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NOMENCLATURE

X.(t), Y.(t), z.(t) Coordinates of a point relative to
1 1 1 . . ,
the fixed inertia reference frame

n, y, 2z Cartesian coordinates of a point
before deformation relative to the
body reference frame

n, r,6 Polar coordinates of a point before
deformation relative to the body
reference frame

X(t), X(t), X(t) , Displacement, velocity, and acceleration
respectively, of the body coordinate
system with respect to the inertia re-
ference frame

u(n,6,t), v(n,6, t), w(n,8,t) Displacement components of the shell
relative to the body reference frame
as shown in Figure 1

a Radius of middle surface of the shell

L Length of the cylinder

hs Thickness of the shell

h, : Height of the liquid

Pq Density of the shell

Y Density of the liquid

Ms Mass of the shell

M2 Mass of the liquid

M= M2 + Mg Total combined mass

E Modulus of Elasticity of the shell

v Poisson's ratio
Eh3

D = __—EL——_E Modulus of rigidity of the shell
12(1 -v)

iii
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a(&,e,T), Q(E,G,T),

~(1) ~(i
h
g = —2
L
C =E‘.
L
_ by
.
a
N,
a
Q
w = -
UJ"
2, .
B OSL (w*)
u o=

w(E,0,1)

~(1)
wmn ()

Natural frequency of free vibration of
an incompressible liquid in a rigid
circular tank with a free surface

Frequency of the periodic component of
applied thrust

Magnitude of the constant component of
applied thrust

Magnitude of the periodic component of
applied thrust

TQ/To
Constant over-ride pressure in cylinder

Variable pressure on wall (assumed
positive outward)
Unit step function
J() =0 t <0
=1 t >0
Dimensionless time

Arbitrary frequency used to non-
dimensionalize time

Dimensionless axial coordinate

Dimensionless displacements and time
coefficients

Dimensionless constants
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Dimensionless constants

Dimensionless static pressure
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Parameters defined in the text. The
sub-scripts and super-scripts are
both the usual summation indices.

The symbol ~ denoted the dimensionless
form of the parameter

Laplace transform of the function F
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1.0 INTRODUCTION

The problem considered in this paper is the forced vibration of
a circular cylindrical elastic shell that is partially filled with an
incompressible liquid and is initially at rest in a uniform gravitational
field. The strains in the shell are assumed to lie within the region
of application of linear elasticity and the motion of the shell and
the liquid is assumed to be such that it can be adequately described
by small oscillation theory. While in the above state, the shell is
subjected to an impulsive force composed of a constant and a periodically
varying component resulting in the acceleration of the cylinder in the
axial direction (see Figure 1). During this motion, it is assumed that
the ends of the cylinder remain circular and that the centers of the
two ends remain on a straight line that is always parallel to the X1
coordinate axis. In addition, the ends of the shell are assumed to be
freely supported as defined on page 6 . These assumptions are not felt
to place an undue restriction on either the vibratory motion of the
cylinder or the stresses in the shell wall and the resulting "uncoupling"
of the equations of motion is a distinct advantage in obtaining a

tractable set of differential equations.

The assumed displacement functions for the shell are taken in a gen-
eral enough form to allow for all motions of the cylinder within the re-

strictions imposed by the equations of motion and the boundary conditions.

In the computations involving the liquid it is assumed that the

bottom of the cylinder is flat and rigid and has the same motion as the
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Figure 1 Coordinate System and the Displacement Functions of a Circular Cylinder



body coordinate system. The motion of the liquid is described in terms
of a velocity potential. The pressure exerted by the liquid on the wall

is given by Bernoulli's equation.

By letting the periodic component of the applied thrust vanish and
the constant part be just sufficient to support the cylinder but give no
acceleration, the problem of free vibration is obtained. In this case
the initial conditions must be other than the static deflection state as

pointed out in Section 6.0 of the paper.

Physically this problem may be interpreted as follows. Consider
the cylinder to be the fuel tank of a liquid fueled rocket motor that
is initially restrained at its base prior to launch. The usual launch-
ing procedure is to start the motor and allow it to reach approximately
full thrust before releasing the restraining mechanism. Assume that
during the hold-down time all of the thrust is absorbed by the support-
ing mechanism except for that constant portion, Mg, required to hold
the rocket in a static vertical equilibrium position. When full thrust
is reached the hold-down mechanism is released and the total thrust is

applied to the motor.



2.0 EQUATIONS OF MOTION FOR THE SHELL

The static equilibrium equations are assumed to be those given

by Donnell in reference 1, page 14. (Also see reference 2).

By adding

body forces, applied forces, and inertia forces to these equations the

resulting dynamic equations of motion are
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Eh
. = e s |1 Bu v
Noo Nen 201+v) [a 3% T 3m (12)

Solving for Qg and Q, from equations (4) and (5) and substituting
for the moments and forces from equations (7) through (12), the equations

of motion in terms of the displacement components are

2 2 2 2
du (1-v) 3u (1+v) av voaw _ (1-y7)
272 T2 T77a  @nsd a3y ER o hg +F(n) | (13)
on 2a 26 s
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2a Inab 2 3712 a2 362 a2 58 E s 3t2
2
h 2 2
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you LNV _W__ S vy = ATV /. 2w
a an T3 36 2 12 v Eh pshs 7 T Ps(n’e’t) (1%
a a s ot
% 1av 1lav
In the above equations we have neglected the terms 3?73 ° aon

9 a
and terms of the order (hs) .

If a force given by_J—Zt) TO [1 +-Ycos(Qt)] + Mg is applied to the
cylinder which is initially at rest in a uniform gravitational field,

the resulting acceleration of the center of mass of the cylinder will be



T
. _ "o N ]
k() =T(®) 52 [1 +yees@re) (16)
The assumption is made that the motion of the body coordinate system
located at the bottom of the cylinder will be approximately the same as

the center of mass. With this assumption the force, F (n), is then

32u T

F(n) = Dsh ) +_J(¢t) T% [1 + ycos(Qt% (17)
3t

The pressure due to the liquid, Ps(n,e,t), is obtained in Section 4.0

of this paper and is assumed positive outward.

The boundary conditions on the shell are that both edges are freely

supported. This is taken to imply the following,

v=w= Mn =0 atn=0andn =1 (18)
TOMS Msg Poa
Nn =1 (t) T oM [1 +ycos($2t)] Ty + —— at n=0 (19).
P a
N =-—— atn=1L (20)
n 2

Displacements satisfying these boundary conditions are assumed to be

T p o) g 2
u(n,C,t) = - (1-v2)<f(t) ;Es l:l-‘wcos(Qt)] + —g——} {Ln - 32—}
2 M N

(1-v7) (1) nw
+ 2=——~ P an + U (t) cos(=—n) cos(md)

2Ehs e} mzo n£0 mn L
-+ ? § U(2)(t) cos(Eln) sin (m6) (21)

m=1 n=0 mn L



v(n,8,t) = Z Z V(U(t) sm('—“)sm(mo)*z Z V( )(t)sm(-—n)cos(me)

m=1 n=1 m=0 n=1
(22)
and
M N M N
w(n,0,t) = Z 2 w( )(t)s1n(——fﬁcos(m6) + Z ngl W (t)51n(——n)51n (m8)
(23)
wrere 1D ce, v (2 . .
ere U (t) V (t), and w (t) are unknown functions to be determined.

If we now substitute the assumed displacements into the equations
of motion and use Galerkin's method to eliminate the spatial dependence
(see reference 3), we obtain the following set of differential equations

in dimensionless time (1).

. 2. 2
(1)( ) = ﬁlgz_l Q_§<§’ (1) 7(4) [l+ycos(wr)} +-T(5) } (24)
dt
5 Wy o Gn g Dy g ()
(1-V2)U On (l-vz)u On
2(1-v2y &2 (%) r (5) (25)
= - 7 2<¥—(T) r [_1+ycos(wr)] + T
(nw) dr

. 2
ﬁéé)(r) + (m)) ~(1)

2(1+v)u UmO () =0 (26)

2
529 @y ~(2) _
mO (1) + 2(1+v) u UmO (1) =0 (27)
i (o + 28:1)“ Va0 =0 (28)
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st ~(2) mi ~(2) 1 2 g 2 2 ~(2)
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12w
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00

It is now necessary to determine ?S(E,e,r) in terms of the unknown
time coefficients of the displacement functions. With P (&,8,7)
. S

known, the above equations can be solved for the unknown functions.

The "uncoupling" of the equations of motion mentioned in the
introduction can be observed in equations (24) through (35). Due to the
restrictions placed on the displacement functions by the boundary
conditions, it is seen that in the application of Galerkin's method all
the resulting equations are "uncoupled" except equations (29), (32), and
(35). As ﬁs(g,e,r) contains terms of the form El ﬁ;i)(r) sin(ﬂ%s)
and as sin(-nig) is not orthogonal to sin(nm§) Z;er the range 0<g<1

unless &=1, the right hand side of these equations will contain all N

unknowns W;;)(r) for a given m.
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3.0 DESCRIPTION OF THE FLUID MOTION

If the motion of the fluid is irrotational, it follows that there

exists a velocity potential which will be defined (ref. 4) such that

->

V= vy = grad ¢ ' (36)
In addition, if the fluid is assumed to be incompressible, it is known

that the velocity potential must satisfy Laplace's equations

2 2
3 3 -
ai + 3 + l2 $=0 ‘ (37)
on r~ ab

[+5)

2
3 2
r

B

The velocity potential must also satisfy certain boundary and initial

conditions which for the problem considered here are as follows:

T -
g% = X(t) = -349 lLt + % sin(Qt)J (38)
n=0
A M N L)
%% = . %%-: - mio éo w;i)(t) £ (n) cos(me)
r=a n
# o5 L@
- ) W (t) fn(n) sin{m8) , where (39)
=1l n=0

the inner radius of the cylinder is assumed to be approximately the

same as the radius to the middle surface,

2
[345+g§i + X X =0 (40)
3t an n=hl
3¢ -
an ! t =0 0 (41)

10



Equation (40) is the free surface condition and follows from

Bernoulli's equation if the magnitude of the velocity vector at a

x |t=0 0

1 39 =

r 26 l g=p ~ 0 and

3¢ oo T it
ot t=0

Pa

point on the surface is assumed to be

the pressure above the fluid is constant.

|;| 2 X (t) and

Bernoulli's equation is

9¢ 1 3y2 LB
s + g Xl(t) + 5 (xX)™ + » =0
P(n,8,t) ]n=h2 - Po
dPl
£ =0
dt n-hl
2 n
ré—% + g %% +‘XX} n= = 0
Lat L
e
dt on
From equation (49)
‘t t

dx, (t)
1 _ 36
J[ - ¢ < J[ 5 4t

0

11

For these conditions

and as

then

and

where

or

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)



t

- 3%
Xl(t) -Xl(O) f o dt (51)
0
and as the initial conditions are chosen such that Xl(O) = n then
t
X, (t) = n+ 8 gt (52)
1 an
and equation (46) can be written as
t
2 % ool e B o
—B—E+gn+g[3ndt+2(X) +°9, =0 (53)

0
Equations (41), (42) and (43) specify an initially stationary fluid and

equation (44) is the corresponding condition that
P(n,r,0,0) = Po + o glhy ~ 1) (54)
The solution to equation (37) is assumed to be of the form

¢ (n,r,6,t) = X(n) R(r) a(6) T(t) (55)

Substituting equation (55) into equation (37) and requiring that ¢
be periodic and single-valued in & and bounded at r = 0, a solution to

equation (37) is found to be

- | T
$(nsr,8,8) = A(t) + B(e)n + I, ohT) c(t) cos (thn)

OY? r n
+ ~)} D,. h Q.. —
jil JOQOj a) Oj(t) cosh ( 0§ a )
o)
hos 2 km
+ Z o= - EOk(t) cos(hln)
k=1 (=a) 1. (—a)
hl 0 hl

m mj a

M <o
+ 21 {F;”(c)rm + ‘2 (D) Dél-]i)(t) cosh (xmj 2—)
m= =

12



kT
e LG

)

= k™ (ko
=1 (hzé) 155 ()

E;i)(t) cos(%%”{} cos(m9)

hy
R I C D PR S £y (2) n
) F (0)r” + T Jm(;\mj ;) ij (¢) cosh(kmj a)
m= j=m
kr
@ n %ﬂ (2) K
+ X ” ” Emk (t) cos (E—wﬂ sin(m8) (56)
k=l (;7a) 1) (ra) s
2 3

where J (A . =) and I (kzr) are Bessel functions of the first kind and
_ m-'mj a m hl
the modified Bessel functions of the first kind respectively. The km.'s

3
are zeros of J '(x_ .) and are ordered such that A =0 ; and A,. ¥ 0,
m ° mj 00 0j
. . > > _ .
j 21 ; and Amj #0 for j = m and m = 1. The root A;, =0 is retained as

JO(O) = 1.

. kr . .
The separation constants 5 are chosen with regard to the orthogonality
L

of the cosine function over the half range O<n<h£ . The expressions con-
taining the time functions A(t), B(t), C(t), Fm(l) (t) and Fm(z)(t) are
obtained by taking particular values for the separation constants and

are necessary in order to satisfy all of the boundary conditions. In
satisfying the boundary and initial conditions it is necessary to use

the orthogonality of the function Js(xw)i)cos(se) with respect to a

. . r . » s
weight function of 3 over the region O<r<a and 0<8<2n. This is as

follows. (reference 5, page 195)

a 27

r b T dr
v{ = Jm(kmj - ) cos(mg) JS(ASD-E) cos{sg ) = de
0 0

13



P> s (57)

Requiring that the three boundary conditions, equations (38), (39)
and (40) be satisfied, yields the following equations for the time functions.

The complete derivation is shown in Appendix A.

3

T 3 2
A(t) = Clt +C, - (3%)2 {%;' +~$§- [sin(ﬂt) - (Qt) cos(Qt)] - gé— sin(29t{>

T 3 N
o t Y . + (1) *
- hB(t) - g (T> <:_6— - ;5- [snl(flt) - Qt:]} + Z won (t) Pkn

n=o
t
2g ? w8y as1 (58)
T a =0 On On
T
B(t) = E‘l [t +3§% sin(Qt)J (59)

with the additional requirement that

. T
B(t) =-j—(t) _I‘% [l +ycos(Qt)] (60)
N
-1 - (1)
C(t) = =——— J W '(t) 1 (61)
Il<:21h_a) =0 On On
A
(1) (1) (1) 3 i, Soleoeroks o
Dn;7(t) =AY,  cos,.t) + B .’ sin(w..t) + fw ®) P
0j 0j 0j 0j 0j n=oo On wo kn
t
N sinjy,.(t-3 )ds .
+1 IWél)(s) [:OJ ] P (62)
n=0J % 0j n
0

14



where the

<l)(t) = A( >cos (w jt) + B;ﬁ)
t
. N ot sinfu_.(t-2g)
+Z w(l)(s) £wm.] ]
n=0 e mj
N
_ 2a o (1)
Egp(t) = - By n;O Won (8) [Ikn
B Dy =22 § i
mke 0T TRy Lo Tmn OF
(i) 1
F ri(t) = - ——— Z w (t)I
m mhl am“1 n=0

sin (w .t)
mj

mj m
ds [Pkn + POn]
K
]
1 - 4k2
i=1, 2

superposition integrals in equations (62) and (63) are

(63)

(64)

(65)

(66)

. . , , - i
obtained as particular solutions to the equations determining Déj)(t),
4

(see reference 6,

page 444) and

hl
I,= ,[’ fn(n) dn
0 h
Ikn = -j’ £ (ﬁ) cos (—Z ) dn
0
a
r
(——a —)
mo Iy dr _
ij - _[' kﬂ r (—;a Jm(kmj a) a
0 hg
{ihla Jm(xmj) +l(h poe) T ijm (hl
h
0 g (2 N

15

(67)

(68)

L

gla I’(EE ){
2

(69)

(70)



o h <'l) I
% 4a , g \2 k On
p = ) (=== (~1) I, - (71)
kn b} h2 kra kn 1_.41(2

2
. 2(x_.) ®
mj mj Z k 2a
P = HY (-1) (72)
kn 2 2 2 hg L. "kj kn
(O™ = w0 ] 3y Ogy) coshO 78 11
k
) 2 ® (-1)"°1

03 _ 0 k 2a On
Pyn b, k£1 i (-1) b Ten - (73)

JO ( ) cosh (A,. —)

a
2

mj Z(Amj) aJ m+1 mj) I
Py o= (74)
On 2 2.2 By mhy A ’

BA ) -mJJ (A_.) cosh ( :r) J
and

2

Pon = - A 7 Yon (75)

L Ta
JO(AOj) cosh (AOj a) (th + (loj)

The constants in the above equations are specified by the initial

conditions on the fluid. Using equations (41), (42), and (43) and the
> P

necessary restriction that if V(0) = 0 then Wé;>(0) = 0, the

Al A1) g a8
mj ’ mj

constan
(o) ts 0_] P

are found to be zero.

From equation (44) the following equations are obtained for the
remaining constants except for C2, which due to the Neumann type

boundary and initial conditions, cannot be determined

P +p_gh T 2 2 N
o 2572 o\ Yy =(1)
C, + = 4 (2 + Wa2'(0) P
1 Py ( M) 492 Z On (0) kn

*
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k
I ) N (-1)" I
2a . On kn
-2 z () 22 Z W, (0) |1, = ———="]cos (=n) =0 (76)
k=1 kma hl n=0 On kn 1 - 4k2 hQ
2 Ta
J (L) 7K Ja(24.) N
Bé? 3 ——2L cosh Qo5 2 = e 7 7 “°S(2;1") ) Wérlx)(O) Ton
20:,) G+ g0 n=0
k
© N (-1)" 1
0 2a (1) 0 k
- 7 2 Wty |1, - cos (£Lp) =0 (77)
L by ;o On kn T T o2 h
(i) [ 2 2 ] 2 n
ij mj Amj -m Jm Opy) cosh (1 a) °© .m 2a N =(i) kn
2 - Z Hk‘ ho Z wmn () Ikncos(ﬂ—)
2(Amj) k=1 3 "L =g L
a 8 (1)
o T Ong) LW 0) 1 =0 78)

It is seen that these equations cannot, in general, be satisfied for

all n.

The constants can be determined approximately as follows. Writing

equation (76) as

C, +G(n) =E

X . (79)

we will require that El be a minimum in the sense of least squares.

Therefore

h
2
3 2 -
E— j (El) dn =0 (80)
0
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Following the same procedure for the remaining equations, the constants

are found to be

=§&ZN WDy 1, -[e) 2 T TPuE
120 On On M 4.(22 Py
N 8h
..(1) <% 94
nzo wOn (0) [Pkn - ;5;' IOn:l (81)
N
3 -« (1)
(1) _ oy’ né-o Hon (0
%03 2 1 2 A0 ] 7 2 . 0] ZJ
w5 9o O )[—2- sinh (24, —) + (5 )] [(2h2) + A3
™ 2 ) h (A hﬂ,)
(EF—) o ( cosh ( 0j a’ “On o 2 h
. % 3 7 + qu o sinh (A ;?)
(%f;—-) + (. k=1 J*3a
2
I
k On
[ - ] o
and
h
400 % sion 0 =) T w0y
(1) b @
) 2 3 2 1 ___l
me (AmJ)- m Jm (Amj) o) sinh (2>\ —--) +
aJ O )1 ® 2 (- 1) I
mtl mi kn m mj P
w60 kz=l k3T, -nLy? S
2 Mg B,

It should be noted that if the initial conditions on the shell are such

that ﬁ;i)(O) = ﬁéi)(O) = 0 the constants are then determined exactly as
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A 2

2
N T 2 P +op,gh

2 (1) o o " "1%
c, =27 w1, - = L5 - (84)
1 a L, “On On (M) 402 o,
and
(1) _ (1) _ (2) _
Boj —ij —ij 0 . (85)

The initial conditions necessary for the above are that the displacements"
of the wall are those displacements corresponding to the static forces

of the fluid and of gravity. These conditions amount to omitting the
transient part of the solution and therefore, if the free vibrations of
the elastic shell are desired, the initial conditions must be other than

these or there will of course be no vibratory motion.
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4,0 PRESSURE EXERTED BY THE FLUID

The velocity potential is now known and the pressure exerted by

the fluid on the wall is given by equation (53) with r = a and 0<n<h2

The following integrals are necessary in evaluating the pressure:

. sin wmj(tl-T ) dr
kl = J’ jwmn(T) m dt:1 and

0 mj

t t
L sinw mj(tl-T ) drt
kz =] j Wmn('f) m Ny dtl.
0 0 J

Taking the Laplace transform

L . AL ANE D I N
1 P :ﬁ[ mn(T)_] P2 +( u .)2 (w .)2 [P PT + (wmj) an
mj mj
t
1 ' ’
k, = ( )2 W) =W (0) -j W () coswmj(t-T ) dr (86)
%nj 0
Similarly
t
ky = —— (W () - W_(0) f Wn(D cos w (e-T) dT) (87)
() 5

In order to include the pressure in the shell equations, it is
found to be more convenient to expand the pressure in a series in
terms of the orthogonal function fn(n). The pressure acting on the

shell is
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M M
ot P (n,® ,t) = Z P(l)( n,t) cos (mé ) + ) P(z) (n ,t) sin (mg ), OSHShz
s m=0 m=1
= PO’ h < n < L _ (88)

Writing Ps (n, 8 ,t) in a series we have .

P (N0 ¢) = ? F ey £ (n) cos (mo )
s > 2 =0 s=0 ™S S
M (o2
sl Lo p® ey (o) sin (me) (89)
where
hl L
P ) = B (1) |
Os (1 +06,0L P (n,t) fs(n)dn + P J[ fs(n)dn (90)
h
L
1 2 1
Pés>(t) = ?3TTF7Z;;TE ,[ p )(n,t) fs(n)dn and (91)
0
(2) 2 h2(2)
Pe () =TT L f p(B(n,0) £_(n) dn (62
0

Substituting equation (56) into equation (53) and then the results
into equations (90), (91), and (92), the time coefficients may be determined.
With these coefficients known in terms of Wéi)(t) and Wmn(z)(t), equation
(88) may then be substituted into the shell equations and the functions
vy, v, vy, vy, w;i)(t), and W2 (¢) evaluated. For
the particular problem considered here, the function fn(n) = sin (Ihl-n)

and equations (90), (91), and (92) give
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| ‘
IS

7

sin (EE hl)_]

2p 20 ,gh, [

(1) - _60 s L
pie) = =2 [1- (0] 4 =

. 2P T, L,? -
+ <-_r<t> i {1 +yoos<czc>] { (o2 sin(En)) - <;&>}

L0 sm 2% § - (1) (1)
e [1 - ees (R hl)] {3& ngo Toq [wOn (€)= W, (O>]
N
-.(1) %
ng; an () Pkn}
% - { Io(iﬁt?) IOn [s ]
+ W, (t) 2L sintin)
& "On ul s, 2 T |2 L 2h sin( L
n=o I GGa) |[(5)7 - (57 L L
1"Zh [ L 7, ]
k-n' 2asm
-] 1 —
; + 1 X O(hl: I)h!?. 3 5 [1 - (-1)¥ cos (814 )J
1 (kmy 1 (kT STy (kT L &
| e R
K
.[Ikn-(—-!%-} -] Io® o)~
1 - 4k =1 J (—J—Xa 2+ (%)2
(2o 2T o5 (2T h ) cosh O h—l)-#)\—Q—i in (2T h,) si X hz)
L~ L L 05 Ta 2 o Lzsmh<0j—a
N t
n.(l) 04
' {nz=o [ Won (B) cos [woj(t-B)] ag p/J
ot
;D 0] g 503
+ , .
L g, € cos [405Ce-8)] a8 2(]
0
2
N T e (1)
. cos (Zn) | [won (t) - wérll)( )} I,
2 2 =
LGRS (D - S o0
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- %o
+ Z JO (Aoj) - 8 2
= 200y2 | (5142
j=1 ( " )T+ ¢ I )
¢ E—L cOs (i."_.h ) { h ()\ -1-1-&—)- X_Oi Sin sw h | A hz
I L™ sin i 2 - (L—- 2) cosh ( oj—-;)
. t
N Pgi !: (1) (1) (1) |
. Z : ) WO,n (t) - WOn (0) - wOn (8) cos ["'Oj (t- B)] dﬁ]
n=0 (woj)
0j t
P (1) .. (1)
kn .
L BB 0 e o]
ko kw2
I (a) (=
- 2g 0 b By sin (3% )
by 2 2 ‘
§_> 1<—->< =) (r)]
2
N .
. (1) (1) k I
[ [wm (£) - Wy <o>}[ -0 1_ - T?nmz]> (93)
n=0 _
s=1, 2, « » ., and
N
. 2P
(i) 2 s/ sTh
Pms  (t) = ﬁ— _Z mel‘) (t) IOn_I;? [l - cos| T l)]
2 n=0
-1 ey
j=m )‘m' + ,sm2
—hH T &
(2720 0o (2 ) cosh @ E-’?>+A—“‘-'l i(—slh)ih()‘-llﬁ—h)
"L L Llcoskmja a Sin TRy / sin a L

[2 j B (8 cos [4a; (8] a8 [l + pg‘g]}
n—O
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. |
T (?ia’ 2;"; [1- (-1 cos (Zn))
+ ? vk E ﬁ;i)(t) Ikn s: 2 kn 2
() I () n=0 EH° - G5
® 38
- z Jm()‘mj) a
j=m Api 2 2
Mmjy2, s
Gh% ¢

=2

h - ' 3
i 2 ) ST . 3
. {hal sin (E-Ehz ) cosh “mj . ) - —I:E cos (——a-hg,) sinh( xmj < )

t

p™ 4 P . s
. bi 00 [y -f Wid(8) coslu  (r-8)] a8
-0 (w )2 mn mn mj
n ) mj 0
KX)o D)2 gin (S5 ¥
o In (g6 GO ) sin (7R W
o= ILulbeey - wit ol 1,
+ h kT I' kwa> (ﬂ 2 (]_g_cl 2 n= mn an n
£ k=1 (h—i-) m('ﬁz T - hg, 0
i=1, 2
s = 1, 2, coey (94)
For t = 0 in the above equations
2P 2p,8h s
Péi)(O) = 2 h- D%l L 1 - g sin (0T (95)

2

which is just the coefficient of the half range expansion of the static

pressure in a series in terms of the orthogonal functions fn(ﬂ), and

()pr 0 o o
Pms (0) =0, i 1,2.

The expression obtained for Ps(n,e,t) can now be substituted into
the shell equations, equations (24) through (35) on pages 7 through 9 .
Making this substitution and performing the indicated integration in

equations (29), (32), and (35), we obtain
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“(1) ! 2, “(1) smwd =(1) Lo
Wi+ ) (sm (0) +——=— U (t) === P "’(1)
Os (l-vz)u[ 12 } Os (1- \az)u 03 Os
(29)*
2
smvx (1) L1eY) 1 2 2 21 2\ (1)
—_— () - (1) + AT+ L (sm)” 4 (mh) }W (x)
(1-v2)u ms (1- v) ms (1_\)2)” < 12 [ } ms
+w(1)('c) -1 3 () ang (32)%
2
STVA ~(2) m) (2) 1 2 g 2 2 2\ -(2)
—_— U (1) + (1) + AT+ = 1 (s7)” + (m)) W ()
(1-\)2)11 ms (1-v )u (1~ v2)u { 12 [ ] } ms
=02 ~(2
P = - 3 B (35)%
Equations (93) and (94) in dimensionless form are
- . (1)
" Péi)('f) —-—%—r- P [_l - (__1)5} +§£ [ - ;% sin (s"C)]
- 2-0(7) I‘2 [1 + ycos (wré} [(’;-17;)2 sin (smg) - gc;;]
. N = [&(1) 2 (1),
+2—1r- [1 - Ccos (S“C)t‘ 2)7T (1) Z IOrx {_wOn (x) - wOn (O)]
s n=0
_F p@E 2
z T (1) P
n=0
N I.(—==) 1
(3) =(1) o 2a On ]
+ 2T R A CD) sT- = sin (s7g)
=0 01 (o) - Y] L )

2
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2 0 [ k >
+ = 1 - (-1)" cos (sWC)] [I
[+] k=1 X K 2 - T 2 kn
by (607 - GO
S ) Jo (B4

=12, (2 2

. {sw - sm cos (smz) cosh (Aoja) + A(Aoj) sin (smz) sinh ()‘Oja )}
T

n=0 0

(1) IO(%E) s"2 cos (smL) If

+
¢ n,Gh [6mf - Gt

=(1) ~(1) -
[wOn ) - WOn (0)] IOn

+ ar(l) E Y05 %0y
i=1 AZ(XOJ.)2 + (sﬂ)2

. {s'" cos (sTf) sinh (koja) —A(loj) sin (smg) cosh (Aoju)}

R PSP BETEH) -
) ~ 2 [WOH(T) = Wy, (0) -J’ W (B) cos [wOj (T-B)]dﬂ

=0
n (wOj) 0
?ij = (1) ")
n o 3 " g B
+(5——;3- [ W () - J( Won (8) cos [UOj (T-Bﬂ dBJ
03 0
D3 G5 ¢ sin (sm0)
“Ta

LK [en? - )

-~

. . . I
R R ) B S
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1 - 4k

T e - N - - A s A - - - . s
.Ig {J Wé?(ﬁ) cos [moj(r-e)] ds P;i +j WOn(B) c05[w 0; (T'B)] dg Pgi

(93)*

(-1)" 1

e



(1)

4

_ 2T = (1) On
(1) T nzo wmn (1) P [1 - cos (swg)}
or(3) Z Jm(kmj)

i A0 )2 + (sm)?

. - ' A . . ) .
{sw sm cos (smZ) cosh { mja) +>\)\mj sin (s7%) sinh (Amja)>
¥ ‘
~(i) 3 ~ 3 3 [wmj m_]]
B - -
A fwmn (3) cos [mmj (t s>:\ dB [Pkn 20

(3) »  I( st

NI P or) T Ikn

k=1 k'n'

K
1 - (-1)" cos (s‘"C)]
. . £ k(2
1y em0 ™ (s - () [

o}

- ar(l) Z ij "n Yy’

=t >2+<sn )2

. {)\ Amj sin (s"Z) cosh (Amja) - s7 cos (smg) sinh (Amja)>

T

N 34 P
e %) 7 ]{‘1)@) jﬁ
n=0 (w L) 0

r(mil)(B) <:c>s[mmj (r-é )] dB }
mj

k
w ke . - - (3 ~ (i -
(1) . CPERCONNC )% sin (s70) N\: Wy o Wé:x) (o)} I

o = 1 T =
D S [(s‘rr) -<—>]“°

+ 4

i=1,2 (94)%
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5.0 METHOD OF SOLUTION TO THE SHELL EQUATIONS

In order to solve for the unknown displacement functions it is
necessary to obtain a solution to equations (24), (26) through (28),
and the three sets of equations: equations (25) and (29)*, equations

(30), (31) and'(32)*, equations (33), (345 and (35)*,

Equations (24), (26), (27) and (28) may be solved directly, and
due to the statement of the problem, i.e. by the particular choice of
initial conditions, it follows that all of the vibratory motion will be

of a steady-state nature and therefore the solutions to these equations

will be
2
0 =422 Lo 2% 14 cos o))+ 1) (96)
100 =520 =¥ =0 (97)

Equation (96) follows if the requirement is made that the body

reference frame remain with the body during the motion.

Solutions to the remaining equations are determined as follows:
equations (25) and (29)% determine ﬁ(l)( ) and ﬁ(l)(r), equations (30),
(31) and (32)* determine ﬁ;i)(T), (1)(1) and W(l)(r) and equations
(33), (34) and (35)* determine ﬁ;s)(r), V;s)(r) and W;s)(r). As P<l)( )
contains the superposition integral, it seems that the most logical
manner in which to obtain a solution to these three sets of equations
is through the use of Laplace transforms. By taking the Laplace
transform of the above three sets of equations and using the known

(1) 7 (1)

initial conditions we can solve for UOs (t) in terms of wOs (t) from
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-———— —— — =

equation (25) and substitute the results into equation (29)*. Equation
(29)* will now consist of N equations for the determination of the N
(

unknowns ﬁoi)(T) in terms of the transform variable p. In a similar

manner equations (30), (31), and (34), (35) may be solved for ﬁéi)(r),
~(2)

&;i)(r) and Ums

‘ ~(2), .\ . = = .
(1), V;s)(r) in terms of W;l)(T) and Wéi)(r) respectively
and then equations (32)% and (35)* solved for ﬁé:)(r) and ﬁéi)(r).
Equations (32)* and (35)* will each consists of M sets of equations and

each set of equations will contain N equations in the N unknowns,

Wé;)(T), n=1l, 2, ..., N.

.. (1 = (1 ~ (2
Methods for determining Wés)(r), Wés)(r) and Wés)(r) are developed

in Appendix B.
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6.0 SPECIFICATION OF INITIAL CONDITIONS

At time t=0

1l

Ps(n,s,o)

the pressure is given by

0sn<hy

(o]

< <
hz—n L

(99)

In view of the assumed form of the displacements, the pressure will

be expanded in a Fourier sine series over the over the half range

(100)

(101)

éi’(o) cos(nnE )

(102)

0%£<1. The coefficients are given by equations (95) as
2P (1)
= 0 s 27 1
[ Jee—y - - + - —— :
D, = b. (1) ] - [1 Py sin (sngﬂ
therefore
PS(E,e,O) = Z DS sin (s7g)
s=1
Due to the symmetry of loading the only non-zero initial displacements
will be
2 ~ .
2 (1-v") P g N
= 2 5 g 1 -
u(g,6,0) = = (1-v) p(®) [5 -5 - g] +'—-—7§r-42—‘ + 70
n=1
;(5,6,0) = 0 and
N o
w(E,0,0) = ] Wéi)(o) sin (nmg)

n=1L

The equilibrium equations are

2 . 2.
3%u + (l-v)x2 32u - (I+ty)x 3 v
2 2 2 2 330 -
oL 36
(e 2%, () 3%, 2 3%
2 YFY) 2 A 2
3 20
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i 2 Az A 2 :

- g 6
- 9%
36 6" MY - 13

5 = (1-v%) B_(£,8,0) (105)

Substituting the displacements into the above equilibrium equations,

we find that

2
-(1) 2 va(1-v7) 3 n A
Doy = P il -~ (<) (1-3)
on (nﬂ)z [Az(l-vz) + %; (nn)A] < o [. ] 2
+ r(l) [1 _ sin (HTTC)] + \)ATCS) and (106)
nng
Doy = 2(1-1%) ? b ( 1fﬂ (1-3)
(nm) [A (1-v) + 73 (am) ]
+ (D [1 _ sin (nwg) J +vkr(5)> =1, 2, «.. N (107)
nnyg
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a)
b)
c)

! . d)

7.0 STABILITY CRITERIA OF THE SHELL-FLUID SYSTEM

It can be shown from Appendix B that the form for the solutions

to the equations (B-35) and (B-69) is

=(1), y _ N(p) :
We (p) = 5%)- (108)

where N(p) and D(p) are polynomials in p.

The stability criteria is determined by the roots of the polynomial
D(p), and in order to have a stable solution, the following conditions

must be met (ref 7):

Every unrepeated root must be nonpositive
Every repeated real root is negative
Every pure imaginary root is unrepeated

Every general complex root has negative real part.

Any root which does not satisfy the above conditions will imply

that the Shell-Fluid System is basically unstable. The unstable roots

will provide the necessary information for future parametric study.
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8.0 CONCLUSIONS AND RECOMMENDATIONS

The dynamic responses of a circular cylindrical tank partially
filled with an incompressible fluid and subjected to a periodically

varying longitudinal thrust have been analyzed.

The method of separation of variables has been used to determine
the pressure exerted by the vibrating fluid on the wall of the shell.
Assumptions on the small displacements both on the shell elements and
the free surface of the liquid are emphasized, so that the linear

theory can be applied.

By assuming the displacements to be general double series, and
using Galerkin's method to solve the shell equations, a system of
ordinary differential equations in the time functions ﬁ;i)(r), and
Q;i)(T), and ﬁ;;)(r) was obtained. It is proposed to solve this
system of equations using Laplace transforms and matrix theory. Because
extensive numerical work is involved, the numerical solutions of the
time functions, the natural frequencies of the Shell-Fluid System, and
the instability criteria can only be obtained through the aid of an

electronic computer.

For future study of the Shell-Fluid System, the following

investigations are recommended:

(1) To develop a numerical solution for the time functions
ﬁ;;>(r), Vé;)(r), and W;;)(T) thus completing the solutions

of the displacement functions U, Vv, and w.



(2) To perform a parametric study on the stability of 'the

Shell-Fluid System.

(3) To investigate the Shell-Fluid System subjected to a

gimbaled, periodically-varying end thrust.
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APPENDIX A

Derivations of the Time Functions: Aa(t), B(t), C(t), Doj(t), EOk(t),

(1) (2) (1) (2)
ij (t), ij (£), F (), F (),

(1), (2)
E i (), E 4 (t)

A-I B(t)

Substitute eq. (56) into eq. (38), one obtains

T
B(t) = 7&- [t + % sin(qot) ] (a-1)
AID o(o), By (e), XD, ey, r P, P (r)
Substitute eq. (56) into eq. (39), one has for m =0
P 1 kqn
7] To |5 a) O(e) cos(F) 5 Bg(e) cosGE)
N
== ] R £ (A-2)
n=0
and for m>0
, . N
i -1 . 1 k _ (1)
P m s 1 s B (o) cosE = - L) £y
i=1, 2 (A-3)

Multiply eq. (A-2) by cos(-s-%-rl ) and integrate over the range of n from
2
0 to hy as follows:

h
I, (E%Za) c(t) ]OQCOS(2h ) cos( )

55
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h h
1 (1) Lok sTn _ Yo L sTn
+< Egp () Jo cos(g; n] cos( hl) dn = - n—_z-o Yo (t) jo fn(n)cos(—hz-) dn
(A-4)
for s =0
? N .
y wé?(t) I,
o(e) = B —— (a-5)
on | 755)
where
hy
I, = f d : (A-6
on fo n(n) n (a-6)
for s>0
N k
_z) Yo ¥ i
E(e) = |- £2) 1 Yon l:Ikn SN } (a-7)
where
hl )
- kmn '
Len = jo fn(n) cos (—Ez) dn , (5-8)

s
Sy

Multiply eq. (A-3) by cos(hz ) and integrate over the interval of n

from 0O to hz as follows:

1 (1) (hz) Yoo e | kn : |
SUONE IRRTR (0 J." £, cos [ a-9)
then,
(i) 2a) N (1) o
E, (€)= - (h_i) ngo woe) I (a-10)

i=1, 2
Integrate eq. (A-3) over the interval of n from 0 to hl’ the

coefficient Fél)(t) is found as
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1=1, 2 (A-11)

A-ITI A(t), D..(t)

0j

Substitute eq. (56) into eq. (40) for m = 0, one obtains eq. (A-12)

as follows:

o h
Ae) +B(e) hy + ] 3505 D) boj(t) cosh O‘Oj —ﬁ*)

551 0j a
1 (knr)
0 0'h . Kk
* k;l kna) I' (kna) EOk(t) (-1) .
hl 0\ hy

+g<B(t) - (ﬁ"—l) I, —Zhl‘;) c(t)

®©

An . h :
0] e
+ -2& ( 2 J Jo(koj g) Doj(t) sinh(kOj 7§>} + XX =0 (A-12)

. Multiply eq. (A-12) by (Aoj E) and integrate over the interval of r

from O to a, the result is

k
1 - = 2a 2 k (1) On
= A(t) + B(t)h |- = |=1 (-1 Wwroi(e) |T, - —————
2{ 2} kél v tkma ko "On S WA
B(t) . 1 & :(1) XX
te 2 +-; Z wbn IOn * 2 =0 h (a-13)
n=0
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Integrate eq. (A-13) twice with respect to t, the coefficient A(t)
is obtained as
' h, 2 N (-1)
(e <] 4 .
AR) = (0€) + Gy - by B + T g2 LTk ) WiV |

2 h \krma =0 On kn l_akz

- g (%f) {%; - 5% [sin(Qt) -Qq}

1
~
[l
(@]
=]
\ﬁ
,\
—
~—
—~
her)
R

2
T 3 2
'(FTJ { £€-+-5§ [sin(Qt) - (Qt) cos(Qt)] - igs sin(zn;)i} (A-14)

where C1 and C2 are constants to be determined by the initial conditions.

Multiply eq. (A-12) by (AO E) O(AO —) and integrate over the

interval of r from O to a, the differential equation which contains

the coefficient Doj(t) can be expressed as follows:

N 1) w < D1
(t) + “03 (t) - nzo ' ™ él (~1) (EZ)[Ikn' —_—

JO(AOj) cosh(KOj ;—)

21, (Zh ) (ga)

(1)
. + W (e)
2 ,lkmal2 On h 2

)" H= 2 B Ta
0" HE ToOhgpleosn oy =) [T + G2 ]

(A-15)

where

2 _ 8o;
(o) = tanh (g, ) (A-16)
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The solution of eq. (A-15) can be found as

Doy () = a5} cosog e + 351 sinte o)
t
N sinjuw, (t-8)
(1) [ 0] } 0j
+ ) WAt (B) p’J dg
=0 J On wOj k
t .
. ? j ﬁél)(g) 51n[kb (¢ B)} 203 48 (4e17)
n=0 ‘o M 9 On
(1) (1)

where AOj and BOj are constants to be determined by the initial

conditions, and

k
. @ (-1" 1
p0d = 2 1 -k 33) I, - On (A-18)
kn h Lo gy h kn 2
3o(h,) cosh(h, —) K7L L 1-bk
0037 “°%" %5
ga (-E—jz
2 _
: 2
p0J = 2 I (A-19)
A — .
Tol ) coshhy = 2n, 03
0o _ 1
ij = > T2 (A-20)
(A, )" + |—= :
0j hIL

(1) (2)
A-IV Dm_] (t)’ ij (t)

Substituting eq. (56) into eq. (40) and grouping terms for m»0
yields the following differential equation,

w h
(i) m ry (i) )
Fp )+ 7 3 G0 2) D s (e cosh s )

P ™™
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+ f 565 o0 mly gimn E-’9> =0
g mj a mj a sin Amj a B
i=1, 2 (A-21)

i . (A- A= » i
Multiply eq. (A-21) by ( s a) Vi ( ns a) and integrate over the

interval of r from O to a, eq. (A-22) is obtained.

2
vl . 2(x_.)
50 ey + o 2 0l (ey- m]
mj mj mj 2 2 2 hy
I A 1)) - m® Ycosh(A_, —)
mj mj mj a
g (1) (xmj)2 TG a
RN mhy (A__) Ton
T Dk e e
T (e e e
hz m hR a
L
kma kna kra =
’ [ (—E; Jm(kmj) I +1 . + G j) I ( 1y mtl AmJ)] =0

The solution of eq. (A-22) can be found as

cos(w .t) + B(%)
mj mj

D(i?(t) = A(%)
mj mj

sin(w .t)
mj

N
+ ]
n=0

wu) ﬂn@&#%-@ s [mJ+P ]

mn W
mJ

0‘——~.n

i=1, 2 (A=23)
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v

Where Ari;) and Bﬁl;) are constants to be determined by the initial
conditions, and
g h
2 _ Z2mj 2
<wmj a tanh (Am ) (A-24)
2
200 .) o
mj _ m] m - k( 2a_ -
P ; ; ; o) kil ij (-1 b L. (A-25)
[0 0% w2 520 ) coshr )
mj m = mj mj a
26, )° a I, 01
mj _ mj m+1 " mj On
Pon = (a-26)
n 2 27 .2 ) mh Ao
[(A ) -m]J (A .) cosh(h_, =) J
mj m  mj mj a
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APPENDIX B

Method of Solution to the Differential Equations (24) through (35)

B-I Solutions to Equations (24), (26), (27) and (28)

Integrating twice gives the solution to eq. (24)

{_rm r [+ yeos(ur)) + r(5)> | (B-1)
Solving egs. (26), (27) and (28) by Laplace gives |
ﬁ;}))(w _ ;é><o>cos[/m%)u T} + g(1>(o) sm[ ;(—11:—:—); T] (B-Za)‘
w200 = 5100 cos ‘:—zfzﬁ-v-)—u w] + 32 (0) sin [—é—(;‘i—\*;; r] (B-2b)
7521 = ¥2(0) cos {m} V(o) “[‘;a':; ] (B-2¢)

B-II Solutions to Equations (25) and (29)*

Let 5
. _ (M7
1 (l-vz)u
STV A
g = —STVA
L2 (1~v2)u
L (4) 2Q1-v 2y (8-3)
B = '—"—"——"
13 (sw)
2
1 2 .0 4
8 = —— A +T(s“)]
2
Then eqs. (25) and (29)* become
~(1)(7) + 8, (l)( )+ B, W é )(T = —~—'<;r11) 1+ vy cos(mrﬂ} (B=4)
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<l)(r) +5 7y 18 w (1) = 13

12 Yos 22 Os (B-5)

p |

The Laplace transform of eq. (B~4) with respect to T is

- 3
P’ Ué:)(p) - p G5, (0) - U<1)(°) - 311”81)( )+ Blzwél) 313[f+ 7 }
P tw
or
~(1) 3, (1) (1) 2:(1)
8
w00y = [ (14051 €0) 5% + ug (0 p? + ¥[8 0] + W20 (0)
2, 2., 2
(p™Hw )(p +311)
7(1)
812 Mo (P)
i S (B-6)
Pt B |
The Laplace transform of eq. (B-5) with respect to T is
(o8, Tokp) = - LB () + pifsT @) + uSL0) - 8 V) (8-7)

where Pos(p) is the Laplace transform POS(T)o

Substitution of eq. (B~6) into eq. (B-7) gives (The naming of the
functions and coefficients of FOZ’ G31, etc., is for the convenience of

computer programming)

Fogfol (0 = - By (o) + v [ W51 + i @]+, (8-8)
where
52
~ [ 2 12 i
Foa = Foz (P’S>"“[p et 2, ] (8-9)
P8,

Fo7 = Fozlpss)

[ (1+y)+u<1)<oﬂ <1)<o> I [el3+uél)(oi]p+mzﬁéi)<0)

- uB
12
(p + ) (p +Bll)

(B~10)



The laplace transform of eq. (93)* with respect to T is

— N 1 p
Pos(P) = (Gps34) 3 (Gp38”

038 2
P2+u
27 (e 0 e i 00 + e 50 + 7 50 0) (B-11)
aop L 03 on P 04 "On 05 "On 06 "On
where, for the convenience of computer programming, the first zero of
! s
J (X_.) is assumed to be the first non-zero root of J_ (X _.) =0,
m 'mj m  mj
therefore index j begins at i.
F =F N 2
03 03 (p, n, s, j) (F03p2) p° + (F03p0)
4 2
© F + +
. 7 Fozsps? P ¥ (Foy ) 07+ (Fyy o)
(2 2, )2 (B-12)
3 P wOj
F., =F,, (p,n,s,j) = - (F )p - (F ) 1
04  “04 ‘PoM2S] 03p2 03p0”’ p
o (F ) p3 + (F ) p + (F )
03sp4 03sp2 03sp0
i .21 21 )2 (B-13)
J P Uoj
FO5 = Fos(p,n,s,j)
w (F ) p? + (F )
= . (F ) - 03sp& 03sp0
03p2 L 2 . ~ .2 (B-14)
=1 p- T (wo.) :
J ,
Fog = Foé(p,n,s,j)
~Oj
@ G . P
_ 0343 "kn p
) 2 " Fosspu 2 /I (B-15)
=LL (Bg) P p (@, ) - -
0] 0]
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-~

2P (1)
- __0 s} 2T I .
Go37 G037(s) =5 [} - (-1) +'-§;—— [C - o7 sin (sﬂci}
2 1 4 ‘ _
- 2r( ) [( ﬂ)z sin (s7g) - ;;i} (B~16)
S
- ’ (2) 1 . : g
G038 = G038(S) = - 2T %y 5 sin (smz) - o (B~17)
(sm)
Fosp2 = Fo3p2(mss) = Gp35 = Go36 | - (3-18)
Fo3p0 = Fospo(8) = = Gg31 * Ggzs + Cgsg » (B-19)
F =F Y = =0 ]
03sps ~ F035ps(Rsssi) = Go33y * Ppd (B-20)
_ Ly - 50] 50]
= = [ + .
Fo3sp2 ~ F03sp2(M2823) = Cgag5 * Pon ¥ Coyyy *Piep (B-21)
_ o . 503
F035p0 FO3sp0(n’s’J) GO34j Pon (B-22)
= _ 4 (1) =
G031 = Go3l(n,s) =- T (1 - cos (smz)] IOn . (B-23)
2\ -
1 =] I
- _ .(3) O(Za) On _ L
GO32 Goaz(n,s) 2T e [( n)z- 7 2 %w T 51n(sw;%
1{2a s 28
% |
o sT 1 —_
2 _ 0 \a k
+ £ - -
¢ kgl(ki)l k) fgmy2.[KL)2 [ - 1eosere)
o/l | a L s c) -
[- -1k EOn] _
I, «——1 : (B-24)
kn 1 - dkz ,
Go35 = Cgasinss)
2
o E .I_(l oy p
RICOINEIE N Lo f ) RN E i

e on et - P [f-l) e T T2 } (B-25)
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_ 2 ] . (3
G036 = 0036(n,s) [l - cos (smg) r Pkn

(1) Iy ?% (sn)2 cos(smzg)

Go39 = Gpzem»s) = T [ [Gm? - ;l)z] Ton
1 (2a) s 2¢
I (n:)
: (3) 0'"0j
Grsn: = Goan (iys,§) = - 2T
0333 7033y (Xkoj)2+(5ﬂ)2

* 1 sm - st cos(sng) cosh(hn,a) + Arn, sin(snz) sinh(y,.q)
0j 0j & 0j

Aoj JO(AOj)

(1)
)2 + (s7)?

C034j(n,53j) = 22T (AX

0343 o

~[sﬂ cos(smg) sinh(koja) - AAOj sin(smZ) cosh (Aoja{l

~ ~ ~ % -~

The coefficients I 0

03 -
T ? Pkn’ Pki » and Pog are the
03 04
dimensionless forms of IOn’ Ikn’ Pk% and Poi respectively.

m
When fn(n) is taken to be sin (Bf”), eq. (67) gives

_1 - cos(nm?)

IOn nw

Eq. (68) gives

Eq. (71) gives

© I
~3 4o 1 k On
S U TR DA T }
kn 2 L2 [ kn T2
Eq. (73) gives
~03 La - 1 k = i:'0
Pn = I \:('” Ten = n 2]
A A« = -
w JO( Oj) cosh( 03 ) 1 k 1 - &4k
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(B-27)

(B-28)

(B~29)

(B-30)

(B=31)

(B-32)

(B-33)



Eq. (75) gives

- 2
"OJ - I‘(6) . .?.Tl) i
Pon o( 03 ) cosh (A a) T2 2 On
0 % " Oj)

Substitution of eq. (B-11) into eq. (B-8) gives

N N
*(1)
21 [F03 T ons Fon (p)

n::

05

N
(1)
- Z[F (0) + F 06 Yo

| Fou en %éi)(o) +F (1)<oi]
n—

1
p

~ (1) =(1)
+ li[p wOs (0) + wOS (o)] + Fy, - GO37

(B=34)

. N (Ra38)

This is a system of N equations to be solved for the N unknowns

ﬁéi)(P)’ n=1, 2, ... N. Taking the inverse transform of U

T () gives 310 ana W0,
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B-II1 Solution of Equations (30), (31), (32)*, and (33), (34), (35)*

Equations (30),

following forms

5(1), - (1) TCS FNETe)
INOR TN OR %3 Vg (T F a0 (1) =0

(1), ~(1) (i) ~(1), y _
Vi (1) +-a12Ums (1) + azzvms (1) + oy aW (1) =0

~(i) ~(i) ~(i) =(i) _
wm: (7) + U - 23vm: (1) + «a W (1) = -

‘T) +a 33

where for eqs. (30), (31), (32)*
i =1 A
“12 7" G
)
%13 7 (iti;)u
6, = - )’
23 (1- ¥)u

[(sw)z + (ml)z] %}

2

! {20
o, = AS + —
33 (1_V2)u 12

(33), (34),

For equations

(35)%

i =2
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31), (32)* and (33), (34), (35)% are of the

(B-36)

(B=37)

Pms (B-38)

= -

(B-39)



2
1 2 . (m\)(1-v)
= (sm)" + ——mm i
(1'\)2)U [ 2 -]

msTA
%12 " 2(1-W)u

a = s'n’\))\
13 (1-v%)u
%, = a 12 [(mx)2 + Séfléillil ] (B-40)
-v)u
__ml
23 (1-v)u

(3%

2
o =L {Az + 2= [(sm? + (mn)? }
33 (1-v2)u 2 [ ]

The Laplace transforms of eqs. (B-36), (B=-37) and (B~-38) with respect

to T are:

2 =(i) =(i) _ (i) =(1) ~(1)
(p° + 011) Um: (p) + o Ve (p) = - a3 W (p) +p Uns (0)+UmS (0) (B~41)
a0 () + P, ) Vo) = - i) + 5700 + 7000 (3us2)

(p2+a33) ﬁéi)(p) +'313ﬁii)(p) +-a23§éi)(p)
= . %'Eéi)(p) +p ﬁéi)(o) + Wé:)(o) (B-43)

where §é§>(p) is the Laplace transform of Pé;)(f).

Solving eqs. (B-4l) and (B-42) simultaneously for ﬁiz)(p) and V;;)(P)

gives
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Ns(p) + N6(p) W(i)(p)

~(1i) _ ms
Ums (p) = D3(p)

No(p) + N (p) T (p)
7y = 2 P 8P’ "ms ‘P
ms P D3(p)

where
_ =(1) 3 (1) 2 ~(1) =(1)
Ns(p) = Um: (0) p~ + Um: (0) p° + [azzums (0) - “12Vms (0)]

2

= a - [s1
Ne(p) %13 P F %%, 22%13
_=(1) 3, 2(1) 2 [a ~(1i) 3 (i)
Ny (p) = Vp(0) o7 + v (0) p? @V (0) - o u (o))
N.(p) = - @ 2 + o« - o«
gP 23 P 12 13 11 23
D.(p) = p* + (o, +a,,) p + (o o - 02
3\P P p 11722 © 12

Substitution of eqs. (B-44) and (B-45) into eq. (B-43) gives

r o) B0 = - FD 4w [P0y + i000)) 4 5 ()
where
(p) + G,y N (p)
_ 13 N6 8 2
Fole) = “[ D, (p) e o‘23]
(p) + o, N, (p)
F (o) = “13 %5 23 N7

e D3(p)

The Laplace transform of eq. (94)* with respect to T is

4 mn 5 mn 6

N N . » . .
Fae (P - L {:F3w;;)<P) + 7,000y + r it e0) + F it 0)

n=1
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(B~44)

(B=45)

(B-46)

(B-47)

(B-48)

(B~49)

(B-50)

(B-51)

(B-52)

(B~53)

(B~54)




where

Fy = Fylpommys,3) = (Cy3¥Gyp)p + Gy
- 2
L Gyy L2 634.(wm1)
+p Z —_—l 1% Z
=1 p~ + (& )2 =1 p° + (& )2
J mj J . mj
F, = Fa(p,m,n,s,j) = - (G31+032)p - Gy
© G © G
3 331 343
L e TPk ra
=l p “nj =L p “n3
Fo = Fs(p,m,n,s,j) = . (G3l+G32)
2 G334 PR |
TPy (e )% 5= pt 4 (e )2
=l op 3 =l p »
F, = Fé(p,m,n,s,J)
% Cq3; 344
P T ey T TRl @)
et gt Gy
’ 2r.(3) -
G31 = G3l(m,n,s) = {l - cos(s“c>] IOn
G32 = G32(m,n,s)
(3) ® Im %; [1 - (-l)k cos(sﬂli
IR Sy 51] (sm? - (51)2 e
¢ m ! a S g
Gys = G35(m,n,s)
kny . (kT ,
) ar(l) Z (_1>k Im( a) lC sin(s %) -
i b Er' (kT 1[( o? - [EI]7] ke
[} m&d/ s [
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(B-55)

(B-56)

(B-57)

(B-58)

(B-59)

(B-60)

(B-61)



‘ (3) Jm(kmj)
O335 = G335(mimss,3) = - 2f

(A)‘mj)Z_*_(sn_)Z [ kn On]

«[sm = s7 cos(smg) cosh (lmja) + Akmj sin(s™C) sinh (lmja)] (B-62)

‘ A, I Oy
Gyyr = Ggy:(mnys,3) = - (L) mi LBl [ij + ij]
’ ’ O ) 5H(sT)

. [Akmj sin(smg) cosh(Amja) - sm cos(smr) sinh(A_.a)] (3-63)

i

The coefficients i s I:Im s p™ and i)m ~are the dimensionless
kn® " jk’ "kn On
m omj mj el
forms of Ikn’ ij, Pkn and POn respectively:

When fn(n) = sin(%- n\) , eq. (68) gives

= _ n k
Ikn = m (1 - (-1)" cos(nng)] (B-64)
\3
Eq. (69) gives
~ 1
Hg‘nkzkn kw) kM2 L )2
"o nle [ on) mj }

r ) g (k)
dl a Jm()\mj) Im~i-1 ( Ot) + ijm (Ot Jm+1 (Amj)] (B-6$)
Eq. (72) gives
—t 4n (X .)2
smj m] .
ke [(A )2 -m2] 720 ) coshh_a)
mj m mj mj
~m
- ki

-1F - cos(nmg ) (B-66)
[ ]
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Eq. (74) gives

20040 T ()

= A 1 - cos(nrg) (B-67)
On  ne [(Amj)z - mz} Ji(kmj) cosh(xmja) [ ] :

P

Substitution of eq. (B-54) into eq. (B-51) gives

N ] -y,
=(1) _ =(1i) ~(i) 2 (i) (i)
F, wmz (p) = - n£1 [F3 Wﬁ; (p) + F, N ~7(0) + FW (0) + F i~ 0)
o [p i 5]+, (5-68)
or

§ P45 F | Wi(p)
=1 3 ns 2 mn P

N . . rs
=- L {Faﬁ;;)(O) + 1) + 540

n=

=(1i) *(1)
+u[p%£ (0) +w? w>] + 7,

s - 1,2, ce N (B-69)

For each value of m and i, eq..(B-69) represents a system of N equations

to be solved for the N unknowns ﬁ( ), n=1, 2, ... N. Substitution of

Wé:>(p) into egs. (B-44) and (B-45) gives U ( )(p) and V( )(p) Taking the
inverse transforms of ﬁéi)(p), Vii>(p) and W —( )(p) gives U( )(1), (i)(r)

and w(l)( ).
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B-IV Final Comments on the Numerical Approach to Egs. (B-35) and (B-69)

Eqs. (B-35) and (B-69) represent a total of 2M+l sets of equations
each of which contains N equations. To solve each set of these equations,
we have to compute the coefficients of the functions F's in p corresponding
to different indexes m, n, s, and j. Since the éoefficients of each
system of equations are functions of the transform variable p, numerical
procedures in addition to the matrix inversion method must be used in
the computer programs. After ﬁéi)(p), Vii)(p) and ﬁé;)(p) have been
solved in terms of p, they have to be separated into partial fractions
before the inverse transform can be taken to obtain the time functions

ﬁ(l)(r), 6(1)(1) and ﬁ(l)(r). This involves a tremendous amount of work
mn mn mn

in computer programming as well as analytical calculation.
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