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RANDOM PRESSURE EXCITATION OF SHELLS
AND STATISTICAL DEPENDENCE EFFECT
OF NORMAL MODE RESPONSE

By Robert E. Davis
McDonnell Aircraft Corporation
St. Louls, Missouri

SUMMARY

The power spectrum of structural response to random excitation provides
a valuable tool for evaluating structural integrity. Using a normal mode
approach, equations are derived which give the response power spectrum of
shell-type structures to random pressure excitation. Primary assumptions
are that the exciting phenomenon is weakly ergodic, and that the structure
1s lightly damped and its motion is linear. The derivation is carried to
a point such that direct solution of the final equations is possible,
i.e., imaginary terms are eliminated and the equations are given as
functions of positive frequency in cycles per second. The statistical
dependence of the normal coordinate responses is accounted for in the
equations, rather than being neglected as is usually done. Furthermore,
the importance of these terms is investigated and a limiting case on their
importance is obtained.
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SYMBOLS

Surface area

Co-spectrum, real part of S defined below

Generalized force

Frequency in cycles per second

Function of frequency defined in text

Function of frequency defined in text

V-1

Generalized mass

Number of normal modes

For a pair of modes, P is the percentage of response
contributed by the normal coordinate co-spectrum compared
to that from the sum of the normal coordinate power spectra
and co-spectrum

Pressure

Quad-spectrum, imaginary part of S defined below

Normal coordinate

For a palr of modes, R is the ratio of response contrib-
uted by the normal coordinate co-spectrum compared to that
from the sum of the normal coordinate power spectra and
co-spectrum

Radius of shell

Power spectrum or cross-spectrum depending upon:

(1) alikxe or unlike superscripts, or (2) salike or unlike

variables within parenthesis

Period of time over which spectral functions are determined,
theoretically approaching infinity

Time

Coordinate defining distance along cone generator from
apex to a point on shell
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Subscripts and

Deflection perpendicular to shell surface
Reciprocal of complex frequency response function
Defined in text

Defined in text

Ratio of damping to critical damping

Coordinate defining angular position on shell
Defined in text

Time shift for auto-correlation or cross-correlation
functions

Modal deflection perpendicular to shell surface

Frequency in radians per second

Superscripts

A
a,b
F
I,J
k,1

P,q,W

Indicates relationship to area

Indicate response points a and b, respectively
Indicates relationship to generalized force
Indicate modes I and J, respectively

Indicate sub-areas k and 1, respectively

Indicates relationship to pressure, normal coordinate,
and deflection, respectively

Matrix Notation

[]
LJ

LJ°”
{1

Square matrix
Row matrix
Transpose of row matrix

Column matrix
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NOTE:

Double subscripts or superscripts appearing on symbols within a
matrix imply all possible comblnations of themselves as they vary
from unity to their maximums. As the subscripts or superscripts
vary, they give the row and column designation within the matrix;
the first subscript or superscript gives the row, and the second
gives the column. Thus, the variability of the subscripts or
superscripts is limited by the number of rows and columns in the
matrix.

Miscellaneous Notation

*

()

<>

Denotes complex conJjugate

Parenthesis following a symbol indicates that the symbol is a function
of those variables appearing within the parenthesis

Indicates a time average

Differentiation of a variable with respect to time 1is indicated by dots over
the variable.
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INTRODUCTION

In recent years, considerable interest has been shown in obtaining the
response of continuous structures to random pressure excitation. This
interest has resulted primarily from fatigue problems of panels and shell-
type structures of spacecraft and aircraft subjected to aerodynamic buffet
andfor Jet or rocket noise.

Because of the random nature of the response to such excitation, it
must be described in statistical terms. The most useful of these is the
power spectrum for two reasons. PFirst, the power spectrum gives the
frequency distribution of response, and thus, indicates which frequency
intervals contain the major energy contributions. Secondly, if it is
assumed that the random response is Gaussian (normal), the power spectrum
can be usell to determine the probable time for fatigue failure to occur.
This latter use is discussed by Powell (Reference 1) and is based on a
derivation by Rice (Reference 2).

The purposes of this report are to derive equations for the deflec-
tion and acceleration response power spectra of shell-type structures to
random pressure excitation, and to investigate the role played by the
statistical dependence of the normal coordinate responses, denoted herein
as the normal coordinate co-spectra. A conical shell is used initlally as
the structural representation to lend direction for the subsequent
analytical development appliceble to general shell-type structures. As
implied above, a normal mode approach is used.

Matrix algebra is used in the derivation because the resulting
equations are compact, the variables are conveniently separated, and
numerical techniques of solution are simplified. The final equations
include the normal coordinate co-spectra contributions and are given in
a form which enables direct solution. The input forcing functions,
pressure power spectra and co- and quad-spectra, are specifically defined.

The work relating to the effect of the normal coordinate co-spectra
results in an equation giving the percentage of system response contrib-
uted by these terms compared to the total response. This work provides
a general criteria for determining when these terms may be neglected;
usually, they are neglected without true Jjustification in order to
simplify the calculations.

DERIVATION OF RESPONSE EQUATIONS
General Aspects
As previously stated, we wish to determine the response to random

excitation in terms of power spectra. Since a power spectrum is a
special case of a cross-spectrum (the cross-spectrum becomes a power



spectrum when the functions concerned are identical), an equation will be
derived for the response cross-spectrum. The derivation will be in terms
of complex varisbles, with only the real part of the final equation
retained. This real part is called the response co-spectrum, the imagin-
ary part being the quad-spectrum.

The response cross-spectrum is a statistical function, and depends
upon the statistical averages of the exciting phenomenon. Fundamentally,
statistical averages imply the use of ensemble averages; however, when
ensemble averages are not available, acceptable alternates, such as time
averages, must be sought. When a random process is weakly ergodice,
either time or ensemble averages give equivalent mean values, cross-
correlation functions, and cross-spectral functions. A necessary
condition, though not sufficient, for a process to be weakly ergodic is
that it be stationary. If ensemble and time averages give equivalent
results for all statistical properties, i.e., the complete probability
structure may be determined from time averages, the processes are strongly
ergodic. Sufficient conditions to insure strong ergodicity are that a
random process be stationary, Gaussian, and have a continuous power
spectrum. A more complete discussion of the above is given in Reference 3.

For the work herein, we assume weakly ergodic processes. We also
assume processes having zero means, since we are dealing with linear
systems and a non-zZero mean can be handled as a separate problem. With
these assumptions, a relationship can be derived between the cross-
spectrum of a pair of functions and the Fourier transforms of these
functions (Reference 4). Since the Fourier transform of the response may
be obtained from the differential equations describing the system motion
to forced excitation, the aforementioned relationship provides the "key"
used to derive an equation for the response cross-spectrum.

Relation Between Cross~Spectrum and Fourier Transforms

Figure 1 shows the frustum of a conical shell. Assume that the
response of this shell at points a and b to random pressure excitation
is as shown in Figure 2. The cross-correlation function for W(xa,Oa,t)
and W(xy,0p,t) is then given by

T
{W(Xg,0a,t+7) W(xy,0p,t)> =  1im -éﬁf W(xa,0g,5+7) W(mp,0p,8)8t ()

T T

where T 1s a time shift between the records. Assume that the infinite
records for W(xa,04,t+7) and W(xp,0,,t) are truncated such that they are
zero outside the time interval -T to T, where T is a very large time.
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Figure 2 — Records of Random Functions of Time, W(xg, 6,,1) and W(xp, 6y, 1)



This assumes that the infinitely long time average can be approximated
satisfactorily by a very long time average. Now Equation (1) can be
written as

B8

CW(xa,00,b47) Wy, 0p,8)> = & [ W(xg,00,647) Wlixp,0p,%)at (2)

5

The cross-spectrum is defined as the Fourier transform of the cross-
correlation function. Thus, we have

sﬁb(::w) = f e 19T (W(xy,00,t+7) W(xp,0p,t))> a7 (3)

The *w is used to indicate both positive and negative frequencies. Later
since physical meaning is limited to the positive frequency domain, we
will limit certain results to only positive frequencies. Substituting
Equation (2) into Equation (3), we obtain

L>~] oo

ab - 1

Sy (Fw) = f o-iwT = .z[ W(xg,0,,t+7) W(xy,8,,t)dt dr
00
~iwt

Introducing eiwt e = 1 and interchanging the order of integration

results in

b w o
so(Xw) = }2}[.‘ [ e 1(t+7) y(x,,0,,t47)ar [ % w(xg,0,t)at
-0 -0

Since t is a constant for the first integration, we can replace dr by
d(t+7). Then letting t+7 = t' we get

[ e u(x,,00,6M)att [ el W(xy,0p,t)at ()

wLO =00

sb(+, .\ _ L
s (Zw) = 5

Using the fact that statistical properties of stationary processes are
independent of the time origin, and assuming the existence of the
Fourier transform of W(xg,0g,t') and W(xy,6y,t) - the transforms exist if
the functions are plecewise continuous and the integrals,

[o <] [=]
J.lw(xa,Oa,t')Idt' and J"W(xb:ob:t)ldt are convergent (Reference 5) -
-0 =00

Equation (4) can be written as



Sy () = 5 W(xg,0,,4) We(xp,0p,w) (5)

This is the desired relationship between the cross-spectrum and the
Fourier transforms. Note that when a = b, we have a power spectrum.

Equation for Response Cross-Spectrum

Proceeding to determine the response cross-spectrum, we must obtain
W(xg,0q,}w) and W(xy,0p,3w) in terms of the excitation pressure and
structural properties and then substitute into Equation (5). Assuming
the frustum shown 1in Figure 1 is lightly damped with undamped normal modes
¢I(x,9), corresponding to the normal coordinates gy, the equations of motion
are given by

W(xa,9a,t) = | fa1 | {qI(t)} (6)

ap(t) + 281 wp 47(t) + w12 qr(t) = %E-.fe Oj]r¢]:(x,e)p(x,e,t)r(x)dex
X1

(7)

The assumption of light damping allows us to ignore cross damping terms in
the above equation.

We obtain W(xg,0,,%w) by taking the Fourier transform of Equation (6),

W(xa,00,%) = Lfar ] {ar(2w)} (8)

A similar expression for W*(xb,eb,iw) will be needed and is obtained from
the complex conjugate form of Equation (8) with a replaced by b,

W*(xb:gb,iw) = L¢bJJ {q*J(i“)} (9)

In Equation (9), J is used rather than I for the purpose of distinguishing
between different normal modes in the subsequent development. Substituting
from Equations (8) and (9) into Equation (5), and obeying the rules for
matrix multiplication, we obtain

(az ] & {axt®)} | 25| [ doa]”
[¢aI J [sf(.tm)] [%JJT (10)

S2P(4u)



where the IJ'P element of [Sg;(im)] is given by

810(tw) = &5 ap(w) ¥ y(2) (11)

Equation (11) gives a normal coordinate power spectrum when I = J, and a
normal coordinate cross-spectrum when I ¥ J. As first pointed out by
Powell (Reference 1), the cross-spectra represent the statistical depen-
dence between normal coordinate responses.

To obtaln the elements of [éé;(im)] for substitution into Equation
(10), we will use Equation (11), which means that qr(w) and g¥(iw) must
be determined. We proceed to do this by taking the Fouriler transform
of Equation (7),

X0 2r
+.) = 1 +
ar() = =gy 5!1' of #1(x,0)p(x,0,%w)r(x) d0dx (12)
Where
z(dw) = Mp wr© (1 - (-“’—)2 + 1287 (-“’—> (13)
vy vy
Similarly, for mode J we have
1 X5 2
) = gy J S Faloe)pr (o0, ) r(x)a0ax (14)

*

2 w \2 w
2y = My o5 (l ) (T> e {J<:E)) (15)

By substituting Equations (12) and (14) into Equation (11), we obtain

IJ Xo> 2 Xo a2r
Sq (iw) = ZI(iw)lZ*J(m;{ Of }E{' df (S-P(X,G,X', 9',1&))¢I(x,g)¢J(X',G')
r(x)r(x')d@dxde'dx'> (16)
where
Sp(x,8,%',0",2w) = 2= p(x,0,2w) p*(x',0*,4w) (7)



and the primes indicate the order of integration. 'The function
Sp(x,0,x',0',2w), is the pressure cross-spectrum between any two
points (%,0) and(x',0').

The solution of Equation (16) in its present form requires the analyt-
ical definition of S (x,O, 1,0',#w) over the complete shell surface. A
rigorous definition would be extremely difficult, if not impossible, to
obtain when the exciting pressure results from a highly turbulent flow
over the shell surface. Yet this is precisely the most likely condition
under which maximum excitation of spacecraft shell structures occurs.
Thus, it is necessary to simplify Equation (16) before & solution is
possible.

As a first step in this simplification, we divide the total shell
surface into sub-areas. Now Equation (16) can be written as

7B = Sy % ?&ﬂ(sﬁx,g,fﬁ%iw) #1(x,0)
Fr(xj01)an, dA'1> (18)

vhere Ax and A indicate the sub-areas and the indices k and 1 both vary
from one to the total number of these areas. Suppose we assume that

the pressure is identical for each point within any particular sub-area,
but generally different between points not in the same sub-area. Then,
for any two points, one in sub-area k and the other in sub-area 1, the
precise location within these sub-areas is no longer needed. That is,
the precision 1k£lied by Sp(x,o x',0',%w) can now be replaced by the
approximation S (w). When 1 = k, Sﬁ 1(#w) is a power spectrum of the

pressure acting on area k. For k # l Skl(+w) is the cross-spectrum

between the pressure at the center of area k and the center of area 1.
We might call this the constant correlation assumption since we are
assuming that the correlation (cross-spectrum) is constant between and
two points lying in the same area, i.e., the cross-spectrum equals a
power spectrum for points in the same area. This is a conservative
assumption since the power spectrum is always positive (thus, its
contribution is additive), whereas the cross-spectrum can be negative

as well as positive. With the constant correlation assumption, Equation

(18) can be written as

53" (%u) = o Y % 3 sy @k ¢I(x’°)d-“k-£l ¢J(X':9')dﬁ'1)

(19)



Now substituting

It

¢§k S Fr(x,6)an, (20)
Ay

and

@ = [ gi(xr,0na8n, (21)
Ay

into Equetion (19) and rewriting in terms of matrix algebra gives

1 B} K4, | | 6o |T
Sq (2w) = zl(m% 7% 5 () %&J [SP ( )} [%J (22)

Substitution of this last equation into Equation (10) results in the
deflectlon response cross-spectrum between points a and b.

To obtain the acceleration response cross-spectrum, the normal coor-
dinate acceleration cross-spectra, SIJ(*w), must be determined and
q

substituted into Equation (10) in place of Sg?fjm), i.ea,

o - ] i8] [

By using the properties of Fourier transforws, the transform
of normal coordinate acceleration, ﬁI(fw), can be related to
qI(fm) as follows:

dr(du) = «? qr(tw) (2h)

With the above equation and a similar one for mode J, Equation (11) can
be used to show that

I3+ = M 17
5% (Zw) = Sq () (25)

Thus, the acceleratlon response cross-spectrum can be obtained by using
Equations (22), (23) and (25).




Elimination of Imaginary Terms - Response Co-Spectrum

Equations (10) and (22) give the deflection response cross-spectrum
at points a and b, but these equations contain imaginary terms. We will
now limit ourselves to the real part of Equation (lO), i.e., the co-spectrum
of response at a apnd b. _The only imaginary terms in Equation (10) are
contalned within SéJ(im) . These imaginary terms are the normal

coordinate gquad-spectra.
To eliminate the normal coordinate quad-spectira, we must separate
S&J(iw) into real and imaginary parts. This can be done by multiplying

the numerator and denominator of Equation (22) by the complex conjugate of
the denominator. After some manipulation involving Equations (13) and
(15), we can write

1 - (l/MI My wr® “’JE) (G(iw) + 1 H(iw))
21(20) 23(w) G2(2w) + B2(Hw) (26)
where
2 2

G{tw) = (1 - (fi) )(:l - (EL) ) +h & w

( wy Wy L9 oy (27)

+ w w {2 w w\2

H(_m)=2§'J-L—u-E(-(q))-EfI;I—(l-(N—J-)) (28)

The cross-spectrum of pressures acting at the centers of any two areas
Ay and A1 cen be written in terms of the co- and quad-spectrum as follows:

sllgl(i-m) = C}I‘)l(im) - 1 QN () (29)

where Cgl(im) and le(iw) are given by

cgl(im) = ;{ cos w v { py(t+t) pylt) D @z (30)
Qg (20) = [ sin w1 Cpe(esn) py(t) > ar (31)

-Ch
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These relations can be seen lmmediately if one writes an equation similar
to Equation (3), but in terms of pressure rather than deflection.

Using Equation (29), we can write the matrix of pressure cross-spectra,
[?%l(imﬂ, as

[ssi] - [ostan] -+ [alicam)] (32)

The matrix [?gl(iwi] is symmetric and [le(iLO] is skew-symmetric, i.e.,
C%k(im) = C%l(im) and Q%k(im) = -le(im). This can be easily seen by

revriting Equation (5) with a and b interchanged. When this is done, we
see that Sea(im) = (Sgb(:w))* and thus, CBa(iw) = C:b(iw) and an(jw) =

-85(*w). Similarly, it follows that c%k(iw) = Cgl(iw) and Q%k(im) =
<5 H(2w) .

We now substitute Equations (26) and (32) into Equation (22) and
retain only the real part, which gives

kl
1y (/M1 My w12 ws?) o(2w) MkJ [Cp(ﬁu)hséﬁl J ’

Cql2w) = G2(2w) + H2(Hw)

, Gz Mg wr® wgf) () | [Q;%i“)llﬁgl-l .

G2(w) + B2 (w) (33)

The deflection response co-spectrum then follows from Equation (10)
with ng(iw) replacing qu(iw), i.e.,

oot - [pa] [o029] o)

Similarly, the acceleration response co-spectrum is given by

(3k)

ciT(2u) = o el (4w) (35)

9.2 [CeIf(iw)] 0] (36)

abg 4
CG (Fw)

1



Final Equations in Terms of Positive Frequency in Cycles Per Second

When b equals a in Equation (34), one has the deflection power spec-
trum of response at a. In englneering applications, the power spectrum
is usually defined only for the positive frequency domain, and in terms
of frequenecy in cycles per second. In order to obtaln the response
equations as functions of positive frequency in cycles per second, we
use as criteria the fact that the area under the power spectrum curve
must equal the mean-square response.

The inverse Fourier transform of Equation (3) returns the cross-
correlation function.

{W(Xg,00,t+1) W(%p,0p,t)D= él—n f elvT g80(y) quw (37)

=00

Setting b = a and T = O in Equation (37) results in the mean-square
response at a.

8

(HP(%a,0a,8)> = 2= f 823(4) aw = = [ c2%(3w) au (38)

2r

Y

4

In Equation (38), the fact has been used that S22(Xw) and Cga(iw) are

identical, both being a power spectrum. We now change the variable in
Equation (38) from w to f.

CWP(g,08,8)> = f C33(2e) ar (39)

Since Csa(if) is an even function, we write Equation (39) as

(W2(%y,0,,t) = j'o 2ci®(%r) af = f c2a(r) af (40)
0 0
where
cai(f) = 2c.7(%r) (k1)

Thus, if we rewrite Equations (33) through (36) as functions of f, the
assocliated mean-square responses will be given by the integrals of the
resulting equations when b = a. Proceeding to write Equations (33)
through (36) as functions of £, we obtain

12



IJ ) - (1/Mr My w1 6g®) o(f) lsﬂk_, l;'f(f)] |_¢AJ1JT

Cq(f) = ¢2(f) + B2(f)

. QM vy 02 wff) B(£) |4 ] [ka%f)] o5 ]”

a2(z) + H2(F) :

c?,?f) = I.¢aIJ [Clcta{f)] L¢bJJT

Cé‘r(f) = (2n) £* c(IlJ(f)
T
20) = |par] T ]

where

2

2 2 £

G(f)=( -(—5?-1-)\)(1-(%>>+1+§1 3 f1 £y
2 f £\
H(f)=2IJ%(l-(%))-zrl;;(l-(fJ))

are from Equations (27) and (28). The associated mean-square responses

are given by

<q]2;(t)>=_0/' Céx(f) ae

CWP(x0,05,8)> = [ c28(r) ar
0

(42)

(43)

(L)

(45)

(16)

(47)

(48)

(49)

13



<gE(t) ) = f cgl(e) ez (50)

(W2(xq,0,,8)> = Of°° c2%(s) ot (51)

Expressions for the elements of [C%l(f)] and [le(f)] are obtained

from Equations (30) and (31) by rewriting them in terms of }f, and then
changing to f by using Equation (41). This yields,

i

cgl(f) 2 f cos(2nf7) (p(t+1) pp(t) > dx (52)

Q5 (£)

2 f sin(2nft) <py(t+1) py(t) > ar (53)

The "2" multiplying the integrals comes from the right-hand side of
Equation (41).

Equations (42) - (51) are the desired relations for calculating
structural response spectra to random pressure excitation. Their form
allows direct numerical solution with the required forcing functions
given by Equations (52) and (53).

It is of interest to note the simplification which results when the
normal coordinate co-spectra are neglected. For this condition,
Equation (42) becomes

ey - eue® i) (o] [epte)] [¢1}21J i
( ] (%);)2 ’ (2 {I%)) (5)

I
Thus, [Cq{f)] is reduced to a diagonal matrix. Also, the pressure quad-
spectra are no longer required since they do not appear in Equation (5h4).
These simplifications greatly decrease the amount of calculation needed
to determine the response spectra.

A quantitative estimate of these computational savings can be
obtained by investigating the calculations required to determine the

elements of [éIgf)]. It is seen that the off-diagonal elements require
q
Tpproximately twice as much computation as the diagonal elements. Since

1J
Cq (f) is symmetric, however, only one-half of the off-diagonal elements
need be calculated. Thus, the amount of computation required to determine

1h



all elements of [?g;(fi] is proportional to the order squared, where the
order equals the total number of normal modes. If only the diagonal of

ng(fi] is to be determined, the computation is directly proportional

to the order. Therefore, neglecting the normal coordinate co-spectra
reduces the amount of calculation by & factor approximately equal to l/N,
where N 1s the number of normal modes.

CONTRIBUTION OF NORMAL COORDINATE CO-SPECTRA
TO TQOTAL RESPONSE

The actual solution of Equations (42) - (51) for a system having many
normal modes and divided into many sub-areas requires a tremendous amount
of computation. Unfortunately, this is exactly the situation we face in
analyzing the response of shells to random pressure excitation. As pre-
viously discussed, neglecting the normal coordinate co-spectra reduces the
amount of computation by the sizeable factor of 1/N and also eliminates
the need for pressure quad-spectra. This leads to the need for investi-
gating the effect of the normal coordinate co-spectra on the system response.

For convenience, we will limit the investigation to the effect on
the deflection response power spectra. To determine this effect, we form
the ratio

a aa )
¢ (1,3,15,¢) - c. (I,d,£)

R(f) =
ce(1,d,1d,f)
T (55)
where

cg?(1,J,1J,f) - contribution to response power spectrum at
point a due to normal coordinate power spectra
and co-spectrum for modes I and J.

Cﬁa(I,J,f) - contribution to response power spectrum at

point a due to normal coordinate power spectra
only for modes I and J.

The functional notation 1nvolving Ij J and IJ is symbolic indicating
dependence of Co?(f) on C (), CJ (f), and CIJ(f), respectively.

The contributions, CH*(I,J,IJ,f) and C3*(I,J,f) can be determined
from Equation (43) when b = a. Thus,

Co(1,5,10,2) = 21 i) + 425 CAlE) + 2 faz Pz Cole) (56)
Cy(L,d,f) = par cgf) +¢§J Cﬂf) (57)

15



Substituting Equations (56) and (57) into Equation (55) and dlviding top

2f aJ/¢ax) (‘Cq{f) /Cq{f)')
R(f) = , , (¢aJ/¢aI)2 (Ci{f)/cﬁf)) + 2@&7/5?5&1) (cé'(f)'/cgf)) (58)

If the normal coordinate co-spectra are neglected in a response calculation,
it would appear that R(f) cannot be evaluated since CIJ(f) would be

unavailable. Fortunately, we can obtain information about CéJ(f) without

actually calculating it. We do this through an inequality given without
proof in Reference 3.

(Fo)? + ()2 < (5w) )
(59)

Since this relationship is of prime importance to the subsequent develop-
ment, it is verified in appendix A.

Through the use of Equation (59), we can determine the maximum
possible CgJ(f). This is done by assuming that the left side equals the

right side and that QgJ(f) is zero. Thus, we can write

C {f)/c %f) = v q(f)/c %f) (60)

Substituting Equation (60) into Equation (58) results in

 2(da/Burfele) fexl)

() =
o 1+ (¢aJ/¢aI)2 (c‘é‘(f)/cﬁf)) x 2(¢aJ/¢aI~cqaif)/cq[{f)

57 S

If, from the X sign, we choose such that (¢aJ/¢aI Cq(f)/C %f) is negative,
we will obtain a maximum absolute R(f) since the denominator will be
minimized. On the other hand, this means that the effect of the normal
coordinate co-spectra for modes I and J is negative, i.e., it subtracts

from the total response. Thus, to neglect CLJ(f) would give a conservative
answer. From a design standpoint, we need to investigate the effect of

ng(f) when this effect is additive. Therefore, we must specify the
ositive value of | JT T1,..' in Equetion (61)
? (Fas/ta N (0)/CEE(D) ’

(61)

2 (¢aJ/¢aI cg?f)/csz)

"o = 1+ @aJ/ﬁaI)E (Ci{f)/cg%f)) + 2 <¢8J/¢8I héqu)/cq%f) (62)
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The ratio R(f) can be evaluated at any number of frequencies. However,
since the response close to the modal frequencies is by far the predom-
inant response, evaluation of R(f) only at the modal frequency, fj,
should provide a satisfactory indication as to the effect of ¢lJ(f) on
the response. a

While Equation (62) provides a useful tool for determining the
effect of Céq(f) after a response calculation which neglects C%?(f) has

been made, it would be even more advantageous if this effect could be
estimated before a calculation is made. It is possible to do this as
will now be shown.

Restricting ourselves to R(f) evaluated at f; for the reason
discussed above, Equation (62) becomes

2 (¢aJ/¢aI)\/ci{fI)/C§](:f1) __ —
14 <¢a 5 /¢a1>2 (C‘;‘(Ifl) /Cé%fl))+ 2 (¢aJ/¢aI Ncg'(IfI)/CZE‘I)
(63)

Equation (54) can be used to determine Cgl(fl) and Cg?(fl) for substitution
into Equation (63). Proceeding to do this and rearranging gives

R(fI) =

ot 2t
R = T8 28 ~ (& +0)2 (6k)
where,
‘- #2. 3 (er) . M2 th (2%)2 . . (gyJ)E 1/2
NP o (202 | Fp oBle) (L - (/P + (255(en/en Y
(65)
and,
plro) = [ [en)] e
(66)
colen) = ¢ [ tox ) g f (67)

The functions C%I(fl) and CgJ(fI) are the power spectra evaluated at fy

of the generalized forces for modes I and J, respectively. If the modal
frequencies f1 and fJ are reasonably close (if they are not close, the
normal coordinate co-spectra will certainly be negligible), we can assume
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that
cfd(£p) = cgl(£;) (68)

After substituting Equation (68) into Equation (65), and inspecting
Equation (54), we see that

I 2 42 o4y o o2l |
o (1) /(b= My wet) = c (Fy)
F'J J J J q\*dJd (69)
C;{f:[)/(h'fle M12 qu) = C{;{f]:)
(70)
Use of Equations (69) and (70) to rewrite Equation (65) gives
¢aJ q{fJ) beg" 1/2
g - e — .
it (- wrmf (st (n)

Because we wish to determine R(fy) (and thus, £ ) before CgJ(fJ) and

Cg;(fl) are calculated, we must, if possible, eliminate them from Equation

(71). It is possible to do this conservatively by investigating the
effect of ¢ on R(£1) in Equation (64). It can be shown by straightforward
calculus that the maximum R(fy) occurs when £=1. Furthermore, it can

be shown that the maximum value of L /{(l - (fI/fJ)z) + (243 (fI/fJ)> }

equals /(1 - fj ) and occurs when fI/fJ = (1 - 2¢ 2)1/2 For light
damping, this can, for practical purposes, be taken as

PAQ - (er/e0)B)2 + (e8yer/ep)) ) =
f1/f5 =1
Thus, for the condition that
WE/Q - (£p/50)D2 + 8y (£1/£))8)=
R(f) is meximized if

3y
Pag Cqlfs)/By1 C?fI) =
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since this makes
E=1
If

f1/fy # 1
then
b PHQ - (£1/20)2)2 + (Rip(er/e) %< 1

Therefore, under this condition, £ can only equal unity if
2 J I
Pog Cq{fJ)/¢aI Cq{fl) > 1

However, this latter situation can result only when mode J is stronger

than mode I. This means that we are obtaining the effect of the normal
coordinate co-spectrum at the frequency of the weaker mode. Since the
stronger mode will probably be more damaging to the structure, it is
reasonable to determine the importance of the normal coordinate co-spectrum
from the value of R(fy) at the modal frequency of the stronger mode.
Therefore, let us specify that the stronger mode is the Ith mode. With

this stipulation, the ratio ¢§J cgJ(fJ)/¢§I CéI(fI) is less than unity.

Now we will conservatively assume that it equals unity (conservative in
that & is made larger by this assumption). Writing Equation (71) with
this assumption and simplifying gives

{ L }1/2 (72)
&= (l/“Jz) 1 - (fI/fJ)2)2 + (fI/fJ)2

Conversion of Equation.(6h) to a percentage gives the final result.

P(f1) = 100 R(fg) = -(foi—i)z (73)

Equations (72) and (73) give a conservative estimate at the modal
frequency of the stronger mode of the percentage error incurred by
neglecting the normal coordinate co-spectrum in a response calculation.
The results of Equation (73) are given in Figure 3 where P(fr) is plotted
versus fy/f; for various damping ratios.

Two of the assumptions made in obtaining Equations (72) and (73)
merit further discussion. It can be shown that the assumption used to
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Figure 3 — Percent of Total Response from Modes | and J Contributed by
Normal Coordinate Co-Spectrum

write Equation (60) requires the following relationships to exist between
the power spectra and co- and quad-spectrum of the generalized forces.

Qg (£) /2 (£) = H(£)/a(£)

<C§J(f)>2 . (qf(ﬂ)g = st(e) s (p)

It is very improbable that either of the above relationships will be
satisfied for an actual system subjected to random pressure excitation,
and even much more improbable that both will be satisfied. Thus, we
would expect that the left side of Equation (60) will be considerably
less than the right side, which means the curves in Figure 3 are very
conservative in that they represent a limiting case. This should be
considered when one decides the percentage a normal coordinate co-spectrum
must contribute, as determined from Figure 3, before it is no longer
negligible.

The second assumption which merits discussion is that used to write
Equation (68). We see that this assumption rests upon the modal fre-
quencies being closely spaced and the excitation remaining fairly constant
over the frequency separation interval. This later criterion may be less
valid for high modal frequencies than for low ones, because a given
frequency ratio indicates a much greater frequency separation interval
at high frequencies. Thus, the results presented in Figure 3 must be
viewed with increased caution at high modal frequencies.
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CONCLUDING REMARKS

In terms of matrix algebra, equations have been derived (Equations
(k2) - (51)) for the response of shells to random pressure excitation.
Primary assumptions in the derivation are: (1) the system may be repre-
sented by a superposition of normel modes and is lightly demped, and
(2) the exciting phenomenon is ergodic.

Solution of the equations is made practical by the availability of
high speed digital computers. However, for a system having many normal
modes and sub-divided into meny areas, computing time will be lengthy.
By neglecting the normal coordinate co-spectra, the response equations
are simplified and the amount of computation is reduced by a factor of
approximately l/N, where N is the number of normal modes.

Equations (72) und (73) or the curves of Figure 3 can be used to
determine when the normal coordinate co-spectra may be neglected. It
should be noted that the assumptions leading to these curves are conser-
vative with the result that they provide the maximum possible normal
coordinate co-spectra contribution. As one would expect, this contri-
bution is lessened for increasing modal frequency separation and
for decreasing damping.
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APPENDIX A

UPPER LIMIT ON MAGNITUDE OF NORMAL COORDINATE CROSS-SPECTRUM

In order to verify Equation (59) of the main body of this report,
we begin by writing an equation similar to Equation (5), but in terms
of the normal coordinates instead of deflections and as a function of
f rather than 1w,

I 1
sqff) =& ar(f) ax(£) (A1)

By reviewing the derivation leading to Equation (3), it is seen that

Equation (3), and thus Equation (Al), are approximations of the true
answer which results when T — . Writing Equation (Al) as a limit gives

sle) = 0 L q(e) Qo) )

Recalling that q1(f) and qj(f) are complex variables, we write them as

ar(f) = og(f) + 1 py(f)

(A3)

QJ(f) aJ(f) + 1 BJ(f) (Al&)
For simplicity, we drop the functional notation (f) until the derivation
of Equation (59) is completed. With this in mind, we substitute from
Equations (A3) and (A4) into Equation (A2), and write the result in terms
of real and imaginary parts.

IJ _ 11 1 1i
Sq =~ Tow 2 (T PRI By -1g L (e By -orBD)  (as)

Since, for continuous functions, the limit of a sum equals the sum of
the limits (Reference 6), Equation (A5) can be written as

= (Kag az>+<er ) - 1 (Kog 5> - <oy B1) (A6)

where the bracket, { >, indicates the time average which results when
the limit is taken. If we now write an equation similar to Equation (29),
but in terms of the normal coordinates, we obtain

sI7 = ¢I7 - 1 QI

q (A7)
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Equating real and imaginary parts of Equations (A6) and (A7) gives

ctd = (Kop o> +<PBr ByD) (48)
17 | | |
Qg = or py> - <oy D) (9)
Using Equations (A8) and (A9) to form the left side of Equation (59)
results in
(CgJ)2 + (QéJ)2 = <o§ O:J>2 +'<BI BJ)? + 241 °ﬁ><BI By>
+ <o 850 + <oy Bp® - 2 oy B> <oy By
(A10)

Since the limit of the product of two continuous functions equals the
product of their limits (Reference 6), Equation (Al0) reduces to

()2 +@L%)2 = <o ap? +<pr PP + Car 8% + <ag Bp° (811)

Now we form the right side of Equation (59). Writing Equation (A2)
for Sg; and Sg; glives

SII = lim _l_ *
Q9 "7 . 27 WU (AL2)

SJJ - lim 1 *
q T—oc 27 qJ ar (Al3)

Substituting Equations (A3) and (Ak4) into Equations (Al2) and (Al3), we
obtain

SgI " 1o % (or” + B1®) = (<> +<Br>D) (ALL)
SgJ = Tl_i.‘i %T— (a2 + B2) = (Koy®> +<B5™) (A15)
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Multiplication of Equations (Alhk) and (AlS5) gives -
2 2
sIT 537 = Cor2D><ayP D + <BrE> < > + Cor® <" > + <oy ><Br > (a16)

Comparing Equations (All) and (Al6), we see that each term of Eguation
(A11) is < ‘the corresponding term of Equations (Al6); i.e.,

2 2 2 1Jy2 2
Cog o< <og ><a;°> , ete. Therefore, (cg)= + (QaJ) < SgI S‘({J ,
which verifies Equation (59).
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