,  and a r e  subject to the 

summation convention over this range. Fur thermore  l e t  g denote 

the met r ic  components of the E - R  space and le t  WA stand for  the 

contravariant components of the unit time -like velocity 4-vector: 

AB 

dxA WA = - , s is the proper time; ds 

WA WB = 1  AB 

The momentum energy tensor with components T is composed AB 

of two par t s  Ti:) and TAB. (e) The material p a r t  T F i  is given a s  

where p is the proper  density, p is the p re s su re  and c is the velocity 

of light".. The components T have the dimensions of energy. The 

electromagnetic pa r t  TPd is defined fo r  infinitely conducting fluids in 

t e r m s  of the electromagnetic skewsymmatric tensor with components 

HAB which in special  relativity takes. the form: 

.b 

AB 

:x In the previous chapters we have denoted the velocity of sound with 
the symbol c .  However every effort is made to avoid confusion. 
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E3 

-B2 

B1 

\ 

0 
2 

E2 

B 3  0 1 -: 1 
( 3 )  

0 j - k 2  -B3 

- E3 B2 -B 1 

The value of TFA is :  

where p i s  the magnetic permeabili ty.  

The Maxwell equations can be writ ten in covariant f o r m  in 
B t e rms  of the skewsymmetric tensor HAB and the 4 vector j : 

( 5 )  1 2  3 j B = ( a ,  J , J  , J ) y  

2 2  where Q is the sca la r  charge density while J1, J 

of the electr ic  current  density. 

equations is the dual tensor H 

J a r e  the components 

Another tensor which en ters  the Maxwell 
.e. 

A B  

where 

In fac t  the differential equation 

a r e  the components of the customary permutation tensor .  

= 0 ,  AB 
( 7 )  
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I , 

i .  

where the semicolon denotes the covariant differentiation formed on 

Is equivalent to the s e t  of the Maxwell equations  AB ’ 

cur l  - E t ’& = 0, 

div B = 0. - 

Similarly the equation 

is equivalent to the other s e t  of Maxwell equations: 

D 
t J, a t -  

a -  cur l  H = - 

Let  us now introduce the magnetic 4-vector h A and the 

A: e lectr ic  4-vector e 

B e A = H B A W  4 

i t  readily follows t h a t  both the AB’ In view of the skew symmetry of H 

electromagnetic 4-vectors are  orthogonal to - W: 
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(13) hAWA = eA W A = 0 .  

i 
Fur thermore  their components in the r e s t  f r ame  W = 1, W = 0 ,  

coincide with the magnetic and electr ic  3 -vectors with components 

Hi and Ei. 

indices will have the range 1 , 2 , 3 .  

it follows from OHM'S law that eA = 0 .  

In these expressions a s  well a s  in the sequelp the Latin 

F o r  infinitely conducting fluids, 

Therefore f rom (12) we have 

This means that the 4-vector - W lies in  the null domain of the skew- 

symmetr ic  matrix ((H 

four .  But an antisymmetric mat r ix  has always an  even rank. Thus 

the rank of th i s  matr ix  is two (the rank z e r o  is obviously excluded). 

F r o m  the definition of the dual tensor it follows that the mat r ix  

( ( H A B ) )  has  a l so  rank two and that the 4-vector - W lies in its non-null 

domain. Furthermore since H*aB h 

non-null domain of this matrix. 

orthogonal vectors lying in  the non-null domain of the skew-symmetric 

mat r ix  ((H"' 

) ) .  Hence the rank of this mat r ix  i s  l e s s  than BA 

I 

.TI 

B rlr 

# 0, the vector h a l so  l ies  in the 

Since we have found two mutually 

) )  of rank two, we can decompose it into the bivector fo rm:  AB 

where the coefficient t ~ .  is accounted f o r  by  the relation (11). 
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Hence 

C D  W h .  - 
H~~ - p ABCD 

By substituting the relation (15) into the se t  of Maxwell 

equations (7) ,  we obtain an  equation for  the determination of the 

4 -vector h. : 

Once we have found h_, we recover the quantities H and j f r o m  the AB - 
equations (16) and (9) .  

relation (4) can be evaluated in te rms  of the 4-vector h .  

we observe the simple relation: 

Furthermore the value of a s  given by the AB 

In fact  - 

where we have used the fact  that h,  being orthogonal to the time-like 

vector W,  i s  a space-like 4-vector. 

Similarly 

- 

- 

Substituting (18) and (19) into the equation (4) we get 
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which is a symmetric tensor .  Le t  us observe in passing that 

W e  a re  now in a position to write down the complete value of 

in t e rms  of two unknown vectors W and h: T~~ - - 

The Einstein's field equations of general  relativity imply that 

AB = o .  
T ; B  

When we substitute (22) in (23), we get the required par t ia l  differential 

equations of relativistic magneto-hydrodynamics . 
covariant formulation. 

This completes the 

2.  Definitive sys tem of equations 

Let  us collect a l l  thenecessary  equations and put them into the 

fo rm needed for the subsequent analysis.  

hA, p and p .  

which when differentiated yields 

W e  have ten variables:  WA, 

The second relation (1)  provides us with the s c a l a r  equation 

wAwA; B = 0 .  

The identity (13) when differentiated be comes  
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W A hA;B t W$ hA = 0. 

The field equations (17) a r e  

B A  A B  B A  A B  - h  W e B  - W h ;B = 0. h;B ' w;B 9 

F r o m  the conservation law ( 2 3 )  we obtain 

gAB - 2 p ( W  A B  W - i g A B )  h hC - ',B c ; B  

The thermodynamic relation, required f o r  the present  analysis , 
expresses  the condition that 

WA = 0 ,  
A 2  

p , A w  - a  

where 

and y is a mater ia l  constant. Except for  the identity ( 2 5 )  ,, we have 

now ten equations in the ten unknown quantities mentioned above. 
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I 

3 . Sonic disturbances 

We consider a weak disturbance whose position can be 

represented by a three dimensional time-like hypersurface Z ( t ) ,  

called a 3-wave, in the E - R  space.  Any time section t = constant, 

of Z will be a two dimensional surface S(t) ,  called the 2-wave, in 

the three dimensional Riemann space R ( t ) .  

of the unit space-like 4-vector N - which is normal to Z ( t ) .  

as in the chapters IV and V, le t  the bracket [ F] stand for the jump of F 

ac ross  the sonic discontinuity. 

Le t  NA be the components 

Fur thermore ,  

We assume that 

As demonstrated in the chapter IV, 

4 0,  there results the relation 

when [ F ]  = 0,  but [ F. ,A ] 

where 6 F  is the strength of the discontinuity. 

components of the met r ic  tensor and their f i r s t  derivatives a r e  continuous, 

it follows that the jump in the covariant derivatives of a quantity is equal 

to the jump in the ordinary derivatives. 

the components of the met r ic  tensor a r e  a l so  continuous, it follows f rom 

the Einstein's field equations that the quantities TAB a r e  continuous 

across  the wave front .  

Fur thermore ,  since the 

Also since the second derivatives of 

Applying the jump condition (31) to the sys tem of equations given 

in the section 2 above, there resul t  the relations:  
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WA 6 WA = 0, (32) 

(33) 
A A W 6 h A = - h A 6 W ,  

A B 
L 6hA 4 hA NB 6WB - hN 6WA - W NB 6h = 0, ( 3 4 )  

(c2 6 p t  6p) L WA t ( c 2 p t  p t pIhl2)(WANB6WB t L6WA) 

A B A  - 6p NA - JL (2LWA - NA) h C 6 hC - p(hN6h t NB 6h h ) = 0, 

( 3 5 )  

and 

2 
6p = a 6p,  

where 

= hA NA.  L =  W N a n d h N  A 
A 

4. Alfven waves 

(37) 

Let  T stand for  the components of the tangent 4-vector - T A 

to the wave front.  We shall take such a tangential direction - T that it 

is  orthogonal to the 3-base N ,  - -  W, and h.  - If we multiply (34) and ( 3 5 )  

by TA, we obtain the following two relations 

A A 
TA and 6 W T  = 6 W where 6hT = 6h TA. These two equations will 
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give a non-trivial solution for  (6h 6 W T ) ,  if we have T’ 

2 2  2 2 
L (c p t  p t  p I h (  ) - p h N = O .  

Let  us now define 

A V = c L = c  W NA, 

then (40) gives 

2 2  
2 ON c v =  

This relation, a s  we shall  soon see,  leads to the Alfven wave of 

nonrelativistic magnetohydrodynamics. It is independent of the 

thermodynamics in the above analysis .  Moreover the same  relation 

holds f o r  incompressible as well as compressible fluids. 

5. F a s t  and slow waves 

We s t a r t  with the field equation (34). Multiplying it by WA 

and using (32) and ( 3 3 ) ,  we derive: 

Similarly i f  we multiply the equation (34) by  h it yields A’ 

h A 6 h A = -  1 ( I h 1 2 N B 6 W  B t h N h A 6 w  A ) L (44) 
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Let  us now eliminate 6p f rom the equations (35) and (36). The 

sca l a r  product of resulting equation with h, with the help of some of the 

identities as derived above, simplifies into 

- 

2 1 a 
hA 6WA = hN P 

C 2 P  P 

Similarly the sca la r  product of (35) with W and N leads to - - 

N B = - L c 2 +  , 
c P+P 

NB 

and 

(45) 

2 2  2 B 2 (c + a  ) L  t a  6 p t  2 ( c  p t p ) L N B 6 W  t a 6 p -  c 2  
A - h h A 6 W  = O .  

L (47) 

Substituting f rom (45) and (46) into (47), we readily obtain 

- 

(48) 

2 2  2 
c -a 1 (c P t P b  E 

But 6p # 0, and the above equation gives the required character is t ic  

equation 



-38- 

In te rms  of the quantity V a s  defined by the relation (41), the above 

equation (49) becomes 

When hA = 0,  this equation reduces to: 

a 2 2  ( l - T ) V  - a  = 0 ,  
C 

which gives the characterist ic equation for  relativistic hydrodynamics. 

6 .  Space-time representation 

A coordinate system can be introduced in the E - R  space for 
2 

which the square of the element of length ds  , has the fo rm 

i i  d ds2  = c2  dt2 - a.. d 9 x x ’  

where a a r e  the coefficients of a positive definite quadratic fo rm.  

These coefficients, in general ,  depend on the coordinate t ,  a s  well 

a s  the spatial coordinates x..  - 

velocity 4-vector becomes 

i j  

Relative to this coordinate sys tem the 

-V c.. i 
w i =  4 7  , w o =  -2 ’ v I c 2  

c d l  - v2 I C  2 

i 
where v. and v a r e  the covariant and contravariant components of the 

1 



- 3 9 -  

ve locity vector in the three-dimensional Riemann space R(t)  whose 

met r ic  i s  defined by the above quantities a. .(t,  5 ), and v i s  the 

magnitude of the velocity. 
1J 

The electromagnatic 4-vector - h is now given a s  

(Hi vi) i Hi ho =: , h =  

C C 
C 

C 

Similarly the normal  4-vector N - has the decomposition 

i whereni  and n a r e  the covariant and contravariant components of the 

unit normal to S( t )  in the space R ( t )  and G is the normal coordinate 

velocity of propagation of S(t) into R( t ) ,  as explained in Chapter IV.  

The direction of N - is chosen, fo r  definiteness, s o  that the associated 

vector - n i s  directed into the region R( t )  into which the surface S(t) 

is propagated; then the velocity G is positive. 

The quantities L, V,  h N and lhI2 become 
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n G - V  A L = N  W A =  

C C 

G - Vn 
V = c L =  

C C 

(57)  

and 

w h e n  

(ExV)  ini 1 ,- - n 
(H. Vi)G H h = h A N A =  1 

N C 2 J l -  C J l - v  I C  2 m 7  c J - - K 2  C 

(58)  

lhI2 = - h A -  hA - - 

2 Hi (E - x x)i 
pc(  1 - v.2/c2) 

(Hi V1)' H2 
- I - - +  

c 2 ( l - v 2 / c 2  ) 

t 

L V 2  I C  2 

(59)  

From (57),  (58)  and (59)  w e  observe the important fact that 

w e  have 
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def 
V - G - V n  = U ,  

2 l'h12 - H , 

and a tends to the velocity of sound in non-relativistic uncharged 

fluids. 

When we make these substitutions into the equations (42) and 

(50), they give the l imits 

and 

4 2 2 2 2 P U  - ( p ~  + a  p ) ~  + p a  4 = o .  
These two relations agree completely with those found in Chapter IV,  

i f  we take into account the slight change in notation. 

Qualitatively the results in the present  case a r e  s imilar  to 

those in non-relativistic case.  The velocities of the present  waves 

a r e ,  however, comparable with the velocities of light, but none can 

exceed that velocity. This follows f r o m  the Darmois -Lichnerowic z 

formula for  the speed u of wave propagation: 

c2 W A W A  

A A 
W NA - N NA 
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A Since N NA = - 1 ,  we get u c .  

7. Bicharacterist ics 

Le t  the hypersurface Z ( t )  have an equation: 

f(x,  t )  = 0, 

then the space-like 4-vector N i s  defined a s  A 

In t e rms  of f we can wri te  the character is t ic  relations (40) and (48) 
J A  

in the f o r m  

The equations (67) and (68) a r e  f i r s t  o rde r  par t ia l  differential  equations 

f o r  determining the integral  surface f .  

by character is t ic  rays .  

f o r  the original equations and a r e  determined by  the ordinary differential 

equations : 

This integral  surface is spanned 

These rays a r e  called the bicharacter is t ics  
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with s defined as a parameter  along the bicharacterist ics.  

f r o m  (67) and (68) into (69) leads to 

Substituting 

- 
b A -  - Z T =  1 dxA k ( c 2 - a 2 ) ( c 2 p t p )  ( W P f s p ) 3  t p1hI2 c 2 t a  2 2  (c p t p )  1 A  W 

(2) 

F r o m  (70) we observe that b A l ies in the plane of the 
(1) 

orthogonal 4-vectors WA and hA. 

s ame  plane if NA does. W e  now s e t  out to investigate that possibility. 

The ray bA will a lso lie in the 
(2)  

A A We have h / kh 1 as a unit space-like vector and W a s  

a unit time-like vector. 

unit 4-vectorss which a r e  orthogonal to the 2-plane determined by W 

and hfld. Hence both Y 

domain of H *AB and therefore they span the non-null domain of HAB. 
Thus we can decompose rPIB, in te rms  of YA and Z 

of the relations (15) and (16)) 

Let u s  introduce two new mutually orthogonal 

A 

A A and 2 a r e  space-like and span the null 

A giving ( in view 

(72)  
A B  HAB = p l h l  ( Y A  Z B  - Z Y ). 



-44- 

A A  The vectors W , h / Ih 1 ,  YA and ZA f o r m  a 4-tuple of 
A A 

is time-like and (h mutually orthogonal unit vectors;  W 

a r e  space-like.  We can represent  NA a s  

/ lhl, YA, ZA)  

A Since N NA = - 1 ,  this gives 

Also  

L = A .  

h N = - B l h l .  

The characteristic relations (40) and (48) become 

(75) 

(76)  

If the normal  NA i s  to lie in the 2-plane W and hA, then A 
f r o m  (71) and (72)  i t  follows that 
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C = D = O ,  ( 7 9 )  

Thus A and B satisfy the equation for  hyperbola as given by (80). 

The intersection of this hyperbola with the curve given by the equation 

( 7 7 )  yields 

Similar ly  the intersection of this hyperbola with the curve given by 

( 7 8 )  leads to 

- a  C A =  

and the values a s  given by the relations (81). 

B = 1 f A 

I t  follows f r o m  (82) that there a r e  two wave normals  which lie in 

the plane (WA, hA) providaM c > a .  

In fact  when 
2 2 

the quadratic equation ( 7 7 )  becomes a factor of ( 7 8 ) .  

Finally we observe f r o m  ( 7 4 ) J  ( 7 7 )  and ( 7 8 )  that A = B = 0; 

2 2 G t D = 1, always satisfy these equations. Thus there a r e  a' 

characterist ic hypersurfaces such that WA and hA lie in their local 

tangent hype rplane s . 
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8.  Geometrv of the wave fronts 

L e t u s  s e t  

f = x A .  
, A  

The equations (67) and (68) then give 

2 c 2 2  2 
F (XA)  = (c -a ) (c p t p )  t p / h I 2  c 

The equation F(XA) = 0, represents ,  fo r  fixed (x, 

X-space called the surface of wave normals .  

f r a m e  a t  the point (x, t) such that, goo = 1, glJ = - Sij. Let  us a l so  

define a 4-tuple of mutually orthogonal vectors 5 o, el, 2, -3’ e a t  

that point. F o r  e and e we take - W and h - / lhl respectively.  The 

equation (84), which gives the wave normal  surface fo r  Alfven waves, 

becomes 

) #  surface in 

Let  us  take the Lorentz 
.. 

-0 - 1 ’  

Factoring the left  member of the equation (86) we obtain two planes 



-47  - 

in the E - R  space.  

The equation (85), similar ly  gives 

2 2  2 
t a2  p lh I2  X:(X1 t X 2  t X3 ) = 0, 

which is the equation fo r  a conoid. 

s t ra ight  line shows that i t  is composed of two distinct nappes Cf (for 

f a s t  wave) and C (for slow wave). The nappe C i s  inter ior  and i s  convex. 

The light cone is inter ior  to C 

surface of the wave normals for the Alfven wave, always touch the 

conoid given by the equation ( 8 7 ) .  

normal  surfaces i s  thus the same a s  in the case of non-relativistic 

magnetohydrodynamics. 

constructed f rom the surface of the wave normals ,  by a simple geometrical  

device, i t  follows that a l l  the known geometrical  facts about the 

magnetohydrodynamic wave fronts given in the Chapter IV a r e  applicable 

to  the present  case .  

The intersection of this conoid with 

8 f 

The two planes, which comprise the f ’  

The geometrical  shape of these wave 

Since the diagram of wave fronts can be 

2 Finally we observe that when c2 = a , the equation (85) has a 

factor  

which is the equation of the light cone. 

cone coincides with the nappe Cf of the f a s t  wave. 

In this special  case  the light 
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