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section 1

introduction

1.1 GENERAL.

The NASA Scientific Space Program has been enhanced with the installation of a
Satellite Tracking Facility at Rosman, North Carolina. This facility is designed around
an 85-foot-diameter parabolic antenna constructed on an X-Y mount.

This is the first of a series of similar installations to be made at strategic loca-
tions throughout the world. This network was primarily designed as a ground-based
installation for the advanced weather satellite series. However, the broad design
capabilities allow its usage to extend to all the scientific space programs.

Collins Radio Company is proud to participate in this venture. This report con-
cerns the performance of Collins-supplied equipment for the Rosman station as well as
the overall system performance related to tracking capability.

The site location chosen has proven ideal. The natural shielding has eliminated
interfering signals that would normally degrade system performance. Climatic condi-
tions for the area are relatively mild, eliminating the need for special environmental
equipment.

The Rosman station participated in NASA tracking activities for the initial orbit
of the IMP satellite. Both telemetry and tracking data were supplied by the station to
complement the data supplied by other NASA stations.

Station installation and checkout was completed in early December 1963.

1.2 REVIEW OF COLLINS CONTRIBUTION.
While no single company has acted as prime contractor, the Space Systems

Division of Collins Radio Company has worked closely with NASA to provide systems
1-1
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engineering for the Rosman tracking facility. With the exception of the antenna struc-
ture, the same group installed the tracking equipment, including the antenna feed
assembly, the tracking and telemetry receivers, a satellite command transmitter and
antenna, and designed, built, and installed the servosystem.

Companies furnishing equipment on a subcontract include:

COMPANY EQUIPMENT FURNISHED
Rantec Antenna Feeds
ITT Tracking Receivers
DEI Telemetry Receivers
Vickers Hydraulic Servo Components
ISC Data Handling Equipment
AlIL Parametric Amplifiers
Hewlett-Packard Test Equipment

Upon completion of the installation phase, an extensive test program was imple-
mented and the results of those tests are the basis of this report. The tests were con-
ducted by Collins and supported by a government-furnished aircraft during portions of

the dynamic test phase. Ephemeris data for both stars and satellites were supplied by
NASA.

During the course of the Rosman I program, monthly interim development
reports were published covering each of the subsystems. These reports are entitled
"Progress Report for GSFC Four Stations, "' copy numbers IDR-D549-1 through
IDR-D549-22. To complement this report, it is encouraged that each of these

reports be examined.



section

introduction to tests and results

2.1 GENERAL.

This report is based on performance tests conducted on site and include both
static and dynamic tests. The static tests primarily determine the functional capa-
bilities of each subsystem as related to the overall tracking accuracy. The dynamic
tests are designed to evaluate the full capability of the system.

An extensive program was implemented to investigate all factors that would
influence the performance. The following tabulation of results includes errors that
may be used to bias the tracking data derived from operational conditions. These
errors are known and repeatable and, when applied as correction factors, will enable
high accuracy data to be produced by the station.

In the interest of providing a report for both system performance analysis and
for system calibration at the site, the data presented in this report is derived from a
comprehensive test program and presented in a manner useful for both purposes. In
the data presented, notation is made when the data applies only to test purposes on-site
and does not apply to system performance for tracking missions. This primarily
refers to measurements made using the collimation tower where ground reflections
affect the accuracy of the measurement. Each section contains a brief description of

the test used as a further assistance to maintenance and calibration of the system.

2.1.1 ANTENNA ALIGNMENT.
The following summary of antenna alignment errors should be compared with the
error equations which show how each of these component errors are combined to con-

stitute the total error. These error equations and their accompanying descriptive



tables are presented for both encoder to optical and for encoder to r-f systems. The

optical to encoder equations and table are in section 2.2.2.2. The r-f to encoder

equations and table are in section 2. 3.6.

(1)

(2)

(3

Structure.

(a) X-Axis Tilt. The north end is 0.001° up and 0.001° east.

(b) X- to Y-Axis Orthogonality. The angle between the positive (north
and east) ends of the axes is 89.993°.

Encoder and Optics.

(a) X-encoder bias is 0.014° (encoder value is too large).

(b) Y-axis to optical axis orthogonality — The angle between the positive
(east and outward) ends of the axes is 90.005°.

(c) Y-encoder to optical axis bias is -0.301° (encoder value is too
small). This value slipped from -0.032° to -0. 301 ° between
3 October 1963 and 20 November 1963.

R-F to Encoder.

(a) X-encoder bias is 0.014° (encoder value is too large).

(b) Y-encoder axis to r-f axis orthogonality — the angles between the

outward and east ends of the r-f and Y-axes are:

j=

90.025° (136 mc)
2. 90.037° (400 me)

3. 90.012° (1700 mc).

(c) Xacceleration error coefficient is -0. 321 ° (this is a dynamic lag

, 1 2
inX) K =c—os=3.11 deg/sec

(d) Y-axis to r-f axis bias is:

1. -0.259° (136 mc)
2. -0.301° (400 mc)
3. -0.295° (1700 mc).

(In all cases, the encoder value is too small.)
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(e) Y acceleration error coefficient is -0. 135°. (This is a dynamic lag

2
in Y) Ka = =17.3 deg/sec .

0. 135

2.1.2 TRACKING ACCURACY.
The tracking accuracy with known errors removed is as shown below:

(1) X rms:
(a) 0.032° (136 mc)
(b) 0.027° (400 mc)
(c) 0.003° (1700 mc)

(2) Y rms:
(a) 0.014° (136 mc)
(b) 0.021° (400 mc)
(c) 0.007° (1700 mc).

2.2 STATIC TESTS.
The static tests are defined as tests performed on stationary targets. These
tests are included in four main categories:
(1) Pointing capability of the optical encoder system
(2) Tracking receiver performance
(3) Servo performance
(4) Tracking loop performance.
These tests cover parameters that might be expected from operational condi-
tions. The test results describe the effects of each parameter and allow a compre-

hensive prediction of system performance to be made for a given operational mission.
2.2.1 OPTICAL BORESIGHT.

2.2.1.1 PURPOSE OF TEST. The purpose of this test is to determine the angle
readout coordinates of the optical target and to determine repeatability of the encoder
system. This is a direct measure of the system backlash.

To perform this test, the antenna is initially moved until the camera reticle and
the optical target on the collimation tower are coincident. The antenna is then slewed

away from the target and then returned in a manner to prevent overshoot. Each time
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the optical system is correctly aligned and the encoder readings are recorded. The

difference in successive encoder readings is a measure of the backlash.

2.2.1.2 TEST ANALYSIS. The data presented in figure 2-1 indicates that the back-
lash in the Y system is 0. 0094°, while that in X is 0. 004°. The data also indicates that
a deflection of 0. 004° in X resulted from the movement in Y although the X brakes were
locked. With the Y brakes locked, a deflection of 0.002° in Y was caused by the move-
ment of the X axis.

The test was divided into four sections. The Y-axis was fixed in tests 1 and 2.
The X-axis was then moved up and returned to an optical target, then moved down and
returned to an optical target. Similar measurements were made in tests 3 and 4 with
the X-axis held constant.

In a previously published report entitled '"Determination of Errors in Antenna
Shaft Position Measurement System at Rosman I Facility, " CER~D1706, a similar
measurement was made. The reader is encouraged to examine that report for addi-
tional information concerning the encoding system. The values determined from this
test are also in close agreement with information determined from star shot data.

From tests 1 and 2, an average X value was determined and a Y value determined
from tests 3 and 4. These values are recorded on figure 2~1 as X = 84. 225 and
Y = -14. 883. These values are used throughout this report as the optical boresight
coordinate of the collimation tower target. These values were determined from tests
performed during the month of October. In the following sections of this report, tests
indicate a shift in encoder alignment from the original values. Therefore, the true
optical boresight may be different than that determined. This does not effect the

backlash measurements.
2.2.2 STAR SHOTS.

2.2.2.1 PURPOSE OF TEST. The purpose of this test is to determine the calibra-
tion of the angle encoder system to the optical system. This allows several alignment
parameters to be determined, and is accomplished with two computer programs. The

first solves for difference in X and Y angles between the measured and known values.
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The second solves for 11 values of antenna alignment parameters that allow optical-
to-encoder calibration, and the X and Y rms of the fit. This test is performed by
positioning the antenna to optical stars over a broad coverage of pointing directions.
The picture records time, star displacement from film center, X and Y encoder

values at the recorded time, and a title block that gives the test and date.

2.2.2.2 TEST ANALYSIS. The results in table 2-1 show these alignment values and
their definitions. This is based on three sets of star shot data comprising a total of
304 individual star shots. The three sets of data are from three separate nights over
a period of 48 days. This allows system changes as well as system accuracy to be
determined. Data from the last two dates is also combined as a weighted average.
This average represents the final condition of the antenna, after changes as described
below. Probable errors are given to show how accurately the parameters were deter-
mined. All units are in degrees of error.

The predicted errors between the optical and encoder systems are thus given

by:
X(S)E =51+ 52 sin (X-83)+54 tanY sinX -S5 tanY cos X + S6 tan Y +
S7/cos Y
Y(S)E = 58 + 89 sin (Y-S10) + 84 cos X + S5 sgin X £S11
where:

X(S)E and Y(S)E = the optical-to~encoder errors in X and Y.

These equations are also the normal equations that are used by the second
(regression) program to provide a least squares solution of S1 through S11 and the X
and Y rms of the residuals remaining after the fit. For a detailed description of the
regression program, see appendix A of "Progress Report for GSFC Four Stations,

1 June to 30 June 1963." The "Zone 1" is given by the normal equations above. The
first (star shot) program is described in appendix A of "Progress Report for GSFC
Four Stations, 1 February to 28 February 1963.'" Note that the three antenna align-
ment parameters (S4, S5, and S6) are solved for in the regression program, rather

than measured and then removed by the star shot program.
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TEST ANALYSIS

TABLE 2-1.

*S988D [[B Ul 83XB (J-I I10] pajoaaip A[pievMmino pus
‘X 10y 1888 ‘X 10§ gidou) 9Al31s0d oY) #0ULISFRI SWIR} A}[BU0IONIO ‘JueoyIudisul 9q 03 PuUNO} FvM SISAINISAY X ‘eApyisod s Joxxe
§18019384Y X o3 1nq ‘ealjedeu s1 oFuwyp uooeIIp oy ‘uolloaap 9apeSou B Ul YOBQ §1I8)8 USY) PUB UONILIP 9anlsod B ui BurAaowr
81X J1 ‘30 ‘e3usyo uopowt Jo uopoeIp oy 0} udls 9yygoddo ey £8Y JOII9 8Y) PU® UO[}OBJIIP SISIIA0I I6POOUD X 9Y} JOASUSYM
poI8junooue 81 J01I6 H)86x8}84q X OYL ‘seeidep 06- 0} 06+ WOl 5308 (X I0) X §B sovadep - pus 3+ usemiaq A1g3noa sedusa
J0118 UOHOTIeP S} 08 ‘3ue1O1Fe0d B ISN{ 81 Y ‘[BOLDEWWAS 8] UOJIISTJOp o YoIyM Inoqs julod oY) I0 ‘498]J0 8} 8] O 9IBYM
(0-X) u1s 3] wLIO} O} BulISN POA[OS SIE BIOLIO uonjoeyyep oyy, ‘uojjeuedxe [euol1ppe eJinbal s18919}8LY] puB SULIO] UOpO8IIep oYL,

606 ° 600 ° €00°* 900 SON[BA P9301PaId SNUIW POINFBOUT 87} 0} IO JOSWI X | SWI(E)X
200" 900" 800 * $00° §9NT8A PSIOIPeId SNUTW POINSEOW O} 0} }I O JOSWLI X | swx(§)X
000 ‘+T00 *- 100 *+200 "~ 100 ¥T00°- | T00¥200° sisoxe)sly X TTS»
6LS°2- £88 ‘g~ 61T "2~ $6T "6 J98JJ0 U013O8IJepP X 0TS«
223" £22° 612" £03 " JUS10133800 UOHOBIEP X 6S«
000 +10¢ - 200 “+10€°- 200 “+10€ - £00 +2€0 - 8B1q 51Xe 19pooue X 03 six8 [eoldo 8s
3 (.06 03 peppe 81 | . | susow uBls oan
200 “¥900 *- 200 “+200 '~ €00 +310°- | L00°+300° -B83ou 8) £118u030Y}10 JO HOB] S1X8 X 03 sixw [BopdO LSx
B (.06 01 peppe 81 |95 | sweow udys
000 “+200° 100 “+200° 100 “+800 ° 200 "+€00 * eApjedeu &) L118uo8oy)ao Jo Yov[ BIXE X 0 S[X8 X 9Sx
(premisom
81 31} suBew UB[s 9A[}B3SU B) UOIIOLIIP PIBMISES
100 +100° 100 *+200 " 100 "+000° 100 +000 * U® U] SXE X 6} JO Pue WIou oy} Jo jusuodwod IIL gs
(umop s1 1113 susewr udls oA[)BIoU €) UOLJOOIIP PIBA
000 +100° 100 “+100° 200 +000 * £00 “+500 - -dn ue uj §1x8 X 94} JO PUS U}.I0U 8Y; Jo jusuodurod IIL s
€93 21~ £26° ¥~ £S8 L6T *LT- 198530 UO3OEep X £Sx
$20 °~ $20 °- 120 - £10 - JUSIIIFFO0O TONIAOP X ZSx
100 +510° 200 “+110°* $00 +120° 600 +200* 88]q I0pooUe X 18
1o 2 16 6% SYVIS 40 "ON NOILdI¥OS3A TOHWAS
AOVHIAV £9/02/11 £9/8T/TT £9/¢/01 qaLvd

2-6




For these reasons, the system is sufficiently accurate for its intended purposes.
If the station is to be used for orbital determination for future satellites, each para-

meter should be carefully considered.
2.2.3 RECEIVER ANALOG ERROR SIGNALS.

2.2.3.1 PURPOSE OF TEST. The purpose of this test is to measure the tracking
error voltage produced by the tracking receiver as a function of target angular error
and to determine its variation with respect to variation of the signal conditions.

To perform this test, a signal simulating a satellite is radiated from the collima-
tion tower. The antenna is displaced from the target and a recording of the error as
a function of the displacement is made. This measurement is repeated for each

parameter change.

2.2.3.2 TEST ANALYSIS. The results of this test indicate that only a small varia-
tion may be expected in the error signals under all operational conditions. The servo
system will readily accept a range of 6 db without serious degradation in performance.
The maximum variation indicated by the test data presented in figures 2-2 through 2-5
is 3db.

Minor variations between the three receivers are indicated in all tests. These
are due to the agc circuits and the bandwidth filters. Essentially, no changes in the
receiver analogs are experienced as a function of antenna polarization. Signal level
and modulation produce minor effects in the amplitude of the analogs.

A nominal satellife track would use the following system parameters:

ANALOG LEVEL

PARAMETERS VALUES BELOW MAXIMUM
AGC Time Constant 300 mc -0.75 db
Bandwidth 100 cps -1.85 db
Modulation Pulse -0.25 db
Polarization RHC ~-0.1 db
Receiver Frequency Most Used 136 mc 0
Nominal Signal Level -125 dbm -0.2 db

The data presented was derived from the figures of this section. From these
results, a nominal satellite track on 136 mc would cause the system loop gain to be
only -1.85 db below the maximum loop gain obtained from all conditions tested on the

collimation tower (see figure 2-3). 0
=7




Figures 2-6 through 2-10 are presented as typical analogs obtained by causing
the antenna to slew past the collimation tower. These tests indicate the symmetry of
the analogs about the zero amplitude point and the sidelobe characteristics outside the
tracking beamwidth of the antenna. The relative amplitude scales are presented on
the figures only for the purpose of comparing symmetry about the zero point.

The data presented in this section does not include the effects of pulse or fre-
quency modulation. These two parameters were checked during the tracking stability
test and showed no noticeable effect. Several of the satellites tracked during the test

program used a form of pulse modulation that caused no degradation of system perfor-

mance. From figure 2-2, it may be seen that an amplitude-modulated signal causes a
slightly lower output than a CW signal for a receiver bandwidth of 100 cps. This is
caused by a reduction in carrier level due to modulation, since the modulation side-
bands are outside the receiver bandwidth. For this reason, pulse and FM would not
change the performance of the system compared to CW signals if the average ampli-

tudes of the signals are considered.

When signals are very near threshold, no agc action can take place in the receiver.
This is true for signals similar to those received from radio stars and very weak
satellites. With the subsequent loss in agc, the analog error signals may be exces-
sively high and servo performance will he degraded. For this type of tracking mission,
the servo gain should be reduced below the normal setting. The autotrack relay adjust-
ment should be set to prevent the servo from tracking weak signals where the signal-to-

noise ratio is poor.
2.2.4 STATIC ACQUISITION.

2.2.4.1 PURPOSE OF TEST. The purpose of this test is to determine the servo
system characteristics utilizing the antenna-receiver servoloop. From the previous
test, a general analysis indicates a single loop gain setting is adequate for all signal
conditions.

This test is performed by displacing the antenna from the collimation tower, and
then allowing the antenna to acquire the target in an autotrack mode. The error signal

is continuously recorded during this time.
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2.2.4.2 TEST ANALYSIS. The results of this test are presented in graphical form.
Both axes were tested on each frequency. The data presented is typical of a broad
range of parameters chosen. Changes in modulation, signal strength, polarization,
and receiver bandwidth caused no apparent changes in performance. The damping
effect noted on each test indicates proper loop gain and phase characteristics.

The data presented in figure 2-17 indicates antenna characteristics when both
axes are allowed to acquire the target simultaneously. A slight reduction in gain in
the X-axis would decrease the elliptical action indicated. The phasing of the feed
assembly is such that no system instability is apparent due to crosstalk.

For all snap-on tests on the X-axis, an apparent effect is noted between the move-
ment from below and from above. These tests are performed using the collimation
tower where the X-angle is approximately 84°. This effect is caused by an unbalance
in the structure. Proper amounts of counterbalance would cause these tests to be
symmetrical. For this test, the Y-axis is moving in a horizontal plane where an

imbalance, if present, would not be apparent.
2.2.5 ACQUISITION FROM INITIAL VE LdCITY.

2.2.5.1 PURPOSE OF TEST. The purpose of the constant velocity test is to deter-
mine the acquisition characteristics of the tracking system as a function of the relative
velocity between the antenna and the target. To perform this test, a signal is radiated
from the collimation tower and the antenna is displaced several beamwidths. The
antenpa is then caused to move at the desired velocity toward the target until it
approaches the acquisition cone. When the antenna enters the acquisition cone, it is
allowed to autotrack the target.

Data derived from a typical test is presented in figure 2-18. These tests indicate

little change in performance due to an initial velocity.

2.2.5.2 TEST ANALYSIS. The information presented was derived from tests at

400 me. Similar results were experienced on other frequencies. Similar tests were
run by allowing an aircraft to fly into the antenna beamwidth with the antenna pointed in
a fixed direction. Acquisition was then made by enabling the autotrack mode, at which

time the antenna acquired the aircraft and continued to follow. No acquisition problems
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were experienced with either the aircraft or any of the satellites tracked during the
test program, on either 136 or 400 mc. When using the aircraft at 1700 me, acquisi-
tion was made by transferring from either 136 or 400 mc to 1700 mc during a track.
In all cases of the aircraft track, transfer from any frequency to either of the other

two frequencies presented no problems.

2.2.6 R-F BORESIGHT.

2.2.6.1 PURPOSE OF TEST. The purpose of this test is to determine the relation-
ship between the optical boresight and the r-f boresight. The optical boresight has
been determined from a previous test. The r-f boresight is determined by allowing
the system to autotrack a CW signal radiated from the collimation tower. For each
polarization and frequency chosen, the antenna is allowed to acquire the target several
times. This allows both the repeatability and the average position to be determined.
As a further check, a pomparison is also made between the optical and r-f axes during

an aircraft track. (See paragraph 2.3.3.)

2.2.6.2 TEST ANALYSIS. Examination of the data presented in figure 2-19 is
somewhat misleading. A large distribution in boresight is exhibited on 136 mc with
changes in feed polarization. This is primarily due fo ground reflections. While
tracking both an aircraft and satellites, changes in feed polarization exhibited no
noticeable shift in boresight. Therefore, this data is representative of measurements

made on the collimation tower, but do not accurately represent the relationship between

. optical and r-f boresight when used on actual satellites.

Therefore, this data may be used for calibration and test, but is not directly

related to the tracking missions.
2.2.7 BORESIGHT SHIFT WITH POLARIZATION.

2.2.7.1 PURPOSE OF TEST. The primary purpose of the collimation system is for
test and calibration. Each time the system is allowed to autotrack the collimation
system, similar repeatable results will indicate proper operation of the system. The
most significant change that is readily apparent is the r-f boresight position. As seen
from paragraph 2. 2. 6 (r-f boresight test), a change in signal parameters contributes
only a small change in pointing angle. A more significant change, from the standpoint
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of repeatability, is due to ground reflections. In turn, the ground reflections are
dependent on the orientation of the collimating antenna. The boresight shift ag a func-

tion of the collimation antenna position is presented in figures 2-20, 2-21, and 2-22.

2.2.7.2 TEST ANALYSIS. This data indicates the ground reflections are reduced as
frequency is increased which, in turn, is a function of antenna beamwidth. These
effects are not present at high angles such as those used during satellite tracks. For
any test on the collimation tower, the position of the collimating antenna should be
considered and its position recorded in conjunction with the X and Y encoder positions.
This shift is not apparent from satellites at higher angles as, for instance, when the
satellite is tumbling. Note that the shift is a function of the antenna beamwidth by
comparing the response at 136 mc versus 1700 mec. To perform the test at 1700 mc,

a target was chosen in the far field of the antenna to derive a true measurement.
2.2.8 STATIC TRACKING STABILITY.

2.2.8.1 PURPOSE OF TEST. The purpose of the tracking stability test is to deter-
mine the effective jitter of the tracking loop and derive from this data the relationship
to the causes of instability. This test is conducted in two parts:

(1) The system is allowed to track the collimation target for 10 minutes for
each change in signal condition. The signal conditions include changes
in modulation, frequency, and receiver bandwidth.

(2) A continuous 24-hour stability test is performed where the only change

in signal condition is the tracking frequency.

2.2.8.2 TEST ANALYSIS. The data from the first test is presented in figures 2-23
and 2-24, From this data it is difficult to determine relationships between the para-
meters chosen and their effects on tracking stability, primarily because these effects
are small. At the lower frequencies, the antenna beamwidth is large and instabilities
due to changes in modulation are obscured by noise. At the highest frequency (1700 mc)
no significant effect on stability is contributed by modulation. A relationship is evident
between the receiver bandwidth and stability. Receiver bandwidth is related to signal-
to-noise ratios and an increase in receiver bandwidth produces an equivalent effect of
reducing the transmitter power level. Signal level used is -120 dbm.
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The data presented in figures 2-25 and 2-26, derived from the second test, also
indicate a relationship between tracking stability and frequency. This test indicates
no significant change in stability as a function of time. At 136 mc, the average tracking
stability is 0. 005°. This implies that the probability of a single measurement being
within an accuracy of 0. 005° is 63 percent. Therefore, when measurements are made
using similar tests to those described in this section, several tests should be made and
the average of these will produce dependable information. In the data presented, each
point is the average jitter for the period of the test. For the first test, the period of
the test is 10 minutes and is 1 hour for the other test.

It should be noted that the antenna beamwidth at 136 mc is approximately 12, 5°
Therefore, the average jitter is:

9;—3255-) x 100 = 0. 04 percent of the beamwidth.

At 1700 mc, the jitter is recorded as 1. 7 percent of the beamwidth. This apparent
contradiction may be explained when the actual jitter is compared to the resolution of
the encoding system. The jitter at 1700 mc is 0. 0012°; the encoder resolution is 0. 001°.
The measurements are being made at the threshold of the measuring equipment at
1700 mec. For this reason, the stability is probably betfer than the resolution of the
encoders. In either case, the instability is so small compared to the antenna beam-
width, that no change in signal level could be measured; thus, it has no effect on
telemetry reception.

In figures 2-27 and 2-28, the actual encoder positions are recorded as derived
from the 24-hour test. During the test, each frequency was tracked for a period of
1 hour and repeated every third hour. Again, each point is the average for the period.
The variation in position for each frequency indicates the range of variation in the
effective boresight position over a 24-hour period. This variation is examined in
figure 2-29 by correlating the encoder readings with the variation in ambient tempera-
ture during the 24-hour period. Since it exhibited the highest tracking stability,
1700 mc was chosen. There is insufficient data to determine an exact temperature
coefficient, but there is a relationship that should be considered if high-accuracy

pointing information is significant. The change in encoder readings is caused by
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structural changes in the antenna. A time lag of approximately 3 hours is required
for a positional change after a temperature change.

The approximate temperature coefficient is +0. 0006°/°F for X and -0. 0009°/°F
for Y.

2.3 DYNAMIC TESTS.

The dynamic tests consist of those system tests that use a moving target. A
variety of tests are performed to determine the system capability throughout the entire
range of parameters expected in actual operation. To reduce the actual number of
tests to be performed, selected parameters are used for the dynamic tests and com-
parisons are made to information derived from static tests.

Actual satellite tracks are used for test purposes, as well as an aircraft carrying
suitable equipment to simulate satellite signals. By using an aircraft, the range of
testing may be extended beyond the range of normal satellites to determine limiting
cases. A sun track and a radio star track are also run to complement the other tests.

As a final check on the system, the program capability is determined. In this
test, the true pointing angle versus predicted information recorded on program tape
is determined.

Data from dynamic system tests allow two sets of system characteristics to be
determined:

(1) The rms dynamic tracking accuracy in X and Y angles
(2) Instrument alignment parameters that relate dynamic tracking errors
to specific terms such as bias, structural deflection, and antenna

acceleration.

2.3.1 RADIO STAR TRACK.

The lowest antenna tracking rate performance is most easily determined from
actually tracking a celestial object. In this test, the star Cassiopeia A is chosen.
This star emits a broad range of electromagnetic radiation in the 136-mc region. It
does not radiate visual light for optical tracking purposes. The geographic location of
Rosman is such that Cassiopeia A may be tracked for approximately 20 hours of each

24-hour period. Both axes cover a broad range during the period.
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The received signal level is low and is useful only on 136 mc for this test. To
perform the test, wide bandwidth is used on the receiver. Otherwise, the conditions
are similar to conventional satellite tracks. Parameters determined from this test

compare favorably with information derived from the aircraft tracks of paragraph 2. 3. 3.

2.3.2 SUN TRACK.

This test is similar to the radio star track (paragraph 2. 3. 1) except the sun is
tracked on a frequency of 1700 mc. Radio emission is too low from the star for use at
1700 mc and the sun provides too broad a source and is relatively weak for use on
136 mc. The use of both sources provides a comprehensive coverage of the full fre-
quency range of the system.

Data reduction from this test also complemented the aircraft tracks as a

verification of the accuracy of each of the parameters.
2.3.3 AIRCRAFT TRACKS.

2.83.3.1 PURPOSE OF TEST. The purpose of aircraft tracks is to determine the
calibration of the r-f system to the optical system for various system parameters
under dynamic conditions. (See figure 2-30.)

An aircraft carrying equipment to simulate satellite signals was flown across the
station under varying conditions of direction, altitude, velocity, and tracking frequency.
The data consists of pictures of a target light on the aircraft, taken while the antenna
tracked the aircraft. | The pictures contain time, light displacement from the center of
. the film, X and Y encoder values at the recorded time, and a title block describing
the test and date.

2.3.3.2 TEST ANALYSIS. Two computer programs are used fo solve for the r-f to
optical calibration. The first makes two parallax corrections to the Y and X (actually
cross Y) displacements of the aircraft from the film center, and computes encoder
velocity and acceleration for the aircraft track. Parallax is caused by the camera
offset from the center of the dish and the displacement of the light from the antenna
on the aircraft. The second program solves for six values of antenna alignment |

parameters, which allow for r-f to optical calibration and the X and Y rms of the fit.
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Aircraft tracks were run at three frequencies; 136, 400, and 1700 mec. To
obtain a solution based on the largest possible distribution of input parameters, all
runs from a given frequency were solved together. Table 2-2 first lists the r-f to
optical boresights and tracking rms for each frequency, followed by weighted average
values of deflection and acceleration coefficients over all three frequencies. During
track, the servo system is type 2 and the steady-state velocity error is negligible.
Probable errors indicate how accurately the parameters were determined. All units
are in degrees of error, and the description of symbols is given in table 2-2.

The predicted errors between the r-f and optical systems are:

X(A) = Al+ A2 sin X+ A3X cos Y
Y(A) = A5+ A6 sin Y + ATY

where:

X(A)E and Y(A)E = r-f to optical errors in X and Y

X and ¥ =X and Y acceleration

These equations are also the normal equations used by the second (regression)
program to provide a least squares solution of Al through A6 and the X and Y rms
‘residuals remaining after the fit. Thus, all terms of the normal equations are known
for the aircraft track data, except the A's, which the regression program solves for by
inverting the matrix of coefficients. For a detailed description of the regression
program, see appenaix A of "Progress Report for GSFC Four Stations, 1 June to
30 June 1963. " Note that '"Zone 1' used the normal equations described above, and is
based on film data rather than the prediction model shown in appendix A. The first
program (aircraft track) is described in detail in appendix A of "Progress Report for
GSFC Four Stations, 1 February to 28 February 1963." Parallax correction for the '

displacement on the aircraft of the r-f antenna to the light has now been added.

2.3.4 SATELLITE TRACKS.

A number of satellites were tracked during the test program to complement the
other tests and to determine that, for the cases selected, the data derived from all
other tests was in agreement. This correlation will determine that all dynamic condi-
tions for any satellite track may be accurately predicted.
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TEST ANALYSIS

TABLE 2-2.
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2.3.5 PROGRAMMED STAR TRACK.

2.3.5.1 PURPOSE OF TEST. As a means of determining the capability of the pro-
gram equipment to position the antenna along a precomputed path, the test is performed
using stars to determine the accuracy. To perform this test, suitable stars are
chosen and their predicted paths are punched on tape. The tape, in turn, is used to

position the antenna while the camera photographs the star.

2.3.5.2 TEST ANALYSIS. Data derived from the test is presented in figures 2-31
through 2-41. The relationship between predicted and actual values clearly indicates
an offset in both axes. The offset is explainable due to the predicted values. The pre-
dictions were based on geographic coordinates other than the actual antenna location.
The amount of error in X and Y due to incorrect coordinates is variable since it
depends upon the position of the star being observed. A more significant portion of
the offset is due to a possible shift in the encoders from the original alignment. See
paragraph 2. 2. 2 (star shots). Neglecting offset, the test indicates that the antenna
follows a program tape smoothly and with a high degree of accuracy over extended
periods of time.

During the tests at Rosman, a similar offset was noticed during actual satellite
tracks but in all cases the antenna was accurately positioned to the command position
with respect to the encoders. All satellites tracked were readily acquired from the
program mode, since the offset is only a small portion of the antenna beamwidth.

On each of the data sheets presented, the predicted ephemeris is recorded at a
rate of one sample per minute, while the actualr measured data is presented once for
each 10 seconds. The response of the servo program loop may be observed from
figures 2-32 and 2-34 where the actual film errors are recorded. Note that the devia-
tion, or tracking jitter, is approximately 0. 005° peak about the mean. This is negli-
gible compared to the antenna beamwidth, even on the highest receiver frequencies.
This is a true indication of the movement of the antenna reflector. It is a further
indication of the servo system's capability to accurately position the antenna to a

commanded position.
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2.3.6 R-F TO ENCODER CALIBRATION.

The parameters that determine the r-f to encoder calibration may be obtained by
adding the error equations from star shot tests and from aircraft track tests and
combining similar terms. Since a different r-f to optical boresight exists for each of
the three frequencies, these two terms will be referenced to a particular frequency.
Note that these terms appear as part of the r-f to Y axis lack of orthogonality and as
r-f axis to Y encoder axis bias in table 2-3.

The predicted errors between r-f and encoder systems are given by:

X(C)E =Cl+ [C28in (X-C3)+ C4 sinX]+CHtan YsinX -C6tan¥Y cos X

Cs8

+CTtan Y + +Cc9 X
cos Y

Y(C)y, = C10 + [C11 sin (X~C12) + C14 sin X] + C5 cos X + C6 sin X
+ C13 Y £C15
where:

X(C)E and Y(C)E = R-f to encoder errors

X and Y = encoder accelerations in X and Y.

The sign convention for star shot and aircraft track tests is such that when the
error equations of the two tests are added, a positive result means the encoder is
reading a larger (more positive) value than the actual r-f direction. Thus, the true
r-f position would be obtained by subtracting the positive error term from the measured
encoder value. This sign convention applies term-by-term to the two r-f to encoder
error equations. Note that a negative term means the true encoder reading would be

obtained by increasing the measured encoder value by the amount of the error term.
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Note that the arm extends from the

# r-f source on the collimation tower by a
distance equal to the displacement

between the r-f and optical source on the

antenna.

Note that aircraft at
10, 500 feet altitude and two
lights are 18 inches apart on
aircraft and displaced from r-{
target by 12. 64 feet. The offset

includes a velocity component

of 0. 5°/sec in Y and 2. 2°/sec

in X.

Figure 2-30. Typical Optical Boresight and Aircraft Track Frames
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