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On the Optimality of a Totally Singular Vector Control:
An Extension of the Green's Theorem Approach
to Higher Dimensions*

Summary

An extension of the Green's theorem approach to higher dimensions
has been derived for the determination of the optimality of totally
singular vector controls governing n dimensional nonlinear systems with
the (n-1) dimensional vector control appearing linearly. The essential
condition that motivates the analysis is that the coefficients of the
vector control, when viewed as tangent vectors, form a complete system

of partial differential equations of order (n-1),

. .
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Administration, Ames Research Center, under Contract NAS-2-235]1,



l. Introduction

We are concerned with the optimality of totally singular vector

controls governing dynamical systems of the form

;‘,,("'Ad(X) +Bo(r(X)ur (X=1...0, 7 =1... (n-1) )‘ 1.1

and the extension of the Green's theorem approachl’2 to higher dimensions
to evaluate the optimality of such totally singular‘t vector controls.
The problem of defining a control set for the dynamical system (1.1) is
of paramount importance, because the singularity of a control is an
inherent feature of the dynamical system and the function or functional
to be extremized, and not the control set per se. It is not the intent
here to rule out a singular control because of the limitations on the
control imposed by a given control set. Therefore, the maximal control
set which overcomes these limitations must necessarily include distri-

5

butions. It should be noted that Kreindlel+ and Neustadt” have considered
such control sets in their treatment of linear systems. However, for
the nonlinear system considered, we shall effectively circumvent a

difficult problem by replacing the dynamical system (1.1) by the

equivalent pfaffian system

= 1.2
dxa( Ao((x)dt + Ba( r(x)dyr

dy
where the control has the representation u, = :ﬁ? when it exists.

*
Greek letters will assume the values 1 to n, and Roman letters 1 to

(n-1). The exceptions to this rule are noted where they occur.
e
Following the usage in Reference 3, a totally singular vector control

means that all the components of the control are singular.



The usual summation convention on repeated indices is used. The

solutions to the pfaffian system (1.2) will be parametrized by x(o ),

y(0°) and t(0") with t(8~) monotone such that

<

ax (6 T A, (x(o7)) atlo) + B (x(o)) ay, (o) 1.3

It is assumed that the vector x(o-) has values confined to some simply
connected region DCR", also A (x) and B o(x) are twice continuously
differentiable in D. Furthermore, it is assumed that the system (1.1)
is controllable, which implies that there does not exist a scalar
function W(t,x) such that the hypersurface W(t,x) = constant contains

all the solutions to the system (1.1l) independent of the controls. From

this can be inferred6 that the system of n partial differential equations

W W
= (t,x)+ %&(t,x) A»'((X) =0

1.b

W
%;;(t,x)Bo(r(x) =0

is not complete, so that another independent partial differential
equation can be determined by the Poisson operator to yield the non-

existence of a non-trivial W(t,x), namely %%% (t,x) = f}%— (t,x) = O.
=3

The problem posed is to determine the control which steers the
state from some initial point x° to some final point xf in minimum time.
We shall now state a further condition which in essence is the sine qua

non of the Green's theorem approach to higher dimensions.



Condition A

The columns of the B r(x) matrix are (n-1) linearly

P

independent tangent vectors, furthermore the system

of partial differential equations formed with the

tangent vectors

v
-S—X:( (x) Bo( r(x) =0 1.5

is a complete system of order (n-1).

This condition has three important implications which will be developed

in detail in later sections; however, for the purposes of motivation

we shall briefly describe what these implications are:

1)

2)

3)

Condition A guarantees the existence of a single unique pfaffian

to system (1.1).

It provides a necessary condition for the existence of an optimal
totally singular vector control. The sufficiency condition for

the existence of an optimal totally singular vector control follows
from the Green's theorem application.

On applying the n-dimensional Green's theorem to the single pfaffian,
there results E&%fll hypersurfaces whose interpretation as singular
hypersurfaces (assuming an analogy with the 2-dimensional Green's
theorem approach) is doubtful since we need only (n-1) such hyper-
surfaces to specify the totally singular vector control. However,
Condition A enables an integrability argument to be invoked and

from this it can be shown that no more than (n-1) hypersurfaces

are obtained which can then be interpreted as singular hypersurfaces.



2. Existence of a Totally Singular Vector Control

Let ¥, (x) be a vector orthogonal to the columns of B;(r(X)

that is

Wi ¥

Ye(x) B, (x) =0 2.1
[~ 4 Ar

Hence the pfaffian system (1.2) can be expressed as a single pfaffian,
which is unique to within an arbitrary multiplicative factor by virtue

of the linear independence of the columns of Bo(r(x)
Wo((x)dxo( = %((x) Ao((x)dt 2.2

Let x = #2(t), t E'[to,tf ] represent parametrically a totally singular
arc in state space, which transfers the state from x° = ¢8(t°) to

xf - ¢s(tf). Hermes” has demonstrated that the totally singular arc
automatically satisfies the pfaffian (2.2). The question now arises
whether it is possible to obtain a parametric representation in state
space of the same transfer (but not necessarily the same arc) by

x = x(a), o 6[0—0, o'f] and t = constant, that is, satisfying the
pfaffian

o

Yi(x(67)) dx (07) =.0 2.3

with x” = x( @) and xF = x( o).

If this is possible, then the totally singular vector control will mnot
be optimum, since the transfer of the state vector from L to xf can
be synthesized by suitable impulses to achieve the transfer in zero
time. Therefore the problem resolves down to the question of accessi-

bility of points by trajectories satisfying the pfaffian



Yu(x)ax = 0 2.4

The resolution of this question leads to the following lemma.

Lemma 2.1. A necessary condition that an optimal

totally singular vector control exists is that the

pfaffian \}S\(x)dx"(: 0 be integrable.

7

Proof. The proof makes use of the following theorem’ and its contra-
positive which we shall state formally.

Theorem (Caratheodory). If a pfaffian uc&(x)dx = O has the property

K

that in every arbitrary close neighborhood of a given point X there
exist points which are inaccessible from X by trajectories satisfying
the pfaffian, then the pfaffian is integrable.

Contrapositive. If the pfaffian (x)dx , = O is not integrable, then
« A

there exists some neighborhood of a given point X in which all points
are accessible by trajectories satisfying the pfaffian.

Assume the pfaffian is not integrable, then if the neighborhoods of
accessibility from given points are closed, the conclusion of the lemma
is immediate. The maximal neighborhood of accessibility from a given
point will necessarily be open. Assume the neighborhoods to be open
and consider a neighborhood of accessibility 2{(X) of a given point X

on the singular arc defined by X = #°(%), t < t<t If the singular

f'
arc x = #°(t), tE.[to,tf] is contained within the neighborhood‘?Z(;).

then once again the conclusion of the lemma is immediate. If this is

not the case, then there will exist a t, and a t2 such that the points

1



of interesection of the singular arc with the neighborhood 9?(?) will
be given by x = #°(t); t, <t <t,. Consider the point x'=#°(t,) and
its neighborhood of accessibility ?Z(x'). The intersection of“??(x')
and'?z(i) must be non-void, otherwise there will exist points of f?(x')

which are inaccessible from x' and hence contradict the assumption

that the pfaffian is not integrable. Therefore if the pfaffian is not

mQ

integrable, then there will exist an x(¢§~) satisfying \Va((x(\fT) ) dx(o)

that transfers the state vector from x° to xf in zero time and the

singular arc will not be optimum, which completes the proof of the lemma.
If the pfaffian WG‘(x)dxa&= O is integrable, then there exists

a non-zero integrating factor‘/i(x) and a function V(x) such that

X oV
(x) = p(x) (x) 2.5
vo( M 0%y
Therefore from (2.1) we have
X
=0 2.6

2V (x) B _(x)
O Xy Rr
and from Condition A we are assured that such a V(x) exists so that

the pfaffian Qé((x)dxo(= O is integrable. It should be noted that the

pfaffian

"&(x)dx‘x - '}_/T (x)A,((x)dt =0
3

is not integrable”, otherwise this would contradict the assumption

that the system (1.1) is controllable.



3. N-dimensipnal Green's Theorem

The problem of extremizing 2-dimensional line integrals of the

form xf

I-= [ |:al(xl,x2)dxl + aa(xl,xz)deJ 3.1
x

is a fairly simple one, since the relative optimality of two distinct
trajectories may be compared directly under suitable smoothness con-
ditions, by an application of Green's theorem. The unique feature
of this approach when applied to two dimensional nonlinear systems,
in which the control (single component) appears linearlyz. is that the
projection of the singular arc in the state space iz obtained immediately
by uJ(xl,xa) = O where

aa(xl,xz) -

< -
w(xl,xa) = SLXI 5%, al(xl,xa) 3.2

The utility of the method is immediately obvious since only simple
algebraic manipulations are required to generate a)(xl.xa). Before
applying Green's theorem to the control problem posed, we shall briefly
review the analogue of Green's theorem in higher dimensions.

2 ; . .

Let x, = SK(ZI’ZZ)’ sd€ C” define an orientable surface S in
DcRY; furthermore, let z() and z,(8) define a Jordan curve [Cin s
enclosing S. We shall assume that the mapping s is one to one on §
for every pair (f‘. Xa3 %*#é fﬁ) and the corresponding Jacobians {xf?
do not change sign on S and can vanish only on a subset of S having

zero Jordan content8 (in Rz). Since S is orientable then there is a



unique direction associated with the Jordan curve rand the direction
of each projection of ron to the coordinate planes, denoted by ':\P
will be determined by the sign of the corresponding Jacobian J .

“p

Consider the line integral around r

I-= [ a‘-&(x)dxd 3.4
[C(x)
where a(x) € ¢' in R".
Transforming the line integral to the surface coordinates (zl,zz) and

using Green's theorem we obtain

P os 8
I- SL' {ao((s(z) )35; (2)dz, + &, (s(2) )oﬁf; (z)de}
M(x(z))

aa

= |—&
= jax Jp dzydz,

S

Defining ga(ﬁ to be the projection of S on to the coordinate planes,

then taking the inverse transformation and renumbering & and }B we obtain

I = _[ ""d\,d dxﬂdxo( A=1 ... 10 3.5
-s.dﬂ p=d+1’-.-'n

where

aﬁ(ﬂzdxﬂ - ax‘ 3.6

In applying the higher dimensional Green's theorem to the control

problem (1l.1) we are immediately faced with a paradoxical situation.



10

In analogy with the two dimensional Green's theorem approach, if we
interpret w/ “p
EﬁEgll such hypersurfaces, whereas we need only (n-1) hypersurfaces

to determine the (n-1) components of the totally singular control.

= O as singular hypersurfaces, then there will exist

When n=2 the number of hypersurfaces are the same, while for n >2
we obtain too many hypersurfaces; however, since the pfaffian

QG‘ (x)dx, = O is integrable, it will be shown that no more than (n-1)

n{n-1)
2

of the hypersurfaces = 0 are independent.

“p

k. On the Optimality of a Totally Singular Vector Control, by the
n-dimensional Green's Theorem Approach

By virture of Condition A there exists a unique pfaffian to the

control system (1l.1l) which can be expressed as

¥, (x)d
4t o & XL
WT(x)AT(x)

Equivalently the pfaffian could be expressed by equation (2.5) as

bo1

V(x)
gTd— dx ¢

dt = ETICIPN = L2
Oxg T

However, the determination of V(x) is inconsequential to the analysis;
what is important is to generate the pfaffian (4.1) from the system of
pfaffians (1.2) by the elimination of the differentials dyr.

It has been assumed in equation (4.1) that yK%(x)ATIX):¥ 0 in D.

From the controllability requirements it is known that q%r(x)Atjx)sf()



in D otherwise the hypersurface V(x) = constant would contain all the
solutions to equation (1.1) independent of the controls.
By equation (4.1) the time required to transfer the state from

x° to xf through system (1.1l) can be expressed as a line integral by

£
X

Y, (x)dx_
I=t_ -t = R =

4,3
f o Jo Y (x)A_r(x)

We now perform the usual ritual of comparing two trajectories joining
x° to xf that project a Jordan curve rﬁin state space.

It is assumed that the two trajectories can be transformed con-
tinuously into one another, so that a simply connected surface can be
constructed containing the two trajectories. Denoting by I1 and I2
the respective costs to traverse the trajectories and accordingly,
associating a sense of direction to r"we have

Wu( (x)ax
1 2 = qft,(x)A,(_(x)

-

On applying the n-dimensional Green's theorem we obtain

11-12=f wdl,d dxo(dxﬂ A = 1,eee,n 4 u
so(ﬁ = A +lyaee,ynn
where
WV (x) W, (x)
_ ) < -1 __(ém 4,
u)«p (x) = 6x/3 IrT(x)A_f(x) EEN \frx Adx 5

From the form of 4J, we have immediately

Ap

11
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n(n-1)

Lemma 4,1. No more than (n-1) of the 5

hypersurfaces ‘Ltyﬂ(X) = O will be independent.

Proof. The proof follows directly from the theorem7

on the integrability
of a pfaffian.
Theorem. A necessary and sufficient condition that the pfaffian

aa((x)dxo( = O be integrable is

) aﬂ(x) aﬂ(X) a_ax(x) aao((X)
ab((x) X T 9x * aﬂ Idx_,  9x
o Xy A P ¥
aao‘(x) o aﬂ(x)
+a - —
Y axﬂ ax),

W

Since the pfaffian \}fd (x)ax 2= 0 is integrable, then the pfaffian

\V (X)dxA
- = 0 also is integrable. Applying the integrability test
qﬁr x)A _(x

yields

. . , x
v, d)/gx(x) +V;3(x) Wy () + l}’r(x) wxﬂ\x) 0 L.6
from which it follows that only (n-1) of the Ei%fll hypersurfaces

w = O are independent.

< f P

The hypersurfaces Ué96= O can now be interpreted as singular
hypersurfaces, since their common intersection (assuming it exists)
yields the totally singular arc. This equivalence is demonstrated in

the next section. The importance of the n-dimensional Green's theorem

approach is in the simple algorithms it provides for the determination



of the singular hypersurfaces and the totally singular arc. Once this
has been accomplished, then it is a relatively simple matter to construct
a two parameter group as indicated in Section 3, which contains the
totally singular arc for some values of the parameters and then use the
2-dimensional Green's theorem to evaluate globally the optimality of the
totally singular arc. Since we are primarily interested in evaluating
the optimality of the totally singular arc, it is tacitly assumed that
the singular hypersurfaces have a common intersection that can be repre-
sented in terms of a single parameter x = x(6°) so that u)’(p(x( o))Eo.
If this is not the case, then the control will not be totally singular;
that is, all components of the control are singular. We shall illustrate

the method with an obvious example. Consider the system

X, = u,; X, = Uyj X, = 5 5 L,7

and the problem is to transfer the state from [0.0,l] to [0,0,ZJ in
minimum time. It is obvious that the system of partial differential
equations (1.5) is a complete system of order 2 thus satisfying

Condition A. The line integral (4.3) is
2 2

[0,0,2
[

2
I = ] 1 2 +x3 )dx "*.8

[0,0,1 ’

so that u)12=0; wl} = 2x1;

are given by the planes x, = 0j X5 = O and the singular arc can be

wz = 2x

3 5 The singular hypersurfaces

1

13
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parametrized by x, = 0; x, = O; x, = 6. Let the representation of

1 - 3"
the surface S (see Figure 1), containing the totally singular arc, in

terms of the two parameters z. and z_ be

1 2
X, =z, cos [}
X, = 2; sin '] 2, >0 L.9
x3 = 22
8o that z, = o, z, = O are the values of the parameters yielding the

singular arc.

Figure 1



Denoting by Is the cost along the totally singular arc, and by I the

cost along any other arc contained in S, then
I-1I = {(x12+x22+x32)dx3 =j|;(212+222)dzz by (4.9).
Hence applying the 2-dimensional Green's theorem yields
I-IB=£221¢1320

so that the totally singular arc is optimum relative to the comparison
trajectories contained in the family of surfaces given by (4.9).
A more general family of surfaces, similar to (4.9), can be described
in terms of a vector valued parameter @ by
X, = zlfl(zz;ﬂ)

X, = zlfa(za;ﬁ) Lk,10

where f1 and f, are scalar functions of the vector @. Hence, for z, =0

2 1l

we have
I - IS = 9§J<%12 (flz(zz;ﬂ) + f22(z2;¢)] + 222 dz2
r

2 2
= éazl (fl (z,30) + f, (z2;¢)) ds =0

and for zlf; (0]

2|, 2 2 2
I-1 '.jé’{zl (£,238) + £,°Gyi®) + 2,° ) az,

2 2
_[S 2z1(f1 (z,:8) + £, (2.2;56)) ds >0

15
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so that once again the totally singular arc is optimum relative to the
comparison trajectories contained in the family of surfaces given by
(4.10). The existence and construction of a family of surfaces con~
taining all possible comparison trajectories will be left as an open

question.

S. Equivalence Between the Hypersurfaces «ww = O and the Totally
Singular Problem «

Treating the time optimal problem (1.l1) by the conventional
9

methods of optimization®, the Hamiltonian is

BGp) = 1+ p [ A + B, (o, ] 5.1

where p is the costate and is determined by the Euler-Lagrange equations

- 9% 3B+ 5
li( = axd (x,p) = px 3 % (x) + 5% ¢ (x)ur 5.

The singular problem giving rise to the totally singular control urs(t)

occurs when

t
p B _[@%w) 2o 5.3
is satisfied together with
t
ad? @5t) = Ay ‘Lps(t)) +B_ . ({ps(t)) urs(t) Sol
d E oA s 9 r 5 s
3t Py (8) = - p(0) -a—;i CIE a—ii—[cp (t)) u_ (t)_

5.5



Furthermore, the Hamiltonian is a constant along the extremals and

this constant is zero by virtue of the transversality condition, to yield
1+p,(t)A (lp"(t)) to 5.6
P » _ .

Differentiating equation (5.3) with respect to time and using equations
(5.4) and (5.5) to simplify we obtain the following set of (n-1)

equations which also has to be satisfied.

i

P (®) %(tpsm) sz_(q?s(t)) - %%f(tp%w) a P )
5.7

It followe that the coefficients

dA P3(t) 8B,
ST Pae (95e)) - =2 (tp ()} ay |95e)

are either zero or some linear combination of B, ((ps(t)) otherwise
equations (5.3) and (5.7) would imply a trivial result for p (t). To
demonstrate the equivalence between the hypersurfaces wdlB = O and the
singular problem, we shall for convenience take the pfaffian in the
equivalent form (4.2)

o V(x)
EE® dx%(

dV(x
axf Ar( x)

dt 5.8

and recall that V(x) satisfies the complete system of partial differ-

ential equations

17
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2V(x)
9 x, Bo( r(X)

i

0 5.9

of order (n-1). From the definition of the hypersurface w % = 0 we

have for the equivalent pfaffian form (5.8)

1

wy g|¢P®) =
4 {g%r(‘f’s(t)] Ar(ffs(t))} °

8 S -] oA 8
: %YTP“P <t>)[,,x i) a AP+ S (o*w) FE e <t>)]

{W(t)) ax"(cp (t))]

5.10

(zp (t)) l:——;—(cp (£)) & [¢®

he factor 1 _6_\’/‘__ )] alPse) : may be neglected since by
T ) . r

assumption

3—(::) A (x) # 0

From (5.9) we have

W et

(lp (t)) [tps(t)) 0 5.11

which can be identified with equations (5.3) by defining

p (

t AV | .8 :
» t) = A(t) —a;(:((p (t)) 5.12



where J)(t) is a non-zero multiplier that has to be determined. Sub-

stituting this form (5.12) into the Euler-Lagrange equations (5.5) yields

-(;—’{ Act) - S—Y(a‘(tps(t)) + A () [a X%, “PS(t)) A l’f'(t),

i et

0 5.13

o (p (t)) (tp (t))]

Using this result we find from equations (5.10) that

wdp(lps(t)) = 1

v 8 s A(t)
8Ll 8L o) 14

it A®)

i

. %(W(z)) %((ﬂs(t)J 1ALt 5 ]

thus showing the equivalence between qos(t)) = O and the singular

“"o(,s (

problem. Some further consequences of this equivalence are as follows.

Mutliplying equation (5.13) by Bb<r_and summing and invoking (5.11) yields

A(t) [%2‘,’:;’:%) Ax(lps(t)) B (4%

MNer

(tp (t)) (Ps(t)) (cp“(t))] 0 5.14

19
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Differentiating equation (5.9) which is an identity in x with respect

to Xy and multiplying by AU(X) and summing, gives

2%(x) ) OB ¥

¥ 5 oao + S (0 —FE— a0 =0 5.15
X xx r X o xa, Y
By virtue of this result equation (5.14) becomes
A QL (@3)) | 22¥ [p20) B, _[¢°)
6xx axa( AT ‘P
o8B t
- T’g’f (9%(®) Ad{cp'S(t))] Z0 5.16

which is easily recognized as equation (5.7).
Finally, to complete the equivalence, if we multiply equation
(5.13) by A (lPs(t)) and sum we obtain
[+ v s s
L Lax,( [¢50) a (¥o®)

+ Alt) A (¢5(t)) 5‘)&[“1(‘98“))%; (‘PS(t))]; 0

Using equation (S5.4) the above equation becomes

d%{k(t) -g—;-( (tps(t)) Ad(cps(t))}

et

BTG LI [TAI05) (S 796’_‘; [A(‘tps(t), -g—-;"x(lFs(t))]



However the second term is zero by equation (5.14) so that the above

equation can be integrated directly to yield.

Alt) %_Yx_ (Lp‘(t)). Adllpa(t)) = constant.
A

This result is equivalent to equation (5.6), the constancy of the

Hamiltonian, and determines the multiplier A (t).

6. Minimization of a Functional

The n-dimensional Green's theorem approach described in the

previous sections can be applied to minimizing functionals of the form

te
I .f L{x(e)) at 6.1

tO

The problem is to determine a control ur(t) which by (1.1) transfers
the state from X to x, with no restrictions on t, (tf free), such that
I is minimized.

Since there is no precise statement about the reachable set for
the system (1.1l) given, some restrictions must be placed on L(x). This
is necessary because it could transpire that if for some ur(t) the
solution to equations (1.1l) formed a closed curve in a region of state
space where L(x) is negative, than I can assume any value whatsoever

simply by traversing the closed curve an arbitrary number of times.

The existence theorem of Markus and Lee10 circumvents this problem by

21



placing a restriction on tf. However, we cannot include such a
restriction without destroying the equivalence between the hyper-
surfaces L‘£93(X) = O and the singular problem. We shall assume that
L(x)2 0 in D so that the problem becomes equivalent to one of minimum
time.

By use of the pfaffian (4.1) equation (6.1) can be expressed as

6.2

X2 L(x) Y, (x)ax
I- f
yck(x)%&(x)

X
o

For this form of the line integral the singular hypersurfaces are

given by

) o 2 {L(x) AP {L(x)lyp(x)}:O
X p ax# V‘((X)Af(X) OX Vf(ﬂA,t(x7

and the arguments given in Section 4 regarding the number of hyper-

surfaces still apply, since the pfaffian

L(X)Vx (X)
W_ XA X dxd =0
T E
is integrable.
Similarly, the equivalence between the hypersurfaces tdg(ﬁ(x) =0
and the singular problem follows from Section 5 with minor modificationms.
The totally singular arc qys(t) with the totally singular control urs(t)

satisfy



it

% P08) 2 A, 9%(8) + B‘“_((ps(t), u %(t)

o
rANMCEE g%d [¢°0)) - 5 (0 ‘;—:1 (93 ;{; [¢°()) u Bt

and

p (%) -Bdr((Ps(t)) fo

The Hamiltonian is a constant along the extremals and the constant is
zero by virtue of the transversality condition and the final time tf

being unspecified, so that

L (lp’(t)) + B, (A, (LP‘(t)) to

From these equations it can be shown that

w«ﬁ(l.p‘(t)) fo

and hence the methods described can be used to evaluate the optimality

of the totally singular arc.

7. Some Examples

In applying the Green's theorem technique to a specific example,
it is not necessary to determine beforehand if the system (1.l) is
controllable, because if the system (l.1) is not controllable, then
the pfaffian (4.1) is integrable, and the integrability conditions are

given by

23



ol

‘-"J‘ (x) =0 7.1

£

Consider the following system

L)
X, = X, + X, u

1 1 21
X, = X5 - xlu1 + x3u2 7.2
x3 = x3-- XU,

The system of partial differential equations (1.5) associated with the

system (7.2), namely

is a complete system of order 2, thus satisfying Condition A. The

corresponding pfaffian (4.1) is

d + x.dx, + x,dx
dat = xl x1 2. 2 23 2 73

2+x2+x
o M B

and it is immediately obvious that Lulz(x) z¢v13(x) = aéB(X) = 0 so
that the pfaffian (7.3) is integrable. Therefore the system (7.2) is
( 2+x 2 2, =2t
0%

+x. e
>
constant contains all the solutions independent of the controls.

not controllable, since the hypersurface W(t,x)



On the other hand, it is most important to check whether
Condition A is satisfied before applying the Green's theorem technique.
It does not follow that, if the required number of hypersurfaces are
obtained, then Condition A is automatically satisfied, as demonstrated

by the following counter-example. The system equations are

X, = X5 +uy 4+ x3u2
X, = X 2 + X,u
2 73 2 2
x3_= -X5%y + Xu,

and the pfaffian (4.,1) is

dx x.,dx
dt = 2 - 2
( 2 + X 2) x,(x 2 x 2)
*2 3 1'%2 3
so that
u/12 =0
x
2
w -
13 2 2 2
X3 (x2 + Xy )
- x22 - x3 + Zx}x1
23 (x 2 . x 2)
1Y% 3

Therefore, it would appear that the singular hypersurfaces are given by

X =0

x, -2x, =0 (xlqéo, x3¥0)

25
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thus yielding the correct number of hypersurfaces despite the fact
that Condition A is not satisfied. However, the fallacy of this
result is readily apparent, since the controls ul(t) and uz(t)
yielding the arc X, = (s X5 = o, x3 = 20 do not exist without
violating xlaéo; ngé O.
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